
I have the pleasure being here with Dave Thomas. I just want to talk a little bit about Ruby and 
Rails and the success and the ongoing success, on how you have been part of that and some of 
your opinions. What do you make of the success of Ruby especially in the last years, so it's really 
started to take off? 
I think it's exceptional and I am really happy it's happening, not specifically for Ruby, although I 
think it's really cool that a nice language like Ruby has broken out and made it to the 
mainstream. For me, the most important the most important thing that has happened in the last 
couple of years is that assumptions that people had about programming languages in the big 
world have changed; it used to be "I have to have my Java, or I have to have my C++, or my C# 
and that's my focus, that's what I do and it has to be typed, statically typed" and people have seen 
the success of Ruby, the success of Rails and said: "Oh, it is possible to use something different." 
and that's encouraged people to go out and explore, so we have a whole bunch of people that are 
jumping on the Rails wagon right now, that's great, but I think we also have people who are 
jumping on the python side of things, some people looking at squeak and the work that Avi 
Bryant is doing, there is a whole lot of renewed interest in alternatives and that's got to be 
healthy. 
What's the source of the change, why are people more open now then they were 5 or 10 years 
ago, into looking at these more niche/specialized languages? 
I think a lot of it has to do with just pure pain. They have been developing now in languages and 
frameworks, which started out simple, started out elegant and then gradually just accreted more 
and more stuff around them. To the point where now I don't even know how a beginner J2EE 
developer gets started, because the stack of books you have to read just to write a simple J2EE 
application it's probably 5-6 feet tall and it's a lot of work just to get in there, and then once you 
are in there it's only one of these fields that's changing so quickly and new things are being 
added to it all the time, it's very hard to keep up and then you say: "Ok. What benefit am I 
getting for this?" and the reality is not a lot. It's a lot of pain for not much payback. From an 
organization point of view it's not a particularly productive environment. People have to do a 
whole lot of house keeping work to put these applications up and running, or to develop them in 
the first place, and they are saying: "Where is my return on this? All the stuff I'm pouring in 
here, why aren't I seeing all these web applications coming up?" and then they point to other 
sites, the startup sites, where they're producing massively successful applications on the cheap. 
"Why can't we do this?". "Well, because they are not using Java, or they are not using C# or 
whatever it might be", "Well, what technology are they using?". 

I think that combination of pain plus the carrot of seeing these successful sites now means that 
people really don't have the choice. If you look at Rails, I'm not necessarily saying Rails is the 
way to go, but if you look at Rails, most of the consultants that I know that are experts in both 
Java and Rails will tell you that they get between maybe 5 and 15 times performance increase, 
let's say 5. They can write their applications maybe 5 times faster, so for domains where Rails is 
applicable, and that's not all domains, but in those domains where it's applicable a shop can turn 
out an application with 20% of the effort, if they were to use Rails over say C# or Java. If that's 
the case then really you could say that developers who stick with the Java model and C# model 
are actually being negligent, because they are costing their shops so much extra money.So in that 
environment what I would like to see happening, or what I am seeing happening is people who 
are saying: "Ok, we're no longer monoculture, we're no longer a Java shop or a Microsoft shop, 
but instead we are responsible for developing applications for our company and we'll do 
whatever it takes, we'll use the correct tools." 



