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Preface

This book is concerned with Algorithmic Intelligence. While an algorithm can hardly be judged to be intelligent
on its own, the basis of what is attributed to computer intelligence is of algorithmic roots. There is little doubt
that the smaller the space consumption of an algorithm and the faster the access to its data structures are, the
better the inferences.

There is a rising need for software systems capable of taking action in situations involving sensor inputs, state
variables, situation assessments and environmental conditions. What we are interested in Algorithmic Intelli-
gence is a holistic view encompassing areas ranging from theoretical computer science to machine learning via
engineered algorithmic solutions.

Algorithmic Intelligence acknowledges the fact that computer action involves a constructive process. The ma-
chine as an information constructor is assisted by humans to create machine representations of objective reality.
New information is then linked to prior knowledge. An example is a game playing program that extracts knowl-
edge from expert play. As a result, in 2016/17, many professional Go players were defeated convincingly for
the first time. In these approaches, as well as in many solutions in the book, learning is combined with search,
thus combining knowledge exploitation with exploration.

The focus of the book also includes tackling optimization problems where there is no learning as such, but Al-
gorithmic Intelligence comes in as a way of dealing with computational hardness. Most of the tackled problems
are provably complex, so that we are more or less forced to search for the needle in the haystack. The mission of
the book, therefore, is to promote cross-fertilization among researchers working on related optimization topics
from different angles.

Algorithmic Intelligence has a core that is methodical. Artificial Intelligence has grown beyond its philosophical
grounds with methods that are applied in mainstream products. With Algorithmic Intelligence we give this trend
a name. As we avoid the term Generalized Intelligence with computers that generate human-like thinking, the
term Algorithmic Intelligence relates closer to the second meaning of intelligence, as in Business Intelligence.

Algorithmic Intelligence stresses that modern computer designs are essential, starting from fast and atomic
processor instructions up to parallelism on multiple cores. With the changes in technology, refined algorithmic
designs are required. The dependence on technology advances becomes evident when looking at the very same
program that has to be attributed to be more intelligent when run on a faster machine. The recent success
in machine learning would not have been possible without the progress in hardware. Besides new algorithm
designs like stochastic gradient descent, many- and multi-core machines helped otherwise outdated machine
learning algorithms to scale, offering a fast decrease in error rates.

Algorithmic Intelligence is a pragmatic term as we agree that there is a wide divergence between the nature of
machines and humans as currently understood and as revealed by conceptual analysis. Misconceptions about
computer potential and misrepresentation of computer power emerge from excessive anthropomorphisation of
machines. A computer program comes in a different format to what is currently understood by human intelli-

vii
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gence. The point is that its implemented algorithms, simple or not, can reach a high level of generalization and
performance to be applicable in different contexts.

Intelligent computer programs affect everyday activities, be it gestures, spoken language inputs, or location-
based services for improved navigation. We are confronted with machine recommendations in online market-
places, and our Internet activities are correlated to map our habits. Hence, Algorithmic Intelligence enters our
lives at different ends, e.g., in the form of phone or tablet app(lication)s, synergetic power control, or improved
safety in computer networks.

The advances are practical and directly address an increased shareholder value for those that use the technology.
The list of companies that have understood Algorithmic Intelligence to be of crucial importance to their long-
term success is continuously rising.

Algorithmic Intelligence, therefore, serves as a collective term for the range of algorithmic methods that have
been identified as key revenue drivers in companies (including Alphabet, Meta, Amazon, Netflix, Microsoft,
UPS, and Walmart). The name opposes the term Artificial Intelligence, which carries the meaning that there
is intelligence, but nothing is real. With Algorithmic Intelligence we stress the focus on the impact that well-
founded algorithms already have for visible success in practice.

These pragmatics are reflected in the quote of Thomas Watson Jr.: Our machines should be nothing more than
tools for extending the powers of the human beings who use them. The success of Question Answering demon-
strated in playing Jeopardy has been ported to different fields such as cancer detection. In its ensemble of experts
the system looks at associations among various inputs and calculates the probability that one inference method
provides a better answer to a question than another and presents the top one to the user.

While Artificial Intelligence serves as an interface to other disciplines including Psychology and Philosophy,
Algorithmic Intelligence aims at an interface to Algorithm Engineering. Suggested improvements are often
provably correct, efficient, and practical, whereas Artificial Intelligence is sometimes said to cover a selection
of heuristics in the form of implemented thumb rules without a theoretically sound background. With this book,
we show that this does not have to be the case.

Artificial and Computational Intelligence are not well suited for characterizing the kind of sustainable research
we are looking at in Algorithmic Intelligence. While the former dates back to a Dartmouth Seminar, which aimed
at giving computer intelligence a name and predicted it would surpass human intelligence in the foreseeable
future, the latter has roots in Evolutionary Computing and Fuzzy Control. Thus, the characterization of the first
is seemingly too wide and the second seemingly too narrow. Researchers had to admit that computer programs
have their computational requirements that have to be met, and that the encircled topics are too few to cover the
recent successes.

The 21st century is the era of software that is intended to show intelligent behavior in the real world. With this
book we invite all students, theoreticians and engineers interested in algorithmics to join the team. We need
you to help tackle the intrinsic hardness of the problems that arise in pushing decision-making forward. Not the
largest program will dictate the next level of performance, but the fastest; taking into considerations the way
computers are built (including their large but finite resources). When confronted with harder problem instances,
we require advanced data structures and inference methods.

This book has been written to serve as a manifestation for a steady trend, addressing current work that fits the
definition we have in mind. Based on the strong interest in working solutions and application domains it is
equally interesting for computer scientists in research and industry. While not aimed at being a textbook in the
first place, we are certain that essentials (especially the ones with real code) are useful for teaching.

For people less interested on creating a separated new field, the subtitle Towards an Algorithmic Foundation for
Artificial Intelligence extends the short title. It offers an alternative focus for the book with a comprehensible
description of its contents. After all, the book covers many classical AI aspects like problem solving, knowledge
representation and reasoning, dealing with uncertainty, machine learning, vision, and sensing and acting. It
includes topics like combinatorial search, task planning, probabilistic and ontological reasoning, multiagent
systems, game playing, and constraint satisfaction, which are all established research areas on their own.
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In terms of machine learning, the book improves (deep) neural nets, support vector machines, nearest neighbor
search, collaborative filtering, and bandit-based search algorithms. With conditional random field and tolerant
pattern matching it extends reasoning with ontological background knowledge. From the algorithmic commu-
nity it borrows recent hashing and priority queue data structures, as well as decision diagrams.

The book clearly does not cover everything that one may envision. A solid algorithmic foundation in AI should
include further programming pearls like the bucket elimination algorithm for Bayesian network inference; in-
verse kinematics for robot trajectory execution; refined SMT/QBF solving for hybrid system and verification,
the simplex algorithm for linear programs in constraint optimization, Lagrangian optimization for resource-
bounded scheduling; negotiation and combinatorial auctions for trading; finite state machine inference for sys-
tem synthesis, counterfactual regret minimization in incomplete information games, etc. This, however, would
have resulted in a much larger book.

With the growing importance of the interaction with modern technology, the book emphasizes the engineering
aspect. The implementation depth in the form of real and pseudo-code gradually fades out from start to the end
of this book, mainly because the more realistic the application area is, the longer the code.

The topics in the book were selected in a way that the overlap to my other textbook Heuristic Search – Theory
and Applications is kept small.

The content of this book would not exist without the work of my colleagues including Bernhard Berger, Carsten
Elfers, Max Gath, Christoph Greulich, Rainer Gößl, Otthein Herzog, Shahid Jabbar, Peter Kissmann, Hartmut
Messerschmidt, Damian Sulewski, Karsten Sohr, Martin Stommel, Thomas Wagner, Michael Beetz, Sabine
Kuske, and David Zastrau. I am greateful to the contributions of my international collaborators Álvaro Torralba,
Vidal Alcázar, Martin Dietzfelbinger, Dragan Bosnacki, Anton Wijs, Amr Elmasry, Daniele Magazzeni, An-
drew and Amanda Coles, Santiago Franco, Moisés Martínez, Ionuţ Moraru, Tristan Cazenave, Samual Bounan,
Lukás Chrpa, Martin Pilát, Jakub Gemrot, Andrii Nyporko, Pavel Rytír, Rostislav Horcík, Leah Chrestien,
Tomás Pevný, Antonín Komenda, Jyrki Katajainen, Sebastian Wild, Stefan Schrödl, Armin Weiß, Erion Plaku,
and a large number of undergraduate students. Last but not least, I want to thank my industrial collaborators
Andree Lüdke, Andreas Wulfes, Ashraf Abdo, Björn Schwarze, Hendrik Rothe, Luisa Strelow, Lara Luhrmann,
Salome Gindre, Tino Wahler, and Vanessa Just.

Freiburg, Dortmund, Bremen, Darmstadt, Koblenz, Paris, London, Prague Stefan Edelkamp



Towards a Characterization

Algorithmic Intelligence refers to the range of algorithmic methods that have been identified as key revenue
drivers in companies. We are not aiming to build conscious machines; instead, we are taking advanced algorith-
mic techniques typically developed within Artificial Intelligence, and we are showing how these can be applied
to decision-making problems beyond the field itself.

History and Working Groups

The term Algorithmic Intelligence was around before at ITU Copenhagen, Denmark by Dan Witzner Hansen,
Rune Møller Jensen, Rasmus Pagh, and Georgios Yannakakis as a means of joining forces across research
groups on Data Mining, Data Acquisition, Machine Learning, Computational Intelligence, Optimization, and
Decision Support in order to achieve an international leading position within focus areas. In particular the aim
was to achieve international visibility that can attract the best researchers in the field; develop and organize
teaching programs in the area; establish a cross-group community for researchers and PhD students; establish
external services for industry and institutions, facilitating knowledge transfer between fundamental insights on
Algorithmic Intelligence and problems of high interest to society.

Similar to the famous Darthmouth Conference by John McCarthy, Marvin Minsky, Nathaniel Rochester and
Claude Shannon, Christianizing the term Artificial Intelligence in 1959, the first tracable name birth-giving event
was the first international workshop on Algorithmic Intelligence that was held on October 4th, 2011 in Berlin
initiated by Stefan Edelkamp, Carsten Elfers, Rune Jensen, Hartmut Messerschmidt, and Rasmus Pagh. It kicked
off with an invited talk on Semantic Full-Text Search by Hannah Bast. The set of topics including A Question
Answer System for Math Word Problems, Motion Gesture: False Positive Prediction and Prevention, Bitvector
Full Sampling Structural Game Tree Search for Playing Cribbage, Signature-Inspired Security Incident and
Event Management with Machine Learning Capabilities, New Exploration Methods in Reinforcement Learning,
Parallel Monte-Carlo Tree Search with Pruning, and Weak-Heap Priority Queues in Theory and Praxis gave us
a first glimpse on what aspects Algorithmic Intelligence addresses.

The Internet article Beyond AI hype: AI once stood for algorithmic intelligence by Michael Baxter (2019) starts
with

AI this, AI that, ayeeee, I am not sure the term is always used correctly. You could say there is too much AI hype, you
might as well say the tide always comes in. It is not a contentious thing to say, it just is. Maybe it would help if we re-
defined it. Instead of saying AI means artificial intelligence, maybe we should return to an earlier definition, one untainted
by Hollywood. Let’s call it algorithmic intelligence, instead.

The term Algorithmic Intelligence has also been picked up by an interdisciplinary research center of the Carl
Zeiss Stiftung together with Johannes Gutenberg-Universität Mainz. The so-called Emergent Algorithmic Intel-
ligence Center states as objectives
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[...] the structural foundations of algorithmic intelligence are to be understood in greater depth, and thus the limits and
possibilities of known machine learning methods are to be better grasped.

Problems with the Term "Artificial Intelligence"

The term Algorithmic Intelligence contrasts with the term Artificial Intelligence in two ways: Firstly, while Ar-
tificial Intelligence carries some suggestion that there is intelligence, but nothing real, Algorithmic Intelligence
is focused on methods that solve a given problem. Secondly, if a method exists to solve a complex looking
problem or give a good approximation of the solution, then this method belongs to Algorithmic Intelligence,
even if it is too simple to be called Artificial Intelligence. While Russell and Norvig’s interpretation of Artifi-
cial Intelligence stresses the metaphor of agents acting rationally, Algorithmic Intelligence prefers computers to
improve decision-making capabilities of humans.

Despite breakthrough results of computers entering human life, either as robots collaboratively acting in the real-
world, or recommender systems for organizing everyday activity, we avoid dwelling on the notion of strong AI,
with computers that are able to think and capable of acting rationally in a way that humans do. We are satisfied
with a much weaker and less ambitious definition of intelligence. This helps to bridge gaps to people who do not
trust the information processing in a computer to be an act of human-adequate intelligence. John Kelly states in
his book Artificial Intelligence – A Modern Myth:

The nature of human intelligence is elusive and does not admit of a tractable formalism or effective characterization. [...]
Computers are misleadingly characterized as symbol processors. In themselves they are merely repositories and manipu-
lators of uninterpreted physical shapes, merely formal functional media. Computer systems, whether traditional hardware
or software [...], are best understood as texts. Computers have no ability to act in any deep sense of the word. They do not
do anything. The dependence of computers on human articulation points to fundamental limits to their potential, because
of the fact that human experience, even language-mediated experience, is ultimately rooted in ineffability. Unfortunately,
the deployment of explicit language conditions [...] encloses what can be thought. Misconceptions about computer potential
and misrepresentation of computer power emerge from excessive anthropomorphisation of machines; the lure of an existen-
tial fallacy of the fallacy of misplaced concreteness; the list fallacy, i.e., the reliance on a mere list to provide a necessary
unity; excessive respect for the power of science; belief in the ad rem adequacy of rationality; and belief in the adequacy of
language.

Despite these insights, there is no doubt that there is a rising need for and rising availability of software systems
capable of taking action in every-day activity, preferably operating in real-time with algorithms that adapt,
generalize, assist and improve over time.

Problems with the Term "Computational Intelligence"

According to a collaborative research center with the same name, the term Computational Intelligence is char-
acterized as follows.

The field of Computational Intelligence (CI) covers all sorts of techniques for subsymbolic (numerical) knowledge process-
ing, such as the well-known Fuzzy Logic (FL), Neural Networks (NN), and Evolutionary Algorithms (EA) as well as other
approaches with lesser dissemination. Although CI techniques have been widely used in the last decade. The scientific goals
[...] were the investigation and improvement of the foundations, applications, as well as combinations of CI methods.

Subsequently, Wikipedia provides the following definition of the term Computational Intelligence:

Systems which can be seen as a part of Evolutionary Computation; Computational Intelligence is a set of Nature-inspired
computational methodologies and approaches to address complex problems of the real world applications to which tradi-
tional (first principles, probabilistic, black-box, etc.) methodologies and approaches are ineffective or infeasible. It primarily
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includes Fuzzy logic systems, Neural Networks, and Evolutionary Computation. In addition, it also embraces techniques that
stem from the above three or gravitate around one or more of them, such as Swarm Intelligence and Artificial Immune Sys-
tems which can be seen as a part of Evolutionary Computation; Dempster-Shafer Theory, Chaos Theory and Multi-valued
Logic which can be seen as off-springs of Fuzzy Logic Systems, etc.

In Engelbrecht’s book on Computational Intelligence the table of contents aligns with this restricted scope:
Introduction (I), Artificial Neural Networks (II), Evolutionary Computation (III), Computational Swarm Intelli-
gence (IV), Artificial Immune Systems (V), Fuzzy Systems (VI). The IEEE Computational Intelligence Society
and its featured conferences (like the IEEE World Congress on Computational Intelligence) are also focused
mainly on Fuzzy and Neural Network Computations. Other publication options like the Journal for Computa-
tional Intelligence use the term as a substitute for Artificial Intelligence.

This leading international journal promotes and stimulates research in the field of Artificial Intelligence (AI). Covering a
wide range of issues — from the tools and languages of AI to its philosophical implications — Computational Intelligence
provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact
studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.

Craenen and Eiben wrote in Computational Intelligence; Encyclopedia of Life Support Sciences the following
glossary entry: Computational Intelligence (CI): Subject of this introduction and a name for the combined fields
of Neural Computing, Evolutionary Computation and Fuzzy Computation. Recently, the number of fields have
been expanded to include DNA Computing and Quantum Computing.

In Schwefel, Wegener and Weinert’s book Advances in Computational Intelligence no less than 30 chapters
are devoted to results achieved in Computational Intelligence between 1997 and 2003. The book provides a
coverage of the core issues addressed in the field, especially in fuzzy logic and control as well as for evolutionary
optimization algorithms including genetic programming.

In Computational Intelligence Methods and Techniques by Rutkowski, Springer, 2008, topics include approx-
imate and fuzzy sets, basic structures and methods of neural networks learning, grouping of data methods,
Bayesian methods, evolutionary algorithms and decision tree algorithms.

In contrast to Computational Intelligence, with Algorithmic Intelligence we stress the impact that well-founded
AI algorithms have on the success in practice, while referring to a broad spectrum of efficient methods rather
than centering around neural networks and fuzzy logic aspects.

Algorithmic Intelligence: Towards a Trade-off

Algorithmic Intelligence includes aspects like deep learning, game playing with incomplete information, ran-
domized exploration with Monte-Carlo search, accelerated processing of big data, as well as advances in modern
action and motion planning. It uses algorithm engineering as the technique to exploit the computational power
of contemporary computer systems. Most importantly, it addresses applications areas like logistics, software
model checking, and computational biology.

The term Algorithmic Intelligence contributes to the fact that Artificial Intelligence technologies, being a fron-
tier discipline of Computer Science, have gradually permeated our living environments. Intelligent products
have become an ubiquitous mainstay, while the goals of Algorithmic Intelligent continuously move on to meet
new, exciting challenges, with a focus on technologies for a smarter world. We refer to the success stories of
companies like Google/Alphabet or Microsoft with their refined Internet search, Facebook/Meta or Amazon
with their collaborative filtering mechanisms, DeepMind with learning for the classification and prediction of
pictures, language and games, Netflix with its recommender system for its online streaming platform, Walmart
with its bag inspection data mining tools.

Towards a Characterization
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The range of applications is much larger, and through the unavoidable presence of smart mobile devices directly
affects our everyday life. The focus on improvements to algorithms and data structures has left the early boots
of what is currently understood under the term of Computational Intelligence.

With Monte-Carlo search, an interesting randomized search paradigm is entering the arena. Following the suc-
cess story in Interactive and Combinatorial Games, it is predicted to show further advances in a widespread set
of relevant industrial applications. We will see that this randomized optimization method is indeed promising
and, in some cases, can produce state-of-the-art solutions to challenging problems.

Organization of the Book

This book (see following overview table) divides into four parts and several individual chapters that all provide
an answer on how to combine learning with search and how to trade exploitation with exploration.

The range of different application areas gives an overview on the progress that has been made and the impact that
is already there or is expected. The chapters address research ranging from Solving Puzzles, Action Planning,
Game Playing, Machine Learning, via Computer Vision, Computational Biology, In- and Outdoor Logistics,
Product Configuration, Urban Mobility, Video Editing, Container Packing and 3D Printing, Network Security,
to Software Verification. In all these chapters the main solution method is algorithmic in nature, often combin-
ing randomized exploration with machine learning, sometimes adding background knowledge and resorting to
event handling. Computer technology is addressed in looking at options for parallelization and concise memory
maintenance, such as the use of disks and graphics processing unit.

Basics

At the end of the day algorithms have to be implemented in some programming language. Chapter 1 is a hands-
on introduction to programming for solving combinatorial problems. The programming primer puts emphasis
on recursive solutions. It is of didactic and practical value, providing insightful solutions to well-known prob-
lems. As a first set of non-trivial algorithmic designs, we look at shortest paths search in weighted state space
graphs. Refined data structures for this task are the basis for solving many problems in Algorithmic Intelligence.
In Chapter 2 priority queues are studied and cross-compared in path-finding grid benchmarks (either randomly
sampled or taken from commercial games). Another building block for Algorithmic Intelligence are advanced
sorting algorithms, introduced in Chapter 3. Reducing the number of the processor’s branch misprediction will
turn out to be a key concept to improve Quicksort. Hybrids of Quicksort and Mergesort further reduce the
number of element comparisons, resulting in constant-factor optimal sequential sorting and in closing the gap
to the lower bound. Motivated by the success in Go, Chapter 4 studies learning on how to play games with
neural nets. Simple problems like TicTacToe illustrate the setup and the learning of value networks, while for
advanced problems like the SameGame we address the learning of policy networks. Different multi-layer and
convolutional network structures are compared. The results suggest that the deep ones are not always superior.
Chapter 5 complements the work on learning by introducing Monte-Carlo search, an exploration option invok-
ing a myriad of random rollouts. As one option, Nested Rollout Policy Adaptation compactly stores information
about good successors in a vector that is updated in the course of executing the algorithm. The vector, in turn,
influences the behavior of the rollout. Advanced implementation options are discussed.

Towards a Characterization
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Big Data

Large graphs are met in different contexts, such as social network analyses. Chapter 6 looks at traditional graph
problems like finding cliques, colorings, independent sets, vertex covers, and hitting sets. Without implementa-
tion burden and domain-dependent knowledge, Monte-Carlo search yields good solutions. Chapter 7 analyzes
multimedia in the form of audio-video files for improving quality in the digitalization process. Different existing
tools that predict time-stamped events of artifacts within streams are correlated, increasing the prediction rate
and reducing human operator cost. The general task is learning event time series for anomaly detection with
fingerprints. Chapter 8 looks at events in computer networks, proposing a SIEM system with tolerant pattern
matching. One question in this form of security monitoring is to find intruders in networks based on probabilistic
inference with background knowledge. As an effective representative for this form of security event process-
ing, we introduce an algorithmic scheme to combine Conditional Random Fields with Ontologies. Chapter 9
addresses machine learning for big data analysis in general and improved computer vision. It introduces a fast
support vector machine that is based on the binarization of the input to overcome the curse of dimensionality. As
a surplus the chapter explains fractal nearest neighbor search, an approximate but much faster classification al-
gorithm of bitmap data based on Hilbert curves. Chapter 10 shows how GPS-recording devices collaboratively
generate a map of the surrounding infrastructure. The incremental map generation process merges incoming
traces with the set of existing ones in order to improve its own accuracy. Several filters eventually help the
approach to process gigabytes of GPS data.

Research Areas

Chapter 11 looks at traditional machine learning algorithms and at options for parallelizing them on the GPU.
Algorithms to be ported and accelerated include Support Vector Machines and matrix methods for Collaborative
Filtering. As the global optimization scheme, we chose Stochastic Gradient Descent. Chapter 12 considers
solving puzzles using perfect hash functions. The algorithmic contribution is to represent every problem state
as a memory address, so that only associated information has to be stored. For domain-dependent search like
games with indistinguishable or distinguishable pieces the ranking and unranking functions can be computed
directly, while for unknown games we require generating perfect hash functions from the set of reachable states.
Parallelization options on CPUs and GPUs are discussed. Chapter 13 provides a card game playing AI, matching
the performance of top-level human players. We introduce paranoia search to find forced wins; we provide
variants for the declarer and the opponents, and an approximation to find a forced win against most worlds in
the belief space. Next, we introduce the widespread use of a minigame solver in the factors of the game, which
restricts game play to the either trump or non-trump suit cards. The ELO ranking system has proven to be a
reliable method for calculating the relative skill levels of players in zero-sum games. The evaluation of player
strength in card games, however, is not obvious. We introduce an ELO system to overcome existing weaknesses.
Chapter 14 addresses action planning with the objective to optimize the sum of action cost. We present award-
winning cost-optimal PDDL planner that compactly stores exploration sets of states in binary decision diagrams.
We also look at plan recognition. Instead of inductively starting at one initial state, in abduction we look for
the smallest plan that completes a partial initial state to one reaching the goal. Chapter 15 progresses to general
game playing, i.e., playing programs for games with rules that are provided as input, so that the player must
play a game without knowing the game in advance just by looking at the problem description. The logical
game description language is extended from deterministic games to games of chance with partial observability,
and we present a player that can deal with this form of expressiveness. Chapter 16 considers a multiagent
simulation solution for in- and outdoor navigation problems. We look at an event-driven simulation system
which has been designed to solve and evaluate scenarios of the logistics domain. In particular the system allows
to simulate autonomous logistic processes where autonomous agents perform planning and decision processes.
Chapter 17 looks at the problem of product configuration as a complex constraint satisfaction problem. The
configuration space is tremendously large and besides the continued reduction of configuration choices of the
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user by constraint propagation, this operation can be learnt, and we suggest likely fitting product parameters.
A hybrid of case-based reasoning and rule mining leads to a compromise between a high number of correct
predictions and a low number of incorrect predictions.

Application Areas

Chapter 18 looks at adversarial planning. Effective decision-making in adversarial environments is important
for many real-world applications. The presence of an adversary often strongly influences the agent’s ability to
achieve its goals. Automated planning, however, often restricts to static environments, where only one agent
applies its actions. While such techniques are effective, the presence of an adversary strongly influences plan
quality, so that plan generation has to take into account possible actions of competing agents. In other words,
the agent should know what the other agents will likely do. Chapter 19 studies the automated verification of
computer programs via software model checking. We will show how this general state-space exploring task
can be ported on the GPU to accelerate the verification process to either report a bug or the correctness with
respect to a given specification. We will see that a certain combination of multi-core CPU and many-core
GPU is most effective. Chapter 20 considers solving the holy grail in Computational Biology, the multiple
sequence alignment problem, for which sequences of DNA (or protein) strings are to be aligned so that the
similarity score is maximized. The problem relates to approximate string matching. As dynamic programming
solutions suffer from limited amounts of main memory, randomized search improves already existing solutions.
Chapter 21 considers a practical problem of groupage routing with time windows and premium services in a
multiagent system. It also looks at packing hundreds of boxes for a disassembled object (e.g., a car) into as
few containers as possible, while satisfying additional packing constraints. Once shipped, the object can be
unpacked, assembled, and sold. 3D Packing with object orientation is a challenging optimization problem for
which, again, randomized search and learning will be the keys towards a solution. Chapter 22 looks at packings
for objects of irregular shape. The task arises in the additive manufacturing in a 3D printer, where—in order
to save time—several object parts are produced in parallel. The sphere-tree representation of the objects helps
to detect collisions fast and to measure the according overlap of the intersections. These methods are then
included in a global optimizer based on simulated annealing. Chapter 23 tackles multi-goal motion planning
like the physical traveling salesman problem to perform freespace navigation for a moving robot with velocity
and acceleration in a bitmap environment of obstacles. We then go one step further and look at 2D and 3D
mesh environments to be inspected with complex vehicle models and solved with filtering skeletons followed
by a cyclic interplay between a sampling-based motion planning step in the continuous space, and by calling
a TSP solver in the discrete space. Chapter 24 looks at flow production of goods. In particular, we examine a
monorail infrastructure with assembly stations. To compute optimized solutions the physical setting is modeled
in a cyber-physical discrete-event simulator. The simulation is then further simplified to find improved schedules
for the shuttles. We adapted a model checker to drive the exploration. Finally, in Chapter 25 we look at further
possible application areas that reflect some avenues for algorithmic intelligence. Last, but not least, we provide
an extensive index and a list of references for further reading.

Towards a Characterization
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Basics



Chapter 1

Programming Primer

This chapter is a hands-on introduction to programming for solving combinatorial AI problems. The program-
ming primer puts emphasis on recursive solutions. It is of didactic and practical value, providing insightful
solutions to priority queue well-known problems.

Object orientation helps handling larger software projects. For Niklaus Wirth it is the consequent continuation
of structuring code with elements like methods and records. The success of object-oriented industrial software
development is inevitable. Some software engineers propose to simply highlight verbs in a text that describes
the solution of the task in natural language, and, from there, extract objects and methods. However, there are
limits, as for adding two numbers it is an overkill having to say to the first one that it has to cumulate itself to
the second one.

There is no doubt that object orientation should be taught to programmers, but opinions diverge on when to
do this. Object First purposes to start from the very beginning, and to put the concept of a class in the center
of teaching on how to program. In Java all source code already is encapsulated in classes, while Object First
goes further and proposes to teach object-orientation with the very first program, before other concepts like
algorithms and data structures are introduced. Decker and Hirschfeld write: To be sure, we struggled long and
hard with each of these [reasons for misunderstanding], but have since come to recognize them all to reflect
one or more of the following: our lack of understanding of the paradigm, our fear of the commonly-used object-
oriented programming languages (most notably C++), our procedural biases derived from years of teaching
Pascal, or what we now see as a growing body of object-oriented programming that reflects a number of myths
about object-oriented programming. There are many reasons for introducing objects early, but when Objects
First ends up in No Algorithms, something has gone wrong.

What programming language to use? ETH takes C, others use Python, Lua, or even MatLab. For children,
Scratch has been proposed. According to the TIOBE Index in programming practice C is the most common
choice, followed by Java, Objective C, C++ and C#. Together they take a share of more than 60% of all written
programs. Imperative programming is a long-standing base with similar syntax in most of the widespread lan-
guages. As a result, we used the imperative kernel of Java to get started in programming intelligence, switching
to C and pseudo codes later on.

We assume that first contacts with types like char, int, long, float and double, with loops like while(.)
{.}, for(.;.;.) {.}, bzw. do {.} while(.);, with branches like if (.) {.} else {.}, bzw. (.) ? {.}
: {.}, with arrays like int a[..] and with methods ending in return have been made.

3© Springer Nature Switzerland AG 2023 
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1.1 Recursion

Abbreviations like GNU for GNU’s not UNIX, or mise en abyme artifacts like the illustrations of M.C. Escher,
the book The never-ending story by Michael Ende, the infinite reflections on parallel mirrors, the film Matrix,
or the unpacking of Matryoshkas are well-known examples of recursion.

Fractals like the Julia set or Koch’s, Peano’s and Hilbert’s curves are created through the iterated application of
recursive equations. The Mandelbrot Set is defined as complex numbers c, for which the iterated evaluation of
zn+1 = z2

n−c with z0 = 0 converges. Using the representation of numbers with real and imaginary part (r0, i0) =
(0,0) and some vector (cr,ci) links it to the iterated computation of rn+1 = r2

n− i2n + cr and in+1 = 2rnin + ci.
The following program is not recursive, while the definition of the set is.

Program 1.1: Program for computing the Mandelbrot set.

public class Mandelbrot
{

/**
* Computes and prints Mandelbrot fractal on screen
*
*/

public void fractal() {
int k = 2, double y = -16; // x,y are coordinates
String magic = new String(" .:−;!/>)|iIHO*+");
while (y++<15) { // r,i are updated
String row = new String();
for (double x=0;x<84;x++) {
row = row + magic.charAt(k&15);
k = 0;
double imag = 0.0, real = 0.0, j;
do {
j = real*real - imag*imag -2 + x/25.0;
imag = 2*real*imag + y/10; real = j;

} while(j*j+imag*imag<11 && k++<111);
}
System.out.println(row);

}
}

}

The output is as follows.
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.............::::::::::::::::::::::::::::::::::::::::::::::::.......................

.........::::::::::::::::::::::::::::::::::::::::::::::::::::::::...................

.....::::::::::::::::::::::::::::::::::-----------:::::::::::::::::::...............

...:::::::::::::::::::::::::::::------------------------:::::::::::::::.............
:::::::::::::::::::::::::::-------------;;;!:H!!;;;--------:::::::::::::::..........
::::::::::::::::::::::::-------------;;;;!!/>&*|I !;;;--------::::::::::::::........
::::::::::::::::::::-------------;;;;;;!!/>)|.*#|>/!!;;;;-------::::::::::::::......
::::::::::::::::-------------;;;;;;!!!!//>|: !:|//!!!;;;;-----::::::::::::::.....
::::::::::::------------;;;;;;;!!/>)I>>)||I# H&))>////*!;;-----:::::::::::::....
::::::::----------;;;;;;;;;;!!!//)H: #| IH&*I#/;;-----:::::::::::::...
:::::---------;;;;!!!!!!!!!!!//>|.H: #I>/!;;-----:::::::::::::..
:----------;;;;!/||>//>>>>//>>)|% %|&/!;;----::::::::::::::.
--------;;;;;!!//)& |;I*-H#&||&/ *)/!;;-----::::::::::::::
-----;;;;;!!!//>)IH:- ## #&!!;;-----::::::::::::::
;;;;!!!!!///>)H%.** * )/!;;;------:::::::::::::

&)/!!;;;------:::::::::::::
;;;;!!!!!///>)H%.** * )/!;;;------:::::::::::::
-----;;;;;!!!//>)IH:- ## #&!!;;-----::::::::::::::
--------;;;;;!!//)& |;I*-H#&||&/ *)/!;;-----::::::::::::::
:----------;;;;!/||>//>>>>//>>)|% %|&/!;;----::::::::::::::.
:::::---------;;;;!!!!!!!!!!!//>|.H: #I>/!;;-----:::::::::::::..
::::::::----------;;;;;;;;;;!!!//)H: #| IH&*I#/;;-----:::::::::::::...
::::::::::::------------;;;;;;;!!/>)I>>)||I# H&))>////*!;;-----:::::::::::::....
::::::::::::::::-------------;;;;;;!!!!//>|: !:|//!!!;;;;-----::::::::::::::.....
::::::::::::::::::::-------------;;;;;;!!/>)|.*#|>/!!;;;;-------::::::::::::::......
::::::::::::::::::::::::-------------;;;;!!/>&*|I !;;;--------::::::::::::::........
:::::::::::::::::::::::::::-------------;;;!:H!!;;;--------:::::::::::::::..........
...:::::::::::::::::::::::::::::------------------------:::::::::::::::.............
.....::::::::::::::::::::::::::::::::::-----------:::::::::::::::::::...............
.........::::::::::::::::::::::::::::::::::::::::::::::::::::::::...................
.............::::::::::::::::::::::::::::::::::::::::::::::::.......................

1.1.1 Divide-and-Conquer

Instead of saving an amount of x = 2k alone, Program 1.2 applies to divide-and-conquer and recursively asks
two friends to contribute half of the amount each.

Program 1.2: Divide-and-Conquer.

public class CollectMoney
{

int total;
/**
* Divide and conquer method to collect money from friends
*/

void dac(int a) { // recursive collect function
if (a<=1) total += a; // increase total amount
else { dac(a/2); dac(a/2); } // recursive calls

}
int collect(int a) { total = 0; dac(a); return total; }

}

1.1.2 Recursion on Texts

Recursion does not only work on numbers but also on strings. Given the input hallo. Program 1.3 returns
.ollah. By a slight modification we get the palindrome hallo.ollah.
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Program 1.3: Reversal of a string and building a palidrome.

public class Reversal
{

/**
* Printing an input string in reverse order
*/

public void reverse(String s, int i) {
if (s.charAt(i) != ’.’) reverse(s,i+1);
System.out.print(s.charAt(i));

}
/**
* Printing an input string as palindrome
*/

public void palindrome(String s, int i) {
System.out.print(s.charAt(i));
if (s.charAt(i) != ’.’) palindrome(s,i+1);
System.out.print(s.charAt(i));

}
}

1.1.3 Factorial Numbers

Suited to induction, several mathematical functions have a recursive formulation. For example, the factorial of
n is the number of permutations of n pairwise distinct objects. The definition n! = 1 · . . . · n = n · (n− 1)! with
0! = 1 leads to Program 1.4.

Program 1.4: Computing the number of permutations.

public class Factorial
{

/**
* Computes number of permutations of n objects
*/

public long f(long n) {
return (n==0) ? 1 : n*f(n-1);

}
}

1.1.4 Fibonacci Numbers

The Fibonacci numbers are defined by the recursion f (n) = f (n− 1)+ f (n− 2) with f (0) = 1 and f (1) = 1.
There is a direct implementation shown as f in Program 1.5, and two faster ones: fiter that uses Dynamic
Programming, and fib that applies memoization.



1.1 Recursion 7

Program 1.5: Fibonacci’s functions.

public class Fibonacci
{

/**
* Compute Fibonacci numbers in different ways
*/

public int f(int n) {
return (n<=1) ? 1 : f(n-1) + f(n-2);

}
public int [] F = new int[100];
public int fib(int n) {

if (n<=1) return 1;
if (F[n]!=0) return F[n];
F[n-1] = fib(n-1);
return fib(n-2) + fib(n-1);

}
public int fiter(int n) {
F[0] = F[1] = 1;
for (int i = 2; i<=n; i++)
F[i] = F[i-1] + F[i-2];

return F[n];
}

}

1.1.5 Ackermann Numbers

The Ackermann function is an even faster growing function. For n = 0 we have a(n,m) = m+1, for m = 0 we
have a(n,m) = a(n− 1,1) and a(n,m) = a(n− 1,a(n,m− 1)), otherwise. The function was proposed 1926 by
Wilhelm Ackermann and has shown limits to some computational models.

Program 1.6: Ackermann’s function.

public class Ackermann
{

/**
* Evaluate Ackermann function
*/

public int a(int n, int m) {
return (n == 0) ? m+1 : (m == 0) ? a(n-1,1) : a(n-1,a(n,m-1));

}
}

Similarly, the two tower xn = 2xn−1 with x0 = 1 is a fast-growing function.
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Program 1.7: Two-tower function.

int to(int n, int k) { return (k == 0) ? 1 : n * to(n,k-1); }
int tower(int n) { return (n == 1) ? 2 : to(2,tower(n-1)); }

1.1.6 Ulam Numbers

The following function (Program 1.8) u was first described by Stanislaw Marcin Ulam: for x = 1 we have
u(x) = 1, for x > 1 and even x we have u(x) = u(bx/2c), otherwise u(x) = 3x+1. The value of Ulam’s function
is always 1 and should not be mixed with Ulam’s series. Some inputs like 113,383 may exceed the computer’s
integer number representation.

Program 1.8: Ulam’s function.

public class Ulam
{

/**
* The Ulam sequence
*/

public int u(int n) {
System.out.print("u("+n+"),");
return n == 1 ? 1 : n%2 == 0 ? u(n/2) : u(3*n+1);

}
}

1.2 Calculus

1.2.1 Square Roots

Program 1.9 computes the square root of the input number following Heron’s algorithm. The computation is
bound to integers, leaving the fractional part out. We think of a rectangle, of which one side is the number of
which we want to compute the square root and the other number is 1. The algorithm iteratively transforms the
rectangle into a square of the same area. The implementation uses two integer variables a and b; if they are not
next to each other, then the mean of the two is computed for a, while b is chosen to maintain the resulting area.
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Program 1.9: Iterative square roots determination.

public class SquareRoot
{

public int method(int i)
{

int a = i, b = 1;
while (a - b > 1) { a = (a + b) / 2, b = i / a; }
return (a + b) / 2;

}

1.2.2 Euclid’s Algorithm

The recursive computation of the greatest common divisor (GCD) is as follows. If a mod b= 0, then gcd(a,b) =
b, otherwise gcd(a,b) = gcd(b,a mod b). The parameters are selected so that the second number is always
smaller than the first one. Euclid’s algorithm is efficient, as in every second step the input number is at least
halved. The least common multiplier (LCM) of a and b is ab divided by the GCD. Based on this observation,
Program 1.10 computes the reduced sum of two fractions.

Program 1.10: Computation with reduced fractions.

public class Fractional
{

/**
* Euclid’s algorithm to compute greatest common divisor of a and b
*/

public int gcd(int a, int b) { return a == 0 ? b : gcd(b%a,a); }
/*
* Compute least common multiplier of a and b
*/

public int lcm(int a, int b) { return a*b / gcd(a,b); }
public void test(int a, int b, int c, int d) {

int k = lcm(b,d), s = a*k/b + c*k/d;
System.out.println("sum = ("+(s/gcd(s,k))+"/"+(k/gcd(s,k))+")");

}
}

1.2.3 Pascal’s Triangle

The Binomial coefficient
(n

k

)
= n!

k!(n−k)! is used e.g. in (a+b)n = ∑
n
k=0
(n

k

)
akbn−k. We have

c(n,k) =
(

n
k

)
=

n!
(n− k)! · k!

=
n(n−1)!

k(n− k)!(k−1)!
=

n
k

c(n−1,k−1)

with c(n,0) = 1. Program 1.11 outputs Pascal’s triangle:
(n

k

)
for n≤ m and all k = 0, . . . ,n.



10 1 Programming Primer

Program 1.11: Pascal’s triangle.

public class Binomial
{

/**
* Computes Binomial numbers n choose k
*/
private int choose(int n, int k) {

return (k == 0) ? 1 : (n * choose(n-1,k-1)) / k;
}
/**
* Prints Pascal’s triangle from top row 0 to row m
*/

public void triangle(int m) {
int n,k;
for (n=0;n<=m;n++) {

for (k=0;k<=n;k++)
System.out.print("("+n+","+k+")="+choose(n,k));

System.out.println();
}

}
}

1.2.4 Prime Factorization

The prime factorization, in increasing order, is known to be unique. Program 1.12 is a recursive algorithm,
which outputs all prime factors, one after the other.

Program 1.12: Prime factorization.

public class PrimeFactor
{

/** Recursive function that finds prime factor i and continues with n/i */
public void factor(int n) { // prime factorization of n

int i=2; while((i<n) && (n%i != 0)) i++; // find smallest factor
System.out.println(i); // print factor
if (i < n) factor(n/i); // recursive call with reduced term

}
}

1.2.5 Gaussian Elimination

Assuming a unique solution, the Gaussian elimination algorithm solves linear equations of the form MS =V .
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Program 1.13: Solving linear equations.

public class Gauss
{

static final int DIM = 4;
double M[][] = {{1.0,2.0,-1.0,-2.0},{1.0,3.0,-1.0,-2.0},{2.0,1.0,1.0,1.0},{3.0,1.0,2.0,1.0}};
double V[] = {-6.0,-4.0,11.0,15.0};
double S[] = new double[DIM];
/**
* Constructor for objects of class Gauss
*/

public Gauss() {
if (solve(M, V)) {

for (int k = DIM-1; k>=0; k--) {
S[k] = V[k];
for (int i=(k+1); i<DIM; i++) S[k] -= (M[k][i]*S[i]);
S[k] = S[k] / M[k][k];

}
System.out.println("Solution:");
for (int i=0; i<DIM; i++)
System.out.print(" " + S[i]);

System.out.println();
}

}
/**
* Gauss method to compute S in M S = V, flag denotes full rank
*/

public boolean solve(double M[][], double V[]) {
for (int k=0; k<DIM-1; k++) {

double max = M[k][k] > 0 ? M[k][k] : -M[k][k];
int m = k;
for (int i=k+1; i<DIM; i++) {

double abs = M[i][k] > 0 ? M[i][k] : -M[i][k];
if (max < abs) { max = M[i][k]; m = i; }

}
if (m != k) {

for (int i=k; i<DIM; i++) { double t = M[k][i]; M[k][i] = M[m][i]; M[m][i] = t; }
double t = V[k]; V[k] = V[m]; V[m] = t;

}
if(M[k][k] == 0) return false;
for (int j=(k+1); j<DIM; j++) {

double f = - M[j][k] / M[k][k];
for (int i=k; i<DIM; i++) M[j][i] = M[j][i] + f*M[k][i];
V[j] = V[j] + f*V[k];

}
}
return true;

}
}

Program 1.13 transforms the input matrix with the solution being maintained in the last column.
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1.2.6 Min-Max Problem

Finding both the minimum and maximum in an array of size n is solved by 1) halving it, 2) finding the minima
and maxima recursively, and 3) merging the results. Program 1.14 assumes that n is a power of 2.

Program 1.14: Concurrent computation of the minimum and the maximum.

public class MinMax
{

int [] a;
public class MM { int min; int max; };
/**
* Constructor for objects of class MinMax, N is number of elements
*/

public MinMax(int N) {
Random r = new Random();
a = new int[N];
for (int i=0;i<N;i++) {
a[i] = r.nextInt(1000);
System.out.print(a[i]+ ",");

}
System.out.println();

}
/**
* search for minimum and maximum concurrently in interval x,y
*/
MM search(int x, int y) {
MM m = new MM();
if (y <= x+1) { m.min = a[x]<a[y] ? x : y; m.max = a[x]<a[y] ? y : x; }
else { // y > x+1, recursive call required
MM l = search(x,(x+y)/2), r = search((x+y)/2+1,y);
m.min = a[l.min] < a[r.min] ? l.min : r.min;
m.max = a[l.max] > a[r.max] ? l.max : r.max;

}
return m;

}
}

1.2.7 Quickselect and Quicksort

The partition of an array of length n along pivot p is a split into two parts, one populated with elements not
smaller than, and one with elements not larger than p. The selection problem queries the k-th smallest element
(for the median k = bn/2c). After partitioning, Quickselect in Program 1.15 computes an answer recursively.
Quicksort has the same partitioning step but continues in both array parts to eventually sort the sequence.
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Program 1.15: Selection with Quickselect and sorting with Quicksort.

public class Quick
{

private int a[];
/**
* Constructor: n array elements, k-th element selection
*/

public Quick(int n, int k) {
a = new int[n];
Random r = new Random();
for (int i=0;i<n;i++) a[i] = i;
for (int i=1;i<n;i++) swap(i,r.nextInt(i));
System.out.println("Quickselect "+ select(0,n-1,k));
for (int i=1;i<n;i++) swap(i,r.nextInt(i));
sort(0,n-1);
for (int i=0;i<n;i++) System.out.print(a[i]+" ");
System.out.println();

}
void swap(int i, int j) { int t = a[i]; a[i] = a[j]; a[j] = t; }
/**
* selects the kth element in interval left,right
*/

public int select(int left, int right, int k) {
int i,j,v;
i = left; j = right+1; v=a[left]; // set pivot
do { // partition wrt. pivot

do j--; while (j>=i && v < a[j]);
do i++; while (i<=j && a[i] < v);
if (j > i) swap(i,j);

} while(j >= i);
swap(left,j); // move pivot, end of partitioning
if (k == j) return a[k]; // element found
return k < j ? select(left,j,k) : select(j+1,right,k);

}
/**
* sorts interval left,right according to Hoares Quicksort algorithm
*/

public void sort(int left, int right) {
int i,j,v; // two indices and one temporary
if (right-left > 0) { // interval is non-trivial
i = left; j = right+1; v=a[left]; // set pivot
do { // partition wrt. pivot

do j--; while (j>=i && v < a[j]);
do i++; while (i<=j && a[i] < v);
if (j > i) swap(i,j);

} while(j >= i);
swap(left,j); // move pivot, end of partitioning
if (j-left < right-i+1) { sort(left,j-1); sort(j+1,right); }
else { sort(j+1,right); sort(left,j-1); }

}
}

}

1.3 Backtracking

Backtracking is a general problem set-and-reset solution technique.
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1.3.1 Post’s Correspondence Problem

Post’s Correspondence Problem (PCP) is an undecidable problem as hard as the halting problem. The input of
the problem consists of two finite arrays x1, . . . ,xn and y1, . . . ,yn of words over some alphabet Σ . A solution is
a sequence of indices (ik)1≤k≤l with l ≥ 1 and 1 ≤ ik ≤ n for all k, such that xi1 . . .xil = yi1 . . .yil . The problem
is to decide whether or not such a solution exists.

Program 1.16: PCP.

public class PCP
{

static final int DEPTH = 66;
private int [] sol = new int[DEPTH];
private String x[] = {"001","01","01","10"}; // initialise instance variables
private String y[] = {"0","011","101","001"};
/**
* Constructor for objects of class PCP
*/

public PCP() {
backtrack(new String(""),new String(""),0);

}
/**
* Backtracking method for pcpx, pcpy, truncated by depth
*/

public void search(String pcpx, String pcpy, int depth) {
if (depth == DEPTH) {

if (pcpx.equals(pcpy)) {
System.out.println(pcpx); System.out.println(pcpy);
for (int j=0;j<DEPTH;j++) System.out.print(sol[j] +",");
System.out.println(); System.exit(1);

}
else return;

}
for (int j=0;j<x.length;j++) {

String tmpx = pcpx, tmpy = pcpy;
pcpx += x[j]; pcpy += y[j];
if (pcpx.startsWith(pcpy) || pcpy.startsWith(pcpx)) {
sol[depth] = j; search(pcpx,pcpy,depth+1);

}
pcpx = tmpx; pcpy = tmpy;

}
}

}

Program 1.16 illustrates that undecidability does not necessarily mean that there is no algorithm that can solve
instances to the problem. If the program runs, however, we cannot decide whether it will come up with a solution
eventually, or if the problem is unsolvable.
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1.3.2 Towers-of-Hanoi

The (3-peg) Towers-of-Hanoi problem asks for a rearrangement of n pairwise differently sized discs from peg
a via peg b to peg c with the additional constraint that a larger disc must not be placed on a smaller one.
Program 1.17 solves the problem of size n in exactly 2n−1 moves.

Program 1.17: Towers-of-Hanoi.

public class Hanoi
{

/**
* Constructor for objects of class Hanoi
*/

public Hanoi() {
move(4,’a’,’b’,’c’); // call function

}
/**
* moves of a stack in TOH problem
*/
public void move(int n, char a, char b, char c) { // move stack

if (n == 0) return; // stack is empty
move(n-1,a,c,b); // recursive call, a to b via c
System.out.println("move "+n+" from "+a+" to "+c);
move(n-1,b,a,c); // recursive call, b to c via a

}
}

1.3.3 Mazes

To find a way from start to goal in a maze is not immediate. Program 1.18 provides a computer solution in a
random 2D grid with a 20% probability of an obstacle cell. The depth-first search algorithm looks in all four
directions and marks every cell visited to avoid recomputation until the goal is eventually reached. The solution
sequence is stored on a stack and printed in case of search success.
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Program 1.18: A depth-first solver for a maze.

import java.util.Random;
public class Maze
{

int maze[][], visited[][]; // maze and array to avoid search duplicates
int goalx, goaly;
/**
* Constructor for (x,y)-sized Maze
*/

public Maze(int x, int y) {
Random r = new Random();
maze = new int[x][y];
visited = new int[x][y];
for(int i=0;i<x;i++)

for(int j=0;j<y;j++)
maze[i][j] = visited[i][j] = 0;

for(int i=1;i<x-1;i++)
for(int j=1;j<y-1;j++)

if (r.nextInt() % 5 != 0) maze[i][j] = 1;
goalx = x-1; goaly = y-1;
maze[goalx][goaly] = 0;

}
/**
* An example of depth-first search at x,y trough maze
*/

public void dfs(int x, int y) {
if (maze[x][y] == 1 || visited[x][y] != 0) return; // failure
System.out.println(" @ ("+x+","+y+")"); // output
if (x == goalx && y == goaly) { // goal found
System.out.println("goal found"); System.exit(1);

}
visited[x][y] = 1; // memorize, not to be visited again
dfs(x,y+1); dfs(x,y-1); dfs(x+1,y); dfs(x-1,y); // calls to neighbors

}
}

1.3.4 The Queens Problem

The Queens problem asks for an arrangement of n queens on an n×n chessboard so that no queen attacks any
other. As search-free algorithms for one solution are known, Program 1.19 generates all possible oness.

An example output is

..@.
@...
...@
.@..

.@..

...@
@...
..@.

A related problem is placing a maximal number of knights on a chessboard. It is simple to see that on a standard
board 32 is both the upper and lower bound.
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Program 1.19: A solution to the queen’s problem.

public class Queens
{

private int[] a;
/**
* Constructor for n-Queens problem
*/

public Queens(int n) {
a = new int [n];
solve(n,0);

}
/**
* Check whether queen at q can be placed in row
*/

public boolean legal(int q, int row) {
for(int column=0;column<row;column++)
if (a[column] == q || a[column]-q == column-row || q-a[column] == column-row)

return false;
return true;

}
/**
* Solve all n-queens problem recursively for row j
*/

public void solve(int n, int j) {
if (j==n) {

for (int i=0;i<n;i++) { // for each row
for (int k=0;k<n;k++) // for each column

if (i == a[k]) System.out.print("@"); else System.out.print(".");
System.out.println();

}
}
for (int q=0; q<n; q++)

if (legal(q,j)) { a[j] = q; solve(n,j+1); }
}

}

1.3.5 Sudoku

A Sudoku of size 9×9 has 3×3 blocks of 3×3 cells. All rows, columns and blocks must contain the numbers
from 1 to 9 exactly once. An example of the in- and output behavior of Program 1.20 is

......... 987654321

.....3.85 246173985

..1.2.... 351928746

...5.7... 128537694

..4...1.. -> 634892157

.9....... 795461832
5......73 519286473
..2.1.... 472319568
....4...9 863745219
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Program 1.20: Sudoku problem solver.

public class Sudoku
{

public char s[] = {’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,
’0’,’0’,’0’,’0’,’0’,’3’,’0’,’8’,’5’,
’0’,’0’,’1’,’0’,’2’,’0’,’0’,’0’,’0’,
’0’,’0’,’0’,’5’,’0’,’7’,’0’,’0’,’0’,
’0’,’0’,’4’,’0’,’0’,’0’,’1’,’0’,’0’,
’0’,’9’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,
’5’,’0’,’0’,’0’,’0’,’0’,’0’,’7’,’3’,
’0’,’0’,’2’,’0’,’1’,’0’,’0’,’0’,’0’,
’0’,’0’,’0’,’0’,’4’,’0’,’0’,’0’,’9’};

/**
* calling the solver
*/

public void solve() { show(); search(0); show(); }
private void show() {

for (int i=0;i<9;i++) {
for(int j=0;j<9;j++)
System.out.print(s[i*9+j] == ’0’ ? "." : s[i*9+j]);
System.out.println();

}
System.out.println();

}
public boolean test(char d, int r, int c) {

for(int i=0;i<9;i++)
if (s[9*r+i] == d || s[9*i+c] == d || s[9*(r/3*3+i/3)+(c/3*3+i%3)] == d) return false;

return true;
}
/**
* backtrack search for a Sudoku solution at position pos
*/

public boolean search(int pos) {
if (pos == 81) return true;
if (s[pos] > ’0’) { if (search(pos+1)) return true; }
else

for (int i=0;i<9;i++)
if (test((char) (’1’+i),pos/9,pos%9)) {
s[pos] = (char) (’1’+i); if (search(pos+1)) return true; s[pos] = 0;

}
return false;

}
}

1.4 Heuristic Search

The process of problem solving can often be modeled as a search in a state space starting from some given
initial state with rules describing how to transform one state into another. These rules are applied repeatedly to
eventually satisfy a given goal condition.

Heuristic search algorithms execute a guided exploration in a space of states. While in computer science the
term heuristic generally refers to rules of thumb, we use it as a lower bound that guides the solution search
process.
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1.4.1 Number Partitioning

In the number partitioning problem we are given a set N = {0, . . . ,n−1} of objects with sizes a0, . . . ,an−1; the
task is to find a partition of N into S ⊆ N and N \ S with ∑i∈S ai = ∑ j∈N\S a j. If ai with i ∈ N are integers and
the sum is odd, the problem is clearly unsolvable. The problem for sums that are even, however, is NP-hard, so
that no efficient (polynomial-time) solver is known.

Program 1.21: Greedy and complete solution.

import java.util.Arrays;
import java.util.Random;
public class Partition
{

int [] a;
int max;
public Partition(int n) {
max = Integer.MAX_VALUE;
Random r = new Random();
a = new int[n];
for(int i=0;i<n;i++) a[i] = r.nextInt(20);
Arrays.sort(a); // increasing -> decreasing
for(int i=0,j=n-1; i < (n/2); i++, j--) { int t = a[i]; a[i] = a[j];a[j] = t; }
for (int i=0; i<n; i++) System.out.print(a[i]+",");
completeGreedy(0,0);
System.out.println("remaining difference is "+max);

}
public int greedy() {

int diff = 0;
for (int i=0;i<a.length-1;i++)

if (diff < a[i]) diff = a[i] - diff; else diff = diff - a[i];
return diff;

}
public void completeGreedy(int i, int diff) {
System.out.println(i+" ["+diff+"]");
if (i == a.length) { if (diff < max) max = diff; return; }
completeGreedy(i+1,diff < a[i] ? (a[i] - diff) : (diff - a[i]));
completeGreedy(i+1,diff+a[i]);

}
}

The greedy solution in Program 1.21 places the next object on the respective smaller side and computes the
difference in the sum of both sides. It presorts the elements in decreasing order. The solution extends to a
complete search by allowing elements also to be placed on the other side.

1.4.2 The 15-Puzzle

The 15-Puzzle (see Figure 1.1) is a Childrens’ toy. By sliding the tiles, a goal configuration (e.g, 0, . . . ,15) has to
be found. Finding a solution in the optimal number of moves is hard. A lower bound is the Manhattan-Distance,
i.e., the sum of horizontal and vertical distances of the tiles to their respective goal location. The backtrack solver
in Program 1.22 includes this heuristic and is inspired by Rich Korf’s solution in C. It includes the generation
of solvable instances. Further precomputation accelerates successor generation.
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1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Figure 1.1: Goal state in the 15-Puzzle.

Program 1.22: A 15-Puzzle Solver: constructor and random position.

public class FifteenPuzzle
{

public static final int X = 4, SIZE = 16;
int [] s;
public class Operators {

int num;
int [] pos = new int[4];

}
Operators [] oprs = new Operators[SIZE];
int [][][] inc = new int [SIZE][SIZE][SIZE];
int thresh;
long generated, total;
/**
* Constructor for objects of class FifteenPuzzle
*/

public FifteenPuzzle() {
s = new int[SIZE];
for (int i=0;i<SIZE;i++) oprs[i] = new Operators();
for (int blank = 0; blank < SIZE; blank++) {
oprs[blank].num = 0;
if (blank > X - 1) oprs[blank].pos[oprs[blank].num++] = blank - X;
if (blank % X > 0) oprs[blank].pos[oprs[blank].num++] = blank - 1;
if (blank % X < X - 1) oprs[blank].pos[oprs[blank].num++] = blank + 1;
if (blank < SIZE - X) oprs[blank].pos[oprs[blank].num++] = blank + X;

}
for (int tile = 1; tile < SIZE; tile++)

for (int source = 0; source < SIZE; source++)
for (int destindex = 0; destindex < oprs[source].num; destindex++) {

int dest = oprs[source].pos[destindex];
inc[tile][source][dest] =
Math.abs((tile % X) - (dest % X)) - Math.abs((tile % X) - (source % X)) +
Math.abs((tile / X) - (dest / X)) - Math.abs((tile / X) - (source / X));

}
}
/**
* Procedure to generate random (solvable) state, returns blank position
*/

public int generate () {
int blank, swaps;
Random r = new Random();
do {

for (int index = 0; index < SIZE; index++) s[index] = index;
blank = swaps = 0;
for (int index = SIZE-1; index > 0; index--) {

int other = r.nextInt(index + 1);
if (other != index) {

int temp = s[index]; s[index] = s[other]; s[other] = temp;
swaps++;

}
if (s[index] == 0) blank = index;
if (s[other] == 0) blank = other;

}
swaps = (swaps + blank % X + blank / X) % 2;

} while (swaps == 1);
return blank;

}
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Program 1.22 shows the search procedure including the loop that generates different instances. The statistics
and the optimal solution length are printed.

Program 1.23: A 15-Puzzle, solved with iterative-deepening search.

/**
* searches via depth-first iterative-deepening, cutting off when the depth plus the heuristic

evaluation exceeds threshold;
* blank current blank position, oldblank preceding blank position
* g search depth, h heuristic estimate to goal
* returns 1 and records the sequence of tiles moved in the solution, 0 otherwise
*/
public int search (int blank, int oldblank, int g,int h) {

int newblank;
for (int index = 0; index < oprs[blank].num; index++)

if ((newblank = oprs[blank].pos[index]) != oldblank){
int tile = s[newblank];
int newh = h + inc[tile][newblank][blank];
generated++;
if (newh+g+1 <= thresh) {
s[blank] = tile; s[newblank] = 0;
if ((newh == 0) || (search(newblank, blank, g+1, newh) == 1))

return 1;
s[newblank] = tile; s[blank] = 0;

}
}
return 0;

}
/**
* drives depth-first iterative-deepening, generates problems and solves it.
*/

public void driver() {
for (int problem = 1; problem <= 5; problem++) {

int blank = generate();
int initeval = 0;
for (int pos = 0; pos < SIZE; pos++)

if (s[pos] != 0)
initeval += Math.abs((pos % X) - (s[pos] % X)) + Math.abs((pos / X) - (s[pos] / X));

thresh = initeval;
total = 0;
int success = 0;
do {
generated = 0;
success = search(blank, -1, 0, initeval);
total = total + generated;
thresh += 2;
System.out.println("..... Problem "+ problem +" cost "+ (thresh-2) + " nodes generated "+ total);

} while (success == 0);
System.out.println("Solved Problem "+ problem +" cost "+ (thresh-2) + " nodes generated "+ total);

}
}

}



22 1 Programming Primer

1.4.3 Ranking and Unranking

Ranking is a bijective mapping of a permutation of size n to a number in {0, . . . ,n!−1}. The fast ranking and
unranking function in Program 1.24 goes back to Myrvold and Ruskey, based on the observation that a random
permutation can be uniformly generated if for all k in n−1, . . . ,1 the values π[k] are swapped with π[rand(k)],
where rand(k) denotes a random number in {0, . . . ,k}.

Program 1.24: Ranking and unranking in linear time.

public class Rank
{

static final int N = 9;
int [] pi = new int[N];
int [] inversepi = new int[N];
private void unrank(int n, int r, int pi[]) {

if (n>0) {
int tmp = pi[n-1]; pi[n-1] = pi[r%n]; pi[r%n] = tmp;
unrank(n-1,r/n,pi);

}
}
private int rank(int n, int pi[], int inversepi[]) {

if (n==1) return 0;
int s = pi[n-1];
int tmp = pi[n-1]; pi[n-1] = pi[inversepi[n-1]]; pi[inversepi[n-1]] = tmp;
tmp = inversepi[s]; inversepi[s] = inversepi[n-1]; inversepi[n-1] = tmp;
return s + n*rank(n-1,pi,inversepi);

}
public void test(int value) {
pi[0] = 5; pi[1] = 8; pi[2] = 3; pi[3] = 6; pi[4] = 1; pi[5] = 0; pi[6] = 2; pi[7] = 4; pi[8] =

7;
for (int i=0;i<N;i++) inversepi[pi[i]] = i;
System.out.println("rank value of permutation is "+rank(N,pi,inversepi));
for (int i=0;i<N;i++) pi[i] = i;
unrank(N,value,pi);
for (int i=0;i<N;i++) System.out.print(pi[i]+", "); System.out.println();

}
}

1.4.4 Peg Solitaire

Peg solitaire (see Figure 12.4) is a well-known single-player game, in which iterated jumps of pegs are followed
by the extraction of the pegs jumped over. The best is to reduce the number of pegs down to one, preferably
placed in the middle of the board. By its smaller runtime, Program 1.25 has been limited to a slightly easier
instance than the common Greek cross.
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Program 1.25: Solving Peg Solitaire.

public class Peg
{

final int PEGS = 25;
final int XDIM = 7;
final int YDIM = 6;
private int [] solx = new int [PEGS];
private int [] soly = new int [PEGS];
private char B[][] = {

{’−’,’−’,’x’,’x’,’−’,’−’},
{’−’,’−’,’x’,’x’,’−’,’−’},
{’x’,’x’,’x’,’x’,’x’,’x’},
{’x’,’x’,’o’,’x’,’x’,’x’},
{’x’,’x’,’x’,’x’,’x’,’x’},
{’−’,’−’,’x’,’x’,’−’,’−’},
{’−’,’−’,’x’,’x’,’−’,’−’} };

/**
* Constructor for objects of class Peg
*/

public Peg() {
solve(PEGS);

}
/**
* Solution method with number of remaining pegs
*/

public void solve(int pegs) {
if (pegs == 1) {

for (int i=PEGS-1;i>0;i--)
System.out.print("("+solx[i]+","+soly[i]+")");

System.exit(1);
}
for (int i=0;i<XDIM;i++)

for (int j=2;j<YDIM;j++)
if (B[i][j] == ’o’ && B[i][j-1] == ’x’ && B[i][j-2] == ’x’) {
B[i][j-2] = B[i][j-1] = ’o’; B[i][j] = ’x’;
solx[pegs-1] = i; soly[pegs-1] = j;
solve (pegs-1);
B[i][j-2] = B[i][j-1] = ’x’; B[i][j] = ’o’;
}

for (int i=0;i<XDIM;i++)
for (int j=0;j<YDIM-2;j++)

if (B[i][j] == ’o’ && B[i][j+1] == ’x’ && B[i][j+2] == ’x’) {
B[i][j+2] = B[i][j+1] = ’o’; B[i][j] = ’x’;
solx[pegs-1] = i; soly[pegs-1] = j;
solve (pegs-1);
B[i][j+2] = B[i][j+1] = ’x’; B[i][j] = ’o’;
}

for (int i=2;i<XDIM;i++)
for (int j=0;j<YDIM;j++)

if (B[i][j] == ’o’ && B[i-1][j] == ’x’ && B[i-2][j] == ’x’) {
B[i-2][j] = B[i-1][j] = ’o’; B[i][j] = ’x’;
solx[pegs-1] = i; soly[pegs-1] = j;
solve (pegs-1);
B[i-2][j] = B[i-1][j] = ’x’; B[i][j] = ’o’;
}

for (int i=0;i<XDIM-2;i++)
for (int j=0;j<YDIM;j++)

if (B[i][j] == ’o’ && B[i+1][j] == ’x’ && B[i+2][j] == ’x’) {
B[i+2][j] = B[i+1][j] = ’o’; B[i][j] = ’x’;
solx[pegs-1] = i; soly[pegs-1] = j;
solve (pegs-1);
B[i+2][j] = B[i+1][j] = ’x’; B[i][j] = ’o’;
}

}
}
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1.4.5 Traveling Salesman Problem

In the traveling salesman problem (TSP) we must visit each of n cities on a shortest tour exacty once. The
input is a distance matix with enties di, j, 0≤ i, j ≤ n−1, and the output a permutation π of 0, . . . ,n−1 so that
dn−1,0 +∑

n−1
i=0 dπi,πi−1 is minimal.

Program 1.26 solves the problem. It presorts the distances in array far. For a constant runtime at each search
node, we used a computer word to memorize and word-level bit-operations to modify the cities visited.

Program 1.26: Initialization of the TSP solver.

import java.util.Random;

public class TSP
{

public class State {
int h, g, depth, city;
long used;
public State() { used = 0L; g = h = depth = city = 0; }

}
public class Memory {

int top, max;
State [] old;
public Memory(int n) {
max = n*n; top = 0; old = new State[max+1];
for (int i=0;i<max+1;i++) old[i] = new State();

}
}
static final int N = 50;
int expansions;

/**
* Constructor for objects of class TSP, initializing distance matrix
*/

public TSP() {
start = 0;
Random r = new Random(100);
for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++)
dist[i][j] = (i == j) ? 0 : r.nextInt(100);

for (int i = 0; i < N; i++) {
newState[i] = new State();
for (int j = 0; j < N; j++)

far[i][j] = j;
for (int j = 0; j < N-1; j++)

for (int k = j+1; k < N; k++)
if (dist[i][far[i][j]] < dist[i][far[i][k]]) {

int temp = far[i][j]; far[i][j] = far[i][k]; far[i][k] = temp;
}

}
}

Program 1.27 lists the branch-and-bound search. If a better solution than the current best one is found, it sets
variable α to this value. (Programs 23.1 and 23.2 show a solution of the assignment problem (AP) used as a
heuristic employing the Hungarian algorithm.)
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Program 1.27: Searching a solution for the TSP.

/**
* Solving the TSP problem with heuristic h (h=0, h=1 Hungarian method)
*/

public int solve(int h) {
expansions = 0;
int alpha = Integer.MAX_VALUE;
int top = stack.top++;
stack.old[top].g = stack.old[top].depth = 0;
stack.old[top].city = start;
used = 0L;
stack.old[top].h = heuristic(h,0,0,0);
stack.old[top].used = used = (1L << start);
while (stack.top != 0) {
top = --stack.top;
int depth = stack.old[top].depth;
int city = stack.old[top].city;
tour[depth] = city;
if (depth == N - 1) {

if (stack.old[top].g + dist[city][start] < alpha) {
alpha = stack.old[top].g + dist[city][start];
System.out.println(" cost: " + alpha +" (" + expansions + ")");

}
continue;

}
used = stack.old[top].used;
int cost = stack.old[top].g;
int opindex = 0;
expansions++;
for(int i=0; i < N; i++) {

if (((used >> far[city][i]) & 1L) > 0) continue;
int newcity = far[city][i];
newState[opindex].depth = depth+1;
next[opindex] = opindex + 1;
int g = cost + dist[city][newcity];
newState[opindex].g = cost + dist[city][newcity];
newState[opindex].city = newcity;
used &= ~(1L << start);
newState[opindex].h = heuristic(h,g,newcity,depth);
used |= (1L << start);
used |= (1L << newcity);
newState[opindex].used = used;
used &= ~(1L << newcity);
opindex++;

}
next[opindex-1] = N;
for(int i=0; i != N; i = next[i]) {

if (newState[i].g + newState[i].h >= alpha) continue;
int newtop = stack.top++;
stack.old[newtop].city = newState[i].city;
stack.old[newtop].used = newState[i].used;
stack.old[newtop].g = newState[i].g;
stack.old[newtop].h = newState[i].h;
stack.old[newtop].depth = newState[i].depth;

}
}
return alpha;

}
public int heuristic(int h, int g, int city, int depth) {

return (h == 1) ? HungarianMethod(g,city,depth) : 0;
}
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1.5 Randomization

Randomization plays an important role in computer science; randomized algorithms are often easier and more
effective than deterministic ones. Frequently, they call the pseudo-random number generator of Lehmer. One
distinguishes Monte-Carlo methods, being mostly correct from Las-Vegas methods, which are always correct,
but have a varying running time.

1.5.1 Randomized Prime Number Tests

Large primes are important in public-key cryptographic systems like RSA. Miller (Selfridge) and Rabin used
a random test for prime numbers that is shown in Program 1.29. The algorithm has been found independently
by Solovoy and Strassen. It errs with some probability, but the error can be reduced to the level of hardware
reliability by repeated invocations. The Sieve of Eratostenes is far less efficient, but deterministic. For a potential
prime x for a growing 2 ≤ n ≤ b√xc we check if n divides x. In Program 1.28 we set

√
x to 100 so that values

x < 10,000 can be checked for primality.

Program 1.28: Finding prime numbers following Erastosthenes.

public class Eratosthenes
{

public void isPrime(int x) {
int i, j=0, n=3;
int primes[] = new int[100];
primes[0] = 2;
boolean prime = true;
if (x%2==0 && x!=2) { prime = false; n = 2; }
while (n <= Math.sqrt(x)) {
i = 0;
boolean prime2 = true;
while (primes[i]*primes[i]<=n) {

if (n%primes[i]==0) { prime2 = false; break; }
i++;

}
if (prime2) {

if (x%n==0) { prime = false; break; }
if (j<100) primes[j++] = n;

}
n+=2;

}
if (prime) System.out.println(x+" is a prime number!");
else System.out.println(x+" = "+n+"*"+(x/n));

}
}
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Program 1.29: The random computation of prime numbers.

public class Prime
{

/**
* Probabilistic prime detection of n, with a random value in [0..n]
*/

boolean witness(int a, int n) {
int d = 1, k = log(n)+1;
for (int i=k-1; i>=0; i--) {
d = (d*d) % n;
if ((((n-1) >> i) & 1) == 1) d = (d*a) % n;

}
return (d == 1);

}
public boolean test(int n) {
Random r = new Random();
for (int i = 0;i<100;i++) {

int a = 1 + r.nextInt(n-1);
if (!witness(a,n)) return false;

}
System.out.println("probably prime");
return true;

}
}

1.5.2 Mister X

Mister X selects a random number that has to be determined in as few queries as possible.

Program 1.30 comes with an automated computer player, which solves the problem in the optimal number of
queries. It halves the interval in which the random number is located, and, thus, applies binary search.
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Program 1.30: The game Mister X.

public class MisterX
{

private int x, left, right, trials;
/**
* Constructor for objects of class MisterX
*/

public MisterX(int d) {
trials = left = 0; right = d;
Random r = new Random();
x = r.nextInt(d);
System.out.println("Mister X has chosen a number between 0 and " + (d-1));

}
/**
* Optimal play against Mister X via binary search
*/

public void solve() {
trials = 0;
while (true) {
trials++;
int y = (left+right)/2;
System.out.println("Mister X − my " + trials + ". guess is " + y);
if (x<y) { System.out.println("...too big"); right = y; }
if (x>y) { System.out.println("...too small"); left = y; }
if (x==y) { System.out.println("...correct, "+ trials + " trials"); break; }

}
}
/**
* Guessing z against Mister X
*/

public void guess (int y) {
trials++;
System.out.println("Mister X − your " + trials + ". guess is " + y);
if (x<y) System.out.println("...too big");
if (x>y) System.out.println("...too small");
if (x==y) System.out.println("...correct, "+ trials + " trials");

}
}

1.5.3 Mastermind

Mastermind is a game in which a random code has to be broken. Statistics about the proper choice of a digit
and the correct location are made. Donald E. Knuth showed that it is possible to find a code of length 4 as a
selection of six numbers in at most five queries.

Program 1.31 implements the game, in which the computer chooses the random code in its constructor. All n
input numbers are pairwise different, i.e., for a0, . . . ,an−1 we have ai 6= a j for all 0≤ i 6= j < n.
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Program 1.31: The game Mastermind.

public class MasterMind
{

private int [] secret;
private int [] input;
int size, trials;
/**
* Constructor for objects of class MasterMind, parameter n<9
*/

public MasterMind(int n) {
size = n; trials = 0;
Random r = new Random();
secret = new int[size]; input = new int[size];
for(int i=0;i<size;i++) {

boolean duplicate = false;
do {
duplicate = false;
secret[i] = 1+r.nextInt(9);
for(int j=0;j<i;j++)
if (secret[i] == secret[j]) duplicate = true;

} while (duplicate);
}
System.out.println("Mastermind has chosen " + size + " distinct numbers between 1 and 9");

}
/**
* Guessing a code with guess y an n-th digit number
*/

public void guess(int y) {
trials++;
System.out.println("your "+ trials + ". number is " + y);
boolean hurray = true;
for(int i=0;i<size;i++) { input[size-i-1] = y % 10; y = y / 10; }
for(int i=0;i<size;i++) {

boolean red = false;
boolean black = false;
for(int j=0;j<size;j++)

if (input[i] == secret[j]) red = true;
if (input[i] == secret[i]) {
System.out.println((i+1) + ". position, MM code "+secret[i]+" = your code " + input[i]);

black = true;
}
else{

if (red) System.out.println((i+1) + ". position, MM _ ~ your code " + input[i]);
else System.out.println((i+1) + ". position, MM _ # your code " + input[i]);
}
hurray = hurray & black;

}
if (hurray) System.out.println("hurray, you broke the code");

}
}

1.5.4 Nim

Nim is a two-player turn-taking game, in which for every move a number of sticks must be removed from a
chosen row. The player who removes the last sticks wins the game. There is a known winning strategy imple-
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mented in Program 1.32: if and only if the bitwise xor of the row stick count is zero, then the position is lost for
the player to move.

Program 1.32: The game Nim.

public class Nim
{

private int a[];
private int size;
/**
* Constructor for objects of class Nim
*/

public Nim(int n)
{

a = new int [n];
size = 0;
Random r = new Random();
while (size < n)

a[size++] = r.nextInt(10);
}
public void take(int i, int j) {

a[i] -= j;
}
public int xor () {

int r = 0;
for(int i=0;i<size;i++)

r = r ^ a[i];
return r;

}
public void solve() {

for (int i=0;i<size;i++) {
for (int j=1;j<=a[i];j++) {

if (a[i] >= j) {
int temp = a[i];
a[i] -= j;
if (xor() == 0) {

System.out.println("Taking " + j + " sticks from row " + i);
print();
return;

}
a[i] = temp;

}
}

}
}

}

1.5.5 Snake

Snake is a one-player challenge. The head moves according to the given direction in a maze while the body
extends until the snake bites itself. Program 1.33 shows a prototypical implementation.
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Program 1.33: The game Snake.

public class Snake
{

int maze[][]; // maze with walls that block
int startx, starty, score, length; Random r;
public Snake(int x, int y) {

r = new Random(); maze = new int[x][y]; score = length = 0;
for(int i=1;i<x-1;i++)

for(int j=1;j<y-1;j++)
if (r.nextInt() % 30 == 0) maze[i][j] = 1;

for(int i=0;i<x;i++) maze[i][0] = maze[i][y-1] = 1;
for(int i=0;i<y;i++) maze[0][i] = maze[x-1][i] = 1;
startx = x-2; starty = y-2; maze[startx][starty] = 0;
while (true) {

if (maze[startx-1][starty] != 0 && maze[startx+1][starty] != 0 &&
maze[startx][starty-1] != 0 && maze[startx][starty+1] != 0) {

System.out.println("No further progress."); System.exit(1); }
int l = r.nextInt() % 4;
if (l == 0 && maze[startx-1][starty] == 0) up();
else if (l == 1 && maze[startx][starty-1] == 0) left();
else if (l == 2 && maze[startx+1][starty] == 0) down();
else if (l == 3 && maze[startx][starty+1] == 0) right();

}
}
public void print() {

try{ Thread.sleep(500); } catch(InterruptedException e){}
for(int i=0;i<maze.length;i++) {

for(int j=0;j<maze[i].length;j++) {
if (maze[i][j] == 1) System.out.print("X");
else if (i == startx && j == starty) System.out.print("@");
else if (maze[i][j] < 0) { System.out.print("o"); maze[i][j]++; }
else System.out.print(".");

}
System.out.println();

}
length = ++score / 10;
System.out.println("Score: " + score + ". Length = " + length + ".");

}
public void left() {

if (maze[startx][starty-1] != 1) maze[startx][--starty] = -length; print(); }
public void down() {

if (maze[startx+1][starty] != 1) maze[++startx][starty] = -length; print(); }
public void up() {

if (maze[startx-1][starty] != 1) maze[--startx][starty] = -length; print(); }
public void right() {

if (maze[startx][starty+1] != 1) maze[startx][++starty] = -length; print(); }
}

1.5.6 PacMan

PacMan is a well-known Arcade game. A simplified version is played in a maze (see Program 1.34). Ghosts are
numbered. The game ends if one ghost hits the player.
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Program 1.34: The game PacMan.

public class PacMan
{

int maze[][]; // maze with walls that block
int visited[][]; // memorization to avoid duplicates
int startx, starty, m, p;
int goalx[], goaly[];
Random r;
public PacMan(int x, int y) {

m = 4; p = 0;
maze = new int[x][y]; visited = new int[x][y]; goalx = new int[m]; goaly = new int[m];
r = new Random();
for(int i=1;i<x-1;i++)

for(int j=1;j<y-1;j++)
if (r.nextInt() % 5 == 0) maze[i][j] = 1;

for(int i=0;i<x;i++) maze[i][0] = maze[i][y-1] = 1;
for(int i=0;i<y;i++) maze[0][i] = maze[x-1][i] = 1;
for(int i=0;i<m;i++) { goalx[i] = 1; goaly[i] = 1; }
startx = x-2; starty = y-2;
p = pills(startx,starty);
while (true) {

if (r.nextInt() % 4 == 0) monster();
int l = r.nextInt() % 4;
if (maze[startx-1][starty] == 0) up();
else if (maze[startx+1][starty] == 0) down();
else if (maze[startx][starty-1] == 0) left();
else if (maze[startx][starty+1] == 0) right();
else if (l == 0) up(); else if (l == 1) down();
else if (l == 2) left(); else if (l == 3) right();

}
}
public void left() {

if (maze[startx][starty-1] != 1) maze[startx][--starty] = -1; print(); }
public void down() {

if (maze[startx+1][starty] != 1) maze[++startx][starty] = -1; print(); }
public void up() {

if (maze[startx-1][starty] != 1) maze[--startx][starty] = -1; print(); }
public void right() {

if (maze[startx][starty+1] != 1) maze[startx][++starty] = -1; print(); }
public void monster() {

int oldx, oldy;
for(int i=0;i<m;i++) {

do {
int l = r.nextInt() % 8;
oldx = goalx[i]; oldy = goaly[i];
if (l == 0 && goaly[i] > 0) goaly[i] = goaly[i]-1;
else if (l == 1 && goalx[i] < maze.length-1) goalx[i] = goalx[i]+1;
else if (l == 2 && goalx[i] > 0) goalx[i] = goalx[i]-1;
else if (l == 3 && goaly[i] < maze[0].length-1) goaly[i] = goaly[i]+1;
else if (l == 4 && startx < goalx[i]) goalx[i] = goalx[i]-1;
else if (l == 5 && startx > goalx[i]) goalx[i] = goalx[i]+1;
else if (l == 6 && starty < goaly[i]) goaly[i] = goaly[i]-1;
else if (l == 7 && starty > goaly[i]) goaly[i] = goaly[i]+1;
if (maze[goalx[i]][goaly[i]] == 1) { goalx[i] = oldx; goaly[i] = oldy; }

} while (goalx[i] == oldx && goaly[i] == oldy);
if (startx == goalx[i] && starty == goaly[i]) System.exit(1);

}
}
public int pills(int x, int y) {

if (maze[x][y] == 1 || visited[x][y] != 0) return 0;
visited[x][y] = 1;
return 1 + pills(x,y+1) + pills(x,y-1) + pills(x+1,y) + pills(x-1,y);

}
}
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1.6 Bibliographic Notes

The science of computing is a rather young research discipline founded by Alan Turing, Max Neumann, David
Hilbert, Wilhelm Ackermann, Kurt Gödel, Alonzo Church, Stephen C. Kleen, and Emil Post, just to name a
few. In his 1936 manifesto On computable numbers, with an application to the Entscheidungsproblem Turing
introduces the notation of computability. Later on, in 1968, 1969, and 1973 Donald E. Knuth wrote The Art
of Computer Programming, a foundation of modern computer science. The three volumes study Fundamental
Algorithms (1), Semi-Numerical Algorithms (2), Searching and Sorting (3).

In the late 1970s the common basis to teach programming was The C Programming Language by Brian
Kernighan and Dennis Ritchie (since 2012 there also is an electronic version). While being an outcome of a
tutorial, the book is not a textbook for teaching. The proposed ANSI C Standard listed in Backus-Naur for-
mat, however, is still used in programming practice. In his monograph Data Structures and Algorithms Kurt
Mehlhorn reflected the Status Quo in algorithm analysis. The work addresses three books: Sorting and Search-
ing (1), Graph Algorithms and NP-Completeness (2), as well as Multi-Dimensional Search and Computational
Geometry (3). In 1983, Robert Sedgewick published his book Algorithms, which was ported to Java and C++.
It introduces sorting and searching, graphs, strings and further material. In 1990, the textbook Introduction
to Algorithms of Thomas Cormen, Charles Leiserson and Ronald Rivest appeared as a compendium on algo-
rithmics (and attracted Clifford Stein as a fourth author). Besides classic subjects like searching and sorting,
advanced topics like Fibonacci heaps and the discrete Fourier transformation are covered, and an introduction
to complexity theory is given.

Object-oriented programming was popularized in the mid 1980s; central was the work The C++ Programming
Language by Bjarne Stroustrup. Even though more than one third of the book is a reference manual, its technical
insights persist. The Massachusetts Institute of Technology (MIT) used the LISP-like programming language
Scheme following the book Structure and Interpretation of Computer Programs by Julie Sussman, Harold Abel-
son and, later, Gerald Jay Sussmann for teaching algorithms. The first Turing-Award Winner Alan Jay Perlis
(ALGOL) wrote the preface. Characters like Ben Bitdiddle, Eva Lu Ator, Louis Reasoner, Alyssa P. Hacker, Cy
D. Fect and Lem E. Tweakit were introduced; similar to Andrew Tanenbaum’s ostrich algorithm, which solves
a problem merely by pretending that there is no problem at all. Java emerged as the programming language of
choice, and applets connected programs with the Internet. Other languages like Ruby, an object-oriented script-
ing language, were designed together with Rails for the design of web applications. Agile software development
and extreme programming led to programming models like Scrum.

Objects First with Java by David J. Barnes and Michael Kölling (Prentice Hall / Pearson Education, 2012)
advertises a software technology paradigm that aims at substituting existing ones. It takes a graphical interface to
start with and continues with the interaction of several objects kept in lists via interfaces. Next, there are design
principles and typographic conventions, and methods for error handling. Abstract classes then lead to larger
software projects. Linear lists and hash tables are used, but not explained, and there is almost no performance
analysis of algorithms. In a similar threat, Becker and Buck et al. take Karel the Robot to introduce object
orientation in a five-weeks course Instantiating and Using Objects (1), Extending Existing Classes (2), Selection
and Iteration (3), Methods with Parameter (4), and Instance Variables (5).

Algorithm Engineering connects theory and practical hardware in the design of algorithms. Its core is a cycle
driven by falsifiable hypotheses. It consists of design, analysis, implementation and experimental evaluation of
practicable algorithms. Realistic models for both computers and applications, as well as algorithm libraries and
collections of real input data allow a close coupling to applications. The textbook of Kurt Mehlhorn and Peter
Sanders Data Structures and Algorithms – The Basic Toolbox reflects this trend.

Recommended references to randomized search are the books Randomized Algorithms by Motwani and Ragha-
van and Probability and Computing. by Mitzenmacher and Upfal. The book Primality Testing in Polynomial
Time by Dietzfelbinger gives an insightful survey of the primes problem and introduces a recent deterministic
algorithm that is polynomial.



Chapter 2

Shortest Paths

In state-space search the initial and the goal states are nodes in a graph. Edges between the nodes are labeled
with cost. The task in single-source shortest path search is to find an optimal plan in the form of a sequence
of edges that have the smallest cost total. In general graphs, the best-known algorithms are variants of Dijk-
stra’s approach. Nonetheless, after more than 50 years there are still many interesting cases in which it can be
improved significantly.

Starting from a single one, Dijkstra’s method actually determines the shortest paths to all other nodes in a
weighted graph, for example to generate pattern databases.

In this chapter we vary the underlying priority queue data structure and conduct experiments in commercial
game maps with Euclidean edge weights. We compare general implementations of binary, pairing and Fibonacci
heaps with bucket implementations, including radix heaps and bucket maps. As domain-specific highlights, we
study theoretical properties of factorizing edge costs and exploiting cache efficiencies in the memory layout of
the graph.

2.1 Introduction

For1 optimally solving task planning problems, where actions are assigned to costs, the single-source shortest
path (SSSP) algorithm of Dijkstra applied to a graph with weight (alias cost or distance) assigned to the edges
is one apparent implementation option.

For a consistent heuristic, where w(u,v) ≥ h(u)− h(v) for all edges (u,v), the A* algorithm is equivalent to
Dijkstra’s method applied to a compiled graph. The heuristic h reweights all the edges e = (u,v) to convert
the original graph G = (V,E,w) according to the formula w′(u,v) = w(u,v)+ h(v)− h(u) into G = (V,E,w′)
together with an offset h(s) assigned to the initial state s.

We solve the shortest path problem where the search does not terminate at a goal. In this setting, lower bound
heuristics are not helpful, as they only modify the ordering of visiting nodes. Hence, algorithmic improvements
to Dijkstra’s original method are essential.

For precomputing heuristic estimates (alias pattern databases) the all-target single-source shortest path problem
arises in the inverse of a state space graph abstraction, with a relaxation applied to the nodes and all directed
edges reversed. The computed goal distance serves as a lower bound.

But what is the best way of implementing Dijkstra’s algorithm? Of course, the answer largely depends on the
graph itself, the weight function applied, and the level of engineering in the implementation. The question we

1 This chapter is based on joint work with Asger Bruun, Jyrki Katajainen, and Jens Rasmussen. It puts together and improves the
work from [88, 182].
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stress in this chapter is whether the general priority queues are competitive in rather regular environments found
in AI, or if specialized implementations are superior.

We experiment with grid graphs that are common in game playing and robotics research. For online navigation,
the performance for finding shortest paths determines the applicability of a method. We assume that the graphs
to be searched are stored in (main) memory, with nodes to be addressed in constant time, and study maps of
commercial games. We prefer non-unit edge costs such as imposed by the Euclidean distance metric in an
eight-connected (octile) grid.

We introduce and analyze specialized data structures that exploit either

• the limited set of available cost values, or

• the 2D graph layout to prefer a cache-friendly exploration.

For the former we introduce a factorized algorithm that operates on a matrix of buckets, and for the latter we
apply flood-filling, where a different traversal order to Dijkstra’s algorithm leads to reopening of nodes. The
hope is that the search becomes faster and compensates for this additional work.

2.2 Dijkstra’s Algorithm

Finding shortest paths in a directed and weighted graph G = (V,E,w) with E ⊆V ×V , and w : V →R+ is essen-
tial to many areas of computer science. While for general graphs (assuming an adjacency list representation) the
input is of size O(|E|+ |V |), in grid graphs with a bounded branching factor at each cell, we have |E|= O(|V |),
so that the input (and the output) has size O(|V |).
While it is still an open question if there is an algorithm for finding shortest paths in general graphs that is
linear in the size of the graph, for special graph classes, like planar graphs and undirected graphs with integer
weights, the problem has been theoretically solved. The solutions, however, are involved: for planar graphs,
graph separators are recursively applied, while for undirected graphs with integer weights heaps that are efficient
only for very large values of n have been proposed. Essentially, even for simpler types of graphs, the choice of
a proper data structure remains challenging.
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Program 2.1: Template for Dijkstra’s algorithm.

template<typename H, typename N, typename K>
void dijkstra(vector<N*> vertices) {
H pq;
for (int i=0;i<vertices.size();i++) vertices[i]->visited = none;
N* s = vertices[0];
s->cost = 0; s->label = open;
pq.insert(s);
while (!pq.is_empty()) {
N* t = pq.find_min(); t->label = closed;
K d = t->cost;
for (int i = 0; i<t->succs;i++) {
N* u = vertices[t->successor[i]];
K c = d + t->w[i];
if (u->label != closed) {

if (u->label == none) { u->cost = c; u->label = open; pq.insert(u); }
else if (u->cost > c) pq.decrease_key(u, c);

}
}
pq.extract_min(t);

}
}

For general priority queues, in a precomputation stage, the grid is scanned once and compiled into a weighted
graph with nodes for each cell and edges for each link between two adjacent cells.

One implementation uses a bitvector for tagging elements open (visited). While for dense graphs this option
incurs an acceptable overhead, for sparse graphs with limited branching, finding the next open node can be
costly.

As there are different expositions of Dijkstra’s algorithms, Program 2.1 shows the engineered code with template
types for priority queue (H), node (N) and key (K).

The refined implementation uses additional labels (none, closed or open) for nodes to avoid redundant work.
It assumes a merge of graph and queue nodes (thus, the joint node representation includes the label state; a
linked list of edges; an element for storing the travel distances, as well as pointers for linking the elements in
the heap). An edge is a pair of a successor node ID and according weight. In some graphs such advanced node
representation is more important than the proper choice of the data structure. One reason is avoiding fragmented
memory allocation, another is dropping the efforts for preserving the bijection between graph and heap nodes.

The priority queue itself provides the usual operations is-empty, insert, find-min, delete, decrease-key, and
extract-min.

2.3 General Priority Queues

With binary, Fibonacci and pairing heaps we look at general priority queues that can be used to find shortest
paths in any directed graph with totally-ordered weight function. They are general in the sense that they are
supporting the full set of priority queue operations, including delete and decrease-key (Fibonacci and pairing
heaps also provide an efficient meld operation). This flexibility of a priority queue, however, comes at a price,
as these two operations usually require maintaining handles to nodes, given that nodes are moving within the
heap.
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2.3.1 k-ary Heaps

The first structure we consider is a binary heap, as suggested by Floyd and Williams in the heapsort algorithm.
(Chapter 3 provides a closer look at binary heaps.) As all operations are logarithmic, it is easy to show that
in total we have O((|E|+ |V |) lg |V |) worst-case time (with lg denoting log2) for finding shortest paths with
a priority queue based on binary heaps; there are |V | delete-min and |E| decrease-key operations. We have
implemented algorithmic enhancements like k-ary heaps that have smaller height and larger branching factor,
but the improvements with respect to binary heaps were minor (slightly better results have been found with
k = 4). For the sake of clarity, we stick to binary heaps and k = 2.

2.3.2 Fibonacci Heaps

Fibonacci heaps are doubly-linked root lists of heap-ordered trees. They have been characterized as a lazy-meld
version of a binomial queue, which in turn, is a set of binomial trees.

A binomial tree Bn is a tree of height n with 2n nodes in total (and i nodes at depth i) and consists of two trees
Bn−1. Binomial queues are unions of heap-ordered binomial trees. Tree Bi is represented in queue Q if and only
if the ith bit in the binary representation of n is set. Several trees of rank i may be represented in one Fibonacci
heap. Consolidation traverses the linear list and merges trees of the same rank so that each rank becomes unique.

It is well known that the standard priority queue operations of extracting the minimum and decreasing the key of
a node in a Fibonacci heap results in O(|E|+ |V | lg |V |) worst-case time for SSSP. This efficiency is mainly due
to the amortized constant time for decrease-key. There are priority queues with worst-case constant decrease-key
operations and ones that provide a smaller number of comparisons, but for basic cost data types these structures
were less performant. There are several Fibonacci heap variants; including simple, eager, and lazy ones (see
Program 2.2 at the end of this chapter for one example).

2.3.3 Pairing Heaps

A pairing heap is a heap-ordered (not necessarily binary) self-adjusting tree. The basic operation is pairing,
which combines two pairing heaps by attaching the root with the larger key to the other root as its leftmost
child. For two pairing heaps with respective root values l1 and l2, pairing inserts the first as the leftmost subtree
of the second if l1 > l2, and otherwise inserts the second into the first as its leftmost subtree.

Pairing takes constant time, and the minimum is found at the root. In a multiway tree representation realizing
the priority queue operations is simple. Insertion pairs the new node with the root of the heap; decrease-key
splits the node and its subtree from the heap (if the node is not the root), decreases the key, and then pairs it with
the root of the heap; delete splits the node to be deleted and its subtree, performs a delete-min on the subtree,
and pairs the resulting tree with the root of the heap. The delete-min operation removes and returns the root, and
then, in pairs, pairs the remaining trees. Finally, the remaining trees from right to left are incrementally paired
(see Program 2.3 at the end of this chapter).

Since the multiple-child tree representation is difficult to maintain, the child-sibling binary tree representation
for pairing heaps is used, in which siblings are connected as follows. The left link of a node accesses its first
child, and the right link of a node accesses its next sibling, so that the value of a node is less than or equal to all
the values of nodes in its left subtree.

The analysis for pairing heaps, e.g., with two-phase root consolidation is involved. Nonetheless, since the em-
pirical work of Stasko and Vitter there is strong evidence that pairing heaps perform well in practice.
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2.4 Bucket Priority Queues

There are priority queue data structures that exploit the data type of the keys. While for general priority queues
we only imposed a total order, for bucket-based structures we require integer keys with a maximum edge weight
C = maxe∈E w(e). As we aim at general weight functions, we scaled and truncated real-valued distance values
like
√

2. Due to this approximation of floating-point data considerably large integer edges costs are generated.

In an one-level bucket C+ 1 buckets suffice, but, frequently, a maximum-cost many buckets were used, as in
Korf’s A* implementation for the 15-Puzzle, code fragments of which are shown in Program 2.4.

Program 2.4: Code fragment for bucket-based A* search for 15-Puzzle.

while (table < FULL) {
while (open[bestf] == MAX) bestf++;
index = open[bestf];
depth = expand(index);
close(index);

}

int expand (int index) {
int nps[WORDS];
int newblank;
int blank = unpack(old[index].ps, s);
int newg = old[index].g+1;
expanded++;
for (int opindex = 0; opindex < oprs[blank].num; opindex++) {

if ((newblank = oprs[blank].pos[opindex]) != old[index].oldblank) {
int tile = s[blank] = s[newblank];
s[newblank] = 0;
int newh = old[index].h + manhat[tile][blank] - manhat[tile][newblank];
if (newh == 0 && newg <= bestf) return (newg);
pack(s, nps);
int hashval = hash(nps);
int newindex = search(nps, hashval);
if (newindex == -1)
insert(nps, hashval, blank, newg, newh);

else if (old[newindex].g > newg) {
close(newindex);
reopened++;
insert(nps, hashval, blank, newg, newh);

}
s[newblank] = tile;
s[blank] = 0;

}
}
return 0;

}

The worst-case time performance for an one-level bucket representation of the priority queue is O(C · |V |+ |E|),
as we might have C− 1 empty buckets in between two non-empty ones. For a small constant value C, the
shortest paths algorithm based on buckets has optimal time complexity, but for more complex cost values, the
performance degrades quickly.

Most shortest-paths algorithms based on buckets assume a monotone cost function, that is the cost of each
successor node is larger than the one of the current one. This leads to addressable priority queues that only need
to support push (aka insert), top (aka find-min) and pop (aka delete-min).
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The reason for buckets to work is that while a node might be reached more than once with different cost values, it
will be expanded first with optimal cost. For octile grids of size X×Y this leads to the implementation shown in
Program 2.5. As imposed by the benchmarks, cutting corners is not allowed. We maintain traversal information
such as distance or visitedness in tables and assume access to the information if a cell is free or occupied. Pairs
of distance and grid location are stored in the priority queue.

Program 2.5: Bucket-based shortest paths search.

void bucket_dijkstra(int startx, int starty) {
heap pq;
for (int i=0;i<X;i++)

for (int j=0;j<Y;j++) { dist[i][j] = MAXCOST; vis[i][j] = 0; }
int d = 0;
dist[startx][starty] = 0;
pq.push(make_pair(d, startx*Y+starty));
while (!pq.empty()) {
d = pq.top().first; int s = pq.top().second;
pq.pop();
int x = s / Y, y = s % Y;
if (vis[x][y]) continue;
vis[x][y] = 1;
if (!vis[x+1][y] && !obs[x+1][y]) {

int c = d + w(x,y,x+1,y);
pq.push(make_pair(c,(x+1)*Y+y));
dist[x+1][y] = min(c,dist[x+1][y]);

}
[...]
if (!vis[x+1][y-1] && !obs[x+1][y-1] && (!obs[x][y-1] || !obs[x+1][y])) {

int c = d + w(x,y,x+1,y-1);
pq.push_back(make_pair(c,(x+1)*Y+y-1));
dist[x+1][y-1] = min(c,dist[x+1][y-1]);

}
[...]

}
}

2.4.1 Radix Heaps

Multi-level buckets decrease the influence on C to
√

C. To reduce the effect on C further, radix heaps have been
proposed with an amortized worst-case complexity of O(1) for delete-min, decrease-key, and O(lgC) for the
insert operation, leading to an O(|V | lgC+ |E|) shortest paths algorithm. Let C be the maximum weight of all
edges. A radix heap maintains a list of dlg(C+ 1)e+ 1 buckets of sizes 1, 1, 2, 4, 8, 16, etc. Elements in the
buckets are doubly-linked. The main difference to layered buckets are buckets of exponentially increasing sizes.
Therefore, only O(lgC) buckets are needed. An implementation will be given in Section 16.4. There are further
theoretical improvements like

√
lgC for a combination of radix with Fibonacci heaps, but for our domain, lgC

is sufficiently small.
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2.4.2 Bucket Maps

To bypass the dependency on C completely, a map of buckets can be used, for example maintained in the form
of a balanced search tree. This way only buckets that are non-empty are stored and inspected for expansion. The
access time, however, increases to the logarithm of the number of all buckets currently stored in the queue. In
the unlikely case, each bucket contains at most one element. In principle, bucket maps work not only for integer
values but also for floating-point and even real-valued data, as long as there is a total ordering.

2.4.3 Factorized Heaps

In octile grids with Euclidean distances, every path has cost k · 1+ l ·
√

2 for some k, l ≥ 0 (both k and l are
bounded by the length of the optimal path L). This can be exploited in the following table of buckets.

0 1 2 3 4 · · ·
0 0+0 ·

√
2 0+1 ·

√
2 0+2 ·

√
2 0+3 ·

√
2 0+4 ·

√
2 · · ·

1 1+0 ·
√

2 1+1 ·
√

2 1+2 ·
√

2 1+3 ·
√

2 1+4 ·
√

2 · · ·
2 2+0 ·

√
2 2+1 ·

√
2 2+2 ·

√
2 2+3 ·

√
2 2+4 ·

√
2 · · ·

3 3+0 ·
√

2 3+1 ·
√

2 3+2 ·
√

2 3+3 ·
√

2 3+4 ·
√

2 · · ·
4 4+0 ·

√
2 4+1 ·

√
2 4+2 ·

√
2 4+3 ·

√
2 4+4 ·

√
2 · · ·

5 5+0 ·
√

2 5+1 ·
√

2 5+2 ·
√

2 5+3 ·
√

2 5+4 ·
√

2 · · ·
...

...
...

...
...

...
. . .

By processing this table we precompute an index that is used for addressing during the search. The order of
buckets has to warrant increasing cost, so we sort the entries. In the worst case L = Ω(|V |), e.g., a maze in the
form of a spiral. In practice, however, L is much smaller.

The order of expansion for nodes within a bucket is not important and leaves room for parallelization and
externalization. As a side product, we can remove some buckets that are no longer needed, improving the
memory footprint of the algorithm.
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Program 2.6: Factorized shortest paths search.

void factorize_dijkstra(int startx, int starty) {
int global = 0;
for (int i=0;i<X;i++)

for (int j=0;j<Y;j++)
vis[i][j] = 0;

pq[0].push_back(startx*Y+starty);
int s = 1, n = 0;
while (1) {

for (int i=0;i<mpq[n].size();i++) {
int x = mpq[n][i] / Y, y = mpq[n][i] % Y;
s--;
if (vis[x][y]) continue;
vis[x][y] = 1;
if (!vis[x+1][y] && !obs[x+1][y]) { pq[MAXLENGTH+n].push_back((x+1)*Y+y); s++; }
[...]
if (!vis[x+1][y-1] && !obs[x+1][y-1] && (!obs[x][y-1] || !obs[x+1][y])) { pq[1+n].push_back

((x+1)*Y+(y-1)); s++; }
[...]

}
pq[n].clear();
if (s==0) break;
do {
n = indices[++global];

} while (pq[n].size() == 0);
}

}

Precomputation reduces to sorting, and with a standard sorting algorithm for which it would take L2 lgL2 =
O(|V | lg |V |) time in the worst case. With multiway merging the complexity reduces to L2 lgL = O(|V | ·
lg(
√
|V |)), which is acceptable, as the work has to be done only once. After precomputation, Dijkstra’s al-

gorithm, as shown in Program 2.6, takes O(|V |+K) time, where K is the number of buckets found empty
during the search. All operations in the outer while loop are constant-time, the additional efforts in the do-while
loop for pushing the pointer are O(K). If L = O(

√
|V |) we have K = O(L2), L2 = O(|V |) and, thus, K = O(|V |),

so that we arrive at the optimal linear time complexity for Dijkstra’s algorithm.
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Program 2.7: Cache-efficient shortest paths search.

int MinDist(int x, int y) {
int d = MAXCOST;
if (dist[x-1][y]>=0 && d > dist[x-1][y]+w(x-1,y,x,y)) d = dist[x-1][y]+w(x-1,y,x,y); [...]
if (dist[x-1][y-1]>=0 && d > dist[x-1][y-1]+w(x-1,y-1,x,y)) d = dist[x-1][y-1]+w(x-1,y-1,x,y);

[...]
return d;

}
int better(int x,int y) {

return dist[x][y]>=0 && dist[x][y] > MinDist(x,y);
}
void scan(int x, int y, int step) {

int i = y + step;
while (better(x,i)) {
dist[x][i] = MinDist(x,i);
if (better(x-1,i) && !better(x-1,i-step)) queue.push((x-1)*Y+i);
if (better(x+1,i) && !better(x+1,i-step)) queue.push((x+1)*Y+i);
i+=step;

}
}
void flood_fill(int startx, int starty) {

for (int i=0;i<X;i++)
for (int j=0;j<Y;j++)
dist[i][j] = obs[i][j] ? -MAXCOST : MAXCOST;

queue.push(startx*Y+starty);
int start = startx*Y+starty;
dist[startx][starty] = init(startx,starty);
while (!queue.empty()) {

int s = queue.front(); queue.pop();
int x = s / Y, y = s % Y;
if ((s == start) || better(x,y)) {

if (s != start) dist[x][y] = MinDist(x,y);
if (better(x-1,y)) queue.push((x-1)*Y+y);
if (better(x+1,y)) queue.push((x+1)*Y+y);

}
scan(x,y,-1); scan(x,y,+1);

}
}

2.5 Cache-Efficient Flood-Filling

In modern computers with a hierarchy of caches, localizing the search can be very effective: the retrieval time
can decrease considerably if nodes are already present in a cache, rather than located in main memory.

The memory layout of nodes to be visited can result in drastic changes to the performance. In 2D image manipu-
lation software, coloring areas is usually addressed with flood-filling that strictly prefers the y- to the x-direction.
Speed-ups reported are in the order of one magnitude and more.

For shortest-path search, the algorithmic considerations are more challenging. The main idea of Program 2.7 is
the following: when traversing the gridworld row-wise after each obstacle, the cells above or below the current
cell are stored in a queue as candidates to invoke a new scan if they provide a possible improvement. This way,
nodes may be reopened.
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Frequently, the flood-fill shortest path algorithm computes the optimal distances for all nodes in the grid. How-
ever, there are cases, in which the algorithm in Program 2.7 does not compute the optimal solution cost value at
a node.

The core problem is settling a node still to be reopened, as such settled cells (i, j) with minDist(i, j) = dist[i][ j]
may affect the scanning. Take the following example of a small grid fragment

(x) (x) (e) (f) (x)
(x) (a) (b) (c) (x)
(x) (x) (x) (d) (g)

where we have enqueued cell (c) reaching it on a better path via cell (d) ((x) denotes a blocked cell). Before
deleting cell (c) from the queue, we come from the other side via cell (e) and reach cell (b) with a worse value
than the one at cell (d). While scanning to the right, cell (c) will be settled, even though it is pending in the
queue. Now, when extracting cell (c) from the queue it already has the value updated, which, in turn, limits
other cells (e.g., (e) and (f)) from participating in the new information.

The problem persists if cutting corners is allowed or if uniform instead of Euclidean weights are used. A fix is
to prevent nodes from settling if they are contained in the queue.

This leads to the improved implementation of the flood-fill algorithm in Program 2.8 that finds optimal solutions.