We're in the beginning of the Ruby and Rails adoption cycle, but I see out a lot of the folks that 
are starting to get into Rails are not the early adoptive type, but more towards the mainstream 
types. Are they as capable of getting that 5 times performance productivity increase? 
Absolutely. In fact I would argue that probably they would see a larger increase in in 
productivity, simply because the more exploratory developer the ones that came across to say 
Ruby first are probably also using tricks in their Java or their C# work to metaprogram as much 
as they can. They are probably using code generation techniques, they are probably using more 
dynamic-like typing then you would normally use in Java, for example using hash maps to pass 
stuff around rather than creating objects to do it. So those people are probably quite a few of the 
tricks that you do in Ruby as well, but for a mainstream Java developer who kind of does it by 
the book then doing it in Rails by the book will give you a massive productivity increase, so I 
think that's true. I watch people that come to our studios who may be Java developers or 
probably haven't done much Ruby coding before and they come away having written a couple of 
applications and they are just stunned that they have actually got this whole thing working 
beginning to end and that's great. I think it is definitely possible. I think you have got to be very 
careful not to go and fall into the trap of saying: "What's the question, it's a Rails applications 
whatever the question means to b, whatever the problem domain happens to be" Rails is a 
particular solution for particular set of problems and part of the trick is making sure you use it 
appropriately. 
If we were to draw an architectural diagram we might have to put Ruby at the bottom, let's say as 
a horizontal base technology and Rails would be one of the pillars on top of it, but, then there 
would be a vacuum right now I think, in terms of what other types of major applications you 
would build using Ruby. 
I don't know if there is a vacuum in terms of applications, there is a vacuum of exemplars, in 
terms of people come out and say: "Here, is our magic application". Ruby is a tremendous 
enterprise glue and increasingly enterprise development is less about writing fresh applications 
as it is about creating functionality within the existing applications, plugging them together into 
different ways and making them do things and Ruby is a incredibly good language for that, 
particularly now that we have integration of JRuby, we have a decent set of libraries for RPC 
style work, we can interface with just about any database etc. etc. Given a all that stuff, Ruby is a 
really great way of creating these kind of amalgam applications and there is no real name for 
that, there is not particular framework for doing that, so it's not particularly marketed as a 
something, but I think that's a very strong place where Ruby is right now. 
Is it perhaps like AJAX, where the techniques and the technology existed but no one really knew 
how to identify them till it was given a name? 
I think it's exactly like AJAX and maybe we should go and get drunk and actually come over the 
new acronym before whatever we're doing with Ruby enterprise, but I really think that's a really 
strong analogy. People are doing that all over the place, but they don't call it anything, they don't 
give it a name. 
Do you think it's sane to try to push Ruby into all of the equations in your enterprise. People are 
talking about doing enterprise Ruby stacks and maybe it's about what you were referring to a 
second ago, this idea of using Ruby as an integration language. 
I think anybody who tries to push any technology in as the solution is missing the point. 
The vendors do that all the time, right? 
Yes, but one of the things that we are blessed with in the Ruby world is we don't really have 
vendors right now, we have a few people coming along, but we don't really have that kind of 
"my mortgage depends on Ruby therefore I have to push it to every one of my costumers." That's 
a blessing because Ruby is just a tool and I don't think anyone should be ever told "You have to 



use Ruby for this". I think it's just the question of developers need to make intelligent choices 
and they need to have experienced a whole range of tools to know which one is the best for this 
particular job. 
Pragmatic Programmers just put out an Erlang book. So are we going to be here in a few years 
talking about Erlang and the success of Erlang? 
I hope we're here talking about the success of some language that makes it easy to write 
concurrent programs because it's a desperate need that we have right now from all sorts of 
reasons. First of all if you look at it form a Java perspective, every Java program is by nature 
multithreaded and if you actually ever expose that threading out to the developer level, the 
chances are pretty good that it's being done wrongly. So there is a whole bunch of programs that 
are working there by coincidence, using a threading model and that's not a poke at Java, it's the 
same in C#, it's the same in Ruby, Ruby has a thread model and no one knows that use it either. 
So what makes you think that they would get it right in Erlang? 
Because you don't have to worry shared state. Fundamentally, shared state is what makes threads 
hard. In threads you have memory that is shared between the different threads and you just 
synchronize access to it so you have to know where you have to put the synchronize key words 
and when to use a queue, it's really, really hard to do and what's worse it's almost impossible to 
debug. Languages like Erlang and I am not necessarily saying Erlang is a solution, but I think it 
points the way to the solution. Languages like Erlang have a different model of concurrency, in 
Erlang there is no shared memory, instead everything is done through a message passing. They 
also have a different model of error handling, in that they tend to say: "Don't do it!" Individual 
processes function focus on their particular function and then you have totally separate sorts of 
processes who are responsible for monitoring the world and working out if things have gone 
wrong and fix it up and getting it working again. so error handling in Erlang is a lot easier too, 
and as you know, writing multithreaded code with error handling and getting it right is very, very 
tough. So Erlang is a really interesting language for solving that problem and then on top of that 
we have another problem and that is Moore's Law is kind of breaking down, this idea that you've 
always got more performance just over the horizon. 

It's true, but now you no longer get it in the same architecture as you used to get it. In the old 
days I used to get a faster processor, and more memory, and then I'd be happy happy, now I get a 
2 core processor or a 4 core processor, or a 32 core processor and suddenly, yes, I've got more 
aggregate CPU cycles then I used to have, I can't use them, unless I can run things in parallel. So 
then I'm back to this problem. How do I do that? Do I have to use threading etc? And Erlang 
gives you a very elegant way of handling that, so it's a lot easier to write multi-core applications 
in Erlang than it would be in Java or Ruby or C# So long term I think if we're going to continue 
to rely on this ever growing increase in processor power as an industry we're going to have to 
switch across to environments that take advantage of that. 
Right now Rails is the dominant web framework certainly in Ruby and in some places it's almost 
becoming the dominant web framework period? So given the benefits you get out of being a 
dominant player like that what do you see happening in the next few years in terms of 
competition for Rails? 
I think what we are going to see or at least I hope what we're going to see is people realizing yet 
again there is no one single best solution and that maybe we can look to have smaller and more 
focused frameworks or solutions for individual styles of problem, and that Rails itself just won't 
keep growing to be the monolithic thing but instead will spawn a kind of philosophy of 
frameworks, where we're going to have lots of small, maybe micro frameworks for particular 
areas, particular problems, not necessarily always in Ruby, so maybe Java, maybe Erlang maybe 



Lisp maybe whatever it is. Again, the important thing is focusing on getting stuff out that works 
for the custumer and whatever tool you use it should just be the best tool for the job. In terms of 
Rails itself, clearly there is a big push over the next six months or so to consolidate the support 
for REST and this idea that we should be writing our web applications using a kind of RESTful 
paradigm. 

That's going to be very interesting to see how it plays out. They did an initial prototype, it's not 
really a prototype it's an implement that's in there based on the Atom protocol and the way that 
Atom can handle resources remotely using the HTTP verbs. That's has been pretty successful for 
a category of applications, particularly resource based applications It's been harder to map on to 
more general applications, but they are looking for ways of doing that so that is going to be very 
interesting to track, to see how Rails 2 handles a more general category of application while still 
keeping the simplicity and the benefits of the RESTful approach. We are also starting to see the 
stronger decoupling of presentation stuff, so that I can write, for example, a single application 
that very easily responds both to human being on a browser or another application sending an 
XML request. 

And that's kind of exciting too because it means that writing big monolithic applications, I can 
more easily roll out a lot of functionality as a group of small applications that federate and 
cooperate to produce a result. Even down to the point where now simple captures where I put out 
like a string of graphics or characters and I say: "Type this in so I know that you're not a robot." 
People are federating down to a level where you have a capture server that purely serves the 
images for a caputre and then validates the response. That's glorious, it's a wonderful of 
decomposing your applications and so I hope that part of the things we see in the future with 
Rails is a better understanding of how to create those kinds of architectures where lots of small 
applications cooperate to produce lots of interesting results. 
So we talked about the future of Rails. What about the future of Ruby? The 1.8 line of Ruby is 
kind of approaching its end and at the same time 1.9 introduces enough changes that some 
people might not necessarily be expecting to change over to it any time soon. How does that 
transition play out? 
I think that one of the interesting things about the way Matz is handling Ruby 2 is how slowly 
he's taking it and that's not particularly deliberate in terms of "I want to be slow", it's more that 
he is trying things. So he'll put a feature in, he'll experiment it for a couple of months saying: 
"Maybe that didn't work out the way I wanted it to", pull it back out, and try something different. 
So he is taking it very slow deliberately approach to that and the result of that is that the 
community knows what's going on because all is this happening in public so it's very easy to see 
now where the incompatibilities are between 1.8 and 1.9, for example. 