Program 2.8: Flood-fill shortest path search.

void scan(int x, int y, int step) {
int i = y + step; int d = MinDist(x,i);
while (dist[x][i] >= d) {
dist[x][i] = d;
if (!vis[x-1][i] && better(x-1,i) && !better(x-1,i-step)) {queue.push((x-1)*Y+i); vis[x-1][i

]=1;}
if (!vis[x+1][i] && better(x+1,i) && !better(x+1,i-step)) {queue.push((x+1)*Y+i); vis[x+1][i

]=1;}
i += step; d = MinDist(x,i);

}
}
void improved_flood_fill(int startx, int starty) {

for (int i=0;i<X;i++)
for (int j=0;j<Y;j++)
dist[i][j] = (vis[i][j] = obs[i][j]) ? -MAXCOST : MAXCOST;

int start = startx*Y+starty;
queue.push(start);
vis[startx][starty] = 1; dist[startx][starty] = 0;
while (!queue.empty()) {

int s = queue.front(); queue.pop(); int x = s / Y, y = s % Y;
vis[x][y] = 0;
int d = MinDist(x,y);
if (s == start || dist[x][y] > d) {

if (s != start) dist[x][y] = d;
if (!vis[x-1][y] && better(x-1,y)) {queue.push((x-1)*Y+y); vis[x-1][y]=1;}
if (!vis[x+1][y] && better(x+1,y)) {queue.push((x+1)*Y+y); vis[x+1][y]=1;}

}
scan(x,y,-1); scan(x,y,+1);

}
}
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Figure 2.1: Time in milliseconds for shortest paths search in the game maps of Baldur’s Gate II, Starcraft, Warcraft III, and Dragon
Age (top to bottom, left to right) using scatter plots wrt the performance of shortest paths search with heaps.

2.6 Experiments

We considered two sets of problems for the experiments. All algorithms find shortest paths.

For benchmark game graphs the task lists include many s-to-t queries, so that we removed the goals t and
concentrated on the efforts for a complete enumeration. (For convenience, we enforced a frame of walls).

The CPU time in Figure 2.1 is the one obtained on the first instance in which the initial cell was not blocked.

We see that improved flood-fill is generally the fastest method despite re-expanding nodes. The pairing heaps
are the fastest general method and perform equally well if not better than the factorized structures. Fibonacci
heaps beat binary ones, and the cost-based exploration maintaining an STL map performs worst.

2.7 Summary

In the brief study we have compared several state-of-the-art priority queues, with and without buckets, with and
without domain-specific information.

In any case, shortest path search in grids is fast, and if we have access to the grid beforehand one can ask if
reading the grid from disk is slower than computing the shortest paths. From a theoretical side we have that
Ω(|V |) is the time for reading (and storing) the input, and some algorithms like the factorized cost scheme can
achieve worst-case time O(|V |) for computing all the single-source shortest path values.

Practically, there is a noticeable difference in the performance of the algorithms. As we allow slightly more com-
plex edge costs, it is general priority queues are efficient and sometimes even outperform solutions specialized
for grids. Through their good performance, cache-efficient shortest paths solutions are worth considering.
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The extension of the algorithms to the 3D world of voxels are rather obvious. The outcome of the study above
suggests that—depending on the setting—specialized algorithms can bu may not always result in the fastest
approach. Moreover, if a mesh or a different workspace decomposition is provided as the input as an alternative
discretization option, a general priority queue is the more flexible and natural implementation option.

2.8 Bibliographic Notes

Dijkstra’s algorithm for solving the SSSPs problem in weighted graphs goes back to [161]. Many combinatorial
optimization tasks like solving puzzles [376], or finding multiple sequence alignments [562] correspond to a
search in a weighted graph.

The amortized worst case of two comparisons for decrease-key and 1.5lgn for delete-min achieved in relaxed
weak-heaps [188] naturally leads to at most 2m + 1.5n lgn + O(n) comparisons for finding shortest paths.
Noshita has shown that on average (over perturbations of successors) at most n lg(m/n) decrease-key oper-
ations are executed. The two results imply linear-time average-case complexity O(m) for m = ω(n lgn) and
1.5n lgn+O(n) for values m = o(n lgn). On the other hand, on sparse graphs, at least Dijkstra’s SSSP method
has to have complexity Ω(n lgn), due to fixed ordering and the sorting complexity bound. In a complete graph
with simple edge cost function SSSP high probability Ω(n lgn) (see [473]).

If random edge weights are chosen uniformly in [1..M] an average case of O(n+m) (see [118]) for the SSSPs
has been shown. By using a refined bucket implementation an O(n+m) average-case is also valid for random
edge weights chosen according to the uniform distribution on [0,1] for both label-setting and label-correcting
algorithms [475]. Both results come with high-probability bounds in case of independence.

The A* algorithm [323] for consistent heuristics was shown to be a variant of Dijksta’s algorithm [219]. Pattern
databases [143] are effective in AI search domains such as the Rubik’s Cube [414].

There are speed-up techniques for accelerating answering many one-pair shortest path queries including
shortest-path containers, edge flags, and contraction hierarchies [638, 284]. Frequently, they call shortest path
methods in the precomputation stage. Last but not least, computing all shortest paths from/to a distinguished
set of nodes is a necessity in vehicle routing systems to compress large maps. This generates distance tables,
serving as inputs for variants of the traveling salesman problem [292].

Regarding the data structure, there are several experimental studies on the efficiency of priority queues [118,
88, 591]. For the performance of radix heap and its possible combination with Fibonacci heaps, see [8].

The complexity time bound of O(|E|+ |V | lg |V |) is supposed to be optimal for SSSP search in unrestricted
graphs with a total order based on executing comparisons. Optimal time O(|E|+ |V |) is available on special
graph classes like planar graphs [404], and edge cost functions like integers on undirected edges [613]. For
SSSP search in graphs with IEEE floating point weights in directed problem edge weights, see [497].

Theoretical considerations on whether or not a traversal order in such a localized algorithm retains optimal
solutions, have been derived [219]. Advanced general heap implementations include pairing heaps [270], Fi-
bonacci heaps [271], Brodal heaps [85], and relaxed heaps [170]. Moreover, there are suggestions to simplify
the implementation of Fibonacci heaps in [381].

In weighted graphs it has been shown that the flood-fill algorithm [450] may lead to a quadratic number of
reopenings [198].
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Program 2.2: Lazy simple Fibonacci heap implementation.

template <typename E, typename C, typename N>
class fibonacci_heap {
public:

using element_type = E; using comparator_type = C; using node_type = N;
using rank_type = typename N::rank_type;
enum: rank_type {max_rank = CHAR_BIT * sizeof(N*)};
C comparator; N* head; std::vector<N*> a;
fibonacci_heap(C const& c = C()) : comparator(c), head(0), a(max_rank, 0) {}
N* begin() const { return head; }
N* end() const { return 0; }
N* top() { if (head == 0) return 0; consolidate(); return head;}
bool empty() { return head == 0; }
N* inject(N* x) { head = append(x, head); return x; }
N* eject() { N* ejected_node = extract(head); return ejected_node; }
N* extract(N* z) {
N* x = (*z).parent(), c = (*z).child();
if (z == head) { N* s = (*head).after(); if (s == head) head = 0; else head = s; }
if (x != 0) decrease_ranks(z);
cut(z);
if (c != 0) { N* r = c;

do { (*r).parent(0); (*r).state(N::unmarked); r = (*r).after(); } while (r != c); }
head = catenate(head, c); return z; }

void increase(N* x, E const& v) {
(*x).element() = v; N* z = (*x).parent(); if (z == 0) return;
decrease_ranks(x); cut(x); head = append(x, head); }

protected:
N* catenate(N* p, N* r) {

if (p == 0) return r; if (r == 0) return p;
N* q = (*p).before(), s = (*r).before();
(*p).before(s); (*q).after(r); (*r).before(q); (*s).after(p); return p; }

N* append(N* x, N* y) {
if (y == 0) { (*x).before(x); (*x).after(x); return x; }

N* z = (*y).before(); (*x).before(z); (*x).after(y); (*y).before(x); (*z).after(x); return y;}
void addcirc(N* x, N* y) { N* c = (*y).child(); (*y).child(append(x, c)); (*x).parent(y);}
void cut(N* q) {
N* u = (*q).parent(); N* p = (*q).before(); N* r = (*q).after();
(*q).parent(0); (*q).state(N::unmarked);
if (p != q) { (*p).after(r); (*r).before(p); }
if (u != 0) { if ((*u).child() == q) { if (p != q) (*u).child(r); else (*u).child(0); }}}

void decrease_ranks(N* y) {
do { y = (*y).parent(); if ((*y).rank() > 0) (*y).rank((*y).rank() - 1);

(*y).state((typename N::state_type) (! (bool) (*y).state()));
} while ((*y).state() != N::marked);
if ((*y).parent() == 0) (*y).state(N::unmarked); }

void consolidate() {
rank_type border = 0; N* current = head, x;
do {
x = current; current = (*current).after(); N* y; rank_type d = (*x).rank();
while (a[d] != 0) {
y = a[d]; a[d] = 0;
if (comparator((*x).element(), (*y).element())) std::swap(x, y);
addcirc(y, x); (*x).rank((*x).rank() + 1); d += 1; }

a[d] = x; if (d > border) border = d;
} while (current != head);
x = 0;
for (rank_type i = 0; i <= border; ++i)

if (a[i] != 0) {
if (x == 0) x = a[i];
else {
N* y = a[i];
if (comparator((*x).element(),(*y).element())) std::swap(x,y);
addcirc(y, x);

}
a[i] = 0; }

head = append(x, 0); }
};
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Program 2.3: Pairing heap implementation.

template <typename E, typename C, typename N>
class pairing_heap {

public:
using element_type = E; using comparator_type = C; using node_type = N;
C comparator; N* root;
pairing_heap(C const& c = C()): comparator(c), root(0) {}
N* begin() const { return root; }
N* end() const { return 0; }
N* top() const { return root; }
bool empty() { return root == 0; }
N* inject(N* f) { if (root == 0) root = f; else link(root, f); return f; }
void increase(N* x, E const& k) {
x->element() = k;
N* p = x->parent(), h = 0;
if (x != root) {

if (x->right() != 0) { h = x->right(); h->parent(p); x->right(0); }
if (p->left() == x) p->left(h); else p->right(h);
x->parent(0); link(root, x); }}

N* eject() { N* t = top(); extract(t); return t; }
N* extract(N* x) {

if (x == root) {
if ((*x).left() == 0 && (*x).right() == 0) root = 0;
else { root = root->left(); root->parent(0);

if (root->right() != 0) root = twopass(root); }
x->parent(0); }

else {
N* p = x->parent(), h = 0;
if (x->right() != 0) { h = x->right(); h->parent(p); x->right(0); }
if (p->left() == x) p->left(h); else p->right(h);
x->parent(0);
x->right(root->right());
if (x->right() != 0) x->right()->parent(x);
root->right(x->left());
if (root->right() != 0) root->right()->parent(root);
root->parent(x); x->left(root); root->parent(0);
if (root->right() != 0) root = twopass(root);

}
x->parent(0); x->left(0); x->right(0);
return x;

}
private:

void link(N*& x, N*& y) {
if (comparator(y->element(), x->element())) {
x->right(y->right()); if (x->right() != 0) x->right()->parent(x);
y->right(x->left()); if (y->right() != 0) y->right()->parent(y);
y->parent(x); x->left(y);

}
else {
x->right(y->left()); if (x->right() != 0) x->right()->parent(x);
y->parent(x->parent()); if (y->parent() != 0) y->parent()->right(y);
y->left(x); x->parent(y); x = y;

}
}
N* twopass(N* h) {
N* h1 = h, h2 = h->right();
while (h2 != 0) {
h = h1->right()->right(); link(h1,h2);
if (h != 0) { if (h->right()!= 0) { h2 = h->right(); h1 = h; } else h2 = 0; }
else { h = h1; h2 = 0; }

}
h1 = h->parent(); h2 = h;
while (h1 != 0) { link(h1,h2); h = h1; h2 = h1; h1 = h1->parent(); }
return h;

}
};



Chapter 3

Sorting

Sorting a sequence of n elements probably is the most fascinating topic in computer science, and improved
sorting implementations have significant impact for many applications like index calculations for databases.

We want sorting algorithms that

• are simple to implement,

• are useful in practice to be used in libraries,

• are general, so that any ordered itemset can be sorted,

• are memory-limited: in-place with extra space of most O(1) computer words, or in-situ with extra space of
at most O(lgn) words,

• have a low number of element comparisons (n lgn+O(n)), and

• have a bounded number of other operations (O(n lgn)).

3.1 Introduction

The1 known lower bound for sequential sorting is lg(n!)− 1 ≈ n lgn− 1.44n+Θ(lgn) element comparisons
for the worst and average case. The best upper bound for sorting is n lgn− 1.3n+ o(n) element comparisons.
The best-known average-case bound, however, is achieved by QuickMergesort, which will be introduced in this
chapter. Using a clever partitioning scheme, and calling MergeInsertion at the end of the recursion, it requires
at most n lgn− 1.3999n+ o(n) element comparisons on the average (n lgn− 1.4n+ o(n) for n = 2k), while
preserving worst-case bounds n lgn+O(n) element comparisons and O(n lgn) time for all other operations.

We will look at fast Heap-, Merge-, and Quicksort algorithms. Our interest is sorting that is

• theoretically fast: we present algorithms that are constant-factor optimal, i.e., that for a small constant c
incur at most n lgn+ c ·n+o(n) element comparisons.

• practically fast: we present algorithms that yield a low number of mispredicted branches and improve
significantly over known sorting algorithms, among others including the library methods in C and Java.

For Heapsort, we start with introducing different heap structures and sifting procedures, Next, we turn to the
concept of bottom heaps and to the design and efficiencies of StrongHeapsort. Then, we consider Quicksort
and the even faster BlockQuicksort. Next, we look at the hybrids QuickMergesort and QuickMergeQuicksort,
which are practical, but also have a small number of comparisons.

1 This chapter is based on joint work with Armin Weiß, Amr Elmasry, and Jyrki Katajainen. It puts together and improves the work
from [231, 189, 190].
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3.2 Heapsort

A binary heap is a binary tree in which each node stores one element. The elements are in heap order, if for
each node the element stored at that node is not larger than the elements stored at its (at most) two children. A
binary heap is conveniently stored as an array where the elements are kept in the breadth-first order of the tree.
For a heap embedded in array a[1, . . . ,n] we have a j ≤ a2 j and a j ≤ a2 j+1.

The Heapsort algorithm has two major steps.

1. Construction: Convert an unsorted sequence of elements into a heap. For i = dn/2e down to 1,

• rearrange structure rooted at node index i into a heap

2. Sorting: Sort the sequence by using the heap. While the heap is not empty

• return minimal element in heap

• remove minimal element from heap

• rearrange the remaining structure into a heap

The first two steps in the sorting loop are often executed in one extract-min operation. For the last step as well
as for iterated construction, repeated sift-down operations are called.

Heapsort applies at most 2n lgn+O(n) element comparisons in the worst case. It is well known that the con-
struction takes O(n) time. The constant factor 2 is due to the two comparisons applied to find the minimum of
three elements in each stage while sifting an element down the tree. Bottom-Up-Heapsort contributes to the fact
that the expected depth is large. It executes 1.5n lgn+O(n) element comparisons in the worst-case, but is better
on average (n lgn+O(n) empirically and under some plausible assumptions).

The main algorithmic idea in Ultimate Heapsort leading to n lgn+O(n) comparison in the worst case is the
following. In the first stage the sequence is partitioned wrt the median. Both the partitioning and the median
computation step require at most O(n) element comparisons (e.g., by using the median-of-median strategy).
Next, Heapsort is applied to one half, where the other half is used for recursion. The gain is that this way
Heapsort can borrow an element from the other half of the partitioned array being certain that it is found in the
bottom-most layer. The constant for the linear term, however, is large.

3.3 Strong Heapsort

Strong heaps are binary heaps with an additional left-to-right child-dominance property and strengthened heaps
are a certain mix of binary heaps at the top and strong heaps at the bottom. An in-place hybrid of a binary
and several strong heaps, named strengthened heap, can store any multiset of elements (duplicates allowed).
It operates in-place so that it uses O(1) extra space in addition to the elements maintained at the beginning of
an array. It supports minimum in O(1) worst-case time with no element comparisons; construct in O(n) worst-
case time involving at most (23/12)n+o(n) element comparisons; and extract-min in O(lgn) worst-case time
involving at most dlgne+1 element comparisons.

We will see that when a strengthened heap is used in Heapsort, the resulting algorithm sorts n elements in-place
in O(n lgn) worst-case time involving at most n lgn+ cn+o(n) element comparisons with c≈ 1.

In StrongHeapsort the main heap has two layers: a top heap that is a binary heap, and each leaf of the top heap
roots a bottom heap that is a complete strong heap. The main heap is laid out in the array as a binary heap and,
in accordance, every bottom heap is scattered throughout the array.
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Figure 3.1: A strong heap in an array a[0 : 14] = [1,3,8,4,5,9,13,6,15,7,11,10,12,14,17] viewed as a directed acyclic graph (left)
and a stretched tree (right)

The main new ingredient is the border maintained between the top heap and the bottom heaps. When the data
structure contains n elements, the height h0 of the top heap is set to dlgn− lg lgne. We represent it using one
interval (`,r) which is completely determined by h0 and vice versa. We dropped the latter, and computed it on
demand. The variables needed by a strengthened heap are n for the index a for the elements, border as a struct
of indices ` and r.

Strong Heapsort is fully in-place. To improve the comparison bound for extract-min, we reinforce a stronger
heap order at the bottom levels of the heap.

3.3.1 Strong Heap Construction

A strong heap is a binary heap with one additional invariant: The element at any right child is not smaller
than that at the left sibling. This left-dominance property is fulfilled for every right child in a fine heap, which
uses one extra bit per node to maintain the property. On the contrary, a strong heap operates in-place, but its
operations are slower. Like a binary heap, a strong heap is viewed as a nearly-complete binary tree where the
lowest level may be missing some nodes at the rightmost positions. In addition, this tree is embedded in an array
in the same way, i.e., the formulas for computing left-child, right-child, and parent are still the same.

Two views of a strong heap are exemplified in Figure 3.1. On the left, the directed acyclic graph has a nearly-
complete binary tree as its skeleton: There are arcs from every parent to its children and additional arcs from
every left child to its sibling indicating the dominance relations. On the right, in the stretched tree, the arcs from
each parent to its right child are removed as these dominance relations can be induced. In the stretched tree a
node can have 0, 1, or 2 children. A node has one child if in the skeleton it is a right child that is not a leaf or
a leaf that has a right sibling. A node has two children if in the skeleton it is a left child that is not a leaf. If the
skeleton has height h (height of a single node being 1), the height of the stretched tree is at most 2h−1, and on
any root-to-leaf path in the stretched tree the number of nodes with two children is at most h−2.

When implementing construct and extract-min for a binary heap, the basic primitive used is sift-down. For a
strong heap, strengthening-sift-down has the same purpose, and the implementation (see Algorithm 3.1) is simi-
lar, with one crucial exception that we operate with the stretched tree instead of the nearly-complete binary tree.
As for a binary heap, extract-min can be implemented (also in Algorithm 3.1) by replacing the element at the
root with the element at the last position of the array (if there is any) and then invoking strengthening-sift-down
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Algorithm 3.1: Implementation of strengthening-sift-down, and its use in construct and extract-min.

procedure sibling
input i: index
output index
if i = 0 :

return 0
return i+ even(i+1)− even(i)

procedure is-leaf
input i: index, n: index
output Boolean
if not even(i) :

return sibling(i)≥ n
return left-child(i)≥ n

procedure strengthening-sift-down
input i: index, n: index
x← a[i]
while not is-leaf (i,n) :

j← sibling(i)
if even(i) :

j← left-child(i)
else if j < n and left-child(i)< n and not (a[ j]< a[left-child(i)]) :

j← left-child(i)
if not (a[ j]< x) :

break
a[i]← a[ j]
i← j

a[i]← x

procedure construct
input m: index, b: element[ ] as refer-

ence
n← m
a← b
if n < 2 :

return
for i← n−1 down to 0 :

strengthening-sift-down(i,n)

procedure extract-min
n← n−1
if n 6= 0 :

a[0]← a[n]
strengthening-sift-down(0,n)

for the root. Consider the strong heap in Figure 3.1. If its minimum was replaced with the element 17 taken
from the end of the array, the path to be followed by strengthening-sift-down would include the nodes labeled
3, 4, 5, 7, and 11.

Let n denote the size of a strong heap and h the height of the underlying tree skeleton. When going down the
stretched tree, we have to perform at most h− 2 element comparisons due to branching at binary nodes and
at most 2h− 1 element comparisons due to checking whether to stop or not. Hence, the number of element
comparisons performed by extract-min is bounded by 3h−3, which is at most 3 lgn as h = blgnc+1.

To build a strong heap, we mimic Floyd’s heap-construction algorithm; that is, we invoke
strengthening-sift-down for all nodes, one by one, processing them in reverse order of their array posi-
tions (see Algorithm 3.1). One element comparison is needed for every met left child in order to compare
the element at its right sibling with that at its left child, making a total of at most n/2 element comparisons.
The number of other element comparisons is bounded by the sum ∑

blgnc+1
i=1 3 · i · dn/2i+1e, which is at most

3n+o(n). Thus, construct requires at most 3.5n+o(n) element comparisons.

For construct and extract-min, the amount of work done is proportional to the number of element comparisons
performed, i.e., the worst-case running time of construct is O(n) and that of extract-min is O(lgn). This means
that a strong heap of size n can be built in O(n) worst-case time by repeatedly calling strengthening-sift-down.
Each strengthening-sift-down uses O(lgn) worst-case time and performs at most 3 lgn element comparisons.

Next we show how to perform a sift-down operation on a strong heap of size n with at most lgn+O(1) element
comparisons. At this stage we allow the amount of work to be higher, namely O(n). To achieve the better
comparison bound, we have to assume that the heap is complete, i.e., that all leaves have the same depth.
Consider the case where the element at the root of a strong heap is replaced by a new element. To reestablish
strong heap order, the swapping-sift-down procedure (Algorithm 3.2) traverses the left spine of the skeleton
bottom up starting from the leftmost leaf, and determines the correct place of the new element, using one element
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Algorithm 3.2: Implementation of swapping-sift-down for a complete strong heap.
procedure swap-subtrees
input u: index, v: index, n: index
j← 1
while v < n :

for i← 0 to j−1 :
swap(a[u+ i],a[v+ i])

u← left-child(u)
v← left-child(v)
j← 2∗ j

procedure leftmost-leaf
input i: index, n: index
output index
while left-child(i)< n :

i← left-child(i)
return i

procedure bottom-up-search
input i: index, j: index
output index
while i < j and not (a[i]< a[ j]) :

j← parent( j)
return j

procedure swapping-sift-down
input i: index, n: index
k← leftmost-leaf (i,n)
k← bottom-up-search(i,k)
lift-up(i,k,n)

comparison at each node visited. Thereafter, it moves all the elements above this position on the left spine one
level up and inserts the new element into its correct place. If this place is at height g, we have performed
g element comparisons. Up along the left spine there are lgn− g+O(1) remaining levels to which we have
moved other elements. While this results in a heap, we still have to reinforce the left-dominance property at
these upper levels. In accordance, we compare each element that has moved up with the element at the right
sibling. If the element at index j is larger than the element at index j+ 1, we interchange the subtrees Tj and
Tj+1 rooted at positions j and j+ 1 by swapping all their elements. The procedure continues until the root is
reached.

Consider the strong heap in Figure 3.1. If the element at the root was replaced with the element 16, the left spine
to be followed by swapping-sift-down would include the nodes labeled with 3, 4, and 6, the new element would
be placed at the last leaf we ended up with, the elements on the left spine would be lifted up one level, and an
interchange would be necessary for the subtrees rooted at node 6 and its new sibling 5.

Given two complete subtrees of height h, the number of element moves needed to interchange the subtrees is
O(2h). As ∑

blgnc
h=1 O(2h) is O(n), the total work done in the subtree interchanges is O(n). Thus, in a complete

strong heap of size n, swapping-sift-down runs in-place and uses at most lgn+O(1) element comparisons and
O(n) moves.

To improve construct with respect to the number of element comparisons and the number of element moves
performed, still keeping the worst-case running time linear, we can use the algorithms developed for a fine
heap. Instead of swapping-sift-down, the subtree interchanges are realized by flipping the dominance bits. The
basic algorithm builds a fine heap of size n in O(n) worst case time with at most 2n+o(n) element comparisons.
An interesting change in the base case leads to an improvement reducing the number of element comparisons
performed to (23/12)n+ o(n). In accordance, for a strong heap, we would expect an in-place construction
algorithm with at most (23/12)n+ o(n) element comparisons. For a strong heap we want the elements to be
placed at their correct final locations, while for a fine heap it is the case that guiding information encoded in bits
is sufficient. To this extent, we have to transform a fine heap into a strong heap.

In an array representation of a heap (assume the position of the root is 1), the position of a node x in binary
ψ(x) = (b0 b1 b2 . . .)2 determines the path to that particular node from the root. We have b0 always 1, and
bi determines the branching at level i− 1 in the tree to reach x. Let r be the array of rotation bits of the fine
heap, and let s(x) be the sequence of rotation bits along the path from the root to the node x. For a linear-time
algorithm, we make the following observation. The sequence s(x) is uniquely determined by the array r and
ψ(x). Moreover, the position φ(x) for x to go in the rotated tree is determined by the bitwise xor (⊗) of ψ(x)
and s(x).
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Algorithm 3.3: Transformation of a complete fine heap into a strong heap.
procedure scan
for i← 1 to n :

visited[i−1]← false
for i← n downto 1 :

while ¬visited[i−1] :
y← i
t← a[i−1]
do:

visited[i−1]← true
swap(t,a[φ(i)−1])
i← φ(i)

while i 6= y
a[i−1]← t

Suppose we are given array a[0..6] = (a0|a1,a2|a3,a4,a5,a6), where | separates the levels of the tree. Suppose
also we have the sequence of rotation bits r[0..6] = (1010000). This combination of a and r should be derotated
into a strong heap a′[0..6] = (a0|a2,a1|a6,a5,a3,a4). For level 2 we have

• ψ(a3) = 4 = (100)2 and s(a3) = (10)2, (1(0⊗1)(0⊗0))2 = (110)2 = 6, so that φ(4) = 6.

• ψ(a4) = 5 = (101)2 and s(a4) = (10)2, (1(0⊗1)(1⊗0))2 = (111)2 = 7, so that φ(5) = 7.

• ψ(a5) = 6 = (110)2 and s(a5) = (11)2, (1(1⊗1)(0⊗1))2 = (101)2 = 5, so that φ(6) = 5.

• ψ(a6) = 7 = (111)2 and s(a6) = (11)2, (1(1⊗1)(1⊗1))2 = (100)2 = 4, so that φ(7) = 4.

Knowing that φ(x) is uniquely determined by ψ(x) and r, and that ψ(x) and φ(x) use O(lg lg lgn) bits while
r has (1/2) lg lgn bits, we can build a look-up table for all possible values of ψ(x) and r together with the
corresponding φ(x), all in less than lgn bits (one computer word).

In Algorithm 3.3, we scan the fine heap layer-by-layer from left to right and move elements within their permu-
tation cycle, marking all nodes visited by setting a bit. We continue with the element at the destination of the
previous move. If a cycle of swaps is completed, we progress the scan. If an element has been moved already,
we continue scanning with the next element.

The results presented in this section can be summarized as follows. Let n denote the number of elements stored
in a data structure. A strong heap is an in-place priority queue data structure, for which construct requires O(n)
worst-case time performing at most (23/12)n+o(n) element comparisons; minimum requires O(1) worst-case
time involving no element comparisons; and extract-min requires O(lgn) worst-case time involving at most 3 lgn
element comparisons; it can be refined to perform lgn+O(1) element comparisons, but this would increase its
worst-case running time to O(n).

3.3.2 Sorting with Strengthened Heaps

Now the main heap has two layers: a top heap that is a binary heap, and each leaf of the top heap roots a bottom
heap that is a complete strong heap. The main heap is laid out in the array as a binary heap and, in accordance,
every bottom heap is scattered throughout the array.

The main new ingredient is the border maintained between the top heap and the bottom heaps. When the data
structure contains n elements, the height h0 of the top heap is set to dlgn− lg lgne. We represent it using one
interval (`,r) which is completely determined by h0 and vice versa. We dropped the latter, and compute it on
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Algorithm 3.4: Description of the iterative processes to lift-up the border.
procedure raise-border
k← sibling(border.r)
j← border.`
border.r← parent(border.r)
border.l← parent(border.l)
for i← k down to j step −2 :

strengthening-sift-down(i,n)

Algorithm 3.5: Implementation of Strong Heapsort.
procedure ancestor
input i: index, d: height
output index
return b(i+1)/2dc−1

procedure rotate
input i: index, k: index, h: height
x← a[i]
for d← h−1,h−2, . . . ,0 :

a[ancestor(k,d +1)]← a[ancestor(k,d)]
a[k]← x

procedure correct-place
input i: index, k: index, h: height
output index
d← h
while i 6= k :

h′← b(h+1)/2c
j← ancestor(k,h′)
h← h−h′

if a[i]≤ a[ j] :
k← j
d← d−h′

else:
i← ancestor(k,h)

return (i,d)

procedure binary-search-sift-up
input i: index, k: index, h: height
( j,d)← correct-place(i,k,h)
rotate(i, j,d)

procedure is-on-border
input i: index
output Boolean
return border.`≤ i and i≤ border.r

procedure combined-sift-down
input i: index, n: index
j← i
while not is-on-border( j) :

k← left-child( j)
if a[sibling(k)]< a[k] :

k← sibling(k)
j← k

if a[i]≤ a[ j] :
binary-search-sift-up(i,parent( j),h−1)

else:
rotate(i, j,h)
swapping-sift-down( j,n)

demand. The variables needed by a strengthened heap are n for the index a for the elements, border as a struct
of indices ` and r.

To raise the border, we scan the nodes on the old one and apply the operation strengthening-sift-down on each
left child (see the procedure raise-border in Algorithm 3.4). Again, we only need a constant amount of space
to record the state of this process. In connection with every modifying operation, if n = 2h−1 for some non-
negative integer h, we check the relationship between h and h0. If they are equal, we know that there is no need
to move the border. The total work involved in border raising is linear.

To improve the performance of extract-min in the main heap, we use a new procedure, which we call
combined-sift-down (Algorithm 3.5), instead of sift-down. Assume we have to replace the minimum of the main
heap with another element. To reestablish heap order, we apply stopover optimization: We traverse down along
the special path until we reach a root of a bottom heap. By comparing the replacement element with the element
at that root, we check whether the replacement element should land in the top heap or in the bottom heap. In the
first case, in binary-search-sift-up, we find the position of the replacement element using binary search on the
traversed path and thereafter do the required element moves. In the second case, we apply swapping-sift-down
on the root of the bottom heap.
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Unfortunately, swapping-sift-down only works for complete bottom trees. Of the entire set of bottom trees there
is only one with root r of size dlgne that is critical. For a given value of n the root r can be determined in O(1)
time. For the nodes in this tree we invest a word for (fine-heap) bits that denotes for each internal node, if the
subtree below it is rotated or not. This way we do not have to swap subtrees. If the root moves due to several
extract-min operations, we derotate the entire subtree rooted at r, so that it becomes a strong heap again.

Derotation takes no comparisons but the number of element moves rises rapidly. Naively implementing derota-
tion yields a running time quadratic in the size of the bottom tree. As with the construction of a fine-heap, it is
possible to reduce the running time to linear in the size of the tree. The running time amortizes in a sequence of
extract-min operations.

Let n denote the number of elements stored in a data structure. A strengthened heap is an in-place priority queue,
for which

(1) construct requires O(n) worst-case time performing at most (23/12)n+o(n) element comparisons;

(2) minimum requires O(1) worst-case time; and no comparison

(3) extract-min requires amortized O(lgn) worst-case time involving at most lgn+1 element comparisons.

Next, we look at sorting with strong heaps. A heap on i elements has depth blg ic. For the call to
combined-sift-down we distinguish two cases.

binary-search-sift-up We know that binary search executed on n elements induces at most 1+ blgnc element
comparisons. The total number of comparisons in combined-sift-down is the sum of the search efforts to
the border plus the efforts for the binary bottom-up search. Together (n ≥ 5) we have less than blgnc−
dlg lgne+ blg(blgnc − dlg lgne)c+ 1 ≤ blgnc − lg lgn+ lg(lgn− lg lgn) + 1 ≤ blgnc+ 1 = depth(n) + 1
element comparisons.

swapping-sift-down The height of the remaining tree is h = blg lgnc. The number of comparisons is bounded
by h (we have to compare with the siblings at each height and invoke a swapping sift-down) This results in a
number of comparisons, that is at most 1+ blgnc−dlg lgne+ dlg lgne ≤ blgnc+1 = depth(n)+1.

Hence, applying combined-sift-down to a heap of size i takes at most depth(i)+1 comparisons.

The sum of the depth of all heaps in the selection stage is A(n) = ∑
blgnc−1
i=1 i2i+blgnc(n−2blgnc+1) = nblgnc−

2blgnc+1+blgnc+2. In the interval(s) [2k,2k+1) function f (n) = lgn−blgnc+2blgnc+1/n takes its minimum at
n0 = (2ln2)2k with f (n0) = 1.913828. Thus, if A(n) is the sum of depths of all heaps in the selection stage, we
have A(n)≤ n lgn−1.913n+o(n).

The number of element comparisons is the sum of construction, selection, or border lifting.

• Heap construction can be done in-place by using the method described above. The efforts for construction
are, thus, bounded by 23/12n+o(n) element comparisons.

• The efforts for the selection stage are bounded by calling the extract-min operation n times, which boils
down to call combined-sift-down to a heap of decreasing size. Let A(n) of the sum of depths of all heaps
in the selection phase. We have seen that A(n) is bounded from above by n lgn− 1.913n+ o(n). By the
argument above the number of comparisons of all combined-sift-down operations in the selection phase is
n lgn−0.913n+o(n).

• From the analysis of heap construction in standard Heapsort for a heap with n = 2h we know that ∑
h
i=0 i ·

2h−i = 2h(∑h
i=0 i/2i) ≤ 2n. Similarly, the efforts of all calls to border-lifting are linear in 2h(∑h

i=g i/2i) for

g = lg lgn+O(1) and h = lgn+O(1). Since ∑
∞
i=k i/2i = 2(k+ 1)/2k we have ∑

lgn
i=lg lgn i/2i ≤ 2(lg lgn+

1)/2lg lgn = 2(lg lgn+ 1)/ lgn→ 0 for n→ ∞. Adding O(1) to either term does not affect this truth. As
∑

h
i=g i/2i = o(1), for g = lg lgn+O(1) and h = lgn+O(1) we have 2h(∑h

i=g i/2i) = o(n).
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Let n denote the number of elements to be sorted. Putting things together for sorting based on strenthened heaps
we have at most 23/12n+ o(n)+ n lgn− 0.913n+ o(n)+ o(n) = n lgn+ 1.01n+ o(n) element comparisons.
Both construction and selection are in-place.

3.4 Improving Quicksort

Quicksort is commonly considered as one of the fastest (in-situ) sorting algorithms. The central part of Quicksort
is the partitioning procedure. Given some pivot element, it returns a pointer p to an element in the array and
rearranges it, such that all elements left of the p are smaller than or equal to the pivot and all elements on the
right are greater than or equal to the pivot.

Quicksort first chooses some pivot element, then performs the partitioning, and, finally, recurses on the elements
smaller and the elements larger than the pivot. We call the procedure which organizes the calls to the partitioner
the Quicksort main loop.

A very basic optimization avoids recursion partially or totally (this requires the introduction of an explicit stack).
Introsort uses an additional counter for the number of recursion levels. As soon as it exceeds some bound, the
algorithm stops Quicksort and switches to Heapsort (only for the respective sub-array). By doing so, a worst-
case running time of O(n lgn) is guaranteed.

One may also swap to Insertionsort as soon as the array size is less than some fixed small constant. There are
two possibilities when to apply Insertionsort: either during the recursion, when the array size becomes too small,
or at the very end after Quicksort has finished.

The basic version of Quicksort uses a random or fixed element as pivot. A slight improvement is to choose the
pivot as the median of three elements – typically the first, in the middle and the last. This is applied in Introsort
and many other Quicksort implementations.

Choosing the pivots from a larger sample does not provide a significant increase of speed, even if the number
of comparisons in Quicksort is minimal if the pivot element is selected as median of Θ(

√
n) elements. After the

partitioning, the pivot is moved to its correct position and not included into the recursive calls.

Another development is multi-pivot Quicksort (i.e., several pivots in each partitioning stage). It started with the
introduction of Yaroslavskiy’s dual-pivot Quicksort – which, surprisingly, was faster than known Quicksort
variants and, thus, became the standard sorting implementation in Oracle Java 7 and 8.

Concerning branch mispredictions, multi-pivot Quicksort variants all behave essentially the same way as ordi-
nary Quicksort; however, they have one advantage: every data element is accessed only fewer times (this is also
referred to as the number of scans).

Increasing the number of pivot elements further (up to 127 or 255), leads to SuperScalarSampleSort. Super-
ScalarSampleSort not only has the advantage of few scans, but also is based on the idea of avoiding conditional
branches. Indeed, the correct bucket (the position between two pivot elements) can be found only by converting
the results of comparisons to integers and then performing integer arithmetic. SuperScalarSampleSort is ap-
proximately twice as fast as Introsort but has one major draw-back: it uses a linear amount of extra space (for
sorting n data elements, it requires space for another n data elements and additionally for more than n integers).

3.5 Block Quicksort

The idea of block partitioning is quite simple. Recall Hoare’s original partition procedure (Algorithm 3.6):
Two pointers start at the leftmost and rightmost elements of the array and move towards the middle. In every
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Algorithm 3.6: Hoare’s partitioning.
procedure Partition(A[`, . . . ,r], pivot)
while ` < r :

while A[`]< pivot :
`++

while A[r]> pivot :
r−−

if ` < r :
swap(A[`],A[r])
`++
r−−

return `

step the current element is compared to the pivot. If some element on the right side is less than or equal to the
pivot or some element on the left side is greater than or equal to the pivot, the respective pointer stops and the
two elements found this way are swapped. Then the pointers continue moving towards the middle.

The idea of BlockQuicksort (Algorithm 3.7) is to split Algorithm 3.6 in two stages: fix some block size B; we
introduce two buffers offsetsL[0, . . . ,B− 1] and offsetsR[0, . . . ,B− 1] for storing pointers to elements (offsetsL
will store pointers to elements on the left side of the array which are greater than or equal to the pivot element –
likewise offsetsR for the right side). The main loop of Algorithm 3.7 consists of two phases: the scan phase and
the rearrange phase.

As for classical Hoare partition, we also start with two pointers (or indices as in the pseudo-code) to the leftmost
and rightmost element of the array. First, the scan phase takes place: the buffers which are empty are refilled.
In order to do so, we move the respective pointer towards the middle and compare each element with the pivot.
However, instead of stopping at the first element which should be swapped, only a pointer to the element is
stored in the respective buffer (the pointer is always stored, but depending on the outcome of the comparison,
a counter holding the number of pointers in the buffer is increased or not) and the pointer continues moving
towards the middle. After an entire block of B elements has been scanned (either on both sides of the array or
only on one side), the rearranging phase begins: it starts with the first positions of the two buffers and swaps
the data elements they point to; then it continues until one of the buffers contains no more pointers to elements
which should be swapped. Now the scan phase is restarted and the buffer that has run empty is filled again.

The algorithm continues this way until there remain fewer elements than two times the block size. Now, the
simplest variant is to switch to the usual Hoare partition method for the remaining elements. But we also
can continue with the idea of block partitioning: the algorithm scans the remaining elements as one or two
final blocks (of smaller size) and performs a last rearrange phase. After that, there might still remain some
elements to swap in one of the two buffers, while the other buffer is empty. With one run through the buffer, all
these elements can be moved to the left or right (as it is done in the Lomuto partitioning method, but without
performing actual comparisons). We do not present the details for this final rearranging here because on one
hand it gets a little tedious and on the other hand it neither provides a lot of insight into the algorithm nor is
it necessary to prove the result on branch mispredictions. For an example with an array of 12 elements, see
Figure 3.2. One possible C++ implementation is given in Programs 3.1–3.2.

If the input consists of random permutations, the average numbers of comparisons and swaps are the same as
for usual Quicksort with median-of-three. This is because both Hoare’s partitioner and the block partitioner
preserve randomness of the array.

The number of scanned elements (total number of elements loaded to the registers) is increased by two times
the number of swaps, because for every swap, the data elements have to be loaded again. However, the idea
is that due to the small block size, the data elements still remain in L1 cache when being swapped – so the
additional scan has no negative effect on the running time. For larger data types and from a certain threshold
on, an increasing size of the blocks has a negative effect on the running time. Therefore, the block size should
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Algorithm 3.7: Block partitioning.
procedure BlockPartition A[`, . . . ,r], pivot
offsetsL[0, . . . ,B−1],offsetsR[0, . . . ,B−1]
startL,startR← numL← numR← 0
while r− `+1 > 2B :

if numL 6= 0 :
startL← 0
for i = 0, . . . ,B−1 :

offsetsL[numL]← i
numL +=(pivot≥ A[`+ i])

if numR 6= 0 :
startR← 0
for i = 0, . . . ,B−1 :

offsetsR[numR]← i
numR+=(pivot≤ A[r− i])

num←min(numL,numR)
for j = 0, . . . ,num−1 :

swap(A
[
`+offsetsL[ j]

]
,A
[
r−offsetsR[ j]

]
)

numL,numR−=num
startL,startR+=num
if (numL = 0) :
`+=B

if (numR = 0) :
r−=B

compare and rearrange remaining elements

not be chosen too large – we suggest B = 128 (thus, already for inputs of moderate size, the buffers also do not
require much more space than the stack for Quicksort).

In Figure 3.3 we illustrate the outcome of cross-comparing BlockQuicksort with other known efficient sorting
algorithms, including the library implementations in Java and C++.

3.6 Quick Mergesort

Now we turn to another sorting approach that is aimed at reducing the number of comparisons. All algorithms
we present will be hybrids of established sorting schemes.

QuickXSort

Let X be some sorting algorithm. QuickXsort works as follows: First, choose a pivot element as the median of
some random sample. Next, partition the array according to this pivot element, i. e., rearrange the array such
that all elements left of the pivot are less than or equal to the pivot element, and all elements on the right are
greater than or equal to the pivot element. (If the algorithm X outputs the sorted sequence in the extra memory,
the partitioning is performed such that the all elements left of the pivot are greater or equal and all elements on
the right are less or equal than the pivot element.) Then, choose one part of the array and sort it with algorithm
X. (The preferred choice depends on the sorting algorithm X.) After one part of the array has been sorted with
X, move the pivot element to its correct position (right after/before the already sorted part) and sort the other
part of the array recursively.

The main advantage of this procedure is that the part of the array that is not being sorted currently can be used as
temporary memory for the algorithm X. This yields fast internal variants for various external sorting algorithms
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Start of block partition with pivot “4”:

4 1 11 6 5 2 4 25 20 26 26 3

` r

offsetsL offsetsR

After scanning phase for the left side:

4 1 11 6 5 2 4 25 20 26 26 3

` r

0 2 3

offsetsL offsetsR

After scanning phase for the right side:

4 1 11 6 5 2 4 25 20 26 26 3

` r

0 2 3 0

offsetsL offsetsR

After rearrange phase:

3 1 11 6 5 2 4 25 20 26 26 4

` r

2 3

offsetsL offsetsR

After final scan (end of block partition):

3 1 4 2 5 6 11 25 20 26 26 4

`r

offsetsL offsetsR

Figure 3.2: Example of block partitioning with block size B = 4 and pivot “D”.
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Figure 3.3: CPU time for block-sorting random integer data of increasing size.

such as Mergesort. The idea is that whenever a data element should be moved to the external storage, instead it is
swapped with the data element occupying the respective position in part of the array which is used as temporary
memory.
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Program 3.1: Implementation of partitioner in BlockQuicksort.

template<typename iter, typename Compare>
inline iter hoare_block_partition_simple(iter begin, iter end, iter pivot_position,

Compare less) {
typedef typename iterator_traits<iter>::difference_type index;
index i_l[BLOCKSIZE], i_r[BLOCKSIZE]; iter last = end - 1;
iter_swap(pivot_position, last);
const typename iterator_traits<iter>::value_type & pivot = *last;
pivot_position = last--;
int n_l = 0, n_r = 0, start_l = 0, start_r = 0, num;
while (last - begin + 1 > 2 * BLOCKSIZE) { //main loop

if (n_l == 0) { //Compare and store in buffers
start_l = 0;
for (index j = 0; j < BLOCKSIZE; j++) { i_l[n_l] = j; n_l += (!(less(begin[j], pivot))); }}
if (n_r == 0) {
start_r = 0;
for (index j = 0; j < BLOCKSIZE; j++) { i_r[n_r] = j; n_r += !(less(pivot, *(last - j))); }}
num = min(n_l, n_r); //rearrange elements
for (int j = 0; j < num; j++) iter_swap(begin + i_l[start_l + j], last - i_r[start_r + j]);
n_l -= num; n_r -= num; start_l += num; start_r += num;
begin += (n_l == 0) ? BLOCKSIZE : 0; last -= (n_r == 0) ? BLOCKSIZE : 0; }

index s_r = 0, s_l = 0; // compare and store in buffers final iteration
if (n_r == 0 && n_l == 0) { // for small arrays or unlikely case that both buffers are empty
s_l = ((last - begin) + 1) / 2; s_r = (last - begin) + 1 - s_l; start_l = 0; start_r = 0;
for (index j = 0; j < s_l; j++) {
i_l[n_l] = j; n_l += (!less(begin[j], pivot)); i_r[n_r] = j; n_r += !less(pivot, *(last-

j)); }
if (s_l < s_r) { i_r[n_r] = s_r - 1; n_r += !less(pivot, *(last - s_r + 1)); }}

else if (n_r != 0) {
s_l = (last - begin) - BLOCKSIZE + 1; s_r = BLOCKSIZE; start_l = 0;
for (index j = 0; j < s_l; j++) { i_l[n_l] = j; n_l += (!less(begin[j], pivot)); }}

else {
s_l = BLOCKSIZE; s_r = (last - begin) - BLOCKSIZE + 1; start_r = 0;
for (index j = 0; j < s_r; j++) { i_r[n_r] = j; n_r += !(less(pivot, *(last - j))); }}

num = min(n_l, n_r); //rearrange final iteration
for (int j = 0; j < num; j++)
iter_swap(begin + i_l[start_l + j], last - i_r[start_r + j]);

n_l -= num; n_r -= num; start_l += num; start_r += num;
begin += (n_l == 0) ? s_l : 0; last -= (n_r == 0) ? s_r : 0;
if (n_l != 0) { // end final iteration, rearrange elements remaining in buffer

int low_I = start_l + n_l - 1; index upper = last - begin;
while (low_I >= start_l && i_l[low_I] == upper) { upper--; low_I--; }
while (low_I >= start_l)
iter_swap(begin + upper--, begin + i_l[low_I--]);

iter_swap(pivot_position, begin + upper + 1); // fetch the pivot
return begin + upper + 1; }

else if (n_r != 0) {
int low_I = start_r + n_r - 1; index upper = last - begin;
while (low_I >= start_r && i_r[low_I] == upper) { upper--; low_I--; }
while (low_I >= start_r) iter_swap(last - upper--, last - i_r[low_I--]);
iter_swap(pivot_position, last - upper);// fetch the pivot
return last - upper; }

else { iter_swap(pivot_position, begin); return begin; }}

Let X be some sorting algorithm requiring at most n lgn+cn+o(n) comparisons on average. Then, QuickXsort
with a Median-of-

√
n pivot selection also needs at most n lgn+cn+o(n) comparisons on average. If the unlikely

case happens that always the
√

n smallest elements are chosen for pivot selection, Ω(n3/2) comparisons are
performed. However, as the average case results suggest, such a worst case is unlikely. For improving the worst-
case complexity, a trick similar to that of Introsort was applied. Choose some small δ > 0. Whenever the pivot
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Program 3.2: Implementation of BlockQuicksort.

template<template<class , class> class Partitioner, typename iter, typename Compare>
inline void qsort(iter begin, iter end, Compare less) {

const int depth_limit = 2 * ilogb((double)(end - begin)) + 3;
iter stack[80]; iter* s = stack;
int depth_stack[40]; int depth = 0;
int* d_s_top = depth_stack;
*s = begin; *(s + 1) = end; s += 2;
*d_s_top++ = 0;
do {

if (depth < depth_limit && end - begin > IS_THRESH) {
iter pivot = Partitioner< iter, Compare>::partition(begin, end, less); //Push large

side to stack and continue on small side
if (pivot - begin > end - pivot) { *s = begin; *(s + 1) = pivot; begin = pivot + 1; }
else { *s = pivot + 1; *(s + 1) = end; end = pivot; }
s += 2; (*d_s_top)++ = ++depth;

}
else {

if (end - begin > IS_THRESH) // if recursion depth limit exceeded
std::partial_sort(begin, end, end);

else
Insertionsort::insertion_sort(begin, end, less); //copy of std::__insertion_sort (GCC

4.7.2)
s -= 2; begin = *s; end = *(s + 1); //pop new subarray from stack
depth = *(--d_s_top);

}
} while (s != stack);

}
int main(void) {
std::vector<int> v = assign_values();
qsort<Hoare_block_partition_simple>(v.begin(), v.end(), std::less<int>());

}

is not contained in the interval [δn,(1−δ )n], choose the next pivot as the median of the whole array (or some
linear size sample) using some linear-time worst-case algorithm. This modification results in a sorting algorithm
that performs at most n lgn+ cn+ o(n) comparisons in the average case and n lgn+O(n) comparisons in the
worst case.

QuickMergesort

One example for QuickXsort is QuickMergesort. For the Mergesort part we use standard (top-down) Mergesort,
which can be implemented using m extra element spaces to merge two arrays of length m.

After the partitioning, one part of the array —we assume the first part— has to be sorted with Mergesort. In
order to do so, the second half of this first part is sorted recursively with Mergesort while moving the elements
to the back of the whole array. The elements from the back of the array are inserted as dummy elements into
the first part. Then, the first half of the first part is sorted recursively with Mergesort while being moved to the
position of the former second part. Now, at the front of the array, there is enough space (filled with dummy
elements) such that the two halves can be merged.

The smaller part of the partitioned array is sorted with Mergesort. Thus, the part which is not sorted by Mergesort
always provides enough temporary space. Whenever a data element is moved to or from the temporary space,
it is swapped with the dummy element occupying the respective position. Since Mergesort moves the data from
left to right, it is always clear which elements are the dummy elements.
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1 8 7 6 2 3 10 9 11 12 45

partitioning leads to

9 10 8 7 6 12 11 3 2 1 45︸ ︷︷ ︸
sort recursively with Mergesort

3 2 4 1 6 12 11 5 7 8 9 10

sort recursively with Mergesort
︸ ︷︷ ︸

6 11 12 1 3 2 4 5 7 8 9 10︸ ︷︷ ︸ ︸ ︷︷ ︸
merge two parts

1 332 8 109 11 12754 6︸ ︷︷ ︸
sort recursively with QuickMergesort

Figure 3.4: Example for the execution of QuickMergesort.

The executed stages of the algorithm QuickMergesort (with no median pivot selection strategy applied) are
illustrated in Figure 3.4.

Mergesort requires approximately n lgn− 1.26n comparisons on average, so that with a median of Θ(
√

n)
elements we obtain an internal sorting algorithm with n lgn− 1.26n+ o(n) comparisons on average. One can
do even better if small subarrays are sorted with another algorithm Z requiring less comparisons but extra space
and a quadratic number of moves, e. g., Insertionsort or MergeInsertion. When using MergeInsertion as a base,
QuickMergesort needs at most n lgn−1.3999n+o(n) comparisons and O(n lgn) other instructions on average.
Empirically, MergeInsertion achieved a constant in [−1.43,−1.41] for the linear term (for some values of n even
below−1.43). The extra space needed is O(lgn) wor ds for the recursion stack of Mergesort and (depending on
the implementation) for MergeInsertion.

Figure 3.5– 3.6 show some results on QuickX-sorting smaller and larger data sets, comparing the number of
element comparisons and CPU time of natural competitors.

For the Median-of-3 version called CleverQuickXsort, where the median is chosen of three random elements, it
has been shown that QuickMergesort performs at most n lgn−0.75n+o(n) comparisons on average.

QuickMergeXsort is QuickMergesort applied to element sets after surpassing of some threshold cardinality X_-
THRESH. Below this value, the sorting algorithm X is called and, if X is internal, the sorted elements are moved
to their target location expected by QuickMergesort.

Figure 3.3 provides the full implementation details of QuickMerge(X)sort (in C). The realization of sorting
algorithm X and the partitioning algorithm (either Lomoto’s unidirectional, Hoare’s bidirectional, or an alterna-
tive partitioner) have to be added. The listing shows that by dropping the base cases from QuickMergesort the
code is short enough for textbooks on algorithms and data structures. The general principle is that we have a
merging step that takes two sorted areas, merges and swaps them into a third one.

The program msort applies Mergesort with X as a stopper. It goes down the recursion tree and shrinks the size of
the array accordingly. If the array is small enough, the algorithm calls X followed by a joint movement (memory
copy) of array elements (the only change of code wrt QuickMergesort). The algorithm out is a first level of
recursion of Mergesort – recursive calls are organized differently, thus it serves as an interface between the
recursive procedure msort and top-level procedure sort. It works similarly to the standard Mergesort algorithm.
Last, but not least, we have the overall internal sorting algorithm sort, which performs the partitioning.
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Figure 3.5: Number of element comparisons for sorting with n logn+κn comparisons for smaller and larger data sets.
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Figure 3.6: CPU time for sorting with n logn+κn comparisons for smaller and larger data sets.

3.7 Summary

Sorting is at the basis of many algorithms that exploit intelligence. For example the problem of the delayed
elimination of duplicates is solved by first sorting the data, and then eliminating subsequent repeated entries. We
have seen different contributions to improve sorting by reducing the number of comparison to constant-factor
optimality, and by reducing the number of mispredicted branches. The resulting algorithms are theoretically and
practically superior to textbook and library implementations.

As Quicksort suffers in an essential way from branch misprediction we presented an approach to address this
problem by decoupling control from data flow: in order to perform the partitioning, we have split the input in
blocks of constant size; then, all elements in one block were compared with the pivot and the outcomes of the
comparisons were stored in a buffer. In a second pass, the respective elements were rearranged. By doing so, we
avoided conditional branches based on outcomes of comparisons at all (except for the final Insertionsort).
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Program 3.3: Implementation of QuickMergeXsort.

typedef std::vector<t>::iterator iter;
void merge(iter begin1, iter end1, iter target, iter endtarget) {

iter i1 = begin1, i2 = target + (end1 - begin1), ires = target;
t temp = *target;
while (i1 != end1 && i2 != endtarget) {
iter tempit = (*i1 < *i2) ? i1++ : i2++;
*ires++ = *tempit; *tempit = *ires;

}
while(i1 < end1) { *ires++ = *i1; *i1++ = *ires; }
*(i1 - 1) = temp;

}
void msort(iter begin, iter end, iter target) {
index n = end - begin;
if (n < X_THRESH) {
X(begin, end);
for(int i=0; i<n; i++) std::swap(begin[i], target[i])

}
else {
index q = n / 2;
msort(begin + q, end, target + q); msort(begin, begin + q, begin + q);
merge(begin + q, begin + n , target, target + n);

}
}
void out(iter begin, iter end, iter temp) {
index n = end - begin;
if (n > 1) {
index q = n / 2, r = n - q;
msort(begin + q, end, temp); msort(begin, begin + q, begin + r);
merge(temp , temp + r , begin, end);

}
}
void sort(std::vector<t> &a) {
iter begin = a.begin(), end = a.end();
while (begin < end) {
iter b = partition(begin,end);
if (b < begin + (end - begin)/2) { out(begin, b, b+1); begin = b+1; }
else { out(b+1, end, begin); end = b; }

}
}

3.8 Bibliographic Notes

Heapsort is a sorting algorithm that was developed in the 1960ies by Robert W. Floyd [263] and J. W. J.
Williams [657]. The algorithm applies iterated extraction of the smallest (or largest) element, for which an
efficient data structure (the heap) is used.

Ultimate Heapsort [384] applies n lgn+O(n) element comparisons in the worst-case, but the constant factor of
the additive linear term is high. Several other variants of Heapsort (e.g., those discussed in [259, 260, 649, 650,
662]) are not worst-case constant-factor optimal with respect to the number of element comparisons performed,
or the additive term may be asymptotically higher (e.g. for those discussed in [99, 299, 642, 663, 664]). Ac-
cording to some model assumptions, the average-case number of comparisons in Bottom-Up-Heapsort [649] has
been bounded by n lgn+O(n), whereas Weak-Heapsort [175] leads to at most n lgn+0.1n element comparisons
in the worst-case, while needing O(n) additional bits.

Introsort has been contributed by [488], while SuperScalarSampleSort is due to [552]. Sedgewick [568] has
introduced many improvements to Quicksort. As an example he proposed to switch to Insertionsort (see, e.g.,
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[407, Section 5.2.1]). Sedgewick already remarked that choosing the pivots from a larger sample does not
provide a significant increase of speed. In the view of the experiments with skewed pivots [380], this is no
surprise. The optimal choice of the pivot has been proven by Martinez and Roura in [466].

Dual-pivot Quicksort originates to [666], while Multi-pivot Quicksort has been studied by [26, 27, 432, 655,
656, 465]. QuickMergesort has been proposed by [230], while MergeInsertion, due to Ford and Johnson, is
probably best described by D. E. Knuth [407]. Fine heaps go back to [101] (and its alternatives to [470, 648]).
The stopover optimization method has been proposed by Carlsson [99] (see also [100, 299]). The main loop in
BlockQuicksort is based on TunedQuicksort by Elmasry, Katajainen, and Stenmark.

QuickXSort is analyzed in great depth by [233]. It mixes Hoare’s Quicksort algorithm with X, where X can
be chosen from a wider range of other known sorting algorithms, like Heapsort, Insertionsort and Mergesort.
Its major advantage is that QuickXsort can be in-place even if X is not. The work provides general transfer
theorems expressing the number of comparisons of QuickXsort in terms of the number of comparisons of X.
More specifically, if pivots are chosen as medians of (not too fast) growing size samples, the average number of
comparisons of QuickXsort and X differ only by o(n)-terms. For median-of-k pivot selection for some constant
k, the difference is a linear term. For instance, median-of-three QuickMergesort uses at most n lgn−0.8358n+
O(logn) comparisons. Furthermore, the possibility of sorting base cases with some other algorithm using even
less comparisons is studied. By doing so, the average-case number of comparisons can be reduced down to
n lgn− 1.4112n+ o(n) for a remaining gap of only 0.0315n comparisons to the known lower bound (while
using only O(logn) additional space and O(n logn) time overall). Implementations of these sorting strategies
showed that the algorithms challenge well-established library implementations like Musser’s Introsort.

There are variants of QuickXsort with improved worst-cases [232], and refinements to MergeInsertion for a bet-
ter average case [594]. There is a proposal for sorting in optimal complexity of O(n!)+o(n) comparisons [569].
Exact numbers for sorting with n≤ 22 have been computed [595]. Performance improvements to BlockQuick-
sort have been found by [28].



Chapter 4

Deep Learning

The success in learning how to play Go at a professional level is based on training a deep neural network on a
wider selection of human expert and self-playing games and poses the question on the availability, the limits,
and the possibilities of this technique for other combinatorial games, especially, when there is a lack of access
to a larger body of additional knowledge.

As a step towards this direction, we train a value network for TicTacToe, providing perfect winning information
obtained by retrograde analysis. Next, we train a policy network for the SameGame, a challenging combinatorial
puzzle. Here, we discuss the interplay of deep learning with a randomized algorithm for optimizing the outcome
of single-player games.

In both cases we observed that ordinary feed-forward neural networks can perform better than convolutional
ones in both accuracy and efficiency. For Sokoban we look at imitation and curriculum learning of the search
heuristic, as well as a refined design of the loss function in A*.

4.1 Introduction

Deep1 learning (DL) has been introduced with the objective of moving the field closer to the creation of human-
like intelligence. One of its core data structures is a convolutional neural network (CNN), a network with a
particular connectivity structure among the nodes.

A neural network (NN) is a graph representation of a function with input variables in Rl and output variables
in Rk (for some natural numbers l and k). The internal working is described through an activation function
and a threshold applied at each network node. The input vector reflects a number of l features (e.g., in board
game the board itself is often included in the feature vector). In a value network we have k = 1, while in policy
networks we get a probability distribution for the successor set. Learning is the process of computing weights to
the network edges to find a close approximation of the true network function via the (incremental) change of the
weights through labeled input/output sample pairs. In multi-layer feed-forward neural networks (MLNN) there
are input and output, as well as fully connected intermediate hidden layers, while for CNNs the input layers are
more loosely connected through several planes.

As an example of a simplistic NN take the perceptron, a network with no hidden neurons. For input x weighted
with w (with weights being added) and activating function φ being applied to determine the output by computing
φ(wx). Additionally, we have weighted input for constant 1. The training of a perception for a binary network
function is simple: 1) initialize counter i and initial weight vector w0 to 0; 2) as long as there are vectors for

1 This chapter is based on joint work with Tristan Cazenave, Leah Chrestien, Tomás Pevný, and Antonín Komenda. It puts together
and improves the work from [181, 119, 120].
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X X 1 0 1 1 0 1 0 0 0
O -> 0 1 0 0 0 0 0 1 0

O X 1 0 1 0 0 1 1 0 0

Figure 4.1: A TicTacToe position won for the X player, and its representation in the form of input planes.

which wix≤ 0 set wi+1 to wi+x and increase i by 1; 3) return wi+1. If the data is linearly separable the algorithm
will terminate.

A L-layered MLNN (multi-layered neural network) has layers S0, S1, . . . , SL−1, SL. Each neuron i in Sl is con-
nected to every j in Sl+1 with weight wi j (exept 1-neurons). The update is layer-wise and synchronously mixed
x′j = φ(∑i∈in( j) xiwi j) with φ being differentiable. The task is to find an optimal weight vector that minimizes
the network error.

Applications for MLNN include function approximation and classification. It is well-known that all Boolean
functions can be computed with a 2-layered MLNN, and continuous real functions and their derivatives can be
jointly approximated to an arbitrary precision on a compact set.

For a CNN, there are four building blocks: convolution, non-linearity via the rectified linear unit (ReLU), down-
sampling, and classification. The main purpose of convolution is to extract features from the input. Convolution
preserves the spatial relationship of the features by sliding over the input to produce a feature map. Rectification
is an operation that is applied per pixel and replaces all negative values by zero. Downsampling reduces the
dimensionality of the feature map, e.g, by applying the maximum or average within a neighborhood to avoid
overfitting. The last layer often is a fully connected (multi-layer) perceptron for classification, even though
support vector machines (SVMs) or other classifiers may also be used.

As in conventional NNs, CNNs are trained with reinforcement learning (backpropagation and stochastic gradi-
ent descent). The major advance in learning larger NNs is growing resources in computational power, especially
in graphics processing units (GPUs) found on the computer’s graphics card.

The aim of this reinforcement technique in game playing is to learn a policy network, which outputs a probability
distribution of the next move to play. Alternatively, in a value network, learning is used to predict the game-
theoretical value in a single network output node, i.e., its expected outcome assuming perfect play.

The program AlphaGo has defeated many top Human Go professionals. It applies a combination of neural
network learning given thousands of expert games (in matters of days of GPU computation time) and Monte-
Carlo search (see Chapter 5). By the observed playing strength, one gets the impression that the training made
the program understand the strategic concepts and tactics of Go. AlphaGo learned to match the moves of expert
players from recorded historical games. Once it had reached a certain degree of proficiency, it was trained
further by playing games against other instances of itself. The input was a random permutation of expert game
positions, made available in several Boolean input matrices of size 19× 19 (some for the occupation and the
colors that play, some for further features like liberty). The output was a 19× 19 matrix as a predictor for the
next move. In other words, the CNN that was trained was a policy network.

4.2 Case Study: TicTacToe

We exemplify the learning setup in TicTacToe (Figure 4.1), where we construct and train a value network. The
game is a classic puzzle that results in a draw in optimal play (this has led movies like War Games to use it as
an example of a game that consumes unlimited computational power to be solved).

We will use the prominent tensor and optimization programming framework Torch, which supports optimizers
like stochastic gradient descent as well as several neural network designs and training options. Tensors featured
by the framework are numerical matrices of (potentially) high dimension. Torch provides an interactive interface
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Program 4.1: Finding the winning sets in TicTacToe assuming a perfect hash table for the states.

retrograde()
change = 1
while (change)
change = 0
for each c = 1 .. 5478

if (solved[c] == UNSOLVED)
unpack(c)
succs = successors(moves)
if (moveX())
onesuccwon = 0; allsuccslost = 1
for each i = 1 .. succs
apply(moves[i],’X’)
onesuccwon |= (solved[pack()] == WON)
allsuccslost &= (solved[pack()] == LOST)
apply(moves[i],’_’)

if (succs & onesuccwon)
solved[c] = WON; change = 1

if (succs && allsuccslost)
solved[c] = LOST; change = 1

else
onesucclost = 0; allsuccswon = 1
for each i = 1 .. succs
apply(moves[i],’O’)
onesucclost |= (solved[pack()] == LOST)
allsuccswon &= (solved[pack()] == WON)
apply(moves[i],’_’)

if (succs && onesucclost)
solved[c] = LOST;
change = 1

if (succs && allsuccswon)
solved[c] = WON;
change = 1

for each c = 1 .. 5478
if (solved[c] == UNSOLVED)
solved[c] = DRAW

for the programming language LUA. For fast execution of tensor operations, it also supports the export of
computation to the graphics card (GPU) in CUDA, a GPU programming framework that is semantically close
to and finally links to C. The changes to the LUA code for this shift are minimal.

We kick off with generating all 5478 valid TicTacToe positions and determine their true game value by apply-
ing retrograde analysis, a known backward search technique for constructing strong solutions to games. The
according code is shown in Program 4.1.

In one comma-separated value (CSV) network output file the accurate results of all positions for training the
value network are kept. In the other network input file, we record the according intermediate game states. For
each position, we take three 3× 3 Boolean planes to represent the different boards; one for the free cells, one
for the X player and one for the O player (see Figure 4.1).

Next, we produce the input and output files for the neural network to be trained and tested. Program 4.2 shows
the compilation of entries from the CSV input to the required binary format.

The NN consists of layers that are either fully connected (MLNN) or convoluted (CNN). The according LUA
code is shown in Programs 4.3 and 4.4 (top parts). For CNNs it consists of a particular layered structure, which
is interconnected through the definition of planes in the form of tensors. The hidden units were automatically
generated by the tensor dimensions. This is done through defining submatrices of certain sizes and some addi-
tional padding along the border of the planes. After having the input planes TI represented as tensors and the
output planes represented as tensors TO (in this case a singular value) there are k−2 spatial convolutions con-
nected by the tensors TI = T1, . . . ,Tk = TO. The information on the size of sub-matrices used and on the padding
to the matrix works as follows. All possible sub-matrices of a matrix for a plane (possibly extended with the
padding) on both sides of the input are generated. All sub-matrices are pairwise fully interconnected.
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Program 4.2: Converting TicTacToe CSV to a tensor file.

local Planes = 3
local csvFile = io.open(’ttt−input.csv’,’r’)
local input = torch.Tensor(5478,nPlanes,3,3)
local nb = 0
local currentnb = 0
for line in csvFile:lines(’*l’) do
nb = nb + 1
currentnb = currentnb + 1
local l = line:split(’,’)
local plane = 1
local x = 1
local y = 1
for key, val in ipairs(l) do
input[currentnb][plane][x][y] = val
y = y + 1
if y == 4 then

y = 1
x = x + 1

end
if x == 4 then

x = 1
plane = plane + 1

end
end
if currentnb == 5478 then

currentnb = 0
nameInputFile = ’ttt−input.dat’
torch.save (nameInputFile, input)

end
if nb == 5478 then

break
end

end
csvFile:close()

Program 4.3: Learning TicTacToe with an MLNN.

require ’nn’
local net = nn.Sequential ()
net:add (nn.Reshape(27))
net:add (nn.Linear(27,512))
net:add (nn.Tanh())
net:add (nn.Linear(512,1))
local nbExamples = 5478
local input = torch.load (’ttt−input.dat’)
local output = torch.load (’ttt−output.dat’)
dataset = {};
function dataset:size() return nbExamples end
for j = 1, dataset:size() do
dataset[j] = {input[j], output[j]};

end
criterion = nn.MSECriterion()
trainer = nn.StochasticGradient(net,criterion)
trainer.maxIteration = 1500
trainer.learningRate = 0.00005
trainer:train(dataset)

Deep learning in CNNs is very similar to learning in classical NNs. The main exception is an imposed partic-
ular network structure and the computational power to train even larger networks to a small error. For global
optimization, usually stochastic gradient descent is used.

Programs 4.3 and 4.4 (bottom parts) also show the LUA code for training the network. One can experiment
with alternative formulation for the optimization process, but while some experts insist on batched learning to
be more effective, often it does not make much of a difference.

Figure 4.2 shows the effect of learning different NN designs given the precomputed classification of all valid
TicTacToe positions. We see that larger networks (number of hidden units, HU, number of intermediate planes,
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Program 4.4: Learning to play TicTacToe with a CNN.

require ’nn’
local nPlanesInput = 3
local net = nn.Sequential ()
local nplanes = 25
net:add (nn.SpatialConvolution(nPlanesInput, nplanes, 3, 3, 1, 1, 0, 0))
net:add (nn.ReLU ())
net:add (nn.SpatialConvolution(nplanes, nplanes, 2, 2, 1, 1, 1, 1))
net:add (nn.ReLU ())
net:add (nn.SpatialConvolution(nplanes, nplanes, 2, 2, 1, 1, 1, 1))
net:add (nn.ReLU ())
net:add (nn.SpatialConvolution (nplanes, 1, 3, 3, 1, 1, 1, 1))
net:add (nn.ReLU ())
print(net)
net:add (nn.Reshape(1*3*3))
net:add (nn.Linear(9,1))
local nbExamples = 5478
local input = torch.load (’ttt−input.dat’)
local output = torch.load (’ttt−output.dat’)
dataset = {};
function dataset:size() return nbExamples end
for j = 1, dataset:size() do
dataset[j] = {input[j], output[j]};

end
criterion = nn.MSECriterion()
trainer = nn.StochasticGradient(net,criterion)
trainer.maxIteration = 1500
trainer.learningRate = 0.00005
trainer:train(dataset)

Figure 4.2: Learning results in TicTacToe displaying the training error for the full set with multi-layered neural nets (MLNN) and
convolutional neural nets (CNN).

PL) yield better learning. Moreover, CNNs tend to have the smaller number of learning epochs compared to
MLNNs. However, each optimization step in a CNN is considerably slower than in an MLNN. While learning
MLNNs yields a rather smooth monotone decreasing curve, the learning in a CNN has more irregularities.
Moreover, CNNs tend to saturate. Worse, we observe that after reaching some sweet spot CNNs can even
deviate back to very bad solutions.

A trained value network can be used as an estimator of game positions (usually called evaluation function)
and integrated in other game playing programs. As TicTacToe is known to be a draw we are interested in the
accuracy in comparing training with test data.

The following small test shows that the network has learned the value of the game for which we chose 0 for a
won game, 50 for a draw, and 100 for a lost game. The value network can be used as an evaluation function
and, thus, immediately leads to playing engines. In fact, by fixing the class ranges to 25 and 75, we can use the
trained net as an optimal predictor of the true winning classes.
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Predicted Value True Value
95.6280 100
−3.1490 0
50.8897 50
0.6506 0

...
...

Figure 4.3: Accuracy of value neural network for TicTacToe.

4.3 Case Study: Same Game

The SameGame (see Figure 4.4) is an interactive single-agent game played on an n× n board with k colored
tiles (usually, n = 15 and k = 5). Tiles are removed if they form a connected group of l > 1 elements. Scores
sum up, and the score of a single move is (l−2)2 points. If a group of tiles is removed, others fall. If a column
becomes empty, others move to the left, so that all non-empty columns are aligned. Total clearance yields an
additional bonus of 1,000 points. The objective is to maximize the score.
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Figure 4.4: Initial and final position in the SameGame.

Successor generation has to find the tiles that have the same color. We used an explicit stack for building moves.
Termination is checked by looking into each direction for a tile of the same color.

As the access to high-quality expert games in many domains is limited, the question is how to apply (deep)
learning in state-space search without the input of human knowledge, where state-space search is a general term
for the exploration of problem domains to find a solution that optimizes a given cost function. The enumeration
of state spaces, however, often suffers from the state-explosion problem, which states that the sizes of the spaces
are exponential in the number of state variables.

Therefore, we generate input data for training the CNN using a randomized problem solver, being evaluated on
a known benchmark set of 20 problem instances with board sizes n = 15 (each tile has one of 5 colors.)

The algorithm we choose is Nested Rollout Policy Adaptation (NRPA). It belongs to the wider class of Monte-
Carlo search (MCS) algorithms (see Chapter 5), where Monte-Carlo stands as an alias for random program
execution. The main concept of MCS is the playout (or rollout) of positions, with results in turn changing the
likelihood of the generation of successors in subsequent trials. While the algorithm is general and applies to
many other applications, we keep the notation close to games and talk about boards, moves, and rollouts. In
NRPA every playout starts from an empty board. Two main parameters trade exploitation vs. exploration: the
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λ = 0.0005 λ = 0.005 λ = 0.05 λ = 0.5 λ = 0.2
0.1429 0.1548 0.1437 0.2084 0.1567
0.1409 0.1418 0.1414 0.2088 0.1537
0.1404 0.1409 0.1398 0.2088 0.1533
0.1400 0.1408 0.1392 0.2088 0.1531
0.1395 0.1408 0.1388 0.2088 0.1527
0.1391 0.1407 0.1384 0.2088 0.1523
0.1387 0.1407 0.1382 0.2088 0.1521
0.1384 0.1406 0.1380 0.2088 0.1519
0.1382 0.1406 0.1378 0.2088 0.1517
0.1380 0.1406 0.1376 0.2088 0.1515
0.1378 0.1405 0.1375 0.2088 0.1515
0.1376 0.1405 0.1374 0.2088 0.1501
0.1374 0.1405 0.1373 0.2088 0.1457
0.1372 0.1404 0.1371 0.2088 0.1423
0.1370 0.1404 0.1349 0.2088 0.1434
0.1368 0.1404 0.1320 0.2088 0.1416
0.1366 0.1403 0.1291 0.2088 0.1373
0.1365 0.1403 0.1327 0.2088 0.1359
0.1363 0.1403 0.1324 0.2088 0.1353
0.1362 0.1402 0.1325 0.2088 0.1348
0.1361 0.1402 0.1323 0.2088 0.1338
0.1360 0.1402 0.1323 0.2088 0.1333
0.1359 0.1401 0.1322 0.2088 0.1344
0.1358 0.1401 0.1322 0.2088 0.1346
0.1357 0.1401 0.1321 0.2088 0.1352

...
...

...
...

...

Table 4.1: Parameter finding for DL in the SameGame using 1,000 of 33,972 randomly chosen training examples, minimizing the
MSE in stochastic gradient descent according to different learning rates λ .

number of levels and the branching factor iteration of successors in the recursion tree. Successor selection is
relative to probabilities for each move which are stored and updated in a vector.

We ran an NRPA(3,100) search 30 times. To cross-compare we also called NRPA(4,100) for each problem. All
individual games are recorded, merged, and subsequently split into 33,972 partial states after each move. The
partial states are stored in an input file and the move executed is stored in an output file. For training the network
all partial states are randomly shuffled to avoid any bias.

To specify a policy network for the SameGame the set of input planes is defined as follows. For each of the five
colors plus one for the blank, we define an indicator matrix of size 15× 15 for the board, denoting if a tile is
present in a cell or not. This amounts to six planes of size 225, so that we have 1,530 binary input features to the
neural network. The output tensor file refers to one binary plane of size 15×15 representing a board, with the
matrix entries denoting the cells affected by the move. What is learned in this policy network is the distribution
values of tiles to be selected next.

Table 4.1 shows the effect of varying the learning parameter for the learning process on a fraction of all training
examples. In Figure 4.5 we see the effect of learning different neural networks given the precomputed randomly
perturbed set of all SameGame training positions. The first iterations of the optimization process are plotted.
Again, it seemingly looks like MLNNs perform better in comparison with convolutional structures. Moreover,
the convergence was much faster: the largest MLNN took about five hours and the smallest about 1.5 hour,
while the CNN took about two days of computational time.

To validate the solution, we compare the MLNN network output after 1,000 learning epochs with the real output.
In the visualization of Figure 4.6 we took a threshold of 20% for setting a bit.

More effort will be needed to reduce the error to a value, which can be used for playing well. The subsequent
integration of the NN into NRPA, however, is simple, as we only need to change either the initialization or
the rollout function. There are three main implementation options: 1) the NN recommendation is used as an
initial policy matrix prior to the search. 2) the NN recommendation and the learned policy are alternated by
flipping a coin with probability p. 3) the distribution of successors computed by the policy is merged with the
NN recommendation.
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Figure 4.5: Learning results in the SameGame displaying the change of the network error on the full training set of 33972 game
positions for multi-layer neural nets (MLNN) and convolutional neural nets (CNN).

real output
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

predicted output
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4.6: Validation of learning result.

4.4 Case Study: Sokoban

This section describes a neural network for planning in grid domains. We introduce the notation and discuss the
concrete architecture we used for the Sokoban benchmark domain (see Figure 4.7) We assume to have the grid
dimensions h and w to define the network.

The input to the neural network is denoted as ~x ∈ Rh,w,d0 , where h and w is the height and width of the maze
respectively, and d0 varies with the number of channels as explained above. Intermediate outputs are denoted
by ~zi = Li(~zi−1), where L is some neural network layer (convolution C, attention A, or position encoding E)
and for the sake of convenience, we set ~z0 =~x. All ~z· are three dimensional tensors, i.e. ~zi ∈ Rh,w,di . Notice
that all intermediate outputs ~zi have the same width and height as the maze (ensured by padding), while the
third dimension, which is the number of output filter(s), differs. Value~zi

u,v denotes a vector created from~zi as
(~zi

u,v,1,~z
i
u,v,2, . . . ,~z

i
u,v,di

). Below, this vector will be called a hidden vector at position (u,v) and can be seen as a
description of the properties of this position.

Convolution is strictly a local operator. This means that the hidden vector zi+1
u,v,· is calculated from hidden vectors

{zi
u′,v′,· | u′ ∈ {u− 1,u,u+ 1},v′ ∈ {v− 1,v,v+ 1}}, where we assume convolution to have dimension 3× 3.

This limits the neural network in synthesizing information from two distant parts of the maze. Yet, we believe
that any good heuristic requires such features, since Sokoban is a non-local problem.
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Figure 4.7: A solution to a Sokoban problem.

Therefore, we turn the attention to a self-attention mechanism. The output of self-attention from zi is calculated
in the following manner. At first, the output from previous layer zi is divided into three tensors of the same
height, width, and depth, i.e.

~k = zi
·,·, j j ∈

{
1, . . . ,

di

3

}
~q = zi

·,·, j j ∈
{

di

3
+1, . . . ,

2di

3

}
~v = zi

·,·, j j ∈
{

2di

3
+1, . . . ,di

}
then, the output zi+1 at position (u,v) is calculated as

~zi+1
u,v =

h,w

∑
r=1,s=1

exp(~qu,v ·~kr,s)

∑
h,w
r′=1,s′=1 exp(~qu,v ·~kr′,s′)

· vr,s

Self attention, therefore, makes a hidden vector z j+1
u,v dependent on all hidden vectors {z j

r,s | r ∈ {1, . . . ,h},s ∈
{1, . . . ,w}}. The self-attention also preserves the size of the maze. A multi-head variant of self-attention means
that zi is split along the third dimension in multiple~ks, ~qs, and~vs. The weighted sum is performed independent
of each triple (k,q,z) and the resulting tensors are concatenated along the third dimension.

While self-attention captures information from different parts of the maze, it does not have a sense of a distance.
This implies that it cannot distinguish close and far neighborhoods. To address this issue, we add positional
encoding, which augments the tensor zi ∈Rh,w,di with another tensor~e ∈Rh,w,de containing outputs of harmonic
functions along the third dimension. Harmonic functions were chosen, because of their linear composability
properties. Because the mazes are two dimensional, the distances are split up into row and column distances
where p,q ∈ [0,di/4) assigns positions with sine values at even indexes and cosine values at odd indexes. The
positional encoding tensor~e ∈ Rh,w,de has elements equal to

~eu,v,2p = sin(θ(p)u) ~eu,v,2p+1 = cos(θ(p)u)

~eu,v,2q+ de
2
= sin(θ(q)v) ~eu,v,2q+1+ de

2
= cos(θ(q)v) ,

where θ(p) = 1/(10000
4p
de ). On appending this tensor to the input zi along the third dimension, we get

zi+1
u,v,· = [zi

u,v,·,eu,v,·].
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Figure 4.8: Convolutional neural network for grid domains single-agent challenges such as Sokoban.

We use blocks combining Convolution, Attention, and Position encoding, in this order (and call them CoAt
blocks), as a part of the NN architecture. The CoAt blocks can, therefore, relate hidden vectors from a local
neighborhood through convolution, from a distant part of the maze through attention, and calculate distances
between them through position encoding. Since CoAt blocks preserve the size of the maze, they are scale-free in
the sense that they can be used on a maze of any size. Yet, we need to provide an output of a fixed dimension to
estimate the heuristic function and the policy. The output of the last CoAt block is flattened by a 1×1 window,
centered around the agent’s location and fed to a fully-connected layer and an output head (see Figure 4.8).
For example, assuming zL to be the very last layer, and agent is on position u,v, the vector zu,v,· is of constant
dimension equal to the number of channels and is used as an input to the fully-connected layers providing the
desired outputs (heuristic values, policy).

Next, we describe the implementation of CoAt blocks in the network architectures we used for all the domains.
The network is shown in Figure 4.8. It uses preprocessing convolution layers P1, . . . ,Pn, n = 7, (further called
pre-conv) containing 64 filters where each convolution filter is of the shape 3× 3; after the network splits into
two heads, it uses four CoAt blocks in each head instead of seven convolution layers. The convolution layers in
the CoAt blocks contain 180 filters of size 3×3 each. The attention block uses two attention heads. Each head
is finished by two fully-connected layers with reduction to a fixed dimension as described above.

The input to the network is the current state of the game and a goal state, s and sg, respectively. Each state is rep-
resented by a tensor of dimensions equal to width and height (fixed to 10×10 for Sokoban) of the maze × ob-
jects. We used a one-hot encoding of the object states on a grid position (wall, empty, box, agent, and box
target), which we could derive automatically. An important design detail is that all convolutions are padded,
which means that the output has the same dimension as the input, and they feature skip-connections alleviating
a possible vanishing gradient.

We have implemented two different versions of the network (see Figure 4.8) according to their heads: dual-head
estimating policy and heuristic value and a single head estimating the heuristic value. In Sokoban, the dual-
head representation performed best, while for others a single head estimating heuristic value (no separate head
estimating the policy). The presence of more agents would make it difficult to design a policy network in a
domain-independent setting and would result in a much larger network, which is inconvenient, time consuming
and computationally expensive.

Imitation learning is a framework for learning a behavior policy from demonstrations. We present demonstra-
tions in the form of optimal state-action plans, with each pair indicating the action to take at the state being
visited. Generally, imitation learning is useful when it is easier for an expert to demonstrate the desired be-
haviour rather than to specify a reward function which would generate the same behaviour or to directly learn
the policy.

A curriculum refers to an interactive system of instruction and learning with specific goals, contents, strategies,
measurement, and resources. The desired outcome of curriculum is a successful transfer and/or development of
knowledge, skills, and attitudes. In the context of AI, curriculum learning is a way of training a machine learning
model where more difficult aspects of a problem are gradually introduced in such a way that the model is always
optimally challenged. Curriculum learning describes a type of learning in which we first start out with only easy
examples of a task and then gradually increase the task difficulty. Humans have been learning according to this
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principle ever since, but in the common learning setting, we train the neural network on the whole data set.
Curriculum learning strategies have been successfully employed in different areas of machine learning, for a
wider range of tasks. However, the necessity of finding a way to rank the samples from easy to hard, as well as
the right pacing function for introducing more difficult data can limit the usage of the curriculum approaches.

In order to extend the training set without providing any additional plans that the neural network would not
be able tosolve, we turn our attention to a form of curriculum learning for neural networks. This approach
partially circumvents this problem by re-training from unseen test samples of increasing complexity. In this
case, curriculum learning is used to develop scale-free heuristic values for a wider selection of AI planning
problems. Specifically, in the experiments, we have quickly reached the capability of planners at larger sizes.
To further improve the heuristic function to scale to bigger problems, we re-train the network by extending the
training set to include harder problem instances.

We first train the heuristic network on a training set containing easy problem instances quickly solvable by an
optimal planner, then use this NN as a heuristic function inside A*, and then extend the training set by more
difficult problem instance the NN has solved and finally, re-train the NN. Thus, we perform a bootstrap, where
the NN is gradually trained on more difficult problem instances.

This way, curriculum learning plays an important role in improving the performance of the heuristic network
on not just the trained dimensions but also on higher dimensions by extrapolation. For curriculum learning, the
learning rate is reduced in successive training iterations.

We first describe the details of the training and, then, present the experimental results on Sokoban. The A*
algorithms with learnt heuristic functions, realized by the convolution-attention-position networks (further de-
noted as A*-CoAt), are compared to A* with learned heuristic function realized by convolutional networks
(denoted as A*-CNN), and to the planners LAMA, SymBA*, and Mercury. A*-CNN and A*-CoAt uses the
vanilla A* search algorithm without any additional tweaks. We also compare the planner to a solution based on
reinforcement learning.

On all the compared domains, we analyse the strength of the learnt heuristic and generalization property by
solving grid mazes of increasing complexities, approximated by the number of boxes in Sokoban.

The policy-heuristic network we wish to learn accepts a state of a game, s as an input and returns the next
action, a, and a heuristic value, h(s), as an output. The training set Xtrn = {(si,ai, |π∗(si)|)}n

i=1, therefore,
consists of n≈ 106 of these triples, i.e., Xtrn = {(si,ai, |π∗(si)|)}n

i=1. The triples in the training set were created
by randomly generating 40,000 Sokoban instances. Each instance has dimension 10×10 and it always contains
only 3 boxes (and an agent). SymBA*, a planner that generates optimal solutions, was used to generate optimal
plans π∗ for each of these n Sokoban instances. In each plan trajectory, the distance from a current state to the
goal state is learned as the heuristic value, h(si). Thus, the collection of all state-action-heuristic triples form the
training set Xtrn.

The Sokoban mazes in the training set were created with only three boxes. This means that in the testing set,
when we are solving instances with more boxes, we are evaluating its extrapolation to more complex unseen
environments, which cannot be solved by naive memorisation. However, the limited training set (containing
3 boxes) hinders the full potential of the neural network. With curriculum learning, we fine-tune the neural
network using a training set containing Sokoban mazes of dimensions 10× 10 with 3 to 7 boxes that have
been already solved by the A*-NN with the corresponding architecture. This, therefore, improves the heuristic
function without the need to train the network from scratch and, more importantly, without the need to use other
planners to create new plans.

The neural network was trained by the Adam optimizer with a default learning rate of 0.001 for optimisation.
The categorical cross entropy loss function was used to minimise the loss in the action prediction network and
the mean absolute error loss was the loss function in the heuristic network. For curriculum learning, the learning
rate was reduced to about 1×10−4 in successive training iterations. The experiments were conducted in Keras
framework with Tensorflow as the backend.
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4.4.1 Designing Loss Functions

To study new designs of loss functions we define a search problem instance by a directed weighted graph
Γ = 〈S ,E ,w〉, a distinct node s0 ∈S and a distinct set of nodes S ∗ ⊆S . The nodes S denote all possible
states s ∈S of the underlying transition system representing the graph. The set of edges E contains all possible
transitions e ∈ E between the states in the form e = (s,s′). s0 ∈S is the initial state of the problem instance
and S ∗ ⊆S is a set of allowed goal states. Problem instance graph weights (alias action costs) are mappings
w : E → R≥0.

Let π = (e1,e2, . . . ,el), we call π a path (alias a plan) of length l solving a task Γ with s0 and S ∗ iff π =
((s0,s1),(s1,s2), . . . ,(sl−1,sl)) and sl ∈S ∗. An optimal path is defined as a minimal cost of a problem instance
Γ ,s0,S

∗ and is denoted as π∗ together with its value f ∗ = w(π∗) = w(e1)+w(e2)+ . . . ,+w(el). We often
minimize the cost of solution of a problem instance Γ ,s0,S

∗, namely π∗, together with its length l∗ = |π∗|.
We assume a heuristic to be a function hθ : S → R≥0 mapping a state s ∈ S to a real non-negative value,
where θ ∈ Rm holds parameters of h. Using a set of problem instances T (further called training set), we want
to optimize parameters θ of hθ such that a search algorithm (namely, the A∗ algorithm) would find an (optimal)
solution by expanding the least number of states. This, in practice, means to solve optimization problem

argmin
θ

∑
S∈T

L(hθ ,S ), (4.1)

where the optimized function L, further called loss, needs to be designed such that its smaller values imply better
heuristic function hθ as perceived by A∗. Needless to say, the L2 loss does not have this property as discussed
later. In the rest of this section, we first state the properties an optimal hθ for A∗ should have, and then imprint
them in the loss function L.

Let’s recall how the A∗ algorithm works. For consistent heuristics, where h(s)− h(s′) ≤ w(s,s′) for all edges
(s,s′) in the w-weighted state space graph, it mimics the working of Dijkstra’s shortest-path algorithm and
maintains the set of generated but not expanded nodes in O (the Open list) and the set of already expanded
nodes in C (the Closed list). It works as follows.

1. Add the start node to the Open list O0.

2. Initiate the Closed list to empty, i.e. C0 = /0.

3. For i ∈ 1, . . . until Oi 6= /0

a. Select the state si = argmins∈Oi−1 g(s)+h(s)

b. Remove si from Oi−1, Oi = Oi−1 \{si}
c. If si ∈S ∗, i.e. it is a goal state, go to 4.

d. Insert the state si to Ci−1, Ci = Ci−1∪{si}
e. Expand the state si into states s′ for which hold (si,s′) ∈ E and for each

i. if s′ is in the Closed list as sc and g(s′)< g(sc) then sc is reopened (i.e., moved from the Closed to
the Open list), else continue with (e)

ii. if s′ is in the Open list as so and g(s′) < g(so) then so is updated (i.e., removed from the Open list
and re-added in next step with updated g(·)), else continue with (e)

iii. add s′ into the Open list

4. Walk back to retrieve the optimal path.

In the above algorithm, g(s) denotes a function assigning an accumulated cost w for moving from the initial
state (s0) to a given state s. Consistent heuristics are called monotone because the estimated cost of a partial
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Figure 4.9: A visualization of a search space of an A∗ algorithm, where sequence of states s0 → s1 → s2 represents the optimal
plan, states {s3,s4,s5}/s6 are off the optimal path but have / have not been generated by the A∗.

solution f (s) = g(s)+ h(s) is monotonically non-decreasing along the best path to the goal. More than this, f
is monotone on all edges (s,s′), if and only if h is consistent as we have f (s′) = g(s′)+h(s′)≥ g(s)+w(s,s′)+
h(s)−w(s,s′) = f (s) and h(s)− h(s′) = f (s)− g(s)− ( f (s′)− g(s′)) = f (s)− f (s′)+w(s,s′) ≤ w(s,s′). For
the case of consistent heuristics, no reopening (moving back nodes from Closed to Open) is needed, as we
essentially traverse a state-space graph with edge weights w(s,s′)+h(s′)−h(s)≥ 0. For the trivial heuristic h0,
we have h0(s) = 0 and for perfect heuristic h∗, we have f (s) = f ∗ = g(s)+h∗(s) for all nodes s. Both heuristics
h0 and h∗ are consistent.

Even if the heuristic is not consistent, algorithms like A* even without the reopening, remain complete i.e. they
find a plan if there is one. Plans might not be provably optimal, but are often sufficiently and surprisingly good
in planning practice.

In practice, the loss function L is minimized on a training set of problem instances T , but for the sake of brevity,
we explain it on a single problem instance Γ = 〈S ,E ,w〉 (the extension to set of plan is trivial through Equa-
tion 4.1). We assume to have a (preferably optimal) plan π = ((s0,s1),(s1,s2), . . . ,(sn−1,sn)), and we denote all
states from the optimal plan as S o = {s0,s1,s2, . . . ,sn}. Such a plan can be found by A∗ with some (admissi-
ble) heuristic function h, which does not have to coincide with the heuristic function hθ we are optimizing. We
denote states off the optimal plan as S n ⊂S \S o, where the subset exists because, in practice, S n contains
states generated by A∗ while solving the problem instance Γ . In the visualization in Figure 4.9, grey states are
on the optimal path S o, pink states are off the optimal path, and yellow states were not generated in the course
of solving the problem instance. Hence, S = {si}6

i=1, S
o = {si}2

i=1 and S n = {si}5
i=3.

4.4.2 Definition of L*

The neural network is used to predict a heuristic for A*. In the limit of the learning process, we want it to
minimize the loss function down to value zero, meaning that the training has converged to a heuristic function
that perfectly estimates the distance to the goal. For this case, all states on the optimal path would have the same
f -value, and all states not on the optimal path would have values that are not smaller. In other words, during
the exploration of A* with a perfect heuristic, only nodes s with f (s) = f ∗ are expanded. Up tie breaking, the
optimal heuristic function hθ forces the A∗ to expand only states on the optimal path and never non-optimal
states. For such a heuristic, we require dominance such that

∀s′ ∈S o) and ∀s′′ ∈S n) we have g(s′)+hθ (s′)≤ g(s′′)+hθ (s′′) (4.2)

On the optimal path, we also want monotonicity, such that

∀si,s j ∈S o with i < j we have g(si)+hθ (si)≤ g(s j)+hθ (s j) (4.3)
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Notice that in Constraint 4.2, we ignore states that have not been generated by A∗ simply because they are not
in the exploration set. But S n will always contain all states of distance one from the optimal path, which is
sufficient to show that a loss equalling zero implies expanding states only on an optimal path (in the training
set).

To prevent confusion, we emphasize that conditions are designed for the heuristic hθ that is to be optimized, and
not for the heuristic h that has generated the training set in the first place. Wrt. the current exploration during
training, the condition does not need hold for a consistent h. Consistency implies that the f -value of all nodes in
Closed are smaller-than-or-equal to the ones in Open. Moreover, the function f is non-decreasing on every path
that starts in s0. Encoding these monotonicity requirements for f , however, neither steers the learning process
towards better and better heuristic values nor does it converge to the perfect heuristic h∗ in the limit, as the trivial
heuristic h0 is also consistent.

While Constraint 4.3 is true for every consistent heuristic, Constraint 4.2 is true only for perfect heuristics.
Otherwise, we could have some earlier states in the exploration off the optimal path that have a smaller f -value
than later ones on the optimal path. What seems to be over-restrictive, such that almost no heuristic function
will ever fulfill, Constraint 4.2, is intentional. We believe it is good to thrive for optimality to obtain something
very good in the end.

The loss function L∗ simply minimizes the number of times each of the above constraints are violated as

1
|S o||S n| ∑

s′∈S o
∑

s′′∈S n
I
[
g(s′)+hθ (s′)> g(s′′)+hθ (s′′)

]
+

1
|S o|(|S o|−1)

|S o|
∑
i=2

i

∑
j=1

I [g(si)+h(si)> g(s j)+h(s j)] , (4.4)

where I[·] is an Iverson bracket, which is equal to one if the argument is true and zero otherwise. The first part
of the loss function loosely upper bounds the number of non-optimal states the A∗ expands (see the theorem
below), while the second part ensures the monotonicity of the heuristic function along the optimal plan. In other
word, Conditions 4.2 and 4.3 encode the aim of a consistent heuristic and the aim for a perfect one. During
training, we iterate over many samples of A* explorations, which enlarges the scope of L*.

For setting up constraints for heuristic learning, we only need the partitioning of the set of explored nodes into
the sets S0 and Sn, computed via an optimal plan and a set of all generated nodes, together with their g-values.
Given the perfect heuristic, A* will always find an optimal solution. Up to tie-breaking, it is optimal efficient
and will expand only nodes with optimal merit f ∗.

Loss function L* does not distinguish between the Open and Closed lists in the exploration of A*, as long as
it has access to the combined set of explored nodes. This way, we can take any optimal planner and not just
heuristic search planners for training. The definition neglects the fact that some nodes in Sn may still reside on
an(other) optimal path π ′. They may take an active role in processing training sample π ′.

Even loss L* = 0 does not imply a perfect heuristic for the entire state space, as the definition is still bound to the
exploration sets at plan-finding time. The most we can expect for this case is to prove optimality on the training
set. Moreover, perfect heuristics are rare, and we might not be able to converge to L* = 0 in a large problem
instance. The experiments will show that the heuristics even for this case, are very effective in reducing the
number of expanded nodes, decreasing the plan length, and increasing the coverage. The run time for evaluating
a neural net once trained is linear in the size of the network, and much faster to compute than most heuristics in
planning.

The evaluation set consists of 2,000 mazes of dimensions 10× 10 with 3, 4, 5, 6 or 7 boxes (recall that the
training set contain mazes with only 3 boxes). Unless said otherwise, the quality of heuristics is measured by
the relative number of solved instances, also known as coverage. Table 4.2 shows the coverage of compared
planners, where all planners were given 10m to solve each Sokoban instance. We see that the classical planners
solved all test mazes with three and four boxes but as the number of boxes increase, the A*-NN starts to have
an edge. On problem instances with six and seven boxes, A*-CoAt achieved the best performance, even though
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normal curr.
#b SymBA* Mercury LAMA CNN CoAt CoAt
3 1 1 1 0.92 0.94 0.95
4 1 1 1 0.87 0.91 0.93
5 0.95 0.75 0.89 0.83 0.89 0.91
6 0.69 0.60 0.65 0.69 0.76 0.85
7 0.45 0.24 0.32 0.58 0.63 0.80

Table 4.2: Fraction of solved Sokoban mazes (coverage, higher is better) of SymBA*, Mercury, LAMA, A*-CNN (caption CNN)
and the A*-CoAt (caption CoAt). A*-CNN and A*-CoAt (with caption normal) use networks trained on mazes with three bozes;
A*-CoAt (with caption curr.) used curriculum learning.

#b SymBA* Mercury CNN CoAt
3 21.40 21.70 24.20 22.20
4 34.00 34.33 40.53 36.00
5 38.82 42.83 45.52 39.11
6 41.11 - 51.00 42.11
7 - - 54.33 44.17

Table 4.3: Average plan length of SymBA*, Mercury, A*-CNN (denoted as CNN) and that with the A*-CoAt. For clarity, we do
not show results of LAMA, as it is performs exactly like SymBA* for 3 and 4 boxes. Column captioned #b indicates the number of
boxes in different categories.

it was trained only on mazes with three boxes. The same table shows, that A*-CoAt offers better coverage than
A*-CNN, and we can also observe that curriculum learning (see column captioned curr.) significantly improves
the coverage.

We attribute SymBA*’s poor performance to its feature of always returning optimal plans while we are content
with sub-optimal plans. LAMA had even lower success in solving more complicated mazes than SymBA*,
despite having the option to output sub-optimal plans. To conclude, with an increase in the complexity of the
mazes, the neural networks outshine the classical planners which makes them a useful alternative in the Sokoban
domain.

The average plan length, shown in Table 4.5, reveals that the heuristic learnt by the CoAt network is strong, as
the average length of the plans is close to that of SymBA* which always returns optimal solutions. We conclude
that the CoAt network delivers a strong heuristic outside its training, much better than that of the CNN network
and the planners (for mazes with more than 6 boxes).

Table 4.4 shows the coverage (the percentage of solved mazes) of all compared planners on problem instances
with various number of boxes (recall that the NNs were optimized on instances with only three boxes). All
planners were given a time limit of 10m to solve each Sokoban instance.

We see that for mazes with 3 and 4 boxes, the optimal planners SymBA* and Delfi were able to optimally solve
all problem instances while the best performing architecture among the NNs, which is CoAt optimized with
respect to L∗ (CoAt-L∗), could solve 94% and 93% of the mazes respectively. Mercury, a satisfying planner
that had the option to output sub-optimal plans solves all the mazes containing 3 boxes but performs worse
than the NN architectures for mazes with higher complexities. As the number of boxes start to increase, the A∗

with NNs start outperforming the classical planners. The same table also shows that A∗ with NNs optimizing
L∗ are consistently better than those optimizing L2. For example, on the most difficult mazes with seven boxes,
CoAt-L∗ solves 77% of mazes, CoAt-L2 solves 63% of mazes and CNN-L2 solves 51% of mazes.

The average plan length shown in Table 4.5 reveals that the heuristic learnt by the CoAt-L2 and CoAt-L∗

networks is strong, as the average length of the plans is very close to the optimum (that of SymBA* which
always returns optimal solutions). Figure 4.10 shows the average number of expanded states of A∗ with various
versions of heuristics; the trend further proves that CoAt-L∗ is the strongest and the quickest as the average
number of states is the least among all the NN architectures.
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Figure 4.10: Sokoban: The average number of expanded states is the least for CoAt* when trained from only 10000 samples.

CNN CoAt
#b SymBA* Delfi Mercury L2 L∗ L2 L∗

3 1 1 1 0.81 0.87 0.91 0.94
4 1 1 0.81 0.74 0.80 0.89 0.93
5 0.94 0.91 0.67 0.72 0.82 0.85 0.89
6 0.55 0.55 0.49 0.61 0.71 0.73 0.80
7 0.46 0.44 0.31 0.51 0.59 0.63 0.77

Table 4.4: Coverage of SymBA*, Delfi, Mercury, CoAt and CoAt* on test data sets containing variable number of boxes. Column
captioned #b indicates the number of boxes in different categories.

CNN CoAt
n SymBA* Mercury L2 L∗ L2 L∗

3 21.40 29.32 30.56 28.67 22.90 22.02
4 34.00 41.00 43.42 41.33 35.11 35.03
5 38.82 45.76 45.34 44.83 40.12 40.12
6 41.11 - 49.82 46.32 42.11 41.65
7 - - 58.23 56.33 53.33 53.19

Table 4.5: Average plan length of SymBA*, Mercury, A*-CNN (denoted as CNN), A*-CoAt and A*-CoAt*. Column captioned
#b indicates the number of boxes in different categories.
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Figure 4.11: Problem instance, where perfect heuristic is not optimally efficient with GBFS. Numbers on the edges denote the cost
of action and red numbers next to node denote the minimal cost-to-go.
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4.5 Greedy Best-First Search: Optimizing Rank

While the perfect heuristic alias cost-to-goal h∗ is the best possible estimate for algorithms like A* (up to tie-
breaking) in terms of nodes being expanded, for greedy best-first search (GBFS) h∗ does not necessarily yield
optimal solutions. A* explores all the nodes with f (s) < f ∗(s) = g(s)+ h∗(s) and some with f (s) = f ∗(s) =
g(s) + h∗(s), so nodes can only be saved with optimal f ∗(s) = g(s) + h∗(s). In fact, when given h* as the
heuristic, only nodes s with f (s) = f ∗(s) are expanded. Depending on the strategy for tie-breaking, the solution
path can be found in the minimal number of node expansion, or take significantly longer (e.g., in lower g-value
first exploration of the search frontier). Any heuristic other than h∗ is either overestimating, and, therefore, may
lead to either non-optimal solutions in A*, or weaker than h∗, leading to more nodes being expanded.

Even if h∗ is given, GBFS is never guaranteed to be optimal. Consider the following graph with five nodes
a,b,c,d,e, weight w(a,b) = 10, w(b,e) = 3, w(a,c) = 2, w(c,d) = 4, w(d,e) = 4, and h∗(a) = 10, h∗(b) = 3,
h∗(c) = 8, h∗(d) = 4, h∗(e) = 0 (see Figure 4.11), initial node a, goal node e. These numbers are the actual costs
and the red numbers are the exact heuristic function. For finding a path from node a to node e GBFS would
return (a,b,d) following the heuristic function. However, the path (a,c,d,e) has cost 10 instead of 12.

Therefore, the loss in imitation learning has to be optimized for a corresponding variant of forward search. It is
advisable to optimize planning heuristics to rank, not to estimate cost-to-goal. Optimizing the ranking function
is a general approach to learn optimal heuristics of search algorithms in deterministic planning. We instantiated
it for A* and GBFS searches, leading to two, slightly different loss functions. Optimal rank is a necessary and
sufficient condition of optimally efficient heuristic. By linking the optimization problem to statistical learning
theory, we observe that learning to rank is easier than regression.

4.6 Summary

Deep learning is very successful in learning images and improving board game play. To reflect its usage in
game playing programs this chapter explained the working of learning to train value and policy (neural) net-
works. In both case studies we excluded human expert knowledge and used accurate and approximate computer
exploration results instead.

Of course, deep learning for TicTacToe is shooting small animals with large bullets, especially given that we
have computed exact information on the game-theoretical value for all reachable states beforehand. Nonetheless,
the learning process was insightful; we were able to train the network to eventually learn the exact winning
information in TicTacToe, and —likely due to better separation— the wider the hidden layers, the better the
learning.

Next, we turned to the SameGame, for which we applied a fast randomized solver to generate a series of good
game. Again, we obtained better learning curves with shallow MLNNs, which also led to a drastic performance
gain compared to the CNN designs.

In the deep learning paradigm, the sparser form of convolutions often performs better than ordinary multi-
layered neural networks that have fully connected hidden layers. The sparse interconnection between the net-
work levels is balanced by a deeper network by means of a larger number of units adjacent to each other. To
some extent the results can be interpreted in the sense that good neural learning does not always have to be deep.
Depending on the learning task, sometimes shallow but wide networks are also appropriate.

We also presented general applicable improvements to NN-learning such as self-attraction, imitation, and cur-
riculum learning. They lead to good results in single-agent planning challenges like Sokoban. Adapting the loss
function to the search algorithm leads to further advances.
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4.7 Bibliographic Notes

Rojas [542] has written a well-respected text book on neural network design and learning. Prototypical appli-
cations for convolutional neural networks and deep learning are computer vision, and language understanding.
Moreover, deep learning has made its way to playing real-time strategy games by just looking at the screen and
score data [478].

As a sign of industrial relevance, Google bought the DL specialist DeepMind. In 2013, DeepMind has impressed
with using CNNs to play various Atari 2600 games from the Arcade Learning Environment. In March 2016 (and
May 2017), AlphaGo won 4:1 (3:0) against Lee Sedol (Ke Jie) in a match; proving itself to be the first computer
program to beat top professional human players in Go [576]. The project was led by David Silver, a former
PhD student in the Games Group at University of Alberta. Cazenave reproduced AlphaGo’s results by training
a DNN for the same set of expert games on a GPU-lifted PC. The minimized error evaluation was comparable
to the one reported by DeepMind [576]. The accuracy for finding the expert move was 55.6% (AlphaGo had
a success rate of 57.0%). There is some trickery found for the learning, where a Go-playing program defeats
world-class Go AI—but loses to human amateurs [641].

A pioneer in DL was Andrew Ng. He trained large neural networks with millions of images for classification.
Today, image recognition by machines trained via deep learning in some scenarios is better than humans, and
that ranges from object recognition in uploaded images to identifying indicators for cancer in blood and tumors
in MRI scans. With a larger selection of personal data, individualized learning becomes available.

In recent years, DL has become the solution for a further broad range of applications, often outperforming the
state of the art. Heuristic search planning with CNNs using imitation, attention and curriculum learning has
been considered by [119], and a differentiable loss function for learning heuristics in A* by [120].

Shalev-Shwartz, Shamir and Shammah provide a deeper understanding of the difficulties and limitations asso-
ciated with common approaches and algorithms [572]. They describe four types of simple problems, for which
the gradient-based algorithms commonly used in deep learning either fail or suffer from significant difficulties.

Randomized algorithms often show performance advantages to deterministic algorithms, as in the randomized
test for primality [585, 586]. In Roshambo, random strategies are superior to deterministic ones. Randomization
often is conceptually simple and, frequently, successful in large state-spaces to find the needle in-the-haystack.
For example, most successful SAT solvers rely on randomized search.

Besides advances in GPU architectures for deep learning (like NVIDIA’s Kepler architecture and the P100) Intel
Xeon Haswell CPUs also allow the efficient integration of convolutions by taking advantage of SIMD instruc-
tions via vectorization and of multiple compute cores via threading [3]. The processors operate on vectors of
data up to 256 bits long (8 single-precision numbers) and perform up to two multiply and add operations per
cycle. They support vector instruction sets which provide 256-bit floating-point arithmetic primitives, and en-
hancements for flexible SIMD data movements. These architecture-specific advantages have been implemented,
e.g., in the Math Kernel Library and used in deep learning frameworks.

One published NN implementing a heuristic function for Sokoban was proposed by [308]. The network’s shape
resembled letter Y, as it has two heads, and it contains only convolution layers. The first seven convolution layers
were shared (we call them pre-conv layer abbreviating preprocessing-convolution). Then, the network splits to
yield two sets of outputs: (i) the estimate of the heuristic function and (ii) the policy. After the split, each path
to the output contained seven convolution layers followed by two dense layers. Attention was first introduced in
NLP, as it allows to relate distant parts of input together [632]. Imitation learning goes back to work by [517],
and curriculum learning to work by [241]. A vanished gradient is discussed by [327]. Planners chosen were
LAMA [536], SymBA* [617], Delfi [391] and Mercury [389]. Self-attention has been explained by [622].



Chapter 5

Monte-Carlo Search

The purpose of statistical search algorithms, primarily Monte-Carlo search (MCS), is to make intelligent deci-
sions, even (perhaps especially) in the absence of expert-designed heuristics. It does this by simulating a large
number of random actions and using the statistics of the results to refine the decisions as more samples are
made. Remarkably, this has been shown to work surprisingly well across a range of problems.

So far MCS has mostly been applied to developing strong game playing agents for challenging games such as
Go, where it made a revolutionary step forward. However, there are several properties of the approach, which
make it attractive for a range of applications. Across the entire book we extend the number of problems this
technique can be applied to.

The origin of MCS are investigations of strategies for solving the multi-arm bandit problem, where, in a casino,
different arms of a slot machine can be pulled. The task that leads to trading exploration with exploitation is to
establish a close-to-optimal strategy of finding (and pulling) the arm with the best payoff.

In many cases the algorithm requires only a forward model (i.e., given a current system state the forward model
gives the next state after taking a particular action) of a system and an objective function that can rate the quality
of complete solutions.

5.1 Introduction

Monte-Carlo1 search (MCS) is a randomized search algorithm which iteratively performs random searches, so-
called rollouts, within the search space, until the algorithm finds a valid solution, a maximum amount of time
has elapsed, or a maximum number of rollouts have been performed. The search method has particularly been
applied to solve problems with a huge search space where no adequate lower and upper bounds are available.
Improved rollouts perform an additional heuristic that determines next moves within the rollouts, to guide the
search.

Nested Monte-Carlo Search (NMCS) extends MCS by the concept of levels. For combinatorial search in single-
player games it is an apparent alternative to algorithms like UCT that are applied in two-player and general
games. To trade exploration with exploitation the randomized search procedure intensifies the search with in-
creasing recursion depth. If a concise mapping from states to actions is available, the integration of policy
learning leads to nested rollout with policy adaptation (NRPA).

While historically in line, the algorithm NRPA is conceptually different from the other MCS strategies as it does
not construct a search, but a recursion tree. In this chapter we will also study methods that improve solution

1 This chapter is based on joint work with Peter Kissmann, Damian Sulewski, Hartmut Messerschmidt, and Tristan Cazenave. It
puts together and improves the work from [211, 187].
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diversity: Beam NRPA keeps a bounded number of solutions in each recursion level; and High-Diversity NRPA
further includes refinements that improve the performance of the algorithm.

Monte-Carlo search balances entering unseen areas of the search space (exploration) with working on an already
established good solution (exploitation). Many algorithms, however, suffer from a solution process that has
many inferior solutions in the beginning of the search. If policies are learnt too quickly, the number of different
solutions reduces, and if they are not strong enough, they will not help sufficiently well to enter parts of the
search space with good solutions.

In other words, the diversity of the search remains limited. Beam MCS is a combination of memorizing a set of
best playouts instead of only one best playout at each level. This set is called a beam and all the positions in the
beam are developed.

Beam search carries over to NRPA, enforcing an increased diversity in the set of solutions. In Beam NRPA, for
each level of the search, instead of a singleton the algorithm keeps a bounded number of solutions together with
their policies in the recursion tree.

5.2 Monte-Carlo Search

The main concept of Monte-Carlo Search (MCS) is the random playout or rollout of a position, whose outcome,
in turn, changes the likelihood of generation successors for subsequent trials. Rollouts were made prominent in
applying (temporal-difference) learning to play Backgammon.

5.2.1 Upper Confidence Bounds Applied to Trees

One prominent member in this class of reinforcement learning strategies is upper confidence bounds applied to
trees (UCT). UCT is a simulation-based method that stores only small parts of the actual game tree.

Essentially, UCT grows a tree and performs rollouts at the leaves. A formula that trades exploration vs. exploita-
tion guides the direction in which the tree should grow (in form of a new leaf). Each round of UCT consists of
four steps: Selection starting from root, select successive child nodes down to a leaf node. Choosing nodes that
lets the game tree expand towards the most promising moves is the essence of MCS; Expansion: unless the exe-
cuted move ends the game, create one or more successor nodes of it and choose from them node v; Simulation:
play a random rollout from node v; and Backpropagation: using the result of the rollout, update information in
the nodes on the path from v to the root.

Each simulation run starts at the root node and selects as the next move to take the one maximizing the UCT
formula

UCT(s,m) = Q(s,m)+C

√
logN(s,m)

N(s)
,

with UCT(s,m) being the UCT value of move m in state s, Q(s,m) the average reward achieved when choosing
move m in state s, C a constant for controlling the exploration versus exploitation ratio, N(s) the number of
times state s was expanded, and N(s,m) the number of times move m was chosen in state s. In single-player
games, often the best instead of the average value is back-propagated.

UCT has two phases. In the beginning of each episode it selects actions according to knowledge contained
within the search tree. But once it leaves the scope of its search tree it has no knowledge and behaves randomly.
Thus, each state in the tree estimates its value by Monte-Carlo simulation. As more information propagates up
the tree, the policy improves, and the estimates are based on more accurate returns.
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We may ask whether UCT with several runs is better than UCT with only one run. Let us consider the growth√
log(n+ k)/n for a fixed value k = 1:

√
log(2)/1 = 0.83255461115769775634√
log(3)/2 = 0.74115190368375553791√
log(4)/3 = 0.67977799344587264517

...√
log(101)/100 = 0.21482831556480769115√

log(1001)/1000 = 0.08311891950281368148√
log(10001)/10000 = 0.03034870733157594638√

log(100001)/100000 = 0.01072983479132844244√
log(1000001)/1000000 = 0.00371692232336966789√

log(10000001)/10000000 = 0.00126957062627324124√
log(100000001)/100000000 = 0.00042919320537436284

and the growth of
√

log(n+ k)/k for a fixed value k = 1:

√
log(2)/1 = 0.83255461115769775634√
log(3)/1 = 1.04814707396820494648√
log(4)/1 = 1.17741002251547469100

...√
log(101)/1 = 2.14828315564807691178√

log(1001)/1 = 2.62845102281081520349√
log(10001)/1 = 3.03487073315759464562√

log(100001)/1 = 3.39307168579153787872√
log(1000001)/1 = 3.71692232336966844293√

log(10000001)/1 = 4.01473482946985114927√
log(100000001)/1 = 4.29193205374367097775

All values are small for large n. Moreover, the growth even gets smaller for larger values of k.

Let us now assume an artificial example with a complete binary search tree of depth 30. At all leaves of the
left subtree of the root we find a value 10, and in the right subtree all leaves have value 0, except one with the
optimum value 100. One random run finds the maximum with probability 1/230. Subsequently, we find the sole
optimum after an expected number of 230 runs.

UCT, however, will first make two runs, which establishes the value 10 on the left branch with probabil-
ity 1 and value 0 on the right branch with probability 1− 1/229. Afterwards, the optimum can no longer be
achieved, since

√
log(n+1)/1+10 >

√
log(n+1)/n+0, so that the right child is never chosen. An increased

value of C can close the gap, since 10 +C
√

log(n+ k)/k < 0 +C
√

log(n+ k)/n implies
√

log(n+ k)/k−√
log(n+ k)/n > 10/C. Given that

√
log(n+ k)/n�

√
log(n+ k)/k we evaluate

√
log(n+ k)/k > 10/C or

C > 10/
√

log(n+ k)/k. Hence, C = 10/
√

log(100000001)/1 = 10/4.29193205374367097775 = 2.32 suf-



88 5 Monte-Carlo Search

fices for k = 1, but for k = 100 constant C has to be larger as 73,680 to get into the right branch, since√
log(100000100)/1000000000 = 0.00013572281217227264.

This example indicates that critical decisions at the root are rarely withdrawn, so that drawing more random
samples at a node can be advantageous. Next, we briefly look at parallelizations of UCT, achieving a close-to-
optimal speedup on multi-core machines.

5.2.2 Parallel Monte-Carlo Search

The first parallelization uses a lock on the variable to increase the number of nodes in the UCT tree. An imple-
mentation is shown in Program 5.1. It assumes maximizing the number of moves (as in Morpion Solitaire). The
according rollout and backup procedures are displayed in Program 5.2. The main routine initializes the search
to the start state and allocates space for the search tree node array.

Program 5.1: (Parallel) UCT algorithm.

int uct(int depth, int thread) {
int j = 0, depth = 0, expandleaf[thread] = 1;
while (node[j].leaf == 0) {

double maxv = 0; int maxs = -1, succs = 0;
for (int i=0; i<node[j].numberofsuccs; i++) {

int s = node[j].successors[i];
if (node[s].count == 0) {
maxv = infinity; maxs = s; expandleaf[thread] = 0;
Succs[thread][succs++] = s; }

else {
double v = node[s].value + C * sqrt(log(node[j].count)/node[s].count);
if (node[s].value == 0) v = 0;
else if (v > maxv) { maxv = v; maxs = s; }

}
}
if (maxs == -1) { node[j].value = 0; return -1; }
if (succs > 0) { maxs = next(Succs[thread],succs); }
node[j].count++; j = maxs; stack[thread][depth] = node[maxs];
doMove(node[maxs],thread); depth++;

}
node[j].count++;
if (expandleaf[thread]) {

if (search(sol[thread])) { node[j].value = 0; return -1; }
else { expandnode(j,thread); insert(sol[thread]); } }

return j;
}
void uctmontecarlo(int thread) {

while (1) {
init(thread);
index[thread] = uct(depth[thread],thread);
if (index[thread] > 0) montecarlo(thread);

}
int main() {
init();
int highscore = 0;
for (int i=0;i<THREADS;i++) // spawn light-weight processes
thread_create(threads[i],uctmontecarlo);

}
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At a leaf node the UCT tree is enlarged by generating successors of the encountered leaf node. Note that
once all successors have been expanded, the selection of successors in the top-down phase of the algorithm is
deterministic. If there are still successors left, one is chosen randomly. If a node has been fully explored, its
value is set to 0 and is omitted from further processing.

The parallel UCT implementation increases the number of node visits when walking down the tree, applying
the UCT formula at every successor. This is different to the sequential implementation where node counts are
updated bottom-up. The hope is that different threads likely lead to different leaves.

Program 5.2: (Parallel) Monte-Carlo algorithm.

void montecarlo(int thread) {
int succs = 0;
while (1) {
Succs = expand();
for (i=0; i< Succs.size(); i++)

if (canMove(Succs[i],thread))
succ[thread][succs++] = Succs[i];

if (succs == 0) { break; )
int r = next(Succs);
stack[thread][depth[thread]] = succ[thread][r];
doMove(thread);
depth[thread]++;

}
if (depth[thread] > highscore) highscore = depth[thread];
int j = index[thread];
while (j != -1) {

if (node[j].value < depth[thread])
node[j].value = depth[thread];

j = node[j].parent;
}

}

At each node in the Monte-Carlo search, we always generate all successors. If a run is finished, we check,
whether a new highscore has been found, so that we can backup the according stack. At the end of the procedure,
we store the obtained value at the search tree leaf where the search has started and propagate the outcome
bottom-up to the root of the UCT search tree, so that the root value always reflects the optimal value found in
its leaves.

An alternative parallelization is to seed the search with a larger set of root nodes and to use UCT to explore the
k best of them for a fixed number of nodes.

To achieve this, we use a priority queue, containing the indices of the nodes in the UCT tree along with their
corresponding number of expansions, the maximal depth reached, and the resulting UCT value. The queue is
ordered according to the UCT values (higher values are better). To come up with a set of states to insert into the
queue, first we perform a complete breadth-first search to a certain layer. For each state in this layer, we create
one node in the UCT tree (and one corresponding element in the queue).

The removal of the maximal element is done by swapping it with the last one in the queue, decrementing the
queue’s size and re-establishing the correct order. This can be done in logarithmic worst-case time. We repeat
this removal of the maximal element, until we come up with the k best ones.

Typically, we assume k� n, with n being the number of threads we use. For the parallelization, each thread
takes the first unused element and performs a normal UCT run starting at this element. The result will be re-
inserted into the queue. For this, at first only the maximal depth and the number of expansions are updated, the
corresponding element is swapped with the one at position size and the size of the queue is incremented.
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At this time, the order of the queue is not correct. As we update the UCT values of all elements in the queue
when the total number of expansions changes, we delay this step until all the k nodes are expanded. Then, we
update all UCT values and need to reorganize the complete queue.

5.2.3 Nested Monte-Carlo

Nested Monte-Carlo search (NMCS) is a randomized search algorithm that is specifically designed to solve
single-player games. Instead of relying on a single rollout at each search tree leaf, the decision-making in level
l of the algorithm relies on a level (l−1) search for its successors.

Program 5.3: Nested Monte-Carlo search.

double rollout() {
while (true) {

if (terminal()) return score();
int nb = legalMoves(moves);
if (nb == 0) return 0.0;
play(moves[rand() % nb]);

}
}
double nested(int n) {
Move moves[MaxLegalMoves];
while (true) {

int nbMoves = legalMoves(moves);
if (terminal()) return score();
for (int i = 0; i < nbMoves; i++) {

if (n==1) { play(moves[i]); rollout(); }
else { play(moves[i]); nested(n-1); }
if (better(score(),bestRollout.score)) update(bestRollout);

}
play(bestRollout[n]);

}
return 0.0;

}

The approach as implemented in Program 5.3 has been successfully applied to solve many challenging combi-
natorial problems, including Klondike Solitaire, Morpion Solitaire, and SameGame, just to name a few. A large
fraction of TSP instances has been solved efficiently at or close to the optimum. NMCS compares well with
other heuristic methods that include much more domain-specific information.

NMCS is parameterized with the nestedness level of the search which denotes the depth of the recursion. At
each leaf of the recursive search a rollout is invoked, which performs and evaluates a random run.

5.2.4 Nested Rollout Policy Adaptation

Next, we want to learn a policy within the recursive NMCS procedure. What makes the algorithm different from
UCT and NMCS is the concept of learning a policy through an explicit mapping of encoded moves to selection
probabilities. As there is no search but a recursion tree, strictly speaking, it is not a tree searching algorithm.
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While the NMCS investigates all possible moves in depth d = l of the decision tree in level l−1, Nested Rollout
Policy Adaptation (NRPA) executes n nested searches in level l−1, that all start at the root of the decision tree
and follow a policy until they reach a leaf. After a search in level l− 1 has been performed, the results are
evaluated at level l and the policy is updated by the best solution currently found. The algorithm helped finding
a new world record in morpion solitaire, and high-quality solutions in crossword puzzles. As we will see, NRPA
is a general search procedure and applies to many games as well as practical applications.

As the set of available successors is finite, a random selection based on the current policy is applied. This biased
roulette-wheel links to fitness selection in genetic algorithms. If a successor has been determined, the solution
is extended by one step, and the playout loop continues finding the next one.

Figure 5.1 depicts the recursion tree of NRPA with two levels and four iterations. It illustrates the effects of
higher and lower-level searches on the level policies. Thus, a policy is either progressed, adapted, or copied.

Figure 5.1: NRPA with two levels and four iterations.

The pseudo-code of the recursive search procedure is shown in Algorithm 5.1. NRPA has two main parameters
that trade exploitation with exploration: the number of levels l and the branching factor N of successors in the
recursion tree. To further accelerate the search, an initial policy can be provided.

Algorithm 5.1: Nested rollout with policy adaptation.
procedure NRPA(level l, policy p)
begin

if l = 0 then
Best ← Playout(p)

else
p′l ← p
Best ← (Init,〈〉)
for i = 1, . . . ,N

r← NRPA(l−1, p′l)
if r better than best then

Best ← r
Adapt(best, p, p′l)

return Best
end

If we impose further constraints on the TSP such as capacity restriction or the satisfaction of time windows for
visiting the cities, finding optimal solutions is difficult already for moderate values of n. For the TSP with time
windows (TSPTW) Program 5.4 applies NRPA to learn valid and short tours. The knowledge about which city
is the best successor for a given one is trained in the policy, which is adapted for each incoming good tour.

The change of values are as follows. The policy values for successor cities in a good solution are incremented,
while the others get an equal share of an according decrement.
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Program 5.4: Solving the problem of the traveling salesman with time windows.

Tour search(int level) {
Tour best = new Tour();
best.score = MAXVALUE;
if (level == 0) {
rollout();
best.score = evaluate();
for (int j = 0; j < N+1; j++) best.tour[j] = tour[j];

} else {
for (int k = 0; k < N; k++)

for (int n = 0; n < N; n++)
local[level][k][n] = policy[k][n];

for (int i = 0; i < ITERATIONS; i++) {
Tour r = search(level - 1);
double score = r.score;
if (score < best.score) {
best.score = score;
for (int j = 0; j < N+1; j++) best.tour[j] = r.tour[j];
if (level > 2)
System.out.println("Level : " + level + ", score : " + score);

adapt(best.tour,level);
}

}
for (int k = 0; k < N; k++)

for (int n = 0; n < N; n++)
policy[k][n] = local[level][k][n];

}
return best;

}

Program 5.5 finds the legal moves and evaluates a state. The accounting of constraint violation is used in the
overall cost function. The rollout and policy adaptation methods are shown in Program 5.6.

5.3 Beam NRPA

Beam NRPA is an extension of NRPA that maintains B instead of one best solution in each level of the recursion.
The motivation behind Beam NRPA is to warrant search progress by an increased diversity of existing solutions
to prevent the algorithm from getting stuck in local optima.

The basic implementation of the Beam NRPA algorithm is shown in Algorithm 5.2. Each solution is stored
together with its score and the policy that was used to generate it. Better solutions are inserted into a list, which
is kept sorted with respect to the objective to be optimized.

As the NRPA recursion otherwise remains the same, the number of playouts to a search with level L and
(iteration) width N rises from NL to (N ·B)L. To control the size of the beam, we allow different beam widths
Bl in each level l of the tree (common values for Bl are (1,10,10,10)). At the end of the procedure, Bl best
solutions together with their scores and policies are returned to the next higher recursion level. For each level l
of the search, one may also allow the user to specify a varying iteration width Nl . This yields ∏

L
l=1 NlBl rollouts

for the algorithm Beam NRPA.
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Program 5.5: TSP with time windows: evaluation and legal moves.

public double evaluate() {
double makespan = 0.0;
double cost = 0.0;
int prev = 0; // starts at the depot
int violations = 0;
for (int i = 1; i < N; i++) {

int node = tour[i];
cost += dist[prev][node];
makespan = Math.max(makespan + dist[prev][node], left[node]);
if (makespan > right[node]) violations++;
prev = node;

}
cost += dist[prev][0];
makespan = Math.max(makespan + dist[prev][0], left[0]);
if (makespan > right[0]) violations++;
return 100000.0 * violations + cost;

}
public int legalMoves() {

int prev = 0; // starts at the depot
int opindex = 0;
double makespan = 0.0;
double cost = 0.0;
for (int i = 1; i < tourSize; i++) { // computes makespan

int node = tour [i];
cost += dist[prev][node];
makespan = Math.max(makespan + dist[prev][node], left[node]);
prev = node;

}
if (tourSize > 0)
prev = tour[tourSize - 1];

for (int i = 1; i < N; i++) {
if (!visited[i]) {
moves[opindex] = i;
boolean tooLate = false;
for (int j = 1; j < N; j++)

if (j != i && !visited[j])
if ((makespan <= right[j]) && (makespan + dist[prev][j] <= right[j])

&& (Math.max(makespan + dist[prev][i],left[i]) > right[j])) {
tooLate = true;
break;

}
if (!tooLate)
opindex++;

}
}
if (opindex == 0)

for (int i = 1; i < N; i++)
if (!visited[i])
moves[opindex++] = i;

return opindex;
}

5.4 Refinements

In the following we look at several algorithmic refinements to Beam NRPA.
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Program 5.6: TSP with time windows: rollout and policy adaptation.

public void rollout() {
int node = 0;
tourSize = 1;
for (int i=1;i<N;i++) visited[i] = false;
while (tourSize < N) {

int successors = legalMoves();
for (int i = 0; i < successors; i++)
value[i] = Math.exp(policy[node][moves[i]]);

double sum = value[0];
for (int i = 1; i < successors; i++)
sum += value[i];

double mrand = random.nextDouble() * sum;
int i = 0;
sum = value[0];
while (sum < mrand) {
i++;
sum += value[i];

}
tour[tourSize++] = moves[i];
visited[moves[i]] = true;
node = moves[i];
}
tour[tourSize++] = 0; // Finish at the depot;

}
void adapt(int[] tour_param, int level) {

for (int k = 1; k < N; k++)
visited[k] = false;

int successors;
int node = 0;
for (int ply = 0; ply < N; ply++) {
successors = 0;
for (int i = 1; i < N; i++) {

if (!visited[i]) {
moves[successors] = i;
successors++;

}
}
local[level][node][tour[ply]] += 1.0;
double z = 0.0;
for (int i = 0; i < successors; i++)
z += Math.exp(policy[node][moves[i]]);

for (int i = 0; i < successors; i++)
local[level][node][moves[i]] -= Math.exp(policy[node][moves[i]]) / z;

node = tour[ply];
visited[node] = true;

}
}

}

First, we observe that copying the policy in each rollout of Beam NRPA is a rather expensive operation that can
dominate the runtime of the entire algorithm.

In fact, further code analysis showed that the policy update is always performed wrt. the currently best solution
found in a level and the policy one level up, so that it is not required to store the policy attached each solution,
as long as we keep Bl best policies alive for each level l of the recursive search procedure.

For a faster processing of policy adaptation, we avoid the regeneration of successors by providing all the infor-
mation that is needed at the time we construct the solution in the rollout. Hence, we store the sequence of codes
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Algorithm 5.2: Beam nested rollout with policy adaptation.
procedure Beam-NRPA(level l, policy p)
begin

if l = 0 then
(score,rollout)← Playout(p)
return (score,rollout, p)

Beaml ← (Init,〈〉,p)
for i = 1, . . . ,N

L← /0
for t← (score,rollout, p) ∈ Beam

L← L∪{t}
T ← Beam-NRPA(l−1, p)
for t ′← (score′,rollout ′, p′) ∈ T then

Adapt(rollout ′, p′, p)
L← L∪{t ′}

Beaml ← B best in Beaml ∪L
return Beam

end

Codel and successor node codes Succl for each best solution (relative to a level l) produced, where the code is a
user-specified domain-specific address in the policy table, calculated for the current state and the current move
executed in this state.

The implementation in Algorithm 5.3 shows that this strategy is already applicable to the original NRPA algo-
rithm. It leads to minor extensions to the implementation of the generic playout function: each time a successor
is checked for availability the corresponding code is stored.

Algorithm 5.3: A variant of policy adaptation for NRPA that refers to stored data.
procedure NRPA-Adapt(level l, policy p, policy p′)
begin

for ci ∈Codel
p′[ci]← p′[ci]+α

z← 0
for c′ ∈ Succl,i

z← z+ exp(p[c′])
for c′ ∈ Succl,i

p′[c′]← p′[c′]−α · exp(p[c′])/z
end

We see that the update in Adapt affects only the codes of the good solution to be adapted and its successor
codes, to balance the positive effect put on choosing it as negative effect to all of its successors.

To avoid fragmented access to the memory and operating system calls to provide memory, high-speed algorithm
implementations often avoid dynamic memory allocation or have their own memory maintenance and allocators.

Beam NRPA pre-allocates the information in the beam in static arrays and operates on the stored information
directly. Besides faster insertion and deletion this allows one to follow the progress of the search by showing
the top k ≤ Bl elements.
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5.5 Improving the Diversity

Beam NRPA itself is inspired by the objective of higher diversity in the solution space of NRPA. In larger search
spaces NRPA often got stuck with inferior solutions. It simply takes too long to backtrack to less determined
policies to visit other parts in the search space.

The beam is maintained in a bounded number of buckets. The information stored in the buckets of a beam is
visualized in Figure 5.2. Instead of the moves executed in a rollout we store the Code of the chosen move and
the code of its successors Succ. Additionally, the length of the rollout and its score are stored for each bucket in
the beam.

5.5.1 Improving Diversity in the NRPA Driver

When looking at a beam, a natural question is to warrant that the solutions kept in the beam are substantially
different. This can be imposed by matching the best obtained rollout with the ones stored in the beam. Duplicate
solutions are excluded from the beam. Algorithm 5.4 provides a pseudo-code implementation.

The application of a filter to improve diversity is implemented in method Similar. We expect that si = s j implies
Similar(si,s j) and Similar(si,s j)= Similar(s j,si). The output is a truth value (interpreted as a number in {0,1}).
The beam is scanned for similar states, and if present, the new insertion request is rejected. Such similarity can
be implemented on top of the score of the solution, the solution length, or other features of the rollout. The
example implementation in Algorithm 5.5 looks at the score and the length of the rollout.

The concept of similarity implies a formal characterization of solution diversity. Let S be a set of solutions
of an optimization problem with B = |S |, and let Similar(si,s j) ∈ [0,1] be a similarity score between every
pair of solutions si and s j, 1≤ i, j ≤ B, where Similar(si,s j) = 0 if si = s j. The diversity is the sum of pairwise
similarities, i.e., diversity(S ) = ∑si,s j∈S ,i6= j Similar(si,s j). This means that if the solutions in S are pairwise
similar, the diversity in S is low. A similar concept is that of pre-sortedness in an input array by adding the
pairwise number of inversions. Some algorithms can adapt to a varying degree of pre-sortedness.

One important aspect is that adaptation is now applied in every iteration, while before it was applied only for
improved solutions. This increases the number of calls significantly but allows more information to be passed
between the members in the beam. If the parameters are chosen carefully, the efforts for the playouts and for
executing policy adaptation are roughly the same.

We also skip some θl iterations before we start learning. The motivating objective is the secretary problem, in
which the best secretary out of n rankable applicants should be hired for a position. Applicants are interviewed
one after the other and the final decision must be made immediately after the interview. The optimal stopping
rule rejects the first n/e applicants after the interview and then stops at the first applicant, who is better than
every applicant interviewed so far.

Diversity is an objective that must be dealt with care. In some domains the solution length already is the score,
so that only solutions of different lengths are kept in the beam. This may limit the number of good solutions in
the beam (too) drastically. As a solution to this problem, one could include other state features into the fractional
part of the solution.

A good compromise is needed. Using the entire state vector for similarity detection requires comparing regen-
erated solutions, which can be slow, or storing the full state in the rollout to be retrieved in later calls of the
policy adaptation, which would result in a significant overhead in space and time.
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Algorithm 5.4: Beam NRPA with high diversity.
procedure HD-NRPA(level l, policy p)
begin

for b = 1, . . . ,Bl
scorel,b← Init

if l = 0 then
Score0,1← Playout(p)
return Score0,1

for i = 1, . . . ,Nl
score← HD-NRPA(l−1, p)
if score better than Scorel,Bl then

for b′ = 1, . . . ,Bl−1 then
if ¬ Similar(Scorel,b′ ,Lengthl,b′ , l)
and Scorel−1,b′ better than Scorel,Bl then

insert (Scorel−1,b′ ,Lengthl−1,b′ ,
Codel−1,b′ ,Succl−1,b′ ) into Beaml

if (i >Θ ) then
HD-Adapt (l, p′l)

return Scorel,1
end

.

Algorithm 5.5: Example of applied similarity measure.
procedure Similar(score s, length r, level l)
begin

for b = 1, . . . ,Bl
if Scorel,b = s and Lengthl,b = r then

return true
return false

end
.

5.5.2 Improving Diversity in the Policy Adaptation

We refine the beam search by a reduction of elements eligible to be included in the beam. Therefore, we use
(c j,ci) ∈ Beaml,1..b−1 to denote that the best rollout code (defined by (c j,ci)) in a given level is already present
in the prefix of the beam to bucket b in level l. This avoids overly stressing good solutions that have already
influenced the policy to be learnt. We also do not want to update elements twice. The according code is shown in
Algorithm 5.6. The main function HD-Adapt calls the function HD-Other, which works as a filter and collects
the codes of moves that should be used to change the policy.

We used simple arrays for the data structure to check that a code and set of successor codes is contained in
the beam and thus learnt already. Profiling revealed that a significant part of the running time is spent here.
Surely, a hash map would be more efficient for checking (c j,ci) ∈ Beaml,1..b−1 . However, the algorithm has to
be modified as the hash map then has to support deletion, given that elements in the buckets being dominated by
incoming solutions are removed from the beam, and, thus, no longer serve for duplicate detection in the form
of membership queries.

Given that the selection strategy of the successors does not prune away moves that are required to generate an
optimal rollout sequence, NRPA and Beam NRPA are probabilistically complete in the sense that an optimal
solution will eventually be found.

For applying high-diversity candidate solution selection, this theoretical assertion is not necessarily preserved.
However, the technique preserves non-zero probabilities for generating the optimal solution in the rollout func-
tion. Given that the selection strategy of the successors does not prune away moves that are required to generate
an optimal rollout sequence, high diversity nested rollout with policy adaptation is probabilistically complete in
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Algorithm 5.6: Policy adaptation within HD-NRPA.
procedure HD-Other(level l, index b, i, j)
begin

L← /0
for c j ∈ Succl,b,i

if (c j,ci) /∈ Beaml,1..b−1 then
L← L∪{c j}

for b′ = b+1, . . . ,Bl , ci′ ∈Codel,b′

if ci = ci′ then
for c j′ ∈ Succl,b′,i′

if c j′ /∈ L∧ (c j′ ,ci) /∈ Beaml,1..b−1 then
L← L∪{ j′}

return L
end

procedure HD-Adapt(level l, policy p, policy p′)
begin

p′← p
for b ∈ 1, . . . ,B

for ci ∈Codel,b
if ci /∈ Beaml,1..b−1 then

p′[ci]← p[ci]+α

L← HD-Other(l,b, i, j)
z← 0
for c ∈ L

z← z+ exp(p[c])
for c ∈ L

p′[c]← p′[c]−α · exp(p[c])/z
end

Figure 5.2: Information stored in HD-NRPA; buckets stand for the beam, thin arrows indicate successors (codes, stored in Succ),
the thick arrow the best solution (codes, stored in Code).

the sense so that an optimal solution will eventually be found. This, however, does not imply any performance
quality like the ε-optimality of the resulting search algorithms.

5.6 Case Study: SameGame

The SameGame (Figure 4.4) has already been introduced as an interactive game frequently played on hand-held
devices. It is solvable in polynomial time for one column of tiles but NP-complete for two or more columns and
five or more colors of tiles, or five or more columns and three or more colors of tiles.
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Algorithm 5.7: Counting tiles of color c present at index i.
procedure Count(index i, color c)
begin

if Outside(i, j)∨ color[i] 6= c∨ seen[i]
return 0

seen[i]← 1
return 1+ Count(i+1,c) + Count(i−1,c)+Count(i+n,c)+ Count(i−n,c)

end

Algorithm 5.8: Generating and executing moves together with termination criterion in the SameGame.
procedure LegalMove(Move moves[], length l)
begin

succs← 0
seen← (0..0)
if only one move for tabu color then

tabu← blank
for i = 0..n2−1

if color[i] 6= blank then
if ¬seen[i] then

moves[succs]← buildMove(i)
if |moves[succs]|> 1 then

if color[i] = tabu then
if |moves[succs]| ≤ 2∧ l > 10

succs← succs+1
else succs← succs+1

if succs = 0 then
for i = 0..n2−1

if color[i] /∈ {blank, tabu} then
if ¬seen[i] then

moves[succs]← buildMove(i)
succs← succs+ |moves[succs]|> 1

if succs = 0 then
seen← (0..0)
for i = 0..n2−1

if color[i] 6= blank then
if ¬seen[i] then

moves[succs]← buildMove(i)
succs← succ+ |moves[succs]|> 1)

return succs
end

procedure Play(Move move)
begin

Sort(move)
for i in 0..|move|−1

Remove(i)
c← 0
for i = 0..n−1

if column c is empty
RemoveColumn(c)

else
c← c+1

Score← Score+(|move|−2)2

if board is empty
Score← Score+1000

end
end

procedure Terminal()
begin

for i = 0..n2−1
if color[i] 6= blank then

if possibleMove(i) then
return 0

return 1
end

Successor generation and evaluation of the score have to reach out for the tiles that have the same color. Algo-
rithm 5.7 illustrates a recursive implementation for counting the number of successors. To assist the compiler,
in the tuned implementation of the SameGame we use an explicit stack for building the moves. Termination can
be checked faster by testing each of the four directions of every tile location for having the same color.

Let us briefly look at the efficiency of the implementation (Algorithm 5.8). Let n2 be the board’s total number of
cells and t be the number of tiles for a given move. The critical aspect is the adjustment of the board according
to the gravity of tiles. For each tile removed, we bubble the blank upwards.

• LegalMoves, once applied for each state: The construction of one move, including all stack operations, is
proportional to the size t of each color group O(t), by virtue of recording tiles visiting for one state, the
total of generating all successors is O(n2).

• Play, once applied for each state: besides the removal, executing a move is proportional to t. Removal of a
tile group with adjustment in one column (one for each move): O(mt), for an amortized total of O(n3) in
the playout, as at most n2 tiles can be removed. Removal of one column (selective execution): O(n2), but
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the work amortizes: at most n columns can be removed in the playout. Prior to the removal we sort the tiles
affected in each move, which in total (since N = N1+ . . .+Nk implies ∑

k
i=1 Ni lgNi = O(N lgN)) is bounded

by O(n2 lgn2) = O(n2 lgn).

• Terminate, once applied for each rollout: O(n2).

The selection of successors is based on the computation of legal moves and the roulette rule selection, where the
latter is dominated by the former. If n×n is the board’s dimensions of the SameGame, the time for generating
a solution of length l in one playout is bounded by O(ln2 +n3).

Table 5.1 compares the scores of one level 4 (iteration 100) HD-NRPA and 30 × level 3 (iteration 100) HD-
NRPA searches both obtained with beam width 10 and initial offset for learning 10. The results are cross-
compared with standard NRPA and NMCS.

ID NMCS(4) NRPA(4) HD-NRPA(4) max. 30 runs HD-NRPA(3)
1 3,121 3,179 3,145 3,133
2 3,813 3,985 3,985 3,969
3 3,085 3,635 3,937 3,663
4 3,697 3,913 3,879 3,887
5 4,055 4,309 4,319 4,287
6 4,459 4,809 4,697 4,663
7 2,949 2,651 2,795 2,819
8 3,999 3,879 3,967 3,921
9 4,695 4,807 4,813 4,811

10 3,223 2,831 3,219 2,959
11 3,147 3,317 3,395 3,211
12 3,201 3,315 3,559 3,461
13 3,197 3,399 3,159 3,115
14 2,799 3,097 3,107 3,091
15 3,677 3,559 3,761 3,423
16 4,979 5,025 5,307 5,005
17 4,919 5,043 4,983 4,881
18 5,201 5,407 5,429 5,353
19 4,883 5,065 5,163 5,101
20 4,835 4,805 5,087 5,199

Sum 77,934 80,030 81,706 74,753

Table 5.1: Results in the SameGame.

We can see that improving the diversity generally gives better results than NMCS and NRPA, even though,
through randomization, there are problem instances where the opposite is true.

5.7 Case Study: Snake-in-the-Box

The snake-in-the-box problem is a longest path problem in a d-dimensional hypercube. Long snakes have an
impact on the generation of improved error-correcting codes. During the game the snake increases in length but
must not approach any of its previous visited vertices with Hamming distance 1 or less.

The HD-NRPA implementation applies bit manipulation to integers in 0..2d−1. The information on snake visits
is kept in a perfect hash table of size 2d . One optimal solution of length 50 for d = 7 is as follows: 0, 1, 33, 35,
43, 42, 10, 26, 27, 25, 57, 56, 48, 52, 53, 55, 63, 62, 126, 122, 123, 115, 113, 81, 80, 88, 92, 93, 95, 87, 86, 22,
6, 7, 15, 13, 12, 44, 108, 104, 105, 73, 75, 67, 66, 98, 102, 103, 101, 69, 68.

There are known generalizations to the problem. First, instead of having a Hamming distance of at least k = 2
for the incrementally growing head to all previous nodes of the snake (except the ones preceding the head), one
may impose a minimal Hamming distance k > 2 to all previous nodes (inducing a Hamming sphere that must
not be revisited). In Figure 5.2 (left) we give the best-known solution lengths for the (k,n) snake problem, where
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k/d 2 3 4 5 6 7
3 4*v 3*v 3*v 3*v 3*v 3*v
4 7*v 5*v 4*v 4*v 4*v 4*v
5 13*v 7*v 6*v 5*v 5*v 5*v
6 26*v 13*v 8*v 7*v 6*v 6*v
7 50*v 21*v 11*v 9*v 8*v 7*v
8 98*(95) 35*v 19*v 11*v 10*v 9*v
9 190 63(55) 28*v 19*v 12*v 11*v

10 370 103 47*(46) 25*v 15*v 13*v
11 707 157 68 39*v 25*v 15*v
12 1,302 286 104 56(54) 33*v 25*v
13 2,520 493 181 79 47(46) 31v

k/d 2 3 4 5 6 7
3 6*v 6*v 6*v 6*v 6*v 6*v
4 8*v 8*v 8*v 8*v 8*v 8*v
5 14*v 10*v 10*v 10*v 10*v 10*v
6 26*v 16*v 12*v 12*v 12* 12*v
7 48*v 24*v 14*v 14*v 14* 14*v
8 96*(92) 36*v 22*v 16*v 16* 16*v
9 188 64(55) 30*v 24v* 18*v 18*v

10 358 102 46*v 28v* 20*v 20*v
11 668 160 70(64) 40v* 30*v 22*v
12 1,276 288 102 60(56) 36*v 32*v
13 2,468 494 182 80 50*v 36*v

Table 5.2: Best known results in snake-/coils-in-the-box, validated with HD-NRPA.

an asterisk (*) denotes that the optimal solution is known. The validation of the results in generating a solution
with HD-NRPA that matches the given bound is indicated with a v. For the first problem not solved, the best
solutions are shown in brackets.

There is another variant, which asks for a closed cycle, by means that the snake additionally has to bite its
own tail at the end of its journey. The algorithm’s implementation must take care that this is in fact possible.
In Figure 5.2 (right) we give the best-known solutions lengths and the validation results. In summary, using
HD-NRPA we could validate all but three optimal solutions in the snake- and coils-in-the-box problems. Ap-
proximate solution lengths for the first unsolved problem are shown in brackets.

5.8 Case Study: Vehicle Routing

In the vehicle routing problem (VRP) we are given a fleet of vehicles, a depot, and a time delay matrix for
the pairwise travel between the customers’ locations, service times, time windows and capacity constraints; the
task is to find a minimized number of vehicles with a minimized total distance that satisfies all the constraints.
Clearly, by choosing only one vehicle, VRP extends the capacitated traveling salesman with time windows. We
chose instances of the Solomon VRPTW benchmark for the experiments, a well-studied selection of 100-city
problem instances.

VRPs in practice are complex. For example, instead of the straight-line distances, shortest paths for a road
network have to be precomputed, leaving a distance matrix to be forwarded to the VRP solver. Often concurrent
pickups while delivering items to customers are requested, which has an immediate effect on the violation
of capacity constraints. Similarly, for courier express services, items are collected at one site and brought to
another. Additionally, there are same-day delivery requirements and reglementations of drivers breaks. The
point we stress is that all of these additional constraints can be added into a VRP solver based on random
playouts like NRPA, as it incrementally generates a tour.
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Program 5.7: Vehicle routing: rollout including evaluation.

private double rollout() {
for (int j=1;j<N;j++) visits[j] = 1;
visits[0] = V-1;
tour[0] = 0;
tourSize = 1; // start node already visited
int node = 0, prev = 0;
double makespan = 0.0, capacity = 0.0;
violations = 0;
vehicles = V;
double cost = -1.0 * sumservice;
while(tourSize < N+V-1) {

double sum = 0.0;
int successors = 0;
for(int i = 0; i < N; i++) {

if (check(i) && d[node][i] != 1000000.0) {
moves[successors++] = i;
for (int j = 0;j < N;j++)

if (i != j)
if (check(j))

if (l[i] > r[j] || makespan + d[node][i] > r[j]) {
successors--;
break;

}
}

}
if (successors == 0) {

for (int i = 0; i < N; i++)
if (check(i)) moves[successors++] = i;

}
for(int i=0; i<successors; i++) {
value[i] = Math.exp(global[node][moves[i]]);
sum += value[i];

}
double mrand = random.nextDouble()*sum;
int i=0;
sum = value[0];
while(sum<mrand) sum += value[++i];
prev = node; node = moves[i];
tour[tourSize++] = node;
visits[node]--;
cost += d[prev][node];
makespan = Math.max(makespan + d[prev][node],l[node]);
capacity += w[node];
if (node == 0) {

if (prev == 0) vehicles--;
prev = 0;
makespan = capacity = 0.0;

}
if (capacity > max_capacity) violations += 1.0;
if (makespan > r[node]) violations += 1.0;

}
tour[tourSize++] = 0;
cost += d[node][0];
if (node == 0) vehicles--;
makespan = Math.max(makespan + d[node][0], l[0]);
if (makespan > r[0]) violations += 1.0;
return (100000.0 * vehicles) + 100000.0 * violations + cost);

}
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Figure 5.3: Comparing the learning in VRP of Nested MCS, NRPA, and HD-NRPA.

The implementation of the problem is based on the simple observation that a tour with V vehicles can be
generated by a single vehicle, where the time (makespan) and the capacity of the vehicle are reset at each visit
to the depot. A possible rollout function in Java is shown in Program 5.7. It also tries to reduce the number of
vehicles.

In contrast to all other cities the depot is allowed to be visited more times. In this implementation the i-th visit
to the depot gets the ID i and must be revisited. The solver has the selective strategy that whenever a candidate
city invalidates reaching another city it is discarded from the successor set. We selected a (level 5, iteration 50)
search with threshold zero to start learning.

Figure 5.3 compares the different single-agent Monte Carlo search processes for the first 100 thousand playouts
of the r101 problem. We see that HD-NRPA shows the fastest learning progress.

5.9 Summary

Monte-Carlo search is class of random search algorithms that has led to a paradigm shift in AI game play-
ing from enumeration to randomization. We have looked at bandit-based search as a reinforcement learning
algorithm that applies random playouts. In UCT’s tree descent we selected the node that optimizes solution
quantity, analogous to the multiarmed bandit problem in which a player must choose the slot machine (bandit)
that maximises the estimated reward each turn.

Moreover, nested Monte-Carlo search and nested rollout policy adaptation have shown to be viable options to
solve hard combinatorial problems, combining random exploration with learning.

Besides looking at parallel UCT implementations, we added more diversity to the NRPA search, making it faster
in several domains. A few implementation refinements and a more careful handling of the solutions stored in
the beam made the algorithm perform convincingly across three domains. For the SameGame we exemplified
the interface with the generic solver and analyzed the complexity of one playout. Besides elaborating on the
given setting and its impact, for the eager algorithm engineer, we also provide pseudo-code implementations.
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5.10 Bibliographic Notes

With the success of applying reinforcement learning to play expert-level Backgammon [605], the concept of
sampling the outcome of a game in random playouts has been around. Later, bandit-based Monte-Carlo planning
and UCT [408] extended the use of playouts and changed the way in which computer play many two-player
and general games. The history of playing games with an increasing level of MCS performance is long, with
the possible climax in AlphaGo defeating a professional Go player in a match.

Around 2006 Rémi Coulomb and other researchers provided a new approach to move planning in computer Go,
now known as MCS. Kocsis and Szepesvári (2006) formalized this approach into the UCT algorithm. Actually,
their publication studied more general MDP (Markov Decision Process) problems.

Parallelizing UCT on multiple cores is a hot research topic. Different approaches with lock-free hash tables and
tree and root parallelizations have been proposed [243, 107], all with individual pros and cons.

If the number of visits is small, the UCT mechanism gives unreliable results. The rapid action-value estima-
tor (RAVE) combines UCT with the all-move-as-first heuristic [286] Prior knowledge [285] is an alternative
for biasing the selection strategy with heuristic knowledge. If an evaluation function is available, with implicit
minimax MCS makes use of it for a potential gain in performance [435]. Progressive widening [113, 138]
consists of reducing the move set artificially when the selection strategy is applied and increasing its size pro-
gressively (given enough time). When the number of visits of a node equals the threshold, progressive widening
prunes most of the children. To get more out of the simulations they should mimic intelligent play. Simulation
strategies aim to have more realistic and therefore informative playouts. Domain-independent strategies include
Last-Good-Reply [32], MAST [54], which exploits that moves good in one position are likely to be good in
other positions, too, and N-grams, which keep track of move sequences instead of single moves [607].

MCS is the state of the art in playing two-player games such as Go or Hex [354] or in puzzles, like the Pancake
problem [280], and has been applied also to other problems than games, like mixed-integer programming, con-
straint problems, mathematical expression, function approximation, physics simulation, cooperative pathfind-
ing, as well as planning and scheduling [74]. A comprehensive survey on Monte-Carlo search (MCS) algorithms
has been given by [86].

Nested rollouts were introduced by [665]. In further applications, this heuristic is improved successively to
apply the algorithm for solving challenging combinatorial problems such as Klondike Solitaire [53].

Cazenave [105] has invented nested Monte-Carlo search (NMCS), a randomized search algorithm inspired by
UCT [408]. Besides playing games, the NMCS algorithm solves mathematical problems [73].

As a randomized search procedure NRPA has been very successful in solving a variety of optimization prob-
lems, including puzzles [545], but also hard optimization tasks in logistics like constraint traveling salesman
problems [195], combined pickup-and-delivery tasks [193], vehicle routing [281], and container packing [197]
problems.

Solving complex TSPs is generally dominated by methods from Operations Research [514, 490], including
optimal approaches using Mixed-Integer (Linear) Programming, Branch-and-Bound, and Branch-and-Cut, as
well as suboptimal approaches using Large Neighborhood Search, Particle Swarm Optimization, Genetic or
Ant Algorithms, Simulated Annealing, etc. [441, 574].

For a growing board SameGame is known to be hard [49]. The formal definition of the Snake-in-the-Box prob-
lem and its variants as well as heuristic search techniques for solving it are studied by [502]. The randomized
beam search algorithm has been parallelized and applied to solve instances of Morpion Solitaire [535]. In Beam
NRPA [109], the combination of Beam search and NRPA has been studied.



Part II

Big Data



Chapter 6

Graph Data

The use of digital data has increased rapidly in the last few years. Traditional information sources like books,
pictures, letters, or vinyls have been substituted by ebooks, digital photography, eMails, video, and audio. Big
data is a wording that has been chosen to emphasize that this change is accompaigned by a rising amount of
stored information. While the physical space is reduced, the information carried remains the same. Therefore,
the selection, analysis, and evaluation of these amounts of data are important.

Big data like hypertexts, computer infrastructures, or social networks are best represented as graphs in which
certain non-trivial relations are to be established. Therefore, in this chapter we solve fundamental NP-hard graph
optimization problems like Maximum Clique and Minimum Graph Coloring.

As there are many different problem variants to look at, we are interested in general but efficient solver pro-
totypes. The optimization problems are implemented as single-agent games in a search framework, with very
little problem-specific knowledge.

As one solving technology we employ Nested Monte-Carlo Search (with and without rollout policy adaptaption)
and compare the computational results with UCT and with satisfiability (SAT) solver technology.

6.1 Introduction

Graphs1 are everywhere. Hypertexts like Wikipedia are steadily expanding. At the very far end we have the
Internet itself as a huge arrangement of linked pages. As one indicator, the envisioned set of IP addresses has
been extended. Computer networks also grow on a large scale; we have mobile devices and more and more
intelligent computational objects, a trend which is sometimes denoted as the Internet of Things.

Studies on social networks receive a lot of attention from both sociology and computer science. A social network
is a social structure made up of a set of vertices for social actors (such as individuals or organizations) and a
set of edges that serve as communication links between these actors. Social network analyses have been done
in many aspects of sociology, such as social influence, social groupings, inequality, disease propagation and
communication of information. However, a larger amount of data and resources makes it critical to analyze
social network-related problems to find optimal solutions.

Many of the first problems shown to be NP-complete were graph problems. Among them we find Graph Color-
ing (a.k.a. Chromatic Number), Clique, Independent Set, Vertex Cover (Directed/Undirected), Hamilton Circuit,
and Hitting Set. Most of these decision problems inherit natural optimization criteria.

Inspired by its initial successes, besides other optimization options we choose Nested Monte-Carlo Search
for solving these problems in a search framework that links a (domain-specific) combinatorial problem to a

1 This chapter is based on joint work with Eike Externest, Sebastian Kühl, and Sabine Kuske. It improves the work from [191].
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(domain-independent) search algorithm. For Graph Coloring, we add more functionality like finding cliques to
initialize the coloring process with a prior, a selective policy to accelerate the search, as well as Greedy Search.

6.2 Mathematical Encoding

Graph Coloring was the first fundamental problem where a computer proved a central result (namely that each
planar graph can be colored in four colors; finding it is still NP-hard!).

More formally, the Graph Coloring Problem asks for a vertex coloring with at most k colors, where a coloring
is a function that maps each node in the graph to a color, so that no two vertices attached to an edge share the
same colors.

v1

v2 v3

Figure 6.1: Example graph with a 3-Coloring.

Input: Graph G = (V,E), natural number k ≤ |V |.
Output: 1, if a mapping c : V →{1,2, . . . ,k} exists with c(v) 6= c(v′) for all {v,v′} ∈ E; 0, otherwise.

The optimization problem asks for the minimal number of colors, i.e., the smallest possible k that preserves the
above condition. This number is called chromatic number of G and is denoted by χ(G). Graph coloring is a
problem in many areas of computer science, e.g., for computing timetables.

6.3 PDDL Encodings

All the above graph search problems have a natural representation in the problem domain description language
(PDDL). For example, Programs 6.1 and 6.2 provide the PDDL representation of Clique in the form of a domain
and problem instance file. In the implementation we count the number of nodes in the clique and for each node
selection we delete all the nodes that are not adjacent to it from further consideration. Instead of optimizing the
size of the clique in the metric, we provided the decision variant in the form of an incrementally adjusted upper
bound to the planner.

We ran initial experiments with an off-the-shelf planner and solved the problem displayed in Programs 6.1
and 6.2 instantly. When updating k from 3 to 4, the planner correctly reports no plan.

To test larger problem instances, we wrote a parser that transforms DIMCAS benchmarks into PDDL. However,
even for the simplest problem instance in the benchmark set the planner got stuck. Changing the search algo-
rithm and the parameter setting made no essential difference. We concluded that PDDL action planners have
difficulties in solving hard combinatorial graph problems.

Program 6.3 provides a PDDL implementation for Graph Coloring. For Independent Set, Vertex Cover, or
Hitting Set, the PDDL encodings look similar.
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Program 6.1: PDDL domain for Clique.

(define (domain clique)
(:requirements :fluents :typing :conditional-effects)
(:types node)
(:predicates
(adjacent ?n1 ?n2 - node)
(visited ?n - node)

)
(:functions (size))
(:action select
:parameters (?m - node)
:precondition (and (not (visited ?m)))
:effect

(and
(increase (size) 1)
(visited ?m)
(forall (?n - node)
(when (and (not (visited ?n))

(not (adjacent ?m ?n)))
(visited ?n))))))

Program 6.2: PDDL instance for Clique.

(define (problem three)
(:domain clique)
(:objects n6 n5 n4 n3 n2 n1 - node)
(:init
(adjacent n1 n2) (adjacent n2 n1)
(adjacent n2 n3) (adjacent n3 n2)
(adjacent n3 n5) (adjacent n5 n3)
(adjacent n1 n6) (adjacent n6 n1)
(adjacent n6 n4) (adjacent n4 n6)
(adjacent n4 n5) (adjacent n5 n4)
(adjacent n5 n6) (adjacent n6 n5)
(= (size) 0)

)
(:goal (and (>= (size) 3))))

6.4 SAT Encodings

To decide whether or not an undirected graph G = (V,E) can be colored with k colors, for each node vi ∈ V
we introduce indicator variables xi,1,xi,2, . . . ,xi,k, where xi, j, i ∈ {1,2, . . . , |V |} and j ∈ {1,2, . . . ,k}, denote that
node vi is assigned to color j. We impose that each node is colored;

f1 =
∧

vi∈V

∨
1≤ j≤k

xi, j,

and that no two nodes connected via one edge share the same color:

f2 =
∧

{vh,vi}∈E

∧
1≤ j≤k

(¬xh, j ∨¬xi, j).

The formula f = f1∧ f2 is satisfiable if and only if the graph enjoys a valid k-coloring.

v1 v2 v3

Figure 6.2: Example graph for finding a 2-Coloring.
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Program 6.3: PDDL encoding for Graph Coloring.

(define (domain coloring)
(:requirements :fluents :typing :conditional-effects)
(:types col node)
(:predicates
(adjacent ?n1 ?n2 - node)
(used ?n - node)
(color ?n - node ?c - col)

)
(:functions (colors))
(:action select
:parameters (?m - node ?c - col)
:precondition (and
(not (used ?m))
(forall (?n - node)
(or
(not (adjacent ?n ?m))
(not (used ?n))
(not (color ?n ?c))))

)
:effect (and
(used ?m)
(when (forall (?n - node) (not (color ?n ?c)))
(increase (colors) 1))

(color ?m ?c))))

As an example take G= (V,E) with V = {v1,v2,v3}, E = {{v1,v2},{v2,v3}} and k = 2, shown in Figure 6.2. We
have f1 = (x1,1∨ x1,2)∧ (x2,1∨ x2,2)∧ (x3,1∨ x3,2) and f2 = (¬x1,1∨¬x2,1)∧ (¬x1,2∨¬x2,2)∧ (¬x2,1∨¬x3,1)∧
(¬x2,2 ∨¬x3,2). The satisfying assignments x1,2, x2,1, x3,2, and x1,1, x2,2, x3,1 correspond to the following two
colorings: 1) color(v1) = 2, color(v2) = 1 and color(v3) = 2; 2) color(v1) = 1, color(v2) = 2 and color(v3) = 1.

For the other graph problems, the SAT encodings are similar.

The procedure by Davis, Putnam (1960) and by Davis, Logemann, Loveland (1962) is the basis of most modern
SAT solvers. It combines backtracking with constraint propagation (unit propagation).

The Davis-Putnam-Loveland-Longmann (DPLL) algorithm shown in Programs 6.4 and 6.5 tries finding an
assignment a ∈ {0,1}n for a Boolean function f : {0,1}n → {0,1} in conjunctive normal form (CNF), so
that f (a) = 1. It solves the satisfiability problem (SAT) problem, which is the first problem proven to be NP-
complete.

6.5 Game Encodings

In the encoding of Graph Coloring as a single-player game the player starts at an arbitrary graph node and
chooses in each step a next node until all nodes are selected. The result is a permutation of the graph nodes used
as an input for the greedy coloring algorithm. The smaller the color number found by the algorithm the higher
is the score of the play.

High-Diversity NPRA (HD-NRPA) elaborates on this observation to increases the diversity of the search and
provides further algorithmic advances.

The graph optimization problems we consider are cast as single-agent games so that the interface adapts the
nomenclature of a board game. The framework supports Monte-Carlo search algorithms like NMCS, NRPA
and HD-NRPA, together with different implementations for the policy table.

A move (play) corresponds to a selection of graph nodes. They are stored in the rollout which is bound by a
Boolean condition (terminal). The length and score are recorded, and the score is either minimized or maximized
(one global flag). Finding the potential set of successors (legalMoves) finalizes the implementation.
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Program 6.4: DPLL driver and solver.

public void solve(int nClauses, String[][] literals) {
ArrayList<Clause> Clauses = new ArrayList<Clause>();
for(int i=0;i<nClauses;i++) {

Clause clause = new Clause();
for(int j=0;j<literals[i].length;j++)

clause.addLiteral(literals[i][j]);
Clauses.add(clause);

}
System.out.println((!DLL(Clauses) ? "UN" : "") + "SAT.");

}
boolean DLL(ArrayList<Clause> Clauses) {

while (true) {
String literal = searchSingleLiteral(Clauses);
if (!literal.equals("UNIT")) {

removeClauses(literal,Clauses);
cutClauses(literal,Clauses);
if (Clauses.size() == 0) return true;
if (False(Clauses) || Empty(Clauses)) return false;

}
else break;

}
ArrayList<Clause> C1 = new ArrayList<Clause>(), C2 = new ArrayList<Clause>();
for (Clause c: Clauses) {

Clause d = new Clause();
for (String s: c.literals) d.addLiteral(s);
C1.add(d);

}
for (Clause c: Clauses) {

Clause d = new Clause();
for (String s: c.literals) d.addLiteral(s);
d.add(d);

}
Clause cl1 = new Clause(), cl2 = new Clause();
String l1 = pickLiteral(Clauses), l2 = "";
if (l1.startsWith("−")) l2 = l1.substring(1); else l2 = "−"+l1;
cl1.addLiteral(l1); cl2.addLiteral(l2); C1.add(cl1); C2.add(cl2);
return DLL(C1) || DLL(C2);

}

If not provided a priori, in NRPA each rollout (calling the constructor) is initially empty. Initially, the input is
read from the DIMACS files and stored in an adjacency matrix (an adjacency list implementation is also be
available). Output information on the search process and the improvement of the solution qualities is reported
on the screen.

Program 6.6 shows the running code for Clique, which is is the same for Independent Set (invert graph) and
Vertex Cover (invert the graph and set k′ := |V | − k). In the variation denoted by + in the experiments we
additionally maintain a list open, so that only nodes adjacent to already colored nodes can be colored.

Program 6.7 shows the initial implementation for Graph Coloring. The code has been slightly extended to
optimize the permutation order based on a greedy coloring algorithm. It is well known that the chromatic number
can be determined exactly if the best possible order of nodes for this algorithm has been found. Employing
Program 6.6 we compute the maximum clique for initializing the coloring process. First, because the size of any
clique is –of course– a natural lower bound on χ . Then, because it turns out that the maximum clique is a good
point for starting the coloring process. The resulting clique is written into a file, which is included as a solution
prefix in the Graph Coloring solver. We also adapted a selective policy based on maintaining the remaining
degree of uncolored nodes, with a preference given to choosing the ones whose number of colored neighbors is
maximal.

Last, but not least, Program 6.8 provides the code for computing hitting sets. The problem setting is a bipartite
graph in which a minimal selection of nodes (V) in the one set that covers all nodes in the other one (SET) must
be found.
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Program 6.5: DPLL helpers.

public class DavisPutnamLL {
HashMap<String,Boolean> literalMap = new HashMap<String,Boolean>();
class Clause implements java.lang.Cloneable {
ArrayList<String> literals;
Clause() { this.literals = new ArrayList<String>(); }
void addLiteral(String literal) { literals.add(literal); }

}
boolean False(ArrayList<Clause> Clauses) {

ArrayList<String> singleLiterals = new ArrayList<String>();
for (Clause c: Clauses) {

if (c.literals.size() == 1)
singleLiterals.add(c.literals.get(0));

}
for(String sl : singleLiterals) {

String neg;
if(sl.startsWith("−")) neg = sl.substring(1);
else neg = "−"+sl;
for (Clause c: Clauses)

if (c.literals.size() == 1 && c.literals.get(0).equals(neg))
return true;

}
return false;

}
String pickLiteral(ArrayList<Clause> Clauses) {

for (Clause c: Clauses) return c.literals.get(0);
return "";

}
boolean Empty(ArrayList<Clause> Clauses) {

for (Clause c: Clauses)
if (c.literals.size() == 0) return true;

return false;
}
void cutClauses(String literal,ArrayList<Clause> Clauses) {

String cutLiteral;
if (literal.startsWith("−")) cutLiteral = literal.substring(1);
else cutLiteral = "−"+literal;
for(Clause c: Clauses)

c.literals.remove(cutLiteral);
}
void removeClauses(String literal,ArrayList<Clause> Clauses) {

ArrayList<Clause> clausesToRemove = new ArrayList<Clause>();
for (Clause c: Clauses)

for (String l: c.literals)
if (l.equals(literal)) clausesToRemove.add(c);

for (Clause c : clausesToRemove) Clauses.remove(c);
}
String searchSingleLiteral(ArrayList<Clause> Clauses) {

String literalToRemove = "UNIT";
for (Clause c: Clauses)

if (c.literals.size() == 1) {
literalToRemove = c.literals.get(0);
if (literalToRemove.startsWith("−"))

literalMap.put(literalToRemove.substring(1),false);
else literalMap.put(literalToRemove,true);
break;

}
return literalToRemove;

}
}

6.6 Experiments

We took problems of the known DIMACS benchmarks. As competitors we choose UCT (averaging leaf scores),
NRPA (HD-NRPA, recursion level 5), NMCS (for nested Monte-Carlo tree search, recursion level 5), and SAT,
calling the solver Lingeling, while applying a binary search on value k. The SAT solving process had a 1 hour
timeout per instance and UCT was stopped after 100,000 rollouts.
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Program 6.6: Framework code for Clique.

class Game {
int length;
int rollout[V], visited[V];
Game() {

for (int j=0;j<V;j++)
visited[j] = 0;

length = 0;
}
bool terminal() { return length == V; }
double score () { return length; }
void play(int m) {
rollout[length++] = m;
visited[m] = 1;
for (int j = 0; j< V;j++)

if (visited[j] == 0 && !adjacent[m][j])
visited[j] = 1;

}
int legalMoves (int moves[]) {

int successors = 0;
for (int m = 0; m < V; m++)
if (!visited[m])
moves[successors++] = m;

return successors;
}

};

Program 6.7: Framework code for Graph Coloring.

class Game {
int length, colors;
int rollout[V], used[V];
Game() { colors = length = 0; }
bool terminal() { return length == V; }
double score () { return colors; }
void play(int m) {

if (m==colors) colors++;
rollout[length++] = m;

}
int legalMoves (int moves[]) {

int successors = 0;
for (int j=0;j<colors;j++)
used[j] = 0;

for (int j=0;j<length;j++)
if (adjacent[length][j])
used[rollout[j]] = 1;

int j=0;
for (int j = 0; j < colors; j++)

if (!used[j])
moves[successors++] = j;

moves[successors++] = colors;
return successors;

}
};

6.6.1 Clique

For maximizing Clique we executed the code shown in Program 6.6. We ran the NRPAω and NMCSω solvers
(the subscript refers to finding the maximum clique size, and the superscript refers to using an open list) on
specific DIMACS clique finding instances, which in the number of nodes are larger that the Graph Coloring
benchmarks. We could solve many instances at or close to the optimum ω . Table 6.1 shows that, given 10
minutes for finding the largest clique (with some exceptions) NMCSω turns out to be better than NRPAω in
larger instances, but worse in smaller ones.
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Program 6.8: Framework code for Hitting Set.

class Game {
int length, size;
int rollout[V], visited[V], chosen[V];
Game() {

for (int j=0;j<SET;j++)
visited[j] = 0;

for (int j=0;j<V;j++)
chosen[j] = 0;

length = 0;
}
bool terminal() { return size == SET; }
double score() { return length; }
void play(int m) {
rollout[length++] = m;
chosen[m] = 1;
for (int j = 0; j< SET;j++)

if (!visited[j] && adjacent[m][j]) {
visited[j] = 1;
size++;

}
}
int legalMoves (int moves[]) {

int successors = 0;
for (int m = 0; m < V; m++)

if (!chosen[m])
moves[successors++] = m;

return successors;
}

};

6.6.2 Graph Coloring

The few results of UCTχ (the subscript now refers to finding the chromatic number) in the Tables 6.2 and 6.3
show that NRPAχ , NMCSχ and SATχ are superior. According to additional experiments this observation re-
mains generally true for single-player UCT variants, when choosing not to propagate the average, but the maxi-
mum (or minimum) score, or when applying a robust criterion. We conclude that, compared to NRPAχ /NMCSχ ,
more implementation effort would be needed for UCTχ to perform well.

Prior to its own search, the Monte-Carlo solver for Graph Coloring calls one above Clique solver NMCS+
ω to

compute the lower bound and to initialize the rollout with the enforced coloring. Moreover, for the Clique part
in Tables 6.2 and 6.3 NMCS+

ω (given at most 100 seconds CPU time) is better than the SAT solver (SATω , given
1 hour CPU time).

The CPU time bound for NRPAχ /NMCSχ was set to 100 seconds for clique finding and 30 minutes for coloring.
The results were close to optimal in many cases. In Table 6.2 SATχ almost always determines the chromatic
number. For the harder results with several exceptions, we may conclude that NMCSχ performs slightly better
than NRPAχ and SATχ .

6.6.3 Independent and Hitting Sets

With repeated computations of Independent Sets (choosing one color at a time) some of the upper bounds for
Graph Coloring in Tables 6.2 and 6.3 can be improved. For the flat_?_? problems (given at most 15 seconds per
iteration) we got an optimal bound 20 for the first problem in the sequence, as well as 34, 34, 92, 93, and 93 for
the following ones. For queens_n_n, we could solve the problem 9×9 optimally, and for latin_square we found
111 as a slightly improved upper bound.

Moreover, a Hitting Set solver can help repeatedly finding vertex-disjoint independent sets.
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Instance ω NMCSω NMCS+
ω NRPAω NRPA+

ω

C125.9 34 34 34 33 34
C250.9 44 42 42 42 44
C500.9 ? 53 52 51 55
C1000.9 ? 59 60 57 62
C2000.9 ? 66 66 62 65

DSJC1000_5 15 14 14 14 14
DSJC500_5 13 13 13 12 13

C2000.5 16 15 16 14 15
C4000.5 18 17 17 – –

MANN_a27 126 124 125 125 126
MANN_a45 345 342 342 337 340
MANN_a81 1100 1090 1093 1085 1087
brock200_2 12 12 12 12 12
brock200_4 17 15 15 15 16
brock400_2 29 24 24 23 24
brock400_4 33 24 24 24 24
brock800_2 24 19 19 18 20
brock800_4 26 20 20 19 21

gen200_p0.9_44 44 39 44 41 44
gen200_p0.9_55 55 42 50 51 55
gen400_p0.9_55 55 50 50 50 52
gen400_p0.9_65 65 49 49 47 65
gen400_p0.9_75 75 71 71 72 75

hamming10-4 40 37 39 36 40
hamming8-4 16 16 16 16 16

keller4 11 11 11 11 11
keller5 27 27 27 26 27
keller6 ? 50 52 49 53

p_hat300-1 8 7 8 7 8
p_hat300-2 25 22 25 25 25
p_hat300-3 36 28 28 35 36
p_hat700-1 11 10 10 9 11
p_hat700-2 44 30 41 41 44
p_hat700-3 62 48 48 59 62

p_hat1500-1 12 11 11 10 11
p_hat1500-2 65 57 57 54 65
p_hat1500-3 94 77 77 82 94

Table 6.1: Clique results.

6.7 Summary

Monte-Carlo Tree Search is a general exploration strategy that —similarly to SAT solving— leads to concise
solver prototypes not only for games but also for many combinatorial optimization problems, including NP-hard
graph problems. It can be used as a heuristic method for analyzing hypertexts, and computer or social networks.
In fact, the scalable graph algorithms we considered apply to many other areas of computer science. For example
hitting sets can be used to minimize the inspection points in motion planning as illustrated in Chapter 23.

Considering the simplicity of the code, the sequentiality of the execution on one CPU core, and the limited
runtime invested per problem, the results on standard benchmarks are promising. The generic search framework
helps to perform policy-based benchmarking.

With no or little problem-specific knowledge in the encoding, the SAT solver also performed well, especially
for some Graph Coloring problems. This reflects the large amount of research and implementation efforts in a
top-level SAT solver like Lingeling.

NMCS/NRPA intensifies the search with increasing recursion depth. The nestedness and policy refreshments
relate to exponential restarting strategies known to be effective in SAT. We see there is much more common
ground between the two solving approaches to be explored.

On the first glance, the outcome of the comparison of (simple) NMCS with (highly engineered) NRPA surprises.
The implementation of NMCS is much simpler than the one of NRPA, but it frequently turned out to be the
better solver. One interpretation is the following: if the policy as the learning object enjoys too few updates,
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Instance χ SATχ UCTχ NRPAχ NMCSχ SATω

anna 11 11 11 11 11 11–31
david 11 11 11 11 11 11–29

games120 9 9 9 9 9 9–14
homer 13 13 13
huck 11 11 11 11 11 10–25
jean 10 10 10 10 10 21–23

fpsol2.i.1 65 8–66 65 65 –
fpsol2.i.2 30 13–30 30 30 –
fpsol2.i.3 30 11–30 30 30 –
inithx.i.1 54 9–54 54 54 –
inithx.i.2 31 10–31 31–32 31 –
inithx.i.3 31 9–31 31 31 –
le450_5a 5 5 5–10 5–8 5–43
le450_5b 5 5 5–10 5–8 5–43
le450_5c 5 5 5–8 5–8 –
le450_5d 5 5 5–8 5–7 –
miles250 8 8 8 8 8 8–17
miles500 20 20 20 20 20–39
miles750 31 12–31 31.6 31 31 31–65
miles1000 42 11–42 42.3 42 42 40–80
miles1500 73 10–73 73 73 73 60-102
mulsol.i.1 49 18–49 49 49 27–89
mulsol.i.2 31 26–31 31 31 22–88
mulsol.i.3 31 25–31 31 31 24–89
mulsol.i.4 31 27–31 31 31 17–89
myciel3 4 4 4 2–4 2–4 2
myciel4 5 5 5 2–5 2–5 2
myciel5 6 5–6 6 2–6 2–6 2
myciel6 7 5–7 7 2–7 2–7 2
myciel7 8 5–8 2–8 2–8 2

queens_5_5 5 5 5 5 5 5
queens_6_6 7 7 9 6–7 6–7 6
queens_7_7 7 7 9.4 7 7 7–25
queens_8_8 9 8–9 10.7 8–10 8–9 8–28

queens_8_12 12 12 13.6 12 12 12–33
queens_9_9 10 8–10 12 9–11 9–11 9–33

school1 ? 9–14 14–15 14–16 –
school1_nsh ? 7–14 14–17 14–17 –

zeroin.i.1 49 15–49 49 49 26–92
zeroin.i.2 30 22–30 30 30 28–85
zeroin.i.3 30 21–30 30 30 24–85

Table 6.2: Graph Coloring results for easier instances.

e.g., by very costly and/or long rollouts, due to its faster per-node performance, NMCS can be much faster in
its exploration.

The take-home message is that a quick implementation of an NP-hard optimization problem for Nested-Monte
Carlo search is often as simple as deriving a SAT encoding, and, with only a few lines of self-containing code,
its resulting performance can be better.

The optimization of orderings is inherent to many combinatorial problems. For Graph Coloring, depending on
the ordering chosen, the solution quality of the greedy algorithm varies between not being bounded by a constant
and optimal. Given that the number of permutations n! ≥ (n/2)n/2 rises quickly, learning good permutation
patterns in policies is challenging. MCS is one means to find such needle in the haystack.

An open problem is to find necessary/sufficient criteria for the convergence of NMCS/NRPA. While as in most
MCS algorithms based on rollouts, we have probabilistic completeness in the sense that an optimal solution can
always be found by chance. However, through nesting and adapting policies the success likelihood can become
arbitrarily small, so that for now we cannot say for certain that the expectation of finding the optimum is equal
to 1.



6.8 Bibliographic Notes 117

Instance χ SATχ UCTχ NRPAχ NMCSχ SATω

DSJC125.1 ? 5 7 4–6 4–6 4
DSJC125.5 ? 10–20 21.9 10–21 10–19 10–76
DSJC125.9 ? 12–48 50 34–49 34–47 31–118
DSJC250.1 ? 6–9 4–10 4–10 4–39
DSJC250.5 ? 8–36 12–36 12–35 –
DSJC250.9 ? 8–88 43–87 43–84 –
DSJC500.1 ? 6–15 5–17 5–16 –
DSJC500.5 ? 8–64 12–65 12–63 –
DSJC500.9 ? 8–172 52–161 52–156 –

DSJC1000.1 ? 6–26 5–27 5–27 –
DSJC1000.5 ? – 14–116 14–114 –
DSJC1000.9 ? – 56–299 56–293 –
latin_square ? 90–121 90–138 90–132 –
le450_15a 15 9–15 15–17 15–16 –
le450_15b 15 9–15 15–17 15–16 –
le450_15c 15 9–23 15–25 15–24 –
le450_15d 15 9–23 15–25 15–24 –
le450_25a 25 9–25 25 25 –
le450_25b 25 9–25 25 25 –
le450_25c 25 9–27 25–30 25–29 –
le450_25d 25 9–27 25–30 25–29 –

flat300_20_0 20 11–40 11–39 –
flat300_26_0 26 11–40 11–39 –
flat300_28_0 28 9–40 11–31 11-31 –

flat1000_50_0 50 – 15–113 15–112 –
flat1000_60_0 60 – 15–114 15–113 –
flat1000_76_0 76 – 13–114 13–113 –
queens_10_10 ? 10–12 13.5 10–13 10–12 10–36
queens_11_11 11 10–13 14.4 11–14 11–13 11–41
queens_12_12 ? 12–14 15.9 12–15 12–15 12–44
queens_13_13 13 9–16 13–17 13–16 13–49
queens_14_14 ? 10–17 14–18 14–17 –

r_1000.1c ? – 80–111 80–120 –
r_1000.1 20 9–21 20–21 20–21 –
r_1000.5 234 – 234–246 234–271 –
r_250.1c 64 9–67 64–67 64–66 –
r_250.1 8 8 8 8 7–14
r_250.5 ? 8–66 65–67 65–66 –
r_125.1c 46 12–46 46 46 31–88
r_125.1 5 5 5 5 5
r_125.5 36 13–36 38 36 –

Table 6.3: Graph Coloring results for harder instances.

6.8 Bibliographic Notes

AI search often addresses solving NP-hard optimization problems [221] like number partitioning [415] or rect-
angle packing [351]. Even classics like the (n2−1) Puzzle and Blocksworld are NP-hard when minimizing the
number of moves [528, 580]. An initial set of 21 NP-hard problems has been provided by Karp [382].

As described in the previous chapter, the algorithm UCT belongs to the wider class of Monte-Carlo search
(MCS) algorithms [86]. Besides solving specific one and two player games, variants of UCT are also best in
playing general games [255].

There are single-agent variants of UCT, like SP-UCT, extending the above formula by some additional term,
e.g., by

√
σ2 +D/ni, where σ2 is the variance in the results, ni the number of simulations, and D another

constant [554]. There are also different backpropagation criteria, like average for progressing the expected
score, maximum for choosing the node with the highest score, robust for choosing the node which maximizes
the lower confidence interval [553, 137].

Since Cook’s encoding of a non-deterministic Turing machine as a Boolean formula in 1971, we know that
SAT is NP-complete. SAT solving is a discipline on its own, with annual conferences and competitions. Starting
with DPLL (see Chapter 1) there are numerous refinements like watch literals, and clause learning. Restarting
strategies and heavy-tail distributions in SAT have been studied by [298]. Aspvall, Plass and Tarjan showed that
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2-SAT is polynomial. There are interesting theoretical observations on 3-SAT such as the phase transition the
clause-to-variable ratio of ≈ 4.5 (for random instances), and a SAT solver with running time O(1.33n).

The DIMACS benchmarks are described by [468, 111]. First results on greedy graph coloring can be found
in [448]. Graph coloring with hitting set and Tabu Search (and a bound on the residual graph) are some of
the best approximate coloring algorithms for the DIMACS benchmark [659]. Other cost models for the Clique
problem have been proposed by [592].



Chapter 7

Multimedia Data

In terms of big data, multimedia content in the form of digital audio and video is one of the fasted expanding
sources. This is accelerated by the growing resolution on fixed and mobile devices and given that the infrastruc-
ture for filming is present on almost every smartphone in our pocket.

The production of digital video is demanding, but during the process different errors can be introduced. Hence,
quality control (QC) is mandatory for multimedia companies.

In this chapter, we develop and evaluate several approaches to feature extraction on sets of time-based events. On
the one hand, these sets of events are extracted from video files and, on the other hand, manually annotated. By
using methods of supervised machine learning the two sets of events will be mapped onto each other. After that,
per time slot and requested event type, a binary classification will be applied. Thus, aspects of data mining and
media technology will be discussed and combined with the goal to reach a reasonable reduction of the input-set
by projecting it on an output-set. This will yield a save of operator-time in an automated process environment
for quality control of audio-visual files.

7.1 Introduction

To1 meet the aspects of quality assurance in media industry, available analysis tools are integrated in the process
flow to support decisions. One question is whether a video file meets all relevant requirements to be broadcast,
or whether further processing steps are needed.

Analysis tools rate the audio-visual material at different levels in the process. However, the baseband analysis
remains a major challenge because the results of the various tools are always coupled with uncertainty. In addi-
tion, the accuracy, the recall, and the precision in individual analysis tools are often insufficient. Furthermore,
tools from the professional sector are black boxes and provide no insight into their internal workings. Another
problem is the syntax of the analytical results because there is no standardized notation being accepted among
all tool manufacturers.

These facts make it difficult to make the right decisions in the process flow. Also, the prediction quality of the
events varies not only from tool to tool, but also between different analysis focuses. Therefore, it is necessary
to interrupt the process flow and evaluate the results manually, after passing the file through an analysis tool.
Based on these inspections, decisions for successive actions are made.

The demanding question is whether there is a way through which a manual intervention could be accelerated
by intelligent filtering of the analytical results, and to what extent an added value from supposedly independent
results from multiple analysis tools with respect to the same audio-visual file can be obtained. Machine learning

1 This chapter is based on joint work with Fritz Jacob. It improves the work from [204].
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Figure 7.1: Production of digital media files: tape input and analysis setup.

by data mining the tools’ analyses can provide a basis for improved decisions. However, as the frame-based
data is a time series of many, even noisy, events, the choice of features is not immediate, so that novel discrete
approaches for feature extraction are derived.

Defects caused by the capture device or any other means during the ingest must be recognized early. Otherwise,
this may cause a loss of video material, since a video tape has a limited lifetime, is possibly destroyed, or has
been deleted after the import, so that only the faulty digital variant is left at the end.

Fortunately, there are professional multimedia QC tools. Even outdated video hardware can be utilized as it
supports real-time error logs during playback of Digital Betacam-tapes. All these are tuned to find artifacts in
the audio or video streams and result in a set of events of anomalies found in the input files, often associated
with confidence values. However, the number of results and their quality differ significantly, so that manual QC
often remains a time-consuming task for the operator.

Although the Digital Betacam recorders equally report read disturbances on the audio and the video head, it is
a magnetic tape format for video, so that the focus of this chapter is video analysis.

We start with a general description of the problem we look at. Then, we address the essentials of the feature
extraction modules, and evaluate the effectiveness of these approaches in a series of experiments.

7.2 Problem Formulation

In the broadest sense, we aim at a mapping between two sets of temporally correlated events in order to detect
patterns in one of the event sets. An event e is a quadruple e = (start,end, type,confidence) with start,end ∈ N,
type ∈C, where C describes a set of event types, and confidence ∈ R∩ [0,1]. The set of all events is denoted by
E . Each event e ∈ E refers to a domain in which it is situated.

A domain D ∈ D is a pair (length,E) containing its duration length and a time-dependent set of events E ⊆
E . The set of events in a domain D = (length,E) can be partitioned into sets of automated events A ⊆ E
and manual events B ⊆ E with E = A∪ B and A∩ B = /0. Furthermore, for domains D1, . . . ,Dn with Di =
(lengthi,Ei), classes A and B are defined as A = A1 ∪ . . .∪An with Ai ∈ Ei and, similarly, for B we have
B = B1 ∪ . . .∪Bn with Bi ∈ Ei, i ∈ {1, . . . ,n}. If D = (length,E) and E = A∪B, we impose that for all e =
(start,end, type,confidence)∈E we have 1≤ start< end≤ length, and for all e=(start,end, type,confidence)∈
A and e′ = (start′,end′, type′,confidence′) ∈ B we have type 6= type′.

Events in one domain can refer to identical type. Function types : E → A maps events to their according types,
function events : E×C→ E projects events to ones of the chosen type, and function evalA,b : N→ {0,1} is a
mapping indexed by a set of events (A,b) ∈ 2A ×B used for binary classification.
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e.type length(D)
a1 0.75
a2 0.25 1.0 0.75
a3 1.0 0.75
a4 0.75 1.0
a5 0.5

AD

b1 1.0
b2 1.0
b3 1.0

BD

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 7.2: A sample domain with duration 14.

We are now ready to define the learning problem. Given a set of domains D = {D1, . . . ,Dn} inducing sets of
automated events A = {A1, . . . ,An} and manual events B = {B1, . . . ,Bn}, the event learning task is to find a
binary classifier evalA,b that with respect to set Ai ∈ A determines the existence of b ∈ types(Bi), Bi ∈B and
i ∈ {1, . . . ,n}, for a given time step t.

Figure 7.2 depicts a sample domain D. In the upper part of the figure we see the temporally correlated occurrence
of the events in A, and in the lower part the occurrence of the events from B. Each event contains its confidence
parameter, which is also reflected in its gray scale (e.g., event e = (2,5,a1,0.75) can be found). In addition, we
see that there are a total of eight different types of events in this image. Several events of the same type may
co-exist in one domain (e.g., for a2). The intersection of events of the same type, however, is prohibited.

For the events e = (start,end, type,confidence) ∈ A we have type ∈ {a1, . . . ,a5}, and for the events
e′ = (start′,end′, type′,confidence′) ∈ B we have type′ ∈ {b1, . . . ,b3}. Moreover, types(A) = {a1, . . . ,a5},
events(a3,D) = {(4,7,a3,1),(11,14,a3,0.75)}, and evalA,b1 is the following mapping from N to {0,1}:

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
eval(A,b1) 0 0 1 1 1 0 0 0 0 0 0 0 0 0

An event e = (start,end, type,confidence) ∈ A is sliced by event e′ = (start′,end′, type′,confidence′) ∈ B into an
event e′′ = (start′′,end′′, type′′,confidence′′) if start′′ = max{start,start′}, and end′′ = min{end,end′}. Function
probeA,b : B→ E is a slice of A⊆ E with respect to event b ∈ B. P is the set of all probes b. Moreover, function
patternA,r : B→P denotes a pattern to select a probe in set A with respect to event b ∈ B and radius r ∈ N.
Figure 7.3 highlights probeA,2 in dark and patternA,2(9,10.b2,1) in light gray.

An interval is an ordered pair (t1, t2) with t1 ≤ t2 representing the set {t ∈R | t1 ≤ t ≤ t2}, and an interval tree I
is a data structure supporting the operations insert(I,n) to add an interval n = (t1, t2) to I; delete(I,n) to remove
an interval n = (t1, t2) from I; and search(I, i) to locate an interval n = (t1, t2) in I with t1 ≤ i≤ t2.

For an event e=(start,end, type,confidence)∈D we map t1 to start and t2 to end. An efficient implementation of
an interval tree supports all the above dictionary operations efficiently in O(lgn) time, while requiring only O(n)
space. Note that when all intervals are to be reported in a stabbing query, the running time is output-sensitive
and bounded by O(k+ lgn), where k is the size of the output intervals.

7.3 Feature Extraction

The learning problem we aim at is a classification of multi-variate time series, where for all types c individ-
ual event sets are considered. To reduce the dimensionality of the learning vector, feature extraction is rec-
ommended. In the following, we discuss three different approaches, namely fingerprints, an event correlation
matrix, and naive statistics.
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t 1 2 3 4 5 6 7 8 9 10 11 12 13 14
a1
a2
a3
a4
a5
...

b2
...

︸ ︷︷ ︸
Probe

Figure 7.3: A pattern and a probe wrt event (9,10,b2,1), A = {a1,a2,a3,a4,a5, . . .} and r = 2.

Fingerprints

A fingerprint is a data structure related to a probe, for which repeating combinations of events are generalized
and used for classification. More formally, A fingerprint fA,c,r: N→ E with resepect to radius r ∈ N is a slicing
of A with respect to a time interval, defined through an event type c ∈ types(B), B ∈B. It consists of a radius r
which defines the extension to both sides of its current median time point t. The set of all fingerprints is denoted
by F . The function radius : F→N can be used to access the extension of the fingerprint, while the length | f | of
the fingerprint f ∈ F is defined as 1+2 · radius( f ).

For matching a fingerprint f with set A we use an algorithm performMatch that loops on t (to the length of
A) and k (to the radius of f ). In the inner loop for each c in the slice with respect to k and t that is touched,
the evaluation h is incremented by the weight w of k and t, times a certain combination of probability and
confidence. The running time of this algorithm is O(|A|2 · | f |).

t -3 -2 -1 0 1 2 3
a1 0.75
a2 1.0
a3 0.25

(a) Base fingerprint 1

t -3 -2 -1 0 1 2 3
a1 0.5
a2 0.75
a3

(b) Base fingerprint 2

t -3 -2 -1 0 1 2 3
a1 0.5
a2 0.25
a3 0.75

(c) Base fingerprint 3

t -3 -2 -1 0 1 2 3
a1 0/3 1/3 2/3 3/3 3/3 1/3 0/3
a2 1/3 2/3 2/3 1/3 0/3 0/3 0/3
a3 1/3 0/3 0/3 0/3 0/3 1/3 0/3

(d) Intermediate result

Figure 7.4: Example of the superposition of fingerprints.

The superposition of the base fingerprints f1 . . . , fk with respect to events a1 . . . ,al operates in two phases. The
relative occurence of the events is determined, followed by the multiplication with the confidence value average
confidence f (a). For the example of Figure 7.4 we have confidence f (a1) = 0.58.

To increase the influence of values closer to the center, we apply Gaussian decay to both ends of the fingerprint.
The weight of time step t and radius r is weight(t,r) = e−4·(t/r)2

.

For scoring we apply procedure performMatching to a set of manual events B (see Program 7.1). For each
b in B, an individual score is computed, and the predicted values v are normalized to [0,1] ⊆ R. Finally, we
add the distance values between the predicted and the manual annotation u ∈ {0,1}, so that score(u,v) =
∑1≤t≤length−|ut − vt |.
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Figure 7.5: A score function for fingerprints.

Program 7.1: Perform matching of fingerprints.

procedure performMatching
Input: Event set A, fingerprint f
Output: Array V with prediction per time step

for t = 1 to |A| do
V [t]← 0
for each c ∈ sliceA(t)∪ slice f (center( f )) do

V [t]←V [t]+Prob f ,t(c) (* ·con f idence f (c) *)
for k = 1 to radius( f ) do

w← weighting(k,radius( f ))
h← 0
for each c ∈ sliceA(t + k)∪ slice f (center( f )+ k) do

h← h+Prob f ,t+k(c) (* ·con f idence f (c) *)
V [t]←V [t]+h ·w
h← 0
for c ∈ sliceA(t− k)∪ slice f (center( f )− k) do

h← h+Prob f ,t−k(c) (* ·con f idence f (c) *)
V [t]←V [t]+h ·w

For the example plot in Figure 7.5 we have score ([0.1,0.8,0.9,0.5,0.3,0,0.8,0.9,0.7,0.6,0.2,1,0.1,0],
[0,1,1,0,0,0,1,1,1,0,0,1,0,0] = −2.7.

Program 7.2 shows the steps necessary to generate fingerprints. The according evaluation function is encoded
in Program 7.3. Program 7.4 shows the score function, which takes the result of performMatching as input.

Event Matrix

Another aspect for the generation of a model for feature extraction of a set of annotated video data is based
on the following observation. Suppose an event of type c ∈ types(B) frequently occurs at the same time as
c′ ∈ types(A ); we can infer that with high probability the interval of a c′ event has to be annotated with c.
Therefore, we use a event (correlation) matrix that denotes statistical relations between events from a given
domain.

Let k = |types(A )∪ types(B)|. The event matrix M of size k2 is defined as M = {Rc ∈ Rk | c ∈ types(A )∪
types(B)}, where each Rc is a row in M and each column of Rc contains a pair of values (c′,z) with c′ ∈
types(A )∪ types(B), c 6= c′ and z ∈ R. Assuming function occurD (c) : C→ N to count the number of events
of a given type, and matchesD,q : C×C→N to return how often two types are present at the same time and q to
be the threshold parameter for tolerance, we have z = ∑D∈D matchesD,q(c,c′)/occD (c′).

The score of an event matrix M with respect to event set A and b ∈ types(A ) is a function of time
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Program 7.2: Computing fingerprints.

procedure createFingerprints
Input: Domains D , event types c, radius r and number n of combined fingerprints
Output: Fingerprints singleb,startb and endb

P← /0
for D ∈D do

for e ∈ eventsc(D) do
append {patternA,r(e)} to P

Single← Start← End← /0
for pe ∈ P do

if eventLength(pe) = 1 then
append {convert(pe,start(pe))} to Single

else
append {convert(pe,start(pe))} to Start
append {convert(pe,end(pe))} to End

singleb = evaluateFingerprints(Single,D ,c,n)
startb = evaluateFingerprints(Start,D ,c,n)
endb = evaluateFingerprints(End,D ,c,n)

Program 7.3: Evaluation of fingerprints.

procedure evaluateFingerprints
Input: Set of base fingerprints F , set of domains D , event type c, number n of combined fingerprints
Output: fingerprint result

Q←{}
for D ∈D do

for f ∈ F do
V ← per f ormMatching(A, f )
f ingerprintScore← calculateScore(V,eventsc(D))
Q[ f ]← Q[ f ]+ f ingerprintScore · |F |−1

sort Q by values
resultList← select n leading entries of Q
result← merge(resultList)

Program 7.4: Computing the Score on basis of prediction values.

procedure calculateScore
Input: Array V with predictions, set of von annotated events E
Output: score

U ← array with length |V |, initialized with 0.0
for e ∈ E do

for i = e.start to e.end do
U [i] = 1.0

normalize P
score← score(V,U)

scoreA,M,b(t) = ∏
e=(start,end,type,confidence)∈sliceA(t)

1+ relOccM(b, type),

where relOccM(c) : C×C→ N is the relative occurrence of accessing event c with respect to event c′.

Naive Statistics
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We consider two more statistical features that are generated from the event data stream. Both rely on accumu-
lating parameters for each time step t and can be used directly from a result set of A events. The relevance of a
time step is the sum of confidence values, i.e.

relevance(t) = ∑
e=(start,end,type,confidence)∈sliceA(t)

confidence,

where slice f : N→ 2C denotes the set of event types that are present at a certain time step. The degree of
parallelism in an event set A at time step t is parallel(t) = |sliceA(t)|.

7.4 Evaluation

We first copied all video test data (with and without audio) to a Digital Betacam tape. Then, the tape was phys-
ically manipulated to enforce errors in the replay. Especially, we used diagonal bendings to generate dropout
artifacts, see Figure 7.6. Horizonal bendings led to the loss of audio signal, and stronger manipulations to prob-
lems in the recorder, while perforation let to no significant change to the video.

Given that the video data was uncompressed, we converted it to IMX MPEG 50 and stored it into (so-called)
MXF containers. The MXF data was forwarded to the different tools for analysis. Manual annotation has been
done via a cutting program (see Figure 7.7). It features annotations via markers, linking a text to a frame or
sequence of frames in an easy-to-handle manner.

First, we separated start from end fingerprints. For constant color frames we get the picture shown in Figure 7.8.
For the learning process we use a set of annotated files and generate the following six different feature graphs
for each of the files to be analyzed: single-frame fingerprint, start-fingerprint, end-fingerprint, event matrix,
accumulated relevance, and parallel events. Every graph is a time series of discrete values for each frame.
Based on the large amount of noise, we avoid thresholding, but instead take these as features to train a classifier
(random forest). If g is the number of feature graphs and r is the radius of the frame to be classified we obtain
3g+(2r+1)g+1 attributes. For the six graphs above and a radius of 30 frames this results in 385 attributes.

As a feature of the algorithm, we learn different parameters for each of the five error types. Moreover, to
control the experiment, we used 10-fold crossvalidation already on the file layer (to avoid inter-dependency
of the features collected), and the standard statistical quality measures (accuracy, error rate, precision, recall,
F1-measure). As the parameter space, we had 6 feature graphs (fingerprints, result correlation matrix, etc.),
4 analytical tools, n as the frame radius, together with 6k model-specific parameters for the fingerprints and
l model-specific parameters for the result correlation matrix. With n = 50, k = 20 and l = 10 we have 56.7
million combinations, so that we performed the experiments in four stages: 1) for each of the five event types
(macro blocking, digibeta drop outs, stripe blocking, edge blocking, and border blocking) 35 configurations
were tested each (30 for fingerprints and five for event matrix correlation); 2) the frame radius for the best three
configuration for each type is varied, yielding 75 further configurations; 3) additional feature graphs for the best
three configurations are chosen yielding 15 further configurations; 4) for each event type we drop tools in their
best setting, yielding 40 further configurations. For each of the steps a good parameterization is determined.
Table 7.1 investigates the quality of the overall learning process.

If we relate these numbers to savings in operator time for 1m video, this is a significant advance. For manual QC
we measured 30m working time and about 18 events. This is compared to the results of the four professional
tools that in summary yield 671 events in about 15m. Checking one event might consume 3s, so that again 30m
working time is needed. The learning scheme, however, resulted in only 22 events, which contained 66% of the
manual annotated ones. This reduces the working time to about 1m. Note that the input set of the professional
tools is also incomplete and contains errors and more than five types of events. While the training process
consumes considerable time, classification is immediate.
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Figure 7.6: Artifacts, top to bottom: border blocking, dropouts, edge blocking, macro blocking, and stripe blocking.

Figure 7.7: Manual annotation of video data.

7.5 Summary

We have looked at one problem of multimedia industry in general and broadcasting companies, which faces
tremendous amounts of data: the semi-automated filtering and subsequent storage of digital video. Three ap-
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Figure 7.8: Effect of start-end fingerprints to detect constant color frames (start blue, end red, manual shaded).

Event Type Number Accuracy F1-Measure
Macro Blocking 199 0.79 0.58

Digibeta Drop Outs 135 0.91 0.76
Stripe Blocking 84 0.85 0.35
Edge Blocking 81 0.84 0.43

Border Blocking 41 0.81 0.3

Table 7.1: Results on learning.

proaches for feature extraction were developed and evaluated. The concept of fingerprints helped deriving typi-
cal automatic event combinations in certain manual event types. Furthermore, an event-matrix was introduced,
through which the dependence on automatic to manual events can be mapped. Naive statistics aim at anomalities
in the event data, regardless of the types of events. A combination of features for eventual classification was
determined.

For the evaluation of approaches five manual event types were defined and applied to these various configuration
parameters. The best result could be achieved with the event type digibeta dropouts (Accuracy: 0.91; F1: 0.76),
the worst with border blocking artifacts (Accuracy: 0.81; F1: 0.3). This suggests that the selected event types
are suitable for different classifications. Furthermore, for certain manual event types, individual analysis tools
(e.g., Aurora results for digibeta dropouts) were sufficient, while for others a combination of analysis results
(e.g., Macro Blocking) leads to better results.

We improved automated QC of audio-visual inputs by classifying event data of different analysis tools. In
this way, an increase in the degree of automation could be obtained that is able to deal with uncertain and
imprecise analysis results. How much we could reduce the amount of the automatic analysis results, depended
on the (manually defined) event types. In principle, an arbitrary reduction is possible. The presented system can
provide a significant relief of the employees, by reducing the event diversity and the fact that virtually no prior
knowledge about the issues of analysis tools has been assumed.

The focus in dealing with the analysis results was on comparatively short events. For file-crossing events, both
automatic and manual, there were far too few test data items. Only a part of the available amount of information
of each event has been used since each event has different attributes, so that a direct comparison of several events
of different kinds is no longer possible. In future, however, it would be useful to exploit this unused information,
to find a way to make the process even more robust.

Apart from the used Digital Betacam tapes, learning data should also support other types of sources and formats
used in the broadcasting industry. This requires the implementation of an appropriate infrastructure, as well as
a simple user interface for annotation and review of video files and their analysis results ahead.

Rendering the on-line problem to deep learning is unsuitable, since there is no database, which can be used
to train the network (the test data we collected is also insufficient). Additionally, we deal with heterogeneous
features that when using the attribute-value pairs of event data are not readily available.
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7.6 Bibliographic Notes

For companies in the media industry an increased level of automation is a key success factor [264, 405, 629].
One crucial operation is the ingest of digital or analog video tapes into a computer storage system for further
post-processing and/or archival tasks [316, 144, 556, 103]. Supported by the Bay Area Video Coalition, the
A/V Artifact ATLAS for the collection of errors in audio-visual material has expanded continuously and already
contains many images and sounds for various types of errors. There is also a research department of the Eu-
ropean Broadcasting Union, which —in cooperation with various broadcasting companies— published a list
of QC recommendations which will be extended in the future. This set of QC items becomes accepted among
broadcasting companies more and more.

There are two main terms for dealing with time-dependent data. On one side we have sequential data, as
in [158]. This designation aims at the assessment of a given ordering on individual data, such as characters
within a string. Intersections or the occurrence of parallel data cannot be represented. Also there is no time
domain on which the individual data depends. These problems have already been mentioned by [14], who then
proposed his formalism to describe time-dependent events. On the other site, we have the term time series, of
which [272] provides a comprehensive overview of these, their areas of application and various methods for
analysis. A large field of application of the time series analysis to predict based on trends, as in the stock market
case [464].

When multiple, parallel time series are combined, we speak of multivariate time series data. To be able to
predict failures of equipment in telecommunication networks, [652] developed a system for pattern recognition
in time series of events, which is based on a genetic algorithm. The approach can only partially be transferred
to the given problem, since this is a real-time application, and the predictions for the future to have to meet the
already occurring events.

For feature extraction to segment audio files by [293] features are represented as time-series data for a binary
classification task (segment boundary, no segment marker) with time windows of 100 ms. A way to extract
useful features on the incoming event data to be then combined via a classifier has still to be found.

For data mining [484] found a method for the unification of time intervals to subsequently detect patterns in a
database. Each entry contains a (larger) number of multivariate time series. The aim is to group entries based
on the information contained in the time series. This approach can be applied to the given problem by casting
several video files as a database, and by regarding the events of A as a time series. Although the approach
identifies frequent patterns, certain events from B are not classified as such. Alternative approaches for the
classification of certain patterns based on (multivariate) time series for various application areas other than the
media industry have been proposed [37, 588, 282].

To automate finding and optimizing a suitable configuration to an event type as much as possible, adaptive
boosting [557] can be applied to the extracted features. It also may be possible to use principal component
analysis [174] for an additional reduction of the learning vector dimension. The ultimate goal is an unsupervised
learning algorithm to detect common event combinations [482]. The event correlation matrix shares similarities
with the covariance matrix [464, 258].



Chapter 8

Network Data

Probably the biggest amount of data these days is generated through the steadily increasing Internet traffic.
Within this volume, incidents for network attacks have to be found and correlated.

We distinguish between information safety (protection against unwanted functionality) and security (protection
against malicious actions). For this we need to know system and communication models as well as abilities of
a potenial attacker, and have to determine the potential risks taken, while assuming a state of compromise; the
higher the level of protection, the larger the according efforts.

There are basically two different detection methods distinguished in the area of Intrusion Detection Systems:
misuse detection and anomaly detection. Detecting intrusion attempts by predefined patterns (also called signa-
tures) is known as misuse detection. The different cases of possible misuses must be known to have appropriate
patterns for the detection. E.g., misuses may be detected by code patterns in the payload of network packets
or by violations against security policies. This detection method is known to be very reliable with respect to
false positive alarms. However, the drawback is that incidents must be known in advance. This chapter studies
a correlation method for Security Information and Event Management (SIEM) systems which is based on Con-
ditional Random Fields and Tolerant Pattern Matching. This advanced machine learning method exploits expert
knowledge to improve the detection accuracy of incidents, particularly addressing the problem of incomplete
expert knowledge. It is shown that the method improves the detection accuracy of the market leading SIEM
systems demonstrated by the correlation of events. Furthermore, it is shown that a Conditional Random Field is
less sensitive to the imbalanced data problem than a naïve Bayes model. This will be helpful in using modeled
knowledge in combination with learning from examples.

8.1 Introduction

Organizations1 implement more and more business processes with IT systems and process sensitive data by ap-
plications. The threat against the IT infrastructure is a well-known and steadily growing problem. The attackers’
motivations differ widely and range from stealing confidential data to gaining profit or harming an enterprise’s
reputation. Therefore, organizations need to protect their business-critical resources appropriately. One essential
component of a comprehensive security management is to monitor the IT infrastructure at different levels, such
as the operating system, network, and applications.

During the years, the complexity of IT infrastructures and, therefore, the amount of events to be processed have
increased. Accordingly, the need for an efficient monitoring has grown. Additionally, enterprises are forced by
governmental regularizations to ensure secured networks and data privacy, which is summarized under the term

1 This chapter is based on joint work with Carsten Elfers, Hartmut Messerschmidt, and Otthein Herzog. It puts together and
improves the work from [240, 239].
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IT compliance. Security Information and Event Management (SIEM) systems manage security-related events
generated by different sources, like IDSs, firewalls, antivirus programs, and database logs, to correlate relations
between them and to detect possible attacks.

Intrusion Detection and SIEM systems are often confused since they have the common objective to detect
intrusions. However, SIEM systems go far beyond detecting intrusions. Technically, SIEM systems are used to
gather events from different sources to generate an overview of the network status and to discern and report
possible threats to a security operator. Event correlation is the major objective of a SIEM system for the purpose
of detecting incidents.

There are many kinds of Intrusion Detection Systems which are related to SIEM systems by considering them
as source or by using their methods in the SIEM correlation process. Mainly, they differ in their spatial coverage
and their method of detection. Intrusion Detection Systems are distinguished with respect to their spatial cov-
erage (i.e., the area under investigation) by Host Intrusion Detection Systems and Network Intrusion Detection
Systems.

A host IDS is a monitoring software installed directly on a host, e.g., on a workstation or server. In contrast
to network Intrusion Detection Systems, the HIDS is restricted to detect intrusions on the particular host it is
installed on rather than detect intrusion attempts on all connected hosts. Considering only this aspect, the scope
of detection seems to be limited. But with a direct access to the host, it is possible to use different and possibly
more precise evidences — such as file integrity and CPU load information — than in the case of network-based
intrusion detection.

Instead of analyzing a particular host (like an HIDS does), a network Intrusion Detection System (NIDS) ana-
lyzes network traffic on a network connection. This makes the maintenance easier than HIDS since the NIDS
may cover a whole network and, therefore, it can be configured and deployed at a centralized point for the
whole network under investigation. However, an NIDS does not not the insight into the hosts like an HIDS,
which makes the detection of incidents more difficult or even impossible, e.g., on encrypted connections.

However, as attack data is sparse in the large amount of event data being processed by SIEM systems, sophisti-
cated correlation approaches are needed. In this chapter, we introduce a correlation method based on Conditional
Random Fields and Tolerant Pattern Matching. The system can generalize or abstract expert knowledge (by the
use of Tolerant Pattern Matching) as well as to learn from examples given during the application of the system
(by the use of the Conditional Random Field).

We compare the system with a leading SIEM system using events as input, and experimentally show that the
presented approach has a smaller false-negative rate while producing a reasonable false-positive rate. In particu-
lar, the system can detect unknown attacks, which have not been modelled by a security expert, whereas a more
traditional SIEM system needs exactly matching rules due to hard pattern matching. We also demonstrate that a
Conditional Random Field is less sensitive to the imbalanced data problem compared to a naïve Bayes model,
which is helpful in using modeled knowledge in combination with learning from examples.

Related methods have pros and cons: Anomaly detection methods have the advantage of detecting even unknown
attacks which is of significant value to protect a network. However, anomaly detection typically suffers from
an increased false positive rate of detection and the inability to explain the anomaly. Therefore, this kind of
method does not fulfill the major requirements to incorporate expert knowledge for improving the detection
accuracy. The missing interpretation of the anomaly delegates the task of explaining the anomaly to the security
officer, which leads to an increased time to react that is avoided by the presented approach. Another problem
inherent in the anomaly-based detection techniques is that an attacker might overcome the anomaly detection
by performing only slow changes to a particular user profile, and that not all users can be expected to have a
well-established behavior in the sense of anomaly-detection profiles. For example, some users may travel a lot
and therefore have different working times on a local server. For this group of users, the anomaly thresholds for
detecting an anomaly behavior is very high leading to a good entry point for possibly intruders operating below
this high threshold.