There aren't that many. The biggest change that we'll see in Ruby 2, I think, is the scoping of 
block parameters; it's probably the biggest change in terms of incompatibility. Other than that I 
wouldn't expect a large effort to move from Ruby 1.8 to Ruby 2, and you've always got the 1.9 
branch to experiment with along the way, so I don't think that is going to be a major problem. 

There are people that complain it's too slow, but I think Matz is taking a very realistic view that 
he has a lot of people now that depend on this, he is not just going to throw new features in on a 
whim, but he is talking it very deliberate approach to it, so I salute him for that. I don't think it's 
going to be a dramatic transition at all. The other thing I am seeing in terms of Ruby is suddenly 



we are seeing a whole bunch of alternative VM implementations. We started out with the VM 
written by Matz and for 13 years or something like that, that was the VM. 

The problem is that Ruby is a really hard language to parse, but as parser generator technology 
has moved on, people are finding it easier to write something that will parse Ruby and so now 
we have YARV, which has actually become the VM now for Ruby 2, we have JRuby, Microsoft 
has got IronRuby and I know of at least 2 other Ruby implementation projects in the works 
where people are producing VMs either for specific areas like the JVM or to solve specific 
problems. So I think we are going to see some really interesting stuff happening on the VM front 
over the next couple of years. JRuby, or at least the ability to run Ruby on the JVM, is really 
exciting. 

I went to the Euro RailsConf. back in September, and saw Charles Nutter bring up my deploy 
application on JRuby and that was really cool and then he integrated it was some entity beans 
written in Java and it was totally seamless and that was significant because now you are looking 
at Java shops that have millions of lines of existing Java code, their own schemas, their own 
business rules, their libraries, the bought in 3rd party code and suddenly it's not obsolete, 
suddenly they can actually have that interoperability between Ruby and their existing Java 
applications seamlessly and that gives them the opportunity to put a toe in the water, to 
experiment, try things out and if it works then great, if not they just carry on doing what they are 
doing and there is no technology risk there, so I think all of these alternative VMs are a great 
thing for the language. What I would love to see and I don't think I'll see it is more work towards 
a specification what Ruby actually is so we can ensure compatibility and portability between all 
these different implementations. But right now we have a dramatically big test suite - tens of 
thousands of tests and so that at least guarantees that at a functional level they all do the same 
thing. 
If you think back to what you were thinking about Ruby 2 years ago have your expectations 
come true, have they been less of what you expected, or have they been more than what you 
expected? 
Interesting. When I first wrote the first edition of the Pickaxe book back in 1999, it was written 
because I love the language and I never expected to see people taking it up. It was purely for me, 
one of those passion projects, I just wanted to get the word out and the reception to that first 
edition of the book was about what I was expecting because it sold, OK, it carried on for a long 
time just selling every month, but that was my expectation. The uptake over the last 2-3 years 
has blown me away. It's just so cool to see developers all over the world picking up this tool 
simply because it seems to me that people coding Ruby are happier and the fact that these people 
have that opportunity to be happier makes me happy, I am really pleased with that, so in that way 
it way exceeded my expectations, I'm so, so happy that it's happened. 
Why does coding in Ruby make you happy? 
Coding in Ruby makes me happy because it's one of the shortest paths between my brain and a 
computer. I can think of something and I can express it very succinctly and typically fairly 
elegantly in Ruby without all the kind of extraneous fluff that you need in most other languages, 
and that makes me happy. It also makes me happy because I like playing and I like trying new 
things out and I like experimenting: "Does this work?" and Ruby has sufficient depth that I can 
do that. I am still learning new things about Ruby every day and that is good fun, so it makes me 
happy because I can be productive, but also makes me happy because I learn while I am using it, 
it's just not static. 