In contrast, misuse detection approaches are unable to detect unknown attacks and are, therefore, dependent on
a continuous update of their signature database, which violates the requirement of handling sparse and possibly
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incomplete expert knowledge naturally apparent in expert systems. However, they have the advantages of giving
interpretations of the observed incident by their signatures and of having typically a lower false positive rate.

Hybrid Intrusion Detection Systems are thematically close to enterprise SIEM systems since they are designed
to process information from spatially distributed detection systems with differing detection methods. However,
Intrusion Detection Systems are focused on detecting intrusions instead of discovering incidents as in the SIEM
correlation process. In summary, some approaches meet partly the wanted requirements. However, no approach
can be considered to perfectly match all.

8.2 Security Information and Event Management

Gaining a detailed impression of all SIEM solutions is out of the scope of this chapter. However, we want to
introduce the market-leading product ArcSight.

The correlation engine of the ArcSight SIEM is ArcSight ESM, which uses an efficient pattern matcher to
identify possible security risks by predefined rules. ArcSight uses the concept of filters and rules. Filters are sets
of Boolean conditions filtering the event stream. Rules contain a left-hand side of Boolean conditions which
may also contain filters. The right-hand side of a rule specifies the behavior in the case of a matching left-hand
side, e.g., notifying an administrator by email. Event sources (e.g., event data from IDS sensors or firewalls)
are connected via SmartConnectors to ArcSight. The events of the connectors are categorized (categorization is
the same as semantics normalization) to be uniquely handled by the correlation process. Therefore, the events
are categorized by Object, Behavior, Technique, Device Group, Device Type, Outcome and Significance. These
categorizations are necessary for all incoming events to be correlated.

events

rules

processed by

filters
check

active lists
read from

notify

write to

processed by

Figure 8.1: The ArcSight correlation process.

The ArcSight ESM Console offers several dashboard visualizations to help the security officer to investigate
the network status, e.g., the system status, malware infections or log-in activities. ArcSight uses the concept of
active lists to be stateful. Active lists are temporary lists used to store context information, such as informative
correlations or suspicious events. Several active lists may be specified; each active list is filled by triggered rules
which provide context information, e.g., for the evaluation of successive rules. Each active list has a predefined
frame size to store the context information, e.g., for 24 hours. The correlation process of ArcSight is sketched
in Figure 8.1. The normalized — or categorized — events are processed by rules and filters. The conditions
of rules may contain filters as well as the content of active lists to evaluate their left-hand side. This is only a
simplified view, rules may also refer to network models, asset models, priorizations, session lists, other rules or
correlation data monitors. The rules’ right-hand side can notify the user or write to active lists. The information
in the active lists can be processed by further rules.

Most enterprise SIEM systems focus on rule matching (misuse detection) algorithms which suffer from simi-
lar problems as signature-based Intrusion Detection Systems: Previously unknown incident cannot be detected.
However, some SIEM vendors, such as NitroSecurity, Unified SIEM, and QRadar, provide anomaly-detection to
increase the detection accuracy with respect to new incidents. Nonetheless, the final decision making is mostly
based on rules using anomaly evidence which still requires appropriate and comprehensive rule sets, but makes



132 8 Network Data

these approaches more flexible with respect to detecting at least some varying incidents. Using anomaly detec-
tion in addition to rule-based detection reduces the problem of incomplete expert knowledge, but coincidently
increases the number of false positives which contradicts the requirement of improving the detection accu-
racy. Furthermore, employing an anomaly detection method without the interpretation by rule-based correlation
induces the problem of missing interpretations of the incident. Therefore, all these systems are focused on rule-
based techniques and, in contrast to most Intrusion Detection Systems, all these systems are capable of using a
variety of background knowledge, such as asset and vulnerability information. The major drawback of all these
systems is that they require comprehensive and appropriate up-to-date rulesets to effectively detect incidents.

8.3 Anomaly Detection

An anomaly is an unexpected behavior of the network, maybe due to a malicious attack. System states are
frequently measured and recorded in the form of time series. There are different sorts of anomalies, simpler
ones are peaks in the time series, for which, usually, thresholds are applied. However, there might be periodicity
in the data, due to daily work shifts, weekends, or public holidays, that has to be taken into account, too.

In automated time series analysis, there are many different known machine learning approaches. As a general
distance metric on two time series, dynamic time warp applies, which is an extension of the edit distance
problem and solved with dynamic programming.

Another idea is to discretize input time series data into a set of strings that is further processed. One option is
symbolic aggregate approximation (SAX), illustrated in Figure 8.2: the discretization is achieved by imposing
a series of breakpoints running parallel to the x-axis and labeling each region between the breakpoints with a
discrete label.

Pattern matching then results in applying in form of substring matching. Known approaches, e.g., applied in
Snort (and various virus scanners), invoke the multiple-pattern string matching algorithm of Aho and Corasick.
The algorithm extends the known linear-time automata-based pattern matcher of Knuth, Morris and Pratt from
one to a set of pattern strings. By the massive amount of raw Internet traffic data (PCAP), even for detection
parallel versions of the approaches apply.

The two most promising anomaly detection approaches can be separated by their use of the data as either
continuous or discrete quantities.

Exponential smoothing is used to predict future values for a time series. The next point in time can be singular,
or, alternatively, several points in the future can be forecasted. Our interest is to predict the next value, which
can be compared to the actual measurement of the sensor. This way we can decide whether or not an anomaly
has been encountered.

An alternative proposal considers not only a fixed season but arbitrarily many. As a result, repeating patterns
can be detected not only for weekly, but also for daily patterns. While in a weekly pattern every day stands on
its own, this way a pattern can be found that, e.g., happens a) Monday-Thursday between noon and 6 pm, but
b) on Fridays only between noon and 4 pm and c) not at all at week-end times. Those patterns, however, have
to be learned by generated training data, and for each pattern we individually need a smoothing parameter that
has to be determined.

Not all recorded time series contain regularities, so that it can be hard to finally judge about possible anomalies.
To save resources in time and space, it may be recommended that some time series, when detected automatically,
can be ignored. Even if the acquisition problem of the data itself can be cumbersome already, the main problem,
however, is the impact of anomalies to the training data. Most approaches assume that the system data recording
is initiated at a certain clock speed, which, unfortunately, is not always the case in our setting.

There are tools that solve this problem via interpolation, by means of the contraction of several data points.
By the massive amount of data recorded, in the long run, the limited amount of memory becomes an issue. If
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Figure 8.2: Transforming a time series into a string with Symbolic Aggregate approXimation (SAX).

there are repeating patterns in the data, compression techniques are applicable. One may solve this problem by
storing only a fixed number of data points, so that the oldest data is replaced by the newest one. Such a database
is called round Robin database. A less demanding problem is that in the test data there might be a time shift as
patterns do slide in time.

More formally, a time series T of length n is an ordered sequence of pairs (ti,xi), 1 ≤ i ≤ n, with ti ∈ R≥0
being the time stamp and the xi ∈ R being the value measurement. The prediction for T is a sequence x′i,
1≤ i≤ n, with x′i ∈ R being the value prediction. There are different predictions that act as smoothed statistics
like the simple moving average x′i = (xi + . . .+ xi−k+1)/k = x′i + xi/k− xi−k/k or the weighted moving average
x′i = (wixi + . . .+wixi−k+1) with w1 + . . .+wk = 1.

For smoothing factor α ∈ (0,1)∩R the exponential smoothing Sα(T ) according to Holt-Winters is a prediction
defined as follows:

x′0 = x0

x′i = αxi−1 +(1−α)x′i−1, for 1≤ i≤ n.

Values of α closer to 1 have less smoothing effect and give greater weight to recent changes in the data, while
values of α closer to 0 have a greater smoothing effect and are less responsive to recent changes. To find an
appropriate value of α the method of least squares can be used.

The moving average requires that the past k data points be kept, whereas exponential smoothing needs the most
recent forecast value to be stored. Note that this incremental constant-time complexity will be dominated by
other preprocessing steps.

For the time series analysis none of the above approaches has been selected, but an individual anomaly detection
concept as a composition of different ideas. The basic assumption is that certain regularities are present in the
data, so that deviations from those regular patterns can be detected even if they are still within the given tolerance
bound. With respect to the given time step, they constitute an anomaly.

To keep the burden of configuration as small as possible, the temporal distance after which events are repeating
is determined automatically. The more data we have, the more exact the prediction of the length of such pattern.
Therefore, we expect an inaccurate prediction value for sparse data. Moreover, there is always the opportunity
that in the data stream there is no regular pattern. If this is known a priori or found in the analysis a posteriori,
such sensors are excluded from the time series analysis.

Based on a pattern length estimation, we can then predict in which interval the current measurement has to be
located. Cumulating a certain tolerance to the interval bounds, an evaluation is returned that indicates whether
or not an anomaly is present. If a repeated encounter of anomalies is found in a predefined time window, a
message to the SIEM system is sent.

In order to predict the length of the pattern only on top of the measured data, the power spectral density esti-
mation (PSDE) approach is extended. For this estimation the periodogram as well as the auto correlation of the
time series are processed. Together they contain important information, but in singular are insufficient to predict
the length of the pattern in a reliable way. Therefore, PSDE combines the two information sources and merges
their individual strengths.
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Figure 8.3: Steps in the PSDE algorithm.

A periodogram visualizes the intensity of frequencies and periodicity (pattern length) within a time series. For
a fixed time series those values can be extracted by looking at the values on the x-axis. The advantage of the
periodogram is that very simple values with large impact can be chosen. The disadvantage, however, is that for
long periodicities (i.e., small x values) the predictions are rather inaccurate.

Auto correlation describes the correlation of a time series with itself, given that it is translated by value x.
Therefore, the x-axis displays the length of the periodicity. The auto correlation counterbalances the weakness
of the periodogram for long patterns.

Auto correlation has the problem that the most influential values cannot be easily extracted. Hence, in a first
step, the algorithm uses the periodogram for selecting possible candidates. In a second step these candidates are
checked and refined using auto correlation. These steps are visualized in Figure 8.3.

Both the trend and the outliers of a time series can have a huge impact on the approach. Therefore, in a prepro-
cessing step the trend, if possible, is removed and the number of outliers is bounded. For computing the trend
the seasonal-trend decomposition procedure based on Loess (STL) is called. As the pattern length has to be
known in advanced, either the last known length is used, or the removal of the trend is disabled. In both cases,
simple statistical outliers are removed by bounding them to 1.5 times the interquartile range.

In the experiments, the prediction of values using algorithms like ETS (error, trend, seasonal) or Holt-Winters
were inappropriate since they adapt too rapidly to change and don’t deviate substantially from the actual mea-
surements (see Figure 8.4).

Figure 8.4: Holt-Winters (pattern length known, outlier removed).

Hence, for time series-based anomaly detection, TSAD for short, we go back to a relatively simple approach.
The trend and repeating patterns are determined and subsequently added to predict the value of a current mea-
surement. If the data is too sparse to guess the length of the pattern, the last value is used as the prediction (for
the first value the same value is taken). In all other cases STL is used to compute a trend. Given that STL is
robust against outliers, the data has not to be polished beforehand. An example of the STL-output is shown in
Figure 8.5.

Next the trend is removed from the measurement data. The remaining values have to be polished by removing
outliers. In this case, similarly to the PSDE, they are restricted to 1.5 times the interquartile range. Figure 8.6
shows the values of the different steps in one image.

The remaining data contains the pattern to be searched adjacently multiple times. To compress these values to
a single pattern, all data points that match a data point in the pattern are averaged and selected as a represen-
tative (or canonical) element for the pattern. For the average, prefer the median to the mean to minimize the
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Figure 8.5: STL example.

Figure 8.6: Time series with and without outliers.

effect of outliers. Given that the trend of the entire series of experimental measurements (including the current
measurement) is known already, for this point the corresponding pattern value can be added to the trend. To
cope with bounded noise in the data, a translation of two time steps, back or forth, is allowed. The reason is that
regular duties that are not executed automatically, do not have to happen at the exact point in time. For example,
a manual backup at the end of a working day, might happen regularly in between 5 pm and 6 pm, but with
some tolerance in the exact execution. The value of the pattern (extracted from the five possible candidates) that
together fit best the real measurement is taken as the prediction. The predictions of TSAD for the example time
series are shown in Figure 8.7.

Figure 8.7: TSAD prediction (trend and averaged pattern).
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Given that the predicted value rarely matches the exact measurement, it is recommended to define an interval
in which a value can be found, without being labeled as an anomaly. Similar to the aberrant behavior detection
(ABD) a confidence tube is chosen, that respects already recorded data. However, the error, how far the predicted
value deviated from the exact measurement is again restricted to 1.5 times the interquartile range. If the value
exceeds the interval, it is marked as an anomaly. As not all deviations correspond to a network attack, we go
allow only a certain number of anomalies within a time frame. If this value is exceeded a warning message is
returned.

8.4 Tolerant Pattern Matching with Background Knowledge

In the following, a hybrid approach for detecting incidents in the SIEM domain is introduced. Such approaches
use different techniques to improve detection accuracy, such as preprocessing the data by clustering or by
generating intermediate results for classification.

The approach of this work is split into a preprocessing part called Tolerant Pattern Matching and a post-
processing part by a Conditional Random Field. The Tolerant Pattern Matching (TPM) approach presented
here is a special kind of Soft Pattern Matching. The TPM term is used to clarify the difference from other Soft
Pattern Matching approaches that do not use ontological representations, logical expressions, and generaliza-
tions of them in the matchmaking process. The post-processing part takes the matching values of the TPM as
input for a statistical interpretation of incident hypotheses.

8.4.1 Preliminaries

Each observation xxx j ∈ xxx at position j in a sequence of observations xxx is assumed to be an event from an arbitrary
source (e.g., from an Intrusion Detection System or a firewall) structured as (or transformed to) an attribute-
value list, i.e., (a,b) ∈ xxx j with the attribute a and the value b.

Further, an ontology is used to describe the domain characteristics. An excerpt from this ontology is given
in Figure 8.8. The most general concept is called Thing, which generalizes all concepts such as Analyzer,
AggregatedAlertClassification and AlertClassification (concepts are written in bold characters).
More specific concepts of the AggregatedAlertClassification are AdversaryActionClassification
and AttackersKnowledgeGainClassification. The individuals (concrete instantiations of concepts) of the
ontology are written in italic non-bold characters. For example, SCAN Amanda client-version request is
one individual which represents the original, raw classification text from a Snort sensor. All such raw classifica-
tion texts are subsumed by the concept AlertClassification, associated to a sensor emitting this message by
the relation isGeneratedBy (relations are visualized as dotted lines) and assigned to an individual aggregating
(or categorizing, or normalizing) the concept by the relation isAggregatedBy.

The ontology is continuously growing by the input from several authors, e.g., by incorporating IT asset and
vulnerability information. The core method of the correlation process, however, is very generic and capable of
using a wide range of modeled background knowledge even beyond the currently modeled data.

8.4.2 Tolerant Pattern Matching

Tolerant Pattern Matching handles variations in the input data by generalizing patterns according to ontological
background knowledge.
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Figure 8.8: Excerpt of the ontology.

It is realized by successively generalizing the patterns and determining a residual degree of satisfaction with
respect to the input data (the observations a.k.a. the events). A pattern consists of logical compositions of
constraints. Each constraint is expressed by a relation between two entities.

Formally, an entity e from the set of entities eee is either an individual, a concept, or a variable. A constraint γ ∈ γγγ

is defined as γ = eRe′ of a left-hand side entity e ∈ eee, a right hand side entity e′ ∈ eee and a relation R from the set
of all possible relations RRR between these entities. It is assumed that either e or e′ is a variable or an individual
fixed by an observation, i.e., e is replaced by b with (a,b) ∈ xxx j if a refers to e (or e′ respectively). A constraint
γ is satisfied if there exists an interpretation I with (eRe′)I .

A pattern p consists of a set of constraints and logical compositions among them. A partially matching pattern
p – given the data xxx j which is a set of attribute value pairs – is a real valued function with range [0,1]. The value
of such a function is called degree of matching or matching degree.

p(x) =

1, if the pattern fully matches
α ∈ (0,1) if the pattern matches to degree α

0, otherwise

Each constraint in a pattern can be expressed as a query triple in a Description Logics query language like
SPARQL.Let us consider an example. Let γ1 ∈ γγγ be a constraint expressing that attribute event must have the
value ping (which is assumed to be an individual in the ontology) and γ2 ∈ γγγ be a constraint saying that the
attribute event must be port-scan. Furthermore, the pattern p is specified as γ1∨ γ2. Considering a query ”Is
pattern p satisfied for event = port-sweep?” the pattern query is transformed to SPARQL as

{ns:port-sweep owl:sameAs ns:ping} UNION {ns:port-sweep owl:sameAs ns:port-scan}

which is obviously not matching since a port-sweep is not the same as a port-scan or ping.

However, the pattern in this example expresses some reconnaissance events and if no other pattern is matching,
this may give us a good hint of the kind of data presented to the pattern matcher. This can be easily achieved by
using subsumption, i.e., each ping, port-scan and port-sweep may be subsumed by a concept called reconnais-
sance. E.g., γ1, γ2 or both could be abstracted to the condition that the event must be a reconnaissance instead
of being a port-scan or ping. Each of these abstractions of the pattern will be matching. However, the smallest
abstraction is desired to maintain most of the semantics of the original pattern, i.e., either γ1 or γ2 should be
abstracted but not both.

In the following, a measure θ(γ j,γk) for constraints γ j and γk is assumed to quantify the similarity of an
abstracted constraint γ from the original level j to an abstract level k. A simple example of such a measure is
θ(γ j,γk) = 1/(| j− k|+1). γ⊥ denotes the original constraint on the most specific level⊥ (where⊥ is a positive
integer) and θ(γ i) is the short form of θ(γ i,γ⊥). This measurement is assumed to be 1 if the constraint is not
abstracted and decreases if the constraint is getting more abstract by always being greater than or equal to 0.
It can be considered as a similarity function, which says how exactly γ j describes γk, or how similar the two
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constraints are. Further, the properties of a similarity function are assumed to hold for the computation of the
degree of matching of a pattern:

A similarity measure θ is a real-valued mapping into [0,1] defined by the following properties:

∀γ j,γk :θ(γ j,γk)≥ 0 (positive definiteness)

∀γ j,γk :θ(γ j,γk) = θ(γk,γ j) (symmetry)

∀γ j,γk :θ(γ j,γk)≤ θ(γ j,γ j) (identity)

∀ j < k :θ(γ j,γk+1)< θ(γ j,γk) (monotonicity)

The similarity function values of the constraints are combined to a matching degree of the whole pattern by
applying some fusion operator F(θ1, . . . ,θn) similarly to fuzzy pattern matching. This is necessary to consider
the semantics of the logical operators while abstracting the pattern.

Therefore, a fusion approach is suggested by using the tree of logical operators in each pattern. The fusion
function F(p) of a pattern p is recursively defined with respect to some similarity function θ of constraints γ

composed by logical operators as:

F(γ i
1∧ γ

j
2) = min(F(γ i

1),F(γ j
2))

F(γ i
1∨ γ

j
2) = max(F(γ i

1),F(γ j
2))

F(¬γ
i) =

{
1−F(γ i), for i =⊥
β ·F(γ i), otherwise

F(γ i) = θ(γ i),

where β ∈ [0,1] is a penalty factor to additionally penalize the abstraction of negations.

β is a design parameter which is dependent on the used similarity function and the depth of the ontology.
Optionally, a small β may be chosen without multiplying it with the similarity function, i.e., the similarity
function is omitted in the case of negation since it directly abstracts to a tautology. The interpretation of the
negation changes for the case of abstraction to ensure that an increasing abstraction leads to a decreasing fusion
function value. This different interpretation results from the circumstance that the negation of an abstraction
is a specialization (the complement of an abstraction). Therefore, the fusion function must be inverted for the
negational case during abstraction.

The reason to choose the min-max fusion (of conjunction and disjunction) in contrast to a probabilistic interpre-
tation is to avoid that patterns with a huge number of disjunctions have stronger tendency to be interpreted as
true and patterns with a huge number of conjunctions strongly tend to be false. This makes the approach more
sensitive to the number of constraints, which is undesirable in most cases. Furthermore, the min-max fusion
allows an easy and common definition of temporal constraints as we will see later.

The fusion function F is monotonic with respect to θ . It builds a partial order of patterns regarding the generality
of their containing constraints. From this basis, it is necessary to find the best matching pattern with respect to
some input data, i.e., the matching pattern with the biggest F . How to find this solution efficiently is out of the
scope of this chapter.

8.4.3 Divide-and-Conquer

In this section a divide and conquer algorithm is introduced to efficiently search for the most specific satisfied
patterns, which correspond to the Pareto front of the constraint abstractions. Each level of abstraction of a
constraint is represented as one dimension of the search space. The search space X = {0, . . . ,n−1}d is divided
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into satisfied elements (satisfied constraint combinations) X+ ⊆ X and unsatisfied elements X− ⊆ X with X+∩
X− = /0.

Figure 8.9: Example of the Pareto algorithm.

Figure 8.9 gives an example how the algorithm works for the 2D case (i.e., for γ1 and γ2). At first the middle of
the search space is determined, i.e., point (4,4). Around this point the search space is divided into (in the 2D
case) four equal sized areas each including the middle and the corresponding border elements. Two of these areas
are marked with a gray background the others as area A and area B. The minus sign at (4,4) indicates that the
pattern with γ4

1 and γ4
2 is unsatisfied, the circle indicates an inference call to test this satisfaction. Therefore, all

more specific pattern combinations are omitted in the further recursion, i.e., area A. This method is continued for
the gray areas but at first for area B. Area B is divided into four equal sized areas around the middle (2,2). This
is a satisfied match; therefore, we know that each more abstract pattern than γ2

1 , γ2
2 is also satisfied, marked as

area C which can be omitted in the following. The recursion is continued for the new middle (3,3). At this point
an unsatisfied area can be determined which also affects the currently not investigated gray areas. We know
that from (3,3) to (8,8) every solution must be unsatisfied because they are more or equally specific. These
temporary results are stored in a list and checked before investigating the gray areas in subsequent recursion
steps to omit inference calls for these points.

The algorithm can be limited in the search space (by limiting the search depth) to give approximate results. By
increasing the search depth the solution is more and more appropriately approximated.

Algorithm 8.1 shows the full implementation of the approach. This algorithm is initialized with an empty set of
solutions (representing the most specific satisfied patterns) S+ and S− (representing the most abstract unsatisfied
patterns). The individual search spaces are specified by a most specific bound (msb) and a most abstract bound
(mab), where msb and mab are coordinates of the search space. Initially, for all i we have msbi = 0 and
mabi = n (to ensure completeness mab is located outside of the actual search space). For reasons of simplicity,
each constraint is assumed to have an equal amount of specializations/abstractions; however, the algorithm is
also capable of differing amounts.

In Algorithm 8.1 we find Eval, the call to the reasoner. The other method that enumerates the sublattice structure
is called Hypercubenodes(msb,mab) (without msb, mab themselves), formally defined as

2d−2⋃
i=1

msb⊗bin(i)+mab⊗bin(i),

where bin(i) denotes the binary representation of a number i, bin(i) denotes its (first) complement, and ⊗ the
component-wise multiplication of two vectors.

The following definitions express the previous considerations transferred to the d dimensional search space X
which can be interpreted as a coordinate system. Let
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Algorithm 8.1: Pareto algorithm for tolerant pattern matching

Input: Most specific bound msb ∈ X = {x1, · · · ,xd}d

Most abstract bound mab ∈ X = {x1, · · · ,xd}d

m← b(mab+msb)/2c
if ∃x ∈ S+with(m≥g x) then

s = 1
else

if ∃x ∈ S−with(m≤g x) then
s = 0

else
s = Eval(m)
if s = 1 then

S+ = {x ∈ S+∪{m} | ∀x′ ∈ S+∪{m} : x′ ≥g x}
else

S− = {x ∈ S−∪{m} | ∀x′ ∈ S−∪{m} : x′ ≤g x}
if mab = m then

return
if s = 1 then

Pareto(msb, m)
else

Pareto(m, mab)
for each h ∈ Hypercubenodes(msb,mab) do

for i = 1 to d do
msb′i = max{hi,mi}
mab′i = min{hi,mi}

Pareto(msb′,mab′)

≥g= {(x,x′) ∈ X2 | ∀i
(
xi ≤ x′i

)
}.

We say that x ∈ X− dominates x′ ∈ X if x′ ≤g x and x ∈ X+ dominates x′ ∈ X if x′ ≥g x.

All more specific patterns than an unsatisfied one are still unsatisfied and all more general patterns than a
satisfied one are still satisfied. In other words, we have

∀x ∈ X−,x′ ∈ X.
(
x′ ≤g x

)
⇒ x′ ∈ X− (8.1)

and
∀x ∈ X+,x′ ∈ X.

(
x′ ≥g x

)
⇒ x′ ∈ X+. (8.2)

The algorithm computes the Pareto frontier, i.e., the set of extreme points E = E+ ∪E− with E+ ∩E− = /0
containing each element of X+ with no element in X+ being more general,

E+ = {x ∈ X+ | ∀x′ ∈ X+
(
x′ ≥g x

)
}, (8.3)

and each element of X− with no element in X− being more specific,

E− = {x ∈ X− | ∀x′ ∈ X−
(
x′ ≤g x

)
}. (8.4)

No element in E is dominated by another element in this set, i.e., the most compact representation of the set of
satisfied / unsatisfied solutions.

The algorithm determines the whole set of satisfied constraints, i.e., E+ = S+.

Correctness To show the correctness of the algorithm we ensure that each element of the expected result set
E+ is in the solution set S+ of the algorithm and, vice versa, i.e., e+ ∈ E+⇒ e+ ∈ S+ and s+ ∈ S+⇒ s+ ∈ E+.
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We first show (s+ ∈ S+⇒ s+ ∈ E+). If the search is exhaustive (this is shown later) we have that s+ ∈ S+⇒
s+ ∈ E+, since it computes S+ as {x ∈

(
S+∪{m}

)
| ∀x′ ∈

(
S+∪{m}

)
: x′ ≥g x}, which is the same as the

expected result E+ with S+∪{m} ⊆ X+.

To see that (e+ ∈ E+⇒ e+ ∈ S+) we investigate four conditions under which an element is inserted into (and
kept in) the solution set of the algorithm S+. These conditions, directly derived from the algorithm, are as
follows;

1. Each element from S+ must be contained in X+ which is the same condition as in the definition of E+.

2. The following assumption must hold for e+ to be inserted into S+,

¬∃x′ ∈ S+.
(
e+ ≥g x′

)
.

This condition is not fulfilled if an equivalent solution e+ is already in the set S+ or if e+ dominates another
element from S+. In both cases e+ is not inserted into the result set S+.

3. The next statement is
¬∃x′ ∈ S−.

(
e+ ≤g x′

)
. (8.5)

This condition is always fulfilled, since we consider the case that e+ ∈ X+ and from Eq. 8.2 we know that
this implies that x′ ∈ X+ which cannot be the case since x′ ∈ S− ⊆ X−.

4. We do not drop solutions because for all m ∈ X+ we have Equation 8.3.

Analogically, the proof can be made for E−.

Completeness The recursion is omitted for {x ∈ X |msb ≤g x ≤g m} if m ∈ X− and for {x ∈ X |m ≤g x ≤g
mab} if m ∈ X+. This, however, does not affect the set of solutions due to the definition of domination and the
definition of E that there should not be any value in the result set that is dominated by another element. Note
that m has already been checked by the algorithm at this point.

The remaining space under investigation is getting smaller in each recursion path until m is getting equal to
mab (the termination criteria). This is only the case if each edge of the space under investigation is smaller
than or equal. This can be derived from the first line of the algorithm. At some time in the recursion the space
of possible solutions is divided into a set of spaces with edges of the length one or less by still covering the
whole space of possible solutions as previously shown. Further, if any point of such a smallest area is a possible
solution (these are the corners), this point is under investigation in another space due to the recursive call with
overlapping borders except of the borders of the whole search space at the specific borders due to there is no
mab of any area including these specific border elements, e.g., there is no mab for the one element area (8,8)
in the example from Figure 8.9. For this border case the algorithm is called with a lifted msb to ensure that the
unlifted specific bound is included in some smallest (one element) area as mab visualized as a light gray border
in Figure 8.9. Therefore, each element of the search space which is a possible solution is investigated as a mab
in some recursive path.

After computing the pareto front, the fusion function F is used on the remaining set of candidates to identify
the most specific matching pattern abstraction.

8.4.4 Complexity Considerations

The worst-case running time is dominated by the number of calls to the reasoner. So we distinguish between
the number of recursive calls T (n) and the number of inference calls C(n) (for the sake of simplicity, we
assume n1 = . . . = nd and n = 2k). Of course, a trivial algorithm testing all possible elements in S induces
C(n) = T (n) = O(nd). We will see that the algorithm Pareto is considerably faster.
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With lgn we refer to the dual logarithm log2 n, while lnn refers to the natural logarithm loge n.

For the number of recursive calls, let us first consider the 2D case. The number of calls of the divide-and-conquer
algorithm in a 0/1 (n×n) matrix is bounded by T (k) = ∑

k
i=0 3i =

(
3k+1−1

)
/2. Assuming n = 2k we have

T (n) = ((3lgn−1)/2 = (nlg3−1)/2 = O(n1.5849)

For larger dimensions d the complexities O(nlg(2d−1)) increases. In the limit for large d the exponent to n
converges to d.

For the number of inference calls, again, we first consider the 2D case. We observe that the structure of the
recursion corresponds to finding a binary search to the SAT/UNSAT boundary. The recursion depth is bounded
by lgn. Therefore, the worst-case number of calls to the reasoner of the divide-and-conquer algorithm in a 0/1
(n×n) matrix is defined by C(n) = 2C(n/2)+O(lgn). The O(lgn) term is due to the binary search. In the worst
case the boundary between SAT and UNSAT cells is in the middle, where one quarter of SAT and one quarter
of UNSAT elements are omitted.

Using the Akra-Bazzi theorem (a generalization to the well-known master theorem), the above recursion can
be shown to reduce to C(n) = O(n) as follows. For k = 0 it states that for the recurrence equation T (n) =
g(n)+aT (n/b) with a = bp we have the following closed form:

T (n) = O
(

np ·
(

1+
∫ n

1
g(u)/up+1 du

))
.

Here, g(n) = lgn = lnn/ ln2 and a = b = 2 so that p = 1 and

T (n) = O
(

n+n ·
∫ n

1
ln(u)/u2du

)
= O(n+n · [− lnu/u]n1) = O(n).

For larger dimensions d the complexities O(nlg(2d−2)) rise. In the limit for large d the exponent to n converges
to d.

8.4.5 Conditional Random Fields with Tolerant Features

Next, the combination of the previously presented Tolerant Pattern Matching approach with a post-processing
by Conditional Random Fields is shown.

8.4.5.1 Tolerant Pattern Matches as Feature Function Values

The matches of the Tolerant Pattern Matching process are used as input features (i.e., the sufficient statistics)
for a Conditional Random Field (CRF). A feature is built for each combination of label and pattern, i.e., fff =
{ f1, . . . , fn} with n = |yyy||ppp|, and |yyy| being the number of labels and |ppp| the number of patterns. Each feature
matches exactly on one label and returns – in the case that the associated label is queried – the result of the
fusion function of the associated less abstracted but matching pattern.

The combination of Tolerant Pattern Matching and Conditional Random Fields requires that a higher degree
of matching lead to an increased influence on the posterior probability of the CRF. The intuition is that better
matching patterns should more strongly account for the final decision making.

Therefore, we know that better matching patterns (i.e., features with a higher value) strongly account for the
final decision making. Now, we are looking for a similarity function for the TPM approach which guarantees
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that the best matching pattern (or in this context of CRFs, the best matching feature) dominates all other less
matching patterns during the inference. This avoids that a huge number of slightly matching patterns overwhelm
a strong (or even perfectly) matching one.

Therefore, it must be guaranteed that the best matching pattern exceeds the sum of all other less matching
feature functions on the posterior distribution. Let f k

j = 1 be the perfectly matching feature and all other f m
l = ε

with j 6= l be the less matching features by degree ε .

From the equation of Conditional Random Fields

Pr(yyy|xxx,λλλ ) = 1
Z(xxx)

exp

(
∑

j
λ j f j(yyy,xxx)

)
(8.6)

we can obtain that for positive weights (i.e., λ j,λl > 0) the following equation must hold:

1
Z

exp
(

λ j f k
j

)
>

1
Z

exp

(
∑
l 6= j

λl f m
l

)
for m < k (8.7)

m < k expresses that f k
j is less abstracted than f m

l . We assume that both features have the same number of
possible abstractions to make both features comparable.

It can be shown that for all cases we obtain the bound 1 > (| fff | − 1)ε with | fff | being the number of feature
functions. All partially matching feature functions must be less than the threshold 1/| fff |−1 with respect to a
fully matching feature function. This solution can be treated recursively to ensure that the best matching partially
satisfied feature function has the most influence on the posterior probability. Therefore, the fusion function F

of a partially matching pattern p(⊥−k) must be ensured to be less than
(

1
| fff |−1

)k
. Since all feature functions not

matching on the label of interest are zero and the set of feature functions fff is the product of labels and patterns
yyy× ppp, the number of feature functions | fff | can be replaced with the number of patterns |ppp| for each label. The
minus 1 of the denominator is omitted to ensure that the similarity function is below the threshold.

The similarity function θ(γk) = (1/|ppp|)⊥−k is defined for the number of abstractions ⊥− k of a constraint γk

with respect to the number of patterns |ppp| by:

It is obvious that the fusion function F never exceeds this threshold due to the min-max fusion.

This similarity function ensures that the best matching feature dominates the sum of all less matching features
with equal (or less) significance and with a comparable abstraction lattice.

8.4.5.2 Two Layers of Conditional Random Fields

After specifying the input for the Conditional Random Field (i.e., the similarity function, the fusion function and
the pattern matches as feature values), we focus on the output, i.e., the labels of the CRF or the inference target.
Two disjunct Conditional Random Fields are used, one for detecting and assessing threats (called Detection
Layer) and one for explaining them (called Explanation Layer).

The Detection Layer (which can also be understood as Threat Layer) has three labels representing three threat
levels a) dangerous, b) suspicious and c) normal. All patterns are used as input which results in 3|ppp| feature func-
tions (and weights). The Detection Layer is used to detect incidents out of the stream of events by determining
the threat level. Further, this layer is essential for prioritizing incidents as we will see.

The Explanation Layer has one label for each modeled incident and is used for already detected incidents to
explain the arbitrary steps belonging to the incident. The Explanation Layer is only used in succession of a high
prioritized incident and, therefore, does not affect the computational efficiency of the incident detection. If |iii| is
the number of modeled incidents, there are |iii||ppp| feature functions in this layer.
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There are two major reasons for splitting the detection and the explanation layer. The first is obviously a smaller
inference effort for detecting incidents since the threat layer normally has a lower number of labels (only three).
The second is the inability to derive the threat level from the explanation layer since the probabilities of the
labels are not independent of the overlapping features. Figure 8.10 shows how these two layers are integrated in
the correlation process.

Detection Layer (CRF) 

Hypotheses Pool 

Explanation 
Layer (CRF) 

Tolerant Pattern Matching 
Observations 

Pattern matches 

Hypotheses 

Most relevant 
hypotheses 

… 

Figure 8.10: Visualization of the reduction of data from the bottom to the top during the correlation process.

8.4.5.3 Modeling Incidents

The prioritization of events is determined by their threats. Threats are not assigned to events (or pattern) directly
since the threat may be related to the correlation of several events and to further background knowledge which
is represented by pattern matches. The term incident is used to describe a set of pattern matches. The mapping
threat : iii→ ttt is used to assign a threat level t ∈ ttt = {N,S,D} to an incident i ∈ iii. The following threat levels are
distinguished: A normal threat (N) is assigned to an incident to indicate that the pattern matches triggering this
incident does not indicate an increased threat. In other words, a normal threat indicates that the detected incident
is a false positive and indeed is no serious incident. A suspicious threat (S) can be assigned if the triggering
pattern matches are suspicious but do not indicate a high threat at this time. This threat level is used to mark
potentially interesting situations which should be kept for further correlation. A dangerous threat (D) produces
the highest prioritization and is used to indicate dangerous pattern matches.

Each pattern match is a pair of a pattern and a corresponding matching value. The following three matching
values are possible: match: A match (M) indicates that the pattern must match for this incident; mismatch:
A mismatch (¬M) indicates that the pattern must not match for this incident; unspecified: Unspecified (U)
describes that it is unknown if the pattern matches or mismatches and, therefore, does not affect the decision
making.

From another perspective, each setting of pattern matches can be modeled to indicate one or multiple incidents.
This is expressed by the mapping incident : {M,¬M,U}|ppp|→P(iii).

Both mappings can be represented as a single two-dimensional matrix as visualized for three patterns p1, p2,
p3 ∈ ppp and two incidents i1, i2 ∈ iii in Table 8.1.

Table 8.1: Example of an incident matrix relating pattern matches to incidents and threat levels.

p1 p2 p3 threat level
description “port-scan” “ping” “source is admin”

i1 M ¬M ¬M dangerous
i2 ¬M M U normal
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As an example, assume that p1 describes incoming port-scan events, p2 ping events and p3 that the source IP
address belongs to a network administrator host. Incident i1 is a reconnaissance incident and i2 is a “normal”
ping incident which typically occurs in the example network. For this setup, the matrix shows in the line of i1
that a port-scan is dangerous if the administrator host is not the source of the port-scan. The pattern indicating a
ping event is mismatching since two disjunct event types (i.e., ping and port-scan) cannot occur together. In the
line of i2 the matrix shows that ping events should be normal regardless of the source IP address.

8.4.5.4 Prioritization of Incidents

Let t be a certain threat level from ttt and j an index over the sequence of observations xxx with each observation
(which is a set of pattern matches) xxx j. The probability of all observations belonging to a certain threat level is
given by the inference of the Detection Layer Prdet by:

Prdet(t|xxx) =
|xxx|
∏
j=1

Prdet(t|xxx j) (8.8)

Given a sequence of observations xxx, the prioritization prio is determined by:

prio(xxx) = log10

(
0.5Prdet(D∪S|xxx)+0.5Prdet(D|xxx)

Prdet(N|xxx)

)
(8.9)

The prioritization compares the likelihood that all observations belong to an incident with dangerous or suspi-
cious threat against the likelihood that all observations belong to an incident with a normal threat. This mea-
surement is similar to the likelihood ratio as often used in sensor fusion approaches. Please note that a trade-off
of false positives and true positives can be specified by a threshold for this prioritization.

This prioritization is used by the Hypotheses Pool. The objective of the correlation process is to determine a
group of incidents which most likely are all dangerous. Each such group builds a hypothesis in the following,
i.e., each hypothesis comprises of a sequence of events and incidents. Potentially, each permutation of the
incidents may build a hypothesis. In practice, this is not feasible due to the exponentially increasing inference
effort. Therefore, the Hypotheses Pool keeps the hypotheses with the highest priority and drops hypotheses with
the lowest priorities to limit the number of hypotheses.

The introduction of Hypotheses allows one to define temporal relations in their scope. Besides the typical
description logical constraints and logical compositions, patterns can describe temporal relations in their con-
straints in the scope of a hypothesis. This can be used to express dependencies over time, e.g., a failed login
attempt may be considered more suspicious with a preceding port-scan. Therefore, the three temporal rela-
tions currently, previously 	(γ(xxx j)) = γ(xxx j−1) and once ⊕(γ(xxx j)) = γ(xxx1)∨ . . .∨ γ(xxx j−1) can be used in the
constraints of the patterns to express temporal relations.

The training of the Conditional Random Field is done by using Improved Iterative Scaling (IIS). The empirical
probabilities for training are determined by the incident matrix. The matrix can be filled by modeled knowledge
as well as by concrete examples of attacks which offers to use modeled expert knowledge as well as experi-
enced misclassifications during the application of the system. This offers the ability to train the system during
application, for example, to consider the individual network behavior of the application domain.

The modeling of incidents by experts often produces an artificial imbalance between benign and malign inci-
dents. This occurs since incidents are modeled without the information about how frequent the incidents occur.
This problem is reduced by learning from examples, but remains to be a challenge for the first deployment of
the detection engine.

Another problem of CRFs trained with IIS is that they tend to overfit the data. In the original version of IIS, the
model parameters are not limited and may even converge to infinitely huge numbers – which has obviously a
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high impact on the posterior distribution. Therefore, regularization is typically used to overcome this problem,
briefly, by tying the model parameters near to zero. In regularization, the model parameters themselves are
considered as random variables with a specified prior distribution.

With these methods — IIS, regularization, and oversampling — we are well prepared to train the CRFs with
examples as well as with modeled incidents.

8.5 Efficiency of Incident Detection

We evaluate the efficiency of the algorithm wrt the number of inference calls. In Figure 8.11 two tolerant
matching algorithms and the result of a perfect guessing algorithm (a lower bound) are visualized. It is assumed
that the lower bound algorithm checks exactly the Pareto border of satisfied and unsatisfied elements. Therefore,
the best possible algorithm needs at least |S+|+ |S−| inference calls.

The divide-and-conquer algorithm Pareto with pruning the recursive calls as in Algorithm 8.1 – but without
using the lists S+ and S− – is called Pareto-0. This is the first efficient algorithm one might think of. The
algorithm is visualized as Pareto and the lower bound as LOWERBOUND in Figure 8.11 for the 2D case (no
log-scale) and for the 4D case (log-scale).

Figure 8.11: DL Reasoner calls in the 2D case (left), and in the 4D case (with logarithmic scaling). The x-axis represents the number
of possible abstractions and the y-axis the amount of reasoner calls.

Both figures show that the inference calls of Pareto are located near to the optimal lower bound LOWER-
BOUND and considerably better than the typical divide-and-conquer algorithm Pareto-0 in both 2D and 4D.
These results are reasonable for the pattern matching algorithm due to the depth of an ontology being typically
smaller than 30 and the patterns having typically a small number of constraints.

The amount of Pareto results, which is around the half of the LOWERBOUND value, is very small. For this set
the degree of matching must be computed with respect to the fusion function to find the most optimal solution
out of the set of Pareto-optimal solutions. This search can be done without to call the DL reasoner, since we
already know that these solutions are satisfied.

8.5.1 Experiments with ArcSight

In the intrusion detection domain only a few benchmarking datasets are available and frequently used. A major
reason for the low number of datasets is the confidentiality of real data including serious attacks.

The dataset A consists of 1,407 recorded malware samples. This collection of sample files is called dataset A
containing just malign Snort events (predominantly trojan-activity events).
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Benign traffic has been recorded in dataset B. One month (31 days) of traffic has been analyzed by a Snort IDS
with the same rule set as used in the malware analysis (set A). The resulting dataset has been filtered by just
using static IP addresses.

Three initial experiments have been made to test the detection technique of the market-leading ArcSight SIEM
system against the approach of this work. Therefore, the datasets have been used to evaluate both approaches
under laboratory conditions with most realistic data. The aim of this test was to evaluate the rule-based detection
engine of ArcSight, and to evaluate if the approach of this work can improve the detection accuracy.

The ArcSight FlexConnector needs a mapping to map event captions to the appropriate ArcSight categoriza-
tions. Without these categorizations, ArcSight cannot detect any incident. Such a categorization has been devel-
oped for an actual Snort system. This mapping uses the classtype value of the Snort rules.

In the first test, two critical mappings of Snort trojan-activity events are different from the final version
(after the lessons learned with ArcSight); these are Category Technique and Category Object. For testing Arc-
Sight, the test data sets have been transmitted to the SmartConnector using this mapping. All built-in standard
rules of ArcSight have been activated. The built-in Security Activity dashboard of ArcSight has been used
to visualize the detection state. This dashboard shows detected attacks, Trojan-infected hosts, and worm propa-
gations. With this first mapping, ArcSight was unable to detect any incidents in 43 randomly chosen test files.
This poor performance directly led us to investigate the problem which could be identified in a rule that requires
other categorization mappings.

In the second test, the mapping has been adapted by changing the mapping of the Trojan activity with respect
to the category Technique and the category Object. Adjusting this led to a significant improvement in the
detection accuracy. forty-two out of 43 malware samples from the dataset could be detected, i.e., a 97.7% true
positive rate. Only one out of 31 noise samples from the dataset B has been detected as malware, i.e., a 3.2%
false positive rate. This is a satisfying result, but it also shows the dependency on an appropriate mapping
for the SmartConnectors. For a comparison, only the crucial rule has been (re-)modeled for the approach of
this work. Since we additionally need the classification of benign events instead of just patterns describing
malign events for this approach, the negation of this pattern has been assigned to a normal threat, too. The
conclusion was that both detection engines came to the same results, ArcSight and the presented approach.
Further, the test has shown that most of the malware could be detected by a simple rule expressing that all Snort
events of the classtype trojan-activity are malware due to the dataset predominantly consisting of different
trojan-activity events. This led to the third test with more demanding conditions on the correlation engines.

The event categorization mapping has been refined to distinguish between 1,048 categories instead of the pre-
viously 34 categories, i.e., ArcSight has been trained to distinguish different Trojan events. ArcSight has no
built-in support for this fine granular distinction. However, we can add rules manually to support any category
we desire. Since we know the samples containing malware and the samples without malware, we can create ap-
propriate patterns to detect the events from these samples. In this test three different patterns (or rules) are used.
Each pattern is a conjunction of conditions expressing that the category technique must have the appropriate
value as specified in the malware sample files. Since the above approach additionally uses benign patterns, one
frequently occurring event from the dataset B has been modeled to indicate harmless incidents. All other pat-
terns are equivalent to the patterns of ArcSight (so both have the same starting conditions). Nine tests have been
made with both approaches using the dataset to determine the true-positive rate. ArcSight has detected three of
the nine attacks; in contrast, the illustrated approach has detected all nine attacks. To evaluate the false-positive
rate, six samples from the dataset B have been used. None of the approaches has generated a false positive which
shows that the approach of this work can outperform the detection method of ArcSight. However, these 15 tests
cannot be understood as an empirical evaluation with statistically significant results. But the test shows that the
approach at least yields a more flexible detection in some cases, whereas ArcSight relies on hard pattern match-
ing which is only capable of detecting previously known incidents by perfectly matching rules and predefined
thresholds.
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8.5.2 Simulation Experiments

To generate statistically significant results, the ArcSight pattern matching method has been reimplemented to
allow an automatic testing of both approaches. Further, a naïve Bayes and a Conditional Random Field approach
compete. For the analysis of the detection performance, a probabilistic sampling method is used to generalize
from a few samples to the whole population. Simple Random Sampling with replacement is used due to its
acceptance for producing a representative evaluation and due to its simplicity. The test parameters are specified
to guarantee a level of significance of 0.05 and a tolerable sampling error of 0.03, which means that the test
result is in the interval of ±0.03 with a probability of 0.95. It follows that at least 1068 samples are required to
guarantee these test conditions.

We start with one benign sample (B) and one malign sample (A) for generating patterns. The generated patterns
avoid using network specific characteristics like IPs and ports to ensure that the correlation uses characteristics
from the different networks from which the samples are recorded. The test evaluates the approaches against one
sample from the dataset which uses two hours (comprising typically less than 100) of malign events hidden in
one day (with several thousands) of benign events. Specifically, each test result is collected by a) the modeling
of benign incidents based on a sample of the dataset B, b) the modeling of malign incidents based on a sample
from the dataset A, c) testing against benign events from the TZI dataset to measure true negatives and false
positives, and d) testing against malign events hidden in the benign events from the dataset to measure true
positives and false negatives.

In the Receiver Operating Characteristic (ROC) curve in Figure 8.12, seven test models have been compared
using the same test and training data. A varying threshold over the prioritization function prio has been used
to create the ROC curve based on 1,254 test results. The experiment uses the following seven models: 1) The
naïve Bayes model NBpm,os=1 using conventional (hard) pattern matching – indicated by the index pm – and
an oversampling os which unifies the ratio of normal and dangerous incidents. The rate of normal to dangerous
incidents is indicated by the real number next to the index os. 2) NBt pm,os=1, the same model as in model
number one, but with using Tolerant Pattern Matching instead of hard pattern matching which is indicated
by t pm. 3) NBt pm,os=1,α=0.1, the same naïve Bayes model as number two, but with using Laplace Smoothing
with α = 0.1, i.e., adding 10% to the samples to smooth the distribution to avoid a so-called wipe-out in the
naïve Bayes model which might occur by training with a low number of training samples. 4) The Conditional
Random Field CRFpm,os=1,σ=1 model using hard pattern matching, oversampling and a Gaussian Prior with
σ = 1. 5) CRFt pm,os=1,σ=1, as number four but using Tolerant Pattern Matching instead of hard pattern matching.
6) CRFt pm,os=1,σ=5, the same CRF model as number five, but with a different parameter for the Gaussian Prior,
i.e., σ = 5. 7) STRICT, a method only using conventional (hard) pattern matching without any probabilistic
post-processing. This method can be assumed to perform equally than most enterprise SIEM systems.

In Figure 8.12 both probabilistic models, i.e., naïve Bayes as well as Conditional Random Fields benefit from
using Tolerant Pattern Matching. Specifically, model five and six—using Conditional Random Fields and Tol-
erant Pattern Matching—significantly perform better than the STRICT method and the naïve Bayes models. In
the area around the false positive rate 0.25, the gap between model five and six to the other models is quite
large. This can be explained by the threshold used to generate the samples for the ROC curve. If the threshold
deviates from zero, the influence of the Tolerant Pattern Matching is fading since partially matching patterns
are producing less sharp probability distributions (to express their uncertainty) which results in prioritization
values near to zero. This conjecture is underpinned by Table 8.2 showing the false positive rate for a threshold
of zero. As we see, a threshold of zero leads to a false positive rate of 0.22 and a true positive rate of over 0.9.
Model five has a 16% higher true positive detection rate than the STRICT method by keeping the false positive
rate of 0.22. Further, we see that the CRF performs slightly better with a Gaussian Prior of σ = 1.0 than with
σ = 5.0. Specifically, for lower false positive rates we see that using a smaller σ for the prior mostly leads to an
improved true to false positive rate.

Tolerant Pattern Matching improves the detection accuracy for Conditional Random Fields as well as for naïve
Bayes models. Conditional Random Fields with Tolerant Pattern Matching performs better than all the other
tested methods. However, it is shown that a post-processing by naïve Bayes performs poorly with the given test
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Figure 8.12: ROC curve with hard (models 1 and 4) and Tolerant Pattern Matching (models 2,3,5,6). Models 1 till 3 use a naïve
Bayes model and models 4 till 6 a CRF. The models are differently parameterized with respect to the Laplace smoothing α , the
oversampling factor os and the regularization with a Gaussian prior σ . Model 7 is without any post-processing model.

Table 8.2: Results for the seven models given a threshold 0 of the prioritization function.

no. model tp fp precision recall accuracy F1
1 NBpm,os=1 0.82 0.42 0.66 0.82 0.7 0.73
2 NBt pm,os=1 0.86 0.37 0.7 0.86 0.75 0.77
3 NBt pm,os=1,α=0.1 0.87 0.37 0.7 0.87 0.75 0.78
4 CRFpm,os=1,σ=1 0.79 000...222222 0.78 0.79 0.79 0.79
5 CRFt pm,os=1,σ=1 000...999555 000...222222 000...888111 000...999555 000...888777 000...888888
6 CRFt pm,os=1,σ=5 0.94 000...222222 000...888111 0.94 0.86 0.87
7 STRICT 0.79 000...222222 0.78 0.79 0.79 0.79

parameters, even worse than using conventional pattern matching alone. This surprising result is investigated
in the next test. Please note that the results are given for a SIEM level of detection, i.e., they are relative to the
underlying events produced by the sensors, e.g., an IDS. In this case, based on the underlying Snort sensor we
can obtain from Table 8.2 that the CRFt pm,os=1,σ=1 correlation misses 5% of incidents that Snort has detected
but also decreases the false-positive rate by 78%.

In the next experiment 1,077 tests have been evaluated. Each test consists of modeling two benign and two
malign incidents. In contrast to the last tests, this one evaluates how the models behave when the trained modeled
data are less sparse. Therefore, instead of one benign and one malign training sample two benign and two malign
samples are used.

As expected, the detection rate of the STRICT method increases since more events are known to be malign.
However, the false positive rate significantly increases as well as to obtain from Table 8.3. The approaches
using TPM are not significantly varying with respect to the last test. This leads to the conclusion that their
learning has already converged in the last test and, therefore, that they can more appropriately handle sparse
reference data. In comparison with the STRICT method, the CRF/TPM approach can still more appropriately
discriminate malign and benign incidents.
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Table 8.3: Overview of the true positive and false positive rate of the STRICT method.

experiment tp fp precision recall F measure
1 0.79 0.22 0.78 0.79 0.79
2 0.91 0.34 0.73 0.91 0.81

8.6 Summary

In this chapter we have seen a SIEM correlation technique by using Tolerant Pattern Matching and Conditional
Random Fields. This approach challenges up-to-date enterprise SIEM systems by using hard pattern matching
methods with respect to the detection accuracy. The rate of true positives has been improved by keeping the
rate of false negatives. Further, we investigated that the discriminative Conditional Random Field approach is
less sensitive to imbalanced data than a generative naïve Bayes approach which supports the synergy of learn-
ing from modeled expert knowledge and concrete examples. Additionally, the method addresses the problem
of incomplete modeled expert knowledge (a.k.a. the knowledge acquisition bottleneck problem) and exploits
ontological background knowledge to improve the detection accuracy, which has been shown to be a promising
method.

8.7 Bibliographic Notes

Popular host IDSs are OSSEC, Tripwire, and Samhain. One of the most widely applied network IDS is the
open-source software Snort [539]. This software performs fast signature matching on the packets of a network
stream. Distributed Intrusion Detection Systems use both kinds of sensors to gain an increased spatial coverage
without losing evidence. To give an example, the Distributed Intrusion Detection System (DIDS) [582] uses
multiple instances of detectors monitoring hosts and LANs. Suspicious events from host and LAN detectors
are sent to a centralized director which may request additional information from the detectors or process the
events by a rule-based expert system. This method was extended for the application in wide area networks by
[329] which is called Internetwork Security Monitor (ISM). Other well-known distributed detection systems
are the Event Monitoring Enabling Responses to Anomalous Live Disturbances (EMERALD) [520] and the
Graph-Based Intrusion Detection System (GrIDS) [589].

In 1998, a noteworthy intrusion detection framework [275] has been proposed by the CIDF working group
called Common Intrusion Detection Framework [590]. In the latest release from the CIDF working group, they
presented the architecture of an IDS with four modules for intrusion detection [521]. This distributed intru-
sion detection architecture is similar to the architecture of SIEM systems nowadays and shows the connection
between (distributed) intrusion detection and SIEM systems.

An early example of misuse detection is NADIR [340]. NADIR is a rule-based expert system applied to the
network of the Los Alamos National Laboratory. Later, two well-known misuse detection approaches were
IDIOT [426] and STAT [519]. Dickerson et al. proposed to use fuzzy sets for misuse intrusion detection to be
more robust with respect to variations in the data [157]. Ourston et al. [499] and Lee et al. [358] proposed to use
Hidden Markov Models (HMMs) to detect multi-stage network intrusions.

Further, ontologies have been applied to misuse intrusion detection. Undercoffer et al. proposed an attack-centric
ontology to be used by distributed Intrusion Detection Systems [626]. Based on this ontology they used rules
(modeled in DAMLJessKB [410]) to specify intrusions and have shown by example how to detect distributed
attacks. In [328], Chen et al. proposed a distributed system which uses a feature-centric ontology to formulate
expert rules. The ontology is used to determine similarities between formulated rules and received sensor events
to obtain a more flexible misuse detection.
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Anomaly detection learns the normal behavior of a system — and its users — to report any significant deviations
from this normal behavior. IT threats are common [606]. A single product, such as a firewall or an Intrusion
Detection System (IDS) is not capable of fulfilling this security task [18, p. 665]. Therefore, large organizations,
e.g., car manufacturers and financial institutes, have deployed Security Information and Event Management
(SIEM) systems [494]. One example is the ArcSight Enterprise Security Manager (ESM) [22]. For pattern
matching it uses a RETE [266] variant. Hybrid machine learning approaches have dominated the research of
Intrusion Detection methods in the recent years [621].

One of the first anomaly detection methods based on audit trails was proposed in 1980 by James P. Anderson
to support a security officer by monitoring exceptional behavior of computer users [16]. In 1994, Stephanie
Forrest et al. presented innovative anomaly detection according to a human immune system [267]. for detecting
foreign objects on a computer’s hard disc. Neural Networks have been applied to anomaly detection, e.g., by
Ryan et al. in their system called Neural Network Intrusion Detection (NNID) [549]. Before 2002, network
anomaly detection has focused on header information of network packets. Kruegel et al. [425] first proposed to
use the payload of network packets, specifically, the distribution of the payload, to detect anomalies in service
connections for the detection of remote to local attacks.

Also, unsupervised methods, i.e., clustering techniques have been applied to anomaly intrusion detection. E.g.,
Eskin et al. [244, 672]. In 2004, Laskov et al. proposed a special kind of SVM for anomaly detection, called
quarter-sphere SVM [439]. They investigated that quarter-sphere SVMs outperform plane and sphere SVMs in
the KDD 1999 dataset. In 2007 Rieck et al. [537] presented anomaly detection by using n-grams of network
traffic payload that was shown to outperform quartersphere SVM. Their model learns the normal behavior with
prefix trees and detects anomalies using similarity functions. One advantage of this method is that it identifies the
character sequences with the highest dissimilarity to normal character sequences. This might give an explanation
of the attack, which is typically not possible in anomaly detection systems. Hidden Markov Models have also
been applied to anomaly detection (e.g., [397]). The good performance of them has later been used to build a
model by combining several Hidden Markov Models in the work of Khreich et al. [398]. For a comprehensive
overview of further machine learning methods proposed in this context, please refer to [112, 275].

Hybrid Intrusion Detection Systems have been developed to get the best from both worlds, i.e., detecting known
and unknown attacks with a low number of false positives and appropriate explanations. Early versions of
hybrid Intrusion Detection Systems were IDES [462, 461] and MIDAS [567]. Specifically, in the IDES project
Denning has shown how to use statistical models like standard deviation and mean to detect anomalies [154].
Nearly at the same time the Multics Intrusion Detections and Alerting System (MIDAS) [567] was developed to
detect intrusions based on Denning’s intrusion detection model [154]. IDES and MIDAS used the combination
of anomaly and rule-based knowledge for the detection of intruders, which can be regarded as an early hybrid
detection technique. However, MIDAS has a stronger focus on rule development as stated in [461].

There is a wide variety of distributed IDSs: Fan et al. [249] used a combined approach of detecting anomalies,
misuses, and normal behavior. They trained a Decision Tree by RIPPER [132] with labeled attack and normal
data. In contrast to other approaches, one classifier has been used to detect both anomalies and misuses. Lee
and Stolfo [442] presented a framework called MADAM ID to automatically learn patterns and select relevant
features from audit data. They developed anomaly detection for users and used a misuse detection model. In
2007, Hwang et al. [357] continued this work by using the generated misuse patterns of MADAM ID in the
well-known Snort misuse detector. The combination of Snort misuse detection fed by an anomaly detection
engine which mines patterns has also been proposed in [372].

Depren et al. [155] developed anomaly detection with Self Organizing Maps and a misuse detection with de-
cision trees. Yu et al. [667] proposed to use Hidden Colored Petri-Nets (HCPN) to infer intrusions. Gupta et
al. [314] proposed to use Conditional Random Fields (CRFs) for intrusion detection. This approach used nor-
mal data as well as abnormal data for training, which makes it a hybrid system. They showed that their CRF
approach outperforms the usage of Decision Trees and a Naïve Bayes method.

The most frequently used benchmark is the KDD CUP’99 dataset [2] based on the raw tcpdump DARPA dataset.
The KDD CUP’99 dataset consists of connection records and is well-suited for testing low-level Intrusion
Detection Systems. However, this dataset is less appropriate for benchmarking SIEM systems on the higher
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event level. The DARPA dataset is even on a finer granular level, i.e., raw tcpdump data, and, therefore, it is
even less appropriate than the KDD CUP data for testing SIEM correlation engines. Further, several problems
of both datasets have been investigated by Tavallaee et al. [610].

Imbalanced data is a serious problem for several machine learning approaches (see [38, 309]) and a known
problem in the Intrusion Detection domain, too (see [114]). Batista et al. discovered that over-sampling methods
are well-suited for imbalanced datasets [38]. Smith et al. discovered that regularization priors as Gaussian,
Laplacian or Hyperbolic “perform roughly equally well” if they are appropriately parameterized [581]. Chen
et al. agreed with that even while comparing further regularization techniques [116]. They also derived the
gradient for Improved Iterative Scaling with a Gaussian prior. More details about parameter estimation with
regularization can be found in [291, pp. 103].



Chapter 9

Image Data

We are addicted to the use of images, from personally taken shots, via magazines and scientific texts, to large-
scale advertisements. Visualization is inevitable, a picture tells more than a thousand words. The sheer number
of digital pictures, however, often exceeds the memory capacity especially on modern handheld devices, so that
they are often to be stored on specific storage devices or in the cloud. Even video data is often reduced to the
analysis of keyframes.

The automated process of making sense of pictures is referred to as computer vision. For vision applications
arising in robotics and biometrics it is essential to classify what is present in the possibly segmented digital
image. The challenges are manifold, including the size of the input, its shading, its orientation, or possible
occlusions, just to name a few.

The power of fractal computation has been mainly exploited for image compression and halftoning. Here, we
consider it for finding a fast approximate solution for the fundamental problem of nearest neighbor computation
in the image plane. Traditional solutions use Delaunay triangulation for the case of optimal solutions or kd-trees
for approximate ones. In contrast, we use a space-filling Hilbert curve which allows us to reduce the problem
from 2D to 1D. It solves two nearest neighbor problems efficiently. We provide practical results on the accuracy
of the method and show that it is significantly faster than a kd-tree.

Next, we present a simple but effective machine learning algorithm that we call Bitvector Machine: feature
vectors are partitioned along the medians (in each component) and converted into bitvectors that are learned.
It is shown that the method is efficient both in training and classification. The effectiveness of the method is
analyzed theoretically for best and worst-case scenarios. Experiments on high-dimensional synthetic and real-
world data show a performance boost compared to Support Vector Machines with RBF kernel. By tabulating
kernel functions, computing medians in linear-time, and exploiting modern processor technology for advanced
bitvector operations, we achieve a speed-up of 32 for classification and 48 for kernel evaluation compared
to the popular library implementations. Especially for iso-oriented, multi-clustered problems the method has
qualitative advantages over the linear classifier and achieves a high classification accuracy.

9.1 Introduction

Nearest1 neighbor searches in the image plane are among the most frequent problems in a variety of computer
vision and image processing tasks. They can be used to replace missing values in image filtering, to group
close objects in image segmentation, or to access neighboring points of interest in feature extraction. In image
filtering, the filter result is often computed only for a sparse set of key points. This is the case either if the

1 This chapter is based on joint work with Martin Stommel, Thiemo Wiedemeyer, and Michael Beetz. It puts together and improves
the work from [596, 223].
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processing of the whole image would take too much time, or if only a small set of pixels is suitable for processing
(e.g., because of the aperture problem). The missing filter output must then be interpolated between the nearest
keypoints. In image segmentation, nearest neighbor searches allow for a (possibly recursive) combination of
close points to more complex objects, which leads to a fine-to-coarse decomposition of the image. For object
recognition, the concept of spatial proximity is of fundamental importance, with a clear effect on the image
statistics.

Traditional solutions to such nearest neighbor problems are a pixel-wise search within adaptive or fixed-size im-
age windows, or the use of Delaunay triangulations and kd-trees. Search windows are unattractive because many
irrelevant pixels must be visited. Fast results can only be achieved by using small windows or sub-sampling,
often with a loss of accuracy. And although fast approximate results would often be preferred over accurate but
slow computations, fixed window sizes may simply not suit the problem well. Balanced trees are more attrac-
tive because of their logarithmic run-time for a nearest neighbor search. The construction of the tree, however,
introduces additional overhead, in the case of video sequences even repeatedly.

We will examine a fractal approach for a fast but approximate solution. The basic idea is to map the image
plane to a one-dimensional space filling curve, the Hilbert curve, and perform the nearest neighbor search
there. The Hilbert curve is known to keep the original 2D-relationship to a certain degree. As a result, an
approximate nearest neighbor can be found by searching for the nearest neighbor (in other words the successor
or predecessor) in a linear list. This can be done in one step or in log-log time depending on the implementation.
Since the mapping is the same for every image (assuming a fixed size), there is no repeated overhead for video
sequences. The theoretical and experimental results will show that the method is quite powerful in a computer
vision context. Surprisingly, the use of space filling curves is largely unknown in this domain.

Due to the flexibility of kernel functions, statistical machine learning and pattern recognition with Support
Vector Machine (SVM) are in frequent use. The training of SVMs is based on the maximization of a margin be-
tween the distributions of different classes. Noise tolerant loss functions allow negative margins for overlapping
distributions. Common weights for outliers are linear (Hinge loss) or quadratic.

The dimensionality of the input data affects the speed of the classification as well, but it also often causes a
numerical instability known as the curse of dimensionality. It is described as a general unreliability of distance
computations for data sets where minimum and maximum distances approximate with rising dimensionality.

Figure 9.1: Effect of binarization.

In the application of machine learning algorithms to image and video data, a binary discretization of the pop-
ular SIFT (Scale Invariant Feature Transformation) has been applied. Although a feature binarization (see Fig-
ure 9.1) is a dramatic simplification of the input data, it has been observed for SIFT and SURF (Speeded Up
Robust Features) features that the recognition accuracy (of SVMs and other learning methods) does not de-
crease significantly. The dimensionality of the feature vectors is 128 for SIFT (implemented as unsigned chars)
and 64 for SURF (floating point values). The binarization compresses SIFT by factor 8 and SURF by factor 32
(given that in most SURF implementations 4 byte floating point data is stored). This problem is highly relevant
to Robotics applications as SURF or SIFT are called at a high frequency in Simultaneous Localization and
Mapping (SLAM).

We study the findings on feature binarization in a more general setting. A brief summary of Support Vector
Machines allows us to introduce the method under the notion of a Bitvector Machine (the term machine links
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to the fact that the classifier realizes a mathematical function, sometimes referred to as a machine). We discuss
under which conditions the binarization of a feature vector is appropriate.

We observe that the Hamming distance is a natural distance estimate for Boolean vectors and has the property
that its values are bounded by the length of the vectors to be compared. This allows a number of important code
optimizations, most notably the use of look-up tables and native processor instructions for kernel evaluation.
For transforming the input data from floating point to binary strings we exploit that medians can be computed
efficiently.

9.2 Nearest Neighbor Computation

The method answers two types of nearest neighbor problems in three steps each: At first, the mapping between
2D and 1D-coordinates must be computed. For the all nearest neighbor problem, the set of keypoints S must
be written as an array. The nearest neighbor assignment can then be done in two passes through the array. For
the k-nearest neighbor problem, the set of keypoints S must be stored in a priority queue. The neighbors of a
query point q can then be found by using the successor function of the queue. A Hilbert curve of recursive depth
R subdivides the unit square into 2R rows and columns. The size of the sub-squares is 2−R x 2−R. We map an
image with unit square sized pixels (i.e., integer coordinates) to the unit cube by applying the scale factor 2−R.

To make sure that an image with W columns and H rows fits into the unit cube, the recursive depth must be
R = dlog2 max(W,H)e. We obtain C Hilbert indices range from 0 to 22R− 1. More recursions are redundant.
With this scaling, we have a correspondence between the Hilbert indices of the 1D-curve, the sub-squares of the
unit-cube, and the pixels of an image. Rectangular images and images whose side length is not a power of 2 do
not cover the unit square completely. An image of size 640×480 would be mapped to a 1024×1024 grid in the
unit cube. In this case, only 30% of the Hilbert indices correspond to pixels.

The result of the first step is a mapping M(x,y) : N×N → N of image coordinates (x,y) to Hilbert indices, as
well as the partial inverse mapping M−1(i) : N→ N×N of a Hilbert coordinate to the image coordinate (x,y).
The mapping must be computed only once for a fixed image size. For the whole image this can be done in linear
time with respect to the number of pixels. We use arrays to store the mapping.

The mapping is used to solve two problems. In the all nearest neighbor computation we find the approximately
closest keypoint p ∈ S for all pixels q ∈ I. We will see that the all approximately nearest neighbor problem can
be solved in precomputation time O(C+n) and query time O(1), while using O(C) space.

Constant query time is achieved by computing a lookup table T of size O(C) with the results. The indices of
the lookup table are the Hilbert indices. At first, we mark the n keypoints S in the table, which is O(n). In one
forward pass, we compute for all indices i the distance i− j to the nearest keypoint with lower Hilbert index j.
To this end, we need to check if index i of the lookup table corresponds to a keypoint, i.e. if M−1(i) ∈ S. In that
case, we set the distance to zero. We also set it to zero if there is no preceding keypoint. Otherwise we increment
the distance of the preceding table entry by 1. The check and the distance increment can be done in constant
time, so the general complexity of the forward pass is O(C). In a backward pass, we compute the distance to
the nearest keypoint with higher Hilbert index. Then, we assign each index of the Hilbert curve to the nearest
keypoint index from the forward and backward pass. The complexity of the backward pass is again O(C). The
total complexity is therefore O(n+C).

The second problem is the approximately k-nearest neighbor problem. It can be solved in precomputation time
O(n lg lgC) and query time O(lg lgn+ k). The space requirement is O(C lg lgC). We build a priority queue Q
where all n keypoints S are ordered by their Hilbert index M(p), p ∈ S. Using the precomputed arrays for M,
the Hilbert index of a key point can be found in constant time. Inserting an element in a priority queue takes
constant time plus an overhead of O(lg lgC) for locating the right position in the queue using the successor
function. The complexity for inserting n elements is therefore O(n lg lgC). By linking all adjacent elements
of the queue (in O(n)), we can find the successor and predecessor of an existing element in constant time.
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Figure 9.2: Nearest neighbor assignment using the approximative method (left image) and an exact search (right image) for 240
keypoints (marked by crosses). The resulting cells are colored randomly but consistent over both diagrams.

The priority queue needs to be computed only once for a given set of keypoints. The precomputation time is
therefore O(n lg lgC). For a query point q, the approximately nearest neighbor can be the successor of M(q)
in Q or its direct predecessor. The successor M(ps) can be found in O(lg lgC). Its direct predecessor M(pp) is
found in O(1) using direct links. The comparison of the Hilbert indices (|M(q)−M(ps)| and |M(q)−M(pp)|)
and the nomination of an approximately nearest neighbor is also constant time. The remaining k−1 neighbors
can be found by reading out the directly linked (k− 1)/2 predecessors and (k− 1)/2 successors, which are
single-step operations. The k-nearest neighbors can, therefore, be found in time O(lg lgC+k) once the queue is
constructed. The space requirement is O(C lg lgC).

In order to measure the accuracy of the method, we solved the all nearest neighbor problem for a small image
and varying numbers of keypoints first using the approximation and secondly using an exact method. It turns
out that the approximation yields the same nearest neighbor as the exact method in about 50% of the queries
(Figure 9.2). Even in the case where the method produces different results, the approximated neighbor is close.

9.3 Support Vector Machines

Raw data presented to a supervised statistical machine learning algorithm can be arbitrarily complex and is
often mapped a set of numerical values, called the feature vector. The classification problem deals with the
prediction of the labels l of previously unknown feature vectors x ∈ Rd that constitute the test data. During
training, a partitioning of the feature space Rd is learned, where each partition is assigned a label l from a small
set L based on a set of training samples (x1, l1), . . . ,(xk, lk) ∈ Rd × L with known label. The challenge is to
approximate the unknown distribution without overfitting the training data.

Support Vector Machines achieve this task by learning coefficients for a kernel mapping to a high-dimensional
space, where a linear class border is spanned by several support vectors that outline the data. We keep the pre-
sentation brief as there are textbooks on SVMs and related kernel methods. Theoretically, it should be sufficient
to determine the class border by just three support vectors. However, it is not known in advance if any of the
known kernels realizes a suitable mapping. The use of generic kernels instead leads to a much larger number of
support vectors (which critically influence classification time). In the worst case finding a separating hyperplane
takes quadratic time in the number of data points.

The classification rule for a two-class non-linear classification function φ is
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f (x) = sign

(
s

∑
i=1

βi(φ(xi) ·φ(x))+b

)
, (9.1)

where xi is the ith of s ≤ k support vectors, βi is a coefficient that includes class label and Lagrange multiplier
from the optimization, and b is some additional translation constant. Assuming a kernel function K(u,v) =
φ(u) ·φ(v) we get

f (x) = sign

(
s

∑
i=1

βi ·K(xi,x)+b

)
, (9.2)

which does not refer directly to φ , known as the kernel trick.

SVM training is a convex optimization problem which scales with the training set size rather than the feature
space dimension. While this is usually considered to be a desired quality, in large-scale problems it may cause
training to be impractical and classification to be time consuming.

The corpus of SVM applications is large and encompasses many areas of computer science. However, linear
kernels K(u,v) = uv+ g or Gaussian (RBF) kernels K(u,v) = exp(−γ ‖u−v‖2), γ ∈ R, are the ones that are
most commonly used. In the second case, a Support Vector Machine is a function that itself defines a Mixed
Gaussian Distribution and is related to Radial Basis Networks and Neuronal Nets with one hidden layer. Since
the optimization objective is high accuracy instead of a low number of support vectors, a Mixed Gaussian input
will be usually modeled by multiple centers per Gaussian in the SVM.

The running time for classifying one vector is O(sde), where e is the time to evaluate the exponential. Practical
SVM implementations might assume the input data to be normalized to avoid numerical difficulties.

9.3.1 Bitvector Machine

The approach we denote as Bitvector Machine (BVM) is a Support Vector Machine with a binarization (Boolean
discretization) of the input: All vectors xi ∈ Rd , 1 ≤ i ≤ k, used in the training phase and all vectors evaluated
in the test phase are mapped to {0,1}d . The labels remain unchanged. The results are then fed into an SVM.

The median of n totally ordered elements is the element in the bn/2c-th position after sorting. Linear-time O(n)
median selection algorithms are known. Let x̄ = (x̄1, x̄2, . . . , x̄d)> ∈ Rd be the component-wise median of the
input vector, i.e. x̄ j is the median of the j-th vector components of x1, . . . ,xk. The BVM maps (training and test)
vectors z ∈Rd to binary strings x = (x1,x2, . . . ,xd)> ∈ {0,1}d as follows: For each j, 1≤ j≤ d, we have x j = 0
if and only if z j < x̄ j.

Computing all component-wise medians of vectors xi ∈Rd , 1≤ i≤ k, i.e. x̄, requires O(kd) time. Thresholding
all vectors xi ∈ Rd component-wise with x̄ can be executed in time O(kd). Considering the input size of the
data, the time O(kd) is optimal.

To precompute the binarization for the training data we require median splits. If we were to split the data
iteratively, we would build a kd-tree in O(n lgn) time, for which rectangular range queries take O(

√
n+ k)

and membership queries take O(lgn) time. In contrast, in the Bitvector Machine the median splits are chosen
independently of each other, one in each vector component. The binarization therefore defines a partitioning
of the feature space into regions, where all separating hyperplanes intersect in one point. Geometrically, it can
be interpreted as moving the origin of the Cartesian coordinate system to x̄ and representing each resulting
orthant by a bitvector {0,1}d that indicates the position relative to the iso-oriented hyperplanes. The bitvectors
correspond to nodes in a d dimensional hypercube.

Let ψ be the mapping that performs the binarization. We have

f (x) = sign

(
t

∑
i=1

δi ·K(ψ(xi),ψ(x))+g

)
. (9.3)
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Due to a different training, the number of support vectors t, weights δ and bias g might be different from the
original values (s,β ,b in Eq. 9.2). Moreover, as K(ψ(u),ψ(v)) = φ(ψ(u)) ·φ(ψ(v)), we see that we are actually
dealing with a different kernel that transforms data via φ ◦ψ from Rd first into the Boolean space {0,1}d before
lifting it into higher dimensions.

Because of the symmetry property, distance metrics based on an element by element comparison (like Eu-
clidean or Hamming distance) in {0,1}d yield only d + 1 different values. All possible results of the kernel
K(ψ(xi),ψ(x)) can, therefore, be precomputed.

For the Gaussian kernel K(ψ(u),ψ(v)) = exp(−γ ‖ψ(u)−ψ(v)‖2) the term ‖ψ(u)−ψ(v)‖2 can only yield
d + 1 different values. For the Euclidean norm they range from 0 to d and equal the Hamming distance of the
kernel arguments. By applying the parameter γ and the exponential to these values, the whole kernel can be
precomputed and stored in a table. This avoids the repeated time-consuming computation of the exponential
during classification. The Hamming distance can be computed by applying the population count instruction
(counting the number of bits set) to the bitwise XOR disjunction of the arguments.

Precomputing kernels reduces training and classification time. Because training is done only once, we focus on
the latter. Assuming d to be O(w) for the computer word width w and native population count, the running time
for classifying one bitvector is O(t + d), where t is the number of support vectors. If population count is not
native on the word level, then the classification of one vector hast the complexity O(d + t lg∗ d), where lg∗ d is
the iterated logarithm, i.e. the height of the shortest tower of powers 22... that equals or exceeds d. This assumes
a large word width w and is mainly of theoretical interest.

Computing the binarization ψ(x) of the test vector x takes time O(d). The population count and XOR to be
executed on the word level to compute the Hamming Distance run in O(1). Given that the kernel is tabulated, we
require only lookups to the kernel table, so that multiplication with a constant and addition have to be executed
t times to evaluate the classification formula ∑

t
i=1 δi ·K(ψ(xi),ψ(x)). For larger values of d population count

can be done in time O(lg∗ d) (by iterating the HAKMEM algorithm).

From a mathematical point of view, the entropy for one split along the median is certainly maximal. But even
for simplified Mixed Gaussian Distributions (2D, shifted mean, same deviation but same amplitude) entropies
can only be approximated.

The number of regions distinguishable by the BVM rises exponentially with dimensionality. For dimensionality
d we have 2d possible regions. As we split the data component-wise, the BVM corresponds to a static decision
tree that has depth d and that is independent of the number of elements. An explicit construction of such a tree,
however, is not required. In contrast to Support Vector Machines, the binarization automatically normalizes the
input data to the unit hypercube.

9.3.2 Case Studies

One question is if, and when the binary kernel is better than a linear one. If we assign each vector {0,1}n with
even population count to class 1 and each vector {0,1}n with odd population count to class 2, then we generalize
the XOR problem into higher dimension (the minimal Hamming distance of two elements in one class is 2).
This is clearly not linearly separable, but the BVM can find a perfect classification.

This clearly is a best-case scenario, but we can argue that linearly non-separable but binary separable examples
are common in practice. One reason for this is that many classes underlie the principles of differentiation and
composition. Let us assume for example a set of images of noses, taken either from a left angle or from a frontal
perspective. Although left noses are visually and numerically similar to each other, they differ strongly from
frontal noses and occupy a separate region in feature space. The combined class nose, however, is activated by
features from both differentiations. The dispersed placement of multiple clusters of sub-classes in feature space
can easily create non-linearly separable situations, especially in multi-class problems. Moreover, real-world data
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Figure 9.3: Results of Hilbert and kd tree computation.

often comes from independent or principal component analyses. As a result, feature distributions for different
sub-classes tend to be iso-oriented (aligned with the Cartesian coordinate axis).

One worst-case scenario for the BVM in two dimensions is a checkerboard layout of two classes because after
two orthogonal cuts all fields of the checker-board that fall into the same quadrant are represented by the same
bitvector and with it the same class. For this theoretical setting, the SVM calls for several support vectors and
likely an overfitting of the data. If the number of Gaussian kernels is small and the dimension is high, the BVM
has good chances to find a discriminative partitioning. As a result, feature binarization preserves high selectivity
and lifts the curse of dimensionality.

Even though entire orthants collapse to single data points on the hypercube, the Gaussian weighting of the
binary vectors still preserves at least some geometrical meaning. The weights for a specific class are propagated
nonlinearly from one orthant to another via shared hyperedges. For shared hyperedges the Hamming distance
of the associated bitvectors is 1.

9.4 Experiments

For the nearest neighbor search, we take an image of size 1280× 800 with about five thousand keypoints (see
Figure 9.3), while obtaining a speedup of about 9 for the Hilbert curve compared to a kd-tree.

Operation Time
Preparing Hilbert 190,320 µs
Hilbert Nearest Neighbor 26,364 µs
per pixel 0.0257461 µs

Operation Time
Building kd Tree 1,872 µs
kd Tree Nearest Neighbor 237,744 µs
per pixel 0.232172 µs

To validate the bitvector machine experimentally, we produced training and test data for two and five-class
problems in a random process with defined statistical properties (see Figure 9.4). For each class we realised a
sampling of a mixture of Gaussians. The mean µi, i = 1,2, . . . , of each multivariate Gaussian

pi(x) = exp
(
−1

2
(x−µi)

>
Σ
−1(x−µi)

)
/(2π)d/2|Σ |1/2 (9.4)

is placed in the unit hypercube. The bandwidth is set globally in the main diagonal of the covariance matrix Σ

for all Gaussians. The number of Gaussians is set individually for every experiment.

The maximum likelihood estimate (Bayes) of the Mixed Gaussian distribution is used as the ground truth to
which a Support Vector Machine and the above method are compared. Linear kernels are used to detect linearly
separable situations.
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Figure 9.4: Datasets for two- and five-class problems together with maximum likelihood class borders.

Figure 9.5: First scenario: Accuracy for the SVM and BVM using the RBF kernel

The difficulty of the created problems is controlled by adjusting the bandwidth of the Gaussians for a specific
accuracy of the maximum likelihood estimator. If we keep the number of Gaussians fixed and increase the
dimensionality, we must to increase the bandwidth, too. Otherwise, the overlap between the Gaussians decreases
and the difficulty of the problem changes. The bandwidth of the kernel is therefore a parameter. It exhibits a
strong influence on the resulting estimate. We therefore set it manually.

Figure 9.6: Accuracy for the five-class problem of scenario 1 using a linear kernel instead of the RBF kernel (left), and CPU time
measured for the classification of the data sets (right).

In the first scenario we have synthetic experiment. As a parameter we choose the bandwidth to provide accuracy
values to be in the range [0.8,0.85]. For determining the classification accuracy (on the training and test sets)
we conducted two experiments, one for a two-class problem and one for a five-class problem, both with rising
dimension (dimensionalities 2, 4, 8, . . . ,256). The two-class problem is modeled by three Gaussians per class
at uniformly distributed random positions in the unit cube. With five Gaussians per class, the five-class problem
is more complex. Each Gaussian is sampled 70 times. The data set is randomised and split into equally sized
training and test sets. The parameters C (a weighting of the slack variables in the optimized function) and γ of
the RBF kernel of LIBSVM are optimized using Python scripts.

The plots in Figure 9.5 show that the BVM approximates the original SVM surprisingly well, given the lim-
itation that the BVM does not represent any gradual or continuous feature values. For larger dimensions, the
accuracy drops for both methods because the number of training samples is small.
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This is validated in another experiment, where we trained a linear kernel without cross-validation for the SVM,
and for completeness also for the BVM. In Figure 9.6 (left) we observe that for high-dimensional problems
the accuracies in training and test diverge. The beginning of this overfitting corresponds to the decrease of
the accuracy of the SVM using the RBF kernel for more than 32 dimensions. For lower dimensions we see
advantages for the BVM (RBF kernel, Figure 9.5) over the SVM with linear kernel (Figure 9.6, left).

In summary the accuracy of all classifiers is limited, so the experiment may be overly complex. Even the linear
kernel might be competitive if additional application constraints are considered.

In matters of CPU time we see a drastic decrease in computation time for the BVM. Figure 9.6 (right) shows that
we obtain a huge speed-up that additionally increases with the dimension of the problem. The maximum increase
of performance was a factor of 32 for the two-class problem in 128 dimensions. The drop of performance at
d = 256 can be explained by the increased word length. This means that all word level operations on a 64-bit
machine have to be executed four times.

Figure 9.7: Accuracy for a two class problem including four planar xor problems (left), and for a non-linear, eight-dimensional
class arrangement of increasing complexity (right).

The second scenario represents the above-mentioned high-dimensional XOR problem but with noisy data. To
this end, we center the Gaussians of the Gaussian Mixture at the corners of the unit hypercube and assign class
labels to the Gaussians as described above. The bandwidth is adjusted so that the Bayes classifier achieves an
accuracy of 90%–92% using the known distribution.

Feature vector SIFT SIFT, absolutely oriented
Foreground samples per class 20 20 125 250
Background samples 2000 2000 1125 2250
Classifier Training Test Training Test Training Test Training Test
LibSVM, RBF 73.4 74.0 79.9 79.1 84.7 85.6 86.8 87.9
BVM, RBF 67.2 67.3 74.0 75.0 82.4 83.2 84.2 85.1
LibSVM, linear 99.1 60.7 97.7 70.5 94.6 77.4 90.9 79.6

Table 9.1: Accuracy [%] for SIFT data sets of different size and class distribution. There are 15 foreground classes and one back-
ground class. The samples are randomised and split into equally sized training and test sets.

Figure 9.7 (left) shows the results of the discussed method and the SVM using the RBF and linear kernel.
The Gaussian Mixture consists of four planar XOR problems placed at random sides of the unit hypercube of
dimensionality 8, 16, . . . ,256). A planar XOR problem consists of four Gaussians at the corners of a square
with diagonally different class labels. Each Gaussian is sampled 70 times. The best results can be seen for the
SVM using the RBF kernel. The output of the BVM follows the SVM at a lower level. The linear classifier fails
completely because it cannot represent the non-linear class borders.

Figure 9.7 (right) shows the results for an eight-dimensional XOR arrangement of varying sparseness. For this
distribution, Gaussians are randomly placed in a certain percentage of all corners and sampled 100 times each.
For a sparse filling of 10%, the distribution still seems linearly separable. However, with increasing density the
linear classifier quickly approaches random, whereas the BVM improves gradually and finally outperforms the
SVM with RBF kernel.
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The third scenario is a computer vision task, where SIFT descriptors are classified into 16 classes (15 classes
representing different parts of a face plus one background class). The binarization has 128 bits, so that each
vector consists of two 64-bit words.

No BVM + 16BITPC BVM + NP LIBSVM
1 2.16 1.00 48.36
2 2.16 1.00 48.27
3 2.14 1.01 48.59

Kernel computation using all support vectors
No LIBSVM BVM + 16BITPC BVM + NP

1 39.44 4.01 2.84
2 39.45 4.01 2.81
3 39.71 4.00 2.71

only support vectors with β 6= 0
1 3.46 2.27
2 3.45 2.28
3 3.46 2.28

Table 9.2: Evaluation time in seconds for 116,072,232 kernel computations (left), Time in seconds for classifying 16,788 vectors
in 15 classes, 6,914 support vectors.

We evaluate the effectiveness of population counting on the machine and study the speed-ups obtained for sole
kernel evaluations (Table 9.2, left) and whole vector classifications (Table 9.2, right). We compare the LIBSVM
implementation with the BVM in two settings, one with a precomputed 16-bit population count lookup-table
(216 entries, cf. Program 9.1), one with the native population count (__builtin_popcountll). We run three
examples for each setting to show that the variance in the running times is small. The table documents a speed-up
factor 48 in the 116 million kernel comparisons and a factor 17 improvement for the entire classification process.
Further speed-ups might be achieved by using a one-versus-all strategy for multi-class problems instead of the
one-versus-one strategy of LIBSVM.

Program 9.1: Non-native bit count with precomputed lookup tables.

int BitCount[65536], BitCount_IsUndef = 1;
int BitCount(uint64_t a) { return BitCount16(a); }
void CreateBitCountLUT() {

if (BitCount_IsUndef) {
uint64_t n = 65536;
while(n-- > 0) BitCount[n] = BitCount4(n);
BitCount_IsUndef = 0; }}

int BitCount4(uint64_t a) {
static int BitCount[16] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};
int Count = 0;
while(a) {
uint64_t LowestNibble = a & 0x000000000000000fLLU;
Count += BitCount[LowestNibble]; a = a >> 4; }

return Count; }
int BitCount16(uint64_t a) {
CreateBitCountLUT();
uint64_t w0 = a & 0x000000000000ffffLLU, w1 = a & 0x00000000ffff0000LLU;
uint64_t w2 = a & 0x0000ffff00000000LLU, w3 = a & 0xffff000000000000LLU;
return BitCount[w0] + BitCount[w1 >> 16] + BitCount[w2 >> 32] + BitCount[w3 >> 48]; }

The difference in CPU time between the sole kernel computation and the whole classification indicates a strong
influence of the code analysis and generation of the compiler, since the number of kernel computations was
equal in both experiments, and the optimization flags too.
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Figure 9.1 shows for different SIFT variations and different class distributions that despite the high speed-up
the accuracy of the BVM is close to that of the SVM. The BVM also always outperforms the linear classifier.

9.5 Summary

Deep learning boosted the accuracy of many computer-vision tasks, and by visualizing the hidden units of a
convolutional neural network, we get an impression of what might be general concepts that have been learnt.
Nonetheless, improved support vector machines and nearest neighbor search are equally important, and often
better suited to a specific task. They are generally more efficient to train, work with non-trivial kernel functions,
and lead to higher accuracy values for difficult vision tasks.

Established descriptors are used to map the bitmaps to features that are then being used for both training and
classification. In short, processing large amounts of images crucially depends on the availability of efficient
machine learning algorithms.

The Hilbert curve is used to compute fast approximate solutions of the all nearest neighbor problem and the
k-nearest neighbor problem in the image plane. The method has a precomputation time of O(n) for adapting
to a fixed image size. Depending on the problem, an additional precomputation time of O(C+ n) (all nearest
neighbors) or O(n lg lgC) (k-nearest neighbors) is needed to adapt to a certain set of key points. The query time
is then O(1) or O(lg lgC + k), respectively. This is an advantage over a balanced tree (with runtime lgn) if
n > lgC (the latter being a small number for common image formats). The experiments show that the method
yields a compact and visually meaningful approximation of the Voronoi diagram in the image plane, which
is sufficient for many applications. For 50% of the queries, the method yields the exact result. In a practical
example of finding all nearest neighbors of a set of keypoints, the method was 9–18 times faster than a kd-tree.

The BMV is a machine learning algorithm whose advantages result from a dramatic simplification of the in-
put data. Discretization certainly has limits in the accuracy of not iso-oriented class distributions. We argue,
however, that iso-oriented classes with non-linearly separable sub-classes occur in many pattern-recognition
tasks.

The rising number of positive results in compiling feature vectors into bitvectors prior to the learning process
shows that the effectiveness and efficiency of the binarization in the BVM is an exciting phenomenon. Espe-
cially for a growing number of dimensions, where we lack a visual interpretation and where unexpected results
like the curse of dimensionality have been measured, research might have concentrated on aspects that do not
discriminate well. Even though binarization reduces the information in the input considerably, literature review
shows that the results are often of acceptable quality, sometimes even better than the original unabstracted input.

The experiments on synthetic and real data show that the accuracy of the BVM approximates (and in special
cases exceeds) the accuracy of a Support Vector Machine with RBF kernel but is up to 48 times faster in the
kernel computation and up to 32 times faster in classification. These results confirm the theoretical proof of
the efficiency of classification and binarization. Compared to a linear classifier, the accuracy of the BVM is
usually higher or equal. Furthermore, the BVM can model non-linearly separable problems where the linear
classifier fails. Together with an improved empirical basis we provided insights that increase the understanding
of when and why the approach works well, especially for large feature vectors. The BVM, therefore, allows for
a welcome new trade-off between accuracy and running time for non-linear problems.

We have extended the initial findings on improved classification time to different ends: improved learning, new
kernel functions, support of many bits. In particular we provided: flexible state vector sizes, rather than a fixed
one imposed by the computer word length; accelerated training rather than improved classification time to cover
the entire machine learning process; different kernel functions rather than Gaussian ones, to have full flexibility
in their usage; and multi-bit projections rather than single-bit binarization for an improved time-accuracy trade-
off. A library implementation smoothly extends and adapts to the LibSVM interfaces. The adaptation yields the
support of a new bitarray data type.
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9.6 Bibliographic Notes

One recent solution to the nearest neighbor problem is Full Delaunay Hierarchies [51] Its main difference to an
ordinary Delaunay triangulation is that it additionally records all edges that have been used during the incremen-
tal construction. Using a randomized incremental construction of the Delaunay triangulation, the approach uses
O(n lgn) expected time for building the data structure with an expected number of O(n) edges. The expected
number of nodes traversed for finding the nearest neighbor by a simple greedy algorithm yields an expected
query time of O(lgn). Differently from many other approaches, an additional search structure is no longer
needed. HAKMEM has been proposed by David Eppstein.

Machine learning with SVMs by [630] is one of the most successful approaches for many computer science
applications [141]. Recent research indicates advantages for a mild weighting of distant outliers. A penalty for
small or large positive outliers leads to mixed results depending on the application [467].

The number of support vectors learned affects training and classification speed. Bordes et al. [63] assume that
not all training samples are equally relevant for the resulting model. Their LASVM implementation achieves a
significant speedup during training by using an online approach, where the margin is determined from a small
subset of the input data. Important modeling decisions can be reached even without considering the class label
of a data point.

Tsang et al. [623] propose a radical simplification of the model by approximating the convex hull of the training
data by an enclosing ball in the high-dimensional feature space. The allowed error of the approximation is a
parameter of the algorithm. The method works iteratively to find the center of the ball.

LIBSVM is one of the most frequently used machine learning libraries. It is included in many different data
mining environments like RapidMinder. There are also fast SVM implementations with linear kernels (LIB-
SVM) e.g., LIBLINEAR and Leon Bottou’s [71] stochastic gradient descent SVM. However, for complex data
where single classes comprise multiple distant sub-clusters, non-linear kernels achieve a higher accuracy.

Supervised machine learning is well described by [604] Kernel methods that can be found in work by [141, 561].
As kernel functions can be complex, the application of SVMs is large and kernels can be designed to cover
simple regression to neural network approaches [560] and time series [310].

Linear-time O(n) median selection algorithms are e.g., presented by [59]. Mixed Gaussian distributions can be
found in [476, 511]. The kd-tree has been studied by [44] in computational geometry [150].

The curse of dimensionality [47] can be reduced by choosing a smaller norm than the Euclidian one [5], but
taking high roots is numerically difficult, too. SIFT goes back to work by [460] and SURF to work by [39].
Feature vector does not suffer from binarization [597], whereas the original SIFT representation does. In some
cases, the relative error rates even decreased [598]. Silverman indicates a dependency of the bandwidth on the
root of the dimensionality [578].

There is a considerable progress in generating AI art via text-to-image and image-to-image with tools like
OpenAI’s DALL-E [297].



Chapter 10

Navigation Data

Urban mobility planning depends largely on the presence of good navigation data. Vector maps are not always
available for many areas – especially for many of the third world countries. On the other hand, good paper maps
collected by the city authorities are widely available. A solution is the collaborative map generation process
that allows people to share the collected GPS traces. Nevertheless, the integration of these GPS traces is itself a
challenge and requires a good base map.

We first consider a generic approach for map generation based on GPS traces especially for unknown terrains.
The system uses AI algorithms to infer the road geometry.

Given a set of GPS traces, this input is refined by filtering and partitioning algorithms. For constructing the
graph, clustering algorithms are applied that allow us to incrementally generate a road map, annotated with
travel time information. The processing of the input data relies on a subdivision of the world into tiles. A
flexible map viewer is provided to navigate through the hierarchically organized content of the database. The
system provides the export of maps to serve, e.g., as the input for a routing server, which in turn can be queried
via TCP/IP for shortest and quickest routes.

Next, we present a method to extract calibrated road topology from raster maps to provide such a base map
for collaborative map generation process. The following approach takes a bitmap and uses different graphics
filters to infer the road geometry. We introduce an aggregation algorithm that extracts the actual vectorized
road fragments and constructs a graph of road network. We evaluate the algorithm on real raster maps collected
from the city authorities of Dortmund, Germany. We also report the integration of the approach into SUMO, a
state-of-the-art traffic simulation tool for urban mobility.

10.1 Introduction

Most1 available digital maps are expensive to produce and update, since exhibiting and processing road informa-
tion e.g., by surveying methods or by digitizing satellite images, is very costly. Maps are likely to be inaccurate
and to contain systematic errors in the input sources or inference procedures. It is costly to keep map infor-
mation up to date, since road geometry changes over time. In some regions of the world, digital maps are not
available at all. Maps contain information on road classes and travel distances only, which is often not sufficient
to infer travel time. Moreover, it is not possible to request a quickest path from a source to a destination during
a specific time period.

With the industrial emergence of low-cost positioning systems and by the accelerated development of hand-
held devices and mobile phones, integrated data gathering and processing to assist personal navigation becomes

1 This chapter is based on joint work with Stefan Schrödl, René Bruntrup, Stefan Edelkamp, Shahid Jabbar, Björn Scholz, Maik
Drozdzynski, Andreas Gaubatz, and Miguel Liebe. It puts together and improves the work from [220, 87, 171].
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Figure 10.1: Incremental map generation.

Figure 10.2: Map graph representation.

Figure 10.3: Data flow in the map generator tool.

feasible at a very large scale. In many PDAs or on-board units, GPS functionality is already available, suggesting
the automated creation or adaption of a map based on GPS data.

In this text we present a client-server architecture that takes GPS data as input to incrementally learn (see
Figure 10.1) a map using AI clustering technology. The input to be processed consists of recorded GPS traces
in form of a standard ASCII stream, which is supported by almost all existing GPS devices. The output is a
road map in form of a directed graph with nodes and edges annotated with travel time information. During the
processing of a trace map, nodes are created at regular distances (see Figure 10.2).

Nodes and edges are stored in a database. To obtain a certain locality we chose to subdivide the world into tiles
and store the nodes and edges inside the corresponding tile. Each tile covers an area of 1/100×1/100 degrees
in geodetic coordinate system.

The traces are processed in parallel, i.e., we allow different trace processing threads to run concurrently. Most
important, parallel access to the map database has a large potential to accelerate the runtime behavior on the
server side. The data flow within the architecture is shown in Figure 10.3.
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First, we consider the pre-processing of incoming GPS data, namely the trace server, trace filter and tile man-
ager modules. Then, we present the algorithmic details of the core clustering algorithm in the trace processor
that incrementally merges a new trace to the already inferred map. Afterwards, we look at the performance and
accuracy of the algorithm. For map administration, we introduce a hierarchical navigation front-end that allows
us to scale gradually from a global to a detail view of the map itself and the incoming traces. We explain the
system’s I/O architecture and how it is integrated in a client-server navigation system with hand-held access.

10.2 Map Generation

Pre-processing

In order to organize an incremental extension of the map, we first have to parse and filter the GPS traces.

The trace server takes a GPS trace as the input. It listens to an open port and accepts connections. The connection
receives GPS traces in NMEA 0183 Standard and is closed after the data has been sent. The relevant data for
map generation (latitude, longitude, altitude, absolute point in time) is extracted from the parsed GPS data items
and packed into an internal data structure for further pre-processing.

The trace filter was realized to improve the quality of GPS traces. The main task of the filter is to detect and
eliminate outliers caused by the inaccuracies of the GPS system. We detect outliers by thresholding absolute
velocity and acceleration on the trace. The filter also detects gaps in between two GPS points, e.g., caused by
distorted signal information of the GPS receiver. That time delay between two received data items is bounded
by a threshold. If the threshold is exceeded that trace may be split. This parameter must be chosen with care. If
the threshold is too small, existing tunnels may no longer be detected. To avoid such flawed behavior, we will
have to combine several heuristics.

The tile manager module is responsible for the maintenance and propagation of GPS traces. If a new filtered
trace is present for subsequent processing, a sequence of actions to integrate the trace into the map is executed:
a trace is selected, the area, i.e., the tile region, on which the trace is located, is reserved and a new trace
processor is created and started to integrate the trace. Finally, after a trace processor has finished the reserved
tiles are released.

I/O and Communication

The GPS trace map is stored either in a file-based database or externally in an ODBC connected database. The
file database was implemented for an easier program setup. For production systems the external database is rec-
ommended. ODBC provides the same functionality on all supported operating systems and supports changing
the database underneath. The implementation in MySQL can be altered to other databases such as PostgreSQL
without any changes to the source code.

The database contains just one table that consists of an ID and a further field for maintaining variable-length
binary data. In the data field the information encoding a tile is stored in binary form.

The cache is the connection between the database and the other program fragments. It maintains the mapping
of the data from main to secondary memory. Casually, it allows us to reduce the slow database accesses.

For internal communication and communication with the GUI we chose a publish-subscribe system, a simple
and generic interface to facilitate state synchronization between cooperating components. The design pattern
extends the observer pattern, providing a mechanism for decoupling dependencies between applications. It has
been extended to a publish-subscribe channel to provide a way to broadcast events to all receivers that have
subscribed to a specific topic.

More complicated constructions are possible: as we allow a subscriber to also be a publisher, processing chains
can be realized. For example, the cache values of different publishers could be received and their average be
published.
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Observations and Experiments

We took a small trace collection of real-world traces.

We measured the performance in two different tests. In the first test we compared two different computers with
a cache size that was big enough to store nearly all data. The values should reflect mostly the scalability of the
core algorithm. The second test compares the whole system performance using different cache sizes on one of
the computers.

In the first test all available traces where send to the server as fast as possible using a simple shell script and
netcat. We applied two scenarios: In the creation phase we used an empty database and cache. This shows how
fast an initial map can be computed. In the update phase the database contained all roads, and the cache was
already filled. This is probably a more realistic scenario for a production server. We ran the performance tests on
two different linux machines. Table 10.1 shows the aggregated user and system values, as the unix time program
shows them. These values only reflect the CPU time the program used. As the program was able to push the
CPU usage to above 90% the real times where only slightly higher all the time. As we can see the core algorithm
scales very well with the CPU speed. As expected, updating is much slower, because much more points have to
be clustered together. In both cases and on both computers the speed is still high enough to process the data that
an average car produces per hour in less than a second.

As a second test we measured the whole system performance and the influence of the cache, by running the
tests with different cache sizes. This tests were only made on the Duron. For this test a dataset was sent to the
server three times and the complete processing time including writeback of the data was measured. Opposed to
the first test we used a local mysql database. This is slower, but more realistic. The cache used a simple FIFO
logic. Table 10.2 shows that in this setup the cache size is very important, even with the local database. With the
database on another computer the difference would probably be even higher.

Table 10.1: Computer comparison

Computer1 Computer2
Creation 117.45 236.55
Update 87.19 161.91

Table 10.2: Cache comparison

Size (KByte) 1,000 5,000 10,000 50,000
Speed (km/s) 36.89 39.29 42.47 49.13

There are sources for inaccuracies in the system. On the one hand there is the inaccuracy of the GPS system
itself and on the other the algorithm may misinterpret the incoming data.

The US Army terminated the intentional degradation of the GPS signals (called SA) on May 1, 2000. This
augments the accuracy to 15 meters at least. If we assume a symmetric distribution of the error values, a merge
of nearby points belonging to the same road can even raise the accuracy. Therefore we can expect GPS data to
be fairly exact if enough test data is available.

As already mentioned in the algorithm’s description, the correct evaluation of road connections is crucial for
accurate maps. The first and probably most important result was that the generated map matched a conventional
road map in most cases, which we verified using the map viewer described in the next section. In the cur-
rent implementation the algorithm can correctly determine most road structures. Problems occur with narrow
structures, such as close crossings and mini roundabouts.
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10.3 Map Administration

To test and observe the server, and to navigate through the database, a flexible graphical user interface is manda-
tory. The information on the actual state of the queued data being processed and the map being generated, i.e.,
the contents of the database, are accessible to the server operator.

For a smooth working of the program, it is essential to recognize communication problems and bottlenecks.
Therefore, error and status information, e.g., the number of working trace processors or the number of pending
GPS traces, are visualized. As the representation of such statistical data in pure textual form is not feasible, the
graphical user interface provides a concise representation of all messages and status variables of the server.

Here, we concentrate on displaying the map using a graphical front-end based on a world-wide hierarchical nav-
igation. As we already mentioned the complexity of road inference mechanism itself, the tool was a necessary
aid for debugging.

Figure 10.4: A view of the map in the database.

The map viewer displays the actual map as generated by the server. Since only a read access to the database is
needed, the viewer can be used without any problem on a running server.

Figure 10.4 shows a part of the map in a moderate zoom factor. We see highway crossing and parts of a city
(upper right corner). We support the facility to zoom the map from a global view down to the visualization of
single road elements.

As the server runs on GPS data, we use a UTM transformation to project the 3D world to the 2D map repre-
sentation window. For displaying the entire world, we have to cope with 36,000×18,000 = 648,000,000 tiles.
Loading that many tiles into main memory is infeasible and even a test of road existence on each tile would
be too time-consuming. Therefore, we first load the IDs of all used tiles into main memory. With an expected
usage of 1% of all tiles we have an accumulated data volume of about 25 MB for the 4 Byte IDs only. Assuming
a fast networ k that is required to use the viewer anyway, this performance requirement is acceptable.

The list of used tiles is compacted into 2-bit vectors to allow a faster access to active tiles and to save memory. In
a coarse scale the usage of larger tile blocks is queried. Only those meta blocks are shown that contain any road
information. Only in the fine-grained display modus we access the database to display the data that is contained
in the tiles.

The access to the database is performed in the background to allow displaying without any distortion. The data
of the tiles is displayed once it is read from the database into the cache. Using this implementation, the user can
navigate quickly to all selected magnifications of the world map as long as the caching policies to the database
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Figure 10.5: A fragment from a topographic map.

are efficient enough to predict the user’s behavior. In practice, we observed no bottleneck in the graphics for
navigation or animation.

The inferred map can be exported in different formats for use in different applications. The routing module is
called via TCP/IP and computes the shortest and quickest route between two query points. The TCP/IP con-
nection is accessible for handheld devices. The project group implemented and tested a system on a PDA. The
handheld application protocols GPS traces, visualizes traces, and accesses the routing server. For the user’s ori-
entation, a topographic map is also included, which can be calibrated with the input GPS signal. The presented
approach has been successfully integrated into this route planning system.

10.4 Extraction of Road Surfaces

The raster map we started from contains a set of pixels. Each pixel at position (i, j) carries its color information
in form of an RGB triple. Fortunately, the set of topographic maps we considered do not contain much noise,
such that the streets are easily discriminated by their color value (see Figure 10.5). We allow the user to select
the color value for road extraction. Next, we set all the information that belongs to the street network to black,
and all other information to white. Using this simple filter yields some subtle problems: in the maps we have
black letters for street and city names and further urban information; moreover, all railway tracks are drawn in
black.

The solution to define black as the color of the road includes railway tracks. On the other hand, not using black
would give rise to many white holes in the road infrastructure due to the street names. Moreover, as parking and
playgrounds are white in the input, selecting this discriminating color also has its drawbacks. Subsequently, the
current extraction process is not perfect and needs some manual post-processing.

For automated post-processing we implemented six morphological filters: Erosion, Dilatation, Morphological
opening, Morphological closing, Gap closing, and Fragment elimination. We illustrate the working of these
graphical filters in the following using a running example. The mathematical basis for these filters is set theory
and they are termed morphological filters because they work on the shape of the image.

Erosion In order to remove the city and street names from the map, we employ an erosion operation. An erosion
operation is defined with respect to a structuring element called mask. Intuitively, it works like a net with holes
in the shape of a mask. All the elements of the image that can pass through the holes disappear.
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Figure 10.6: Result of erosion

For two integer matrices A and B, the erosion of A with respect to B is defined as A	 B = {z |(B)z ⊆ A}.
Therefore, an erosion of A with respect to the mask B consists of all points z, such that if B is shifted with its
center point at z, it remains in A.

The form and size of the mask is crucial for the results of erosion. To avoid distortion of the road elements, a
symmetric mask is required. As pixels are deleted by erosion (starting at the fringes of the road surfaces), the
mask should not be selected to be too large, suggesting a (3×3)-pixel map in our case. Using erosion, a large
part of the non-road elements such as railway tracks and names are eliminated. The result of erosion on the
example is depicted in Figure 10.6.

Dilatation Due to the application of erosion operation, street lines might become distorted, especially at the
places where they overlapped a street name. A dilatation operation is then used to smoothen these contours and
to fill certain holes that might have appeared during erosion.

For two integer matrices A and B, the dilatation of A with respect to the mask B is defined as A⊕B = {z |
(B)z∩A 6= /0}. Dilatation enlarges the number of black pixels and closes some gaps within the road surfaces. As
in erosion, the choice of mask is crucial, and it should be taken care of that no two road elements are merged
into one.

Morphological Opening The morphologic opening is a composite morphological operation based on both
erosion and dilatation. For two integer matrices A and B, the morphological opening of A wrt the mask B
is defined as A • B = (A	 B)⊕ B. This operation helps in removing small bridges between black surfaces,
smoothening of the contours and elimination of small noises.

Morphologic Closing The morphologic closing of a set A given the structuring element B is defined as A◦B =
(A⊕B)	B. Using this operation will also smoothen contours. In contrast to a morphologic opening, small
bridges between black surfaces are strengthened and small gaps and indentations are filled.

Gap Closing A problem that cannot be solved with the dilatation alone is the elimination of gaps within large
road elements such as inter-state highways.

Several dilatations can close those gaps but may lead to a merging of different road fragments. A solution
to the problem is a specialized algorithm gap closing, which tests for each white pixel if it has more than
n ∈ {1,2, . . . ,8} black neighbor pixels. The number n is to be provided by the user, with n = 5 as a feasible
choice.
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Fragment Elimination Even after applying the above-mentioned filters, some of the railway tracks and other
map symbols remain on the map as isolated fragments. Such fragments are searched and removed in the frag-
ment elimination phase.

We iterate through every pixel of the bitmap. If we find a black pixel x, the neighborhood of x is analyzed.
We exploit the property that route fragments accumulate to continuous chains of black pixel. If all surrounding
pixels of x are white, we assume x to be isolated from the other black pixels and color it white. In the method
an odd integer i > 3 is taken as a parameter, which denotes the size of the square that is drawn around x. In a
loop i is increased successively. If all the border pixels of the square are colored white, the iteration is stopped,
coloring all internal pixels also white. If this is not the case, the square is enlarged until the upper bound is met.
Corner pixels of the bitmap must be considered in a refined case study.

10.5 Road Skeleton Computation

After the road surfaces have been clearly extracted using the application of filters and some additional manual
refinements, the skeleton has to be computed as a basis from which the street graph is generated. Roughly
speaking, the skeleton of a pixel map is a set of thin curves, denoting the centerlines of the black surfaces. With
respect to the road geometry, these are the centerline of the streets to look at. Using the mathematical notation
of morphological arguments the skeleton of A is defined as S(A) =

⋃K
k=0 Sk(A) with Sk(A) = (A	 kB)− (A	

kB)◦B, where B is the structuring element and (A	kB) = (. . .(A	B)	B)	B)	 . . .)	B)︸ ︷︷ ︸
k times

Moreover, K is the

last iteration before A is the empty set, i.e., K = max{k | (A	 kB) 6= /0}.

10.5.1 Skeleton Generation

A first implementation of the classical definition of the skeleton has yielded the aimed result. But a skeleton
generated by using the above-mentioned definition is not guaranteed to be connected and may easily break down
into pieces especially at crossings. This can make graph generation infeasible.

The medial axis transformation (MAT) of a region R with fringe G is defined as follows. For every pixel p in R,
we search for a nearest neighbor in G. If there are more than one neighbor, then it belongs to the middle axis,
the skeleton. An illustrative interpretation of the MAT is a fire in the Savannah, with dry grass that is set into
flames at its fringe. The MAT corresponds to all positions that are reached by at least two fire frontiers. A direct
conversion of this idea leads to inefficient algorithms since the computation for distances from all interior points
to all fringe pixels is involved.

The binary bitmap is processed in two stages that are successively altered until no more changes are to be
observed. Let the considered pixel be arranged as follows.

p9 p2 p3
p8 p1 p4
p7 p6 p5

In the first stage, all black pixels are marked that satisfy the following conditions: 2≤ Sum(p1)≤ 6, Trans(p1) =
1, p2∧ p4∧ p6 = 0, and p4∧ p6∧ p8 = 0, where Sum(p1) = p2+ p3+ . . .+ p9 and Trans(p1) denotes the number
of 0/1 transitions in the sequence 〈p2, p3, . . . , p9, p2〉. In the following, two cases of the pixel’s positions are
shown. On the left, we have Sum(p1) = 4 and Trans(p1) = 3, while on the right, we have Sum(p1) = 4 and
Trans(p1) = 1 as required for the second condition.
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•
p1 •

• •

• • •
p1 •

Condition 1 is violated if p1 has one, seven or eight black neighbors. In case of one neighbor p1 cannot be
deleted as it is at the end of a pixel chain. If black pixels with seven or eight neighbors are deleted, the region
will quickly become sparse. Condition 2 takes care that the skeleton is not split, so that no pixel is deleted that
lies on a chain of minimal width.

If all conditions are checked, the original is deleted. The manipulated bitmap is the input for the next step.

In the next stage, all black pixels are marked if the following conditions are satisfied. 2 ≤ Sum(p1) ≤ 6,
Trans(p1) = 1, p6∧ p8∧ p2 = 0, and p8∧ p2∧ p4 = 0.

A pixel that satisfies the first two conditions and both first parity conditions is located east or south or is a
north-west corner point. In this case the pixel is not in the skeleton and should be eliminated. Similarly, a pixel
is eliminated that satisfies both second parity conditions is located north or west or is a south-east corner point.

In Algorithm 10.1, we see the pseudo-code form of the skeletonizing algorithm that checks the entire bitmap
for the pixels that satisfy the former conditions. Note that the pixels are not deleted in the first pass and only
marked, so that they do not bring any change to the next iteration. In a second pass, all marked pixels are deleted.

Algorithm 10.1: Skeleton generation.

Input: 2DPixelArray p; Height; Width;
repeat

Marked← false;
for i← 1 to Height do

for j← 1 to Width do
if p(i, j) = 1 then

if 2≤ Sum(p(i, j))≤ 6 and Trans(p(i, j)) = 1 and
p(i, j−1) = p(i+1, j) = p(i, j+1) = 0 AND
p(i+1, j) = p(i, j+1) = p(i−1, j) = 0 then
Mark(p(i, j));
Marked← true

for i← 1 to Height do
for j← 1 to Width do

if Mark(p(i, j)) then
p(i, j)← 0;
Unmark(p(i, j))

until Marked = false

10.5.2 Skeleton Minimization

An immediate construction of the graph from the skeleton is problematic since the skeleton is not necessarily
maximally sparse. A skeleton is maximally sparse if the elimination of a pixel having two neighbors can break
down the skeleton. This condition can be used to minimize the skeleton and to identify pixels corresponding to
crossings, dead-ends or to just an ordinary point. In total, we must consider 28 = 256 cases. The result of the
skeleton generation and minimization phase is shown in Figure 10.7.
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Figure 10.7: The generated skeleton.

10.6 Graph Construction

Once the skeleton is generated, a Tracking algorithm constructs the underlying directed graph. This algorithm
is based upon the Sweep-line paradigm: the pixels are processed in a column-wise fashion. As soon as a new
pixel is found, which belongs to the skeleton, a sub-routine is invoked that traverses and processes the connected
component of the new pixel.

It generates nodes for all neighboring points. Furthermore, new pixels are added to the pixel chain at regular
intervals (user-defined) and are connected with the previous pixels by new edges. As soon as a pixel representing
a crossing is reached and converted to a node, a list of its neighbors is generated. This list is then iterated through,
calling the same sub-routine recursively for every list element.

One thing that is to be especially taken care of is that the neighbors are not accessed twice. It can happen that
during the traversing of the skeleton in this manner, a crossing is encountered that had been visited but not all
of its neighbors had been processed. This problem can be resolved by using a flag that marks a pixel as visited
and avoids re-processing when reached again.

Once a connected component has been processed completely, the sweep-line algorithm searches for another
connected component in the picture. A node counter is set that counts the number of nodes that belong to a
connected component. In this way we can get rid of those connected components that are too small to represent
any street. These fragments may correspond to any noise that may have been left during the filtration process.
The minimum size of a connected component should be provided by the user. Figure 10.8 shows the street graph
constructed for the example.

The graph constructed through the Tracking algorithm has a large number of nodes. In case of very large raster
maps, the resulting graph could be enormous in size and would not even fit into the available memory. The graph
can be simplified by the help of simple observations. Using some information on the road geometry, the number
of nodes that are needed to represent a street can be reduced. In many cases, we have achieved a reduction of
about half the nodes without losing any significant information about the road geometry. In the following, we
discuss the two simplification techniques that are used in the approach.

Removal of Redundant Nodes A node u is redundant if it lies in the middle of a straight street. Typically, such
nodes have an in-degree = out-degree = 1. Note that the street must be straight, else we may lose the desired
precision in road geometry. Let u = (xu,yu), v = (xv,yv), w = (xw,yw) be the three consecutive nodes in the
graph G. The simplification algorithm basically uses a collinearity test to find the redundant node. The node v
is redundant if v lies on the line joining the nodes u and w. The collinearity test can be performed by testing if
the value of the determinant
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Figure 10.8: The street graph.
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xu yu 1
xv yv 1
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is 0 or not.

The simplification algorithm described above can be adjusted to simplify a bit curved or wavy streets too. By
introducing a tolerance parameter ε , only the nodes that lie within an ε-distance of the line joining the two
neighboring nodes are removed. Increasing the value of ε can give lower number of nodes but a distortion in
the road geometry as many curved streets would be approximated as straight ones.

The algorithm runs in O(n2) time and is a simplified form of the Douglas-Peucker algorithm, which was devel-
oped to reduce the number of points to represent a digitized curve from maps and photographs. It considers a
simple trace (certain forms of self-intersections can also be handled) of n+ 1 points {p0, . . . , pn} in the plane
that form a polygonal chain and asks for an approximating chain with fewer line segments. It is best described
recursively: to approximates the chain from point pi to p j, the algorithm starts with segment pi p j. If the farthest
vertex from this segment has a distance smaller than a given threshold ε , then the algorithm accepts this approx-
imation. Otherwise, it splits the chain at this vertex and recursively approximate the two pieces. The O(n logn)
algorithm takes advantage of the fact that splitting vertices are to be located on the convex hull. It has been
improved to O(n log∗ n), where log∗ n = min{k | log log · · · log︸ ︷︷ ︸

k times

n = 1}.

Merging of Closely Situated Nodes Another approach that can result in a simplified graph with much fewer
nodes is to remove the nodes that lie very close to each other. Again, it can affect the smoothness of the streets,
but when done with proper parameters the resulting graph can retain a good approximation of the road geometry
and still consist of less nodes. The simplification can be done by a linear time algorithm that runs in time
proportional to the number of edges. The algorithm iterates through the edge list. Let s and t denote the start
and the end node of the edge e, respectively.

If for edge e = (s, t) the Euclidean distance between s and t is smaller than σ , where σ is the simplification
parameter, the node t is declared as a close node and is deleted.
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Figure 10.9: SUMO.

10.7 Integration to a Traffic Simulator

To test a utility of the approach in a different scenario, we decided to integrate the efforts with an existing traffic
simulation system. SUMO is a microscopic and multi-modal traffic simulation tool. The input to SUMO is a
graph in XML format. It consists of three parts: the nodes, the edges, and a third data set that consists of the test
routes in the street graph. These routes are to be used by the virtual vehicles during the traffic simulation.

For the parsing of XML data, an open-source parser is used. In the following, excerpts from the XML files are
shown that contain the nodes and edges information, respectively:

<nodes>
<node id="0" x="0.0" y="220.0 type="priority" \>
<node id="1" x="61.0" y="234.0 type="priority" \>
<node id="2" x="98.0" y="232.0 type="priority" \>

</nodes>
<edges>
<edge id="0" fromnode="0" tonode="1" priority="78" nolanes="1 speed=50.000 />
<edge id="1" fromnode="0" tonode="2" priority="78" nolanes="1 speed = 50.000 />
<edge id="2" fromnode="0" tonode="2" priority="78" nolanes="1 speed = 50.000 />
</edges>

10.7.1 Post-processing of the SUMO Street Network

After the vectorization and the generation of the street graph, the exported XML data can be post-processed
for SUMO. Normally an edge means a street with only one lane and with allowed speed as 50km per hour. To
obtain a realistic trace, the street graph has to be extended to bring it more toward reality. But again, not all
streets have more than one lane and different kinds of streets have different number of lanes. For this purpose,
a user interface is developed and integrated in the SUMO environment that provides the facility to change the
attributes of a street. To get this lane information, we have used satellite images of the city. In Europe, where
most of the streets indeed consist of one lane for each direction, the process is easier to be carried out by a
human. Another post-processing step is to mark the road crossings that have a traffic signal installed.
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10.7.2 Traffic Routes

As described above, the routes to be used by the virtual vehicles during the simulation are generated beforehand
and saved as XML data. This routing information is not changeable during simulation time and must be provided
along with the problem graph. A sub-program of SUMO helps in the generation of individual routes. The main
input is the number of cars per time unit. A series of random routes are generated by picking the start and end
nodes randomly and searching for the route between them. The generated routes are then used in SUMO for
simulation.

10.8 Summary

GPS-based navigation and planning is becoming a necessity in modern times, where urban mobility on large
scale poses a genuine challenge for sustainable transportation. Navigation systems allow users to search for a
shortest path, based on a given metric, be it distance or travel time. However, their availability and utility is
completely dependent on the underlying digital vector map.

We have seen a flexible approach to infer maps in unknown terrains using an efficient incremental clustering
algorithm. Its efficiency mainly relies on two criteria, how fast a new trace can be made accessible, and how fast
the cluster nodes are found. As we generate one thread for each incoming GPS trace, the approach can be used
in large-scale applications where many traces are fed into the system in parallel.

Although we have described the algorithm in the context of car navigation, we highlight that the approach is
fully generic and applies to most other forms of navigation on earth, e.g., hiking, cycling, etc.

All roads are annotated with travel time information for different periods of time. This allowed flexible routing
queries based on the actual travel time, not just road type-based approximations, and propose variable time slots.

With the inference mechanism we provide a viewer on the accumulated map database for navigation and ani-
mation. We have adapted the approach to an on-board navigation system, so that we can expect to apply GPS
routing and logging on the same GPS hand-held device. Although possible, we do not directly route on the
database server itself, but export the map in form of a compressed graph that includes only crossing informa-
tion. We extract the graph that is necessary and sufficient for the query.

Further tasks are to detect lanes, road types and traffic lights using data mining techniques based on the corpus
of GPS data. Additionally, implementing better and self-improving filters are of both practical and academic
interest.

Collaborative map generation process allows people to gather GPS traces and upload to a common web portal.
The integration of these GPS traces to represent an actual road is an intensive process and poses difficult chal-
lenges to the community. Having a good base map can greatly help the integration process, allowing a good
filtration of GPS traces, so that we also provided a vectorized and calibrated map extracted through raster maps.

For the vectorization and graph generation process we generated a (0/1)-pixel map of a topographic map by
applying a variety of different digital image processing techniques. A skeletonizing algorithm then transformed
this processed bitmap into a road network skeleton. In order to construct the road graph, the skeleton is made
maximally sparse. The street graph is generated by a tracking algorithm based on the sweep-line paradigm that
processes the skeleton by iterating on the connected components.

The seamless integration of the approach to the microscopic traffic simulation tool SUMO results in a stand-
alone tool for urban mobility planning in the areas where vector maps are scarce.
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10.9 Bibliographic Notes

There is a rich corpus on map construction and refinement for improved navigation, e.g. [80]. The work that
relates closest to the approach is documented by the research lab of DaimlerChrysler [563], which also worked
on map inference based on (D)GPS traces. Differently from the approach in [540], no initial map is needed in
our case and hence we can infer maps for navigation even in completely unknown terrains. Another important
advantage of the above approach is that the incremental construction of the map keeps the case study small,
which in turn helps to make the clustering algorithm simpler and more general.

By the chosen division of the world, we additionally obtain locality that is needed to allow distributed tile
processing in a large-scale application. The advantages are manifold. For example, the search for the possible
road elements for the traces is reduced to a small amount, without using a geometric localization structure such
as Voronoi diagrams that are more difficult to generate for data stored on disk. The separate storage of the tiles
also has a large scaling potential due to a far better run-time behavior. Many traces can be integrated into an
existing map in parallel. We have not refined the inference algorithm to infer lane-precise maps, which requires
further statistical analyses, e.g., variants of the k-means algorithm [639]. So far, we consider only one lane for
each direction. In their terms, the presented algorithm computes road centerlines. This deficiency is mainly due
to the lack of more precise differential GPS information.

Several efforts have been made in the direction of extracting the road geometry from images. In [469], we see
a “context-based extraction” of roads. The approach uses a set of aerial images of the same region but taken
from different heights. Road extraction then proceeds iteratively by first extracting the most salient parts and the
attributes of roads and then going for the finer ones. The whole process is guided by available context informa-
tion. Dasen [148] discusses a somewhat similar approach for street graph extraction but does not integrate with
any coordinate system or any traffic simulation. We have seen a first attempt to combine raster maps with traffic
simulation for GPS trace generation.

SUMO [422] stands for Simulation of Urban Mobility and is an open-source project developed and supported
by DLR (German Aerospace Center). It was used for traffic simulation and prognosis during the world soccer
championship 2006. For real-time data collection during such an enormous event, a Zeppelin airship was also
used. It provided live data for the traffic simulation in SUMO that made it possible to predict the traffic jams
and to inform the city authorities to redirect the traffic in advance [421].

The (improved) Douglas-Peucker algorithm goes back to [165, 337], A heuristic solution to the skeletoniza-
tion problem is proposed by [57]. A comprehensive survey of skeletonizing techniques can be found in [433].
In [262], this heuristic solution has been successfully applied to find the boundaries of granulation cells.

The routing module extends the geometric travel planning approach as presented in [203] and [362].
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Chapter 11

Machine Learning

In previous chapters we already looked at different machine learning problems. In Chapter 4 we introduced the
concept of multi-layered and convolutional neural nets, as well as the limits and possibilities of deep learning.
In Chapter 5 we have investigated randomized search algorithms for reinforcement learning, where the payoff in
the rollouts is backpropagated to improve action selection. In Chapter 8 we looked at predicting time series and
the problem of probabilistic inference based on background knowledge. Chapter 9 considered improvements to
nearest neighbor search and classification with support vector machines for computer vision tasks. Last, but not
least, in Chapter 10 we incrementally learnt a map based on incoming GPS traces.

One of the biggest driving forces to today’s machine learning are advances in (parallel) computing, especially
many-core systems; nowadays available not only on the central processing unit (CPU) but also on the processing
unit of the graphics card (GPU). Stronger GPU systems are present, e.g., in gaming PCs or dedicated server
architectures, but there is a trend of integrating GPU and CPU hardware.

While neural network often inherit a natural parallelization, in this chapter we mainly look at two state-of-the-
art machine algorithms and their possible parallelization on the GPU. As a global optimizer is needed to reduce
the error produced by the learning algorithms, it influences the parallelization.

We optimize an SVM, and a predictor for collaborative filtering with parallel Iterative Gradient Descent on the
GPU, achieving a six-fold speedup compared to a CPU-based implementation. The reference implementations
are the SVM by Leon Bottou and the BRISMF predictor from the Netflix Prices winning team.

As one crucial step we create a hash function of the input data and use it to execute threads in parallel that write
on different elements of the parameter vector. We also compare the iterative optimization with a batch gradient
descent and an alternating least squares optimization. The predictor is tested against over a hundred million data
sets, which demonstrates the increasing memory management capabilities of modern GPUs. We make use of
several techniques to alleviate the memory bottleneck.

11.1 Introduction

Roughly1 speaking in machine learning we are teaching the computer to think. More sincerely, it is the sys-
tematic study of algorithms and systems that improve their knowledge or performance with experience. From
a different viewpoint, machine learning has been identified as the art and science that make sense of data. A
machine learning task requires a model, i.e., an appropriate mapping from data described by features to outputs.
Obtaining such a mapping from training data is what constitutes a learning problem.

1 This chapter is based on joint work with David Zastrau, Lorenz Hüther, Bernhard J. Berger, Stefan Edelkamp, Sebastian Eken, Lara
Luhrmann, Hendrik Rothe, Marcus-Sebastian Schröder, and Karsten Sohr. It puts together and improves the work from [669, 359].
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The increasing relevance of graphic processors (GPUs) raises the question, to what extent parallel architectures
are suitable to run arbitrary programs. Machine learning is an appropriate testbed for this question because it
provides complex applications which become more and more relevant: The digital flood of information and
dynamically evolving research areas such as mobile systems and robotics are only a few examples. This work
develops and implements concepts to accelerate machine learning applications with a GPU-based implementa-
tion.

The applications vary between inherently parallel techniques like Neural Networks and complex probabilistic
Methods like Conditional Random Fields. Also, we parallelize a SVM and a predictor for Collaborative Filtering
with over one hundred million training data sets to prove the flexibility of modern GPUs.

General Purpose GPU (GPGPU) Computing is an ongoing field of research that has been dynamically evolving
over the last few years. The continuation of Moore’s Law seems to depend on the efficient application of parallel
platforms. This work provides evidence that parallel programs on the GPU offer a new field of research for many
machine learning algorithms.

The machine learning techniques have been chosen by the criteria of accelerated Iterative Stochastical Gradient
Descent (ISGD) search. The main goal is to show that parallel ISGD obtains adequate precision while achieving
proper speedups at the same time. We conduct two case studies.

SVMs belong to the most frequently applied machine learning approaches that can exploit ISGD in their train-
ing. SVMs are, however, not typical applications for parallelization, due to data dependencies and high memory
requirements. In addition, there are very efficient CPU implementations like Leon Bottou’s SVM that signifi-
cantly outperform well-known libraries for the given training data, so that we take it as an appropriate benchmark
for a fast sequential implementation.

Collaborative Filtering has become a relevant research subject since the public offer of the Netflix Price. The
original training data set poses a challenge to the GPU memory management capabilities. Furthermore, matrix
factorization is well-suited for parallel applications. We investigated if even those applications might benefit
from GPGPU.

11.2 Machine Learning

Machine learning is all about using the right features to build the right models that achieve the right tasks.

Features: In essence, features define a formal language in which we describe the relevant objects in a domain,
e.g., baked goods, their contents and production. For this case features are facets of the bakery product from the
flour values (like ash content and moisture), the recipe that is used, the process parameters (like kneading time
and oven temperatures), and the endproduct properties or specification. We should not normally have to go back
to the domain objects, once we have found a suitable feature representation, which is why features play such an
important role in machine learning.

Task: A learning task is an abstract representation of a problem we want to solve regarding the domain objects;
the most common form of these is classifying them into two or more classes but there are other tasks that apply
depending on the query raised. Many of these tasks can be represented as a mapping from data points to output
value(s).

Model: This mapping or model is itself produced as the output of the machine learning algorithm applied to
training data; there is a wide variety of models to choose from.

If data is labeled, we talk about supervised learning. A sample machine learning algorithm in this class is the
construction of decision trees. If data is not labeled then we talk about unsupervised learning. A sample machine
learning algorithm in this class is k-means clustering. For clustering and decision trees different storage types
apply, the former storing a set of data e.g., in kd-trees and the latter using a links.
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Many learning algorithms store their progress in weights. For SVMs these are coefficients (of the dual problem),
for neural networks this is the amplifying of the edges in the network. Learning, also called training, usually
takes much longer time than the application of a learned structure, e.g., for classification.

The improvement of models is known as training. There are two different circumstances that need to be consid-
ered when training a model as they have different implications for the learning process implementation. Offline
learning occurs when all training instances are presented simultaneously; incremental or on-line learning occurs
during the application of the trained result.

Because of the growing amount of data in companies, refined data analytics is of high importance. Large parts of
the revenue model of companies like Facebook, Netflix, Walmart, or Google rely on personalized models based
on the data stored from each user’s actions. Often data is noisy, which means that there are statistical deviations
from the true value assignments to variables. There are statistical analysis methods like the principal component
analysis (PCA) to condense several features to a few important ones. Other known methods in processing data
for making sense include regularization to avoid overfitting to training data with coefficients that have a high
amplitude.

11.3 Neural Networks

Neural networks are highly parallel, so that the computations can often be delegated to the graphics card.

Most frequently, neural nets are used for grid-type structures like playing boards (see Chapter 4. There are,
however, many cases in which data may be portrayed as a sequence of individual datapoints. Natural language,
for instance, is an example of such sequential data. Here, characters form words, words form sentences and
sentences form complete texts. It is undeniable that the position of the individual elements, e.g., words in a
sentence, is of great importance. Since natural languages follow some explicit grammar, rearranging the words
of a sentence may result in a completely different meaning or incomprehensible gibberish.

Moreover, the meaning of a single word also highly depends on its surrounding words, i.e., its context. As
this example shows, not only is there information contained in the individual elements of such sequential data,
but also in the structure itself. Simple feed forward neural networks, such as multilayer perceptrons, are well
suited for processing static data, such as images. As described however, a lot of problems involve dynamic data,
which simple feed forward architectures fail to adequately address, as they lack the means to consider temporal
correlations. One popular approach that aims to solve this adds feedback loops to the network, such that the
output ŷt is not only computed based on the input, but a also some hidden state ht that is being updated based
on the previous state h(t−1) and some input xt .

This modular depiction is often used to describe reusable units that may occur multiple times within a single
network. Thus, a neural network may be viewed as a series of modules that themselves comprise one or more
layers of nodes.

Recurrent Neural Networks. Using recurrent neural networks (RNNs), such types of problems may be ad-
dressed. If for each time step t a prediction is made, it is possible to solve many-to-many problems, i.e., problems
that involve finding some sequence, given another sequence. That is, since sequences may be regarded to as a
series of discrete time steps as well, that may, one by one, be passed to the network as input. Then for each input
step, an output can be predicted that itself forms sequence of discrete steps in time. It is also possible, however,
to solve many-to-one problems, for example, sentiment analyses or one-to-many problems like generating a
caption, given an given an image.

In a RNN, with each step t, the hidden state ht is computed using a tanh-layer over the weighted previous state
Wht−1, the weighted input Uxt for matrices U ,W and some bias b, thus yielding ht = tanh(W ·ht−1+U ·xt +b).
Moreover, the output ŷ at step t is given by the product of the hidden state ht and another weight matrix V , plus
some other bias c, resulting in ŷt =V ·ht + c.
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Recurrent neural networks can be very forgetful, since they use a modified version of the backpropagation tech-
nique, called backpropagation through time. This is necessary as with RNNs not only do the models coefficients
need to be adjusted over all input samples, but also over all time steps. The loss is given by the sum of all losses
Lt over all time steps t ∈ T , used for gradient calculation. This gradient also needs to be calculated for the weight
matrix Wht that contains hidden state ht at time step t. Unfortunately, however this involves derivatives, which
tend to decrease the gradient for a larger T if Wh has eigenvalues |λ |T−1 < 1. This problem is often referred
to as the vanishing gradient problem. Vice versa, in the case that |λ |T−1 > 1 holds true, the gradient can grow
infinitely large. This is known as the exploding gradient problem. Both cases have the effect that RNNs cannot
be trained over long distances.

LSTM Networks. As a result, RNNs suffer from a tendency to lose their effectiveness in tasks involving causal-
ities over long sequences. Long short-term memory (LSTM) networks offer a solution to the vanishing gradient
problem, but do not alleviate the effects of the exploding gradient problem.

LSTM networks belong to the class of recurrent neural networks and are, thus, tailored towards solving sequence
prediction problems. This ability makes them well suited for complex problem domains like machine translation
or speech recognition. As such they are not unlike conventional RNNs. The difference is that LSTM networks
introduce the concept of cell state, denoted as ct at time step t. For regular RNNs such module could for instance
be a tanh-layer, that computes an output ŷt in accordance to some input xt and the previous hidden state ht−1.

In the case of LSTM networks there are much more complicated modules involved, next to others, that make
up for its architecture. Here, a single module comprises not just one, but four layers, each of which serving the
purpose of manipulating the cell state ct in accordance to the previous cell state ct−1, the previous hidden state
ht−1 and some input xt .

These layers are often referred to as gates that control the flow of information through the network. First, the
forget gate f , a sigmoid-layer, removes irrelevant information from ht−1 and multiplies it with ct−1. Next, the
update gate u, first computes a scale factor it through another sigmoid layer and secondly a so-called candidate
matrix Ĉt using a tanh-layer, again in accordance to ht−1 and xt−1. Finally, the product itĈt is added to the result
of the forget operation. The last gate in the series, is the output gate o, realized by another sigmoid-layer over
ht−1 and xt−1.

Next, the tanh function is applied to the cell state and multiplied with the output of the sigmoid layer, yielding
the output ht . We highlight that the tanh operation applied to the cell state in the last step is a single operation
and not an entire layer of individual nodes. It serves the purpose of ensuring that the state takes a value between
−1 and 1. Moreover, it is easily visible that this architecture allows for the cell state to pass unhindered between
the modules, such that it is not subject to the vanishing gradient problem.

A comprehensive list of all gate-operations performed within a single LSTM module is the following

it = σ(xtU i +ht−1 ·W i)

ft = σ(xtU f +ht−1 ·W i)

ot = σ(xtUo +ht−1 ·W o)

C̃t = tanh(xt ·Ug +ht−1 ·W g)

Ct = ft ·C̃t−1 + it ·C̃t

ht = tanh(C̃t) ·ot

Recall that W and U denote the weight matrices for the module’s layers, which have been omitted in the de-
scription for better understanding of the operations.

Gated Recurrent Unit Networks. A concept similar to LSTM networks are gated recurrent unit (GRU) net-
works. Much like LSTMs, these networks also make use of gates to selectively convey information through
time. In the broadest sense, GRU networks pose an enhancement to conventional LSTMs as they are easier to
implement and compute. Instead of having three gates, GRU networks only possess an update gate z that decides
whether to update the current hidden state ht−1 with the new state ht and a reset gate r that can selectively ignore
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the previous hidden state ht−1. Moreover, GRU networks abandon the idea of cell state and instead rely on the
hidden state only, much like the classic RNNs.

Bidirectional Sequence Models. The conventional versions of the sequence models discussed, i.e., RNN,
LSTM and GRU networks all process the input in a single direction. Subsequently, such models can also only
learn sequential dependencies in one single direction. Bidirectional models, such as BRNN, BLSTM or BGRU
networks on the other hand can infer sequential relationships in both, forward and backward direction. Bidirec-
tional recurrent neural networks were introduced by combining two unidirectional RNNs in a single architecture.
The networks is split into two parts that are connected to the same input layer, but the input is independently
processed in opposing directions. Only at the final output layer, the output of both sets of nodes is connected.
This allows the network to also consider future information from the sequence, unavailable to conventional
RNNs. According to Schuster and Paliwal this leads to improved predictive performance of BRNNs, compared
to regular RNNs.

Graph Neural Networks. Conceptually, graph neural networks (GNNs) represent trainable, parametric func-
tions over graphs. They are more involved, as they allow better correlations over distant features. As an exam-
ple, aggregate-combine GNNs with L layers are specified with aggregate functions aggi, combination functions
combi and a classification function c. On an input graph G = (V,E), where V is the set of vertices and E the set
of edges connecting the vertices, i.e., tuples over V×V , a GNN maintains a state in form of a k-dimensional vec-
tor, xv for each vertex v. Computation consists of updating these states throughout L iterations, with xi

v denoting
the states after iteration i. The computation model corresponds to updates

xi
v = combi(xi−1

v ,aggixi−1
w ({{w ∈ N(v)}})),

where N(v) is the set of neighbors for vertex v in G, and {{. . .}} denotes a multiset (i.e., unordered set whose
elements are associated with multiplicities). That is, at stage i, each vertex v receives the state of its neighbors
which are then aggregated, and the result combined with the current state xi−1

v to produce the next state xi
v.

The fact that aggi maps multisets of states into real vectors means that it does not depend on the source of the
received messages. GNNs are used for node or graph classification. In the first case, after the final stage, node v
is classified into class c(x(L)v ) determined by a classification function c. In the second case, the function c maps
the multiset {{x(L)v | v ∈ V}} into a single, scalar output; an operation referred to as a readout. The functions
involved in the mapping from inputs to outputs can be linear or non-linear, and they are all trainable: in the
supervised case by minimizing an error function defined using a training set.

11.4 GPGPU Essentials

General purpose GPU programming (GPGPU) refers to using the Graphics Processing Units (GPUs) for sci-
entific calculations other than mere graphics. In contrast to Central Processing Units (CPUs), GPUs are pro-
grammed through kernels that are selected as threads to run on each core, which is executed as a set of threads.
Each thread of the kernel executes the same code. Threads of a kernel are grouped in blocks. Each block is
uniquely identified by its index and each thread is uniquely identified by the index within its block. The dimen-
sions of the thread and the thread block are specified at the time of launching the kernel.

Programming GPUs is facilitated by APIs and supports special declarations to explicitly place variables in
some of the memories (e.g., shared, global, local), predefined keywords containing the block and thread IDs,
synchronization statements for cooperation between threads, runtime API for memory management (allocation,
deallocation), and statements to launch functions on GPU. This minimizes the dependence of the software from
the given hardware.

The memory model loosely maps to the program thread-block-kernel hierarchy. Each thread has its own on-chip
registers, which are fast, and off-chip local memory, which is quite slow. Per block there is also an on-chip shared
memory. Threads within a block cooperate via this memory. If more than one block is executed in parallel, then
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the shared memory is equally split between them. All blocks and threads within them have access to the off-chip
global memory at the speed of RAM. Global memory is mainly used for communication between the host and
the kernel. Threads within a block can communicate also via light-weight synchronization.

GPUs have many cores, but the computational model is different from the one on the CPU. A core is a stream-
ing processor with some floating point and arithmetic logic units. Together with some special function units,
streaming processors are grouped together to form streaming multiprocessors. Programming a GPU requires a
special compiler, which translates the code to native GPU instructions. The GPU architecture mimics a single
instruction multiple data computer with the same instructions running on all processors. It supports different
layers for accessing memory. GPUs forbid simultaneous writes to a memory cell but support concurrent reads.

On the GPU, memory is structured hierarchically, starting with the GPU’s global memory called video RAM,
or VRAM. Access to this memory is slow, but can be accelerated through coalescing, where adjacent accesses
with less than word-width number bits are combined to full word-width access. Each streaming multiprocessor
includes a small amount of memory called SRAM, which is shared between all streaming multiprocessors and
can be accessed at the same speed as registers. Additional registers are also located in each streaming multipro-
cessor but not shared between streaming processors. Data has to be copied to the VRAM to be accessible by the
threads.

Table 11.1: Characteristics of different APIs for parallel programming.

Properties API
OpenMP Pthreads MPI GPGPU OpenGL

Architecture MIMD MIMD MIMD SIMD SIMD

Synchronisation
• lock-step + + + + +
• bulk + + + +/- -
• fine-Grain + + + +/- -

Model
Process-Interaction shared

memory
shared
memory

message
passing

shared
memory -

• Task Parallelism (+) + + + -
• Data Parallelism + (+) (+) + +

Scalability + - - + -
Transparency - + + + +
Overhead (implementation) + ◦ ◦ - -
Overhead (resources) + + ◦ - -

Since frameworks like CUDA have enabled programmers to utilize the increased memory and thread man-
agement capabilities of modern GPUs there is a wider selection of applications for GPGPU (General Purpose
Computation on Graphics Processing Units). Multiple levels of threads, memory, and synchronization provide
fine-grained data parallelism and thread parallelism, nested within coarse-grained data parallelism and task par-
allelism. Thus, gradient based mini-batch or even iterative optimization techniques may be efficiently run in
parallel on the GPU. Regarding flexibility and capabilities GPGPU is positioned between high-level parallel
programming languages such as OpenMP and classical shader programming (see Table 11.1).

To illustrate the potential of GPGPU programming for machine learning we experimented with a Boltzman
machine for solving the traveling salesman problem (TSP). Boltzmann Machines belong to the class of auto-
associative networks that have one layer of neurons. They are completely connected, meaning that changes in
activity of a single neuron propagate iteratively across the whole network. Boltzmann Machines do not support
direct feedback, i.e., a neuron is not connected to itself. Thus, in principal auto-associative networks are no
neural networks. Such a Boltzmann Machine is inherently parallel and we obtained a 487-fold speed-up for 30
towns. While the application scales almost linear on the GPU, it scales exponentially on the CPU. For more
than 120 cities the memory consumption exceeds the limits of the grapics device.

We encapsulate data for both CPU and GPU and provide a unique interface. Size and indices of data fields are
encapsulated, and data fields are buffered since older GPU architectures only support 32-bit words. The indices
are stored in one-dimensional texture memory, since this contains a cache even in older GPU architectures
and every thread frequently accesses the indices. Besides, this reduces memory complexity because data is
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conglomerated in a buffer and thus data transfers are handled in one single transaction. If required, it is also
possible to just copy single data fields of arbitrary size.

11.5 Iterative Gradient Descent and Parallelization

The data module is used by all applications. It encapsulates data, that exists twice on CPU and GPU and provides
a unique interface. Size and indices of data fields are encapsulated and data fields are buffered since older GPU
architectures only support 32-bit words (see Program 11.1).

Program 11.1: Bit stuffing on the GPU.

if (size % sizeof(float)!=0)
size+=sizeof(float)-(size%sizeof(float));

The indices are stored in one-dimensional texture memory, since this contains a cache even in older GPU
architectures and every thread frequently accesses the indices. Besides, this reduces memory complexity because
data is conglomerated in a buffer and thus data transfers are handled in one single transaction. If required it is
also possible to just copy single data fields of arbitrary size.

Iterative Stochastic Gradient Descent (ISGD) approximates the true gradient for each new training example by
θ = θ −η ∑

N
i=1 ∇L(θi), where θ is a weight vector, η is the (adaptive) learning rate and L is some loss function.

ISGD is inherently sequential and tends to converge to local minima for non-convex problems. As a compromise
θ may be updated by minibatches, consisting of the sum of several training examples. The idea of minibatches
complements the semi-parallel CUDA programming paradigm. ISGD converges to a good global solution, while
the parallel computation of the gradients is likely to produce poor results because the parallel processing of the
input data has the negative side effect that threads do not profit from and even more do not consider the changes
in the objective that other threads are performing at the same time. A hybrid approach is to use the non-optimal
parallel solution to rapidly converge to some adequate solution and then further improve this solution by using
the CPU-based solution. This approach combines the shorter execution time for one training iteration on the
GPU with the better precision on the CPU.

Note that the time for data transfer alone often exceeds the complete CPU-based training time. Therefore, it is
necessary to also implement the validation on the GPU. Although the validation only requires reading access,
we can also adopt the memory access pattern from the training procedure here.

Bottou states ISGD is well suited for SVMs because the problem is based on a simple convex objective function.
It also applies well to Collaborative Filtering. Even for SVMs we found that almost 70% of the CPU instructions
are used for vector addition and scalar products, an indicator that the application might benefit from GPGPU.
But since the vector length is most often limited to a few dozen elements, standard functions such as those from
the CUBLAS library are practically not applicable. The input data is already provided as support vectors, which
are used to fix θ in each episode. Since the vector lengths vary greatly, they cannot be simply partitioned on
thread blocks with a fixed number of threads. Additionally, each training episode requires numerous memory
accesses to θ that do not exhibit spatial locality which could be efficiently exploited by the VRAM-controller.
As a solution to this problem θ might be loaded into shared memory. Considering the limited shared memory
size of only 64 KB the training data has to be loaded piecewise and a hash function has to be defined so that
every thread may infer its input data from its thread ID (see Figure 2.4). In other words the hash function allows
a block of threads to load exactly those elements of θ into shared memory which are needed for the training
data that has been assigned to this block.
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For Collaborative Filtering we found that over 40% of the CPU instructions are used for the computation of
the probabilities of the subsequent states and the maximization of the Log-Likelihood. The remainder of the
instructions is mainly used for memory management. This is caused by memory allocation for numerous vector
and matrix operations. Therefore, the update needs to be implemented in a way that conditional probabilities
are loaded into shared memory at least to some extent.

11.6 Applications

Collaborative Filtering Matrix Factorization is based on the idea that any matrix R ∈ RN×M with ratings can
be approximated by a matrix P ∈ RN×K of user IDs and a matrix Q ∈ RK×M with the article’s IDs: R ≈ PQ.
Here N is the number of users, M is the number of articles and K is the number of parameters, that are used to
characterize those. The bigger one chooses K, the more precisely R can be approximated. This approach holds
the advantage to generalize to non-existent ratings based on two low-dimensional matrices. The ISGD update
in each step for user puk and article qki is:

p′uk = puk +η
p(u, i,k) · (eui ·qki−λ

p(u, i,k) · puk)

q′ki = qki +η
q(u, i,k) · (eui · puk−λ

q(u, i,k) ·qki).

To compare the ISGD to a batch optimization we also implemented an Alternating Least Squares optimization
on the GPU where the update step is basically pu = Wudu, where du denotes the input-output covariance vector
and Wu is the updated inverted covariance matrix of input. This technique is also based on matrix factorization
but yields the advantage that P and Q are alternately being updated so that either P or Q can be treated as in- or
output and be written in parallel. The learning refers to the the methods in Algorithm 11.1.

In the algorithm P and Q are being compressed to the required dimensions. Afterwards a hash function φ is being
created that maps every user to the movies he has rated. Thus, multiple threads can simultaneously process the
ratings by one user in a shared memory. Next the training data is transferred to the GPU and the optimization
is being performed. Note that batch (ALS) and mini-batch (ASGD) optimization need an extra step to load the
data into the shared memory.

As application we choose the Netflix competition. First, Netflix provided with over hundred million user ratings
the biggest real data set for collaborative filtering so far. Secondly, during the competition many interesting
machine learning techniques have been developed. Two of them, both based on matrix factorization, will be
accelerated by the GPU in this work. Netflix uses an AI-based system to recommend movies to users based on
their previous purchases. The system that Netflix used until the conclusion of the competition had a root mean
squared error (RMSE) of 0.95256.

Töscher et al., who won the competition with a final root mean squared error of 0.8554, used (amongst others)
an estimator called Biased Regularized Incremental Simultaneous Matrix Factorization (BRISMF). It has been
introduced in the context of a progress report for the Netflix competition. It also uses SGD.

Figure 11.1 shows the profile of time vs. accuracy for the implementation of BRISM using the Netflix data.
We see that the naive parallelization gives good results. The error (0.9101) is slightly bigger than the original
one (0.9068) on the other hand we measure a 1088/180 = 6.04 speed-up. It should be noted that the overall
precision for both programs increases if we increase K. A comparison between SGD, ASGD and ALS showed
that alternating SGD yields the worst results. Although ASGD gave a 8.1/2.7 = 3-fold speed-up and always
the same results, it converged to 0.941, as opposed to 0.922 for SGD on the CPU (for K = 10). While a greater
value for K gave up to 9-fold speedup the precision remained on a clearly lower level.

SVM Raw data presented to a supervised statistical machine learning algorithm is often mapped to a set of
numerical values, called the feature vector. The classification problem deals with the prediction of the labels
l of previously unknown feature vectors x ∈ Rd that constitute the test data. During training, a partitioning of
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Algorithm 11.1: Some basic machine learning algorithms.

Algorithm A (Boltzmann Oscillation)
Choose sufficiently large temperature parameter T
repeat

repeat
Choose random neuron k
Calculate new output value ok

until Average energy level remains constant
Decrease temperature (e.g. T = 1/(number of time steps))

until steady state

Algorithm B (Training algorithm for BRISMF)
for (u, i) ∈R do

calculate eui
for k ∈ {1, . . . ,K} do

update pu, the u-th row of P, and qi, the i-th column of Q

Algorithm C (Recalculating pu)
Bu← λnuI
Wu← 0 · I, if λ = 0
Wu← 1/(λ ·nu) · I, otherwise
du← 0
for i : (u, i) ∈R do

Bu← Bu +qi ·qT
i

Wu←Wu− (Wuqi⊗qT
i Wu)/(1+qT

i Wuqi)
du← du +qi− rui
pu←Wudu

Figure 11.1: BRISMF time-accuracy trade-off for k = 40.

the feature space Rd is learned, where each partition is assigned a label based on a set of training samples with
known label. The challenge is to approximate the unknown distribution without overfitting the training data.
SVMs achieve this task by learning coefficients for a kernel mapping to a high-dimensional space, where a
linear class border is spanned up by several support vectors that outline the data. Theoretically, it is sufficient
to determine the class border by just three support vectors. However, it is not known in advance if any of the
known kernels realizes a suitable mapping. The use of generic kernels instead leads to a much larger number of
support vectors (which critically influence classification time). In the worst case finding a separating hyperplane
takes quadratic time in the number of data points.
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Figure 11.2: SGD and ASGD for K = 40.

Leon Bottou used a SVM to classify text documents. He applied stochastic gradient descent for training and
classifying wrt a linear SVM. This already gives good results after a very short time (order-of-magnitudes
speed-up) compared to other libraries.

The compression of the input vectors is implemented with an STL-vector and has been accelerated with
OpenMP. To generate the hash function θ efficiently, an integer array containing sufficiently many addresses is
precomputed (see Program 11.2).

Program 11.2: Generating θ .

int n = 0;
for (id = min; id < max ;++id) {
weight = input[id] ;
if (hash[weight].map >= theta.size)
hash [weight].map = n++;

output[id] = hash[weight].map;
}

To speed up the data transfer floating point numbers are compressed to 16-bit integers on the CPU (via the
OpenEXR-library) and extracted on the GPU (via half2float), which is very accurate especially for input
values near zero and does not affect the overall precision. Threads collaborate block-wise during training. At
first all weights, which are required by the threads, are loaded into shared memory. Then comes a thread barrier.
Finally, each thread processes and adds the delta to the shared memory. The mapping Shared Memory into
Global Memory is implemented in the hash function. Afterwards there is another thread barrier before the
threads collaboratively write the delta from the shared memory to the global memory, i.e. add it to θ . Loading
the data works analogously for the validation. Each thread checks for the correct classification and adds 1 to the
global error counter in case it’s wrong.

The training data size is substantial (≈ 350 Megabyte). Since training takes only about 1.4 seconds and the
training data must be uploaded to the GPU, the best possible speed-up was limited by a factor of about 2.
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11.7 Summary

In this chapter we showed that GPUs are suited to accelerate other machine learning applications aside from
image processing and matrix operations. We used different optimization techniques to minimize the memory
requirements on the GPU and were able to process hundreds of megabytes on the GPU efficiently.

Parameters have to be adjusted to the specific GPU architecture. We tested local as well as global gradients and
compared speed, precision and scalability of each method. While we were able to achieve a huge speed-up with
the Boltzmann Machine, we were able to accelerate Collaborative Filtering by a factor of 6. The GPU version
of the SVM only showed a 1.66-fold speed-up but according to a highly tuned reference impelmetation.

In additional experiments for the Boltzmann machine we achieved a 487 times speed-up with the Boltzmann
Machine, and the Conditional Random Field was about three times faster. The success of deep learning with
convolutional neural nets also relies on fast parallel learning on the GPU.

As GPU computations have a bad reputation in terms of energy usage we measured the power consumption
for GPU and CPU, which becomes relevant for mobile devices. Abbreviating P for power (in Watts) and C for
Current (in VA), we see that due to the acceleration the overhead is at most a factor of 2.

CPU GPU
Technique P (W) C (VA) P (W) C (VA)
BRISMF 156–158 166–168 204–207 210–215
SVM 119–123 134–136 241–252 251–262

11.8 Bibliographic Notes

Machine learning [258] is probably the most successful field in AI. Learning approaches include Concept
Learning: e.g., Version Space and Candidate Elimination; Knowledge Representation and Reosoning: e.g.,
Bayes’, Neural, and Graphical Nets; Classification: e.g., Decision Trees, Neuronal Nets and Perceptrons, SVMs;
Clustering and Regression: e.g. based on partitioning (k-means, k-medoid), densities (dbscan) and hierarchies
(single-link, cure, optics); Rule Learning: Concepts, Words, Macros, Association Rules; Reinforcement Learn-
ing: Value and Policy Iteration, Real-Time Dynamic Programming, UCT and NRPA; Recommender Systems:
Collaborative Filtering; Matrix Factorization, Latent Features; Regular Languages and Strings: Finite-State
Automata Learning, SAX; Evolutionary Learning: Genetic Algorithms and Particle Swarm Algorithms.

The Netflix price is presented by [19]. Kato and Hosino [385] claim that they were able to speed up the training
for Singular Value Composition [647] by a factor of 20. In this work they use the same gradient as [647] as well
as their own algorithm for matrix compression. However, they just use randomly generated data, and they do
not give information regarding the results precision.

Support vector machines go back to [141, 561, 630]. Bottou’s implementation [72] is significantly faster than
LIBSVM (but can deal only with linear kernels). Catanzaro et al. [104] used GPGPU to achieve a nine to
35-times speed-up compared to training with LIBSVM Classification was even 81 to 138-times faster.

Both implementations used Sequential Minimal Optimization [516]. However, they didn’t implement regres-
sion and no 32-bit floating-point arithmetic. The software package by Carpenter [102] also uses Sequential
Minimal Optimization to optimize SVMs and supports regression as well as 64-bit floating point arithmetic.
Their code runs 13 to 73 times faster for training and 22 to 172 faster for classification than the CPU reference
implementation.

Preliminary results [3] reduced the gap between CPU and GPU performance in deep learning applications. In
the area of reinforcement learning and in the context of asynchronous algorithms, CPU-only algorithms already
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achieve a competitive performance. Extended tuning of performance of asynchronous reinforcement learning
algorithms on large computer clusters brought the training time down from hours to minutes.

There are many machine learning libraries, such as Weka: about 20 years of development; written in Java, covers
many important learning algorithms; RapidMiner: predictive analytics; LibSVM: mainly methods for learning
with SVMs; Torch: Multi-dimensional array (tensor) handling, where the core programming language is LUA,
supports deep learning and stochastic gradient descent; and TensorFlow: combining different learning schemes.

RNN were discussed by [115]. LSTM were first introduced by Hochreiter and Schmidhuber [341]. Schuster and
Paliwal [566] introduced bidirectional recurrent neural networks. Graph neural networks were used to represent
trainable, parametric functions over graphs by [317].



Chapter 12

Problem Solving

This work will merge two different lines of research, namely state-space search with binary decision diagrams
(BDDs), that was initially proposed for Model Checking and still is state of the art in AI Planning; and state-
space compaction with (minimal) perfect hashing, which is used in the algorithm community as a memory-based
index for big data (often residing on disk).

We will see how BDDs can serve as the internal representation of a perfect hash function with linear-time
ranking and unranking, and how it can be used as a static dictionary and an alternative to the recent compression
schemes exploiting hypergraph theory. This will also result in a simple method to split a BDD in parts of equal
number of satisfying assignments and to generate random inputs for any function represented as a BDD. As a
surplus, the BDD-based hash function is monotone.

In terms of applications, symbolic exploration with BDD constructs a succinct representation of the state space.
For each layer of the search, a BDDs is generated and stored, and will later serve as an index to do extra work
like the classification of game states. Based on this approach we will study, how to strongly solve a game in a
combination of symbolic and explicit-state space exploration.

12.1 Introduction

Hashing1 is an efficient methods for solving combinatorial problems by mapping each state to a location in
memory. To avoid collisions, perfect hash functions serve as compressed representations of the search space
and support the execution of exhaustive search algorithms like breadth-first search and retrograde analysis.

Perfect hashing computes the rank of a state, while the inverse operation unrank reconstructs the state given its
rank. Efficient bitvector algorithms are derived and generalized to a larger variety of games. We study rank and
unrank functions for permutation games with distinguishable pieces, for selection games with indistinguishable
pieces, and for general reachability sets. The running time for ranking and unranking in all three cases is linear
in the size of the state vector.

To overcome space and time limitations in solving games like Frogs-and-Toads and Fox-and-Geese, we utilize
parallel computing power in form of multiple cores on modern central processing units (CPUs) and graphics
processing units (GPUs). We obtain an almost linear speedup with the number of CPU cores. Due to the much
larger number of cores, even better speed-ups are achieved on GPUs.

We also combine bitvector and symbolic search with BDDs that compactly represent state sets. The hybrid
algorithm for strongly solving general games initiates a BDD-based solving algorithm, which consists of a

1 This chapter is based on joint work with Damian Sulewski, Cengizhan Yücel, Peter Kissmann, Martin Dietzfelbinger and Martha
Rohte. It puts together and improves the work from [228, 210, 209, 159].
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forward computation of the reachable state set, possibly followed by a layered backward retrograde analysis. If
the main memory becomes exhausted, it switches to explicit-state two-bit retrograde search. We take Connect
Four as a case study.

Strong computer players for combinatorial games like Chess or Go have shown the impact of advanced search
engines. For many games they play on expert level, sometimes even better. For some games like Checkers the
solvability status of the initial state has been computed: the game is a draw, assuming optimal play of both
players.

We consider strongly solving a game in the sense of creating an optimal player that returns the best move for
every possible state. After computing the game-theoretical value of each state, the best possible action is selected
by looking at the values of all successor states. In many single-agent games the value of a game simply is its
goal distance, while for two-player games the value is the best possible reward assuming that both players play
optimally.

We apply perfect hashing, where a perfect hash function is a one-to-one mapping from the set of states to
some set {0, . . . ,m−1} for a sufficiently small number m. Ranking maps a state to a number, while unranking
reconstructs a state given its rank. One application of ranking (and unranking) functions is to compress (and
decompress) a state.

We will see that for many games, space-efficient perfect hash functions can be constructed prior to the search. In
some cases, it is even possible to devise a family of perfect hash functions, one for each (forward or backward)
search layer. We introduce linear time algorithms for invertible perfect hashing for

• permutation games, i.e., games with distinguishable pieces. In this class we find Sliding-Tile puzzles with
numbered tiles, as well as Top-Spin and Pancake problems. The parity of a permutation will allow us to
restrict the range of the hash function. There are other games like Blocksworld that belong to this group.

• selection games, i.e., games with indistinguishable objects. In this class we find tile games like Frogs-and-
Toads, as well as strategic games like Peg-Solitaire and Fox-and-Geese. There are other games like Awari,
Dots-and-Boxes, and Nine-Men’s-Morris, that can be mapped to this group.

For analyzing the state space, we utilize a bitvector that covers the solvability information of all reachable states.
Moreover, we apply symmetries to reduce the time- and space-efficiencies of the algorithms. Besides the design
of efficient perfect hash functions that apply to a wide selection of games, we compute successor states on
multiple cores on the central processing unit (located on the motherboard) and on the graphics processing unit
(located on the graphics card).

For general state spaces, we look at explicit-state and symbolic hashing options that apply once the state space
is generated. As an example, perfect hashing with binary decision diagrams (BDDs) is applied to strongly solve
Connect Four.

What is a BDD? A BDD is a directed acyclic graph data structure for a Boolean function. Nodes are labeled
with variables, edges and sinks are labeled with 1 and 0. Redundant nodes are eliminated and the variable
ordering is the same on every path.

What do BDDs represent? BDDs are characteristic functions of planning state sets. Each path from root to
the 1-sink acts as the binary representation of one state in the set. Initial and goal conditions can also be
represented as such state sets.

How does search with BDDs work? Actions are cast as a set representation of their pre- and postconditions
(transition relation). In the image symbolic exploration checks the pre- and applies the postcondition.

What is the advantage of BDDs? Firstly, BDDs can have an advantage in space. Many polynomial-sized
BDDs represent exponentially many states. Secondly, forward and backward exploration are the same, except
that the initial and goal condition as well as the pre- and postcondition are exchanged. Thirdly, the compact
representation of many states in a smaller structure often results in faster runtimes.
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12.2 Perfect Hashing

A hash function h is a mapping of a universe U to an index set {0, . . . ,m−1}. The set of reachable states S of
a search problem is a subset of U , i.e., S⊆U . We are interested in injective hash functions, where a mapping is
injective, if for all f (x) = f (y) we have x = y. A hash function h : S→ {0, . . . ,m−1} is perfect if for all s ∈ S
with h(s) = h(s′) we have s = s′. The space efficiency of a hash function h : S→{0, . . . ,m−1} is the proportion
m/|S| of available hash values to states.

Given that every state can be viewed as a bitvector and interpreted as a number, one inefficient design of a perfect
hash function is immediate. The space requirements of the corresponding hash table are usually too large. A
space-optimal perfect hash function is bijective. A perfect hash function is minimal if its space efficiency is 1,
i.e., if m = |S|.
Efficient and minimal perfect hash functions allow direct-addressing a bitstate hash table instead of mapping
states to an open-addressed or chained hash table. The computed index of the direct access table uniquely
identifies the state.

Whenever the average number of required bits per state for a perfect hash function is smaller than the number
of bits in the state encoding, an implicit representation of the search space is fortunate, assuming that no other
tricks like orthogonal hashing apply.

Two hash functions h1 and h2 are orthogonal if for all states s,s′ with h1(s) = h1(s′) and h2(s) = h2(s′) we have
s = s′. In case of orthogonal hash functions h1 and h2, the value of h1 can, e.g., be encoded in the file name,
leading to a partitioned layout of the search space, and a smaller hash value h2 to be stored explicitly. If the
two hash functions h1 : S→ {0, . . . ,m1− 1} and h2 : S→ {0, . . . ,m2− 1} are orthogonal, their concatenation
(h1,h2) is perfect: for two hash functions h1 and h2 and any state s in S with (h1(s),h2(s)) = (h′1(s),h

′
2(s)) we

have h1(s) = h1(s′) and h2(s) = h2(s′). Since h1 and h2 are orthogonal, this implies s1 = s2.

The other important property of a perfect hash function for a state space search is that the state vector can be
reconstructed given the hash value. A perfect hash function h is inversible if given h(s), s ∈ S can be recon-
structed. The inverse h−1 of h is a mapping from {0, . . . ,m− 1} to S. Computing the hash value is denoted as
ranking, while reconstructing a state given its rank is denoted as unranking.

For the exploration of the search space, in which array indices serve as state descriptors, inversible hash func-
tions are required. For the design of minimal perfect hash functions in permutation games, parity will be a
helpful concept. An inversion in a permutation π = (π1, . . . ,πn) is a pair (i, j) with 1 ≤ i < j ≤ n and πi > π j.
The parity of the permutation π is defined as the parity (mod 2 value) of the number of inversions in π , A
permutation game is parity-preserving if no move changes the parity of the permutation. Parity-preservation
allows us to separate soluble from insolvable states in several permutation games. If the parity is preserved, the
state space can be compressed.

A property p : S→N is move-alternating, if the parity of p toggles for every action, i.e., for all s and s′ ∈ succs(s)
we have p(s′) mod 2 = (p(s)+1) mod 2. As a result, p(s) is the same for all states s in one BFS layer. States s′

in the next BFS layer can be separated by knowing p(s′) 6= p(s). One example for a move-alternation property
is the position of the blank in the sliding-tile puzzle.

12.3 Bitvector State Space Search

In two-bit breadth-first search every state is expanded at most once. The two bits encode values in {0, . . . ,3}
with value 3 representing an unvisited state, and values 0, 1, or 2 denoting the current search depth mod 3. This
allows us to distinguish generated and visited states from ones expanded in the current breadth-first layer. Note
that in some cases it is possible to generate the entire state space using one bit per state. As such search does
not distinguish between states to be expanded next (open states) and states already expanded (closed states),
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such a one-bit reachability algorithm determines all reachable states but may expand a state more than once.
Additional information extracted from a state can improve the running time by decreasing the number of states
to be reconsidered (reopened).

For some domains, one bit per state suffices for performing breadth-first search. In Peg-Solitaire the number of
remaining pegs uniquely determine the breadth-first search layer, so that one bit per state can separate newly
generated states from expanded ones. This halves the space needed compared to the more general two-bit
breadth-first search routine. In the event of a move-alternation property we, therefore, can perform breadth-first
search using only one bit per state. One important observation is that not all visited states that appear in previous
BFS layers are removed from the current search layer.

We next consider two-bit retrograde analysis. Retrograde analysis classifies the entire set of positions in back-
ward direction, starting from won and lost terminal ones. Moreover, partially completed retrograde analyses
have been used in conjunction with forward-chaining game playing programs to serve as endgame databases.
Retrograde analysis works well for all games, where the game positions can be divided into different layers, and
the layers are ordered in such a way that movements are only possible in between a layer or from a higher layer
to a lower one. Then, it is sufficient to do the lookup in the lower layers only once during the computation of
each layer. Thus, the bitstate retrograde algorithm is divided into three stages: during initialization all positions
that are won for one player are marked. Then, the successors are searched in the lower layers, and, then, an
iteration over the remaining unclassified positions. As a result, it is sufficient to consider only successors in the
same file.

In the second part a position is marked as won if it has a successor that is won for the player to move, otherwise
the position remains unsolved. Even if all successors in the lower layer are lost for one position, then this
position remains unsolved. A position is only marked as lost in the third part of the algorithm, because only
then it is known what all the successors are. If there are no successors in the third part, then the position is
marked as lost.

Provided additional state information indicating the player to move, bitstate retrograde analysis for zero-sum
games requires two bits to denote if a state is unsolved, a draw, won for the first player, or won for the second
player.

Bitstate retrograde analysis applies backward BFS starting from the states that are already decided. For the sake
of simplicity, in the implementation we first look at two-player zero-sum games that have no draw. Based on the
players’ turn, the state space is in fact twice as large as the mere number of possible game positions. The bits
for the first player and the second player to move are interleaved, so that the turn can be computed by looking
at the mod 2 value of a state’s rank.

12.4 Hashing Permutation Games

The lexicographic rank of a permutation is the position in the lexicographic order of its state vector representa-
tion. In the lexicographic ordering of a permutation π = (π0, . . . ,πn−1) of {0, . . . ,n− 1} we first have (n!− 1)
permutations that begin with 0, followed by (n!−1) permutations that begin with 1, etc. This leads to the fol-
lowing recursive formula: lex-rank((0),1) = 0 and lex-rank(π,n) ≤ π0 · (n− 1)!+ lex-rank(π ′,n− 1), where
π ′i = πi+1 if π ′i > π0 and π ′i = πi if π ′i < π0.

The lexicographic rank of permutation π (of size n) is determined as lex-rank(π,n) = ∑
N−1
i=0 di · (N − 1− i)!

where the vector d of coefficients di is called the inverted index or factorial base. The coefficients di are uniquely
determined. The parity of a permutation is known to match (∑N−1

i=0 di) mod 2. In the recursive definition of lex-
rank the derivation of π ′ from π makes an according ranking algorithm non-linear.

Given that many existing ranking and unranking algorithms with respect to the lexicographic ordering are slow,
we study a more efficient ordering based on the observation that every permutation can be generated uniformly
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Figure 12.1: Permutation Games: a) Sliding-Tile Puzzle, b) Top-Spin Puzzle, c) Pancake Problem.

by swapping an element at position i with a randomly selected element j > i, while i continuously increases.
The sequence of j’s can be seen as the equivalent to the factorial base for the lexicographic rank.

We show that the parity of a permuation can be derived on the fly in the unranking algorithm proposed by
Myrvold and Ruskey (see Chapter 1). The input is the number of elements N to permute, the permutation π ,
and its inverse permutation π−1. The output is the rank of π . As a side effect, we have that both π and π−1 are
modified. Fortunately, the parity of a permutation for a rank r in Myrvold and Ruskey’s permutation ordering
can be computed on-the fly with the unrank function.

Sliding-Tile Puzzle

Next, we consider permutation games, especially the ones shown in Figure 12.1. The (n×m) sliding-tile puzzle
consists of nm−1 numbered tiles and one empty position, called the blank. In many cases, the tiles are squarely
arranged, such that m = n. The task is to re-arrange the tiles such that a certain terminal tile arrangement is
reached. Swapping two tiles toggles the permutation parity and, in turn, the solvability status of the game. Thus,
only half the nm! states are reachable.

We observe that, in a lexicographic ordering, every two adjacent permutations with lexicographic rank 2i and
2i+1 have a different solvability status. In order to hash a sliding-tile puzzle state to {0, . . . ,(nm)!/2−1}, we
can, therefore, compute the lexicographic rank and divide it by 2. Unranking is slightly more complex, as it has
to determine which of the two permutations π2i and π2i+1 of the puzzle with index i is reachable.

There is one subtle problem with the blank. Simply taking the parity of the entire board does not suffice to
compute a minimal perfect hash value in {0, . . . ,nm!/2}, as swapping a tile with the blank is a move that does
not change the parity. A solution to this problem is to partition the state space with respect to the position of the
blank, since for exploring the (n×m) puzzle it is equivalent to enumerate all (nm− 1)!/2 orderings together
with the nm positions of the blank. If S0, . . . ,Snm−1 denote the set of “blank-projected” partitions, then each set
S j, j ∈ {0, . . . ,nm−1}, contains (nm−1)!/2 states. Given the index i as the permutation rank and j it is simple
to reconstruct the puzzle’s state.

10
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As a side effect of this partitioning, horizontal moves of the blank do not change the state vector, thus the rank
remains the same. Tiles remain in the same order, preserving the rank. Since the parity does not change in this
puzzle we need another move alternating property, and find it in the position of the blank. The partition into
buckets S0, . . . ,Snm−1 has the additional advantage that we can determine whether the state belongs to an odd or
even layer.

For such a factored representation of the sliding-tile puzzles, a refined exploration retains the breadth-first order,
by means that a bit for a node is set for the first time in its BFS layer. The bitvector Open is partitioned into nm
parts, which are expanded depending on the breadth-first level.

As mentioned above, the rank of a permutation does not change by a horizontal move of the blank. This is
exploited by writing the ranks directly to the destination bucket using a bitwise-or on the bitvector from layer
level−2 and level. The vertical moves are unranked, moved and ranked. When a bucket is done, the next one is
skipped and the next but one is expanded. The algorithm stops when no new successor is found.

Top-Spin Puzzle

The next example is the (n,k)-Top-Spin Puzzle, which has n tokens in a ring. In one twist action k consecutive
tokens are reversed and in one slide action pieces are shifted around. There are n! different possible ways to
permute the tokens into the locations. However, since the puzzle is cyclic only the order of the different tokens
matters and thus there are only (n−1)! different states in practice. After each of the n possible actions, we thus
normalize the permutation by cyclically shifting the array until token 1 occupies the first position in the array.

For an even value of k (the default) and odd value of n > k+ 1, the (normalized) (n,k) Top-Spin Puzzle has
(n− 1)!/2 reachable states. As the parity is even for a move in the (normalized) (n,k) Top-Spin Puzzle for an
odd value of n > k+1, we obtain the entire set of (n−1)! reachable states.

Pancake Problem

The n-Pancake Problem is to determine the number of flips of the first k pancakes (with varying k ∈ {1, . . . ,n})
necessary to put them into ascending order. No other than Bill Gates showed that (5n+5)/3 flips always suffice,
which was improved to 18n/11. One needs at least 15n/14 flips. In the n-Burned-Pancake variant, the pancakes
are burned on one side and the additional requirement is to bring all burned sides down. For this version it is
known that 2n−2 flips always suffice and that 3n/2 flips are necessary. Both problems have n possible operators.
The pancake problem has n! reachable states, the burned one has n!2n reachable states. For an even value of
d(k−1)/2e, k > 1, the parity changes, while for an odd one, the parity remains the same.

12.5 Hashing Selection Games

G-G-G
|\|/|
G-G-G
|/|\|

G-G-G-G-G-G-G
|\|/|\|/|\|/|
G-G-O-O-O-G-G
|/|\|/|\|/|\|
O-O-O-O-O-O-O

|\|/|
O-F-O
|/|\|
O-O-O

Figure 12.2: Initial States in Fox-and-Geese.
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Fox-and-Geese is a two-player zero-sum game. The lone fox (F) attempts to capture the geese (G), while the
geese try to hem the Fox, so that he can’t move. It is played upon a cross-shaped board consisting of a 3× 3
square of intersections in the middle with four 2×3 areas adjacent to each face of the central square. One board
with the initial layout is shown in Figure 12.2. Pieces can move to any empty intersection around them (also
diagonally). The fox can additionally jump over a goose to capture it. Geese cannot jump. The geese win if
they surround the fox so that it cannot move. The fox wins if it captures enough geese that the remaining geese
cannot surround him. Fox-and-Geese belongs to the set of asymmetric strategy games played on a cross-shaped
board. The chances for 13 geese are assumed to be an advantage for the fox, while for 17 geese the chances are
assumed to be roughly equal.

The game requires a strategic plan and tactical skills in certain battle situations. The portions of tactic and
strategy are not equal for both players, such that a novice often plays better with the fox than with the geese.
A good fox detects weaknesses in the set of geese (unprotected ones, empty vertices, which are central to the
area around) and moves actively towards them. Potential decoys, which try to lure the fox out of his burrow
must be captured early enough. The geese must work together and find a compromise between risk and safety.
In the beginning it is recommended to choose safe moves, while toward the end of the game it is recommended
to challenge the fox to move out to fill blocked vertices.

O O O X X X
O O O X X X
O O X X -> X X O O

X X X O O O
X X X O O O

Figure 12.3: Initial and goal state in Fore and Aft.

X X X O O O
X X X O O O

X X X X X X X O O O O O O O
X X X O X X X -> O O O X O O O
X X X X X X X O O O O O O O

X X X O O O
X X X O O O

Figure 12.4: Initial and goal state in Peg Solitaire.

The Fore and Aft puzzle (see Figure 12.3) has been made popular by the American puzzle creator Sam Loyd.
It is played on a part of the 5×5 board consisting of two 3×3 subarrays at diagonally opposite corners. They
overlap in the central square. One square has eight black pieces and the other has eight white pieces, with the
center left vacant. The objective is to reverse the positions of pieces in the lowest number of moves. Pieces can
slide or jump over other pieces of any color. Frogs-and-Toads generalizes Fore and Aft and large boards are yet
unsolved.

In Peg-Solitaire (see Figure 12.4) the set of pegs is iteratively reduced by jumps. The problem can be generalized
to an arbitrary graph with n holes. As the number of pegs denotes the progress in playing Peg-Solitaire, we may
aim at representing all boards with k of the n− 1 possible pegs, where n is the number of holes. In fact, the
breadth-first level k contains at most

(n
k

)
states. In contrast to permutation games, pegs are indistinguishable,

and call for a different design of a hash function and its inverse.

Such an invertible perfect hash function of all states that have k = 1, . . . ,n pegs remaining on the board reduces
the RAM requirements for analyzing the game. As successor generation is fast, we will need an efficient hash
function (rank) that maps bitvectors (s0, . . . ,sn−1) ∈ {0,1}n with k ones to {0, . . . ,

(n
k

)
−1} and back (unrank).

There is a trivial ranking algorithm that uses a counter to determine the number of bitvectors passed in their
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lexicographic ordering that have k ones. It uses linear space, but the time complexity by traversing the en-
tire set of bitvectors is exponential. The unranking algorithm works similarly, with matching exponential time
performance.

The design of a linear time ranking and unranking algorithm is not obvious. The pieces on the board are not
labeled, their relative ordering does not matter.

Hashing with Binomial Coefficients

An efficient solution for perfect and invertible hashing of all bitvectors with k ones to {0, . . . ,
(n

k

)
− 1} utilizes

binomial coefficients that can either be precomputed or determined on the fly. The algorithms rely on the obser-
vation that once a bit at position i in a bitvector with n bits and with j zeros is processed, the binomial coefficient( i

j−1

)
can be added to the rank. The notation max

{
0,
( i
zeros−1

)}
is shorthand notation to say, if zeros < 1 take

0, otherwise take
( i
zeros−1

)
.

The time complexities of both algorithms are O(n). In case the number of 0s exceeds the number of ones, the
rank and unrank algorithms can be extended to the inverted bitvector representation of a state.

The correctness argument relies on the binomial coefficients labeling a grid graph of nodes Bi, j with i denoting
the position in the bitvector and j denoting the number of 0s already seen. Let Bi, j be connected via a directed
edge to Bi−1, j and Bi−1, j−1 corresponding to a 1 and a 1 processed in the bitvector. Starting at Bi, j there are

( i
j

)
possible non-overlapping paths that reach B0,z. These pathcount-values can be used to determine the index of a
given bitvector in the set of all possible ones. At the current node (i, j) in the grid graph in case of the state at
position i containing a 1: all path-counts at Bi−1, j−1 are added; or a 0: nothing is added.

Hashing with Multinomial Coefficients

The perfect hash functions derived for games like Peg-Solitaire are often insufficient in games with pieces of
different color like TicTacToe and Nine-Men’s-Morris. For this case, we devise a hash function that operates
on state vectors of size n that contain 0s (location not occupied), ones (location occupied by pieces of the first
player) and twos (location occupied by pieces of the second player). We will determine the value of a position by
hashing all state with a fixed number of z zeros, and o ones and t = n−z−o twos to a value in {0, . . . ,

( n
z,o,t

)
−1},

where the multinomial coefficient
( n

z,o,t

)
is defined as(

n
z,o, t

)
=

n!
z! ·o! · t! .

The correctness argument relies on representing the multinomial coefficients in a 3D grid graph of nodes Bi, j,l
with i denoting the index position in the vector and j denoting the number of zeros j, and l denoting the
number of ones already seen. The number of twos is then immediate. Let Bi, j,l be connected via a directed
edge to Bi−1, j,l , Bi−1, j,l−1 and Bi−1, j−1,l corresponding to a value 2, 1 and 0 processed in the bitvector, respec-
tively. There are

( i
j,l,n− j−l

)
possible non-overlapping paths starting from each node Bi, j,l that reach B0,z,o. These

pathcount-values can be used to determine the index of a given bitvector in the set of all possible ones. At the
current node (i, j, l) in the grid graph in case of the node at position i containing a 1: all path-counts values at
Bi−1, j−1,l are added; a 2: all path-counts values at Bi−1, j,l−1 are added; or a 0: nothing is added.

12.6 Parallelization

Parallel processing is the future of computing. On current personal computer systems with multiple cores on the
CPU and (graphics) processing units on the graphics card, parallelism is available “for the masses”. For the case
of solving games, we aim at fast successor computation. Moreover, ranking and unranking that take substantial
running time are executed in parallel.
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To improve the I/O behavior, the partitioned state space was distributed over multiple hard disks. This increased
the reading and writing bandwidth and enabled each thread to use its own hard disk. In larger instances that
exceed RAM capacities we additionally maintain write buffers to avoid random access on disk. Once the buffer
is full, it is flushed to disk. In one streamed access, all corresponding bits are set.

Multi-Core Computation

Nowadays computers have multiple cores, which reduce the runtime of an algorithm by distributing the work-
load to concurrently running threads. We use pthreads for such multi-threading support.

Let Sp be the set of all possible positions in Fox-and-Geese (Frogs-and-Toads) with p pieces, which together
with the fox position and the player’s turn uniquely address states in the game. During play, the number of
pieces decreases (or stays) such that we partition backward (forward) BFS layers into disjoint sets Sp = Sp,0∪
. . .∪ Sp,n−1. As |Sp,i| ≤

(n−1
p

)
is constant for all i ∈ {0, . . . ,n− 1}, a possible upper bound on the number of

reachable states with p pieces is n ·
(n−1

p

)
. These states will be classified by the algorithm.

In two-bit retrograde (bfs) analysis all layers Layer0,Layer1, . . . are processed in partition form. The fixpoint
iteration to determine the solvability status in one backward (forward) BFS level Layerp = Sp,0∪ . . .∪Sp,n−1 is
the most time consuming part. Here, we can apply a multi-core parallelization using pthreads. In total, n threads
are forked and joined after completion. They share the same hash function and communicate for termination.

For improving space consumption we urge the exploration to flush the sets Sp,i whenever possible and to load
only the ones needed for the current computation. In the retrograde analysis of Fox-and-Geese the access to
positions with a smaller number of pieces Sp−1 is only needed during the initialization phase. As such initializa-
tion is a simple scan through a level we only need one set Sp,i at a time. To save space for the fixpoint iteration,
we release the memory needed to store the previous layer. As a result, the maximum number of bits needed is
max{|Sp|, |Sp|/n+ |Sp−1|).
GPU Computation

In the last few years there has been a remarkable increase in the performance and capabilities of the graphics
processing unit. Modern GPUs are not only powerful, but also parallel programmable processors featuring high
arithmetic capabilities and memory bandwidths. Deployed on current graphic cards, GPUs have outpaced CPUs
in many numerical algorithms. The GPU’s rapid increase in both programmability and capability has inspired
researchers to map computationally demanding, complex problems to the GPU.

GPUs have multiple cores, but the programming and computational model are different from the ones on the
CPU. Programming a GPU requires a special compiler, which translates the code to native GPU instructions.
The GPU architecture mimics a single instruction multiple data (SIMD) computer with the same instructions
running on all processors. It supports different layers for memory access, forbids simultaneous writes but allows
concurrent reads to one memory cell.

Memory, is structured hierarchically, starting with the GPU’s global memory (video RAM, or VRAM). Access
to this memory is slow, but can be accelerated through coalescing, where adjacent accesses with less than 64
bits are combined to one 64-bit access. Each SM includes 16 KB of memory (SRAM), which is shared between
all SPs and can be accessed at the same speed as registers. Additional registers are also located in each SM but
not shared between SPs. Data must be copied from the systems main memory to the VRAM to be accessible by
the threads.

The GPU programming language links to ordinary C-sources. The function executed in parallel on the GPU is
called kernel. The kernel is driven by threads, grouped together in blocks. The TSC distributes the blocks to
its SMs in a way that none of them runs more than maxThreads threads and a block is not distributed among
different SMs. This way, considering that the maximal blockSize, at most dmaxThreads/blockSizee blocks can
be executed by one SM on its SPs. Each SM schedules the threads (one for each SP) to be executed in parallel,
providing the code to the SPs. Since all the SPs get the same chunk of code, SPs in an else-branch wait for
the SPs in the if-branch, being idle. After the eight threads have completed a chunk the next one is executed.
Note that threads waiting for data can be parked by the SM, while the SPs work on threads, which have already
received the data.
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To profit from coalescing, threads should access adjacent memory contemporary. Additionally, the SIMD-like
architecture forces us to avoid if-branches and to design a kernel which will be executed unchanged for all
threads. These facts lead to the implementation of keeping the entire or partitioned state space bitvector in
RAM and copying an array of indices (ranks) to the GPU. This approach benefits from the SIMD technology
but imposes additional work on the CPU. One additional scan through the bitvector is needed to convert its bits
into integer ranks, but on the GPU the work to unrank, generate the successors and rank them is identical for
all threads. To avoid unnecessary memory access, the rank given to expand should be overwritten with the rank
of the first child. As the number of successors is known beforehand, with each rank we reserve space for its
successors. For smaller BFS layers this means that fewer states are expanded.

For solving games on the GPU, storing the bitvector on the GPU yields bad exploration results. Hence, we
forward the bitvector indices from the CPU’s host RAM to the GPU’s VRAM, where they were uploaded to the
SRAM, unranked and expanded, while the successors were ranked. At the end of one iteration, all successors
are moved back to CPU’s host RAM, where they are perfectly hashed and marked if new.

12.7 Experiments Explicit-State Perfect Hashing

We start with the presentation of the experiments in permutation games (mostly showing the effect of multi-
core GPU computation) followed by selection games (also showing the effect of multi-core CPU computation).
For measuring the speed-up on a matching implementation, we compare the GPU performance with a CPU
emulation on a single core. This way, the same code and work was executed on the CPU and the GPU. For a
fair comparison, the emulation was run with GPU code adjusted to one thread. This minimizes the work for
thread communication on the CPU. Moreover, we profiled that the emulation consumed most CPU time for
state expansion and ranking.

Sliding-Tile Puzzle

The results of the first set of experiments shown in Table 12.1 illustrate the effect of bitvector state space
compression with breadth-first search in rectangular Sliding-Tile problems of different sizes.

We run both the one- and two-bit breadth-first search algorithms on the CPU and GPU. The 3×3 version was
simply too small to show significant advances, while even in partitioned form a complete exploration on a bit
vector representation of the 15-Puzzle requires more RAM than available.

We first validated that all states were generated and equally distributed among the possible blank positions.
Moreover, as expected, the numbers of BFS layers for symmetric puzzle instances match (53 for 3×4 and 4×3
as well as 63 for 2×6 and 6×2).

For the 2-Bit BFS implementation, we observe a moderate speed-up by a factor between 2 and 3, which is due
to the fact that the BFS-layers of the instances that could be solved in RAM are too small. For such small BFS
layers, further data processing issues like copying the indices to the VRAM is rather expensive compared to the
gain achieved by parallel computation on the GPU. Unfortunately, the next larger instance (7×2) was too large
for the amount of RAM available in the machine (it needs 3×750 = 2,250 MB for Open and 2 GB for reading
and writing indices to the VRAM).

In the 1-Bit BFS implementation the speed-up increases to a factor between 7 and 10 in the small instances.
Many states are re-expanded in this approach, inducing more work for the GPU and exploiting its potential for
parallel computation. Partitions being too large for the VRAM are split and processed in chunks of about 250
million indices (for the 7× 2 instance). A quick calculation shows that the savings of GPU computation are
large. We noticed that the GPU has the capability to generate 83 million states per second (including unranking,
generating the successors and computing their rank) compared to about five million states per second of the
CPU. As a result, for the CPU experiment that ran out of time (o.o.t), which we stopped after one day of
execution, we predict a speed-up factor of at least 16, and a running time of over 60 hours.
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2-Bit Time 1-Bit Time
Problem GPU CPU GPU CPU
(2×6) 1m10s 2m56s 2m43s 15m17s
(3×4) 55s 2m22s 1m38s 13m53s
(4×3) 1m4s 2m22s 1m44s 12m53s
(6×2) 1m26s 2m40s 1m29s 18m30s
(7×2) o.o.m. o.o.m. 226m30s o.o.t.

Table 12.1: Comparing GPU with CPU performances in 1-Bit and 2-Bit BFS in sliding-tile puzzles.

n States GPU Time CPU Time
6 120 0s 0s
7 360 0s 0s
8 5,040 0s 0s
9 20,160 0s 0s

10 362,880 0s 6s
11 1,814,400 1s 35s
12 39,916,800 27s 15m20s

Table 12.2: Comparing GPU with CPU performances for Two-Bit-BFS in the Top-Spin.

n States GPU Time CPU Time
9 362,880 0s 4s

10 3,628,800 2s 48s
11 39,916,800 21s 10m41s
12 479,001,600 6m50s 153m7s

Table 12.3: Comparing GPU with CPU performances in Two-Bit-BFS in Pancake problems.

Top-Spin Problems

The results for the (n,k)-Top-Spin problems for a fixed value of k = 4 are shown in Table 12.2 (o.o.m. denotes
out of memory, while o.o.t. denotes out of time). We see that the experiments validate the theoretical statement
that the state spaces are of size (n−1)!/2 for n odd and (n−1)! for n even. For large values of n, we obtain a
significant speed-up of more than factor 30.

Pancake Problems

The GPU and CPU running time results for the n-Pancake problems are shown in Table 12.3. Similarly to the
Top-Spin puzzle for a large value of n, we obtain a speed-up factor of more than 30 with respect to running the
same algorithm on the CPU.

Peg-Solitaire

The first set of results, shown in Table 12.4, considers Peg-Solitaire. For each BFS-layer, the state space is small
enough to fit in RAM. The exploration result show that there are five positions with one peg remaining (of
course, there is none with zero pegs), one of which has the peg in the goal position.

In Peg-Solitaire we find a symmetry, which applies to the entire state space. If we invert the board (exchanging
pegs with holes or swapping the colors), the goal and the initial state are the same. Moreover, the entire forward
and backward graph structures match.

Hence, a call of backward breadth-first search to determine the number of states with a fixed goal distance is
not needed. The number of states for a given goal distance matches the number of states with the same distance
to the initial state. The total number of reachable states is 187,636,298.
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We parallelized the game expanding and ranking states on the GPU. The total time for a BFS we measured was
about 12 minutes on the CPU and 1 minute on the GPU. As the puzzle is moderately small, we consider the
speed-up factor with respect to CPU computation to be significant.

Holes Bits Space Expanded
0 1 1 B –
1 33 5 B 1
2 528 66 B 4
3 5,456 682 B 12
4 40,920 4,99 KB 60
5 237,336 28,97 KB 296
6 1,107,568 135 KB 1,338
7 4,272,048 521 KB 5,648
8 13,884,156 1.65 MB 21,842
9 38,567,100 4.59 MB 77,559

10 92,561,040 11.03 MB 249,690
11 193,536,720 23.07 MB 717,788
12 354,817,320 42.29 MB 1,834,379
13 573,166,440 68.32 MB 4,138,302
14 818,809,200 97.60 MB 8,171,208
15 1,037,158,320 123 MB 14,020,166
16 1,166,803,110 139 MB 20,773236
17 1,166,803,110 139 MB 26,482,824
18 1,037,158,320 123 MB 28,994,876
19 818,809,200 97.60 MB 27,286,330
20 573,166,440 68.32 MB 22,106,348
21 354,817,320 42.29 MB 15,425,572
22 193,536,720 23.07 MB 9,274,496
23 92,561,040 11.03 MB 4,792,664
24 38,567,100 4.59 MB 2,120,101
25 13,884,156 1.65 MB 800,152
26 4,272,048 521 KB 255,544
27 1,107,568 135 KB 68,236
28 237,336 28.97 KB 14,727
29 40,920 4.99 KB 2529
30 5,456 682 B 334
31 528 66 B 33
32 33 5 B 5
33 1 1 B -

Table 12.4: Applying One-Bit-BFS to Peg-Solitaire.

The exploration results match with the ones in the general game player. For this case we had to alter the reward
structure to the one that is imposed by the general game description language that was used there. We found
that the number of expanded states matches, but – as expected – the total time to classify the states using the
specialized player on the GPU is much smaller than in the general player running on one core of the CPU.

Frogs-and-Toads

Similar to Peg-Solitaire if we invert the board (swapping the colors of the pieces), the goal and the initial state
are the same, so that forward breadth-first search suffices to solve the game. The result for Fore and Aft that
reversing black and white takes 46 moves is easily validated with BFS. There are two positions which require
47 moves, namely, after reversing black and white, putting one of the far corner pieces in the center. Table 12.5
also shows that there are 218,790 positions in total.

As Frogs-and-Toads generalizes Fore and Aft, we next considered the variant with 15 black and 15 white pieces
on a board with 31 squares. The BFS outcome is shown in Table 12.6. We monitored that reversing black and
white pieces takes 115 steps (in a shortest solution) and see that the worst-case input is slightly harder and takes
117 steps. A GPU parallelization leading to the same exploration results required about half an hour run-time.
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Depth Expanded
1 1
2 8
3 13
4 14
5 32
6 58
7 121
8 178
9 284
10 494
11 794
12 1,143

Depth Expanded
13 1,700
14 2,386
15 3,223
16 4,242
17 5,677
18 7,330
19 8,722
20 10,084
21 11,501
22 12,879
23 13,997
24 14,804

Depth Expanded
25 15,433
26 14,981
27 14,015
28 12,848
29 11,666
30 10,439
31 9,334
32 7,858
33 6,075
34 4,651
35 3,459
36 2,682

Depth Expanded
37 1,990
38 1,401
39 914
40 557
41 348
42 202
43 137
44 66
45 32
46 4
47 11
48 2

Table 12.5: BFS Results for Fore and Aft.

Depth Expanded
1 1
2 8
3 17
4 26
5 46
6 78
7 169
8 318
9 552

10 974
11 1,720
12 2,905
13 4,826
14 7,878
15 12,647
16 19,980
17 31,511
18 49,242
19 74,760
20 112,218
21 166,651
22 241,157
23 348,886
24 497,698
25 700,060
26 974,219
27 1,337,480
28 1,812,712
29 2,426,769
30 3,214,074

Depth Expanded
31 4,199,886
32 5,447,660
33 6,975,087
34 8,865,648
35 11,138,986
36 13,881,449
37 17,060,948
38 20,800,347
39 25,048,652
40 29,915,082
41 35,382,942
42 41,507,233
43 48,277,767
44 55,681,853
45 63,649,969
46 72,098,327
47 80,937,547
48 89,999,613
49 99,231,456
50 108,495,904
51 117,679,229
52 126,722,190
53 135,363,894
54 143,534,546
55 150,897,878
56 157,334,088
57 162,600,933
58 166,634,148
59 169,360,939
60 170,829,205

Depth Expanded
61 171,101,874
62 170,182,837
63 168,060,816
64 164,733,845
65 160,093,746
66 154,297,247
67 147,342,825
68 139,568,855
69 131,146,077
70 122,370,443
71 113,415,294
72 104,380,748
73 95,379,850
74 86,375,535
75 77,534,248
76 68,891,439
77 60,672,897
78 52,953,463
79 45,889,798
80 39,482,737
81 33,751,896
82 28,607,395
83 24,035,844
84 19,957,392
85 16,394,453
86 13,306,659
87 10,695,284
88 8,521,304
89 6,738,557
90 5,286,222

Depth Expanded
91 4,109,157
92 3,156,288
93 2,387,873
94 1,780,521
95 1,307,312
96 948,300
97 680,299
98 484,207
99 340,311

100 235,996
101 160,153
102 107,024
103 69,216
104 44,547
105 27,873
106 17,394
107 10,256
108 6,219
109 3,524
110 2,033
111 1,040
112 532
113 251
114 154
115 42
116 19
117 10
118 2

Table 12.6: BFS Results for Frogs-and-Touds.

Fox-and-Geese

The next set of results shown in Table 12.7 considers the Fox-and-Geese game, where we applied retrograde
analysis. For a fixed fox position the remaining geese can be binomially hashed.

The first three levels do not contain any state won for the geese, which matches the fact that four geese are
necessary to block the fox (at the middle border cell in each arm of the cross). We observe that after a while, the
number of iterations shrinks for a rising number of geese. This matches the experience that with more geese it
is easier to block the fox.
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Recall that all positions that couldn’t been proven won or lost by the geese are devised to be a win for the fox.
The critical point, where the fox loses more than 50% of the game is reached at level 16. This matches the
observation in practical play, that the 13 geese are too few to show an edge for the geese.

The total run-time of about a month for the experiment is considerable. Without multi-core parallelization,
however, more than seven months would have been needed to complete the experiments. Even though we
paralellized only the iteration stage of the algorithm, the speed-up on the 4-core hyper-threaded machine is
larger than 7, showing an almost linear speed-up.

The total of space needed for operating an optimal player is about 34 GB, so that in case geese are captured
we would have to reload data from disk. This strategy yields a maximal space requirement of 4.61 GB RAM,
which might further be reduced by reloading data in case a fox moves.

Geese States Space Iterations Won Time Real Time User
1 2,112 264 B 1 0 0.05s 0.08s
2 32,736 3.99 KB 6 0 0.55s 1.16s
3 327,360 39 KB 8 0 0.75s 2.99s
4 2,373,360 289 KB 11 40 6.73s 40.40s
5 13,290,816 1.58 MB 15 1,280 52.20s 6m24s
6 59,808,675 7.12 MB 17 21,380 4m37s 34m40s
7 222,146,996 26 MB 31 918,195 27m43s 208m19s
8 694,207,800 82 MB 32 6,381,436 99m45s 757m0s
9 1,851,200,800 220 MB 31 32,298,253 273m56s 2,083m20s
10 4,257,807,840 507 MB 46 130,237,402 1,006m52s 7,766m19s
11 8,515,615,680 1015 MB 137 633,387,266 5,933m13s 46,759m33s
12 14,902,327,440 1.73 GB 102 6,828,165,879 4,996m36s 36,375m09s
13 22,926,657,600 2.66 GB 89 10,069,015,679 5,400m13s 41,803m44s
14 31,114,749,600 3.62 GB 78 14,843,934,148 5,899m14s 45,426m42s
15 37,337,699,520 4.24 GB 73 18,301,131,418 5,749m6s 44,038m48s
16 39,671,305,740 4.61 GB 64 20,022,660,514 4,903m31s 37,394m1s
17 37,337,699,520 4.24 GB 57 19,475,378,171 3,833m26s 29,101m2s
18 31,114,749,600 3.62 GB 50 16,808,655,989 2,661m51s 20,098m3s
19 22,926,657,600 2.66 GB 45 12,885,372,114 1,621m41s 12,134m4s
20 14,902,327,440 1.73 GB 41 8,693,422,489 858m28s 6,342m50s
21 8,515,615,680 1015 MB 5,169,727,685 395m30s 2,889m45s
22 4,257,807,840 507 MB 31 2,695,418,693 158m41s 1,140m33s
23 1,851,200,800 220 MB 26 1,222,085,051 54m57 385m32s
24 694,207,800 82 MB 23 477,731,423 16m29s 112m.35s
25 222,146,996 26 MB 20 159,025,879 4m18s 28m42s
26 59,808,675 7.12 MB 17 44,865,396 55s 5m49s
27 13,290,816 1.58 MB 15 10,426,148 9.81s 56.15s
28 2,373,360 289 KB 12 1,948,134 1.59s 6.98s
29 327,360 39 KB 9 281,800 0.30s 0.55s
30 32,736 3.99 KB 6 28,347 0.02s 0.08s
31 2,112 264 B 5 2001 0.00s 0.06s

Table 12.7: Retrograde analysis results for Fox-and-Geese.

Symmetries, Frontier Search, and Generality

In many board games we find symmetries like reflection along the main axes or along the diagonals. If we
look at the four possible rotations on the board for Peg-Solitaire and Fox-and-Geese plus reflection, we count
eight symmetries in total. For Fox-and-Geese we can classify all states that share a symmetrical fox position by
simply copying the result obtained for the existing one. Besides the savings of time for not expanding states,
this can also save the number of positions that have to be kept in RAM during fixpoint computation. If the
forward and backward search graphs match (as in Peg Solitaire and Frogs-and-Toads) we may also truncate the
breadth-first search procedure to the half of the search depth. In two-bit BFS, we simply have to look at the rank
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of the inverted unranked state. Moreover, with the forward BFS layers we also have the minimal distances of
each state to the goal state, and, hence, the classification result.

Frontier search is motivated by the attempt of omitting the Closed list of states already expanded. It
mainly applies to problem graphs that are directed or acyclic but has been extended to more general graph
classes. It is especially effective if the ratio of Closed to Open list sizes is large. Frontier search requires
the locality of the search space being bounded, where the locality (for breadth-first search) is defined as
max{layer(s)− layer(s′)+1 | s,s′ ∈ S;s′ ∈ succs(s)}, where layer(s) denotes the depth d of s in the breadth-first
search tree. For frontier search, the space efficiency of the hash function h : S→ {0, . . . ,m− 1} boils down to
m/(maxd |Layerd |+ . . .+ |Layerd+l |), where Layerd is set of nodes in depth d of the breadth-first search tree
and l is the locality of the breadth-first search tree as defined above.

For the example of the Fifteen puzzle, i.e., the 4× 4 version of Sliding-Tile, the predicted amount of 1.2 TB
hard disk space for 1-bit breadth-first search is only slightly smaller than the 1.4 TB of frontier breadth-first
search. As frontier search does not shrink the set of states reachable, one may conclude, that frontier search
hardly cooperates well with a bitvector representation of the entire state space. However, if layers are hashed
individually, as done in all selection games we have considered, a combination of bitstate and frontier search is
possible.

Compressed Pattern Databases

The number of bits per state can be reduced to log3≈ 1.6. For this case, five values {0,1,2} are packed into a
byte, given that 35 = 243 < 255.

The idea of pattern database compression is to store the mod-3 value (of the backward BFS depth) from abstract
space, so that its absolute value can be computed incrementally in constant time. For the initial state, an incre-
mental computation for its heuristic evaluation is not available, so that a backward construction of its generating
path can be used. For an undirected graph a shortest path predecessor with mod-3 of BFS depth k appears in
level k−1 mod 3.

As the abstract space is generated anyway for generating the database, one could alternatively invoke a shortest
path search from the initial state, without exceeding the time complexity of database construction.

By having computed the heuristic value for the projected initial state as the goal distance in the inverted abstract
state space graph, all other pattern database lookup values can then be determined incrementally in constant
time, i.e., h(v) = h(u)+∆(v), with v ∈ succs(u) and ∆(v) found using the mod-3 value of v. If the considered
search spaces are undirected, the information to evaluate the successors with ∆(v) ∈ {−1,0,1} is possible.

For directed (and unweighted) search spaces more bits are needed to allow incremental heuristic computation
in constant time. It is not difficult to see that the locality in the inverted abstract state space determines the
maximum difference in h-values h(v)−h(u), v ∈ succs(u) in the original space.

In a directed (but unweighted) search space, the (dual) logarithm of the (breadth-first) locality of the inverse of
the abstract state space graph plus 1 is an upper bound on the number of bits needed for incremental heuristic
computation of bitvector compressed pattern databases, i.e., for locality l−1

A = max{layer−1(u)− layer−1(v)+
1 | u,v∈A;v∈ succs−1(u)} in abstract state space graph A of S we require at most logdl−1

A e+1 bits to reconstruct
the value h(v) of a successor v ∈ S of any chosen u ∈ S given h(u).

First we observe that the goal distances in abstract space A determine the h-value in the original state space, so
that the locality max{layer−1(u)− layer−1(v)+1 | u,v ∈ A;v ∈ succs−1(u)} is bounded by h(u)−h(v)+1 for
all u,v in original space with u∈ succs(v), which is equal to the maximum of h(v)−h(u)+1 for u,v∈ S with v∈
succs(u). Therefore, the number of bits needed for incremental heuristic computation equals dmax{h(v)−h(u) |
u,v ∈ A;v ∈ succs−1(u)}e+2 as all values in the interval [h(u)−1, . . . ,h(v)] have to be accommodated. Thus,
for the incremental value ∆(v) added to h(u) we have ∆(v) ∈ {−1, . . . ,h(v)− h(u)}, so that dlog(max{h(v)−
h(u)+2 | u,v ∈ S;v ∈ succs(u)})e= logdl−1

A e+1 bits suffice to reconstruct the value h(v) of a successor v ∈ S
for every u ∈ S given h(u).
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For undirected search spaces we have log l−1
A = log2 = 1, so that 1+ 1 = 2 bits suffice to be stored for each

abstract pattern state according to the theorem. Using the tighter packing of the 2+ 1 = 3 values into bytes
provided above, 8/5 = 1.6 bits are sufficient.

If not all states in the search space that has been encoded in the perfect hash function are reachable, reducing the
constant-bit compression to a lesser number of bits might not always be available, as unreached states cannot
easily be removed. For this case, the numerical value remaining to be set for an unreachable state in the inverse
of the abstract state space, will stand for h-value infinity, at which the search in the original search space can
stop.

More formally, the best-first locality has been defined as max{cost-layer(s)−cost-layer(s′)+cost(s,s′) | s,s′ ∈
S;s′ ∈ succs(s)}, where cost-layer(s) denotes the smallest accumulated cost-value from the initial state to s. The
theoretical considerations on the number of bits needed to perform incremental heuristic evaluation extend to
this setting.

Other Games

In Rubik’s Cube each face can be rotated by 90, 180, or 270 degrees and the goal is to rearrange a scrambled
cube such that all faces are uniformly colored. Solvability constraints for the set of all dissembled cubes are:
a single corner cube must not be twisted; a single edge cube must not be twisted and no two cube must be
exchanged. For the last item the parity of the permutation is crucial and leads to 8! ·37 ·12! ·211/2≈ 4.3 ·1019

states. Assuming one bit per state, an impractical number of 4.68 ·1018 bytes for performing full reachability is
needed.

The binomial and multinomial hashing approach is applicable to many other games.

• In Awari the two players redistribute seeds among 12 holes according to the rules of the game, with an initial
state having uniformly four seeds in each of the holes. When all seeds are available, all possible layouts
can be generated in an urn experiment with 59 balls, where 48 balls represent filling the current hole with a
seed and 11 balls indicate changing from the current to the next hole. Thus, binomial hashing applies.

• In Dots and Boxes players take turns joining two horizontally or vertically adjacent dots by a line. A player
that completes the fourth side of a square (a box) colors that box and must play again. When all boxes have
been colored, the game ends and the player who has colored more boxes wins. Here, the binomial hash
suffices. For each edge we denote whether it is marked. Together with the marking, we denote the number
of boxes of at least one player. In contrast to other games, all successor share in the next layer, so that one
scan suffices to solve the current one.

• Nine-Men’s-Morris is one of the oldest games still played today. The game naturally divides into three
stages. Each player has nine pieces, called men, that are first placed alternately on a board with 24 locations.
In the second stage, the men move to form mills (a row of three pieces along one of the board’s lines), in
which case one man of the opponent (except the ones that form a mill) is removed from the board. In one
common variation of the third stage, once a player is reduced to three men, his pieces may “fly” to any
empty location. If a move has just closed a mill, but all the opponent’s men are also in mills, the player may
declare any stone to be removed. The game ends if a player has less than three men (the player loses), if
a player cannot make a legal move (the player loses), if a midgame or endgame position is repeated (the
game is a draw). Besides the usual symmetries along the axes, there is one in swapping the inner with the
outer circle. For this game, multinomial hashing is applicable.

12.8 Binary Decision Diagrams for Strongly Solving Games

In general state spaces one can derive minimal perfect hash functions with a few bits per state (I/O-efficiently)
after generating the state space (on disk). This approach applies hypergraph theory, which exceeds the scope of
the book. It requires c bit RAM per state (typically, c≈ 2). Of course, perfect hash functions do not have to be
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minimal to be space efficient. Non-minimal hash functions can outperform minimal ones since the gain in the
constant c for the hash function can be more important than the loss in coverage.

Binary decision diagrams (BDDs) are a memory-efficient data structure used to represent Boolean functions. A
BDD is a directed acyclic graph with one root and two terminal nodes, the 0- and the 1-sink. Each internal node
corresponds to a binary variable and has two successors, one (along the Then-edge) representing that the current
variable is true (1) and the other (along the Else-edge) representing that it is false (0). For any assignment of the
variables derived from a path from the root to the 1-sink the represented function will be evaluated to 1.

For a fixed variable ordering, two reduction rules can be applied: eliminating nodes with the same Then and
Else successors and merging two nodes representing the same variable that share the same Then successor as
well as the same Else successor. These BDDs are called reduced ordered binary decision diagrams (ROBDDs).
Whenever we mention BDDs, we refer to ROBDDs. We also assume that the variable ordering is the same for
all the BDDs and has been optimized prior to the search.

We are interested in the image of a state set S with respect to a transition relation Trans. The result is a character-
istic function of all states reachable from the states in S in one step. For the application of the image operator we
need two sets of variables, one, x, representing the current state variables, another, x′, representing the successor
state variables. The image Succ of the state set S is then computed as Succ(x′) = ∃x (Trans(x,x′) ∧ S(x)). The
preimage Pre of the state set S is computed as Pre(x) = ∃x′ (Trans(x,x′) ∧ S(x′)) and results in the set of
predecessor states.

Using the image operator, implementing a layered symbolic breadth-first search (BFS) is straight-forward. All
we need to do is to apply the image operator to the initial state resulting in the first layer, then apply the image
operator to the first layer resulting in the second and so on. The search ends when no successor states can be
found. General games (and in this case, Connect Four) are guaranteed to terminate after a finite number of steps,
so that the forward search will eventually terminate as well.

The problem of the construction of perfect hash functions for algorithms like two-bit breadth-first search is that
most of them are problem-dependent. Hence, for the construction of the perfect hash function, the underlying
state set to be hashed is generated in advance in form of a BDD. This is true, when computing strong solutions
to problems, where we are interested in the game-theoretical value of all reachable states. Applications are, e.g.,
endgame databases or planning tasks where the problem to be solved is harder than computing the reachability
set.

The index(n) of a BDD node n is its unique position in the shared representation and level(n) its position in
the variable ordering. Moreover, we assume the 1-sink to have index 1 and the 0-sink to have index 0. Let
C f = |{a ∈ {0,1}n | f (a) = 1}| denote the number of satisfying assignments (satcount, here also sc for short) of
f . With bin (and invbin) we denote the conversion of the binary value of a bitvector (and its inverse). The rank of
a satisfying assignment a ∈ {0,1}n is the position in the lexicographical ordering of all satisfying assignments,
while the unranking of a number r in {0, . . . ,C f −1} is its inverse.

Figure 12.5 shows the ranking and unranking functions in pseudo-code. The procedures determine the rank
given a satisfying assignment and vice versa. They access the satcount values on the Else-successor of each
node (adding for the ranking and subtracting in the unranking). Missing nodes (due to BDD reduction) have to
be accounted for by their binary representation, i.e., gaps of l missing nodes are accounted for as 2l . While the
ranking procedure is recursive the unranking procedure is not.

The satcount values of all BDD nodes are precomputed and stored along with the nodes. As BDDs are reduced,
not all variables on a path are present but need to be accounted for in the satcount procedure. The time (and
space) complexity of it is O(|G f |), where |G f | is the number of nodes of the BDD G f representing f . With the
precomputed values, rank and unrank both require linear time O(n), where n is the number of variables in the
function represented in the BDD.

To illustrate the ranking and unranking procedures, take the example BDD given in Figure 12.6. Assume we
want to calculate the rank of state s = 110011. The rank of s is then
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rank(s)
i = level(root);
d = bin(s[0..i-1]);
return d*sc(root) + rankAux(root,s) - 1;

rankAux(n, s)
if (n <= 1) return n;
i = level(n);
j = level(Else(n));
k = level(Then(n));
if (s[i] == 0)

return bin(s[i+1..j-1]) * sc(Else(n))
+ rankAux(Else(n),s);

else
return 2^(j-i-1) * sc(Else(n))
+ bin(s[i+1..k-1]) * sc(Then(n))
+ rankAux(Then(n),s);

unrank(r)
i = level(root);
d = r / sc(root);
s[0..i-1] = invbin(d);
n = root;
while (n > 1)
r = r mod sc(n);
j = level(Else(n));
k = level(Then(n));
if (r < (2^(j-i-1) * sc(Else(n))))
s[i] = 0;
d = r / sc(Else(n));
s[i+1..j-1] = invbin(d);
n = Else(n);
i = j;

else
s[i] = 1;
r = r - (2^(j-i-1) * sc(Else(n)));
d = r / sc(Then(n));
s[i+1..k-1] = invbin(d);
n = Then(n);
i = k;

return s;

Figure 12.5: Ranking and unranking.

rank(s) = 0+ rA(v13,s)−1 = (21−0−1 · sc(v11)+0+ rA(v16,s))−1
= sc(v11)+(23−1−1 · sc(v8)+bin(0) · sc(v9)+ rA(v9,s))−1
= sc(v11)+2sc(v8)+(0+ rA(v5,s))−1
= sc(v11)+2sc(v8)+(26−4−1 · sc(v0)+bin(1) · sc(v1)+ rA(v1,s))−1
= sc(v11)+2sc(v8)+2sc(v0)+ sc(v1)+1−1
= 14+2 ·5+2 ·0+1+1−1 = 25,

with rA(s,vi) being the recursive call of the rankAux function for state s in node vi and sc(vi) the satcount stored
in node vi.

For unranking the state with index 19 (r = 19) from the BDD depicted in Figure 12.6 we get:

• i = 0,n = v13: r = 19 mod sc(v13) = 19 mod 30 = 19 6< 21−0−1sc(v11) = 14, thus s[0] = 1; r = r−
21−0−1sc(v11) = 19−14 = 5

• i = 1,n = v12: r = 5 mod sc(v12) = 5 mod 16 = 5 < 23−1−1sc(v8) = 2 · 5 = 10, thus s[1] = 0; s[2] =
invbin(r/sc(v8)) = invbin(5/5) = 1

• i = 3,n = v8: r = 5 mod sc(v8) = 5 mod 5 = 0 < 24−3−1sc(v4) = 1, thus s[3] = 0

• i = 4,n = v4: r = 0 mod sc(v4) = 0 mod 1 = 0 6< 26−4−1sc(v0) = 0, thus s[4] = 1; r = r−26−4−1sc(v0) =
0−0 = 0

• i= 5,n= v2: r = 0 mod sc(v2) = 0 mod 1= 0 6< 27−6−1sc(v12) = 0, thus s[5] = 1; r = r−27−6−1sc(v12) =
0−0

• i = 6;n = v1: return s (= 101011)

Retrograde Analysis on a Bitvector
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Figure 12.6: BDD for the ranking and unranking examples. Dashed arrows denote Else-edges; solid ones Then-edges. The numbers
in the nodes correspond to the satcount. Each vi denotes the index (i) of the corresponding node.

retrograde(won,maxlayers)
for layer in maxlayers,...,0
m = sc(bdd(layer))
for i in 0,...,m - 1
B[layer][i] = 0

for i in 0,...,m - 1
state = unrank(i)
if (won(state))

if (layer mod 2 == 1)
B[layer][i] = 1

else
B[layer][i] = 2

else if (layer == maxlayer)
B[layer][i] = 3

else
succs = expand(state)
process(succs)

process (succs)
if (layer mod 2 == 1)

for all s in succs
if B[layer+1][rank(s)] == 2
B[layer][rank(i)] = 2
break

else if (B[layer+1][rank(s)]
== 3)

B[layer][rank(i)] = 3
if (B[layer][rank(i)] == 0)
B[layer][rank(i)] = 1

else
for all s in succs

if B[layer+1][rank(s)] == 1
B[layer][rank(i)] = 1
break

else if (B[layer+1][rank(s)]
== 3)

B[layer][rank(i)] = 3
if (B[layer][rank(i)] == 0)
B[layer][rank(i)] = 2

Figure 12.7: Two-player zero-sum game retrograde analysis (rank and unrank are sensitive to the layer they are called).

In the implementation (see Algorithm 12.7) we also use two bits, but with a different meaning. We apply the
algorithm to solve two-player zero-sum games where the outcomes are only won/lost/drawn from the starting
player’s point of view. This is reflected in the interpretation of the two bits: value 0 means that the state has not
yet been evaluated; value 1 means it is won by the starting player (the player with index 0); value 2 means it is
won by the player with index 1; value 3 means it is drawn. Retrograde analysis solves the entire set of positions
in backward direction, starting from won and lost terminal ones. Bitstate retrograde analysis applies backward
BFS starting from the states that are already decided.

For the sake of simplicity, the rank and unrank functions are sensitive with respect to the layer of the search in
which the operations take place. In the implementation, we use separate BDDs for the different layers.
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Figure 12.8: Hybrid algorithm: visualization of data flow in the strong solution process (left). Processing a layer in the retrograde
analysis (right).

The algorithm assumes a maximal number of moves, that terminal drawn states appear only in the last layer (as
is the case in Connect Four; extension to different settings is possible), that the game is turn-taking, and that the
player can be found in the encoding of the game. It takes as input a decision procedure for determining whether
a situation is won by one of the players as well as the index of the last reached layer (maxlayer). Starting at the
final layer, it iterates toward the initial state residing in layer 0.

For each layer, it first determines the number of states. Next it sets all values of the vector B for the states in the
current state to 0 – not yet solved. Then it iterates over all states in that layer.

It takes one state (by unranking it from the layer), checks whether it is won by one of the players. If so, it can
be solved correspondingly (setting its value to either 1 or 2). Otherwise, if it resides in the final layer, it must be
a drawn state (value 3). In case neither holds, we calculate the state’s successors. For each successor we check
whether it is won by the currently active player, which is determined by checking the current layer’s index. In
this case the state is assigned the same value and we continue with the next state. Otherwise, if the successor is
drawn, the value of this state is set to draw as well. In the end, if the state is still unsolved that means that all
successors are won by the opponent, so that the corresponding value is assigned to this state as well.

Hybrid Classification Algorithm

The hybrid classification algorithm combines the two precursing approaches. It generates the state space with
symbolic forward search on disk and subsequently applies explicit-state retrograde analysis based on the results
in form of the BDD encoded layers read from disk. Figure 12.8 illustrates the strong solution process. On the
right-hand side, we see the bitvector used in retrograde analysis and on the left hand side we see the BDD
generated in forward search and used in backward search.

The process of solving one layer is depicted in Figure 12.8 (right). While the bitvector in the layer n (shown at
the bottom of the figure) is scanned and states within the layer are unranked and expanded, existing information
on the solvability status of ranked successor states in the subsequent layer n+1 is retrieved.

Ranking and unranking with respect to the BDD is executed to look up the status (won/lost/drawn) of a node in
the set of successors. We observed that there is a trade-off for evaluating immediate termination. There are two
options, one is procedural by evaluating the goal condition directly on the explicit state, the other is a dictionary
lookup by traversing the corresponding reward BDD. In the case of Connect Four the latter was not only more
general but also faster. A third option would be to determine if there are any successors and set the rewards
according to the current layer (as it is done in the pseudo-code).
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Figure 12.9: The game Connect Four: the player with the gray pieces has won.

To increase the exploration performance of the system we distributed the explicit-state solving algorithms on
multiple CPU cores. We divide the bitvector for the layer to be solved into equally-sized chunks. The bitvector
for the next layer is shared among all the threads.

For the ease of implementation, we duplicate the query BDDs for each individual core. This is unfortunate, as
we only use concurrent read in the BDD for evaluating the perfect hash function, but the computation of the
rank involves setting and reading local variables and requires significant changes in the BDD package to be
organized lock-free.

12.9 Experiments BDD Hashing

Although most of the algorithms are applicable to most two-player games, our focus is on one particular case,
namely the game Connect Four (see Figure 12.9). The game is played on a grid of c columns and r rows. In
the classical setting we have c = 7 and r = 6. While the game is simple to follow and play, it can be rather
challenging to win. This game is like Tic-Tac-Toe, with two main differences: The players must connect four
of their pieces (horizontally, vertically, or diagonally) in order to win and gravity pulls the pieces always as far
to the bottom of the chosen column as possible. The number of states for different settings of c× r is shown in
Table 12.8.

Table 12.9 displays the exploration results of the search. The set of all 4,531,985,219,092 reachable states can
be found within a few hours of computation, while explicit-state search took about 10,000 hours.

As illustrated in Table 12.10, of the 4,531,985,219,092 reachable states only 1,211,380,164,911 (about 26.72%)
have been left unsolved in the layered BDD retrograde analysis. (More precisely, there are 1,265,297,048,241
states left unsolved by the algorithm, but the remaining set of 53,916,883,330 states in layer 30 is implied by
the solvability status of the other states in the layer.)

Even while providing space in form of 192 GB of RAM, however, it was not possible to apply the symbolic
solving algorithm to layers smaller than 30. The reason is, while the peak of the solution for the state sets has
already been passed, the BDDs for representing the state sets are still growing.

This motivates looking at other options for memory-limited search and a hybrid approach that takes the symbolic
information into account to eventually perform the complete solution of the problem.

12.10 Bibliographic Notes

Chess [98], Checkers [555] have shown competitiveness with human play. Pattern databases go back to [143]
with locality having been studied by [677]. More general notions of locality have been developed by [363].
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Table 12.8: Number of reachable states for Connect Four.

Layer 7×6 6×6 6×5 5×6 5×5
0 1 1 1 1 1
1 7 6 6 5 5
2 49 36 36 25 25
3 238 156 156 95 95
4 1,120 651 651 345 345
5 4,263 2,256 2,256 1,075 1,075
6 16,422 7,876 7,870 3,355 3,350
7 54,859 24,330 24,120 9,495 9,355
8 184,275 74,922 72,312 26,480 25,060
9 558,186 211,042 194,122 68,602 60,842

10 1,662,623 576,266 502,058 169,107 139,632
11 4,568,683 1,468,114 1,202,338 394,032 299,764
12 12,236,101 3,596,076 2,734,506 866,916 596,136
13 30,929,111 8,394,784 5,868,640 1,836,560 1,128,408
14 75,437,595 18,629,174 11,812,224 3,620,237 1,948,956
15 176,541,259 39,979,044 22,771,514 6,955,925 3,231,341
16 394,591,391 80,684,814 40,496,484 12,286,909 4,769,837
17 858,218,743 159,433,890 69,753,028 21,344,079 6,789,890
18 1,763,883,894 292,803,624 108,862,608 33,562,334 8,396,345
19 3,568,259,802 531,045,746 165,943,600 51,966,652 9,955,530
20 6,746,155,945 884,124,974 224,098,249 71,726,433 9,812,925
21 12,673,345,045 1,463,364,020 296,344,032 97,556,959 9,020,543
22 22,010,823,988 2,196,180,492 338,749,998 116,176,690 6,632,480
23 38,263,228,189 3,286,589,804 378,092,536 134,736,003 4,345,913
24 60,830,813,459 4,398,259,442 352,607,428 132,834,750 2,011,598
25 97,266,114,959 5,862,955,926 314,710,752 124,251,351 584,249
26 140,728,569,039 6,891,603,916 224,395,452 97,021,801
27 205,289,508,055 8,034,014,154 149,076,078 70,647,088
28 268,057,611,944 8,106,160,185 74,046,977 40,708,770
29 352,626,845,666 7,994,700,764 30,162,078 19,932,896
30 410,378,505,447 6,636,410,522 6,440,532 5,629,467
31 479,206,477,733 5,261,162,538
32 488,906,447,183 3,435,759,942
33 496,636,890,702 2,095,299,732
34 433,471,730,336 998,252,492
35 370,947,887,723 401,230,354
36 266,313,901,222 90,026,720
37 183,615,682,381
38 104,004,465,349
39 55,156,010,773
40 22,695,896,495
41 7,811,825,938
42 1,459,332,899
Σ 4,531,985,219,092 69,212,342,175 2,818,972,642 1,044,334,437 69,763,700

Table 12.9: Number of Nnodes and states in (7×6) Connect Four (l layer, n BDD nodes, s states).

l n s
0 85 1
1 163 7
2 316 49
3 513 238
4 890 1,120
5 1,502 4,263
6 2,390 16,422
7 4,022 54,859
8 7,231 184,275
9 12,300 558,186

10 21,304 1,662,623
11 36,285 4,568,683
12 56,360 12,236,101
13 98,509 30,929,111
14 155,224 75,437,595
15 299,618 176,541,259
16 477,658 394,591,391
17 909,552 858,218,743
18 1,411,969 1,763,883,894
19 2,579,276 3,568,259,802
20 3,819,845 6,746,155,945
21 6,484,038 12,673,345,045

l n s
22 9,021,770 22,010,823,988
23 14,147,195 38,263,228,189
24 18,419,345 60,830,813,459
25 26,752,487 97,266,114,959
26 32,470,229 140,728,569,039
27 43,735,234 205,289,508,055
28 49,881,463 268,057,611,944
29 62,630,776 352,626,845,666
30 67,227,899 410,378,505,447
31 78,552,207 479,206,477,733
32 78,855,269 488,906,447,183
33 86,113,718 496,636,890,702
34 81,020,323 433,471,730,336
35 81,731,891 370,947,887,723
36 70,932,427 266,313,901,222
37 64,284,620 183,615,682,381
38 49,500,513 104,004,465,349
39 38,777,133 55,156,010,773
40 24,442,147 22,695,896,495
41 13,880,474 7,811,825,938
42 4,839,221 1,459,332,899

Total 4,531,985,219,092
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Table 12.10: Result of symbolic retrograde analysis (excl. terminal goals, l layer, n BDD nodes, s states).

l n (won) s (won) n (draw) s (draw) n (lost) s (lost)
...

...
...

...
...

...
...

29 o.o.m. o.o.m. o.o.m. o.o.m. o.o.m. o.o.m.
30 589,818,676 199,698,237,436 442,186,667 6,071,049,190 o.o.m. o.o.m.
31 458,334,850 64,575,211,590 391,835,510 7,481,813,611 600,184,350 201,906,000,786
32 434,712,475 221,858,140,210 329,128,230 9,048,082,187 431,635,078 57,701,213,064
33 296,171,698 59,055,227,990 265,790,497 10,381,952,902 407,772,871 194,705,107,378
34 269,914,837 180,530,409,295 204,879,421 11,668,229,290 255,030,652 45,845,152,952
35 158,392,456 37,941,816,854 151,396,255 12,225,240,861 231,007,885 132,714,989,361
36 140,866,642 98,839,977,654 106,870,288 12,431,825,174 121,562,152 24,027,994,344
37 68,384,931 14,174,513,115 72,503,659 11,509,102,126 105,342,224 57,747,247,782
38 58,428,179 32,161,409,500 44,463,367 10,220,085,105 42,722,598 6,906,069,443
39 19,660,468 2,395,524,395 27,201,091 7,792,641,079 35,022,531 13,697,133,737
40 17,499,402 4,831,822,472 13,858,002 5,153,271,363 8,233,719 738,628,818
41 0 0 5,994,843 2,496,557,393 7,059,429 1,033,139,763
42 0 0 0 0 0 0

One early attempt to apply state space search on GPUs was made in the context of model checking [225, 66].
large-scale disk-based search has moved complex numerical operations to the graphic card [225]. As delayed
elimination of duplicates is a performance bottleneck, parallel processing on the GPU was needed to improve
sorting significantly. Since existing GPU sorting schemes did not show speedups on state vectors, refined GPU-
based Bucketsort applies. In [66] algorithms for parallel probabilistic model checking on GPUs were proposed,
exploiting the fact that probabilistic model checking relies on matrix vector multiplication. Since this kind
of linear algebraic operation is implemented very efficiently on GPUs, these algorithms achieve considerable
runtime improvements compared to their counterparts on standard architectures.

Cooperman and Finkelstein [135] have shown that two bits per state are sufficient to perform a breadth-first
exploration of the search space. Efficient lexicographic ranking methods are studied in [61]. Many attempts, e.g.
have a non-linear worst-case time complexity [424], and [419] employed lookup tables with a space requirement
of O(2n logn) bits to compute lexicographic ranks in linear time. Given that larger tables do not easily fit into
SRAM, the algorithm does not work well on the GPU. Myrvold and Ruskey’s algorithm [489] is linear in time
and space for both ranking operations.

Two-bit breadth-first has first been applied to enumerate so-called Cayley Graphs [135]. Subsequently, an upper
bound to solve every possible configuration of Rubik’s Cube has been shown [427]: by performing a breadth-
first search over subsets of configurations in 63 hours together, with the help of 128 processor cores and 7 TB of
disk space it was shown that 26 moves always suffice to descramble it. Korf [418] has applied two-bit breadth-
first search to generate the state spaces for hard instances of the Pancake problem I/O-efficiently. Peg Solitaire
has been solved in [45], and an optimal player has been computed by [207]. Fore-and-Aft was originally an
English invention, designed by an English sailor in the eighteenth century. Henry Ernest Dudeney discovered a
solution of just 46 moves.

The breadth-first traversal in a bitvector repesentation of the search space was also essential for the construction
of compressed pattern databases [81]. The observation that log3 are sufficient to represent all mod-3 values
possible and the byte-wise packing was already made by [135].

Awari has been solved in 2002 [543] and the variant Oware strongly solved in 2021 [55] using bitboards
and massive parallel search. For Chinese checkers even more refined ranking and processor instructions were
used [600].

Perfect hash functions to efficiently (un)rank states have been very successful in traversing single-player prob-
lems [418], in two-player games [544], and for creating pattern databases [81]. The first reference to an ancestor
of the game Fox-and-Geese is that of Hala-Tafl is believed to have been written in the fourteenth century. Fox-
and-Geese is prototypical for cooperatively chasing an attacker. It has applications in computer security, where
an intruder must be found. In a more general setting, such games are played with tokens on a graph.
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Rubik’s Cube, invented in the late 1970s by Erno Rubik, is a known challenge for single-agent search [414].
Sliding-tile puzzles have been considered in [350]. An external-memory algorithm that distributed states into
buckets according to their blank position is due to [676]. The complete exploration of the 15-Puzzle is due
to [419]. Top-Spin Puzzle has been studied in [117]. Nine-Men’s-Morris boards have been found on many his-
toric buildings; one of the oldest dates back to about 1400 BC [278]. Gassner has solved the game with endgame
databases for the last two game stages together with alpha-beta search for the first phase [278]. Assuming op-
timal play of both players, he showed that the game ends in a draw. The pancake problem has been analyzed,
e.g., by [176].

Botelho et al. [70] devise minimal practical hash functions for general state spaces, once the set of reachable
states is known. BDDs [90] are very effective in the verification of hard- and software systems, where BDD
traversal is referred to as symbolic model checking [91]. Connect Four has been weakly solved by [625, 13]. It
has been shown that – while the reachable set leads to polynomially-sized BDDs – the symbolic representation
of the termination criterion is exponential [206]. [160] have shown that the BDD ranking procedures work
correctly. BDD perfect hashing [160] refers to ranking and unranking of states of a state set represented as a
BDD. It is available in time linear to the length of the state vector (in binary). In other words, BDD ranking
aims at the symbolic equivalent of constructing a perfect hash function in explicit-state space search [69].



Chapter 13

Card Game Playing

One central showcase of algorithmic intelligence is to prove that computers are able to beat humans in games. As
many board games have either been solved or AIs show superhuman performance one of the next AI challenges
are card games with randomness in the deal and incomplete information due to cards being hidden. While there
is impressive research on playing multi-player non-cooperative card games like Poker, for cooperative card
games like Skat or Bridge, humans were experienced to play better than computers.

Skat is an internationally played game, described by some as the best and most interesting card game for three
players. It has a deck of 32 cards; in a deal each player gets 10 cards, with two left-over Skat cards. There
are four stages of the Skat game: i) bidding, where the players communicate values towards their respective
maximal bidding strength; ii) Skat taking and selecting the game; iii) choosing the two cards for Skat putting;
iv) trick-taking game play with up to 10 rounds of play. To bid higher, stages ii) and iii) may be skipped (Hand).
The winner of the bidding becomes the declarer, who plays against the remaining two opponents. He adds the
Skat to his hand and discard any two cards. The declarer wins if he gets more than 60 points (Grand or Suit) or
makes no tricks (Null). To increase the bidding value further, he can raise the contract from scoring 61 points to
90 (Schneider) and 120 (Schwarz), and to open the hand to the opponents (Ouvert). Handling partial information
is the critical aspect in this game, given that for open cards the optimal score and the associated playing card
can be found in terms of milliseconds.

We present a Skat AI, able to play all stages of the game and all game types. Using statistical tables elicited
from Human expert games, it derives accurate winning probabilities, which are used mainly for the bidding and
game selection stages, and to put good Skats. For the trick-taking stage of the game, it includes algorithmic
strategies for opening, middle- and endgame play using expert rules and exploiting playing conventions to build
a knowledge base on plausible and effective locations of the cards.

13.1 Introduction

Skat1 is a three-player imperfect-information game played with 32 cards, a subset of the usual 52 cards Bridge
deck. By the vast number of hands of possible deals, and an even larger number of different trick-taking play
in card games, there is a limit of what expert game information can provide, and what search algorithms can
uncover. While one can infer reliable statistical recommendations for the first cards to play, for later tricks in
the middle game, this information is blurred, as with cards that have already been played, the lookup tables
associated to card groups lose precision: e.g., it often makes a great difference if the highest or lowest card of
the game is still in play or not.

To obtain dynamic information of the suit factors of the game we apply the following steps.

1 This chapter is based on joint work with Samual Bounan and Rainer Gößl. It puts together and improves the work from [184, 185,
183, 186].
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Figure 13.1: Skat game with player in the middle playing Grand.

1. Devise a single- and double-dummy minigame glassbox solver that efficiently determines the outcome of
a game between the declarer and the opponent(s) restricted to one trump or non-trump suit, suggesting the
card with the best possible payoff in optimal open card play.

2. Introduce to several applications of minigame solving for improving dynamic play and to determine the
best possible card in a suit for the declarer and/or the opponent(s).

3. As the single-dummy algorithm becomes available in circumstances. where suits are not obeyed, the knowl-
edge of the distribution of cards at least in some suits is maintained and updated accordingly.

4. Experimental findings based on playing a series of thousands of high-quality games show the impact of the
minigame searches in improving the playing strength of an existing Skat AI.

Assessing the skill level of players to predict the outcome and to rank the players in a longer series of games is
of critical importance for tournament play. Besides weaknesses, like an observed continuous inflation, through
a steadily increasing playing body, the ELO ranking system, named after its creator Arpad Elo, has proven to
be a reliable method for calculating the relative skill levels of players in two-player zero-sum games. The eval-
uation of player strength in multi-player trick-taking card games like Skat or Bridge, however, is not obvious.
Firstly, these are incomplete information partially observable games with more than one player, where opponent
strength should influence the scoring as it does in existing ELO systems. Secondly, they are game of both skill
and chance, so that besides the playing strength the outcome of a game also depends on the deal. Last but not
least, there are internationally established scoring systems, in which the players are used to be evaluated, and
to which ELO should align. Based on the tournament scoring system, we suggested an ELO system for Skat to
overcome these weaknesses.

Skat shares similarities to Marias(ch) (played in Czech Republic and Slovakia) and Ulti (played in Hungary).
The rules of Skat go back to Hempel around 1848. Competitive Skat is defined by the International Skat Player
Association. The game is played with three players. A full deck has 8 cards (A, T, K, Q, J, 9, 8, and 7) in all four
suits (♣, ♠, ♥, ♦). After shuffling, each player receives 10 cards, while the skat consists of two cards. There
are four phases of the Skat game: the bidding stage, taking and putting the skat, and the actual play for tricks.
The declarer, who won the bidding, is playing for a win against the remaining two opponents. She is allowed to
strengthen her hand by taking the skat and putting it (can be the same ones). For a strong Skat AI, especially for
the early stages of the games like bidding, most interestingly is approximating the probability Pt

w(h) of winning
a given hand h in a game of type t. The games being played and bid for are Trump, which includes grand and
suit (♣, ♠, ♥, or ♦), as well as null, a trick-avoiding variant of the game.

The bidding stage determines the declarer and the two opponents: two players announce and accept increasing
bids until one passes. The winner of the first bidding phase continues bidding with the third player. The success-
ful bidder of the second bidding phase plays against the other two. The maximum bid a player can announce
depends on the type of game the player wants to play and, in case of a trump game, a multiplication factor
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determined by the jacks. The soloist decides on the game to be played. Before declaring, he may pick up the
Skat and then discards any two cards from his hand, face down. These cards count towards the declarer’s score.
An example for Skat selection is shown in Figure 13.1.

Card play proceeds as in Bridge, except that the trumps and card ranks are different. In grand, the four jacks are
the only trumps. In suit, seven further cards of the selected suit are trumps. There are no trumps in null games.
Non-trump cards are grouped into suits as in Bridge. Each card has an associated point value between 0 and
11, and in a standard trump game the declarer must score more points than the opponents to win. Null is an
exception, where the declarer wins only if he scores no trick.

Skat has n =
(32

10

)(22
10

)(12
10

)
≈ 2.8 quadrillion possible deals. Following the well-known birthday paradox, the

probability p that at least one deal is repeated in k deals is p = 1− (∏k−1
i=0 (n− i)/nk); and fixing p≥ 50% yields

k ≥ 40 million games.

Nullspiel. There are four variants of the Nullspiel: Null (bidding value 23), Null Hand (35), Null Ouvert (NO,
46), and NO Hand (59), where Ouvert forces the declarer to show all her cards prior to the play, and Hand
prohibits the declarer to take the skat. The declarer that wins the bidding, must lose all tricks. In this variant
most computer card game programs play badly.

In the Nullspiel the ordering of cards is A, K, Q, J, T, 9, 8, and 7. If the declarer gets any trick, he loses. To
the contrary, she wins by certain if her hand is safe (elaborate definitions include the cards in the skat and
accommodate already played cards).

A declarer’s card c is safe, if all gaps g in its suit with value lower than c are supported by at least the matching
number of cards below g, with a special case for the declarer’s turn in the first trick, where an extra support card
is needed. The declarer’s hand h is safe if all cards c in h are safe.

Strategies for the declarer and her opponents depend on the position of the players within the trick and dominate
expert play. Playing agreements like Shortest Suit – Smallest Card First indicate the fundamental importance
of collaboration between the two opponents for maximizing the exchange of information. Such hidden rules
are difficult for an AI to learn automatically, especially given that for several of such simple rules, there are
exceptions in world-class play.

There are other subtleties on knowledge elicitation given that there only two possible outcomes of the Nullspiel.
One immediate consequence is that longer play often is a safer way to win the game of the opponents. In case
a suit must be obeyed, the card distribution in this suit is crucial, and, if not, dropping card strategies play an
important role.

For each of the suits s in a hand h we determine the probability of winning Pw(h,s), using a multinomial
distribution (refined with the winning probabilities found in the expert games). The probabilities are stored in
tables, and the winning probabilities Pw(s) among all the suits are multiplied as an estimate for the overall
winning probability Pw(h).

Trump Games. Card values in Trump games are added for the tricks made and the skat put, with a usual split at
60 of the 120 possible points. Other contracts (89, 119) for the declarer to exceed are possible. The bidding value
depends on the distribution of Js: As the multiplier of the color value (12 =♣, 11 =♠, T =♥, or 9 =♦) or 24
(Grand), 1 is added to the number of consecutive Js in the order ♣, ♠, ♥, and ♦; or the number of consecutive
Js in the joint hands of the opponents.

A declarer’s non-trump card c is standing in a suit s, if c cannot be beaten by all other cards in s still being
present in the game. The declarer’s hand h is standing if all non-trump cards c in h are standing.

We implemented more refined definitions and classes of standing cards that depends on the distribution of the
Js, the position in the trick, and that takes the possible distribution of opponent cards and the experience in
expert games into account. To estimate the number of tricks possible, we, thus, introduce fractional values for
standing cards and the concept of virtual standing cards that are likely to become standing cards during play.
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13.2 Bidding

The usual bidding stage follows a predefined order of calling numbers corresponding to the value of the game
(18,20,22,23,24,27,30,33,35, . . .). The final bidding value indicates in which suits the players are strong, so
that we maintain a table of the at most two games fitting the final bid. In opponent play this information often
determines the choice of the first card to be played.

For computer bidding we use a rather accurate knowledge on winning probabilities Pt
w(h). In contrast to classical

learning and game-theoretical approaches, we exploit flat statistical knowledge on the individual strength of the
cards in hand that we have extracted from millions of expert games. We estimate probabilities Pt

w(h) to win a
game t and determine the expected payoff of the game t, which for the bidding stage is maximized.

Given 3
( 32

10,10,10,2

)
= 8,259,883,225,513,920 different Skat deals (including the turn) storing a lookup table for

Pt
w(h) in memory clearly is infeasible and, even more importantly, for many million expert games, way too

sparse to retrieve robust values for each game. Note the conceptual difference in Pt
w prior and posterior to skat

taking. Before the skat is taken, the maximal bidding value is determined via computing the average payoff over
all possible

(22
2

)
= 231 skats. For putting we take the maximum over all

(12
2

)
= 66 options to select the two cards

for the skat.

The complete bidding strategy is more complex as the bidding value itself plays a role. Filter are applied on
valid and good skats.

Once the skat has been taken by the declarer, there are
(12

2

)
= 66 options for putting it. We derived a strategy to

select a skat that optimizes the dropping gain.

The dropping gain is the change in the winning probability when removing a card from the hand. If h is the
hand before the drop and h′ is reduced hand after the card drop in suit s, then we have

drop(h,h′) = Pw(h,s)−Pw(h′,s).

In other words, for the choice of skat cards, we prefer the ones that improve the winning probability the most.
For a better Skat putting strategy, refined winning parameters apply to grand and suit games. Moreover, strong
players that announce the bid, often drop out one step before calling the actual value, not to be forced to play in
case of a tie.

For the Nullspiel we follow the suggestion of Emanuel Lasker. and combine statistics on winning probabilities
in each suit as follows Pw(h) = ∏s∈{♣,♠,♥,♦}Pw(h,s). There are different probability tables Pw(h,s) for other
variants of the Nullspiel. In each suit, we have eight cards and 28 = 256 selections of cards that form a pattern.
As the binary representation of the position in the vector and the pattern are identical, given the bitvector for
a given hand, we can extract the probability value Pw(h,s) in time O(1) by bit masking, bit shifting and bit
reversal operations.

For Trump games we used hash functions to store similar hands in a smaller table (with several 10K entries).
Such functions can be thought of selecting a set of features that generate equivalence classes of hands.

For example, in Grand games we identified the following winning features to be sufficient (in some cases, like
bidding values and points put in skat, we cluster the set of possible values into a smaller set):

1. value put in the skat, we group the values into 5 classes;

2. trump quality encoding distribution in J: 10 classes;

3. number of As and Ts, as two independent features;

4. estimated number of lost cards based on standing ones;

5. position on table (who’s turn it is);

6. bidding value, we group the values into 4 classes.
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For Suit games, we identified nine features: trump count, number of trump high cards (As+Ts), encoding of Js,
non-trump As and Ts, missing suits, position of player, encoded skat and bidding value. If we denote f1, . . . , fl
for the l features, based on expert games we built a probability table Pw(h) = hash( f1(h), . . . , fl(h)). Statistical
evidence has been collected that the chosen features are indeed relevant. Choosing Pw(h) for weakly supported
feature combinations is a learning problem, which we resolve via returning a neighbor entry. We also tried to
learn Pw(h) with multivariable linear regression, but the predictions were often off by 20% and more.

There are many special rules to detect games won by certain. One general rule (high-card theorem) in Grand is
the following. If the number of high-value cards (HC) secured by the declarer is at least as large as the number
of tricks lost (assuming no points were put into them), then the standard Grand game is won.

As a proof of the statement, we look at the following cases.

1 Cached HC For one opponent trick, they certainly cannot reach 60 points.

2 Cached HCs For 2 tricks at most 44 points are available (4 As).

3 Cached HCs In 3 opponent tricks at most 58 points can be made (4 As, 1 T, and 1 K).

4 Cached HCs In 4 tricks at most 59 points are possible (3 As, 1 T, and 4 Ks).

5 Cached HCs In 5 lost tricks at most 57 points are contained (2 As, 1 T, 4 Ks and 3 Qs)

6 Cached Hs In 6 opponent tricks at most 54 points are possible (2 As, 1 T, 4 Ks, 3 Qs, and 2 Js)

7 Cached HCs In 7 opponent tricks we find at most 47 points (1 A, 4 Ks, 4 Qs and 4 Js)

If one has 4 As, then for the case of 4 cached HCs the declares can even afford giving 1 Q to the opponents,
offering the opponents again at most 59 points in total.

The next concept to be understood is the concept of standing cards. Roughly speaking, a standing card is a
(trump or non-trump) card, which will go home by certain. Standing cards are best viewed as sets of cards. We
attach probabilities to them, which take, e.g„ the current turn, and the values put in the skat into account.

13.3 Open Game Play

In a search tree, it is often easy to cut some nodes that are unused, as in alpha-beta pruning algorithm . This
kind of pruning is essential in MinMax tree because as shown by Knuth it reduces the search tree essentially to
half of the depth.

For open card games we implemented an engineered solver to decide a game. The algorithm is a variant of αβ ,
but the game-theoretical value for trump games is found via binary search.

To represent hands, the skat and the played cards we employ bitvectors (in form of unsigned integers), for which
we utilize Boolean set operations: & ,∼ , and | . so that bit masking and shifts help to identify chosen parts of the
hands in constant time. For an efficient solver, we exploit that modern CPUs provide constant-time __builtin
procedures to determine the number of cards as POPCOUNT(x) (short |x|), the first card as LZCOUNT(x), and
the last card as TZCOUNT(x) (short select). For the representation of a state of the game, we chose the union
of the hands.

Figure 13.2 provides the pseudo-code implementation for the Nullspiel, including transposition table pruning,
detection of equivalent cards, and analyses of safe cards. We tried proof-number search, but with the involved
handling of transpositions and the experienced higher efforts per node, it was less efficient. A concise imple-
mentation of the decision procedure to compute safe cards is given in Figure 13.3.

The backtracking algorithm in Figure 13.2 returns the game-theoretical value (lost, won) of the game at a given
node in the search tree, with an And-node (AND) referring to the declarer and an Or-node referring to one of
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Algorithm 13.1: αβ (s,α,β )

αβ (s,α,β )
if over(s) then

return score(s)
else if Min team then

v←+∞

for all s′ son of s do
v←min(v,αβ (s′,α,β ))
if α ≥ v then

return v
β ←min(β ,v)

else
v←−∞

for all s′ son of s do
v←max(v,αβ (s′,α,β ))
if β ≤ v then

return v
α ←max(β ,v)

return v

AND()
if (v = lookup(hand[0]|hand[1]|hand[2],0)) return v;
h = hand[0];
while (h)
index = select(h);
bitindex = (1<<index);
if (!playable(hand[0],index,0) || equiv(h,index))
h &= ~bitindex;
continue;

hand[0] &= ~bitindex; played |= bitindex;
t[0] = i[0]; t[1] = i[1]; t[2] = i[2]; i[0] = index;
if (|played| % 3 == 0)
turn = winner(0);
i[0] = i[1] = i[2] = -1;
if (turn == 0) val = 0;
else if ((hand[0]|hand[1]|hand[2]) == 0) val = 1;
else if (safe(hand[0],played) == hand[0]) val = 1;
else if (turn == 1) val = OR1();
else if (turn == 2) val = OR2();

else val = OR1();
i[1] = t[1]; i[2] = t[2]; i[0] = t[0];
played &= ~bitindex; hand[0] |= bitindex;
h &= ~bitindex;
if (|played| % 3 == 0)
add(hand[0]|hand[1]|hand[2],0,1);

return 1;
if (|played| % 3 == 0)
add(hand[0]|hand[1]|hand[2],0,0);

return 0;

Figure 13.2: Glassbox for the declarer’s turn in the Nullspiel.

the two opponents (OR1 and OR2). Code fragments for the latter twos are similar, with the outcomes 0 and 1
reversed.

We see a lot of bitshifting to convert an index of a card to its position in the bitvector and vice versa. All variables
not bound are global and set in a main driver program of the search. Variables set to some values are set back
to their original one on a backtrack. We check for early termination in case the player only has safe cards. A
transposition table (a hash table supporting insertion and membership only) avoids evaluating same game states
again. We have two functions that check a card from a given hand h (maintained as a bitvector) is playable
according to the rules of the game and not equivalent, meaning that a smaller card exists that will lead to the
same game value, because these cards are adjacent. The recursive structure generates a tree and using Boolean
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safe(hand, played)
s = 0;
for (suit=0;suit<4;suit++)
counter = 0;
for (j=7;j>=0;j--)
card = 1 << (suit*8+j);

if (card & played) continue;
if (hand & card) counter++; s |= card;
else if (counter == 0) break; counter--;

return s;

Figure 13.3: Computing safe cards in the hand of the declarer with respect to a set of already played cards.

AND(remaining)
best = lookup(hands[0]|hands[1]|hands[2],as);
if (best != -1) return best;
while (remaining)
index = select(remaining);
bitindex = (1<<index);
if (!playable(hands[0],index,0))
remainng &= ~bitindex; continue;

hands[0] &= ~bitindex; played |= bitindex;
i[0] = index; val = -1;
if (|played| % 3 == 0)
cached = played; turn = winner(1,2,0);
score = VALUE(i[0]) + VALUE(i[1]) + VALUE(i[2]);
if (turn) gs += score; else as += score;
t1 = i[1], t2 = i[2]; i[0] = i[1] = i[2] = -1;
val =
(gs >= 120-LIMIT) ? 0 : (as > LIMIT) ? 1 :
(turn == 0) ? AND(hands[0]) :
(turn == 1) ? OR1(hands[1]) : OR2(hands[2]);
i[1] = t1; i[2] = t2;
if (turn) gs -=score; else as -= score;
cached = played;

else
val = OR1(playable(hands[1],(i[2]>=0)?i[2]:i[0]));

i[0] = -1;
played &= ~bitindex; hands[0] |= bitindex;
remaining &= ~bitindex;
if (val == 1)

if (|played| % 3 == 0)
add(hands[0]|hands[1]|hands[2],as+128);

return 1;
if (|played| % 3 == 0)
add(hands[0]|hands[1]|hands[2],as);

return 0;

Figure 13.4: Glassbox for the declarer’s turn in Trump games.

reasoning to generate an optimal strategy. Pruning takes place in the Boolean formulas as only parts of it (e.g.,
the principal variation) need to be evaluated.

If three cards are on the table, the trick is evaluated and the game is either terminated or continued with the
winner of the trick. To avoid problems with ongoing tricks, we use the transposition table only after a trick has
been played. This is sufficient to encode the entire state into 32 bits, re-using the skat cards positions to denote
the turn.

Figure 13.4 shows the according solver for Trump games, where point scores for both parties are added and
hashed. To maintain the card order within the tricks, which is important to evaluate its outcome, we use explicit
indices.
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13.4 Skat Bot Architecture

Bidding and game selection both use statistical knowledge of winning ratios in human expert games, stored
in tables and addressed via patterns of winning features. This assumes a predictor for a given hand with high
accuracy before play (no move history). We assume the player’s position to be part of his hand. The winning
probability of a hand decreases during the bidding stage by the anticipated larger strength of the opponent hand.
Other than this, no opponent model is used.

The Skat bot estimates winning probabilities with statistical tables that are extracted from a database of millions
of high-quality expert games; more precisely, winning probabilities Prob(h, p,s,b, t) including current hand h,
choices of game type t, Skats s, position of the player p, and bidding value b. The probabilities are then used
in the first three stages of the Skat game: bidding, game selection, and Skat putting. For each bidding value and
each game type selected, it generates and filters all

(22
2

)
= 231 possible Skats and takes the average of the payoff

of skat putting, which, in turn, is the maximum of the
(12

2

)
= 66 possible skats to be put.

The winning ratios in expert games can easily be analyzed statistically, but by the high number of n =(32
10

)(22
10

)(12
10

)
≈ 2.8 quadrillion possible Skat deals, proper generalizations are needed.

For Null games, given hand h and skat s the approach estimates the winning probability Prob(h,s) =
Prob(h,s,♣) ·Prob(h,s,♠) ·Prob(h,s,♥) ·Prob(h,s,♦) addressed by the so-called winning parameters: num-
ber of non-trump suits that the player lacks; number of eyes in Skat, condensed into four groups; value of the
bidding stage, projected to four groups; position of the declarer in the first trick; number of trump cards in
hand; number of non-trump cards in hand; constellations of jacks condensed into groups; and number of cards
estimated to lose, based on summing the expected number of standing cards.

Statistical tests showed that these parameters have a significant influence and can, therefore, be used as essential
attributes to accurately assess the probability of winning a trump game. In particular, a Grand table with 113,066
entries is built on top of 7 of these winning parameters and a Suit table with 246,822 entries using 9 of them.
For Skat putting we refine the lookup value for different cases in a linear function together with further winning
features such as the expected number of tricks while respecting the retaking options of the issuing right, and the
exact number of points put into the Skat.

Trick-taking is arranged wrt. an ensemble of different card recommendations. We find

• killer cards that force a win for the declarer (or the opponents) to meet (or to break) the contract of the
game; this option mainly includes KBPS; other are simpler rules that count the number of points certain to
be made for the player in the remaining tricks.

• endgame cards as the results of strategy fusion, realized via a voting on the winning ratio of open card game
solver calls on the remaining worlds in the belief space of the player. The endgame player is invoked after
five tricks with a maximum number of 2500 worlds in the belief space, the win ratio for a card (confidence
level) is set to 90%. Additional bonus is given for a high number of eyes and for meeting higher contracts.

• hope cards as the only cards that can save the game for either the declarer or the opponents, i.e., all other
cards lead to a forced loss, this card is played instantly

• expert cards for each player in each position in the trick, based on if-then-else rules that consider the current
the hand of issuing players, the history of tricks being played, the partial knowledge of cards present in the
opponent hands, etc.

The priority is as follows. First, killer cards are recommended; if this strategy fails to find a forced win, endgame
and hope cards are searched for; if this does not meet the required criteria or confidence level, we fall back
to expert cards recommendation. The expert rules, used for the first few tricks and as a default, includes card
recommendations based on suit factors (either trump or non-trump). Each card in the factor is assigned a value 0,
1, or 2, where 0 denotes a hand card, 1 a card in the other players’ hands, and 2 a card that is not playable (either
being played or put into the Skat). For the declarer issuing trump we precomputed tables of sizes

(11
k

)
·211−k =
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11,264 (k = 1 trump), 28,160 (2 trumps), 42,240 (3 trumps), 42,240 (4 trumps), 29,568 (5 trumps), 14,784 (6
trumps), 52,80 (7 trumps), 1,320 (8 trumps), 220 (9 trumps), and 22 (10 trumps). For non-trump suits a table
with ∑

7
k=1
(7

k

)
·27−k = 2,059 entries is built.

13.5 Knowledge-based Paranoia Search

We represent the knowledge in the players as sets. To introduce the reasoning on the sets we give a brief
example. Suppose we have the following deal

P0 :♥J,♦J,♥A,♥K,♥9,♥7,♣A,♣8,♣7,♠A,
P1 :♣J,♠J,♥Q,♣T,♣K,♣Q,♠T,♠7,♦Q,♦7,
P2 :♥T,♥8,♣9,♠K,♠Q,♠9,♠8,♦A,♦T,♦8,
Skat: ♦K,♦9

with the opponent P2 to issue the first card. The game that is being played is ♥.

For P2 we have the initial knowledge
h0 = h1 = {}, h2 = {♥T,♥8,♣9,♠K,♠Q,♠9,♠8,♦A,♦T,♦8}
pool = {♣J,♠J,♥J,♦J,♥A,♥K,♥Q,♥9,♥7,♣A,♣T, ♣K,♣Q,♣8,♣7,♠A,♠T,♠7,♦K,♦Q,♦9,♦7}
skat = {}, declarerorskat = {}, partnerorskat = {}
noskat = {♣J,♠J,♥J,♦J,♥A,♥T,♥K,♥Q,♥9,♥8,♥7, ♣A,♠A,♦A}
The declarer sees table card ♦A and updates his knowledge sets to h0 =
{♥J,♦J,♥A,♥K,♥9,♥7,♣A,♣8,♣7,♠A}, h1 = h2 = {}, skat = {♦K,♦9}
pool = {♣J,♠J,♥Q,♥T,♥8,♣T,♣K,♣Q,♣9,♠T , ♠K,♠Q,♠9,♠8,♠7,♦T,♦Q,♦8,♦7}
The opponent player 1 now encounters ♦A,♥A on the table and updates his knowledge sets to
h0 = {}, h1 = {♣J,♠J,♥Q,♣T,♣K,♣Q,♠T,♠7,♦Q,♦7}, h2 = {}, skat = {}
pool = {♥J,♦J,♥K,♥T,♥9,♥8,♥7,♣A,♣9,♣8,♣7, ♠A,♠K,♠Q,♠9,♠8}
declarerorskat = {}, partnerorskat = {♦T,♦K,♦9,♦8}
noskat = {♣J,♠J,♥J,♦J,♥T,♥K,♥Q,♥9,♥8,♥7, ♣A,♠A}

To alleviate the computational burden, we introduce paranoia search to be initiated only after a few tricks have
been played. The algorithm has been adapted to the knowledge already inferred by the Skat AI. It, thus, takes
as an input knowledge sets corresponding to the inference that player Pi must have cards C j (not) in his hand.
This knowledge is inferred e.g., by unrealistically bad skats, players not obeying trump or non-trump cards and
by playing conventions (putting the lowest-valued card in the declarer’s trick, and the highest-value trick to the
one of my partner, with some exceptions). As with many other parts of the Skat AI, for efficiency reasons, sets
of cards are encoded as bitvectors of length 32 (unsigned int). This allows fast bit manipulation, such as card
selection and copying. The minimax alpha-beta simulating moving-test-driver search algorithm trump games is
implemented as a binary search (see Figure 13.5) over an AND/OR tree decision procedure (see Figure 13.6)
that returns, whether or not the declarer can win the game according to a given contract limit.

It progresses belief sets for partial information. Knowledge-based paranoia search (KBPS) can be applied in
forehand, in middlehand, and in rearhand positions of the players. Besides updating knowledge vectors, scoring
values, current contract limit, the call must respect played cards on the table to trigger a correct analysis. By
monitoring server logs online during play, we validated the working of the algorithm: once a win has been found
it persists to the end, in many cases long before the human opponent recognized that he is lost.

Paranoia Search for the Declarer. The worst-case search option for the declarer is used in trump games. Its
implementation as a moving test driver is a binary search loop over a backtracking branch-and-bound procedure
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solve(hand0,hand1,hand2,doublehand,played,as,gs,table)
left = as-1, right = 120
while (true)

if (left == right-1) return right
limit = (left+right)/2
x = run(hand0,hand1,hand2,doublehand,played,as,gs,table)
if (!x) right = limit else left = limit

Figure 13.5: Moving test driver for declarer knowledge-based paranoia search; hand0 are the cards of the declarer, hand1/hands2
opponent cards known to him, doublehand is the pool; unknown, which hands the cards belong.

run(hand0,hand1,hand2,doublehand,p,as,gs,table)
h[0] = hand0; h[1] = hand[1]; h[2] = hand2, i = table;
aspts = as; gspts = gs, pool = doublehand; played = p
return AND(hand0);

Figure 13.6: Running declarer knowledge-based paranoia search; starting and or tree search after set some global backtracking
variables.

to find the optimal game value. As we use the search option dynamically, the algorithm is initiated after a fixed
number k of played cards. In the overall architecture it acts as a prioritized killer card proposal that warrants
a forced win. Paranoia search takes the partially played game, and a set of possible worlds as a parameter,
encoded as knowledge sets, and contract bound. We limit the uncertain knowledge to the sets of free cards that
are still to be distributed among the two opponent players. All fixed cards are assigned to one hand. Figure 13.7
shows the implementation of the declarers’ KBPS backtracking algorithm at an OR node for the first opponent
in the AND-OR partial observable search tree. It determines if a game can be won against all worlds according
to a given score bound limit as fixed by the overall binary search. For the sake of simplicity, we omit code for
transposition table pruning cards.

As the declarer knows that Skat (except for Hand games), as with the above overall knowledge representation
and reasoning example there are 3 knowledge sets provided to the player: pool, denoting all remaining cards
not yet known on which opponent hand they reside, h1, cards already known to be in the 1st opponent hand, h2,
cards already known to be in the 2nd opponent hand. Furthermore, we have avail: hand cards playable according
to the rules of Skat, obeying trump and suit; index, bit: selected card, for being played; played: cards already
played; w: winner of trick; i0, i1, i2: table cards by players; r1, r2 number remaining cards available; limit: current
bound for game value; score: card value of table cards; aspts: point total for the declarer (according to the given
knowledge of the Skat); gspts; point total for the opponents.

The KBPS algorithm searches the tree of playable cards, and branches wrt. the set of known cards and the
current belief, while respecting the rules of play and the number of cards that a player can have. If suits are
not obeyed, knowledge vectors for cards available to each hand are updated during the search. Before cards are
selected from the pool of cards available to both players, they are assigned to one opponents’ hand.

The algorithm can be extended to cover more knowledge inference options like playing conventions for the
opponents such as giving the highest-valued card to a trick that goes to the partner, and a lower-valued card to
a trick the declarer.

If the capacity of a hand is exceeded, we encounter a dead-end and a backtrack is initiated. In other words,
if more cards are assigned to the player than his hand can hold, the entire subtree is pruned. By the virtue of
enumeration of all card combinations, the algorithm computes the game-theoretical partial information (min-
imax) score, assuming optimal play of the players. The transposition table and equivalent card pruning are
implemented in a way not to violate this outcome.
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OR1(avail)
avail = playable(avail,h[1],i)
while (avail)
index = select(avail);
bit = (1<<index);
h2 = h[2]; o = pool
if (c = first-card-on-table(i))

if (trump & (1 << c))
if (|trump & bit| == 0)
h[2] |= trump & pool;
if (exceeded(h[2]))
h[2] = h2;
avail &= ~bit;
continue;

pool &= ~h[2];
else

if (|suit(c) & bit| == 0)
h[2] |= suit(c) & pool;
if (exceeded(h[2]))
h[2] = h2;
avail &= ~bit;
continue;

pool &= ~h[2];
if (exceeded(h[1]|bit))
(h[2],pool) = (h2,f);
avail &= ~bit;
continue;

(h1,p,i[1],r) = (h[1],played,index,-1);
pool &= ~bit; h[1] &= ~bit; played |= bit;
if (endoftrick(i))
w = winner(2,0,1);
score = value(i);
gspts += w ? score ; 0;
aspts += w ? 0 : score;
(i0,i2) = (i[0],i[2]); i[0] = i[1] = i[2] = -1;
r = (gspts >= 120-limit) ? 0 :

(aspts > limit) ? 1 :
(w == 0) ? AND(h[0]) :
(w == 1) ? OR1((pool|h[1]) & ~h[2]) :
OR2((pool|h[2]) & ~h[1]);

i[0] = i0; i[2] = i2;
gspts -= w ? score : 0;
aspts -= w ? 0 : score;
(i[1],h[1],h[2],pool,played) = (-1,h1,h2,o,p);

avail &= ~bit;
if (r == 0) return 0;

return 1;

Figure 13.7: Declarer KBPS at an OR search node for the first opponent’s selection of a card; other search node implementations
are simpler or similar.

A proof that a win is forced and will not be lost during subsequent play can be done by induction on the number
of remaining cards to be played, but is obvious, as the game-theoretical minimax value is computed at the root
node. If the knowledge is exact, i.e., given that no false information is contained in the knowledge vectors, then
the algorithm progressing the vector does not falsify it. We are claiming soundness but not correctness, i.e., if
no forced win is found, then the game continues with other card recommendations.

Given that the knowledge provided in the knowledge vectors is valid at invocation time of the algorithm, once
value 1 is returned by the KBPS declarer algorithm (cf. Figure 13.7), the game is won by the declarer and this
forced win will manifest during subsequent trick-taking play. If the algorithm optimizes the number of points
in the moving test driver, the declarer will receive more points than the computed limit.

Paranoia Search for Schneider & Schwarz. When a game can be won to the contract of 61 points, it is
desirable to aim at Schneider (90 pts) or Schwarz (120 pts). This is done by restarting the analysis with a higher
contract, once the one for the current limit has been proven to be a win.
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Approximate Paranoia Search. The worst-case analysis has two major limitations. As stated in Theorem 1,
the AIs act in paranoia. Suppose that all non-trump cards of a suit are neither in the declarers hand nor in the
Skat, then even extreme distributions of the cards with all cards on either hand have to be accounted for in the
analysis. The probability for this case, however, is only 1.5625%. The virtue of good Skat play is to play well
against most likely and not all card distributions. For the approximate KBPS algorithm, we, therefore, demand
that certain distributions of cards are unlikely, and should be excluded from the search. Secondly, the running
time is larger in case of more uncertainty, so that belief space measured in the number of worlds the AI plays
against, may hinder finishing a complete KBPS exploration in time.

Both objectives can be met together by limiting the cards that can be assigned to each hand. This is the basis
of approximate knowledge-based paranoia search (AKBPS), that poses constraints on the cards distributions
allowed on each hand, or —for implementation purposes— enforces some cards assigned to a hand. Of course,
the theorem no longer holds, as there are some worlds that are not considered, still the observation is, that early
suggestions of cards that wins against all, but extreme worlds are extremely valuable. In contrast, Furtak used
lower bounds, and set the declarer cut-off to 57.

Paranoia Search for the Opponents. Extending the approach from the declarers’ point of view to the ones of
the opponents is tricky, mainly due to the presence of the unknown Skat. For example, if one of the other players
does not obey, it is no longer immediate that the card is on the remaining player’s hand, as it can reside in the
Skat. In the knowledge-based paranoia search algorithm, illustrated for the case of the declarer’s AND node in
Figure 13.8 (for efficiency reasons, we are using many bitvector set operations!), this leads to the introduction
of further knowledge vectors. We now have five sets that are updated denoting that the declarer or the Skat has a
card, or that the opponent, or the Skat has a card of the pool of remaining cards, only if taken or a card is known
to be on the hand, e.g., by selecting it, it is moved. In some respects, the knowledge sets (declarerorskat and
partnerorskat) are caches for the main pool of cards (pool) for the remaining players. In some of the conditions
applied we take care that no more cards are moved to a hand than it can cope with.

If one opponent sees a definite win, this does not mean that the other opponent sees it as well. Given a different
set of hand cards he may have very different knowledge on the distribution of cards. As it is defined, it requires
one defender to assume that his partner will intentionally play poorly. Again, soundness can be proven by
induction of the remaining cards to be played, and the observation that a search tree with less remaining cards
is part of a search tree with more remaining cards, leading to a forced win. According to the uncertainty in the
Skat there are three pools of cards that reflect the rising knowledge instead of one.

Given that the knowledge provided in the knowledge vectors is valid at invocation time of the algorithm, once
a card is returned by the KBPS opponent algorithm (cf. Figure 13.8), the game is won by the opponent and this
forced win will manifest during subsequent trick-taking play. If the algorithm optimizes the number of points
in the moving test driver, the declarer will not receive more points than the computed limit.

Worst-Case Analysis for Avoiding Schneider/Schwarz. In opponent play, using a paranoid assumption on the
card play is less effective than for the declarer play, and often applies to the endgame analysis. When the game
is won by the declarer, however, KBPS, frequently applies to avoid a high loss with 90 declarer points, called
Schneider, or a maximum loss with 120 declarer points. Therefore, once the contract of the declarer has been
achieved, we use KBPS in opponent play with a scoring limit for Schneider/Schwarz.
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AND(avail)
while (avail)
index = select(avail);
bit = (1<<index);
(h0,h2,o,as,ms) =

(h[0],h[2],pool,declarerorskat,partnerorskat);
if (c = first-card-on-table(i))

if (trump & (1 << c))
if (|trump & bit| == 0)
partnerorskat |= trump & pool;
if (exceeded(partnerorskat))
h[2] = h2; partnerorskat = ms;
avail &= ~bit;
continue;

pool &= ~partnerorskat;
h[2] |= noskat & partnerorskat;
if (exceeded(h[2]))
(h[2],pool,partnerorskat) = (h2,o,ms);
avail &= ~bit;
continue;

partnerorskat &= ~h[2];
else

if (|suit(c) & bit| == 0)
partnerorskatat |= suit(c) & o;
if (exceeded(partnerorskat))
(h[2],t,partnerorskat) = (h2,o,ms);
avail &= ~bit;
continue;

pool &= ~partnerorskat;
h[2] |= noskat & partnerorskat;
if (exceeded(h[2]))
(h[2],pool,partnerorskat) = (h2,o,ms);
avail &= ~bit;
continue;

partnerorskat &= ~h[2];
if (exceeded(h[0]|bit))
(h[2],partnerorskat,pool) = (h2,ms,o);
avail &= ~bit;
continue;
p = played; pool &= ~bit;
h[0] &= ~bit;h[2] &= ~bit;
declarerorskat &= ~bit;
partnerorskat &= ~bit;
played |= bit; i[0] = index; r = -1;
if (endoftrick)
w = winner(1,2,0);
score = value(i);
ap = aspts; gp = gspts;
gspts += w ? score: 0;
aspts += !w ? score: 0;
t1 = i[1], t2 = i[2];
if (|played| == 30) aspts += value(~played);
i[0] = i[1] = i[2] = -1;
r = (gspts >= 120-limit) ? 0:

(aspts > limit) ? 1:
(w==0)? AND((pool|declarerorskat|h[0]) & ~h[2]):
(w==1)? OR1(h[1]):
OR2((o|partnerorskat|h[2]) & ~h[0]);

i[1] = t1; i[2] = t2;
gspts = gp; aspts = ap;

else r = OR1(feasible(h[1],i));
(h[0],h[2],played,declarerorskat,partnerorskat,pool) =

(h0,h2,p,as,ms,o);
avail &= ~bit; i[0] = -1;
if (r == 1) return 1;

return 0;

Figure 13.8: Opponent KBPS at an AND search node for a declarer’s selection of a card; other search node implementations are
simpler or similar.
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13.6 Factorized Search

Factorizing the search is a concept well known from combinatorial game theory [45] and has been applied to
endgame play in Computer Go [487]. The main approach, readily applicable to simple games such as Nim and
put forward to a divide-and-conquer search strategy is to decompose the large game into smaller one, whose
combination can exactly solve the original games. We aim much lower, and look at mini searches in the factors
for each of the suits (either trump or non-trump) to approximately solve some of the problems in dynamically
optimizing play; providing card suggestions for the case, when information about card become clarified, e.g.
due to non-obeying suits.

The so-called minigame solver is widely usable to bridge the opening of the game, where we can apply reliable
statistical information for proper card recommendations, to the endgame, where we can analyze the entire belief-
space. We give some examples in the game of Skat, but the approach applies to many other trick-taking card
games as well. In particular, minigame search can be used, e.g,

• for book-keeping trumps in opponent play, where we have to select a trump card and evaluate the strength
of the play against the declarer. Suppose ♣ is trump, that the declarer issues ♥J, and is known to have
♣J,♣D,♣9,♣8 as remaining card in hand, with one opponent bailing out on trump. The other opponent has
♦B,♣A,♣T, so that only looking on trump 28 points can be made. If we further assume that the declarer
gets back the right to open a trick. Minigame search determines that assuming optimal play that 17 points
are available for the declarer, suggesting to playing card ♣T first, on ♣J playing ♦J second, holding back
the ♣A for the 11 points difference.

• For book-keeping non-trumps for the opponents. If we were to know that the declarer has ♦A,♦K,♦9, and
♦7 in one suit and the others three of the total seven cards are located at one opponent, then he knows that
he has to overtake an issued no-value card played by the declarer with the Q to save the ♦10. Similarly, for
♦10, ♦K, ♦9 in the declarers hand the opponents will be able to sack the Ten if the Ace is standing with
two other cards.

• for the dynamic analysis of standing cards for an estimate on the number of tricks in a suit that will go home
eventually. The first card to issue can be extracted from expert card database, but in the middle game, this
lacks dynamic information about trick-taking. The number of tricks (if any) to be secured by the opponents
can be counted and indicate, which card the declarer must show. Based on this information in the endgame
it is even possible to detect so-called non-trump or trump forks.

13.6.1 The Power of Suit Partitioning

For variants of the Null-Games (Null, Null-Hand, Null-Ouvert, Null-Ouvert-Hand, the misère game variants in
Skat), approximating the winning probabilities Pw(h) of a hand h multiplying the projected ones Pw(h ↓ s) in
each suit, s ∈ {♣,♠,♥,♦} is astonishingly accurate, i.e,

Pw(h)≈ ∏
s∈{♣,♠,♥,♦}

Pw(h ↓ s).

If h is represented as a set of cards and s is represented by the set of all cards in a suit, then Pw(h ↓ s) = Pw(h∩s).

When we use bitvectors for sets and their manipulations concept of patterns in each suit can be enumerated, for
a full suit of eight cards in the Null game the card group CG8(h,s) = h ↓ s ∈ {0, . . . ,255}. For non-trump we
have card groups CG7(h,s) and for trump play either CG11(h,s) (Suit), or CG4 (Grand). It is immanent that for
GGk there are at most 2k hands. Given that there are three different players and cards that already been played,
pre-computing all possible card combination for a fast lookup in a hash table is cumbersome and leads to very
large tables.
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In the static variant, where the groups have not been touched within the tricks being played, we generate tables
of size 28 with the probabilities for winning have to be pre-computed using the large amount of stem games.
The concept of such table is reappearing for many different aspects of the Skat game, such as color change, first
cards to issue, cutting cards in suit games, etc.

Unfortunately, the statistical information does not easily cover the dynamics of on-going games, as the CGs are
affected by the removal of cards being played. As an example of the concept of dynamic suit partitioning is the
computation of safe cards, since a hand of the declarer in a Null game is safe (100% certain), if it is safe in each
of the suits.

For trump games (Grand/Suits) the concept of accumulating static information in each suit (either trump or non-
trump cards only) is also reflected in some of the features of a hand, to determine the winning probability. One
such feature is the number of trump aces and non-trump aces and tens, or free suits, which are empty groups. A
critical one is estimating the number of standing cards in each suit, a player expects to win. The approximate
values for the standing cards are added for the entire hand,

standing(h) = ∑
s∈{♣,♥,♠,♦}

standing(h ↓ s),

where standing(h ↓ s) = standing(h∩ s). For estimating standing(h ↓ s) statistical information is collected.

While this works well for bidding, for Skat putting and for the early stages of trick play, the dynamic evolution
of KGs, e.g., for standing cards, proves to be a real challenge. Note that the truely dynamic algorithm for safe
suits and hands that considers the cards being played is not easily to be extended, as in trump games the right to
issue cards often changes, and we want to count, tricks and points.

Therefore, a dynamic concept of standing cards is needed, which we call minigames, i.e., the reduction of the
overall game to one suit or the set of trump cards, aggregating the values for the entire game, possible averaging
with respect to the amount of uncertainty in the cards. In minigames, only non-trump cards of one suit, or trump
cards are issued. To overcome the problem we use an open card mingame solver.

13.6.2 Miniglassbox Search

Open or dummy card solving is a glassbox search with perfect information. There are single-dummy and double-
dummy variants of the mini glassbox search algorithm, MGSDS and MGDDS for short. These algorithms com-
pute the best playing card wrt. the optimization objective the trick starting condition, while assuming optimal
play of the opponents. The search spaces are so small that we omit transposition table pruning [532], as explo-
ration in these state spaces is negligible and this would induce re-initializing the hash table after each run.

The exploration algorithm for such open card solvers, is decomposed into decision procedure on a given thresh-
old for the point and embedded in a binary search for computing the optimum (a structure also known as
moving-test driver.

13.6.3 Single-Dummy Miniglassbox Solver

The simplest case is given if one of the three players is known to not have a card of a certain (non-trump or
trump) suit s, e.g., by not obeying s. Then the minigame reduces to only two parties that remain to hold cards
of s in their hands. Except of the cards put in the Skat, full knowledge of all cards in s is known. There are
also other measures monitoring the play to deduce if one player cannot have any card of a certain kind, as one
may generally assume that the lowest-value card is given to the the trick owned by the opposing party, and the
highest-value card to the trick owned by the own party.
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MiniSingle::AND(playable)
if (!playable)

return opoints + sum(h[1]) < maximum - limit;
while (playable)
index = select(playable); bitindex = (1<<index);
h[0] &= ~bitindex; played |= bitindex;
t[0] = index; rval = -1;
if (|played| mod 2 == 0)
turn = winner(1,0);
score = VALUE(t[0]) + VALUE(t[1]);
if (turn) opoints += score; else dpoints += score;
t1 = t[1]; t[0] = t[1] = -1;
rval = (opoints >= maximum-limit) ? 0
: (dpoints > limit) ? 1 : AND(h[0]);
t[1] = t1;
if (turn) opoints -=score; else dpoints -= score;

else
rval = OR(h[1]);

t[0] = -1;
played &= ~bitindex; h[0] |= bitindex;
playable &= ~bitindex;
if (rval == 1) return 1;

return 0;

Figure 13.9: Mini single-dummy miniglassbox solver for declarer node, counting points.

In practice the single-dummy variant of the minigame solver applies to trump play in suit games in order to
decide on the trump card for an opponent to obey, or to a player to decide whether or not to start issuing trump
cards from top to bottom. At this stage of the game, it has been clarified that the other player has no trump card
left.

The algorithm counts the number of points available for the declarer, and assumes optimal play of both parties,

Notice a few subtle insights. While the result of the trick is correctly distributed to the players the next turn will
always be at the declarer, which compensates that he tries to win and is assumed to get back to play with his
stronger by-hand.

The reasoning is that the declarer is strong and will get its right to issue the card. The single-dummy algorithm
is given in Figure 13.9, so that there are two players, of which we selected the declarer node. The algorithm is
tuned for speed. It uses bitvectors for the hands, suitmasks, olayed and playable cards. Function select extracts
one bit in the set (via constant-time processor instructions), winner determines the leader in a trick. Hand cards
are h[ j], table cards are t[ j], with j being Player j ∈ {0,1,2}. If the declarer (Player 0) runs short of playable
trumps, all remaining cards are counted for the opponents (opoints). Otherwise, a card is selected.

There are some subtle issues to be solved on the first trick, as some cards may be already present on the table.
They also influence the maximum of points that can be reached. As we count points, we take into account the
value of the partner card in the first trick.

13.6.4 Double-Dummy Miniglassbox Solver

The double-dummy version of the miniglassbox solver is shown in Figure 13.10, also for the declarer’s turn.
Besides being defined for three players, it aligns with the notation of variables in the single-dummy version of
Figure 13.9.

The double-dummy miniglassbox solver also shares similarity with a double-dummy solver for the overall game.
But the search space is much smaller, as the game is restricted to only one suit. Again, we skip the transposition
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MiniDouble::AND(playable)
if (!playable) return dpoints > limit;
while (playable)
index = select(playable); bitindex = (1<<index);
h[0] &= ~bitindex; played |= bitindex;
t[0] = index; rval = -1;
if (|played| mod 3 == 0)
turn = winner(1,2,0);
score = 1;
if (turn) opoints += score; else dpoints += score;
t1 = t[1], t2 = t[2];
t[0] = t[1] = t[2] = -1;
rval =
(opoints >= maximum-limit)? 0:
(dpoints > limit)? 1:
(turn==1 && h[0] && h[1] & suit)? OR1(h[1]):
(turn==2 && h[0] && h[2] & suit)? OR2(h[2]):
AND(h[0]);

t[1] = t1; t[2] = t2;
if (turn) opoints -=score; else dpoints -= score;

else
rval = OR1(playable_cards(h[1]);

t[0] = -1;
played &= ~bitindex; h[0] |= bitindex;
playable &= ~bitindex;
if (rval == 1) return 1;

return 0;

Figure 13.10: Mini double-dummy miniglassbox solver for declarer node, counting tricks.

table pruning. We use it for counting the number of tricks, not for not counting points, but this can easily be
changed. As we see there are now three players AND, OR1, and OR2. first trick.

In this case we want the number of tricks as a measure about to generate standing non-trump cards for the
declarer. Again the decision variant for a given threshold is shown.

An example for the algorithm for building standing cards is as follows. Assume the declarer has A, K, 8, 7 in
some arbitrary suit, and plays the 8 according to the static table.

Case 1. Both opponents obey the suit, then only one card is in the opponents’ hands, and the ace is the highest
card, so that the declarer gets all tricks if he plays from above, as he has three standing cards.

Case 2. One opponent does not have a remaining card in the requested suit. If the 10 drops immediately, the
AS wins all further tricks, given that he issues from highest- to lowest-value card. If one opponent overtakes the
trick with the Q, the declarer has to take the Ace to lose the 7. For this case he only has 2 standing cards.

For the glassbox solver we impose that the declarer gets the right to issue the next card after a trick has been
cached and counted for the correct party, only if there is no other card of the suit to be played.

The turn (which player has to select the next card) for the next trick is only approximated. Setting it only to the
declarer neglects finessing the cards, which is an important factor in almost all trick-taking games.

The binary search optimization algorithm for the exact value assuming optimal play is called for each possible
card distribution of the opponents. As this distribution might be uneven, to allow playing on, we pad cards of
different suits to the opponents.

The number of cards in a suit follow a hyper-geometric distribution [300]. In Figure 13.11 we illustrate how to
generate all possible remaining opponent hands, given the hand for the declarer. The algorithm is recursive and
puts all possible cards still to distribute in either the one or the other hand until no opponent card remains. The
result of evaluating all calls with the minigame glassbox solver is added, and later averaged for the number of
possible distributions.
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MiniDouble::solve(h0,h1,h2,play,P0,P1,P2,start)
left = -1, right = maximum;
while (true)
if (left == right-1)

return right;
limit = (left+right)/2;
x = MGBS(h0,h1,h2,play,P0,P1,P2,start);
if (!x) right = limit; else left = limit;

MiniDouble::find(h0,h1,h2,first) {
pad1 = count(hand0) - count(h1) + (first != -1);
pad2 = count(h0) - count(h2) + (first != -1);
h1 = pad(h1,pad1);
h2 = pad(h2,pad2);
maximum = count(h0) + (first != -1);
if (first == -1)

return solve(h0,h1,h2,0,-1,-1,-1,0);
else

return solve(h0,h1,h2,(1<<first), first,-1,-1,1);
return v;

MiniDouble::distribute(decl,opps,o0,o1,first)
if (opps == 0)

return find(declarer,h0,h1,first);
index = select(opps); bit = (1<<index);
aver1 =
distribute(decl,opps & ~bit,o0 | bit, o1,first);

aver2 =
distribute(declarer,opps & ~bit,o0, o1 | bit,first);

return aver1 + aver2;

Figure 13.11: Calling the Mini double-dummy glassbox solver for all possible distributions of opponent cards.

13.7 World Search

The knowledge is complex, it includes simpler aspects like cards being played, the eyes of tricks taken by the
players, the cards being played but also if the player is certain whether a certain card is at the other player’s
hand or in the skat. It is updated with each card that is played.

Let P = {p0, p1, p2} be the players (p0 is the declarer, p1 and p2 are the opponents). Let C = {c0, . . . ,c31}=
{♣A, . . . ,♦7} be the set of all cards, and Bp be the belief space at the current moment of play with player p
to move. Let the proposition legal(p,s,c) denote that a card c ∈ C is playable for player p in state s ∈ Bp,
proposition knows(p,s) denote that a state s∈Bp is consistent with the current knowledge of p, and Kp = {s∈
Bp | knows(p,s)} be the set of consistent states.

Random deals and hidden cards result in incomplete information and partial observations. In incomplete in-
formation search like in card games, we usually have many different worlds (alias states) in the belief space
of the players. The number of possible worlds goes down with each card that is played and with each bit of
information extracted from the tricks. There are two main search options for incomplete-information games,
which —depending on the length of the play— are applicable mainly to endgame play. The core difference for
two approaches for card selections put into quantifiers are as follows.

Open-Card Solvers: All Worlds – One Card ∀s∈Kp ∃c∈C legal(p,s,c)∧win(p,s,c) In this case, each individ-
ual world is evaluated, and different cards for different worlds may be proposed, so that there needs to be
some fusion like a voting. In several cases the entire belief space is sampled, sometimes weighted with the
probability of a card in a hand.

World Search: One Card – All Worlds ∃c∈C ∀s∈Kp legal(p,s,c)⇒win(p,s,c) This requires a play against all
worlds in one search tree, branching on the location and selection of cards.
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Both searches have their pros and cons, in term of the quality of the card recommendation, and the performance
to calculate it, so that we have included both in the player.

13.8 Open-Card Solver Voting

Voting for Null games is a simple majority on the games that are won by the player to select a card. For trump
games, we apply a slightly more complex voting, and let score(s,c) be the game value for the score of the
declarer in the open-card solver given s, declarer-eyes(s) the eyes collected by the declarer so far, and c the
recommended cards that meet the optimal score. We selected the following voting scheme.

1. For c ∈ C in s initialize votes(c) with 0.

2. For each state s in the belief space Kp and legal card c ∈ C to be played in s:

opponent card Set votes(c) by 120− score(s,c), and

• if (score(s,c)≤ 60) then votes(c)← votes(c)+10.

• if (score(s,c)< 90) then votes(c)← votes(c)+5.

• if (declarer-eyes > 60∧ score(h,c)< 90) then votes(c)← votes(c)+5.

declarer card increase votes(c) by score(s,c), and

• if (score(s,c)> 60) then votes(c)← votes(c)+10.

• if (score(s,c)≥ 90) then votes(c)← votes(c)+20.

Let z = Σc∈C votes(c) and α some confidence threshold (e.g, α = 90%) As the voting recommendation we take
c∗ = arg minc∈C votes(c), but only for the case that votes(c∗)/z ≥ α . In case of large belief spaces we relaxed
full enumeration to every k-th generated world. With k = 5 this lifted the size of the belief space considered for
voting from 3 to 15 thousand states.

In world search (Weltensuche) only one card suggestion is extracted from searching a tree that branches on
both a) the location (distribution of free cards into different hands and the skat) and b) the choice of cards to be
played.

The time spent for the analyses shows that it may be difficult to search the optimal scoring card on a full hand in
a tournament, but it may become feasible to decide whether a game is won against all odds. We applied world
search in smaller belief spaces, after some cards have been played already. This worst-case variant of world
search was called paranoia search and is especially effective for the declarer, as s/he usually knows the skat,
and has a significant information advantage over the two opponents, leading to a much smaller belief space,
so that the search can also be invoked earlier in the search. The handling of the more complex knowledge in
worst-case opponent worlds search is involved. For both cases, knowledge inferred can be progressed down the
tree, and restored on a backtrack. There is a compromise on the complexity of knowledge representation and
reasoning and the speed for traversing the search tree.

We apply move ordering for traversing the search tree, as breaking ties can still be relevant to both the search
tree size and the card recommendation. For example, the player may know that two cards are equally good,
but the one hides some information better and may lead to inferior play of the opponents, maybe having less
information. At first, we applied heuristic guidelines like the length of a suit, then, we applied different ordering
principles based on trump and suit play, as well as the current lead in the current trick. Breaking ties may also be
relevant for following playing conventions among the opponent players e.g., to indicate which cards s/he does
not have. Finally, we used the suggestion of the expert recommendation module as the first branch in the search
tree. As some of these aspects are crucial to the performance of the system, we apply it only to the top levels of
the search tree.
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Figure 13.12: Two examples of a successful and one example of an unsuccessful hope card. We see the players’ hand cards corre-
sponding to the critical trick. In the left example the context of played tricks and scores is provided with trick 5 being critical.

13.9 Hope Cards

Roughly speaking, a hope card may not win most possible worlds, but a large fraction of the winnable ones.
The concept applies to many, if not all trick-taking games. Professional players interpret a hope card as a card,
which is the only one that leads to victory and exploit the concept, e.g., in issuing a sharp 10, which is played in
the hope that the corresponding A is owned by the partner, and that the declarer has to obey the suit with a small
card, see Figure 13.12 (left, trump is clubs). For another example of a hope card, consider an endgame situation
as shown in Figure 13.12 (right). Assume three remaining cards for each player as shown, and that dog as the
declarer has collected 40 points. Moreover, let ♠ A known to be in the hand of carlson and the location of the
other cards being unclear. If cat issues ♣ 7 and carlson continues with ♣ K, then there is only one way that dog
can win, if he plays ♣ Q, and tries to catch ♣ 10.

A hope card c ∈ C is a recommendation for player p ∈P; either a sole hope card the only card c ∈ C that
wins a world in the belief space, i.e., ∃s∈Kp legal(p,s,c)∧win(p,s,c), and ∀s′∈Kp∀c′∈C \{c}legal(p,s′,c′)⇒
¬win(p,s′,c′); or an f % hope card is a card c ∈ C that wins at least fraction f of all winnable worlds:

f ≥ |{s ∈Kp | legal(p,s,c)∧win(p,s,c)}|
|{s ∈Kp | ∃c′ ∈ C : legal(p,s,c′)∧win(p,s,c′)}|

Instead of naively enumerating the states in the belief space, for hope cards we filter the ones that win. Hope
cards are available for both declarer and opponent play in all three table positions (forehand, middle hand, rear
hand). There are also hope cards for Schneider and Schwarz. Note the difference to high-confidence cards that
have the highest vote, who also apply in worlds that do not win.

13.10 Towards an ELO Rating System

The ELO rating system is an established method for calculating the relative skill levels of players in zero-sum
games such as Chess. The playing strength of a Chess player, program, or engine, reflects the ability to win
against other players, given by a number. ELO is also used in Video Games, American Football, Basketball,
Major League Baseball, Table Tennis, Scrabble and Diplomacy, and many other games.

The ELO rating has been devised for games of skill, usually two-player zero-sum deterministic games with
full observability. The difference in the ratings between two players serves as a predictor of the outcome of a
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single game. Two players with equal ratings, who play against each other are expected to score an equal number
of wins. A player whose rating is 100 points greater than their opponent’s is expected to score 64%; if the
difference is 200 points, then the expected score for the stronger player is 76%.

The players’ ELO rating is represented by a number which changes depending on the outcome of rated games
played. After every game, the winning player takes points from the losing one. The difference between the
ratings of the winner and loser determines the total number of points gained or lost after a game. If the high-
rated player wins, then only a few rating points will be deducted from the low-rated player. However, if the
lower-rated player scores an upset win, many rating points will be added to his rating. The lower-rated player
will also gain a few points from the higher rated player in the event of a draw, so that this rating system is self-
correcting. Players whose ratings are too low (or too high) should, in the long run, get better (or worse) than the
rating system predicts and, thus, gain (or lose) rating points until the ratings reflect their true playing strength.
The ELO ranking system is highly influential for tournament play. In Chess, for example, a world-wide live
ranking list decides on tournament invitations, up selecting candidates for challenging the World Champion.
Moreover, evaluating the performance level is useful for tracking progress of players and AIs in online game
playing, and to compare the level of play with human strength.

For games that include chance, like card games, however, devising an appropriate ELO ranking system is much
more challenging. Due to the randomness in the deal, it takes more games to derive statistical meaningful
results. Such a novel ranking system has a huge impact, as it can be used for a evaluating tournaments and
set-up chance-reduced, skill-emphasizing, much fairer ranking list of the players, to be awarded for their skill
of play. It is very much needed for online platforms, as motivating aspects for the players it helps to producing
high-score tables.

In many countries, there are monetary and legal consequences, whether a game is based on skill or chance. For
the usual setting of including both, extracting the skill factor of a game of chance is wanted. Existing ranking
systems like average scoring values are sensitive to the strengths of the opponent players, which cannot be
compared easily to a global ranking. Even when working towards this goal, by looking at the ELO ranking,
however, we cannot expect an exact derivation of a probability of winning as done in the original ELO system.
Instead, we align the ELO ranking to an accepted scoring system.

We implement a refined ELO system that covers most important aspects of such games, compensating for
the strength of the opponents and the factor of chance. We use it for evaluating players performance in the
experiments and discuss different design choices and parameterizations. The results are compared to AIs self-
play. We exemplify the considerations in Skat, but the system can be adapted and applied to other card games
and beyond.

Skat is one example for a game of mixed chance and skill There is a wide consensus that while in a single game
the variation due to randomness in the deal is large, good players show their strength eventually. Skat is played
in club, national and international tournaments, either online or over-the-table, where the winning is determined
either by number of wins, accumulated scoring or via the (extended) Seeger scoring system. Tournament results
and rating lists often show average scoring results. By the continuous growth in playing Skat, a fair, transparent,
and objective ranking for the game is a demanding necessity, however, due to the situation of being a three-
person game with unknown card distributions, this is much more complicated than in Chess with its defined
starting position. So far, this has only been done based on the average points in the accepted scoring system,
and, in the event of a tie, based on the larger number of games won. Even if played for hobby and leisure, what
is generally missing is a players’ reference value, to match a player to an equally strong table. There are early
approaches implemented in some Skat forums, where they take all players and then rank only the players who
are advanced according to an internal analysis. There is also the need for a high level of confidence, especially
if there are significantly fewer data sets behind. If there are only a few games play a good score can be a matter
of simply having good cards.

One has tried to create a reference value using an average scoring, e.g., 25 points / game for a player, and of
course adding some bonus at a higher player level, if you still win against strong opponents as the declarer.
What has generally been neglected so far is to include a measure for hand strength of a game in the evaluation.
Because a game with 100% winning probability almost everyone can win; but a game only with 50% only the
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fewest. There are sufficiently tested, simple and complex winning forecasts for games so that one could receive
more points for winning a simpler game than for a difficult one. To allow weaker players a better scoring,
some online platforms dampen the scoring of good players by modifying the deal, given worse cards to the
stronger players. We strongly believe this is the wrong way of dealing with the problem, hard to make fair and
transparent, and players experience this as being closer to a fraud. It is better to include the handicap into the
ranking function, so that weaker players are awarded if they win against stronger opponents.

We want an ELO score aligned to the Seeger-sytem of DSKV/ISPA, which compensates for the factor of chance,
and normalizes with respect to the strength of the opponents. This should lead to a wide acceptance for Skat
enthusiasts, tournament directors, and, finally, the Skat players. We require to include the factor of chance as a
surplus or deduction wrt. estimated chance of winning; to cope for the value describing the game size, i.e., the
mean value against a averaged comparison value, computed once for a series; an ELO list adapted accordingly
– for a starting value, every series of 36 games 3 new ELO numbers are computed; if the player plays against
strong opponents s/he gets rewarded for the risk taken, while if s/he plays against weaker ones, s/he receives less
bonus; to choose parameters to reach an asymptotic 1100 extended Seeger Pts/series for a good Skat player, and
about 650 Pts/series for a bad player; a quick evaluation of thousands of games to compared player performance
in ELO rating list.

We are aiming at a fair evaluation of the playing strength with reduced components of chance.

13.10.1 Scoring Systems and Hand Strength

The extended Seeger (aka Seeger-Fabian) system is an established scoring system for Skat to evaluate a series
of X games. Usually, we have X = 36. Folded games, for which there are no bids, are neglected.

The evaluation score is based on the number of wins and losses of each player in the series, and the game value
oft the games being played. For a single game g of a player P, the outcome is V (P,g), if the game is won for the
declarer, and −2 ·V (P,g), if it is lost. In a series of games G = g1, . . . ,gk these values are added for each player,
so that V (A,G) =V (A,g1)+ . . .+V (A,gk).

For example, we have players A, B, and C. In the extended Seeger scoring System the evaluation
strength ES is defined as ES(A,G) = V (A,G) + 50 · (#wins(A,G)− #losses(A,G)) + 40 · (#losses(B,G) +
#losses(C,G)). Similarly, for B and C we have ES(B,G) = V (B,G) + 50 · (#wins(B,G)− #losses(B,G)) +
40 · (#losses(A,G) + #losses(C,G)) and ES(A,G) = V (A,G) + 50 · (#wins(C,G) − #losses(C,G)) + 40 ·
(#losses(A,G) + #losses(C,G)). The outcome of a series of 36 games might be as follows V (A,G) = 273,
#wins(A,G) = 8, #losses(A,G) = 1, V (B,G) = 152, #wins(A,G) = 12, #losses(A,G) = 4, V (C,G) = 495,
#wins(A,G) = 11, #losses(A,G) = 0. Then, we have ES(A,G) = 273+ 350+ 160 = 783, ES(B,G) = 152+
400+ 40 = 592, and ES(C,G) = 495+ 550+ 200 = 1295. In a set of equally strong players, value ≥ 1000 is
the result of strong play. However, it could also be the result of very good cards.

Determining luck in the cards resorts to knowing and comparing with the strength of the hand or, even better, to
the estimated winning probability. None of the values are exact, but help to predict the outcome of the game.

Walter von Stegen proposed to evaluate the strength of the given hand using the points system an expert Skat
player, youtuber and teacher. It only applies to trump games. Roughly speaking, it counts the number of Js with
2 points, and the number of trump and high-cards (As or 10s) with 1 point (high trump cards are counted twice).
Additionally, strong Js and low bids are awarded.

Thomas Kinback is a professional Skat player, teacher, and author. He developed another counting system for
hand strength. The hand strength value differs in grand and suit games and includes a measure for tricks going
home. Moreover, different configurations of cards in a suit as well as being in forehand get a surplus.

We used an accurate prediction of the declarer’s probability to win. More precisely, we devise a winning
probability Prob(h,s, t) including the Skats s together with hand h. These probabilities are used in the first
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stages of the Skat game: bidding, skat taking and game selection, and skat putting. The expert games can
easily be analyzed statistically, which we do for all kinds of games being played. There is, however, a
fundamental difference in estimating the winning probability in null, and trump games. For null games,
we estimate the winning probability Prob(h,c) in each suit c separately. The winning probability, then, is
Prob(h) = Prob(h,clubs) · Prob(h,spades) · Prob(h,hearts) · Prob(h,diamonds). For trump games, we con-
sider the so-called winning parameters: Free suits: the amount of non-trump suits that the player does not have
in hand; skat value: the number of eyes in the skat, condensed into four groups; bidding value: the three different
final bidding values in the bidding competition, summarized into four values; declarer‘s position: the position
of the soloist in the first trick; trump length: the number of trump cards in hand; non-trump aces and tens: the
number of non-trump high cards in hand; Jack group: set of jacks condensed into groups; lost cards: number of
tricks expected to be lost;

Through statistical tests we were able to validate that these parameters have a significant influence on the profit
or loss of the expert games and can therefore be used as essential attributes to accurately assess the probability
of winning a grand or suit game. More precisely, the grand table is based on 7 to 8 of these winning parameters
and the color game table on 9 winning parameters.

13.10.2 ELO System for Zero-Sum Games

Two-Player Games. The ELO ranking system for two players in a zero-sum game works as follows. If Player
A has a rating of RA and Player B has a rating of RB, the formula for the expected score of Player A is EA =
1/(1+ 10(RB−RA)/400)) Similarly, the expected score for Player B is EB = 1/(1+ 10(RB−RA)/400)). Hence, for
each 400 rating points of advantage, the expected score is 10× the opponent’s one. When a player’s tournament
scores exceed their expected scores, the ELO system takes this as evidence that player’s rating is too low and
needs to be adjusted upward. Similarly, when a player’s tournament scores fall short of their expected scores,
that player’s rating is adjusted downward.

Elo’s original suggestion, which is still widely used, was a simple linear adjustment proportional to the amount
by which a player over-performed or under-performed their expected score. The maximum possible adjustment
per game, called the K-factor, was set at K = 16 for masters and K = 32 for weaker players. Supposing Player
A was expected to score EA points but scored SA points. Updating that player’s rating is by setting RA ←
RA +K · (SA−EA).

Multiple Player Games. When two players have ratings RA and RB, determined via the ELO model for two
players, we have computed their expected scores against each other: EA = 1/(1+10(RB−RA)/400) and symmet-
rically: EB = 1/[1+ 10(RA−RB)/400] Their ratings are updated by comparing the result of the game with what
was expected, e.g., RA ← RA +K · (SA−EA), where SA is the score of the game (1 for a win, 0 for a loss, .5
for a draw, etc.) and K is a volatility factor that is equal to the maximum number of rating points that can be
gained/lost in a game. Symmetrically, whatever was added to RA is subtracted from RB.

One can rephrase ELO the following way: The probability of a player winning the game is modeled as being
proportional to 10rating/400. Of course, you need to normalize the probabilities by dividing by the sum of these
numbers. This is the same formula as before: EA = 10RA/400/(10RA/400 + 10RB/400). Dividing numerator and
denominator by 10RA/400 we get EA = 1/(1+10(RB−RA)/400). This rephrasing is a lot easier to expand to more
players: Each one has a probability proportional to 10rating/400 of winning the game. EA = 10RA/400/(10RA/400+
10RB/400 +10RC/400). The update rule does not need to change.



240 13 Card Game Playing

Player Number of Aver. Score Average Score
(anonymous) Games (per Game) (per 36 series)

e15352892b7a6cd14e7dedaff97672ec 195 30.75 1107.15
8afc83bd59fa1ed31b88d6d4f12286be 89 30.11 1084.31
18b056ef4c0a2b11464af83bcf69b98d 207 29.90 1076.58

...
...

...
...

Table 13.1: Average scoring values.

13.10.3 ELO System for Games of Chance

We came across the topic of devising an ELO scoring system when playing on Michael Buro’s Skat platform,
which offers a ELO-type of ranking and when we asked him about certain peculiarities. He couldn’t remember
how that number had been defined exactly, but we got some impressions on its pros and cons. One thing had
to be given to his ELO numbers: they express the table strength situation relatively well, depending on whether
you were winning or losing against stronger or weaker opponents (in terms of their ELO number). The value
of the cards, however, was not included in the computation, which is always a drawback with long streaks of
bad luck or luck. Assessing the skill level based on the points scored in relation to the value of the cards turns
out to be an important aspect, such a corrected analysis says a lot about the true and luck-adjusted performance
of a player. Therefore, we find it fundamentally interesting to consider an ELO number as discussed above
as a supplementary, alternative rating number. The methodology how this is calculated in games of no chance
like Chess is well understood, but there are some clear differences anyway, so that we introduce a modified
algorithm.

Including Opponent Strength. For a better assessment, an ELO rating system is needed, which combines
playing results, strength of the opponents and luck in card deals. Unfortunately, a widely accepted rating system
does not exist for Skat, nor are other means of measuring playing strength used on selected servers accessible.
By the influence of chance computing ELO is more challenging than for Chess and similar deterministic games:
there is no doubt, that even much weaker players can beat much stronger ones rather easily when given a very
good hand of cards.

Other ELO systems use a freely chosen starting rating, so one can base individual evaluation of a player to
consider the ELO development of previous opponents. We think that keeping all previous series individually
for each player is not necessary. Due to the calculation, the influence of the “old” results fades continuously
anyway and one, therefore, our system does not have to reevaluate the series that were played long ago.

We compute the sum of Seeger-Fabian evaluation of played series S = S0 + S1 + S2 and of the rating R =
R0+R1+R2. Next, we calculate the expected values Ei = Ri ·S/R for i = 1,2,3. This has the effect that the sum
of expected value is equal to the series and expected values are in the same relation as the rating of the players.
This way outliers are avoided. The update then is Ri← Ri +K · (S0−E0) i = 1,2,3. As an example consider the
rating values R0 = 1500, R1 = 750, R2 = 750 (assuming a ELO rating sum of 3000 and a start value of 1000),
and a series with an actual scoring of 1200, 800, 800. Then E0 = 1400, E1 = 700, and E2 = 700, The update
yields new ranking values 1500−K ·200, 750+K ·100, and 750+K ·100. If we take K = 0.02, then the new
rankings are R0 = 1496, R1 = 752, and R2 = 752. We see that it is not necessarily advantageous for the better
player to play against weaker ones. In contrast to his/her clear victory he actually loses rating points, as s/he
under-performs to the expectation. In our initial experiments shown in Table 13.2 value K = 0.02 leads to good
results. We see that K has a significant influence not only on the spread of values but also on the final standing
of the players.

Small-Sized Series. If due to folding (no one bids), interrupts (people leave the table) or different chosen series
size (e.g., due to time limitation), a series may not always consist of the assumed number of games (36 in our
case). One option to include the results into the ELO computation is rescaling the individual score values by
the ratio α of played games and requested games, so that Si = Si · 1/α , and also limiting the update effect to
Ri← Ri +α ·K · (S0−E0), i = 1,2,3.
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S0 S1 S2 E0 E1 E2 R0 R1 R2
1387 1018 152 852.33 852.33 852.33 810.69 803.31 785.99
501 1359 934 943.78 935.19 915.03 801.84 811.79 786.37
637 1284 1125 1017.67 1030.30 998.04 794.22 816.86 788.91
800 812 913 835.59 859.41 830 793.51 815.92 790.57

1213 1221 965 1123.81 1155.54 1119.65 795.30 817.22 787.48
...

...
...

...
...

...
...

...
...

Table 13.2: Evolution of ELO values with start value 800.

Pos #Games Sum of Values Mean
1 29930 1264945 42.3
2 26708 1069177 40.0
3 27206 1101191 40.5

1–3 83844 3435313 41.0

Table 13.3: Computing average game value.

Reducing Effect of Chance in the ELO System. When talking to Skat experts we identified two main factors
that are frequently addressed in assessing the luck of players in card games: strong hands and high-valued
games.

Hand Strength. For integrating chance into this ELO system one extreme is to avoid evaluating games with
100% winning probability. Instead, we normalize the strength of the current hand per game category with the
mean hand strength (using winning probabilities, the Kinback, or the more involved von-Stegen system). E.g., if
the mean is 8.72 and the current hand is 9.5 we have a correction term of c = 1.09, so that a score of 86 points is
downgraded to 79. If the values c fall outside the interval [0.5,2] we have clipped it to avoid extreme behaviors
by setting c = max{min{c,2},0.5}. Now every game is re-weighted. Assuming 875 ELO for the declarer and
950 for the opponents, we derive another normalization factor of 1.086. Taken together, so that a score of 86
will be downgraded to 73.

High-value Games. There is another objective often attributed. In some series people score high with playing
only a few, but very high-valued games (usually Grands), for the others they do not bit. To avoid such over-
exaggeration, one could adapt the score of the games. To bypass this influence of chance we calculated the
mean point score x̄ of a game with 41.0 (see Table 13.3).

Instead of the actual (or normalized) game value influencing the ELO score, for this chance breaking option we
take the (normalized) game value x̄ (or normalized, x̄/q). This might be seen as an extreme setting, as giving
lower- and higher-valued games the same influence in the ELO formula, does not reflect the risk taken to achieve
the higher score. Of course, many combinations of two adaptations to reduce the element of chance in the game
are possible. In both cases, we use the adapted score s′i = ci ·si, for each player i = 0,1,2, and sum the values for
a series score values S′i. The Si’s are then into the above ELO update formula. We have Ri← Ri +K · (S′i−Ei),
for i = 1,2,3.

Including Start ELO. Finding an appropriate initial ELO ranking value. Voices differ between lower value of
800 and a higher value of 1000 as a valid choice. An alternative is to use the average Seeger score of some n first
played tables. In other words, for player i use the initialization R(n)

i = ∑
n
t=1 S(t)/n (exponent shows the index of

the table). To initialize the ELO ranking further games could also be considered, possibly after some rescaling
to the Seeger score.

Newcomer Progression. For the ELO numbers it is well-established fact that new players get a larger K, value
to be able to grow in their experience and climb up the ranking more quickly. With a larger number of games
and ELO value, the factor then decreases (from say K = 40 to K = 10). This also compensates for a wrong
assumption on the playing strength in the initial ELO.
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13.11 Experiments

The Skat AI is written in C++. Each player client runs on 1 core.

Studies. For Grand (after taking skat) ♠J,♥J,♥10,♥Q,♥9,♥8,♣A,♣10,♣9,♣7,♥7,♦J world search finds
the optimal declarer score of 61 in 5m5s (1m24s in the decision variant) by putting ♣7 and ♣9, and first
issuing ♣A. If not cut, ♣10, followed by ♥7. One worst case play for the declarer is ♥8, ♥A, ♠A; ♥9,♥A,♠A;
♥10,♣J,♠10 with 59 eyes. The decision variant took 1m23s, also returning ♣A.

For hand ♣J,♠J,♥J,♦J,♣9,♣8,♣7,♠9,♠8,♠7 with skat ♥7,♦7 a game in clubs is won for the declarer in
forehand position, but potentially lost in middle and in rear hand positions. Solving all three decision variants
takes 16s in total and returns ♦J,♠A, and ♠K, respectively. The best scores for the declarer are 63 (fore hand),
48 (middle hand), and 49 (rear hand). The ♦J was found less than 1s, the ♠A in 1m31s, and the ♠K in 3m15s.

Database Replay. During replay we determine the average of the game value according to the extended Seeger-
(Fabian-)System, the internationally agreed DSKV standard for evaluating game play, normalized to a series of
36 games. The score is based on the number of wins and losses of each player in the series, and the game value
of the games being played. For a single game g, the outcome is V (D,g), if the game is won for the declarer
D and −2 ·V (D,g), if it is lost. In a series of games G = g1, . . . ,gX these values are added for each player, so
that V (A,G) = V (A,g1)+ . . .+V (A,gX ). The evaluation strength of Player A wrt. B and C is V (A,G)+ 50 ·
(#win(A,G)−#loss(A,G))+40 · (#loss(B,G)+#loss(C,G)).

The obtained results on 50,000 human expert trump games are presented in Tables 13.4– Table 13.6. For the
three valid combinations of AI/Human bidding/discarding/game announcement we separate between the play
with and without the support of Paranoia search. In the columns we further partition the game outcomes with
respect to the declarer in the i) original Human game play, ii) an open card solver (that we call Glassbox), and
iii) AI trick-taking selfplay.

In Table 13.4 we see that with the support of the Paranoia search, the declarer can win 42,228−41,765 = 463
more than the AIs without Paranoia search and far more than the Humans in their play 42,228−41,283 = 945.
This is a significant progress, given that the number of wins was already high. The number of games won (and
the extended Seeger values) were higher than the ones obtained by the humans.

The AIs with KBPS show better winning ratios than the humans, and a significant positive effect on the playing
strength in extended Seeger score: for AI bidding and Skat putting almost 1,000 points. With up to 50% addi-
tional time, there is a computational trade-off, but in server play selecting the card to play remains below 5s.
In contrast to Null games, automated Skat putting in trump is worse to the Human one, and, therefore, subject
to further research. For AI bidding the total of wins/losses is not matching the total number of games, as some
games might be folded.

We analyzed another set of over 75 thousand human expert games (all kinds of games). We varied the card
number k to start approximate KBPS at card k and KBPS at card k+3. At k = 6 we reached 1000.24 extended
Seeger scoring points. At k = 3 we could slightly improve the value to 1001.39, in a tradeoff of a slowdown
factor 2-3.

ELO Ranking of Human Players. The ELO ranking routine is embedded in our Skat AI. As the formulas are
straight-forward, we believe that a Skat web application with a world-wide ranking list (like 2700chess.com)
can be derived.

As input, we selected a database of 83844 expert games, played on a server in 2329 series (tables) of 36 games
each. The data we process has anonymous (alias hashed, blind) player names and table indices, to avoid options
for giving advantage to known Skat players.

For this series of human games, we derived a proper ELO ranking, according to the above formulas and different
parameterization for K, the hand strength function, or the inclusion of reducing the effect of card luck. On our
computer this analysis takes about 4s mainly due to computing the winning probabilities. The outcome is an
ELO high-score table. Tables 13.7 and 13.8 show the derived list.

http://2700chess.com


13.11 Experiments 243

Human Glassbox AI +Paranoia −Paranoia
Wins Wins Wins Opponents Opponents

−Paranoia false false false 2,563 2,530
Declarer false false true 2,208 2,241

false true false 231 226
false true true 2,658 2,663
true false false 3,438 3,407
true false true 5,540 5,571
true true false 975 970
true true true 31,285 31,290

Total +PO 41,283 35,149 41,691 48,898 -
Total -PO 41,283 35,149 41,765 - 48,898

Total Score 977.76 980.07
Total Time 37h:51m 31h:01m

+Paranoia false false false 2,460 2,458
Declarer false false true 2,315 2,313

false true false 193 194
false true true 2,696 2,695
true false false 3,236 3,240
true false true 5,742 5,738
true true false 785 788
true true true 31,475 31,472

Total +PO 41,283 35,149 42,228 48,898 -
Total -PO 41,283 35,149 42,218 - 48,898

Total Score 990.25 991.79
Total Time 43h:32m 42h:06m

Table 13.4: Skat AI Replaying 50,000 Human Trump Games with and without KBPS, using AI Bidding Game Selection and Skat
Putting. Score is extended Seeger, averaged over 36 games. Table split based on KBPS being applied for declarer and opponents.
Total of games is smaller because of 1,102 foldings (no bid).

Human Glassbox AI +Paranoia −Paranoia
Wins Wins Wins Opponents Opponents

−Paranoia false false false 3,854 3,822
Declarer false false true 2,779 2,811

false true false 198 195
false true true 1,040 1,043
true false false 2,137 2,110
true false true 5,271 5,298
true true false 965 953
true true true 33,756 33,768

Total+PO 42,129 35,959 42,846 50,000 -
Total−PO 42,129 35,959 42,920 - 50,000
Total Score 953.31 955.91
Total Time 34h:20m 25h:31m

+Paranoia false false false 3,784 3755
Declarer false false true 2,849 2,878

false true false 184 128
false true true 1,054 1,056
true false false 1,998 1,973
true false true 5,410 5,435
true true false 761 752
true true true 33,960 33,969

Total + PO 42,129 35,959 43,273 50,000 -
Total - PO 42,129 35,959 43,338 - 50,000
Total Score 963.35 965.53
Total Time 47h:21m 38h:05m

Table 13.5: Skat AI Replaying 50,000 Human Trump Games with and without KBPS using Human Bidding, Game Selection, and
Skat Putting. Score is extended Seeger, normalized to 36 games. Table split KBPS being applied for declarer / opponents.

ELO Ranking of Skat AIs. We have developed an AI for the Skat game, capable to beat even advanced club
players. So far, we have recorded a few mixed Human-AI games. We could replay all the games with our
Skat AI. To accelerate the evaluation on multiple cores, we partitioned the input file into 9× 8388 games and
1×8352, and started the driver for the AIs 10 times. The AI wins 4132+4768 games that the Humans do not,
while the Humans win 5273+1085 that the AIs do not. This suggests that the AIs are showing a better playing
performance.
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Human Glassbox AI +Paranoia -Paraonoia
Wins Wins Wins Opponents (PO) Opponents (PO)

−Paranoia false false false 3,941 3,894
Declarer false false true 2,519 2,566

false true false 200 196
false true true 1,211 1,215
true false false 2,611 2,581
true false true 5,502 5,532
true true false 934 923
true true true 33,082 33,093

Total +PO 42,129 35,959 42,314 50,000 -
Total -PO 42,129 35,959 42,406 - 50,000

Total Score 935.23 938.41
Total Time 34h:10m 25h:15m

+Paranoia false false false 3,853 3,808
Declarer false false true 2,607 2,652

false true false 187 185
false true true 1,224 1,227
true false false 2,452 2,415
true false true 5,661 5,698
true true false 732 724
true true true 33,284 33,292

Total +PO 42,129 35,959 42,776 50,000 -
Total -PO 42,129 35,959 42,869 - 50,000

Total Score 947.41 950.39
Total Time 37h:39m 46h:49m

Table 13.6: Skat AI Replaying 50,000 Human trump games with and without KBPS using Human Bidding, and AI Skat Putting.
Score is extended Seeger normalized to 36 games. Table split on KBPS being applied for declarer / opponents.

No P-No Player Name (hashed) Elo
1 P-2 550d2996ded442172116845433d09570 856.77
2 P-25 bb01edd8abe48241a43b81af3895c925 854.80
3 P-12 542e18999d44ec8427481bf9b75c4bc6 853.42
4 P-27 693730a9db9143b7fc0a37d948b6fb76 853.32
5 P-31 e243ef566bac2607033c320e56ca3c 853.06
...

...
...

Table 13.7: ELO ranking for Skat on sample with K = 0.02.

No P-No Player Name (hashed) Elo
1 P-368 eea6ea6035503ac4493cf46f12ced5b0 1063.61
2 P-616 7c36b944da8dcab82ed1e8b1822438cf 1058.20
3 P-663 6d71ec67d159864149195c79f2cd289f 1055.64
4 P-60 fcfcbaa041c41d65ea2f0c64070f3af5 1017.28
5 P-26 aa6ee7912aca31ea9d26371b539f3b43 1002.74
...

...
...

Table 13.8: ELO ranking for Skat on sample with K = 0.05.

AI self-play of same bots does hardly help to illustrate an ELO evolution. If there are three bots, which are all
the same, the increase and decrease is essentially the same, given that the sum of the ELO values stays constant.
To show progress, AIs of different strengths have to play each other or against humans. The ELO ranking for
logged series of human vs AI server games automatically derives high-score rankings. It indicates that our AI is
playing well against good club players. This implementation can evaluate Human, mixed, or AI tournaments.

Sensitivity Analysis. To study the change in the ELO distribution we varied the parameters for the elements of
change i1 (winning probability) i2 and the K-factor. Table 13.9 shows that the distribution of ELO values for
a growing K widens, so that the volatility factor K can be adapted to the needs. For a world-wide ELO list, or
for frequently played online platforms, a smaller value of K might be appropriate for a moderate increase and
decrease in value. For a tournament or club championship, a larger value of K will be better. We see the effect
for reducing the element of chance in the ELO numbers. We are still trying to measure the effect statistically.

Visualization of Individual ELOs. Figure 13.13 illustrates the dynamic change in the ELO scoring values
for some selected players. For the time-contracted view, only the changes of ELO-values are stored, for the
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i1 i2 K Max Mean Min 10 25 75 90
0 0 .01 924.84 849.91 790.21 862.18 854.33 845.07 839.22
0 0 .02 976.54 849.90 739.95 874.07 858.67 840.34 829.28
0 0 .04 1038.27 850.33 652.66 893.69 866.58 831.44 810.01
0 0 .08 1149.71 850.81 532.15 922.17 881.78 815.78 778.33
0 1 .01 920.87 849.87 793.42 860.88 854.25 845.61 840.24
0 1 .02 962.12 849.75 745.01 870.80 858.32 841.32 831.08
0 1 .04 1018.33 849.49 664.03 889.39 866.21 833.93 814.13
0 1 .08 1120.17 849.02 542.22 920.97 881.58 819.69 785.47
1 0 .01 927.56 849.85 776.35 863.45 854.95 844.96 838.80
1 0 .02 981.48 849.91 714.23 875.16 859.43 840.14 828.00
1 0 .04 1045.39 850.27 617.78 893.19 867.97 830.71 808.44
1 0 .08 1165.40 850.29 502.82 929.80 884.76 813.70 773.46
1 1 .01 922.10 849.81 777.90 862.79 854.83 845.28 839.55
1 1 .02 973.63 849.67 715.30 874.93 859.47 840.70 829.59
1 1 .04 1036.14 849.30 614.48 895.34 868.56 832.52 809.81
1 1 .08 1144.11 849.79 487.55 931.75 884.90 817.03 778.09

Table 13.9: ELO distribution for chance and change parameters.

Figure 13.13: Players’ ELO rating: time-contracted view (left), time-expanded view (right).

time-expanded view, the table ID of the game is taken to show the evolution of ELO of different players over
time.

This visualization option could be provided for the players (or tournament directors). Based on a mixed tour-
nament and ELO rating, one could also award titles like National-, International-, or Grandmasters, as done in
Chess. In a time-contracted view, Figure 13.14 shows the evolution of the change in the ELO values. In the
longer series we see that when including the ELO formula adaptation for chance, the playing strength values
show smaller amplitudes, i.e., the curves become a bit smoother. This means that the real strength of becomes
visible faster than without the inclusion of the chance parameters.

Win-Rate and Accuracy. Judging self-play of three identical players is demanding, as applying the ELO rating
system is not applicable, given that the average ELO of the play will not change.

Let won(human,opencard,ai) be the numbers of games won in an experiment, with human,opencard,ai ∈
{0,1}, and total = ∑(i, j,k)∈{0,1}3 won(i, j,k). We use the following criteria to measure playing strength (the
higher the better).

Win Rate the number of games won by the declarer divided by the number of played games (all but folded
ones), i.e., Win-Rate = (won(0,0,1)+won(0,1,1)+won(1,0,1)+won(1,1,1))/total.

Accuracy Fraction of games matching the prediction of the open card solver (OCS), i.e., Acc =
(won(0,0,0)+won(0,1,1)+won(1,0,0)+won(1,1,1))/total.

Combination Win Rate and Accuracy Optimizing the win rate leads to improvements of the declarer but not
the opponents, which are better reflected with OCS accuracy. The closer the play is to the open-card solver,
the better the opponent players communicate on their respective knowledge of the cards. To combine the two
we use Combined = (Win-Rate+1 ·Acc)/2,
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Figure 13.14: Sensitivity analysis varying parameters for reducing effect of chance.

Game WonAI LostAI %Win # Games
9 6,601 1,600 80.5% 10.04%
10 9,125 2,123 81.1% 13.77%
11 11,120 2,550 81.3% 16.74%
12 15,146 3,573 80.9% 22.92%
23 2,175 1,038 67.7% 3.93%
24 22,127 1,029 95.6% 28.35%
35 39 3 92.9% 0.05%
46 2,865 317 90.0% 3.90%
59 230 3 98.7% 0.29%

69,428 12,236 85.0% Winrate
Seeger-Fabian: 951.18 Acc: 84.5%

Table 13.10: Final AI performance; Combined = 84.75%.

Table 13.10 show our final results with further changes to bidding and trump play.

Human-Machine Comparison. In online play is crucial to have a transparent algorithm to generate a fair deal.
We use the Mersenne-Twister from the std library to shuffle the cards and validated that 10 million random
deal match the theoretical predictions implied by the hyper-geometrical distribution [300]. Their generation is
simple enough to show the entire source code.
std::mt19937 gen;
for (int k=0; k < 10000000; k++) {

unsigned int card[32], c = 0, bit = 0;
for (int i=0;i<32;i++) {

do { card[i] = gen() % 32; bit = 1<<card[i];
} while ((bit | c) == c);
c = c | bit; }}

To our surprise, the difference to the mathematically calculated card distribution was smaller than by using
overhand shuffling or real random numbers.

Our AI played a online match of 20 series (a total of 19× 36+ 1× 6 = 690 Games) in Feb/Mar 2022 against
Rainer Gößl, a top Skat player from Germany. In international tournaments at least 10 series of 36 games are
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Figure 13.15: Server statistics of top human Skat player playing a tournament against two (identical) AIs: 20 series were played
over the period of one month: x axis is time, y-axis the Seeger-Fabian score (per series, green, and cumulative, red). The average
Seeger score of was 24.2.

played. In the statistics displayed in Fig. 13.15 we see the human player’s performance goes down, suggesting
an increase of the program’s playing strength during this time span.

About 28.4% of the games were taken on as declarer, 170 were won, and 26 lost. On average one game was
folded per series, the average playing time per series was 21.2 min. In this series the AIs performed much better
than Rainer Gößl with his score 24.82 · 36 = 893.52 in the Seeger-Fabian system, and the first engine where
he scored less than 1,100 points. Even though the performance is remarkable, it has to be dealt with care. In
20 series there is still a large factor of luck in the cards. In earlier matches, Rainer Gößl achieved better scores
against our AIs and against human players. The match was played over a month and not controlled by an arbiter.

13.12 General Imperfect Information MiniMax Search

We now turn to general trick-taking card games. We have experimented with Bridge and Belote, initial imple-
mentations of Doppelkopf, Tarot, Spades, Hearts, and many others. The general idea (after some bidding stage)
is to have a vector of players, arranged into teams that count their trick scores. Algorithm 13.2 captures the
structure of a MiniMax tree search algorithm for such games, invoked from the chooseCard driver with the
current game state s, current hand h, vector set parent, score vector α and set of worlds W . The team is linked
to the player’s id. As algorithmic primitives we have

• <i is a partial order, representing the preferences of player i for pruning;

• initi(s,W ) initializes the result for a player i and must be a lower bound to the actual value (depending on
the worlds in W ) of the node s for <i;

• maxi is computing the return value based on the values of the children. It is a fusion of the values of the
children rather than a maximum over <i, and should return the correct value of a node s constructed with
the values of its children;

• generateWorlds() generates the worlds over which the values will be computed according to the knowledge
of the players;

• criterioni a total order over V representing the preferences of player i for the final choice of the card.

Now that we have a generic algorithm to solve the problem with reasonable time complexity, we will compare
different realizations of this algorithm. Each one is applicable for two teams. The score of a final state is the
score made by the Max (declarer) team. The first one is a direct extension of usual αβ pruning algorithm for
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Algorithm 13.2: General MiniMax search tree procedure to choose a move for a player in game state s with
hand h.

tree(s, α , W , parent)
parent[team]← id
r← initid(s,W )
for all c ∈⋃w∈W legal(s,wid) do

α[team]←maxid(r,α[team])
if ∃t 6= team with α[t]<parent[t] r then

return ⊥t
Wc←{w ∈W | c ∈ legal(s,wid)}
v← tree((s,c),α,Wc, parent)
if v =⊥t then

if t 6= team then
return ⊥t

else
r←maxid(r,v)

return r

chooseCard(s, h)
W ← generateWorlds()
for all every team t do

parent[t]← /0
α[t]←⊥t

return argcriterionc∈legal(s,h)(tree((s,c),α,W, parent))

perfect information games. The second one is αµ , and the last one is a mixture of the two. For each case, we
will present the instantiation of the functions above. We will not detail the function initi and use a trivial lower
bound over the value of a node, based on the score already made by a team in the trick-taking card game.

13.12.1 Perfect-Information Monte Carlo

The idea of the perfect-information Monte-Carlo (PIMC) algorithm is to sample random worlds following the
current distribution, which aligns with the aready inferred knowledge; and, then, in each sample to compute a
score as if it was in perfect information with the alpha-beta search algorithm. For such set of worlds W , the value
of a node is a vector of the scores of each individual world in this setting of perfect information for everyone.
As we allow general scoring functions, the node value vector, therefore, is an element in V = RN .

PIMC fits a game, where after one card is played, everyone shows its hand and plays open. Thus, the generation
of the worlds tries capture the initial unknown distribution, and, then, in each one, plays with perfect informa-
tion. In terms of pruning, for the Max team a value a is greater than b if the score of every world w ∈W is
greater in a than in b, i.e., for all k ∈ {1, . . . ,N} we have ak ≥ bk. It is symmetric for a Min node, so that in this
case for all k ∈ {1, . . . ,N} we have ak ≤ bk.

In this framework, the template function maxi(a,b) returns the maximum (alias minimum), according to the
team of i, of every score of W . With perfect information in each world, the players can choose the best card. To
make the final choice for the card to play, as a form of voting, we choose the criterion to prefer the best mean of
the score, according to the team. The details are presented in Algorithm 13.3 (left).
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Algorithm 13.3: PIMC (left) and αµ (right)

generateWorlds
W ← /0
for all k ∈ [N] do

select w from distribution
W ←W ∪{w}

return W

maxi(a, b)
r ∈ V
for all k ∈ [N] do

if Max team then
rk← max(ai,bi)

else
rk← min(ai,bi)

return r

criterioni(a, b)
suma← ∑k∈{1,...,N} ak
sumb← ∑k∈{1,...,N} bk
if Max team then

return suma > sumb
else

return suma < sumb

generateWorlds
W ← /0
for all k ∈ [N] do

select w from distribution
W ←W ∪{w}

return W

maxi(X , Y )
R← /0
if root then

R← X ∪Y
else

for all (x,y) ∈ X×Y do
r ∈ RN

for all k ∈ {1, . . . ,N} do
if Max team then

rk← max(xi,yi)
else

rk← min(ai,bi)
R← R∪{r}

for all r1 6= r2 ∈ R do
if ∀k ∈ [N]r1k ≤ r2k then

if root is Max then
remove r1 from R

else
remove r2 from R

return R

criterioni(X , Y )
if Max team then

sumX ←maxx∈X ∑k∈{1,...,N} xk
sumY ←maxy∈Y ∑k∈{1,...,N} yk
return sumX > sumY

else
sumX ←maxx∈X ∑k∈{1,...,N} xk
sumY ←maxy∈Y ∑k∈{1,...,N} yk
return sumX < sumY

♣ A
♠2|♥2
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♠ A
♥ A

♠ A
♥ A
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Figure 13.16: In this game we follow the rules of bridge except we only play with two enemy players. Trump is clubs. (left) North
plays ♣A and South is to play. South does not know if the second card of North is ♠2 or ♥2, it is a 50%− 50% situation. (right)
Trump is clubs. North does not know if the second card of South is ♠2 or ♥2. South has to play.

13.12.2 AlphaMu

The problem with PIMC is the hypothesis of perfect information for everyone. It causes several imperfections
and difficulties in the choices. An example of a situation, where PIMC fails is Figure 13.16 (left).
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Figure 13.17: Application of permutation algorithm to the problem raised in Fig 13.16 (left). The scores are the ones of South,
viewed as a Max node. Max nodes are circled by continuous line, and Min nodes by dashed lines. Here world 1 is the world where
North has ♠2 (the real world), and world 2 is the one where she has ♥2 (the fake world but South doesn’t know it)
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♠A : [(⊥,0)]

In this situation, the expected score of South over these two tricks is 0.5. In fact, South has a 50% probability
of throwing the useless ace ♣A and to keep the useful ace. In this case South scores 1, otherwise 0. However
PIMC would generate several worlds, some with North having the ♠2, other with North having the ♥2, and in
each one South would score 1. Indeed if South knows the remaining card of North (this is the case in PIMC
algorithm, where perfect information is given), it is easy to keep the right ace, and to win the last trick. Thus
PIMC would average the score over the worlds sample and predict a score of 1 for South, that is a mistake.

Algorithm αµ algorithm is to includes the imperfect information of the player to chose a card into the reasoning.
The player at the root of the tree does not know, which world is the good, but the other knows it and plays with
perfect information. The algorithm fits a game like Bridge, where one player has to play a card, and everyone
else sees all hands. Although it is not perfect in term of information given, it is an improvement over PIMC. We
find that with αµ we achieve a reduction of the information surplus by a factor (1− 1

p ). This is not a surprise,
as we removed the information of one player.

Let us illustrate the functions used in αµ . This algorithm solves the issue raised in Figure 13.16 (left). In Figure
13.17 we see that the uncertainty over the outcome of the game is kept. The value computed, [(0,1),(1,0)]
represents the fact that one strategy leads to a non-zero score in one world, and another leads to a non-zero score
in the other world. In αµ the call to generateWorlds is the same as in PIMC; function maxroot computes the
union of the values of the children, and removes the elements that are dominated (i.e., if the scores associated
to one strategy are all better than an other one, it removes the latter); maxi is the union of the product of
strategies of the children. One element is computed by taking one element from all the children (we construct
one possible strategy for root), and by taking in each world the best score for i, as in PIMC (if root follows the
strategy constructed, then the score would be the one computed, with perfect information of i). Again, the set
is simplified by removing the dominated elements for root; criterion selects the node that contains the strategy
with the best expected score over the different worlds in W .

13.12.3 Permutation

Even with αµ we give away too much information to the players different from root. This can cause mistakes,
as shown in Fig. 13.16 (right). If South plays ♠2, she will score 1. If she plays ♣A she has 50% probability
of scoring 2 and 50% probability of scoring 1. Thus ♣A is a better choice. Algorithm αµ suppose perfect
information of North. Thus if South plays ♣A she will score 1, and if she plays ♠2 she will score 1 also. Both
cards are equivalent, and αµ could make the mistake of choosing ♠2.
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To fix this issue, we need to include imperfect information of all the players in one algorithm. This is the goal
of the permutation algorithm.

We select the value of a node to be the expected score of each world if everyone played optimally according to its
knowledge. At a node with two children, player i will choose the value of the child that has the best expectation,
according to its team, over the worlds that are possible according to its knowledge. If the two children have the
same expected score, player i has 50% chance of playing each one. Therfore, the value of the node should be a
mix of both (the middle of the segment of the scores). If a Max node has two children [2,5,3] and [3,7,0] for
instance, its value would be [2.5,6,1.5]

The issue with this simple approach is that different players have different knowledge, and different possible
worlds. So each set of possible worlds P is different for each player. Moreover, for a player the set of possible
worlds depends on its hand, which is unknown. We cannot take one set W for all the tree and suppose it
represents all the players, as we had before.

One solution is to compute the values over subsets of W that correspond to the different P possible for a player.
For instance, if there are two players Max and Min, each of them can have two hands. Four worlds are possible
{Max1Min1,Max1Min2,Max2Min1,Max2Min2}. Suppose Max is the root, and she wants to merge two values
at a Min node: [0,2,3,1] and [2,0,2,3]. If Min has hand 1, the worlds she will consider are the first and third (she
does not know the hand of Max. Thus, the first value is better because it has an expected score of 1.5 instead of
2. But if Min has hand 2 the two values have the same expected score over worlds 2 and 4 that is 1.5. Hence,
Min have 50% chance of playing each value and we mix the scores of these worlds. We come up with the value
[0,1,3,2]. A more detailed example is given in Figure 13.18.

Figure 13.18: Fusion of two values by a Max node. The row correspond to the different hands possible for Min, and the columns
the one for Max (mi j represents the score of the world where Min has hand i and Max hand j)

8 2.5 4
3 1.5 8
4 4 5


8 2 6

3 0 5
4 6 2

 1 3 4
4 3 8
3 2 5



This algorithm solves the issue raised in 13.16 (right) as shown in Fig. 13.19. At the root, South has the choice
of two values, over the actual world 1.5 and 1. Because 1.5 > 1 South will then play ♣A.

To obtain the correct number of worlds for each hand of each player, we require a similarity between the worlds
of W . We use a small set of initial worlds and create the set W by taking all possible permutations of the hands
with this initial set. Thus, Algorithm 13.4 generateWorlds samples worlds and, then, return all the permutations
of these worlds; maxi is following the scheme explained before; criterioni selects the value with the best average
score over the possible worlds of i. We prune if all the scores of a value are worse than another one.

For an initial set of experiments we selected two different card games: Belote and Bridge. We implemented the
three above algorithms and a random player. We then compared all pairs of algorithms. We assumed that there
are two teams, so we attributed one strategy to one, and the other to the second team. We made the matches on
100 different dealings of cards (they are the same over the different experiments). With each deal, we played
one time as being dealt, and then exchange the positions of the teams to be fair. We measure the score earned by
the team of the first player to play. In each experiment we finally collected the 200 scores over these games. We
add up the 100 scores made by one strategy, and the 100 scores made by the other, and deduce the percentage
of the total amount of points per game that a strategy wins over the other.

In each algorithm there are some hyperparameters to fix: n_sample is the number of world used in the algorithm;
depth_leaf in αµ and permutation is the depth at which we stopped the specification to end the tree with PIMC;
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Figure 13.19: Application of permutation algorithm to the problem raised in 13.16 (right). The scores are the ones of South, viewed
as a Max node. Here world 1 is the world where South has ♠2 (the real world), and world 2 is the one where she has ♥2 (the fake
world but North doesn’t know it)
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Algorithm 13.4: Permutation

maxi(a, b)

r ∈ V
for all h possible hand of i do

scorea← ∑w∈Ph
aw

scoreb← ∑w∈Ph
bw

if scorea < scoreb then
for all w ∈ Ph do

if Max team then
rw← bw

else
rw← aw

else
for all w ∈ Ph do

if Max team then
rk← aw

else
rk← bw

return r

depth_rd is the depth where PIMC stopped to end the tree with the an average of random playouts. For Belote
we estimated a 10% approximation of the score, valid with 95% probability with these random playouts. For
Bridge, depth_rd was not not consistent.

Figures 13.20 and 13.21 show that all algorithms are better than random. We can also observer that αµ algorithm
is slightly better than the others. All these algorithms are designed to play against smart players, thus, the
differences of the scores against random are not significant (i.e., PIMC being better than αµ in beating random
in Bridge is not relevant). Permutation is to be slightly worse than the others.
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Figure 13.20: Scores of team 0 against team 1 in belote. team 0 is the row title, and team 1 is the column title. Here are the
hyper-parameters used for every algorithm. Pimc: nsample = 10. αµ: nsample = 10, depth_leaf = 5, depth_rd = 20. Permutation:
nsample = 24, depth_leaf = 5, depth_rd = 20
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Figure 13.21: Scores of team 0 against team 1 in bridge. team 0 is the row title, and team 1 is the column title. Here are the
hyperparameters used for every algorithm. PIMC: nsample = 10. αµ: nsample = 10, depth_leaf = 5, depth_rd = 9.

13.13 Summary

We have seen an improvement for knowledge inference in searching partial information games. The novelty is
to include knowledge representation and reasoning into the backtrack partial-information game-tree search. In
contrast to perfect-information Monte-Carlo sampling used by many AI card playing systems, with a search
for a sampled set of worlds, the KBPS search algorithm operates against all possible worlds in one search tree,
avoiding the fusion of different card suggestion and resulting in a single card recommendation. It progresses the
knowledge in the search tree in an efficient manner, resulting in an optimal search algorithm that is fast enough
to be applied in early stages of the game even after a few cards have been played and especially for declarer
play, leads to card suggestions that even experienced humans often do not see. If the analysis succeeds, this
killer card is forced. If not, other card recommendations like expert rules or end game play apply. Although
exemplified for Skat, the contribution is general to work for other multi-player card games like Spades, Hearts,
Tarot, Marias, Ulti, or Bridge, and likely to other domains.

Factorized card-game solving is an almost universally applicable technique to optimize trick-taking play in
cases, where the remaining hands among the player, is either known or can be enumerated. It is based on
projecting a game to its suits and to combine the result of the according game factorization. It is applied for
either the declarer or the opponents to optimize the number of tricks/points for one player, assuming the game
is not already won in the current trick. The declarer often optimizes the trump game, since after one trump trick
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static information on average distribution and probabilities. is no longer available. Moreover, the declarer can
use it for a dynamic computation of standing cards. Similarly, for the opponent to optimize trump and non-trump
play for optimizing the number of tricks and points.

We have seen an approach of minigame searches as a widespread almost universally applicable tool to improve
card selection in Skat. Although much information about all the other cards in the game is neglected and given
that we only approximately combine the partial exploration results directly to an evaluation of the overall search
space compared to combinatorial game theory, the factorized approach of optimally solving partial problems
helps in many cases for choosing the best card within a suit, once this has been selected.

We have also introduced a rating system for the game of Skat to rank human and automated players for their
performance on a longer timescale of play. It includes both opponent strength and card luck and aligns to the
accepted scoring system used by the IPSA and DSKV in official tournaments.

A transparent and fair rating system for Skat and other games of chance was wanted to award players in tour-
naments and online play, setting up live high-score and ranking lists. We have started with a rather simple
proposal for computing the ranking that overcomes deficiencies of the existing ELO system for two-player zero
sum games that is based on predicting the outcome based on the difference in ELO rating. Like the established
ELO system, it is intuitive and can be parameterized. For Skat it offers a fairer evaluation and ranking than the
usual approach of simply taking the average score. The system has several advantages: It is comparable to the
extended Seeger scoring system used over decades by DSKV/ISPA We reduced the number of series a fixpoint
for the strength of a player is reached. Using the evaluation of reduced luck, while taking into account opponent
strength, we reached a similar fixpoint after a few series. The ELO system itself is deterministic, the same set of
games leads to the same ELO value. Different to other researchers looking at ELO evolution to measure chance
and skill in the game, the driving force of our research was to counterbalance the chance to converge faster to
the real playing strength. By the law of large numbers, one would expect that the more games are played the
less important the influence of chance will be in the ELO rating. Besides the factors for chance, we saw this also
depends on the volatility, namely factor K.

Besides the Seeger scoring system as its base, there is not much in the proposal that is specific to Skat or to card
game, so that we our ELO system can be used to evaluate competitions in AI for many other games of chance
and partial information. One simply needs any existing and establish scoring system for a series of games. To
reduce the factor for luck, a function estimating the strength of the initial position is needed for normalization.
It might be learnt.

13.14 Bibliographic Notes

Skat has been studied in many books [437, 438, 653, 302, 399, 525, 320]. A recent mathematical introduction to
Skat playing has been given by [300]. There are frequent bachelor and master theses on the topic of Skat (e.g.,
by Fabian Knorr, 2018, University Passau, or by Dennis Bartschat, 2019, University of Koblenz), but due to the
limited time for programming, the developed bots do not reach a human-adequate playing strength.

Kupferschmid and Helmert [428, 429] developed the double-dummy Skat solver (DDSS), a fast open card
Skat game solver, which was reimplemented in the Kermit player [94]. DDSS was extended to cover partial
observable game play using Monte-Carlo sampling [294]. It reached moderate performance results, mainly due
to the lack knowledge information exchange between the players.

There have been many efforts to apply machine learning to predict bidding options and hand cards in Skat [396,
395, 94, 583, 530, 531, 273]. Additionally, we have seen feature extraction in the related game of Hearts [602],
and automated bidding improvements in the game of Spades [133]. The results show that prediction accuracy
can be improved. Different computer bidding strategies have been proposed in the literature; among others we
find neural networks [429], nearest neighbor search [396], and statistical analyses of human games together
with single-agent game tree search [456].
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Buro et al. [94] indicated that their player Kermit achieved expert-playing strength. A direct comparison with
the above AI is difficult, as the bots play on different server architectures.

Cohensius et al. [133] elaborated on an intuitive way of statistically sampling the belief space of hands (worlds)
based on the knowledge inferred within play. The matrices Pi for the belief of card location for each player i
show a probability pi

j,k for the other players j on having a card k in his hand. While the approach has been
developed for Spades, it also applies to Skat [584].

In a different line of research, Edelkamp [183] showed how to predict winning probabilities for the early stages
of the game, and how to play Null games. Edelkamp [185]) studied Skat endgame play using a complete analysis
of the belief-space that is compactly kept and updated in knowledge vectors. Referring to combinatorial game
theory [45], Edelkamp [184] proposed suit factorization and minigame search for improved middlegame play
in Skat.

Sturtevant and Korf [601] described a paranoid algorithm for the case of perfect information multi-player games.
In that work the player to act is paranoid with respect to the preferences of the other players, assuming that they
are in a coalition against the agent. This reduces the multi-player to a 2-player game, such that α-β pruning
could be applied. Partial-information α-β paranoid search has been considered by Furtak [273]. The work dif-
fers from Sturtevant and Korf’s algorithm in that the agent does not have to have perfect information. Moreover,
because the agent does not know the true world, it is also paranoid with respect to the outcome of any stochas-
tic events (chance nodes), namely the actual distribution of any unobserved cards. The information was used
for bidding and stored in tables for the (32!/10!2!) · 3 · 5 ≈ 224 million hands (including game type and turn),
symmetry-reduced and compressed.

Edelkamp [185] considered a similar paranoia partial information search option for analyzing Skat puzzles
mainly as a motivation to introduce knowledge representation and reasoning in bitvector sets for endgame play.
The algorithm never went into the players’ bidding stage, as it was to slow to be useful for the first card under
real-world playing constraints.

The general approach to solve a card game with randomness in the deal and partial information is to compute
approximate Nash equilibria e.g., by using counterfactual regret minimization [76]. As this computation appears
not to be infeasible within the given time limits to play a card, approximations have to be found – of which
inference, sampling, paranoid search, etc. are some examples. We identified two different approaches for the
search of playing cards with uncertainty. One is to generate a set of possible (or all) worlds coherent with the
generated knowledge, and, then, to merge the result, possibly improved with dominance checks [110]. This is
what is done during endgame play [185]. When the set of worlds is statistically Monte-Carlo sampled with
respect to the knowledge of the distribution bias can be given to the distribution. However, the approach often
misses the best playing card in early stages of the game, when less knowledge is available. The number of
declarer cards unknown to the opponents is important.

Furtak first describes paranoid search for constructing static hand databases [273]. Edelkamp [185] presented
another attempt for conducting a search for a forced win against all odds. While interesting for solving Skat
puzzles in newspapers, the running time for such early analysis, however, was too large for steady online play.
Instead, he successfully integrate this analysis option into actual game play, leading to a considerable increase
in playing strength.

Gaming is a multi-billion-dollar industry [142], and games of chance (in contrast to games of skill) are often
prohibited, or at least tightly regulated in many jurisdictions over the globe. Thus, the question, whether a
game predominantly depends on skill or chance, has important legal and regulatory implications [96, 153, 254].
Öchsler, Dürsch and Lambrecht [172] suggest a new empirical criterion for distinguishing games of skill from
games of chance. All players are ranked according to a best-fit ELO algorithm. The wider the distribution
of player ratings are in a game, the more important is the role of skill. Most importantly, they provide a new
benchmark (50%-Chess) that allows to decide, whether games predominantly depend on chance, as this criterion
is often used by courts. They have applied the method to large datasets of various games (e.g., Chess, Poker,
Backgammon) [169, 97]. The findings indicate that most popular online games, including Poker, are below the
threshold of 50% skill and thus depend predominantly on chance. In fact, Poker contains about as much skill
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as chess when 75% of the Chess results are replaced by a coin flip. Skat was below der threshold of 50 percent
skill, thus depending more on chance.

Duersch, Lambrecht, and Oechsler (2020) studied how many games were affected by chance. They took online
playing data and compared the statistics on ELO evolution applying an extension of the Chess formulas. They
were not considering the actual input, i.e., for card game the deal. Instead they provide a benchmark test to de-
termine, whether or not a game depends predominantly on chance, through a comparison to a game by randomly
replacing 50% of outcomes in Chess with coin flips. In their study by the evolution of ELO values they claimed
that 50% Chess still shows more skill elements than Skat, which on this measure for skill versus chance, is on
par with Backgammon and above Poker. Even without knowing the game of Skat they found that it is quite
sensitive to the factors of card luck (which is undoubted by many players). In Skat, only a considerably small
database of played games was taken. Borm and van der Genugten propose measures to compare performances
of different types of players. To calculate which part of the performance may be attributed to skill and which to
chance, they include as a benchmark an informed hypothetical player who knows exactly which cards will be
drawn.

Perfect-information Monte-Carlo sampling (PIMC) introduced by Levy [447] is widely considered to be the best
algorithmic options for dealing with such imperfect information games. It has already been used in Ginsberg’s
popular Bridge-playing program GIB [294], and taken on to other trick-taking games like Skat [429, 273], or
Spades/Hearts [602]. An analysis of PIMC has been given by [456]. Counterfactual regret minimization [678]
is a powerful game-theoretical tool, but the search trees in trick-based card play are widely considered to deep,
for its application. For PIMC at each decision point to select a card, it evaluates a larger sample of the belief
space and calls a double-dummy solver for each of the worlds, followed by selecting the card with maximum
score.

Furtak [273] proposed recursive Monte-Carlo search to improve PIMC. Some limitations have been identified
for Bridge play as matters of strategy fusion and non-locality by [110], leading to the αµ search algorithms. The
main observation is that even if the full belief space would be sampled and analyzed, the individual searches
in PIMC may lead to contradicting card proposals. The main contribution of αµ is to increase the lookahead
(parameter M) in PIMC for a better exploration/exploitation trade-off. The increase in running time is reduced
by further pruning rules. In its nestedness the recursive strategy shares similarities with nested Monte-Carlo
search [105, 658] and nested rollout policy adaptation [545].



Chapter 14

Action Planning

Action planning is an act of general problem solving. Given a textual representation of initial state, goal condi-
tions and actions, the task is to find a plan in form of a sequence of action that solves the problem. As action
planners are often used as problem solving prototypes, good performance is crucial.

There are two successful approaches to planning, symbolic planning with BDDs to compactly represent and
explore sets of states, and explicit-state space search with domain-independent heuristics. The efficiency of
heuristic search planning crucially depends on the quality of the domain-independent search heuristic, while a
succinct representations of state sets in decision diagrams can save large amounts of memory in the exploration.
BDDA* —a symbolic version of A* search with BDDs— combines the two approaches into one algorithm.

We compare two leading heuristics for sequential-optimal planning: the merge-and-shrink and pattern
databases, both of which can be compiled into a vector of BDDs and used in BDDA*. The impact of opti-
mizing the variable ordering is highlighted and experiments on benchmark domains are reported.

Plan recognition is an inference process for generating and narrowing hypotheses. Cost-optimal abduction
drives the selection of hypotheses towards the ones with minimal costs. Abduction is inherently complex. We
describe solutions for overcoming the computational burden by exploiting a symbolic representation of state
sets. Given a model specified in PDDL-like syntax, we infer a discrete variable encoding of the domain and
study symbolic algorithms to compute cost-optimal hypotheses and according explanations.

14.1 Introduction

In1 cost-optimal deterministic action planning, symbolic planners with binary decision diagrams (BDDs) show
advantages to explicit-state heuristic search planners, suggesting that the structural savings for representing
and exploring large state sets in advanced data structures, sometimes exceed the increased quality of search
heuristics.

For the automated construction of search heuristics in BDD-based planning, symbolic pattern databases
(SPDBs) are the result of a complete (or partial) backward exploration of the concrete (or abstracted) state
space. They can be used in symbolic A* search, BDDA* for short.

The merge-and-shrink (M&S) heuristic is among the strongest estimates for explicit-state space planning. We
extract the M&S heuristic in form of an algebraic decision diagram (ADD). This allows us to enrich a symbolic
heuristic planner to exploit this expressive estimate. The precomputed ADD is converted to a vector of BDDs

1 This chapter is based on joint work with Álvaro Torralba, Vidal Alcázar, Peter Kissmann, Ionut Moraru, Santiago Franco, and
Moisés Martínez. It puts together and improves the work from [208, 618, 214, 481].
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and plugged into BDDA* for computing cost-optimal plans. It exactly matches the explicit-search M&S imple-
mentation and is applicable to all existing variants. We will also look at refinements to BDDA* and propose
List BDDA*, which exploits a list representation of the search frontier (rather than a matrix).

SPDBs perform surprisingly well compared to M&S. In the experiments the former computes the perfect heuris-
tic in more instances than the latter. In several cases, the construction does not even need to perform abstraction,
but resorts to (possibly truncated) backward search in the concrete state space. While the M&S heuristic is
strictly more informed than the PDB heuristic in case of explicit-state search, this is not necessarily true in
symbolic search. There are exponential gaps between the M&S and the PDB heuristics that fail to materialize
during a symbolic construction. Furthermore, we show that ADD reduction can yield smaller structures than the
one applied in the M&S abstraction. We will also see that the variable ordering in the two heuristics is a crucial
parameter to the exploration and produces outcomes of large variety.

The most expressive and flexible approach that has been applied to plan recognition is abduction. Abduction is
the process of finding the cause for a set of assumptions and a theory provided. It is commonly viewed as a form
of reasoning, allowing one to find explanations. In literature as well as in this text, the terms explanation and
hypothesis are often used interchangeably. However, we prefer the explanation to refer to the plan generated,
and the hypothesis to refer to the possible extensions for the assumptions made.

Of interest is the abductive inference of intended plans. Differently from the plan synthesis problem, in such plan
recognition problems, the recognizer is given a fragmented description of the problem and expected to refine it.
We concentrate on fully-automated plan recognition in form of plan hypotheses generation wrt a fixed domain
theory, a set of observations and a set of assumptions. Supervision via an assisted selection of hypotheses or
change in the cost-function is made available. Algorithmically, we apply symbolic abduction, where symbolic
refers to the use of efficient data structures for representing and operating on Boolean functions.

We also consider modeling and designing algorithms for the abuctive inference in planning problems. We ad-
dress the issues of computing all valid hypotheses, the uni- and bi-directional inferences of uniform-cost ab-
ductions, a setting that is then extended to cover cost-based abductive inferences. User supervision to manually
drive the selection of plan hypotheses is discussed next. As the set of abductive inference problems is small, in
the experiments we address modified planning benchmarks.

14.2 Symbolic Search

A planning task consists of variables of finite domain (so that states are assignments to the variables), an initial
state, the goal, and a finite set of operators (each being a pair of preconditions and effects). A well-accepted
input formalism is the problem domain description language (PDDL). A simple example of a propositional
planning problem domain is given in Programs 14.1 and 14.2.

In cost-based planning, operators are associated with action cost values that are integers (rationals can often be
scaled to integers). The task is to find a low-cost plan from the initial state to the goal. The plan is optimal if its
cost is smallest among all possible plans.
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Program 14.1: PDDL Domain.

(define (domain depressed)
(:requirements :typing)
(:types person names organ - object)
(:predicates

(name ?X - person ?N - names)
(has ?X - person ?O - organ)
(like ?X ?Y - person)
(bad-condition ?Y - person)
(irreplacable ?Y - person)
(pessimist ?Y - person)
(illness ?O - organ)
(heart-attack ?O - organ)
(depressed ?X))

(:action rule-1
:parameters (?X ?Y - person)
:precondition (and (like ?X ?Y)

(bad-condition ?Y)
(irreplacable ?Y))

:effect (and (depressed ?X)))
(:action rule-2
:parameters (?X - person)
:precondition (and (pessimist ?X))
:effect (and (depressed ?X)))
(:action rule-3
:parameters(?X - person)
:precondition
(and (exists (?O - organ)

(and (has ?X ?O) (illness ?O))))
:effect
(and (bad-condition ?X)))

Program 14.2: PDDL Problem.

(define (problem johnandmary)
(:domain depressed)
(:objects

j m - person
john mary - names
heart - organ)

(:init
(name j john)
(name m mary)
(has m heart)
(heart-attack heart)
(like j m)
(irreplacable m)
(pessimist j))

(:goal (and (depressed j))

Symbolic search uses an Open list that contains the states that have been reached but not expanded and a Closed
list that stores the states that have already been expanded. States are classified by the cost with which they have
been reached from the initial state of the search. Therefore, Open and Closed are lists of BDDs where Openi
and Closedi represent the sets of states reached or expanded with cost i, respectively. Closed is the set of all
expanded states. At each step, the algorithm expands the set of states with lowest g-value in Open that are not
yet in Closed, inserting them in Closed and all their successors in Open.

Bidirectional search performs a forward and a backward searches. The forward search starts at the initial state,
and advances towards the goal states. The backward search performs regression from the goal states towards
the initial one. The two searches are performed in an interleaved manner so that at each step the algorithm
decides whether to continue the backward or forward search. Newly generated states are compared with the set
of expanded states from the other search direction. In case of a match, a solution plan has been found, though it
is not necessarily optimal. Rather, it is necessary to continue until the plan is proved to be optimal.

In some domains, namely Parking and Tidybot, we the first backward step takes too long, so that the decision
whether to use bidirectional or unidirectional BFS could not be finished before the overall time ran out. In these
cases, the single images for all the actions were quite fast, but the disjunction took very long. Thus, during
the disjunction steps we entered the possibility to check whether too much time has passed. If it has we stop
the disjunctions and the planner only performs unidirectional BFS. This enabled us to find some solutions in
Tidybot. The problem here is that the goal description allows for too many possibilities, because variables from
only very few of the finite-domain variable groups are present.
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14.3 Heuristic Search Planning

A heuristic is a mapping from states to a natural number, and admissible if for all possible states the value is not
greater than the cost of an optimal plan. The finite domain variable encoding of the planning problem is often
referred to as SAS+ planning. A planning task abstraction is a planning task based on a mapping for the initial
state, goal state as well as the operators. We consider two heuristics based on abstraction.

14.3.1 Pattern Database

The pattern database (PDB) heuristic, inspired by a selection of tiles in the sliding-tile puzzle, has been extended
to the selection of state variables in other domains and in planning. More general definitions have been applied,
shifting the focus from the mere selection of finite-domain variables towards different state-space abstractions
that are computed prior to the search. A PDB stores the shortest path distance from each abstract state to the set
of abstract goal states.

Partial pattern databases truncate backward search at goal distance d, while assigning all remaining states the
heuristic value d + 1. As a slightly better estimate, we can take the minimum value of i+ j > d of the goal
distance i of a state within the PDB and cost j of an operator.

14.3.2 Merge-and-Shrink

The merge-and-shrink (M&S) heuristic is induced by a distance-preserving abstraction. The abstract state space
in this heuristic is built incrementally. The rough idea is that finite-domain variables are greedily chosen to
construct a larger state space by computing the (synchronous) product of the existing state space and the one
induced by the next finite-domain variable.

If the state space becomes too large pairs of states are unified (the alternative term merge conflicts with the name
of the heuristic as the step of merging the states is actually referred to as splitting, while the construction of the
product state space graph is referred to as merging). The approach is layered, so that the union of two state
sets is realized by changing the mapping from the state set in one layer to the state set in the next layer. There
are different strategies to compute the cross-product state spaces. Most current proposals work on a linear
arrangement, meaning that one variable is added at a time. Non-linear arrangements that combine arbitrary
disjoint variable support sets (limiting the size of the product space) are involved but may yield stronger union
operations.

The shrinking is based on the notion of bisimulation. Two states s and s′ are bisimilar if they are both goal,
or every planning operator leads to the same abstract state from both s and s′. If only bisimilar states are
aggregated, then M&S is perfect. The bisimulation shrinking strategy computes the coarsest bisimulation, and
in the shrinking step it aggregates only bisimilar (abstract) states. In most benchmark domains, however, coarsest
bisimulations are still large even under operator projection.

Greedy bisimulation is a relaxed variant of bisimulation, which demands the bisimulation property only for
transitions (s,s′), where the abstract goal distance from s′ is at most as large as the abstract goal distance from
s. This relaxation forfeits the guarantee of providing a perfect estimate.

Motivated by the size of bisimulations, a more approximate shrinking strategy builds the coarsest bisimulation
and keeps unifying states until the size limit M is reached. The latter may happen before a bisimulation is
obtained, in which case it loses information. The strategy attempts to make errors only in more distant states,
where the errors will hopefully not be as relevant.
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14.4 Symbolic A* Search

The main limitation for applying PDBs in search practice is the restricted amount of RAM. For the exploration
of large state spaces, symbolic search can save huge amounts of memory and computation time. State sets are
represented and modified by accessing their characteristic functions.

Decision diagrams are a memory-efficient data structure used to represent Boolean (or integer-valued) functions
as well as to perform set-based search, where the diagram represents all binary state vectors that evaluate to
certain values. More precisely, a BDD (an ADD) is a directed acyclic graph with one root and two (several)
terminal nodes, called sinks. Each internal node corresponds to a binary variable of the state vector and has two
successors (low and high), one representing that the current variable is false and the other representing that it
is true. For any assignment of the variables on a path from the root to a sink the represented function will be
evaluated to the value labeling the sink. Moreover, decision diagrams are unique by applying the two reduction
rules of (1) eliminating nodes with the same low and high successors and (2) merging two nodes representing
the same variable that share the same low successor as well as the same high successor.

In order to perform symbolic search we need two sets of variables, one (x) representing the current states and
another (x′) representing the successor states. To find the successors of a set of states S represented in the
current state variables given a BDD T for the entire set of actions (i.e., the transition relation) we use the
image operator, i.e., image(S,x) = ∃x.S(x)∧T (x,x′)[x′ ↔ x], where [x′ ↔ x] denotes the swap of the two sets
of variables. Similarly, we can perform search in backward direction by using the pre-image operator, i.e.,
pre-image(S,x′) = ∃x′.S(x′)∧T (x,x′)[x↔ x′].

Symbolic PDBs are PDBs that have been constructed symbolically as decision diagrams for later use either
in symbolic or explicit heuristic search. Their construction exploits that the transition relation is defined as
a relation. The savings observed by the symbolic representation are substantial for many planning domains.
Differently from the posterior compression of the PDBs, we work on compressed representation, allowing much
larger databases to be constructed. For such PDB construction, backward symbolic search is used. In the case
of partial PDBs, the construction is truncated at some fixed point in time. While this works in the concrete state
space, PDB construction usually takes place in abstract space, imposed by an abstraction function that often
projects some variables to don’t cares. The automated selection of variables is important for its success but
involved.

Algorithmically, we start with the abstract goal set and iterate to successively compute the pre-image. Each
state set in a layer is efficiently represented by a corresponding characteristic function. We may assume that
the variable ordering is fixed and has been optimized prior to the search. For a given abstraction function the
symbolic PDB Heur(value,x) is initialized with the projected goal. As long as there are newly encountered states
we take the current backward search frontier and generate the predecessor list with respect to the abstracted
transition relation. Then we attach the current BFS level to the new states, merge them with the set of already
reached states, and iterate. When action costs are integers this process can be extended from breadth-first to
cost-first levels, and it is possible to combine different symbolic heuristics by taking their maximum or by a
controlled combination of their sum. The variables encoded in value are often queried at the bottom or at the top
(in which case we obtain the equivalent to a vector of BDDs). For BDDA* it is more convenient to choose the
one where the heuristic relation is partitioned into Heur0(x), . . ., Heurk(x), with Heur(value,x) =

∨k
i=0(value =

i)∧Heuri(x).

BDDA* operates on a BDD priority queue Open. In case of discrete cost-values the Open sets can be represented
by BDDs. For the organization of the search that avoids BDD arithmetic, it is convenient to partition the state
space. As we aim at cost-optimal symbolic sequential planning, the matrix-based version of BDDA* works on
a partitioning of the search space in g- and h-values, where g is the cost of the path traversed so far and h is
the heuristic estimate on the cost to reach the goal. To guarantee optimal cost, BDDA* expands this matrix
along the f -diagonals with increasing g-values. The successors of the BDD Openg,h for a chosen transition with
cost c are unified with the BDD Openg+c,h′ , where h′ ∈ {0, . . . ,k} is the partitioning obtained by the heuristic
evaluation of the successor set.
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Figure 14.1: Illustration of Matrix BDDA* (left), and List BDDA*, cells are expanded in the order specified by the numbers, arrows
denote successor buckets.

14.4.1 Basic Improvements

The starting point for the IPC-7 winning planner SymBA* is the IPC-6 version of the planner Gamer. It applies
symbolic PDB construction (15 minutes) and BDDA* search (15 minutes) for cost domains or bidirectional
BFS (30 minutes) for unit-cost domains. If backward search takes too long, abstractions are applied, otherwise
a (partial) PDB in the concrete search space is constructed. If we compare the number of solved instances of
the domains with and without action costs the results are quite peculiar. For the domains without action costs
Gamer found only 36 solutions; only one participant was worse than that. For those with action costs Gamer
found 112 solutions; only four other planners were able to find more (with the maximum being 120). Based on
the results of the competition small improvements were implemented, which are as follows.

In the solution reconstruction for bidirectional BFS, Gamer supposed that at least one forward and at least one
backward step were performed. The two easiest problems of VisitAll require only a single step, so that the
solution reconstruction crashed.

In some cases, parsing the ground input took more than 15 minutes, so that actually no search whatsoever
was performed in the domains with action costs: At first, it was parsed in order to generate a PDB; this was
killed after 15 minutes, and then the input was parsed again for BDDA*. In the domains without action costs it
sometimes also dominated the overall runtime.

In the most complex cases, generating the BDDs for the transition relation takes a lot of time, as well. The
planner had to generate them twice in case of domains with action costs if it did not use the abstraction, once for
the PDB generation and once for BDDA*. Instead, we store the transition relation BDDs, the BDD for the initial
state and that for the goal condition on the hard disk; reading them on disk is often a lot faster than generating
them again from scratch.

While the original planner used bidirectional breadth-first-search (BBFS) for domains without action costs, we
tried running BDDA* in all cases, no matter if we are confronted with them or not. Thus, for the domains
without action costs we treated all actions as if they had a cost of 1. We call this implementation Matrix BDDA*
(see Figure 14.1, left).



14.5 Symbolic Merge-and-Shrink 263

Algorithm 14.1: List-BDDA*.
Input: A : finite set of operators, I : initial state, G : goal description.

c : A 7→ {1, . . . ,C}: action costs.
Heurh: heuristic (with h being the maximal heuristic value).
Ta: transition relation for operator a ∈A .

Output: cost-optimal plan.
Open0←I
for all f = 0, . . .

for all g = 0, . . . , f
h← f −g
S← Openg∧Heurh
if (h = 0) and (S∧G 6= 0) return ConstructSolution
for all i = 1, . . . ,C

Succi(x′)←
∨

a∈A ,c(a)=i ∃x . S(x)∧Ta(x,x′)
Openg+i← Openg+i∨Succi

14.4.2 List BDDA*

In Matrix BDDA*, all successors are classified according to their h-value by applying conjunctions with all
the heuristic BDDs. When the number of heuristic values grows, this can be inefficient, since some of these
conjunctions could be avoided.

The representation in the matrix can be simplified to the vector for the states in the Open list ordered along the
g-value. The reasoning behind this strategy is to defer the heuristic calculation by computing the conjunction
of the successor set with the heuristic estimate only when it is needed for expansion in the currently traversed
f -diagonal.

The pseudo-code of the resulting algorithm List BDDA* (see Figure 14.1, right). for non-zero cost operators is
shown in Algorithm 14.1. All inputs to the algorithm A ,I ,G ,c,Heurh,Ta are represented as BDDs.

It is simple to add duplicate detection to the algorithm using another set Closed for the set of expanded states.
The handling of zero-cost operators adds another BFS loop to the code as these operators are to be preferred in
the exploration. While Matrix BDDA* uses BFS to get the states reachable with zero-cost operators independent
of their actual h values, in the list version we apply a conjunction with the heuristic value to get only those states
in the current f -diagonal.

14.5 Symbolic Merge-and-Shrink

It is not difficult to observe that the precomputed memory structure of the M&S heuristic can be cast as a sym-
bolic representation of an integer-valued function. This function can be extracted in form of an ADD allowing
us to enrich a symbolic heuristic planner to exploit this expressive estimate. The precomputed ADD is converted
to a vector of BDDs and can be plugged into an optimal symbolic heuristic search planner.

Every intermediate abstraction corresponds to a layer in the ADD and each abstract state corresponds to an
ADD node. When a new variable is merged into the abstraction, every state is split into k states in the next
level, one for each value of the variable. ADD nodes representing the parent state are connected with the nodes
representing its successors. As M&S works with finite domain variables but the ADD is defined for binary
variables, each node with k successors is converted to a binary tree with lgk layers.

To compute the ADD of an M&S heuristic we start by generating the sink nodes associated with the different
heuristic values of the abstract states in the last layer. Then, recursively, nodes in the previous layer can be
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constructed pointing to the nodes in layers already computed. During the ADD construction we ensure the
application of the reduction rules, so that the size of the final ADD is usually smaller than the M&S heuristic
structure.

14.5.1 ADD Complexity

The symbolic ADD representation of the M&S heuristic can be computed in time and space O(nM), where n is
the size of the Boolean state vector and M is the pre-defined maximum number of states. Moreover, the repre-
sentation of the heuristic as a sequence of BDDs h0, . . . ,hmax can be computed in time and space O(hmaxnM).
The time and space complexities are implied by the maximum sizes of the state spaces for the construction of
the next-variable tables in the explicit search construction of the M&S heuristic. BDD reduction is a linear time
operation and only decreases the size.

The ADD sizes for the two M&S heuristics are shown in Table 14.1. For each domain we provide the number of
instances in which the heuristic computation was finished in 30 minutes as well as the sizes of the largest ADD
for each domain. Surprisingly the ADDs are small, especially for the greedy version of M&S, showing that not
much memory is spent once the ADD has been computed.

Table 14.1: Number of instances with M&S heuristic (#) and maximum number of ADD nodes over all instances (n) for all domains
of the sequential optimal track of IPC 2011.

M&S (gop’) M&S (gop)
Problem # n # n
Barman 20 177,294 20 45

Floortile 20 1,278,950 8 6,283
NoMystery 20 197,445 20 915

Parking 0 — 20 2,260
Tidybot 0 — 20 15
VisitAll 20 3,225,813 20 7,381

Elevators 20 62,594 0 —
Openstacks 20 102,486 4 134,780

PARC-Printer 19 4,606,533 20 11,788
Peg-Solitaire 20 42,170 0 —

Scanalyzer 16 356,698 6 29,921
Sokoban 20 1,339 1 33,525

Transport 20 257,898 20 753
Woodworking 20 248,263 20 439,489

14.5.2 Limits and Possibilities

In explicit search, the M&S heuristic strictly generalizes the PDB heuristic, as (with only merging) by computing
their synchronous product all pattern database heuristics based on projecting the variables can be constructed.
In some cases M&S can compute perfect heuristics in polynomial time, where PDBs cannot. The distinguishing
example is the Gripper domain.

In a symbolic setting, this reasoning, however, is no longer immediate. If all the variables are included in the
pattern, the original state space can be fully traversed resulting in the optimal heuristic.
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And indeed, the BDD exploration that computes the perfect heuristic in Gripper is polynomial. As the represen-
tational power of both alternatives is equivalent (an ADD for M&S and a list of BDDs for the symbolic PDB)
both approaches can potentially derive optimal heuristics in the same domains.

However, even if the M&S bisimulation gets the perfect heuristic, it does not always result in a reduced repre-
sentation of the ADD. First, we observe that for any (e.g., the perfect) heuristic – no matter how it is computed
– by the uniqueness property, the according ADDs (following the same variable ordering) have to be the same.
Secondly, we can construct an intuitive example, where shrinking is not able to compute the most reduced form
of the heuristic.

A

B D

C

G

p

¬p

p

¬p

p p¬p

Figure 14.2: Example of bisimulation. A, B, C, D and G are states in one level of the M&S process, while p and ¬p are variable
assignments that serve as a precondition of the according operators.

Figure 14.2 shows an example where there are not any bisimilar states. The transition labels have already
been reduced so that they refer to variables that have not yet been merged. In the example these labels are
preconditions and they only refer to a binary variable p. All the transitions have unitary cost and the goal is to
reach state G.

We say that two abstract states s and s′ are equivalent if and only if, for every value assignment to the variables
that have not yet been merged the goal distance remains the same. If two abstract states are equivalent, their
corresponding ADD nodes can be unified according to the ADD reduction rule (2). It is easy to see that states
A and B in the example are equivalent because in case that p holds both have a cost of 1, while if ¬p holds both
have a cost of 2. However, they are not bisimilar because B does not have any transition to state C. Obviously,
states C and D are not bisimilar, given that their transitions have different labels. Therefore, no pair of states is
reduced by bisimulation.

However, since in the end only the distance to the goal matters, those transitions that are not part of an optimal
path should not be taken into account. In the example, if the transition A→C is not necessary then A and B are
equivalent. Checking if a transition is necessary in any optimal path is not trivial as it needs to consider all the
combinations of values of the variables that have not been merged.

It is possible to extend the example by adding an exponential number of equivalent states that are not bisimilar
because they have different transitions that are not needed by any of their optimal paths. Therefore, this can
cause an exponential gap between the size of the intermediate abstraction and the final reduced heuristic.

On the other hand, symbolic backward search iteratively constructs the reduced BDDs for every cost. In the
absence of 0-cost actions, the intermediate BDDs are always fully reduced. Thus, in some domains the size
of the BDDs used by symbolic partial PDBs may be exponentially smaller than the M&S representation. The
counterpart is that these BDDs are computed with images of the transition relation, which in some domains may
be expensive.
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14.6 Comparison

We use two planners as the basis for the first experiments, namely Fast Downward (FD), offering the M&S
heuristic for explicit-state planning, and Gamer for executing symbolic heuristic search.

The software infrastructure is taken from the resources of the International Planning Competition. While in the
6th edition the BDD-based planner Gamer won the sequential optimal track, in the 7th edition explicit-state
heuristic search planners, especially portfolio planners took the lead. For the 8th edition, we implemented the
refinements in Gamer (Matrix BDDA* and List BDDA*) using the CUDD library of Fabio Somenzi. Time and
memory settings are the same as in the competition, other parameters of the computer are slightly different.

We experimented with two different configurations of the M&S heuristic, one using only greedy bisimulation
(gop) and one using DFP-gop (gop’). The M&S planner presented in the competition used these two strategies
serially, first the version with gop and afterward the one with DFP-gop. We decided to run both parts indepen-
dently to see how well we perform against a more traditional, i.e., non-portfolio, planner as well. The pattern
selection for symbolic PDBs is the same as that used by Gamer.

We look at two different variable ordering strategies used by the competition planners, the one applied in FD and
the one applied in Gamer. The FastDownward ordering looks at strongly connected components and weights of
the causal graph. Highly related variables are pushed to the top and goal variables are pushed to the bottom of
the ordering. The Gamer ordering also looks at the dependency of variables and is the result of a random local
search to improve the ordering by incrementally computing the optimization function ∑1≤i, j,≤n,(ui,v j)∈D(π(i)−
π( j))2, where π denotes the applied permutation and D denotes the set of the causal dependencies. Thus, highly
related variables are pushed to the middle of the ordering.

Table 14.2: Number of solved problems for all domains of the sequential optimal track of IPC 2011.

Domain FastDownward Ordering Gamer Ordering
Explicit A* Matrix BDDA* List BDDA* Explicit A* Matrix BDDA* List BDDA*
gop gop’ gop gop’ PDB gop gop’ gop gop’ gop gop’ PDB gop gop’ PDB

Barman 4 4 4 4 4 4 4 4 4 6 5 8 4 4 4
Floortile 3 7 3 7 12 3 7 3 4 3 4 9 3 4 8

NoMystery 13 20 14 20 16 15 20 13 12 14 17 14 13 18 13
Parking 7 0 3 0 0 3 0 0 0 0 0 1 0 0 1
Tidybot 13 0 6 0 6 6 0 13 0 9 0 8 6 0 5
VisitAll 13 11 5 5 12 12 12 11 9 11 10 11 11 10 11

Total (no-cost) 53 42 35 36 50 43 43 44 29 43 36 51 37 36 42

Elevators 0 11 0 16 19 0 16 6 12 6 14 19 5 17 19
Openstacks 4 16 4 15 14 4 15 5 16 4 20 20 5 20 20

PARC-Printer 11 14 8 11 7 10 11 11 12 8 9 7 10 7 8
Peg-Solitaire 0 19 0 19 19 0 19 0 19 0 19 17 0 19 17

Scanalyzer 6 10 6 9 9 6 9 3 8 3 8 9 3 7 9
Sokoban 1 20 1 13 12 1 12 3 20 2 18 19 2 18 19

Transport 6 7 6 7 9 6 7 6 6 6 6 7 6 6 8
Woodworking 9 6 6 5 5 10 7 9 9 6 8 16 13 12 16

Total (cost) 37 103 31 95 94 37 96 43 102 35 102 114 44 106 116
Total (all) 90 145 66 131 144 80 139 87 131 78 138 165 81 142 158

The results are shown in Table 14.2. All the small improvements in Matrix A* compared to Gamer helped
mainly in the domains without action costs. There we are now able to find the two trivial solutions in VisitAll,
in Barman we find eight solutions – twice as many as anyone else in the competition – in Parking we find
one solution and in Tidybot we increase the result to eight solutions. In the domains with action costs the new
parser helped us to find three additional solutions in the Scanalyzer domain. Overall, Matrix BDDA* solves
165 problems, which is 19 problems more than the competition version of Gamer.
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When comparing both implementations of BDDA*, List BDDA* improves the results when the M&S heuristic
is used but is worse than Matrix BDDA* with symbolic PDBs. As this happens only for unit-cost domains,
we have to further investigate its cause. It is possible that the BDD representation of all states that have been
visited becomes too big or that timing issues prevent the algorithm from solving the six problems. On the other
hand, explicit A* beats both BDDA* versions when using FastDownward ordering, but with Gamer ordering
the results are slightly better for BDDA*.

The symbolic PDB heuristic did not use abstraction in most of the domains. With Gamer ordering abstraction
is used in some problems of PARC-Printer, Parking, Sokoban and Tidybot. With FastDownward ordering ab-
straction is also used in Floortile and Openstacks. In all the other domains the heuristics were computed by
symbolic backward search until the all states had been reached or the time limit of 15 minutes had been expired.
The perfect heuristic was found for 70 problems when using Gamer ordering and for 60 with FastDownward
ordering.

The results are highly influenced by the choice of the variable ordering. Overall the FastDownward ordering is
better for the M&S heuristic, while Gamer’s ordering helps the symbolic exploration. Due to this, the integration
of symbolic search and the M&S heuristic is difficult because both have to use the same ordering.

The variable ordering matters not only for the kind of planner used but also for the domain it is used on. For
example, in Floortile, NoMystery, Parking, VisitAll, PARC-Printer, and Scanalyzer the FastDownward ordering
is better in most cases for all planners, while in Elevators, Openstacks, Sokoban, and Woodworking the Gamer
ordering is the better choice.

Overall, the best single planner is Matrix BDDA* using symbolic PDBs with the gamer ordering. However, as
the M&S heuristic takes less time, it is more suitable to be run more than once. Using the same configuration
as in the competition, FD with the M&S heuristic can solve 171 problems, two more than in the competition,
probably due to some bug fixes and performance boosts in that planner as well. Neither of the two versions took
more than 600s for any of the problems, so that a combination of both really is reasonable. The memory limit
of 6 GB is what prevents them from finding more solutions.

The 8th IPC included a temporal, a sequential, and an agile track, optimizing different criteria for plans (ac-
tion cost, CPU time and total-time). The PDDL input specification language has not been changed, but more
emphasis was given to conditional effects. Probably most exiting was the cost-optimal sequential planning
track, enforcing plans of minimal sum of action costs (see Figure 14.3). The top five performing planners were
SymBA*-2 (151 of 280 problems solved), SymBA*-1 (143), cGamer (120), SPM&S (114), RIDA* (113), and
Dynamic-Gamer (99). All but one of these systems exploit (reduced ordered) binary decision diagrams (BDDs)
for state-space traversal and heuristic guidance.

14.7 Complementary

The Complementary planner (1 & 2) uses pattern databases (PDBs). Recall, that a PDB is a heuristic function
in the form of a lookup table that contains optimal solution costs of a simplified version of the task. The planner
dynamically creates multiple PDBs, which are later combined into a single heuristic function. At a given itera-
tion, the method uses estimates of the search space size to create a PDB that complements the strengths of the
PDBs created in previous iterations.

The biggest difference to earlier work, which always started with smaller PDBs and used a priori time limits
to sequentially increase the PDB’s size limit, the applied method has no such schedule nor an initial bias.
Complementary uses the UCB1 bandit algorithm to learn which PDB sizes fits best the current problem given
the previously selected PDBs. Moreover, two seeding algorithms based on bin packing are studied, and we also
added a pattern generation algorithm based on Gamer. Finally, the code itself has been refactorized to ease the
addition of evaluation methods, generation methods and other alternative configurations.
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Figure 14.3: IPC-8 results.

CPC sequentially creates a set of pattern collections Psel for a given planning task ∇. Regular CPC starts with
an empty Psel set and iteratively adds a pattern collection P to Psel if it predicts that P will be complementary
to Psel. We say that P complements Psel if A∗ using a heuristic built from P ∪Psel explores a smaller search
space than when using a heuristic built from Psel. CPC uses estimates of A∗’s search space to guide a local
search in the space of pattern collections. After Psel has been constructed, all the corresponding PDBs are
combined with the canonical heuristic function.

An evaluation of the pattern selection scheme in different settings including explicit and symbolic PDBs showed
that combining symbolic PDB heuristics were able to outperform existing methods. Futhermore, it also showed
that CPC could create complementary PDBs to other methods. The best combination was using the method
to complement a symbolic perimeter PDB. The selected method to be complemented for this competition first
generates a symbolic PDB up to a time and memory limit. A maximum amount of BDD nodes in the perimeter
frontier was also used as a failsafe on the actual implementation (otherwise the code occasionally would get
stuck while generating the next step for the BDD generation). One advantage of seeding the algorithm with such
a perimeter search is that if there is an easy solution to be found in what is basically a brute-force backwards
search, we are finished before we even start finding complementary PDBs. If a PDB contains all available
variables, any optimal solution for such abstraction is also necessarily an optimal solution in the real search
space. In such cases we stop building the perimeter and simply return the optimal plan found.

For this planner, we have added two new seeding methods besides the perimeter PDB we collectively refer to
as bin-packing. The first one uses first-fit increasing (FFI) to try to find the smallest collection of PDB using
the bin packing principle. The second method uses first-fit decreasing (FFD) to do the same. Bin packing for
PDBs tries to create the smallest number of PDBs which uses all available variables. While reducing the number
of PDBs used to group all possible variables does not guarantee a better PDB, the less number of collections,
the less likely on average to miss interactions between variables due to being placed on different PDBs (The
packing algorithm used here ensures that each PDB has a least one goal variable and also that all variables in
a PDB are casually connected, on their own or through a chain of local variables, to at least one goal variable
in the PDB). PDB selection methods tend to suffer from diminishing returns, i.e., the more time invested using
a pattern generation method, the less likely it is to find a new improving one. Using different PDB generation
methods or varying their parameters, e.g. PDB size limits, is how we try to ameliorate diminishing returns.

If no solution is found after the perimeter PDB is finished, the method will start generating pattern collections
stochastically until either the generation time limit or the overall PDB memory limit are reached. CPC de-
cides whether to add a pattern collection to the list of selected patterns if it is estimated that adding such PDB
will speed up search. We used the stratified selection time prediction method to estimate this. When a pattern
collection is added, all its patterns are collected using the canonical combination method.
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We compared the pattern selection methods to the Gamer algorithm. Gamer is based on the idea of trying to
discover the single best possible PDB for a problem. Its pattern selection method can be summarized as an
iterative process, starting with all the goal variables in one pattern, where the casually connected variables who
would increase the most the average h value of the associated PDB are added to the Gamer pattern. We have
created a new Gamer-style pattern generation method which behaves similarly, more details on the next section.
This pattern selection method is intended to be complementary to the ones in the original CPC methods.

Once all patterns have been selected, the resulting canonical PDB combination is used as an admissible heuristic
in A* search for the sequential optimal track. A cost-bounded option was added, in form of a slightly modified
version of lazy greedy search. The modification is that instead of pruning all generated successor nodes whose
g value is above the bounded cost, we actually prune all nodes whose g+h values are above the bounded cost.
This is only guaranteed to keep solution cost at or below the bounded cost if the heuristic is admissible. Since
this is the case for the heuristic, there is no reason to take advantage of this.

This planner was not submitted for the satisficing planninng track due to the inherent incompatibility of the
heuristic and the track criteria. Generating large symbolic PDBs cost a significant amount of time. Finding which
patterns make good pattern collections is even more costly. In satisficing planning, the critical factor is finding a
solution as quickly as possible, and, hence, it is generally better using heuristics with small preprocessing costs.

14.7.1 Configuration Choices

For the 8th IPC in Complementary (1) the following list of changes to the base planner were made.

• Moving to a 64 bits build, due to the increase of memory limit on the IPC. This required doubling the
relevant PDB and overall memory limits.

• Using only symbolic (BDD-based, no explicit-state) PDBs.

• After the initial perimeter search was finished, two different bin-packing algorithms were run to generate
an optimized variable distribution to generate the PDBs: a) first-fit decreasing with a time limit of 50s
distributes the variables in different bins according to their size in bits (variables are initially shorted by
their size, then, the smaller variables are grouped in the first bins, while the bigger are grouped in the last
ones and sometimes on their own); b) first-fit increasing with a time limit of 75s distributes the variables in
different bins according to their size as the previous one but in this case the bigger variables are grouped in
the first bins while the smaller are grouped in the last ones. Empirical tests have shown first-fit increasing
to perform better on average.

• dropping stratified sampling, as for symbolic PDBs performance the method was no longer better.

• The planner applies the UCB1 algorithm to learn in situ which PDB size limits are likeliest to perfrom
better; UCB1 will change the recommended PDB size limits if diminishing returns become a significant
problem for a specific PDB size bracket. On the original version, fixed time limits were given to increase
the PDB size limit by an order of magnitude, potentially forcing the heuristic to keep trying a size limit not
justified by the problem data.

• The modified CPC algorithm decides on each iteration which pattern generation method to use. We use
UCB1 also to learn, whether to use the CBP generation method or the Gamer-inspired method. The Gamer
algorithm has a termination condition if no variable can be added to improve the average heuristic value
of the selected pattern. In this case, calling the Gamer generation method was stopped if no variable could
sufficiently increase the average heuristic value given the current time and size limits.

• The other pattern generation methods start from scratch, however, for the Gamer style pattern selection
method, the choice is always whether to add variables to the previously selected pattern. For the Gamer-
inspired pattern generation, we use the average heuristic values to decide whether the next iteration is
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improving the pattern. If no variable is found that sufficiently increases the average heuristic value of the
Gamer-style pattern, this method is dropped from the available pattern selection methods UCB1 can select
from. However, in terms of comparing the Gamer style pattern with the already selected patterns by CPC
we use the in situ probing mechanism based on problem data, in this case whether the size of the search
space is predicted to be reduced by adding the new Gamer style pattern.

• UCB1 has also been used to decide how many goal variables are present in a single pattern, while the
original CBP method was seeded by just one goal variable per pattern. We noticed that one of the reasons
Gamer does so well for some problems is that it starts with all the goal variables. For some problems,
missing even one goal variable in each pattern when using CBP has resulted in much lower accuracy.
UCB1 learns if this is the case in the current problem. As an added bonus, it increases the diversity of PDB
generation methods and, hence, hopefully ameliorate diminishing returns.

14.7.2 Results

We performed an ablation-type study to analyze which components worked best (Table 14.3, domain names
have been abbreviated).

Table 14.3: Coverage of Complementary1 Modules on the IPC-9 benchmark. Reg stands for all components active. “NoPer” stands
for perimeter PDB inactivated. “+BinPack” stands for using PDBs generated by bin packing generator. “CBP”, “Cgamer” and
“BinPackOnly” rows also have Perimeter inactive.

Domain/Method Agr Cal DN Nur OSS PNA Set Sna Spi Ter Total
Comp1/Reg 10 11 13 12 12 19 9 10 12 16 124

Comp1/NoPer+BinPack 10 12 14 14 12 16 9 12 11 16 126
Comp1/NoBinPack 6 11 13 14 12 19 9 11 11 16 122

Comp1/CBP+BinPack 8 12 14 13 12 18 9 11 11 16 124
Comp1/CBP-NoBinPack 6 12 14 13 12 18 9 9 11 16 120
Comp1/Gamer+BinPack 13 12 14 14 12 17 9 12 11 16 130
Comp1/Gamer-BinPack 8 12 12 16 12 18 9 14 11 16 128

Comp1/BinPackOnly 7 12 14 12 12 7 9 11 11 12 107
Solved by any of the Comp1 methods above

* 14 12 14 16 12 20 9 14 12 16 139
Competition result below included for Completeness
Comp1 10 11 14 13 13 17 8 11 11 16 124

In the competition, Complementary1 solved the same number of overall problems as Complementary2, how-
ever, their ablation studies are different. Table 14.3 shows the results with (Comp1/Reg) and without the initial
perimeter PDB (Comp1/NoPer), with and without the seeding bin packing generator and finally for each of the
individual packing method on their own (CBP, Gamer).

The biggest difference with Complementary2 is that dropping the initial perimeter PDB would have increased
the number of overall solved problems by 2 and, hence, would have tied with the competition winner in terms
of problems solved.

It was also surprising that the Gamer module, seeded by BinPack (Comp1/Gamer+BinPack), solved 4 more
problems than if we use the selection mechanism (Comp1/NoPer+BinPack) and would have actually won the
competition. This indicates that for some problems the best option was to keep growing the Gamer-style pattern
but instead CBP was selected (or we run out of time before we could grow the Gamer-style PDB to the same
size).

Finally, we also included the best possible results if we knew the best pattern generator method a priori for free:
139 problems are solvable using the right combination of generation methods, 15 more than with the chosen
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selection mechanism. Of course, this comparison is biased, i.e., when running the selection mechanism the
whole available time has to be split between the preferred pattern generators, while when picking the best out of
each methods, each of them had the whole generation time. This means the number of patterns tested is much
larger. It indicates, however, the potential of symbolic PDBs still have in competitive planning.

In the 8th competition the Complementary systems ended up as runners up, the winner solved 126 problems
while it solved 124. It was the best non-portfolio approach. A Gamer-style approach would have resulted in the
best overall results. This confirms that choosing the Pattern Generator is very much a question of which domain
is it to be used for.

Interestingly, when running each pattern generation method on its own, 15 more problems were solvable. Using
the two bin-packing generators to seed the heuristic proved useful. It improved the overall results for all the
methods we tested, even though the implementation for bin packing did not include any stochastic method.
Generally, the more diverse the pattern generators are, the more likely it is for one of them to find good pat-
terns. The preliminary results here seem to indicate that using bin packing techniques as pattern generators is
qpromising as a complement to CBP and Gamer.

Finally, it seems that using the UCB1 bandit algorithm to learn which PDB sizes fit the current problem best,
given the previously selected PDBs, has resulted in lowering the dependency on the perimeter PDB to obtain
best results, whereas in the old implementation dropping the perimeter results in solving 10 fewer problems.
Moreover, the bandit version solves more problems without the perimeter PDB, regardless of the combination
of pattern generators used.

14.8 Symbolic Abduction

In abduction, for a logical theory T and some manifestation M of a set of individual hypotheses, we are interested
in ∆ such that T ∪∆ |= M.

Driven by the success of recent BDD-based planning systems on international planning competitions the large
BDD compression ratios for many planning benchmarks, we aim at solving the abduction problem with BDDs
by embedding it into the planning domain definition language PDDL.

PDDL problems can be grounded using static analyzers that instantiate predicates, actions and fluents with all
possible instantiations of domain objects, yielding a (usually fully instantiated) initial state I, a set of operators
O, and a goal description G. Despite its binary representation for symbolic search, it is best to consider all states
and operators as sets. For example, set intersection matches Boolean conjunction, set complementation matches
Boolean negation, and set unification matches Boolean disjunction.

For abduction, we assume the domain theory T to be encoded in the planning operators O. In BDD terminology,
we construct a transition relation To, encoding all (predecessor, successor) state pairs valid under operator o∈O.
This yields the domain theory T =

∨
o∈O To. Logical subsumption φ |=T ψ inherits the semantics that there is a

sequence of operators applied to φ , which entails ψ .

For abductive inferences, again we assume a finite-domain variable planning task structure that static analyzers
in many planners induce as the basis. The information on mutual exclusion that is encoded in the finite domain
variable description belongs to the set of consistency condition provided to the abductive inference module.
In other words, we assume the manifestation to be separated in the set of observations G in form of a partial
description of the goal state, and the set of assumptions A in form of a partial description of the initial state. We
are interested in some hypothesis ∆ , such that A∪∆ |=T G.

Any aductive inference process partitions in two stages: (1) generating all, a subset of them, or only one hypoth-
esis, and (2) selecting the hypothesis that is best, which can be either automated wrt some optimality criterion,
or interactive by modifying the assumptions or the observations, in which case the abductive inference iterates.
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14.8.1 Computing Valid Hypotheses

The ultimate goal is to compute all valid hypotheses. Eiter and Makino generate all nontrivial explanations of a
Horn-CNF wrt some positive letter. For each generated hypothesis the algorithm is polynomial, but the number
of hypotheses can be exponential.

To compute all possible hypotheses ∆ , we first define the preimage of a state set States (on variable set x′) as

PreImg(States) =
∨

o∈O

(
∃x′.To(x,x′)∧States(x′)

)
[x↔ x′].

The suffix [x↔ x′] denotes that the state variable set is swapped after the operation. If Statesi denotes the
representation of the set of states in some backward breadth-first search (BFS) level i (minimal goal distance i),
then PreImg(Statesi) denotes the set of states in backward BFS level i+ 1. Moreover, the set of all states that
are reachable via pre-image is defined as

BackReach(States) = µX .PreImg(X)∨States(x′),

where µ denotes the fixpoint operator induced by repeated pre-image application. When initializing States
with goal condition G, with the above equation we compute all possible states that reach G, i.e., BackReach is
partitioned in BFS levels BackReachi, with BackReach0 =G, and BackReachi+1, is computed from BackReachi.
To guarantee termination of the exploration, it is recomended to subtract BackReach j from BackReachi+1 for
0≤ j ≤ i.

For a set of assumptions encoded as a formula A(x) the set of all valid hypotheses is now computed as

ValidHypotheses(G(x)) = BackReach(G(x))∧A(x),

i.e., the set of all possible states that can reach the observations and that satisfy the assumptions.

14.8.2 Uniform-Cost Abductive Inference

In the case of uniform-cost abductive inference, we follow the principle of Occam’s razor to compute the step-
minimal explanation. As an example, we take the case of John being depressed under the condition that his
girl-friend Mary has had a heart attack. The step-minimal explanation for him being depressed is that John is a
pessimistic person, but this is commonly interpreted as the unlikely explanation, given the evidence of Mary’s
illness.

Backward uniform-cost abduction is shown in Algorithm 14.2. It repeatedly applies preimages until the assump-
tions A are hit, inducing a plan to be generated (for the sake of simplicity, the test of termination for inconsistent
assumptions is not shown. It requires the maintenance of a closed list and leads to a full backward exploration
of the state space). In Min∧A there might be several valid minimum-step hypotheses. If A′ is one, then ∆ is the
completion to the set of assumptions already made.

As a feature of the algorithm, a prediction Γ to the set of observations can also be returned, by completing the
partial goal G to the complete one G′ as found through the construction of the explanation.

The advantage of BDD inference is that it is easy to invert the direction of chaining and compute the image of
some state set States as follows:

Image(States) =
∨

o∈O

(∃x.To(x,x′)∧States(x))[x′↔ x].
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Algorithm 14.2: Backward abduction on uniform cost problems.
Procedure Backward BDD-Abduction
Input: Uniform cost planning problem with theory

T =
∨

o∈O To, set of assumptions A⊆ AP,
and set of observations G

Output: Step-optimal explanation ∆ that is
consistent with A∧∆ |=T G

BackReach0(x)← G(x)
for each i = 0,1, . . .

Min(x)← BackReachi(x)
if (Min(x)∧ A(x) 6= false)

return ConstructExplanation(Min(x)∧ A(x))
Predl(x′)←

∨
o∈O(∃x′(Min(x′)∧To(x,x′)))[x↔ x′]

BackReachi+1(x)← BackReachi+1(x)∨Predl(x)

Algorithm 14.3: Forward abduction on uniform cost problems.
Procedure Forward BDD-Abduction
Input: Uniform cost planning problem with theory

T =
∨

o∈O To, set of assumptions A⊆ AP,
and set of observations G

Output: Step-optimal explanation ∆ that is
consistent with A∧∆ |=T G

ForwReach0(x)← A(x)
for each i = 0,1, . . .

Min(x)← ForwReachi(x)
if (Min(x)∧ G(x) 6= false)

return ConstructExplanation(Min(x)∧ G(x))
Succl(x)←

∨
o∈O(∃x(Min(x)∧To(x,x′)))[x↔ x′]

ForwReachi+1(x)← ForwReachi+1(x)∨Succl(x)

For abductive ineference the same (or an equivalent) minimal-cost plan can be obtained by chaining forward
from the set of assumptions to the observations. An according implementation is shown in Algorithm 14.3.

The problem here is that the hypothesis ∆ is not computed directly from the last set of states that has been
reached, as it was inferred in backward search. However, after having extracted the step-minimal explanation,
besides the set of actions, the set of states in the plan and especially the completion to A is also computed.

Having forward and backward inferences, it is also possible to operate bi-directional, reducing the complexity
of finding the smallest explanation drastically. A coarse argumentation is that bi-directional breadth-first search
with a goal distance d in a graph with uniform branching factor b (and no duplicate elimination) looks at 2bd/2

states, a number exponentially smaller than bd , the efforts for unidirectional BFS.

14.8.3 Cost-Optimal Abductive Inference

In many cases, the principle of Occam’s razor to compute the step-minimal explanation in abductive reasoning
is insufficient. In other words, the relevance of operators for the inference process is not uniform. We assign
costs cost(o), o ∈ O, denoting how important individual actions are (the higher the cost, the less important the
operator).
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(:action rule-1 :parameters (?X ?Y - person)
:precondition (and (like ?X ?Y) (ill ?Y) (irreplacable ?Y))
:effect (and (depressed ?X) (increase (total-cost) 3)))
(:action rule-2 :parameters (?X - person)
:precondition (and (pessimist ?X))
:effect (and (depressed ?X) (increase (total-cost) 10)))
(:action rule-3 :parameters (?X - person ?O - organ)
:precondition (and (has ?X ?O) (illness ?O))
:effect (and (ill ?X) (increase (total-cost) 1)))
(:action rule-4 :parameters (?O - organ)
:precondition (and (heart-attack ?O))
:effect (and (illness ?O) (increase (total-cost) 3))))

Figure 14.4: PDDL Actions for Example Domain.

As an example we once again take the case of John being depressed. Fragments of the PDDL model are shown in
Figure 14.4. If we assign costs to inference operators such as cost(rule1) = 3, cost(rule2) = 10, cost(rule3) = 1,
and cost(rule4) = 3 we get the cost-minimal explanation that John is depressed because of Mary’s heart attack.

Algorithm 14.4: Algorithm for cost-based backward abduction.
Procedure Backward Cost-based BDD-Abduction
Input: Cost-based planning problem with theory

T =
∨

o∈O To, set of assumptions A⊆ AP,
and set of observations G

Output: Cost-optimal explanation ∆ that is
consistent with A∧∆ |=T G

BackReach0(x)← G(x)
for each i = 0,1, . . .

Min(x)← BackReachi(x)
if (Min(x)∧ A(x) 6= false)

return ConstructExplanation(Min(x)∧ A(x))
for all l = 1 . . . ,C

Predl(x′)←∨
o∈O,cost(o)=l(∃x′(Min(x′)∧To(x,x′))[x↔ x′]

BackReachi+l(x)← BackReachi+l(x)∨Predl(x)

A pseudo-code implementation is given in Algorithm 14.4. The core difference to uniform cost abduction is that
the preimages of the transition relation are computed for each cost value l in 1, . . . ,C. Zero-cost actions can be
included by computing a transitive closure wrt all such actions before expanding a bucket.

Forward and backward induction simulate Dijkstra’s algorithm. Bidirectional search now faces the problem that
the first intersection of the search frontiers does not necessarily yield the minimum-cost solution. For such a
case, symbolic perimeter search is applied as follows. In a first phase we construct a perimeter database, storing
the backward layers up to some depth. This database then serves as a heuristic for guiding the search in forward
direction.

14.8.4 Manual Selection Strategies

Having computed at least one valid hypothesis, it is conceptually easy to generate the corresponding plan. The
simplest solution is to chain the sequence BackReachi down to BackReach0 backwards starting with a state in
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Algorithm 14.5: Bidirectional abduction with perimeter database.
Procedure Bidirectional Cost-based BDD-Abduction
Input: Cost-based planning problem with theory

T =
∨

o∈O To, set of assumptions A⊆ AP,
and set of observations G, backward layers BackReachi

Output: Cost-optimal explanation ∆ that is
consistent with A∧∆ |=T G

for all h ∈ {0, . . . ,maxh}
Open[0,h](x)← A(x)∧BackReachh(x)

for all f ∈ {0,1,2, . . .}, g ∈ {0, . . . , f}
Min(x)← Open[g, f −g](x)
if (Min(x)∧G(x) 6= false)

return ConstructExplanation(Min(x)∧ G(x))
for all i ∈ {1, . . . ,C}

Succi(x′)←∨
o∈O,cost(o)=i ∃x. Min(x)∧Transo(x,x′)[x↔ x′]

for all h ∈ {0, . . . ,maxh}
Open[g+ i,h](x)← Open[g+ i,h](x)∨

Succi(x)∧BackReachh(x)

the intersection and computing forward images of one selected state in BackReach j that is intersected with the
next state set BackReach j+1.

This explanation can be returned to the user who refines the result by either strengthening or weakening the
assumption A. Alternatively, he can simply reject the plan, giving rise to a Taboo list D that is subtracted from
the goal, i.e. setting G to G\D. Last but not least, we may allow him to eliminate the impact of certain operators
from the plan by rescaling their influence.

14.8.5 Finding Critical Query Variables

For an interactive fault diagnosis with a small number of queries, it is important to reduce the uncertainty in the
domain of the variables. One promising aspect is to query the variable that reduces the set of possible worlds by
the largest margin, by means that the set of satisfying assignments to the variables is minimal.

For the problem of finding the most critical variable in ValidHypothesis we exploit the fact that model counting
(the process of determining the number of satisfying assignments to a Boolean formula) in a BDD is efficient.
Hence for each finite-domain variable v and each possible assignment i in the domain Domain(v) of v we
determine ∑i∈Domain(v) ModelCount(ValidHypothesis∧ (v = i)) and take the variable for which this quantity is the
smallest.

14.9 Plan Recognition Experiments

For executing abductive reasoning we adapted the planner Gamer.

Grounding the planning domains yields a finite-domain variable encoding of the problems. The original results
of fully specified benchmark problems under closed world assumption (cwa), meaning that the parts not men-
tioned in the intial state are false, are compared to an open world (no cwa), meaning that the parts not mentioned
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Table 14.4: Results in Elevator.

cwa no cwa half init
cost steps back. forw. total cost steps backw. forw. total cost steps backw. forw. total

1 42 14 2:31 0:06 2:38 42 14 2:30 0:08 2:40 15 6 2:29 0:07 2:38
2 26 9 2:30 0:05 2:37 26 9 2:29 0:05 2:37 19 6 2:29 0:05 2:37
3 55 18 2:30 0:06 2:38 55 18 2:30 0:06 2:37 27 10 2:29 0:05 2:37
4 40 18 2:29 0:09 2:40 40 18 2:29 0:09 2:41 20 9 2:29 0:08 2:40
5 55 22 2:30 0:09 2:40 55 22 2:29 0:09 2:40 43 16 2:29 0:13 2:45
6 53 26 2:29 0:57 3:28 53 26 2:29 0:57 3:29 25 14 2:29 0:07 2:38
7 62 27 2:29 0:42 3:14 62 27 2:29 0:37 3:08 27 12 2:30 0:04 2:36
8 53 25 2:28 2:14 4:46 53 25 2:29 2:16 4:48 30 12 2:29 0:33 3:05
11 56 17 2:29 0:05 2:36 56 17 2:30 0:05 2:36 34 10 2:30 0:05 2:36
12 54 16 2:29 0:06 2:38 54 16 2:30 0:06 2:38 37 11 2:29 0:09 2:41
13 59 17 2:30 0:07 2:38 59 17 2:30 0:07 2:38 40 10 2:30 0:06 2:37
14 63 22 2:29 0:21 2:53 63 22 2:30 0:20 2:52 39 11 2:29 0:12 2:44
15 66 24 2:30 0:12 2:44 66 24 2:30 0:13 2:44 40 14 2:30 0:08 2:40
16 − − − − − − − − − − 43 15 2:28 2:16 4:48
17 − − − − − − − − − − 42 13 2:28 0:14 2:47
21 48 17 2:30 0:07 2:39 48 17 2:30 0:07 2:39 31 10 2:30 0:06 2:38
22 54 19 2:29 0:37 3:09 54 19 2:29 0:38 3:10 36 12 2:30 0:46 3:17
23 − − − − − − − − − − 39 15 2:29 0:18 2:49
24 56 24 2:29 2:10 4:42 56 24 2:29 2:12 4:44 − − − − −
25 63 27 2:29 0:57 3:29 63 27 2:29 1:00 3:32 43 20 2:30 2:28 5:00
26 − − − − − − − − − − 29 12 2:29 1:33 4:06

in the intial state are unknown. Then we omit every second fact in the initial state (half init), i.e., we eliminate
parts of the initial state (in an open world) in order to reconstruct it.

The abduction algorithm we chose was bidirectional cost-based BDD abstraction (Algorithm 14.5). The total
time bound was set to five minutes, from which we took at most 150s for backward perimeter construction and
the remaining time for forward search. In some domains (ParcPrinter, PegSolitaire, and Sokoban) dropping the
closed world assumption leads to empty plans (the intersection of the initial state with the goal states is not
empty), such that we dropped these examples from the presentation.

Table 14.4 shows the results in the Elevator domain. Here, we see that dropping the closed world assumption
has no effect. This is an immediate consequence of the fact that the initial state is fully specified with positive
literals. For a half-way specified initial state we see some advances. In some cases new problems could be
solved, in others the abductive inference is harder.

Table 14.5 depicts the results in the Openstacks domain. Here we see that abduction gets harder. This is due to the
fact that cost-based backward induction to construct the perimeter database does not provide any information,
as cost zero results in no information. The forward abduction phase thus degrades to uniform cost search.

Table 14.6 shows the results in the Transport domain. Here we have considerably larger costs than in the
previous ones. Table 14.7 gives the results in the Woodworking domain, showing a similar trend as the results
in the Transport domain.

14.10 Summary

Heuristic and symbolic search are two leading methods for sequential optimal planning. In this chapter we have
seen a comparison of two symbolic high-quality lower bounds for cost-optimal planning, namely the PDB and
the M&S heuristic. Surprisingly, the former performance was superior (if we stick to a single planner run).
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Table 14.5: Results in Openstacks (ADL).

cwa no cwa half init
cost steps back. forw. total cost steps backw. forw. total cost steps backw. forw. total

1 2 17 0:01 0:01 0:02 1 11 0:01 0:01 0:02 0 6 0:00 0:00 0:02
2 2 20 0:01 0:01 0:02 1 13 0:01 0:01 0:02 0 7 0:00 0:00 0:02
3 2 23 0:01 0:01 0:03 1 15 0:01 0:01 0:02 0 8 0:00 0:00 0:02
4 3 27 0:01 0:01 0:04 1 17 0:01 0:01 0:04 0 9 0:01 0:00 0:03
5 4 31 0:02 0:01 0:04 1 19 0:02 0:01 0:04 0 10 0:01 0:01 0:04
6 2 32 0:04 0:01 0:08 1 21 0:05 0:01 0:07 0 11 0:04 0:01 0:07
7 5 38 0:13 0:02 0:16 1 23 0:13 0:01 0:16 0 12 0:12 0:02 0:15
8 5 41 0:33 0:02 0:37 1 25 0:35 0:02 0:38 0 13 0:34 0:02 0:38
9 3 42 0:47 0:02 0:51 1 27 0:51 0:02 0:54 0 14 0:51 0:04 0:56
10 3 45 2:30 0:03 2:34 1 29 2:30 0:03 2:34 0 15 2:29 0:19 2:51
11 4 49 2:30 0:05 2:36 1 31 2:30 0:03 2:35 0 16 2:29 0:48 3:20
12 3 51 2:30 0:08 2:40 1 33 2:30 0:04 2:36 0 17 2:29 0:54 3:26
13 4 55 2:29 0:26 2:59 1 35 2:29 0:07 2:40 − − − − −
14 4 58 2:29 0:11 2:44 1 37 2:29 0:12 2:44 − − − − −
15 − − − − − 1 39 2:29 0:13 2:45 − − − − −
16 4 64 2:29 1:20 3:52 1 41 2:29 1:12 3:44 − − − − −
17 − − − − − 1 43 2:29 2:00 4:33 − − − − −
18 3 69 2:29 0:43 3:16 − − − − − − − − − −
19 4 73 2:29 2:21 4:54 − − − − − − − − − −
22 4 82 2:28 0:29 3:02 − − − − − − − − − −

Table 14.6: Results in Transport.

cwa no cwa half init
cost steps back. forw. total cost steps backw. forw. total cost steps backw. forw. total

1 54 5 0:01 0:01 0:04 54 5 0:01 0:01 0:02 52 3 0:01 0:01 0:04
2 131 12 0:10 0:02 0:12 131 12 0:10 0:02 0:12 98 8 0:11 0:02 0:13
3 250 17 2:30 0:08 2:40 250 17 2:30 0:08 2:40 88 7 2:30 0:07 2:40
4 318 22 2:29 1:08 3:42 318 22 2:29 1:12 3:45 170 13 2:29 0:47 3:21
11 456 9 0:01 0:01 0:03 456 9 0:01 0:01 0:03 243 5 0:01 0:01 0:03
12 594 16 0:54 0:05 0:57 594 16 0:54 0:05 0:57 264 8 0:59 0:05 1:02
13 550 21 2:29 0:25 2:58 550 21 2:29 0:25 2:58 294 11 2:30 0:38 3:11
21 478 7 0:00 0:00 0:02 478 7 0:00 0:00 0:02 160 3 0:00 0:00 0:02
22 632 12 0:13 0:03 0:16 632 12 0:15 0:03 0:17 431 8 0:15 0:03 0:17
23 630 17 2:30 0:09 2:42 630 17 2:30 0:10 2:42 265 7 2:30 0:09 2:41
24 614 19 2:28 0:53 3:26 614 19 2:28 0:57 3:30 231 9 2:29 0:13 2:47

The variable ordering for the M&S heuristic influences both the quality of the estimate and the symbolic explo-
ration. The heuristic choice applied in FD pleases the M&S heuristic, while the optimization applied in Gamer
pleases symbolic exploration. One could combine the two for a competitive BDDA* exploration with the M&S
heuristic. The small ADD sizes for the M&S heuristic suggest that there is sufficient memory for computing
the maximum of more than one heuristic (in ADD representation). This results in a consistent, strictly more
informed heuristic for the (BDD)A* exploration and provides a way of combining the accuracy of PDBs and
M&S heuristics. In many instances that are solved by BDDA* with PDBs no abstraction is applied, meaning
that blind symbolic backward search in the concrete state space is either finalized or truncated by the time limit.
As a consequence at least in domains where backward search does not explode immediately (due to illegal states
produced), bidirectional blind symbolic search is best.

Abductive reasoning selects hypotheses that explain the evidences best. It is of high relevance for AI, but –
due to its large complexity demands – received limited attention in the last decade. As computational power on
modern CPUs and planner technology have improved substantially, we showed a promising technique to com-
pute valid hypotheses time- and space-efficiently. The focus is the hypothesis generation problem. Moreover,
we discussed different options for interaction to overcome the limitations of Occam’s razor, including interac-
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Table 14.7: Results in Woodworking.

cwa no cwa half init
cost steps back. forw. total cost steps backw. forw. total cost steps backw. forw. total

1 170 9 0:01 0:01 0:04 170 9 0:01 0:01 0:04 75 5 0:02 0:01 0:04
2 185 9 0:04 0:02 0:07 185 9 0:04 0:02 0:08 135 8 0:05 0:02 0:08
3 275 18 1:07 0:07 1:17 275 18 1:02 0:08 1:12 80 8 1:11 0:04 1:17
4 − − − − − − − − − − 100 8 2:29 0:06 2:38
11 130 7 0:01 0:01 0:04 130 7 0:01 0:01 0:04 45 4 0:01 0:01 0:04
12 225 12 0:13 0:04 0:19 225 12 0:11 0:04 0:18 130 7 0:14 0:03 0:19
13 215 13 2:05 0:06 2:14 215 13 1:57 0:06 2:07 110 7 2:05 0:05 2:13
14 225 16 2:30 1:24 3:56 − − − − − 145 8 2:30 0:05 2:38
16 − − − − − − − − − − 120 8 2:29 0:14 2:47
21 95 6 0:01 0:01 0:04 95 6 0:01 0:01 0:04 35 2 0:01 0:01 0:03
22 185 9 0:04 0:02 0:07 185 9 0:04 0:02 0:07 105 5 0:04 0:01 0:07
23 195 13 0:23 0:03 0:28 195 13 0:23 0:03 0:28 95 7 0:26 0:02 0:30
24 245 15 2:29 0:14 2:47 245 15 2:29 0:19 2:51 145 7 2:29 0:05 2:38

tion based modified operator costs, altering the set of assumptions, maintaining tabu lists for goals and applying
model-counting. They all help to reduce the amount of uncertainty.

How much does such abductive planning differ from ordinary symbolic planning? Besides the initial state being
partial, there is not much change in the exploration algorithms. This is true, but it also highlights the advantage
symbolic has wrt explicit-state planning: the latter would have to enumerate all possible completions either for
the initial state in order to perform the inference process. Moreover, most existing explicit-state planning systems
are not cost-optimal. One difference between abduction and ATMS inference is that the latter logs justifications
to assignments to allow multiple fault analyses. From a logical perspective, abduction chains backwards in time,
from the set of observations towards the set of assumptions, while the inference in ATMS is multi-directional,
depending on the update to the set of assignments to an incident variable of a device, while propagating the
effects through the network.

14.11 Bibilographic Notes

Among the leading heuristics in AI planning are pattern databases, invented by [143] and applied to ac-
tion planning by [178]. Implicit pattern databases were studied by [388] while partial pattern databases
have been contributed by [17]. The automated selection of state-space abstractions has been considered
by [178, 180, 324, 402]. Planning pattern databases (PDBs) map the state space of a classical planning task
onto a smaller abstract state space by considering only a subset of the task’s variables, which is called a pat-
tern [143, 178]. The combination of several PDBs can result in better cost-to-go estimates than the estimates
provided by each PDB alone. One has combined multiple PDBs by taking the maximum [344, 33] or the
sum [253] of the PDBs’ estimates. In this chapter, we also considered the canonical heuristic function, which
takes the maximum estimate over all additive PDB subsets [324]. The challenge is to find a collection of patterns
from which an effective heuristic is derived.

Multiple approaches have been suggested to select good pattern collections [324, 180, 402]. One work showed
that using a genetic algorithm [180] to generate a large collection of PDBs and greedily selecting a subset of
them can be effective in practice [444]. However, while generating a PDB heuristic, Lelis et al.’s approach is
blind to the fact that other PDBs will be considered in the selection process. The proposed method, which we
call Complementary PDBs Creation (CPC), adjusts its PDB generation process to account for the PDBs already
generated as well as for other heuristics optionally provided as input.

Other state-of-the-art heursitics are LM-cut and Merge&Shrink. The Merge&Shrink planning heuristic has been
introduced by [333]. Further proposals for this heuristic improve its quality [495, 390] and outperform other
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state-of-the-art heuristics like LM-cut [332] in many benchmarks. Improvements based on bisimulation reduc-
tions can be found in [495]. Merge&Shrink was originally proposed in the context of directed model checking
[167, 168]. Some competitors combined multiple planners or heuristics, others used new methods like flow
heuristics, automated pruning via symmetries and partial-order reduction or incremental computation of LM-
cut [125].

The combination of symbolic exploration and A* search was shown to be effective [217] and SetA* [367].
Partitioned ways of computing the successor set were applied by [619] and mutex constraints were used to
simplify the problem and rule out illegal states by [616]. On top of these advances, the best planners had the
following ingredients: Gamer variants used symbolic bidirectional blind search: Dynamic-Gamer uses dynamic
variable reordering during the search [403] and cGamer extends Gamer with state-invariant constraints and
improved successor generation methods; SymBA* is a combination of forward and backward symbolic heuristic
searches and uses perimeter abstraction heuristics [162]. for the search frontiers to meet and to finally prove
optimality; SPM&S applies A∗ search with symbolic perimeter abstraction heuristics. It performs symbolic
regression to construct a perimeter around the goal, which is used to initialize a symbolic version of PDBs and
Merge&Shrink heuristics [620]; RIDA* is a non-symbolic planner that combines different heuristics, selecting a
subset of useful heuristics for each given problem [33]. Among other heuristics, such as LM-cut, it uses genetic
algorithms to generate a large set of PDBs [180].

BDDs go back to work by Akers and Bryant [89, 651], while ADDs were introduced by [31]. Theoretical results
on BDD in planning have been shown by [206]. BDDs are especially good in the construction of PDBs [178]
and related estimates [212]. They support breadth-first and cost-first search in both directions [402]. Algorithms
like BDDA* [217] use BDDs for the search and for the heuristic. Symbolic PDB heuristics [179] refer to
backward unguided exploration in abstract state spaces. Other heuristics like Merge&Shrink also enjoy a BDD
representation [213]. Minato et al. [477] have illustrated how to store several BDDs in a joint structure. One
of the most widely used BDD libraries CUDD is maintained by Fabio Somenzi. Many aspects to the theory
of decision diagrams have been given by Wegener [650]. BDDs are less compact than other structures like
d-DNNFs [147], but offer a unique representation of Boolean functions.

The planner Complementary is an updated and significantly modified version of [269].

Plan recognition problems have been addressed by means of different approaches. Dynamic Bayesian net-
works [12] have been applied in a multi-user dungeon game, and relational Markov models (RMM) [15] for the
recognition of user actions in adaptive web interfaces. Although these approaches have been successful even in
the face of noisy observations, their use is limited to specific areas of application. While Bayesian models sup-
port the representation of complex structural dependencies they lack the ability to represent relation properties
in terms of a RMM and vice versa. Otherwise, more expressive probabilistic representations naturally result in
a significant decrease in efficiency. In contrast, classification-based approaches (e.g., [361]) allow more expres-
sive/flexible representations, but are limited to domains with precisely given sets of possible plans/intentions
like, e.g., in American football.

Peirce [507] defines abduction as the process of finding the cause for a set of assumptions and a theory provided.
Its philosophical roots go back to Aristotle, while for AI [518] abduction is commonly viewed as a form of
reasoning, allowing one to find explanations [493].

For cost-based abdution using BDDs [386], in the logical context of propositional Horn clauses, the authors
compile a BDD for the theory. Each BDD variable corresponds to a different hypothesis. BDD edges are associ-
ated with costs, and additional consistency criteria lead to pruning of edges in the BDD. Satisfying paths in the
BDDs correspond to the set of possible hypotheses (0-Edges are neglected). As the BDD for the entire theory
may be too large, alternative data structures are proposed that handle inference rules lazily. (Cost-annotated)
Horn inferences are much more restricted than (cost-annotated) SAS+ planning inferences that are considered
here. While the former can be solved by variable substitution in the BDD, the latter requires exploration with
BDDs.

Especially when applied to business settings, checking for anomalies in a knowledge base becomes a very im-
portant task. The efficiency of labeling clearly depends on the compactness of the generated labels. As these may
require exponential size, with the exponent being in the depth of the rule sets, more efficient representations like
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BDDs are needed [615, 486]. Such symbolic approaches encode the system’s input in binary form and traverse
the rule base, thereby constructing the BDDs instead of labels that describe the in- and output dependencies of
the system, checking BDDs against each other and reporting any observed anomaly. Alternative compilations
of knowledge bases are possible [147].

In diagnosis, we are not only concerned with detecting errors, but additionally with explaining them. For mul-
tiple faults, assumption-based truth maintenance systems (ATMSs) have been suggested [265]. The model is an
undirected network with the edges labeled with discrete variables, whose values are of a certain range. Devices
in the network to be diagnosed propagate the information found at incident edges.

The importance of BDDs for covering the amount of uncertainty through compactly representing all possible
worlds is immediate [46]. Concise encodings exploit that usually sets of possible assignments to variables are
restricted to small ranges. Probing an edge is an assignment to a variable that reflects the background knowledge
received in an interaction with the user.

Abduction has taken on fundamental importance in AI [483] including planning [29], database updates [379],
text understanding [496], and others. Some diagnosis problems [265] may be solved with abduction, given that
the set of possible misbehaviors is encoded in the model.

One fundamental problem of abduction is its complexity. For logic-based abduction, Eiter [238] classified many
problems to lie in the second or third level of the polynomial hierarchy, while [95] proved the NP-hardness
for pure propositional problems to explain a set of data best. There is a balance between the flexibility in the
modeling language and the inferences that can be drawn. The problem of generating abductive explanations
is usually divided into two subproblems that can be addressed separately: 1) generating the set of all possible
explanations, and 2) selecting the most appropriate hypothesis among the set of possible explanations. Efficient
approaches to abduction are limited. A tractable solution to the generation problem is limited to Horn theories
and positive observation literals.

The second problem has been addressed in very different ways. The most widely used selection criteria is
Occam’s razor [612]. It states that for two explanations, the simpler one is preferable. A different domain-
independent criterion has been applied [493] in the domain of text understanding, the coherence metric. In
addition different domain-specific solutions have been proposed [20, 339].

The logic-based inference is first-order; it is computationally intractable [238]. Even for the propositional case
many problems like minimization are hard [95]. Abductive inference is not necessarily limited to logical rep-
resentations. For an overview see [505]. An inherent weakness of the logic-based approach to abduction is the
very specific interpretation of the logical implications. Abductive inference assumes that logical implication
encodes causal knowledge (relations). Although this property may hold in some scenarios (e.g., in diagnostic
domains) it is clearly not valid in general. As a consequence, abductive inference often leads to non-causal
explanations. We claim to overcome this problem. Instead of Horn or first-order logic programs as the basis
for backward inference, we chose PDDL as the modeling language, which is automatically converted to a plan
model with discrete state variables. Thereby, we obtain access to a wealth of planning benchmarks to be ex-
ploited for abductive reasoning. In contrast to many other approaches to logical abduction we do not address the
problem of hypothesis generation and hypothesis selection independently. Instead of calculating the set of all
possible explanations we directly calculate the best hypothesis. We apply Occam’s razor in form of cost-optimal
explanation as the fundamental selection criterion. The presented approach extends to domains-specific criteria
in terms of weighted abduction [20, 339].



Chapter 15

General Game Playing

In recent years, general game playing has received an increasing amount of attention. In general game playing
the agents are provided a description of a game according to certain rules and need to play it. General game
playing also allows us to express multi-player games and supports any number of participants. In case of multi-
player games, the agents often play against each other, while in case of single-player games one agent tries to
find a way to reach a terminal state where it can achieve the best reward possible. The authors of the agents
do not know which games will be played, so no domain-specific knowledge can be inserted. In general game
playing the players only get rewards for achieving goals: for each possible terminal state the player is awarded
points ranging from 0 (worst) to 100 (best).

Our first goal is to strongly solve the games, i.e., we want to find the outcome for each player in any reachable
state in case of optimal play. Using domain-dependent solvers, this has often been done in the past. One of
the most prominent results was that the outcome of American Checkers is a draw. Of course, without domain-
specific knowledge, we cannot expect to come up with solutions for such complex games in general game
playing.

We also present a full-fledged player for general games with incomplete information. To deal with uncertainty
we introduce a method that operates on sets of belief states. For searching for a set of belief states we present
depth-first and Monte-Carlo methods. All can be combined with any traditional general game player, e.g., using
minimax or UCT search.

15.1 Introduction

General1 game playing (GGP) urges the computer to process the rules of the game and start to play, thus
operating without including expert knowledge of the game that is played. In the context of International GGP
Competitions the rules are specified in a logical formalism, the game description language (GDL). The games
are played on a server, which connects with game playing agents via TCP/IP. After some startup time the game
starts and according to a playclock moves have to be issued. Moves are executed on the server and reported to
the players to continue. An example GDL domain description for TicTacToe is given in Program 15.1.

As randomness and handling incomplete information are necessities for playing many games (e.g., card games),
GDL has been extended to GDL-II (short for GDL with incomplete information). Even though benchmark
games can be played, some of their complexities, especially due to the additional efforts required to handle
incomplete information, do not match well with the ones that players can handle well. Players act in the so-
called belief state space and some assumptions of the current state might become invalid due to incoming
information provided by the server.

1 This chapter is based on joint work with Peter Kissmann and Tim Federholzner. It puts together and improves the work from [401,
401, 192].
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Program 15.1: GDL specification of the game TicTacToe.

(role xplayer) (role oplayer) ; names of the players

(init (cell 1 1 b)) ... (init (cell 3 3 b)) ; all cells empty
(init (control xplayer)) ; xplayer is active

(<= (next (cell ?m ?n x)) (<= (next (cell ?m ?n o)) ; effect of marking a cell
(does xplayer (mark ?m ?n))) (does oplayer (mark ?m ?n)))

(<= (next (cell ?m ?n ?w)) ; part of the frame (marked cells remain marked)
(true (cell ?m ?n ?w)) (distinct ?w b))

(<= (next (cell ?m ?n b)) ; part of the frame (untouched empty cells remain empty)
(does ?w (mark ?j ?k)) (true (cell ?m ?n b))
(or (distinct ?m ?j) (distinct ?n ?k)))

(<= (next (control xplayer)) (<= (next (control oplayer)); change of the active player
(true (control oplayer))) (true (control xplayer)))

(<= (legal ?w (mark ?x ?y)) ; possible move (empty cell can be marked)
(true (cell ?x ?y b)) (true (control ?w)))

(<= (legal xplayer noop) (<= (legal oplayer noop) ; if opponent active, no move
(true (control oplayer))) (true (control xplayer)))

; axioms for reducing complexity of description
(<= (row ?m ?x)

(true (cell ?m 1 ?x)) (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x)

(true (cell 1 ?n ?x)) (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x)

(true (cell 1 1 ?x)) (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x)
(true (cell 1 3 ?x)) (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x)) (<= (line ?x) (column ?m ?x)) (<= (line ?x) (diagonal ?x))
(<= (goal xplayer 100) (line x)) ; rewards for xplayer (oplayer analogously )
(<= (goal xplayer 50) (not (line x)) (not (line o)))
(<= (goal xplayer 0) (line o))

; terminal states
(<= terminal (line x)) (<= terminal (line o)) (<= terminal (not (true(cell ?m ?n b))))

15.2 General Game Playing

15.2.1 GDL

As the full description of syntax and semantics in GDL is involved, we prefer the following set-based definition
of a general game. A general game is a tuple of the form (P,S,s0 ∈ S,T ⊆ S,M,succ,reward), where

• P is the set of roles (the players),

• S is the set of all states,

• s0 is the (unique) initial state,

• T is the set of terminal states,
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• M is the set of moves,

• succ is a mapping M|P|×S→ S for the calculation of the successor states, and

• reward is a mapping P×T →{0, . . . ,100}, that defines the rewards of the player at the end of the game.

The difficulty of the Minimax-based approaches is to find a good evaluation function that will work well for any
game, as most games cannot be fully analyzed in the available time.

When a leaf node is reached in a UCT player it is expanded and a simple Monte-Carlo run is started, which
chooses the moves uniformly at random until a terminal state is reached. Afterward, the reward achieved at the
reached terminal state is propagated through the tree and the average rewards of all states expanded in the last
simulation run are updated accordingly.

15.2.2 GDL-II

Syntactically, GDL-II is a small extension. It mainly adds two predicates. The first one is an additional role in P,
called random. The other one is the predicate sees that defines the visibility of information to the players. While
before the players were informed of the moves that all participating players have chosen, in case of GDL-II the
players are informed only about what they can see. Nevertheless, the players should always be able to determine
the set of legal moves they currently may choose and when a terminal state has been reached.

Let us consider some fragments of a simple coin flipping example. At any time, the random player can only flip
two coins (see Program 15.2). The two possibilities are heads and tails. As it is the random player, we know
that it will choose each with the same probability.

Program 15.2: Legal moves of random in the coin flipping example.

(role random)
(<= (legal random (flip ?coin1 ?coin2))

(coin ?coin1) (coin ?coin2)
)
(coin heads) (coin tails)

If the coin shows heads and the player has chosen go, it is moving forward (cf. Program 15.3). However, if the
coin shows tails, the player is blocked and thus does not change the position. If it chose to stay, it also will stay
at the previous position.
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Program 15.3: Update of the positions of the players in the coin flipping example.

(<= (next (position white ?n2))
(does white go) (does random (flip heads ?other))
(true (position white ?n1)) (next_pos ?n1 ?n2)

)
(<= (next (position black ?n2))

(does black go) (does random (flip ?other heads))
(true (position black ?n1)) (next_pos ?n1 ?n2)

)
(<= (next (position white ?n))

(does white go) (does random (flip tails ?other))
(true (position white ?n))

)
(<= (next (position black ?n))

(does black go) (does random (flip ?other tails))
(true (position black ?n))

)
(<= (next (position ?r ?n))

(does ?r stay)
(true (position ?r ?n))

)

To determine if the own player (and the opponent) was able to move the observations are sent according to the
sees rule (cf. Program 15.4). This informs only about the results of the coin flip performed by the random player,
so that the actual position of the own player must be evaluated based on the performed moves, while that of the
opponent is unknown, as the player does not know if it chose to go or stay.

Program 15.4: The information the players see in the coin flipping example.

(<= (sees ?r (did random (flip ?coin1 ?coin2)))
(role ?r)
(does random (flip ?coin1 ?coin2))

)

As GDL-II search control heuristics there is a much wider spectrum of possibilities. One can maximize the own
flexibility, i.e., to prefer nodes with large branching factor, in order not to get stuck too quickly, or to minimize
the branching factor of the opponent. Such heuristics are to be implemented with care. While flexibility is often
good for games like Chess, in Checkers pieces are sacrificed too quickly. A better rule of thumb for GDL-II
games is to maximize the own knowledge and minimize the one offered to the opponents. But the former can
also lead to too many sacrifices like in Kriegspiel and the latter to avoid conflict that must be resolved. As with
the no-free lunch theorems in optimization there is hardly a heuristic that is effective for all games.

For symbolic search, we need BDDs to represent the initial state I , the terminal states T , the formula de-
scribing when the players get which reward R, as well as the moves M . Unfortunately, most games contain
variables, so that we do not know the exact size of a state, but this information is mandatory for BDDs. If we
perform some instantiation, we come up with a variable-free format. As all formulas are Boolean, generating
BDDs of these is straight-forward. Figure 15.1 shows BDDs for some of the utility functions needed to evaluate
the termination of Tic-Tac-Toe.

To decrease the number of BDD variables, we try to find groups of mutually exclusive predicates. For this we
perform a simulation-based approach that identifies the input and output parameters of each predicate. Often,
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input parameters denote the positions on a game board while the output parameters specify its content. Predi-
cates sharing the same name and the same input but different output parameters can never be true at the same
time and thus are mutually exclusive. If we find a group of n mutually exclusive predicates, we need only dlogne
BDD variables to encode these.

After instantiation, we know the precise number of moves of all the players and can also generate the possible
combinations of moves of all players, which results in M . Each move m ∈M can be represented by a BDD
transm, so that the complete transition relation trans is the disjunction of all these: trans :=

∨
m∈M transm.

To perform symbolic search, we need two sets of variables: one set, S, for the current states, the other one, S′,
for the successor states. To calculate the successors of a state set from, in symbolic search we use the image
operator:

image(from) := ∃S.
(
trans

(
S,S′

)
∧ from(S)

)
.

As these successors are represented using only S′, we need to swap them back to S.2 This way, if we start at the
initial state, each call of the image gives us an entire BFS layer. So, BFS is simply the iteration of the image,
until a fix-point is reached.

As the transition relation trans is the disjunction of a number of moves, it is equivalent to generate the successors
using one move after the other and afterwards calculate the disjunction of all these states:

image(from) :=
∨

m∈M
∃S.
(
transm

(
S,S′

)
∧ from(S)

)
.

This way, we do not need to calculate a monolithic transition relation, which takes time and often results in a
BDD too large to fit into RAM.

The inverse operation of the image is also possible. The pre-image results in a BDD representing all the states
that are predecessors of the given set of states from:

pre-image(from) := ∃S′.
(
trans

(
S,S′

)
∧ from

(
S′
))

.

With this, we can perform a BFS in backward direction as well.

15.3 Solving General Two-Player Turn-Taking Games

In this section we show an algorithm to solve general two-player turn-taking games symbolically with only
images and pre-images.

An existing approach works by using a 101×101 matrix M of BDDs. The BDD at M [i, j] represents the states
where player 1 can achieve a reward of i and player 2 a reward of j, i, j ∈ {0, . . . ,100}. Initially, all terminal
states are inserted in the corresponding buckets. Starting at these, the strong pre-image is used to calculate those
preceding states whose successors are all within the matrix and thus already solved. These predecessors are then
sorted into the matrix by using the pre-image from each of the buckets in a certain order.

The refined algorithm works in two stages. First, we perform a symbolic BFS in forward direction (see Algo-
rithm 15.1). Starting at the initial state, we calculate the successors of the current BFS layer by using the image
operator. In contrast to the existing approach where a BFS was used to calculate the set of reachable states, here
we retain only the BFS layers to partition the BDDs according to the layers the states reside in, hoping that the
BDDs will stay smaller.

2 We omit the explicit mention of this in the pseudo-codes to enhance readability. Whenever we write of an image (or pre-image),
we assume such a swapping to be performed immediately after the image (or pre-image) itself.
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Figure 15.1: BDDs for the three of the utility functions of Tic-Tac-Toe used in the terminal states. Each node corresponds to a
predicate (denoted on the left); solid edges mean that the predicate is true, dashed edges mean it is false. The bottom-most node
represents the 1-sink, i. e., all paths leading from the top-most node to this sink represent satisfied assignments. The 0-sink has been
omitted for better readability.

Algorithm 15.1: Calculate Reachable States (reach).
Input: General game description G .
Output: Maximal reached BFS-layer.
curr←I
l← 0
while curr 6=⊥ do

store curr as layer l on disk
prev← curr∧¬T
curr← image(prev)
l← l +1

return l

For the game TicTacToe, we start with the empty board. After one iteration through the loop, curr contains all
states with one x being placed on the board; after the next iteration all states with one x and one o being placed,
and so on.

Unfortunately, for the second step to work correctly, we need to omit duplicate detection (except for the one
that implicitly comes with using BDDs). The search will terminate nonetheless, as the games in general game
playing are finite but it might be possible to expand states more than once, if they appear on different paths in
different layers.

A question that immediately arises is, when will we have to deal with such duplicate states. To answer this, we
define a progress measure.

Let G be a general two-player turn-taking game and ψ be a mapping from states to numbers, i. e., ψ : S 7→ N.

If G is not necessarily alternating, ψ is a progress measure if ψ (s) < ψ (s′) for all (s,s′) ∈M . It is an incre-
mental progress measure, if ψ (s) = ψ (s′)−1.
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Algorithm 15.2: Solving general two-player games.
Input: General game description G .
l← reach(G )
while l ≥ 0 do

curr← load BFS layer l from disk
currTerms← curr∧T
curr← curr∧¬currTerms
foreach i, j ∈ {0, . . . ,100} do

termsl,i, j ← currTerms∧Ri, j
store termsl,i, j on disk
currTerms← currTerms∧¬termsl,i, j

for each i, j ∈ {0, . . . ,100} do in specific order
succ1← load termsl+1,i, j from disk
succ2← load rewardsl+1,i, j from disk
succ← succ1∨ succ2
rewardsl,i, j ← curr∧pre-image(succ)
store rewardsl,i, j on disk
curr← curr∧¬rewardsl,i, j

l← l−1

Otherwise, ψ also is a progress measure, if ψ (s) = ψ (s′) < ψ (s′′) for all (s,s′) ∈M1 and (s′,s′′) ∈M2. It is
an incremental progress measure, if ψ (s) = ψ (s′) = ψ (s′′)−1.

Next we see, that whenever there is an incremental progress measure ψ for a general game G , no duplicate
arises within the different layers found by Algorithm 15.1.

We need to show this for the two cases:

If G is not necessarily alternating, all states within one layer have the same progress measurement but a different
one from any state within another layer. This can be shown by induction: The first layer consists only of the
initial state. Let succ(s) be the set of successor states of s, i. e., succ(s) = {s′|(s,s′) ∈M }. According to the
induction hypothesis, all states in layer l have the same progress measurement. For all states s in layer l and
successors s′ ∈ succ(s), ψ (s′) = ψ (s)+ 1. All successors s′ ∈ succ(s) are inserted into layer l + 1, so that all
states within layer l +1 have the same progress measurement. It is also greater than that of any of the states in
previous layers, as it always increases between layers, so that it differs from the progress measurement of any
state within another layer.

Otherwise, the states within any succeeding layers differ, as the predicate denoting the active player has changed.
Thus, it remains to show that for all s,s′ ∈S , s1 ∈S1 and s2 ∈S2, ψ (s) = ψ (s′) if s and s′ reside in the same
layer and ψ (s1) = ψ (s2) if s1 resides in layer l and s2 resides in layer l + 1. For all other cases, the progress
measurement of any two states does not match. The proof is very similar: The first layer consists only of the
initial state. All successors of this state reside in the next layer and their progress measure equals, according to
the definition of ψ . Let l be a layer that contains only states from S1. According to the induction hypothesis, all
states in this layer have the same progress measurement. For all states s in layer l and successors s′ ∈ succ(s),
ψ (s) = ψ (s′). All successors s′ are inserted into layer l + 1. For all states s′ in layer l + 1 and s′′ ∈ succ(s′),
ψ (s′′) = ψ (s′)+ 1. All successors s′′ ∈ succ(s′) are inserted in layer l + 2, so that all states within layer l + 2
have the same progress measurement. It is also greater than that of any of the states in previous layers, as it
never decreases, so that it differs from the progress measurement of any state within different layers.

Note that in games that do not incorporate an incremental progress measure we need to expand each state at
most dmax times, with dmax being the maximal distance from the initial state to one of the terminal states. This
is due the fact that in such a case each state might reside in every layer.

Once all BFS layers are calculated we can start the second stage, the actual solving process, for which we
perform a symbolic retrograde analysis (see Algorithm 15.2). We start at the last generated BFS layer l and
move upwards layer by layer until we reach the initial state (l = 0).
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Figure 15.2: Order to traverse the reward combinations.

For each layer we perform two solving steps. First, we calculate all the terminal states that are contained in this
layer. For these we then determine the rewards that the players get and store them in the corresponding files. As
each player achieves exactly one reward for each possible terminal state, no specific order is needed in this step.

In the second step, we solve the non-terminal states. For this, we need to proceed through all possible reward
combinations in a specific order. This order corresponds to an opponent model. The two most reasonable as-
sumptions are that an agent either wants to maximize its own reward or to maximize the difference to the
opponent’s reward. The order, in which these reward combinations are processed, is indicated in Figure 15.2.
For the experiments we assumed both players to be interested in maximizing the difference in the opponents’
reward.

We load the BDDs representing the states that are terminal states or solved non-terminal states in the successor
layer for which the players can surely achieve the corresponding rewards. From the disjunction of these we
calculate their predecessors (using the pre-image). These states achieve the same rewards (in case of optimal
play according to the opponent model) and thus can be stored on disk and must be removed from the unsolved
states to prevent them from being assigned other rewards as well.

For the game Tic-Tac-Toe we start in layer 9, where all cells are filled. All these states are terminal states, thus
we can solve them immediately by checking the rewards. Thus, we partition this layer into three parts: Those
states where xplayer gets 100 points and oplayer 0 (a line of xs was established), those with the inverse score
(a line of os was established), and those with 50 points for each player (no line for any player).

In the next iteration, we reach those states where four xs and four os reside on the board and the xplayer had
control. First we remove those states containing a line for one of the players, as these are the terminal states,
and solve them according to their rewards. Next, we check how to solve the remaining states. Thereto, we load
the terminal states from layer 9 where the xplayer achieved 100 points, calculate their predecessors and verify
if any of these predecessors is present in the set of the remaining states. If that is the case, we can remove them
and store them in a file that specifies that the xplayer achieves 100 points and the oplayer 0 points for these
states as well. In the Tic-Tac-Toe example, these are all the states where the placement of another x finishes a
line. All the remaining states are draw states (as the xplayer can only place an x on the board and thus never
finish a line of os).

The presented algorithm is correct, i.e., it determines the game theoretical value wrt the chosen opponent model.
The correctness of the forward search comes immediately from the use of a BFS. We generate all reachable
states, no matter if we remove duplicates or not.

For the second stage, we need to show that all states are correctly solved according to the opponent model. We
show this using induction. We start at the states in the final layer, which we immediately can solve according
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Table 15.1: Results of solving two-player turn-taking games.

Game Optimal Outcome
Catch a Mouse 100/0

Chomp 100/0
Clobber 3×4 0/40
Clobber 4×5 30/0

Connect 4 (5×6) 50/50
Cubi Cup 5 100/0

Nim 100/0
Number Tic-Tac-Toe 100/0

Sheep and Wolf 0/100
Sum 15 50/50

Tic-Tac-Toe 50/50

to their corresponding rewards. When tracing back towards the initial state, the terminal states again are imme-
diately solvable by their rewards. The most important observation is that due to the construction, non-terminal
states have successors only within the next layer. All states within this layer are already solved. If we check if a
state has a successor achieving a certain reward and look at the rewards in the order according to the opponent
model, we can be certain that all states within the current layer can be solved correctly as well.

Note that if we removed the duplicate states within different layers, we would reach states whose successors are
not in the next layer but in some layer closer to the initial state and thus not solved yet, so we could not correctly
solve such a state when reaching it for the first time.

Some games are not strictly alternating, i. e., a player might perform two or more consecutive moves, so that
both players can be active in different states within the same BFS layer. To handle this, we split the second
step of Algorithm 15.2 in two and perform this step once for the states where the first player was the active one
and once for the second player. Note that both players go through the possible reward combinations in different
orders, thus it is not possible to combine these two steps. Instead, we have to solve the states once for one player,
store the result on disk, solve the remaining states for the other player, load the previous results, calculate the
disjunction, and store the total result on disk. The order in which the two players are handled is irrelevant, as
there is no state where both players are active.

For Clobber we specified rewards dependent on the number of pieces left on the board, so that we came up with
general rewards, while the other games are all zero-sum games.

The runtime results for the new approach as well as the existing one are compared in Table 15.1. From this we
can see that for the small games such as Tic-Tac-Toe or Sum 15 the new approach does not lose much, although
all results are stored on the hard disk. Omitting this in the cases where all BDDs easily fit into RAM, however,
would speed up the search.

For two slightly larger games, namely Chomp and Nim, the new approach is slower than the old one. This is due
to the fact that for these games there is no incremental progress measure, so that we generate duplicate states in
different layers and expand them several times. This results in more BFS layers (56 layers with 162,591 states
opposed to eight layers with 25,734 states for Chomp and 63 layers with 1,866,488 states opposed to five layers
with 129,776 states for Nim), which in turn results in more effort during the solving stage.

For the larger games the refined algorithm clearly outperforms the existing one. In all these games, an incre-
mental progress measure can be found explicitly (e. g., a step counter in Catch a Mouse) or implicitly (e. g., the
number of stones removed from the board in Clobber). Sheep and Wolf is the only game we solved, for which
the second definition of the incremental progress measure is needed: Whenever the wolf moves, the progress
does not increase, while the sheep can only move forwards. Thus, the sum of the rows of the sheep is a possible
incremental progress measure. Due to the partitioning according to the layers, the BDDs stay smaller, and the
image thus can be calculated faster. We also save time as we do not need to calculate the strong pre-images.
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Algorithm 15.3: Finding all belief states.
Input: General Game, set of belief states of last step BSi−1, set of

observations of last step Obsi−1.
Output: Set of belief states of this step BSi.
BSi← /0 for all bs ∈ BSi−1 do

determine all possible joint moves JM
for all jm ∈ JM do

Obs′← observe(bs, jm)
if Obs′ = Obsi−1 then

bs′← succ(bs, jm)
BSi← BSi∪bs′

return BSi

15.4 Handling Incomplete Information

When playing incomplete information games, a player is confronted with the problem that it does not know the
precise state. A first idea to get as much information as possible concerning the current state might be to evaluate
all the observations based on the sees rules it has received during play. However, evaluating the corresponding
rules is expensive and often does not yield enough information.

Another approach is to handle sets of belief states. A belief state is a state that might be true in the current state,
but we do not know which of the entire set of belief states is the current state. We follow two approaches: First,
to always store the full set of belief states, and second to store only a subset of the belief states and update it
after a move or whenever we find that some belief state cannot hold anymore.

15.4.1 Full Set of Belief States

At the beginning of each playing phase, we must generate the new set of belief states BSi based on those of
the previous step BSi−1 (cf. Algorithm 15.3). For each belief state bs ∈ BSi−1 we determine all the moves of all
other players –we of course know our own move– and calculate all possible joint moves JM. At first, for each of
these joint moves we check if the observations we would have achieved if these were the actual moves played
equal those we did receive (Obs). If they do we know that this joint move was possibly performed, so that we
calculate the corresponding successor state bs′ and add it to BSi.

While at first glance it seems great to have the full set of belief states to enhance the performance of the player,
it comes at a great cost. Take the game of Poker with three players. Each player knows only the five cards it
owns, so that there are

( 47
5,5,37

)
= 1,304,872,821,252 possible states. Storing all of these and efficiently operating

on them is very expensive and the calculation of the next move might take more than the available play clock.
Thus, for more complex games it seems better to store only a subset of all belief states.

15.4.2 Subset of Belief States

If we do not want to store the full set of belief states, we need to store a tree that allows us to find new belief
states when we have to discard impossible ones. We call this tree the belief state tree. Each node of the belief
state tree corresponds to a belief state, each edge to a joint move. For each node of legal belief states, we store
the full set of possible successor belief states. These can have three values.
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Algorithm 15.4: Depth-First Belief State Search (DFBSS)
Input: General game, belief state tree BST , set of observations of all steps Obs,

current step i, size of belief state set size.
Output: Updated belief state tree BST , current set of belief states BS′i.
layer← 0
bs← root(BST)
BS′i← /0
while |BS′i|< size or not (hasMoreLegalSuccs(root(BST))
or hasUnknownSucc(root(BST))) do

jm← jointMoveTo(bs)
if isUnknown(bs) then

Obs′← observe(bs, jm)
if Obs′ = Obslayer then

markLegal(bs)
else

markIllegal(bs)
bs← parent(bs)
layer← layer−1

if isLegal(bs) then
if layer = i then

BS′i← BS′i∪bs
else if hasMoreLegalSuccs(bs) then

bs← nextLegalSucc(bs)
layer← layer+1

else if hasUnknownSucc(bs) then
bs← firstUnknownSucc(bs)
layer← layer+1

else
if allSuccsIllegal(bs) then

markIllegal(bs)
bs← parent(bs)
layer← layer−1

return BST , BS′i

legal We have evaluated that belief state and found that the observations we get when performing the ingoing
joint move equal those we really observed.

illegal We have evaluated that belief state and either the observations when taking the joint move leading to
it do not match the real ones or all its successors are marked as illegal.

unknown We have not yet evaluated that belief state and thus do not know if it is legal or not.

In order to find a subset of the possible belief states after a move was performed, we distinguish two approaches,
one based on depth-first search, which we call depth-first belief state search (DFBSS), and the other based on
random choice, which we call Monte-Carlo belief state search (MCBSS).

15.4.2.1 Depth-First Belief State Search (DFBSS)

Starting at the root of the belief state tree, i.e., layer 0, we continue in a depth-bounded DFS manner until either
the current layer i contains the desired number of belief states (size) or the full tree has been evaluated (cf.
Algorithm 15.4).

When we reach a node with unknown value, we evaluate it. If it is legal, we continue further along that node.
Otherwise, we mark it as illegal and continue with its siblings.
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Algorithm 15.5: Monte-Carlo Belief State Search (MCBSS)
Input: General game, belief state tree BST , set of observations of all steps

Obs, current step i, size of belief state set size.
Output: Updated belief state tree BST , current set of belief state BS′i.
layer← 0
bs← root(BST)
BS′i← /0
while |BS′i|< size do

jm← jointMoveTo(bs)
if isUnknown(bs) then

Obs′← observe(bs, jm)
if Obs′ = Obslayer then

markLegal(bs)
else

markIllegal(bs)
while isIllegal(bs) do

bs← parent(bs)
if allChildrenIllegal(bs) then

deleteAllChildren(bs)
markIllegal(bs)

bs← root(BST)
layer← 0

if layer = i then
BS′i← BS′i∪bs
bs← root(BST)
layer← 0

else
bs← randomSucc(bs)
layer← layer+1

return BST , BS′i

When we reach a node representing a legal belief state we continue either to the first legal successor we have
not visited in this search, or –if there is none– to the first successor with unknown value.

Upon reaching the current layer and evaluating the reached belief state as legal we store it in BS′i and continue
with its siblings.

15.4.2.2 Monte-Carlo Belief State Search (MCBSS)

A disadvantage of DFBSS is that it often has to evaluate large parts of the belief state tree. Especially when at
some layer there were more belief states than we want to store and later a layer is reached where the full set of
belief states is reduced so that it does not contain more than the number we wish to store anyway, DFBSS has
to search the entire tree. Thus, the main bottleneck of DFBSS in practice is that it still is too slow. To overcome
this problem, we use Monte-Carlo search in the belief state tree (cf. Algorithm 15.5).

Instead of performing depth-first search here we use several Monte-Carlo runs, each starting at the root node.
When a state is reached that is marked as legal, we randomly choose one successor and continue from that. If
a state with unknown value is reached, we must evaluate it. If it is illegal we mark it as such and recursively
remove it and its predecessors if those now only have illegal successors. Afterward we restart at the root node.

The algorithm stops when the specified number of belief states (size) is found. Note that these states do not
have to be different: otherwise, we might run into the same problem as with DFBSS, because we would have to
evaluate the entire belief state tree if the full set of belief states is smaller than size.
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While in most cases the MCBSS approach is a lot faster than the DFBSS approach, the memory consumption
tends to be greater. In DFBSS only those nodes leading to legal belief states in the current layer remain, while in
MCBSS we often store paths that are not fully evaluated to the current layer but rather ended in one state being
illegal.

15.4.2.3 Weighted MCBSS

A problem of MCBSS (as well as DFBSS) is that the subset of belief states for the current step BS′i does not
necessarily contain the true current state. Furthermore, it might even be that all the states in BS′i share only very
few fluents with the true state.

To overcome this problem, we can use the rules for determining the opponents’ rewards. The (average) rewards
determined for the various belief states are stored together with the belief states within the belief state tree.

Instead of choosing a successor node uniformly at random, weighted MCBSS uses weighted probabilities. Thus,
a belief state with higher stored reward values for the opponents will be chosen with higher probability than one
with lower reward values. The idea here is that the opponents would typically perform a move that will ensure
a higher reward in the end. The probability to choose a move is given by

P({m1i1 ,m2i2 , . . . ,mpip) =
p

∏
k=1

estimatedReward(mkik)

∑
nk
j=1 estimatedReward(mk j)

,

with p being the number of players, mkik the move chosen by player k, estimatedReward(mkik) the estimated
reward for player k when choosing move mkik , and nk the number of possible moves of player k. Note that for
us the chosen move is known, so that, assuming we are player x and have chosen the yth move, the estimated
rewards for our moves can be set to 1 for move mxy and to 0 for all moves mxz with z 6= y.

15.4.3 Choosing a Move for a Set of Belief States

No matter if we manage the full set of belief states or only a subset, each belief state of the set can be seen as a
classical GDL game and thus be handled by classical GGP approaches such as minimax or UCT.

To determine which move to choose the results of the games must be combined. For a minimax-based approach
it is the move maximizing

eval(m) =
∑bs∈BSi reward(bs,m)

|BSi|
,

with m being a legal move and reward(bs,m) the estimated reward for move m in belief state bs.

For a simulation-based approach the same function might be used. However, it is possible to improve by inte-
grating the number of simulation runs into the evaluation:

eval(m) =
∑bs∈BSi reward(bs,m)×N(bs,m)

∑bs∈BSi N(bs,m)
,

with N(bs,m) being the number of times move m was evaluated in belief state bs.

In other words, the evaluations are weighted by their reliability. The results that were evaluated more often are
weighted higher than those evaluated only rarely.
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15.5 Experiments

Not many GDL-II games incorporating incomplete information have been published, and often they are either
too simple or too hard. We selected the known benchmark Monty Hall and added the two games Memory and
Stratego for evaluation.

Fluxii uses the full set of belief states. It has been added to the Fluxplayer infrastructure. During the startup
time static analyses are conducted to improve the performance during the search. Once the set of belief states is
computed, UCT is applied. Afterward, the results are merged. Nexusbaum applies the above explained approach
of maintaining a subset of the belief states. The setup of the player including the calculation of the belief states
and the accumulation of the results is implemented in Java, while for performance reasons the Monte-Carlo
Simulations are implemented in C++.

The Monty Hall problem received much interest when it was first proposed. In that game we have a show master
(here modeled as the random player) and a player who has to decide which gate to take. The show master places
a car behind one gate and goats behind the other two. After the player has chosen a gate, the show master opens
one of the unchosen gates containing a goat and allows the player to switch to the other unopened gate. This
switching is the best move the player can take.

In Memory alias Concentration the random player deals eight cards. In case a player gets lucky, four moves
suffice. However, the general best case is eight moves, which results in the full 100 points.

This version of Stratego (orig. L’Attaque), is played with six pieces for each player on a 3× 6 board (cf.
Figure 15.3). Pieces are removed according to fixed precedence rules, similarly to the original game. The goal
is to take the opponent’s flag before running out of steps. Otherwise, both players receive 50 points.

Figure 15.3: Stratego from a player’s view.

The results are shown in Figure 15.2. Monty Hall: 100 games played, belief state size 10, start clock 10 seconds,
play clock 20 seconds match the theoretical knowledge that a value of 2/3 can be achieved in optimal play (by
changing according to the given knowledge). Memory: 100 games played, belief state size 10, start clock 10
seconds, play clock 120 seconds, show that almost optimal play of at most eight moves has been achieved.
Stratego: 50 games each with exchanging roles and setting. Results for games against random with belief state
size 10, start clock 30 seconds play clock 60 seconds in

Table15.3 shows the results of Nexusbaum against Fluxii with unweighted/weighted Monte Carlo Belief State
Search (MCBSS/WMCBSS), and with Weighted Belief State Search plus UCT (WMCBSS+UCT) with 10
seconds start clock and 60 / 90 seconds play clock. While the first are still unfortunately for Nexusbaum, it went
superior (56%/63% wins) when using weights and UCT.
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Player Games Total Score Average Score
Monty Hall 100 6700 67.0

Memory 100 9500 95.0
Stratego 50 4950 99.0

Table 15.2: Results in Monty Hall .

belief states MCBSS WMCBSS WMCBSS+UCT
10 35.0 38.0 56
10 25.0 43.0 63

Table 15.3: Fluxii against Nexusbaum in Stratego with 60 (top) and 90s (bottom) without and with weightedness and with UCT.

15.6 Summary

The challenge of playing general games is to program autonomous agents that can play on a high level.

For GDL we presented an algorithm for solving general two-player turn-taking games making use of the in-
formation of the forward BFS. This brings the advantage that we do not have to use any strong pre-images, as
all the successors of a given layer are solved for sure once this layer is reached. One shortcoming is that the
BFS is mandatory, while this was not the case for the existing algorithms. Furthermore, it does not perform any
duplicate detection, so that in some games more BFS layers are generated, and states are expanded multiple
times.

One of the advantages is that we can stop the solving at any time and restart with the last partially solved layer
later. Also, we can use the information we find on the hard disk as an endgame database, e.g., in combination
with a general game player that uses UCT for finding good moves.

An interesting side-remark is that this approach can in principle also be used for any turn-taking game. All we
need is the way to pass through the p-dimensional matrix of (possible) reward combinations, which gives us an
opponent model. Unfortunately, this is not found trivially. Especially, in general game playing the agent gets no
information as to which other agents it plays against, so that learning such a model seems impossible so far. If
we assume that we can get an opponent model, we are able to solve all turn-taking games under the assumption
that the model holds. The result is then similar to that of the Maxn algorithm, with the same shortcomings
that algorithm has –namely, if one of the players does not play according to the model, the solution might be
misleading.

For GDL-II that includes incomplete-information games we provided a competitive full-fledged GDL-II player,
for which besides parsing, game controlling and some efficiency tricks, comes with a game engine for handling
belief states.

Handling randomness and incomplete information is computationally hard. Even for single-player general
games that can be cast to contingent action planning problems it is known that complexities rise drastically.
Nexusbaum maintains sets of belief states and operates best with Monte-Carlo belief state search integrated into
a UCT-based player. It plays single-agent games like Monty Hall and Memory almost perfectly, and —in the
complex game Stratego— it outperformed Fluxii.

15.7 Bibliographic Notes

General games address the ultimate goal of generating intelligence, being able to deal with peviously unknown
situation. In the last decades there is considerable progress in defining and solving general games.
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The rules of games in the international game playing competitions [287] are given in GDL [459]. Alternatives
to the logical formalism of GDL used in AI planning and in the description for general video games.

In the first two GGP competitions approaches making use of Minimax search [635] were prevalent, such as
Cluneplayer [130] and Fluxplayer [558], the winners of the first two international GGP competitions. Since
2007, the most successful GGP agents such as CadiaPlayer [255] or Ary [472] use UCT [408] to calculate the
next move to play.

As an example of the portfolio of UCT search control heuristics the killer heuristic [10] is a method originally
introduced to Minimax algorithms to improve pruning. The list of moves is sorted according to the success
of pruning. This can be ported to UCT by sorting the moves according to the statistics of rewards similarly
to [256]. However, the effect is not always as big as in Minimax. Clobber has been considered in [11]. Stratego
has been brought to superhuman performance with a deep learning algorithm called DeepStack [512].

GDL-II [611] (for GDL with incomplete information) became part of the accepted standard for general game
playing. In [559] it is shown that GDL-II can be mapped to situation calculus, while [546] shows connections
of GDL/GDL-II and epistemic logic.

Some players have been developed since, but so far documentation is rare. In the few international competitions
on general game playing that supported incomplete information games in GDL-II, Fluxii by Stephan Schiffel
was best. The name indicates that the player is based on the internationally very successful Fluxplayer [558].
Monty Hall has been discussed in [637]. Ludii is another general game system designed to play a wide range of
games.



Chapter 16

Multiagent Systems

This chapter considers multiagent systems and their simulation. It documents the outcome of a study for ad-
dressing last-mile connectivity within a multiagent simulation system. We report on the simulation setup and the
outcome in form of a feasibility assessment. The study provides a description of the agent model and its routing
infrastructure as a step towards a rich model of the interactions that happen in urban mobility. We implement
a scenario starting on a higher level of abstraction, drilling down to a running program. The multiagent model
is generic in the sense that different transport agencies and vehicles can be added. It integrates planning with
execution, a hot research topic these days. We will encounter that a sequence of calls to Dijkstra’s single-source
shortest-paths algorithm is crucial for planning and use an efficient implementation with radix heaps.

16.1 Introduction

Under1 the umbrella term of smart mobility, the development of forward-looking traffic concepts for fast-
growing metropolitan areas such as Bangalore, India has attracted considerable interest of regional authori-
ties, transport planners and research. Important aspects include, amongst others, green goals like increased
capacity utilization for transport modalities or reduction of carbon footprint, but also consumer-oriented goals
such as safe, comfortable, and cost-efficient individual mobility. In this context, optimized use of existing and,
potentially, planned traffic infrastructure, using new mobility concepts such as bike/car sharing and new ICT
technologies as enabler, has come in sharp focus.

In pursuing the stated objectives, optimization potentials need to be determined on the part of individuals that
utilize available offers for multimodal urban mobility, as well as on the part of transport providers. To pro-
cure well-founded assessments of the impact of particular optimization efforts time- and cost-efficiently, it is
necessary to first design and implement a suitable simulation model of the as-is state of urban passenger traffic.

In the context of a study on opportunities for novel last-mile connectivity concepts, this study reports on a
multiagent-based simulation model for the Bangalore urban region.

Multiagent-based simulation has been chosen as modeling technique over alternatives such as system dynamics,
since the considered scenario allows for a natural mapping of traffic stakeholder to software agents. In addition,
the approach allows for fine-grained modeling of individual traffic participants, which is considered essential
for realistic simulation results. We present the simulation model with the realized software agents and discuss
performance optimizations in applied routing algorithms which make the application of the simulation in the
larger context of system optimization practical.

1 This chapter is based on joint work with Christoph Greulich, Niels Eicke, Max Gath, Tobias Warden, Malte Humann, Otthein
Herzog, and T. G. Sitharam. It puts together and improves the work from [200, 305, 306, 307].
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16.2 Multiagent-based Simulation

In multiagent systems, decision making is shifted from central, hierarchical planning and controlling entities
to decentralized, heterarchically organized, autonomously acting software agents. These agents can represent
objects, e.g., shipments, persons, taxis and buses. They act as individuals or are clustered in groups and can
interact with each other by the use of negotiation and communication mechanisms. The general problem is split
into smaller problems that agents solve locally in parallel within short time windows to optimize the behavior
of the overall system. In cooperating systems, the agents’ goal is to perform a globally optimized behavior and
achieve common goals whereas in competitive systems each agent acts selfish to reach its own objectives.

Multiagent-based simulation (MABS) combines concepts of multiagent systems and simulation. A multiagent
simulation system can combine distributed discrete-event or time-stepped simulation with decision-making en-
capsulated in agents as separate and concurrent logical processes. In classical simulation systems, the involved
logical processes as well as interaction links have to be known in advance and must not change during simu-
lation. This is not the case in multiagent-based simulation systems, as each agent may interact with all other
agents. Agents may join or leave simulation during execution, e.g., depending on a stochastic simulation model
or human intervention.

We use a client-server architecture. The system including the server itself can be distributed to several machines.
This enables running numerous agents on many computers in parallel. Furthermore, knowledge about relations
and properties of objects is encoded in ontologies. In general, the architecture consists of the following compo-
nents: world model, physical objects, infrastructure, behavior definitions and agents. The agents in a scenario
have methods for, e.g., sending and receiving messages as well as executing actions within defined behaviors.
The agent is a logical entity that represents either an environmental process, an organization, or a set of physical
objects.

The (physical) simulation world model of a scenario can be modeled as a graph so that the infrastructure can
be mapped accordingly. Graph nodes represent, e.g., traffic junctions. Graph edges represent roads, rails, wa-
terways, etc. To model real transport processes, we simulate scenarios within real traffic infrastructures that are
imported from OpenStreetMap.

The client (GUI or console) starts simulation scenarios and provides information about simulation progress.
The graphical user interface allows us to configure simulation parameters and shows simulation entities on a
3D world map. The command line client for console is for advanced users that are only interested in simulation
results. Performance indicators are logged to a PostgreSQL database.

Of particular importance is the classification of agent types and the association of these software agents with
entities in the simulation environment. The adopted modeling approach conceptually introduces a partition of
all software agents in simulation into distinct agent communities, namely simulation actors and environmental
agents. The former represent services or physical objects in order to evaluate the global performance, patterns
of interaction or the design of particular agents. These agents act as artificial autonomous decision makers on
behalf of their associated entity. Environmental agents manipulate the world directly, e.g., they are dynamically
creating additional agents over the whole course of a simulation run.

16.3 Simulation Model

In the following we introduce the agent models that we have designed. We will see that the agents consist of
behavioral states, which have a one-to-one correspondence to the actual Java implementation of the agent. We
distinguish between simple behaviors (like Init or HandleInformationRequests or Driving) and complex behav-
iors (like TransportPassengers) that itself consist of an arrangement of behavioral states (see Figures 16.1 to
16.3). Complex behaviors are called Finite-State-Machine (FSM) behaviors. FSM behaviors are labeled tran-
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Figure 16.1: Model of the Scheduled Transportation Company Agent.

sition systems with a starting state (indicated with an incoming arc), some terminal state (encircled node), and
state transition governed by some additional conditions.

Figures 16.1 to 16.3 also include communication arcs (dashed) that show whether or not a behavior is commu-
nicated with another agent. Communication parameter (e.g., Perf:Inform) on a communication arc refers to the
performance of a message that starts an interaction protocol. Additionally, we have indicated which agent poses
shortest path queries.

The Scheduled Transportation Company Agent is an implementation of a transportation company that provides
an information infrastructure for answering initial transport queries (HandleInformationRequests), sets up and
maintains a list of persons to be transported at stops for a specific vehicle (HandleBoardingQueries), and re-
ceives, answers, and commits transport requests of persons at stops (HandleTransportRequest).

More formally, a transport request of a person wrt a routing graph infrastructure G with node set V is assumed
to consist of a start location v0 ∈ V and an end location v∗ ∈ V of the travel. Moreover, a time stamp can be
associated to the travel, which in the simplest assumption is the current simulation time. The answer of the
scheduled vehicle agent is a selection of transport options that each contains the first stop h0 ∈ V to be picked
up and the last stop h∗ ∈ V of the transport. If h0 6= v0 we have that there might be remaining efforts needed
for the human to reach the stop and if h∗ 6= v∗ we have that remaining efforts are needed to reach the final
destination of the trip.

It is possible that the trips offered by the multi-vehicle transport agency consist of different transportation
options (bus, metro). In the first approximation, we only consider buses. In complex settings it is possible to
recursively plan the prefix and suffixes of a trip with a different transport agent.

Its agent model is shown in Figure 16.1. The agent is initialized once the scenario is started and starts with
the behavior Init (matching to all other agents). After registration with the system-wide directory facilitator
and acquisition of time-table information from a configuration file, the agent is responsible for invoking time-
dependent initialization of Scheduled Vehicle Agent that acts on behalf of the fleet. The three sub-behaviors are
spawned, and run in parallel.

The Scheduled Vehicle Agent receives on its initialization a schedule from the agency that it has to follow on
a daily basis. The timetable information contains the arrival and departing time of each stop in the tour. If a
vehicle is running late, it usually tries to catch up with its schedule, reducing waiting times. In case of a bus
company this will be a bus. Other examples are trains and metros. Its model is shown in Figure 16.2. The FSM
behavior for scheduled driving mainly implements a cycle on boarding, debarking, and moving. Furthermore, it
uses an interaction protocol to communicate with the transportation company agent to receive new instructions.
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Figure 16.2: Model of the Scheduled Vehicle Agent.

The Autonomous Transportation Vehicle Agent is a complex agent that allows us to sign contracts with customer
and to follow routes. It combines the functionality of a scheduled transportation agent and the scheduled vehicle
agent. An example is an individual taxi or an individual rickshaw. On the top level of the specification, the
autonomous transportation vehicle agent has three states. At first, it is invoked and it receives its timetable. In
contrast to the transportation agency, it does not handle boarding queries on the top level to maintain a list of
persons, but immediately and individually executes transport requests. The transport passenger FSM behavior
is similar to the scheduled driving in terms of boarding, debarking the passenger, but does not iterate over
a sequence of stops. The answer of the scheduled vehicle agent to a transport query (v0,v∗) usually is one
singleton transport option with the human to reach the first stop and no efforts to reach the final destination of
the trip.

The Birth-Giver Agent initializes person agents with several parameters like the start location, a certain budget
in time and cost, as well as a target location. All values are random numbers, drawn according to a given
probability distribution. Optionally, the start and end location can be specified manually by determining a fixed
node. The simple model with only one state that iteratively creates person agents for the simulation. The realistic
modeling of the random process is crucial for the applicability of the simulation outcome. The better the model
the better its prediction. These data might be indirectly inferred by information on where people live and where
they work, or by monitoring their current use of vehicles. At the end, a rather complex probability distribution
for transport requests, humans and their queries should be derived. To determine the next bus stop for a transport
request, a nearest neighbor search must be conducted.

The Person Agent is a complex agent. It communicates with transportation agencies as well with vehicles, that
transport the represented human. It plans and executes routes. A person is also able to actively execute the
transportation task without any vehicle by walking. The implemented model is shown in Figure 16.3. We see a
hierarchy of complex FSM behaviors. Moreover, it shows that a person lives in a loop of planning and execution
of the plans. Based on the dynamics in the simulation system plans can fail and require re-planning.
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For the generation of plans (planning behavior) shortest paths are generated for walking, as well as transportation
agencies have to be contacted. While the start and goal locations are assumed to be on an arbitrary node in the
map, not all transportation requests can be satisfied by bus, so that planning does include padding vehicle
usage with walks to or from the stops of the vehicles. Once the plan is fixed, it goes to execution (ExecutePlan
behavior). For such execution of plans we see that there is a distinction between active behaviors like walking
and passive behaviors for being transported (while riding a bike might be attributed as an active option in real
life, in this model it can also be view as a passive behavior in form of a rental service with a contract that must
be sealed). The starting point of the behavior looks at the next step in the plan and decides whether it is an
active or a passive behavior. We see that passive transport has to be monitored and can fail, so that the planning
behavior has to be reinvoked on termination. The persons are removed from the simulation once they reach their
final destination.

16.4 Shortest Path Search

Dijkstra’s shortest paths search is again realized using memory-efficient joint representation of graph and radix
heap nodes. The code for radix heaps is shown in Program 16.1. The radix heap assumes that all edge costs in
the graph are integers bounded above by C. The result is that Dijkstra’s algorithm can be implemented with a
time complexity of O(m+ n lgC), where n is the number of nodes and m is the number of edges. Given that
the logarithm of a 64-bit integer is bounded by a constant lgC = 64, the running time on a modern computer is
linear O(m+n). If edge weights are doubles, lgC = lg(1.79769 ·10308) is also bounded by a constant. Moreover,
assuming that two pointers for linking the elements in the heap are already provided with the nodes, the memory
needed for the buckets is O(lgC) = O(1).

16.5 Experimental Setup

To perform the simulation for Bangalore we extracted the route navigation data from the OpenStreetMap. As
Bangalore was not predefined as a coherent district, we defined a bounding box on the city and included also
streets that cross the boundaries instead of clipping them exactly at the border of the bounding box. The GP-
S/GIS data on the road infrastructure of Bangalore was exported to a database, that can be included directly. The
road infrastructure contains 49,399 nodes and 134,222 edges and includes the International Airport of Bangalore
(BIAL).
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Figure 16.3: Model of a Person Agent.
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Program 16.1: Program for radix heaps.

public class Radix {
long S, n, u[], b[]; int B; Node buckets[];
public Radix() {
S = Long.MAX_VALUE; B = (int) (Math.ceil(Math.log(S) / Math.log(2))) + 2;
buckets = new Node [B]; b = new long [B]; u = new long [B];
for (int i = 0; i < B; i++) { buckets[i] = null; b[i] = u[i] = 0; }
b[0] = 1; b[B-1] = Long.MAX_VALUE;
for (int i = 1; i < B-1; i++) b[i] = 1L << (i-1);
u[B-1] = Long.MAX_VALUE; n = 0;

}
public long size() { return n; }
public boolean empty() { return (n == 0); }
public Node next(Node p) {

if (p.succ != null) return p.succ;
else {

int next = p.bucket + 1;
while ((next<B) && (buckets[next] == null)) next++;
if (next == B) return null; else return buckets[next];

}
}
public void insert_node(Node p, int i) {
p.succ = buckets[i];
if (buckets[i] != null) buckets[i].pred = p;
p.pred = null; p.bucket = i; buckets[i] = p;

}
public void extract_node(Node p) {

if (p.pred != null) { Node q = p.pred; q.succ = p.succ; } else buckets[p.bucket] = p.succ;
if (p.succ != null) { Node q = p.succ; q.pred = p.pred; }

}
public void adjust(long m, int t) {

int i; u[0] = m;
for (i = 1; i < t; i++) { u[i] = u[i-1] + b[i]; if (u[i] > u[t]) break; }
for (; i < t; i++) u[i] = u[t];

}
public int find(Node p, int i) {

if (p.element == u[0]) return 0;
while (p.element <= u[--i]); return i+1;

}
public Node top() { return buckets[0]; }
public Node insert(Node p) {

long k = p.element;
if (n > 0) insert_node(p,find(p,B-1)); else { adjust(k,B-1); buckets[0] = p; p.bucket = 0; }
n++; return p;

}
public void decrease(Node x, long k) {
x.element = k;
if (k <= u[x.bucket-1]) { extract_node(x); insert_node(x,find(x,x.bucket)); }

}
public Node extract() {

for (int i = 0; i < B; i++) {
Node p = buckets[i];
if (p != null) { extract_node(p); n--; return p; }

}
return null;

}
public Node extract(Node x) {

int i = x.bucket; extract_node(x);
if ((n > 1) && (i == 0) && (buckets[0] == null)) {

int j = 1;
while (buckets[j] == null) j++;
Node p = buckets[j], d = p.succ;
while (d != null) { if (d.element < p.element) p = d; d = d.succ; }
adjust(p.element,j); extract_node(p); insert_node(p,0); p = buckets[j];
while (p != null) { Node q = p.succ; extract_node(p); insert_node(p,find(p,j)); p = q; }

}
n--; return x;

}
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Table 16.1: Amount of bus commuters between BIAL and the city center.

Data Collection BIAL to City Center City Center to BIAL
Day of Week Single Ticket Pass Ticket Single Ticket Bus Pass Total
Sunday 2,954 349 2,528 566 6,397
Monday 2,251 523 2,061 1,220 6,055
Tuesday 1,902 508 2,151 1,430 5,991
Wednesday 1,715 452 2,079 1,273 5,519
Thursday 1,899 512 2,187 1,146 5,744
Friday 2,213 498 2,673 1,289 6,673
Saturday 2,502 362 2,668 711 6,243

# Line=BIAS-4
# Start_Times=07:00, 08:00, 09:00, 10:00, 10:30, 11:00, 11:30, 12:00, 12:30, 13:00, 13:30, 14:00, 14:30, 15:00, 15:30,

16:00, 16:30, 17:30, 18:00, 18:30, 19:00, 20:00, 21:00, 22:00
JeevanBimaNaga_Stop | 00:01 | 00:01
ChinmaiahHospital_Stop | 00:04 | 00:01
CMHRoad_Stop | 00:05 | 00:01
TajResidency_Stop | 00:04| 00:01
LakesideHospital_Stop | 00:03 | 00:01
StJohnsRoad_Stop | 00:07 | 00:01
JCNagara_Stop | 00:05 | 00:01
MekhriCircle_Stop | 00:06 | 00:01
Hebbala_Stop | 00:04 | 00:01
JnOfKogiluCross_Stop | 00:03 | 00:01

Figure 16.4: An exemplary bus schedule.

The bus routes and associated information on travel fares as well as fleet sizes is supplied by the Bangalore
Metropolitan Transport Corporation (BMTC) authorities. They refer to real-life data. We decided to focus on the
last-mile connectivity of passengers at BIAL. The distribution of passenger transports measured for a particular
week as shown in Table 16.1 illustrates that there are about 6,000 persons who use the bus lines on a day. In
comparison there are about 10,000 persons taking a taxi (trips per day).

Information on real-life bus schedules as well as bus stops is added manually. The simulated scenarios contain
eight bus lines, whose first or last stop is the BIAL. We specified the bus lines and their timetables within a
simple text file that contains a sequence of starting times for buses operating on a line and the relative times
from one bus station to the next. An exemplary bus schedule is shown in Figure 16.4.

The implementation of agents for the initial study is fully operational. We have person agents (Person), generator
agents that samples humans and rickshaws (Birth-Giver), bus agents that follow timetables (Scheduled Vehicle),
a bus agency agent (Scheduled Vehicle Agency), as well as bikes as a substitute for walking for longer distances.
Taxis (Individual Transportation Vehicle) can be added on request.

Parameters to instantiated birth-givers are used to change the ontological concept and thus the outlook, speed,
and other properties of physical objects). In our scenario, a first birth-giver agent is responsible for creating
person agents that act for persons located in the inner-city district. The desire of this person is to arrive the
airport as soon as possible. Person agents that are created by a second birth-giver agent represent individuals
whose desire it is to get from the airport to the inner-city district. The number of generated agents is specified
in Table 16.1. Finally, a third birth-giver agent generates a fixed number of rickshaws which start at the airport
and also drive to the inner-city district.

To generate the start and end location randomly, we implemented a random walk strategy starting at a bus stop
to generate requests at certain nodes with an arbitrary distance. Therefore, we ensure that transport requests
are not far from the encoded bus stations. Simulating dynamically changing traffic conditions is the subject of
further research. As a result, edge following is mainly determined by the speed of the human or the vehicle as
well as the type of the road.
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Figure 16.5: Running simulation with buses, persons, rickshaws and bikes.

Figure 16.6: Automatically extracted graph from OpenStreetMap.

Moreover, we added bikes, so that persons have the flexibility to decide how to get to the bus stop or home: if
distance is close enough (smaller than some predefined threshold) they walk, otherwise they ride by bike (see
Figure 16.5). The maximum walking speed of a person is limited to 5 km/h while the maximum speed of a bike
is limited to 30 km/h. We simulated a time span of a whole week.

The scenario has been adapted to the infrastructure of the German city Bremen (see Figure16.6). The infrastruc-
ture has been extracted from OSM and timetables have been provided by the local public transport organization
BSAG. Other cities can be used as long as they provide the same map timetable format.

Various sources for real-world data cause a graph matching problem. OpenStreetMap provides detailed infor-
mation about the infrastructure and public transport network of a specific region, but user generated content
may be erroneous or incomplete, recent changes to the real world may not be reflected yet, no timetable in-
formation about public transport networks is available. Public transportation companies provide operating data
in standardized databases, but geographic information may be insufficient, and no infrastructure information is
available. Therefore, itineraries of both data sets have to be matched.

The public transport and route planning graphs are mapped using a combination of GPS and string proximity.
For the latter a dynamic programming algorithm for approximate string matching (extending the edit distance,
similarly to the multiple sequence alignment solution of Chapter 20) has been implemented. The Needleman-
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Figure 16.7: Running simulation of mixed public transport and route planning with buses, trams and walking persons.

Wunsch algorithm solves the global sequence alignment problems and detects gaps. Determining the similarity
of two stops from different datasets. Names of stops are not guaranteed to be different due to abbreviations,
etc. Comparison of names is an inferior global sequence alignment problem and the comparison of geographic
coordinates of stops improves results if available.

A traffic information system was added to provide each commuter with a plan of stops, changes, and walking
routes. The transportation company agent manages timetables for the fleet, answers individual information
requests by potential passengers and maintains a list of waiting passengers per stop. The algorithms behind
the scenes are variants of Dijkstra’s method to compute shortest path in a time-dependent or time-expanded
network.

We extended the system to solve the tourist traveler problem, a multi-goal version of the shortest public transport
problem with time windows. Monte-Carlo search helped to find the visitor tours.

16.6 Current Status and Findings

The road infrastructure (including the international airport BIAL) is completely mapped to GIS and imported
by the simulation system.

Using the PostgreSQL database interface, plots can be generated. For our sample scenario we are, e.g., interested
in the number of passengers at the bus stops (see Figure 16.8). The total amount of passengers is shown in Table
16.1. No. 2 is the BIAL and, therefore, the place either of arrival or departure of each person. Low traffic
is primarily caused by a high density of bus stops within a certain district (the simulation contains eight bus
lines from or to the BIAL). In total we simulated more than 45,000 agents with a max. 1,100 agents running
concurrently.

Performance indicators recorded in different simulations can easily be combined (e.g., values averaged). Be-
sides the number of passengers that board or debark a bus, there are a host of other interesting performance
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Figure 16.8: The open bars show the number of boarding and the closed bars the number of debarking passengers at each bus stop
within a whole week. The bus stops are numbered consecutively to their official name in alphabetic order.

indicators for the simulation like the time spent by persons to reach their destination, the budget needed for the
travel, or a combination of both. Experiments have shown that the bottleneck of the computations is computing
several shortest paths on the routing graph by each person agent. Buses do not change their routes if there is
no occurrence of unexpected events. Therefore, the computation time of the buses is minimized by the use of a
cache.

The worst-case running times of applying the Dijkstra single-source shortest-paths algorithm (without termi-
nating at the goal) are: Generating a graph with 100,000 nodes and 1,000,000 edges took 2,427ms, all pair
shortest paths search 707ms; generating a graph with 1,000,000 nodes and 10,000,000 edges ran 30,574ms, all
pair shortest paths search 34,631ms.

We see that searching all shortest paths slightly dominates the initialization. However, when terminating at
goal states, the search time decreases significantly to 11,988ms. As a result, Dijkstra shortest paths search runs
sufficiently fast even on large graphs. If better performance is needed, A* with Euclidean distance heuristic or
bidirectional shortest paths search can be used. Moreover, there are speed-up techniques that trade preprocessing
the graph for a better search time.

16.7 Summary

The challenges to be addressed in ongoing multi-disciplinary research on smart mobility in Indian metropolitan
areas such as optimized utilization of existing and planned traffic systems, are manifold. This chapter reported
on the status of a fine-grained multiagent-based simulation model for urban mobility, for experimentation within
the simulation system. The physical simulation world model builds upon detailed OpenStreetMap data for the
traffic infrastructure. It allows for the mapping of extensive public transport networks.

The generation of individuals that utilize modeled transport modalities can be configured according to actual
distributions. Besides agent models for the modeling of transport operators such as the BMTC/BSAG and inde-
pendent operators (using, for instance, taxis and rickshaws), a particular focus was put on the rational modeling
of transport customers. These are equipped with capabilities for interleaved planning and execution of inter-
modal transport schedules. Experiments have shown that the multiagent simulation system handles a realistic
number of passengers in a time frame which makes extensive experimentation practical, despite complex plan-
ning and route-finding calculations performed by the simulation actors.
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We see this as an encouragement to advance the simulation model in different levels. On the infrastructure level,
we seek to directly acquire data from publicly accessible web services operated by transport stakeholders to
facilitate, amongst other things, modeling of active bus lines and congestion-induced delays. Further optimiza-
tion to the planning and route-finding algorithms used by the agents will be implemented as discussed before
to accommodate the desire to scale simulations towards larger parts of a traffic system. The multiagent system
could be extended so that new transport modalities (e.g., taxi services) can be simulated. A particular focus is
on the advancement of the planning competences and flexible troubleshooting behaviors for the person agents.
For a transition to a rich model for simulated persons that comprises parameters such as financial constraints,
constitution and individual preferences, which allow the specification of realistic groups of traffic participants,
planning needs to accommodate these additions.

16.8 Bibliographic Notes

The multiagent simulation system is event-driven and has been designed to solve and evaluate scenarios in the
logistics domain [644]. The system simulates processes, where planning and decision making are delegated
to autonomous acting agents [564]. IT extends the well-known JADE framework [41] which implements the
standards for agent interaction and communication defined by the IEEE Foundation for Intelligent Physical
Agents (FIPA) [565]. It provides a discrete time simulation and ensures correct conservative synchronization
with time model adequacy, causality, and reproducibility [283]. Based on the identification of important quality
criteria for multiagent systems, presented in (Gehrke et al., 2008), a coordinated conservative synchronization
approach has been adopted in the simulation system, which is handled concertedly by the simulation controller
hierarchy.

The chapter refers to a user needs study [9] and the 2010 Traffic Management Plans for Major Towns in Banga-
lore Metropolitan Region for the Bangalore Metropolitan Region Development Authority conducted by Wilbur
Smith Associates.

We have carried over techniques well-proven in autonomous logistics context such as planning under uncertainty
and temporal constraints [457] or team formation as enabler for unlocking of attractive transport offers [564]
(For instance, finding an agreement to share a taxi or rickshaw) to the urban mobility context. Spontaneous
ride-sharing concepts can be considered as well as an option alternative [661]. Strategically, the rich simula-
tion model that is under active development constitutes a versatile experiment platform for the evaluation of
smart mobility concepts in large-scale urban areas like Bangalore. Complementary promising concepts include,
amongst others, the integration of person agent functionality into a mobile phone-based intelligent travel assis-
tant or the introduction of short-term car-, rickshaw- or bike- sharing solutions [570]. Here, multiagent-based
simulation can be used for feasibility assessments and optimization of vehicle pickup and return sites.



Chapter 17

Recommendation and Configuration

In Chapter 11 matrix factorizations were studied. In this chapter we first look at recommendation and its relation
to clustering. We explain how general the method is and how it attacks the curse of dimensionality. We review
the problem of bitvector classification, going forward to clustering, and explain pathological behaviors of current
algorithms have.

Next, we present the design and an implementation of a recommender system that supports the users’ choice
of parameters in an ongoing product configuration task. The machine learning approach that is extended to
work for the configuration problem at hand is based on a combination of association rule mining and case-based
reasoning in form of k-nearest neighbor search. The evaluation of the learning efficiencies is executed for a body
of real-world data instances form industry. It shows a trade-off between achieving a highly correct prediction
and a low misprediction rate.

17.1 Introduction

We1 are living in a world of increasingly individualized products, an issue which has led to the marketing
strategy of mass customization. In the logistics of smart factories, lot sizes 1 are a mainstay trend. With the
increasing complexity of products, the problem of product configuration arises, which refers to the process
of assembling a valid end product, given the large number and parameterization of different subcomponents
for its assembling. Roughly speaking, a configuration is an assignment of values to parameters for product
components.

To counter mass confusion, in the last decade, several commercial configuration tools have been developed
that support the customers in the product configuration process. As product subcomponents interact, the main
component in such software is constraint propagation, which –based on the given course of selections made so
far– limits the number of future design choices.

We design, implement, and evaluate a system that, in cooperation with the existing configuration software
and based on historical records, recommends certain properties of the products to be configured. Such a rec-
ommender system that learns users’ preferences is the natural extension to constraint propagation. It applies
machine learning to assist the configuration process.

We first introduce systems for recommendations and the potential problem of clustering binary inputs. Then,
we look the process of (structured) product configuration. Next, we discuss basics of recommender systems for
product configuration. In the sequel, we describe machine learning algorithms that we have selected, and the
adaptations needed to have them work for the complex input of sample configurations. Last, but not least, we
evaluate two orthogonal approaches, and —suggested by the empirical outcome— a hybrid of the two.

1 This chapter puts together and improves pieces of unpublished joint work with Daniel Rietmüller and Björn Schwarze.
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17.2 Recommender Systems

As one of the most successful machine learning applications in place, recommender systems facilitate an impor-
tant technique to handle information overload. The hypothesis is that, if a person’s preferences are known, such
system can recommend products that the person may like. Recommender systems can help decide on a variety of
items, such as movies, books, and restaurants. Content-based and collaborative filtering are commonly used to
make those recommendations. However, there are more options such as demographic and hybrid filtering. Each
system has several advantages for the customer and the company. Although the customer is offered a personal-
ized service, the user is limited by his own knowledge. An individualized service can help the user to decide by
reducing the amount of time spend on deliberate about the given options. Nevertheless, the company generates
profiles about their user, enabling them to collect data about demographics, purchase history, and preferred in-
teractions. This makes business analysis and recognizse market trends possible. Good recommendations make
a shop more user-friendly and increase user’s loyalty. As a result, the users are more likely to revisit the shop,
since they can easily find articles of interest which leads to increases sales.

The dimensionality of the input data affects the speed of the classification and clustering as well, but it also
often causes a numerical instability known as the curse of dimensionality (CoD). It is described as a general
unreliability of distance computations for data sets with rising dimensionality.

With content-based filtering (CB), the description of the product is used to learn which preferences the user has.
CB is rarely used, due to the increased adversity for machines to achieve the required level of understanding
Specifically, it is very difficult in some areas of application to determine useful properties of the articles. How-
ever, the characteristics of an item are required for this procedure. The limitation of the available content of
the products poses a problem for content-based RS, which can lead to over-specialization. The approach is also
subject to further restrictions. For example, the system can only suggest items to the user that are very similar
to the products already consumed.

The process of collaborative filtering (CF) is more widely used than CB. CF offers a simpler approach, by
collecting a large amount of information on the behavior of different users. The CF collects a large amount
of information about the behavior of different users. The most prominent example was implemented by the
company Amazon. The purchasing behavior of various articles by several million people is logged in one cen-
tral database. In this way, a vector can be created for each article, which describes the purchasing decisions of
all customers. However, CF usually requires a huge dataset. CF finds an application in industries like surveil-
lance data, mineral exploration, analyse large areas, financial data related to financial organization, electronic
commerce, and various web applications.

Cold Start Problem. Currently, it is challenging to introduce new users or new items into an existing shop cat-
alogue. Without previously collected data, the behavior of the new user cannot be predicted. Further, new items
have not been rated or purchased yet. This obstacle is described as the cold start problem (CSP). Nevertheless,
there are several ways to resolve this problem. For example, the novel user can be asked at the beginning how
he would rate an article. Additionally, they could also provide information about his or her preferences. Also,
assumptions can be made based on of their demographic data. Several different algorithms tried to solve the
CSP. Combining CB and CF can result in the recommendation being of moderate quality, when it not possible
to provide a description of a product.

Challenges with Rating Users. In general, a sparse evaluation in collaborative RS makes it difficult to make
accurate predictions about products. Especially for cross-context collaborative RS, precise recommendations are
dependent on multidimensional vectors, which is known as sparse evaluation. Reviews of so-called grey sheep,
who have a different opinion about a product compared to most consumers, are problematic. An RS cannot
benefit from such evaluations. To make the algorithms more efficient, those opinions can be filtered out to reduce
their influence. Another problem is the malicious manipulation of product ratings in order to gain a competitive
advantage. Additionally, this so-called shilling attack can diminish the credence of a RS. Generally speaking,
it is difficult to make accurate predictions about products in collaborative RS terms. Especially in the case of
cross-context collaborative RS precise recommendations remain enigmatic due to the use of multidimensional
vectors.
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Challenges with Clustering. The feature vector that combines various properties can be described as a point in
hyperspace. Challenging aspects of clustering include that the hyperspace often has as many dimensions as the
the vector has several properties. The number of properties alias the dimension of a vector has a strong impact.
On one hand, if too few features were chosen, clouds of different classes could no longer be separated. On the
other hand, if too many features were used, the number of states which can be represented would increase with
each dimension. If the number of training data records does not increase as the number of dimensions increases,
the classification results get deteriorated.

In addition to the number of dimensions, the type of characteristics is also important. For example, it is con-
ceivable to use several properties in a feature vector that share mutual dependencies. Hence, it is inexplicable
to process all characteristics together. Mathematically speaking, a smaller Z-dimensional space spans a larger
R-dimensional space, where Z corresponds to the number of linearly independent features. Methods of dimen-
sionality reduction aim to transform the R-dimensional space into a Z-dimensional space, while the content of
the original information should be preserved.

The Pearson correlation coefficient is the most used method to find correlations. However, Pearson’s coefficient
is restricted to linear correlation. Spearman and Kendall are the two most popular non-linear correlation coef-
ficients. These methods are limited by monotonous functional dependencies. Other known methods measure
the correlation of random variables such as distance correlation, Hoeffding’s independence test, Maximum In-
formation Coefficient (MIC), Hilbert-Schmidt information criterion (HSIC), and Heller-Heller-Gorfine distance
(HHG).

In the following, the variables X and Y describe undefined data records. With the distance correlation, random
vectors can be tested for their independence. Since the Pearson correlation coefficient is limited to linear rela-
tionships, the distance correlation eliminates this deficiency. A correlation of zero by Pearson does not imply
independence, only uncorrelatedness. A distance correlation of zero, however, says that random vectors are in-
dependent. The distance correlation is defined as R2(X ,Y ) = v2(X ,Y )/v2(X)v2(Y ), if v2(X)v2(Y )> 0, and 0, if
v2(X)v2(Y ) = 0, where v is the variance.

The maximum information coefficient (MIC) describes an algorithm that searches a large data set for pairs of
variables. The algorithm is designed for data sets with several hundred variables. For this, MIC calculates the
correlation for each pair and arranges the pairs according to their score. Different types of functions, such as
linear, exponential or periodic, are taken into account. The different function types with similar R2(X ,Y )-values
are studied. If there is a relationship between two variables, they are displayed as a grid on a scatter plot, which
allows the data to be partitioned. A X×Y –lattice with the highest induced mutual information is found for each
pair. For this purpose, all grids are examined up to a maximum grid resolution depending on the sample size.
The result is the greatest possible mutual information that can be obtained through any X×Y grid applied to the
data.

Typically, distance measures such as Euclidean, Manhattan or Cosine are used to calculate the distance between
vectors. Due to the CoD, all distances of the vectors in high-dimensional hyperspaces are almost equal and
orthogonal to each other. The use of distance measures as a degree of similarity in the height dimension space,
therefore, easily leads to inaccurate clustering results. To avoid the problem, MIC procedure is used as an
alternative. The MIC-k-means-algorithm is a k-means algorithm that uses MIC instead of the conventional
Euclidean distance measure to determine the similarity between the vectors.

The main goal of Nebula is to group patients based on their medical similarities. To do this, the biomarkers
must be identified to capture key features for each subgroup. Equipped with a non-parametric Dirichlet process
mixture model, Nebula can learn interactively. The first challenge is to asses whether an individual can be
assigned to a sub type based on a biomarker with significant confidence.

Figure 17.1 displays a taxonomy for recommender systems and proposed solutions. In summary, there are two
different levels of problems. One problem level based on CB and CF is directly related to the recommendation;
these are optimization problems that describe the behavior or the performance of the recommender systems. On
the other hand, there is a level that describes general algorithmic problems with clusters in different dimensions.
This problem level only has to do indirectly with recommender systems, but can also be transferred to other
areas of application.
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Figure 17.1: Overview of problems and solutions of recommendation and clustering in hyperspace as a tree.

17.3 Binarized Clustering

In Chapter 9 we have introduced the bitvector machine, a simple but effective machine learning algorithm,
where feature vectors are partitioned along the medians (in each component) and converted into bitvectors
that are learned. It was shown that the method accelerates both training and classification. The effectiveness
of the method was analyzed theoretically for best and worst-case scenarios. Experiments on high-dimensional
synthetic and real-world data showed a performance boost compared to SVMs with RBF kernel. By tabulating
kernel functions, computing medians in linear-time, and exploiting modern processor technology for advanced
bitvector operations, a speed-up of more than 30 for classification and one of almost 50 for kernel evaluation
compared to the popular library implementations were achieved. Especially for iso-oriented, multi-clustered
problems the method had qualitative advantages over the linear classifier and achieved a high classification
accuracy.

The Hamming distance has the property that its values are bounded by the length of the vectors to be compared,
and allows several important code optimizations, most notably the use of look-up tables and native processor
instructions for kernel evaluation. For transforming the input data from floating point data to binary, medians
can be computed efficiently in linear time.

To explain the problems that arise with current clustering technology, we define some synthetic data sets based
on boolean vectors x ∈ {0,1}, like:
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We expect to cluster the data in this set into three groups. The first four vectors could be defined as a group
because they only use the first two dimensions. The next four vectors also describe a group, because they only
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use the last two dimensions. The last cluster is made up of all vectors without occurrence. Problems like this are
found in the area of collaborative filtering recommenders in order to find matching customers and products. In
this setup different cluster algorithms were tried to solve this problem.

Algorithm Parameters Cluster Result
K-Means expectedClusterCount = 3 [1, 1, 0, 1, 2, 2, 0, 2, 0, 0, 0, 0]

Spectral clustering expectedClusterCount = 3, randomState=0 [1, 1, 0, 1, 2, 2, 0, 2, 0, 0, 0, 0]
DBSCAN minSamples = 3 [-1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0]
OPTICS minSamples = 3 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

MeanShift bandwidth = 0.666 [1, 3, 4, 1, 2, 5, 6, 2, 0, 0, 0, 0]
Affinity propagation randomState = 0 [1, 0, 0, 1, 2, 2, 3, 2, 4, 4, 4, 4]

Ward hierarchical clustering [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]

Table 17.1: Tabular listing of the results of the bit vector observation

The various clustering algorithms and their results of the observation are listed in Figure 17.1. As discussed
above, three clusters are expected. So the expected solution would be similar to [0,0,0,0,1,1,1,1,2,2,2,2]. It
can be seen here that none of the selected algorithms can adequately solve the problem. To ensure that this
observation is not just an isolated phenomenon, we have created a setup to simulate variable cases. The setup
generates random bit-vectors by different dimensions, numbers of groups and group elements.

Figure 17.2: Visualization of the terms dimension, group, group elements.

Figure 17.2 shows an explanation for the terms dimensions, the numbers of groups and group elements. The
example leads to two expected groups. Each expected group is associated with four rows in terms of dimension-
ality. Each combination of groups, group elements and dimension the clustering result was calculated 24 times.
We provide the number of elements for every group with the same value.

Figure 17.3 gives an overview about the results of the simulation. We see that k-means and the spectral clustering
are the best algorithms, with a hit rate of 59.56% and 56.53%. The other cluster algorithms have a hit rate under
12%.

One solution for this problem is a modified k-means clustering algorithms, that includes the dimensions as
additional input.

17.4 Product Configuration

We choose the following characterization for product configuration tasks. A parameter is a property of a com-
ponent and consists of a name and a range of possible value assignments. If the set of values is reduced to
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Figure 17.3: 3D overview of the results of the various clustrering algorithms.

one based on the constraints provided, or fixed by a user, it is terminal. The task of product configuration is to
assemble a product from a set of components and their parameters, so that all constraints are satisfied.

An example is a car with the components motor, wheels, carriage, body and with the parameter color. In its sim-
plest form the configuration problem can be seen as a constraint satisfaction problem (CSP). By the exponential
increase in the number of configurations (in the number of parameters and product parts) and complexity of the
constraints (to be propagated), manual configuration quickly becomes infeasible.

The configuration problem is a triple (V,D,C) of domain variables V = {v1, . . . ,vn}, together with their individ-
ual ranges D = {dom(v1), . . . ,dom(vn)}. The set of constraints C consists of two subsets C = CP ∪CU , where
CP = {c1, . . . ,cm} are the rules imposed by the product and CU = {cm+1, . . . ,cu} are the requirement imposed by
the user. A configuration is an assignment of the variables to some value of their respective domains. It is com-
plete if all variables are assigned, it is consistent, if all constraints are satisfied and valid if it is both complete
and consistent.

In industrial practice, the above characterization of the configuration problem in form of a plain CSP is too
restrictive, in fact there are different sources of information that must be included into the inference process. For
the parts within a product family there are usually taxonomies (is-a-relations) and partonomies (has-a-relations)
that are kept in ontological knowledge bases so that additional constraint propagation by calling reasoners for
description logics is appropriate. To highlight the difference of ordinary and advanced constraint reasoning, we
denote the process as structured configuration.
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17.5 Recommendations for Product Configuration

We have seen that recommender systems assist users in finding items in big data sets. Recommender items
can be of complex structure. For product configuration, it has been shown that recommendations increase user
satisfaction. They can, e.g., be used to recommend parameters that should be evaluated next to finalize the con-
figuration as soon as possible; explain alternatives, if the current configuration cannot be completed; recommend
assignments to parameters; or complete (partial) configuration fully automatically.

Usually, recommender systems are devised to pain objects (like films or books), and less frequent to complex
objects (like apparent in the configuration task). As in some cases users have problems in making their interests
explicit, it is possible to first configure a product and, then, recommend possible alternatives.

Due to market interests, in industrial practice not always the strictly cheapest and fastest choice of parameters is
provided to the user. The optimization criterion must be modified through computing the utility of the product,
which then has to be minimized. Sometimes the recommendation problem induces the optimization of multiple
criteria.

17.6 Algorithms

We chose two basic designs of our recommender system for product configuration, one detecting association
rules, and one applying case-based reasoning.

17.6.1 Association Rule Mining

As the first approach we use a rather unusual approach for recommendation based on mining association rules.
Given a list of transitions, the set of all possible rules of the form A→ B, A,B ⊆ I, I being the set of items,
is filtered by the minimum confidence and minimum support. These rules can, in turn, be used to derive the
recommendation.

For example, suppose we have the rules {a = 1,b = 2}⇒ {x = 3}, {c = 1,d = 2}⇒ {x = 5}, and {e = 3, f =
2} ⇒ {y = 1}. We are searching for a recommendation for x with respect to the set of decisions {c = 1,d =
2,g = 7,h = 3} made so far. A wanted tool derivation proposes an assignment of x to 5.

In hierarchically structured data like the overlay of sequences of decisions made by the users, we have that
additional problem that ancestors of any decision node is visited more often than its offsprings (Figure 17.4).
Depending on the support, we get either only a very few rules or too many weak rules. This brings us to prefer
on-line to off-line learning, considering the list of choices the user has made so far. We derive that some sort of
balancing is needed.

Moreover, in the configuration domain there is an obvious dependence on the order of decisions. If decision a
has to be made before decision c, the rule {b,c}⇒ a is not valid.

Instead of the well-known Apriori algorithm we take FP-Growth (see Algorithm 17.1) as the basis. It has a
better cache reputation and adapts better to the structured configuration problem that we look at.

Both algorithms infer frequent patterns for subsequent rule induction. They rely on the support and the confi-
dence of transactions; the first one being defined as the ratio of transactions that include all items of the rule,
and the latter other one referring to the ratio of the support for the rule and the support for the trigger of the rule.
To reduce the search space, the minimum support and confidence are provided as parameters.
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Figure 17.4: Overlay of decision lists, parameters are shown with the number of visits in brackets.

Algorithm 17.1: FP–Growth

procedure fpGrowth(tree, pattern, minSup)
input FP–Tree tree, current frequent pattern pattern, support threshold minSup
output Set of frequent patterns patterns
patterns← /0
for node ∈ tree.headerTable

support← tree.getSupport(node)
newPattern← frequentPattern(pattern∪node.item, support)
patterns← patterns∪newPattern
prefixPaths← collectPrefixPaths(node)
transformedPrefixPaths← transform(prefixPaths)
conditionalBase← conditionalBase(transformedPrefixPaths)
conditionalTree← conditonalTree(conditionalBase, minSup).build()
if ¬conditionalTree.isEmpty()

patterns← patterns∪ fpGrowth(conditionalTree, newPattern, minSup)
return patterns

FP-Growth already uses a tree for its induction process: the FP-tree (short for frequent pattern tree, Algo-
rithm 17.2), which is built in the first stage of the algorithm. The second stage of the algorithm generates
frequent patterns. The main advantage of the FP-tree data structure is that the number of items is often much
smaller than the number of transactions.

In both the Apriori and the FP-Growth algorithm, the derivation of rules from the frequent patterns is simple
and respects the threshold for the minimum confidence required (see Algorithm 17.3).

17.6.2 Nearest Neighbor

The next approach, originally designed for classification tasks only, nowadays refers to the more general task of
case-based reasoning. It goes back to one the simplest classification algorithm in machine learning: the task in
the k-nearest neighbors algorithm, KNN for short, is to determine the k training samples that have the smallest
distance to the query (according to some distance metric), and choose the one corresponding to the outcome of
majority sampling.
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Algorithm 17.2: FP–Tree construction

procedure buildTree(T , minSup)
input Transaction database T , support threshold minSup
output FP–Tree
F ← collectAllFrequentItemsWithSupportCount(T )
L← sortInDescendingOrder(F)
headerTable← HeaderTable()
root← node(null)
for transaction ∈ T

transaction← sort(transaction, L)
transaction← removeInFrequent(transaction, L, minSup)
current← root
for item ∈ transaction

current← insertNode(item, current, headerTable)
return fpTree(root, headerTable)

procedure insertNode(item, current, headerTable)
node← null
if current.children.contains(item)

node← current.children.get(item)
node.count← node.count+1

else
node← node(item, current)
headerTable.addLink(node)

return node

Algorithm 17.3: Rule generation from frequent patterns.

procedure generateRules(l, minConf)
input frequent pattern l, confidence threshold minConf
output Set of rules R
R← /0;A← generateNonEmptySubset(l)
for a ∈A

c← l \a; r← rule(a,c)
if confidence(r)≥ minConf

R← R∪{r}
return R

When the last step of voting is neglected, classification becomes recommendation. For decision lists u and w,
and a set of parameters Assigned, we define distance d(u,w) = |{x ∈ Assigned | u[x] 6= w[x]}|.
Cumulating this measure definition for arbitrary decision lists the to an overall function distance the k-nearest
neighbors can be determined (see Algorithm 17.4).

Algorithm 17.4: Calculation of the k nearest neighbors.

procedure knn(k, o, X)
input number of neighbors to be found k, reference object o, set of objects X
output Set of k nearest neighbors of o
for x ∈X

compute distance(o,x)
return k elements with smallest distance
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Algorithm 17.5: Rule generation for a specific parameter.

procedure generateRulesForParameter(decisionTree, parameterId)
input Decision–Tree decisionTree, support threshold minSup, conf. threshold minConf
decisionPaths← decisionTree.prefixPaths(parameterId)
store← decisionPathTransactionStore(decisionPaths)
patterns← findFrequentPatterns(store,minSup)
rules← generateRules(patterns, parameterId, minConf)
save(rules)

Algorithm 17.6: Calculation of the recommended value.

procedure recommend(productId, decisions, parameterId)
input product identification productId, previous user decisions decisions, Parameter for which the value should be recom-
mended parameterId
output A parameter value or no match if no matching rule is available
rules← findRulesFor(parameterId,productId)
rules← sortByConfidence(rules)
for rule ∈ rules

if matches(rule, decisions)
return rule.parameterValue

return no match

17.6.3 Integration

In order to apply the above algorithms to the complex data recorded during configuration, a number of adapta-
tions had to be made. For association rule learning transitions are entire decision lists and, thus, more complex,
and for nearest-neighbor search we observe that the parts of the data are dynamic and represented as a tree
(k = 20 proved to be an appropriate value). The vote is the one that maximizes the weight, i.e., for query q it is
determined by

vote = argmax
v ∑

w∈N(k,u),w[q]=v
d(u,v).

In difference to the standard setting for recommendation in configuration we have a series of decisions, so that
decision already made were also taken into account.

A variant of the FP-tree that we call linked decision tree is devised with nodes that contain information about
the parameters, their value assignments, the number of decision lists it contains and a link to the next parameter.
We also maintain a header table, that contains the name of the parameter and a link to the decision subtree.
The core difference of a decision tree to a FP-tree is that the transactions in a decision tree are unsorted and
unfiltered, and that we have a reference of a node to its parent.

For the example of parameter settings {a = 1,b = 2,c = 3,d = 4}, {a = 1,b = 2,c = 4,d = 4}, {a = 1,g =
2, f = 5,d = 3} we have the decision tree shown in Figure 17.5. The header table labeled with the parameters
contain a link to the list of nodes corresponding to that parameter. The decision tree provides fast access to the
transactions. While going upwards from the set of linked nodes, common decisions can be spotted with their
respecive frequencies being counted.

As a consequence, a decision tree achieves a lower compression ration compared to an FP-tree. If the tree
exceeds main memory capacity, we use a graph database that is addressed by the in-memory header table.

Given the decision tree, for a given parameter rules can be derived. The tree is built once and then used as a static
dictionary such that different treads can read the information concurrently, leaving room for parallelization.

The most important extension of rule induction for the configuration task is to automatically reduce the set of
options by the order of decisions made so far. Moreover, rules that have no intersection with the current decision
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Figure 17.5: Decision tree with header table (left) and links (dashed).

Algorithm 17.7: Mapping of a parameter to a string.

procedure mapParameter(parameter)
input A parameter with its value and name parameter
output the mapped parameter as a string
return parameter.name+parameter.value

list can be ignored. Different trade-offs between the time and space for constraint propagation on the paths for
filtering have been tested. At the end, we used a cache as a compromise.

The recommendation is computed in Algorithms 17.5–17.6. The software implemented in Java can be decom-
posed into components for importing the data, for training, a transaction gateway to export the learning results,
some visualization and evaluation procedures as well as the recommendation component. For rule induction,
we restricted the interface to use only singletons in their triggers. Objects stored use the JSON format. For
computing distances, the configurations are serialized. We also filtered decision based on their similarity score,
to avoid that two conceptually different decisions are compared.

Algorithm 17.8: Complete mapping of a parameter to a string.

procedure mapParameterName(parameter, node)
input A parameter parameter, current component in the tree node
output the mapped parameter as a string
return concat(node)+parameter.name

procedure concat(node)
if node = null return
else return concat(node.getParent)+node.name+node.nr

Parameter names might not be unique; think of a car with different wheels, each of which can be configured
independently. As configurations are trees, we traverse the paths to a node to generate a unique identifier (see
Algorithms 17.7– 17.8).
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17.7 Evaluation

As data basis we took the records of a commercial configuration tool, recording customer choices during the
actual configuration process. In our industrial test set we initially had configurations for 33 products, but the
number of configurations was not distributed uniformly: for nine products we had less than 100 configurations,
for 11 products the value was in between 100 and 1000. Two products had the maximum of 12,269 and 13,571
configurations, respectively. From this set we chose three different products:

Product Configurations
a 3,807
b 7,828
c 8,495

We altered the size of the data basis to see scaling effects and used subsets of 100, 2,500, and 5,000 configura-
tions each. Nonetheless, the sample set is comparably small, so that we used 10-fold cross-validation to improve
the reliability of the results.

We provided three inputs to the recommender system: the product ID to denote which product is currently
configured, and the complete history of decision already taken. Last, but not least the parameter had to be
selected, for which a recommendation is requested.

In our experiments we looked at the following recommender system algorithm variants. KNN: weighted major-
ity votes of the k-nearest neighbors; Simple: rule-based approach with a reference to the ordering of decision;
Context: rule-based approach with a reference to the ordering and history of decision; and KNN Context: hybrid
algorithm, an extension of strategy Context with machine learning based on KNNs.

In the following plots we see the outcome of an evaluation for the three different sets of product data. On the left
side we have shown the prediction accuracy in terms of correctly classified instances (higher values are better),
while on the right side we have denoted the percentage of wrong predictions (lower values are better). In the
captions, we have added some additional information on the setting chosen. We see that the parameters of the
rule data mining process have been tuned to the data set.

On the first glance, the good performance of KNN surprised: its simple learning mechanism was quite effective.
However, it always answers with yes or no, while the systems based on association rules can also say don’t
know.

There is a trade-off between the two, while KNN certainly have a better accuracy in the prediction they also
lead to more answers that are wrong. The rule mining algorithm, however, are less accurate but more reliable
if they give a recommendation of the user’s choice. This has led to the hybrid which, according to the results,
offers a compromise between these two extremes.

17.8 Summary

After looking into challenges for recommender systems and issues with known recommendation approaches
based on clustering binary vectors, we have designed, implemented, and evaluated a recommender system for
a (commercial) configuration tool. Machine learning from recorded configurations helped to predict possible
choices to be made by the user. As structured configurations are complex objects to be learned the obtained
prediction rates are promising. While there is work in recommendation for configuration tasks, we provided an
implementation that is applied to on real data.

From a scientific point of view, machine learning structured configurations based on training data imposes a
significant challenge, as the size of the configuration space is large and the object to be learned is an entire data
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Figure 17.6: Results of evaluation: for product a (top left); Simple requests a support of 5% and a confidence of 10%, Order requests
a support of 5% and a confidence of 30%, Context requests a support of 5% and a confidence of 10%, while KNN Context requests a
support of 5% and a confidence of 50%. for product b (top right); Simple requests a support of 5% and a confidence of 12.5%, Order
requests a support of 5% and a confidence of 25%, Context requests a support of 5% and a confidence of 50%, while KNN Context
requests a support of 10% and a confidence of 30%. for product c (bottom); Simple requests a support of 5% and a confidence of
25%, Order requests a support of 12% and a confidence of 50%, Context requests a support of 15% and a confidence of 50%, while
KNN Context requests a support of 10% and a confidence of 30%.
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structure for which expressive distance metrics are non-trivial to derive. That association rules could reduce the
also negative rate and KNNs reduce the false positive rate was an unexpected outcome of the experiments. It
led to an ensemble of the two methods and a machine learning hybrid that suggests further investigation.

17.9 Bibliographic Notes

Mass customization [356, 624] is a current trend. The term product configuration is not used consistently and
uniformly in the literature [423, 599, 551].

Data mining [318, 609] has be characterized as the art of making sense of data, making implicit relations
explicit to the user. A basic understanding of machine learning has been given by [571]. A primer for case-
based reasoning can be found in [624, 458], with a k-nearest neighbors approach with relation to configuration
going back to [131]. The Apriori algorithm has been proposed by [6] and FP-Growth by [7, 318]

Configuration as constraint satisfaction is proposed by [261, 526]. Precursing work in recommendation for
configuration tasks include [248, 336], Knowledge bases and additional control rules are devised that drive the
constraint propagation and decomposition process [311, 343] and called structured configuration [311].

There are different types of recommender systems: the ones mentioned applying collaborative filtering, others
are content-based, demographic, and knowledge-based [92, 534, 252, 251]. For the latter recommender systems,
we further distinguish constraint-based [251]. and case-based [288] systems. There are many mixtures including
ones that are merged using weights, switches, feature combinations or augmentation [533].

Recommender systems [533, 534, 252] usually refer to the process of collaborative filtering [336]. Prominent
examples are the recommendation of films for users in the netflix machine learning challenge or Amazons’
recommendation engine for product selection [411]. There are various approaches for recommender systems,
e.g., ones by matrix factorization [411] for which the large assignment matrix is approximated by two matrices
of lower dimension, whose entries are trained [614, 336],
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Chapter 18

Adversarial Planning

Effective and efficient reasoning in adversarial environments is important for many real-world applications,
ranging from cybersecurity to military operations. Deliberative reasoning techniques, such as automated plan-
ning, are often restricted to static environments where only one agent can make changes through his/her actions.

While such techniques are effective and can generate non-trivial solutions, the presence of an adversary strongly
influences plan quality.

18.1 Introduction

Planning1 in static environments accounts for generating plans that are optimized, for instance, for their length,
makespan or action cost. However, in environments, where an adversarial (alias competing) agent is present,
such naive approach is rarely effective.

Automated Planning is an important tool for enabling deliberative reasoning of intelligent agents but many
application domains consist of multiple actors – agents, independent on each other, that act in order to achieve
their goals – that can either willingly or unknowingly interfere with each other. Hence, the planning approach
has to be modified in order to handle multiple agents. To be more specific, in scenarios in which agents have
conflicting goals such as in zero-sum games each agent has to consider a possible strategy of its opponent while
generating its own strategy. Such scenarios include, for instance, competing for limited resources in games or
competing for customers in on-demand transport services.

One of the best-known game-theoretic algorithms is the incremental strategy generation method called the
double oracle (DO) algorithm. DO algorithm tackles one common problem of games: the exponential number
of possibilities to choose from. The number of plans needed to achieve certain goals raises usually exponential
with respect to the number of agent’s actions.

DO, therefore, restricts the space of possible plans to choose from; the algorithm forms a restricted problem
that is iteratively expanded by calculating and adding into the problem new plans as responses to the current
strategy of the other agent from the restricted problem. Although, in the worst case, all plans have to be added
into the restricted problem, it rarely happens in practice and DO algorithms are often able to find an optimal
strategy using only a fraction of all possibilities.

Domain-independent tools from classical planning can also be used to model and solve a broad class of game-
theoretic problems that we call cost-adversarial planning games (CAPGs).

1 This chapter is based on joint work with Lukás Chrpa, Pavel Rytír, Rostislav Horcík, Jan Cuhel, Anastasiia Livochka, Álvaro
Torralba, and Andrii Nyporko. It puts together and improves the work from [122, 123, 349, 124].
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We can define CAPGs as a two-player normal-form games specified by a planning task and a finite collection
of cost functions. The first player (a planning agent) strives to solve a planning task optimally but has limited
knowledge about its action costs. The second player (an adversary agent) controls the actual action costs.

Even though CAPGs need not to be zero-sum, every CAPG has an associated zero-sum game whose Nash equi-
librium provides the optimal randomized strategy for the planning agent in the original CAPG. It is possible
to find the Nash equilibrium of the associated zero-sum game using a cost-optimal planner via the DO algo-
rithm. To demonstrate the expressivity of CAPGs, one can formalize a patrolling security game and several IPC
domains as CAPGs.

18.2 Basics in Game Theory

We need to recall a few definitions and basic facts from game theory. A 2-player normal-form game (shortly
game) is a quadruple G= (X ,Y,u1,u2) where X (resp. Y ) is a finite set of pure strategies of Player 1 (resp. Player
2), u1 : X ×Y → R (resp. u2 : X ×Y → R) is a utility function of Player 1 (resp. Player 2). When the game G
is played, both players choose simultaneously a strategy from their respective sets of pure strategies X ,Y . The
outcome of G for Player i is given by the utility function ui. The players strive to maximize their utilities. If
a game is played repeatedly, it might be reasonable for the players to randomize their strategies in order to
increase their expected utilities. A mixed strategy for Player 1 is a probabilistic distribution p : X → [0,1]. The
set of all mixed strategies is ∆X . For a mixed strategy p ∈ ∆X we define its support spt(p) = {x ∈ X | p(x)> 0}.
Note that a pure strategy x corresponds to a mixed strategy δX such that spt(δx) = {x}. Set ∆Y for Player 2 and
their supports are defined analogously.

18.2.1 Nash Equilibria

The utility function can be extended to ∆ = ∆X ×∆Y by setting ui(pq) = ∑x∈spt(p) ∑y∈spt(q) p(x)q(y)ui(x,y). In
other words, ui(p,q) is the expected utility of Player i if Player 1 plays p and Player 2 plays q.

An important class of games are zero-sum games, i.e., games where u1 +u2 = 0. In zero-sum games, it suffices
to consider only a single utility function u =−u1 = u2 that Player 1 strives to minimize and Player 2 maximize.

A standard solution concept for games is a Nash equilibrium, defining stable pairs of mixed strategies. Let
G= (X ,Y,u1,u2) be a game. A pair of is called a Nash equilibrium (NE) if for all (p,q)∈ ∆ we have u1(p,q∗)≤
u1(p∗,q∗) and u2(p∗,q)≤ u2(p∗,q∗). In other words, none of the players would change her strategy knowing the
strategy of the opponent because they mutually play best responses against each other. If G is zero-sum and we
have only a single utility function u=−u1 = u2, the defining condition becomes u(p∗,q)≤ u(p∗,q∗)≤ u(p,q∗).

Nash proved that each game has at least one NE. In fact, a game can have more than one NE. In general games it
is problematic for the players to select one among all NEs because the outcome could be different for different
NEs (consider, e.g., the well-known prisoners’ dilemma). Nevertheless, this problem does not occur in zero-sum
games. The value u(p∗,q∗) is always the same for any NE (p∗,q∗). Moreover, p∗ is a minimax strategy whereas
q∗ is a maximin strategy as follows from Neumann’s theorem: Let G = (X ,Y,u1,u2) be a zero-sum game and
(p∗,q∗) its NE. Then,

u(p∗,q∗) = min
p∈∆X

max
q∈∆Y

u(p,q) = max
q∈∆Y

min
p∈∆X

u(p,q).

Therefore, to solve a zero-sum game, both players need to find strategies preparing them best for the worst
opponent’s strategy. The value vG = u(p∗,q∗) is called the value of the game.

A game is almost zero-sum if the sum u1(li, l j)+ u2(li, l j) = −c(li) does not depend on Player 2’s strategy. In
this kind of game, we are interested in finding the optimal strategy for Player 1, which will consist of a mixed
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strategy over the possible plans to reach the goal. More formally, we call a game G = (X ,Y,u1,u2) almost
zero-sum if u1(x,y)+u2(x,y) = f (x) for some function f : X → R.

To each almost zero-sum game G = (X ,Y,u1,u2), we associate its equivalent zero-sum game G0 = (X ,Y,u1,u2)
where u(x,y) = −u1(x,y) = u2(x,y)− f (x). An almost zero-sum game G is best-response equivalent to its
associated zero-sum game G0. Thus, they have the same NEs. More precisely, let G = (X ,Y,u1,u2) be an
almost zero-sum game such that u1(x,y)+u2(x,y) = f (x) and G0 = (X ,Y,u1,u2) its associated zero-sum game
where u(x,y) =−u1(x,y) = u2(x,y)− f (x). Then, (p∗,q∗) is a NE of G if and only if it is a NE of G0.

This is easy to validate, as u1(p,q∗)≤ u1(p∗,q∗) iff u(p∗.q∗) =−u1(p∗q∗)≤−u1(p,q∗) = u(p,q∗). Similarly,
we have u2(p∗,q)≤ u2(p∗,q∗) if and only if u(p∗,q) = u2(p∗,q)− f (p∗)≤ u2(p∗,q∗)− f (p∗) = u(p∗,q∗).

In order to solve an almost zero-sum game, it, therefore, suffices to find a NE (p∗,q∗) of its associated zero-sum
game. Moreover, Player 1’s utility u1(p∗,q∗) = −vG0 is just the opposite of the value of G0 that is given by
the minimax strategy minp∈∆X maxq∈∆Y u(p,q). Consequently, Player 1’s utility u1(p∗,q∗) is always the same
in any NE (p∗,q∗). Thus, Player 1 is indifferent on which equilibrial strategy to play. Nevertheless, the Player
2’s utility may differ in different NEs because u2(p∗,q∗) = vG0 + f (p∗), i.e., Player 1 can influence Player 2’s
utility.

In practical applications, we often look for an approximation of NE. We call a pair of mixed strategies (p′,q′)
an ε-NE if both players can improve their utilities at most by when playing (p′,q′). More formally, let G =
(X .Y,u1,u2) be a game and ε > 0. A pair (p′,q′) ∈ ∆ of mixed strategies is called an ε-Nash equilibrium (ε-
NE) if for all (p,q) ∈ ∆ we have u1(p,q′)≤ u1(p′,q′)+ε and u2(p′,q)≤ u2(p′,q′)+ε The advantage of ε-NE
is that it is guaranteed that there exists a NE with small supports.

18.2.2 Double-Oracle Algorithm

If we want to compute a NE of a zero-sum game G = (X ,Y,u1,u2) and we know its utility function u on X×Y ,
we can find it by linear programming in polynomial time in the size of the representation of u. However, we
deal with situations when both X or Y might be very large, or it might be difficult to compute the utility function
for all possible pure strategies.

Algorithm 18.1: Double-oracle algorithm
Input: Zero-sum game G = (X ,Y,u1,u2), nonempty finite subsets X1 ⊆ X„ Y1 ⊆ Y
Output: ε-NE (p∗i ,q

∗
i ) of G

i← 0
repeat

i← i+1
Find NE(p∗i ,q

∗
i ) of subgame (Xi,Yi,u)

Find some xi+1 ∈ br(q∗i ) and yi+1 ∈ br(p∗i )
Xi+1← Xi∪{xi+1} and Yi+1 = Yi∪{yi+1}
vi = u(p∗i ,yi+1)
vi = u(xi+1,q∗i )

until vi− vi ≤ ε

return (p∗i ,q
∗
i )

To overcome these difficulties, we recall the Double-Oracle Algorithm (DO) as introduced by McMahan, Gor-
don, and Blu that can compute a NE (or ε-NE if it is stopped before the final iteration). It iteratively computes
a NE of a subgame without evaluating the utility function in all points.

When X ′ ⊆ X and Y ′ ⊆ Y define the subgame G′ = (X ′,Y ′,u1,u2) of G by restriction of u to X ′ ×Y ′. The
subgames in particular iterations of DO are constructed from best responses. Given a mixed strategy q ∈ ∆Y ,
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Figure 18.1: A game with 4 UAVs and 6 resources. UAVs of Player 1 are depicted by blue triangles. UAVs of Player 2 are depicted
by red circles. Resources are depicted by green squares. The numbers in the brackets are sensors that a UAV has or are required for
a resource to be collected.

the best response set for Player 1 is defined as br(q) = {x ∈ X | u(x,q) = minx′∈X u(x′,q)}. Analogously, for
p ∈ ∆X , the best response set for Player 2 is br(p) = {y ∈ Y | u(p,y) = maxy′∈Y u(p,y′)}.
The pseudocode of the DO algorithm is listed in Algorithm 18.1. The algorithm starts with the sets X1 and
Y1 of initial pure strategies. Typically, X1 and Y1 are singletons. Next, these sets are iteratively enlarged by
best responses and the resulting subgame is solved by an LP solver. The crucial observation regarding the
convergence of DO is the fact that a best-response for Player 1 gives a lower bound on the game value vi
whereas a best response for Player 2 gives an upper bound on the game value vi. Consequently, if these bounds
are ε-close in an iteration i, the NE of the subgame (Xi,Yi,u1,u2) is an ε-NE of G. Further, note that DO is not
a deterministic algorithm as the best responses are not unique.

The algorithm terminates when neither of the players can add a best response strategy that improves the expected
outcome from the restricted game. The NE of the restricted game matches the one in the original game, since the
best response is computed over the unrestricted set of all strategies. The algorithm returns an optimal strategy
but is not monotone (in the upper and lower bounds on the game value in each iteration), and might have to
consider an exponential number of strategies during its computation, calling for a computational trade-off.

18.3 Incorporating Planning into the Double Oracle Algorithm

As stated before, DO considers a restricted game with a set of pure strategies for each player and where each
player iteratively generates (best) response to the opponent strategy until neither player can improve its strategy.
In our case, pure strategies of agents are set of plans such that each plan can be applied with a given probability.
For finding the (best) response to the competitor’s strategy, an agent formulates a response planning task. If it is
solved optimally, i.e., the response plan has minimum cost, then the agent obtained the best response.

However, finding an optimal plan might be too expensive. Also, if heuristics are used, then suboptimal response
plans are generated. If the response plan, despite being suboptimal, improves agent’s strategy, the response plan
is considered, and the DO algorithm continues. If none of the agents can improve its strategy, then the DO
algorithm terminates.

As a first case study consider a two-player game, called Resource Hunting, where each player controls its fleet
of unmanned aerial vehicles (UAVs) that can collect resources. The goal of each player is to collect as many
resources as possible, however, each resource can be collected by at most one player. Each UAV carries one
or two (different) sensors. Each resource must be collected by one or two (different) sensors. In particular, a
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resource that has to be collected by two sensors requires either one UAV equipped by the corresponding two
sensors, or two UAVs each equipped with the corresponding sensor.

The map of the game is modeled as a graph in which the vertices represent locations and edges connect neigh-
boring locations. The (soft) goals for each player are to collect resources that are placed in some locations on
the map. Each player controls a group of unmanned aerial vehicles (UAVs). Each UAV has at most two different
sensors. Each resource requires one or two sensors for being collected.

There are two types of actions the player can take: the move action, which moves an UAV from one location
to another such that the locations are connected by an edge, and the collect action, where one or more UAVs
collect a resource present in the same location as the UAVs and where the UAVs possess the required sensors.
The examples of two types of scenarios, the “middle” and “diagonal” ones, we use for experiments are depicted
in Figure 18.1

Program 18.1: Resource-hunting PDDL domain (simplified).

(define (domain resource-hunting)
(:requirements :adl :fluents :durative-actions :preferences)
(:types unit resource location sensor player - object)
(:predicates (connected ?l1 ?l2 - location)

(has-unit ?u - unit ?p - player) (at-unit ?u - unit ?l - location)
(free ?u - unit) (at-resource ?r - resource ?l - location)
(available ?r - resource) (sampled ?u - unit ?r - resource)
(collected ?r - resource ?p - player)
(can-communicate ?l - location) (has-sensor ?u - unit ?s - sensor)
(required-sensor ?r - resource ?s - sensor)
(required-two-sensors ?r - resource ?s1 ?s2 - sensor))

(:functions (move-cost ?l1 ?l2 - location) - number)
(:durative-action move
:parameters (?u - unit ?curpos ?nextpos - location ?p - player)
:duration (= ?duration (move-cost ?curpos ?nextpos))
:condition (and (at start (at-unit ?u ?curpos))

(over all (connected ?curpos ?nextpos))
(over all (has-unit ?u ?p)))

:effect (and (at end (at-unit ?u ?nextpos))))
(:durative-action sample
:parameters (?u - unit ?r - resource ?l - location ?s - sensor ?p - player)
:duration (= ?duration 10)
:condition (and (over all (at-unit ?u ?l))

(at start (free ?u))
(over all (at-resource ?r ?l))
(at start (available ?r))
(over all (has-sensor ?u ?s))
(over all (required-sensor ?r ?s))
(over all (has-unit ?u ?p)))

:effect (and (at start (not (free ?u)))
(at start (not (available ?r)))
(at end (collected ?r ?p))
(at end (free ?u))))

[...]
)

The map of the scenario is modeled as an undirected graph, where vertices represent locations and edges repre-
sent connections between the locations. We define two types of actions, move, where an UAV moves between
two connected locations, and, collect where one or two UAVs collect a resource if the UAV(s) have required
sensors and are at the same location as the resource.
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Program 18.2: Resource-hunting PDDL problem (simplified).

(define (problem grid)
(:domain resource-hunting)
(:objects
p1 p2 - player
loc-0 [...] - location
r7 [...] - resource
s1 [...] - sensor
uav1 uav2 [...] - unit)

(:init
(at-resource r10 loc-63) (at-resource r11 loc-76) [...]
(at-unit uav1 loc-0) (at-unit uav2 loc-42) [...]
(available r10) (available r11) (available r12) [...]
(has-unit uav1 p1) (has-unit uav2 p1) [...]
(connected loc-0 loc-20) (connected loc-0 loc-35) [...]
(free uav1) (free uav2) (free uav3) [...]
(has-sensor uav1 s1) (has-sensor uav2 s1) [...]
(required-sensor r10 s3) [...]
(= (move-cost loc-91 loc-84) 70) (= (move-cost loc-84 loc-20) 110) [...]

(:goal ; Player1
(and (preference p1-r10-collected (collected r10 p1)) [...] ))
(:metric minimize (+ (* 100 (is-violated p1-r10-collected)) [...] )

(:goal ; Player 2
(and (preference p2-r10-collected (collected r10 p2)) [...] ))
(:metric minimize (+ (* 100 (is-violated p2-r10-collected)) [...] )))

Formulating (best) response planning task requires knowledge of an adversary (mixed) strategy. Computing
adversary strategy by the Double Oracle algorithm is computationally expensive as a number of planning tasks
has to be (optimally) solved. One can use a heuristic method that estimates when the competitor can apply its
adversary actions as such information is important for setting the deadlines for agent’s critical actions and thus
formulating the (best) response problem.

18.4 Cost-Adversarial Planning Games

Cost-Adversarial Planning Games (CAPGs) are specified by a planning task that the first player (P-player)
strives to solve optimally but the action costs are influenced by the second player (C-player). More precisely,
CAPGs are 2-player normal-form games, where the P-player chooses a plan and the C-player chooses a cost
function from a given collection. Even though, this interaction is simpler than other forms of multiagent adver-
sarial planning, where both agents can select arbitrary plans, it can still capture many relevant scenarios. For
example, by increasing the cost of certain actions, the C-player can force the P-player to choose alternative
plans. Furthermore, this allows us to consider randomized strategies, which is very relevant in some practical
applications.

Cost-adversarial planning games are almost zero-sum. Every almost zero-sum game is best-response equivalent
to a zero-sum game. This allows computing the optimal mixed strategy for the P-player by computing a Nash
equilibrium in the equivalent zero-sum game. Nash equilibrium (NE) is a standard solution concept for normal-
form games. A NE of a zero-sum game can be computed in polynomial time via a transformation to a linear
program. However, this approach is unsuitable for CAPGs because the resulting linear program may be too
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large. Moreover, the transformation is computationally demanding. Thus, to find a NE of a CAPG, we employ
the DO algorithm, which might be seen as a combination of the column and the constraint generation method
used to solve large linear programs. This approach can leverage domain-independent cost-optimal planning to
solve CAPGs with large state spaces efficiently.

Security games are usually modelled as Stackelberg games. A 2-player Stackelberg game is specified by the
same data as a 2-player normal-form game. The difference is in what players know about their opponent’s
mixed strategy. In the normal-form game, the players have no knowledge. On the other hand, in Stackelberg
games, one player is a leader and the other one a follower. The leader has to announce his/her mixed strategy
in advance. The follower chooses his/her strategy afterwards. A solution for a Stackelberg game is a leader’s
mixed strategy maximizing his/her utility provided that the follower always plays his/her best response. Thus
each CAPG (and in fact each 2-player normal-form game) defines also a 2-player Stackelberg game. As each
CAPG is an almost zero-sum game, we can relate its solution to the solution of the corresponding Stackelberg
game. More precisely, the P-player’s mixed strategy from NE is the solution for the Stackelberg game provided
that P-player is the leader. This follows because the P-player’s equilibrial strategy is the minimax strategy. Thus
he/she can announce his/her strategy publicly without providing his/her opponent with an advantage.

Suppose, for example, there is a national park attacked by poachers. For simplicity we assume that there is
a single poacher, who regularly lays down a snare somewhere in the park. Locations with higher density of
animals are more attractive for the poacher. On the other hand, we have a ranger who patrols in the park every
day looking for the snare. However, the park is too large for the ranger to inspect each location in the park within
the day. Our task is to find a probability distribution over a collection of circular paths of limited length starting
and finishing at the ranger’s base so that he minimizes the expected costs for not discovering the snare and the
travelled distance. Formally, we model the park as a graph, whose vertices represent locations in the park and
edges are the road connections between them. Each road connection has its length. One of the vertices is the
ranger’s base.

An example is given in Figure 18.2. The poacher’s pure strategies are vertices where he can put the snare. If the
ranger visits that location during his patrol, he eliminates the snare so that the poacher’s utility is zero. On the
other hand, if the ranger misses the location, the poacher’s utility is proportional to the density of animals in that
location. The ranger can execute at most k many moves during his patrol. Thus the ranger’s pure strategies are
paths starting and finishing in the ranger’s base of length at most k. The ranger’s cost is the travelled distance if
he/she eliminates the snare. If he misses the snare, his cost is increased by the poacher’s utility.

Consider the graph in Figure 18.2. It represents locations in the park and their road connections with their
distances. The ranger is able to make at most seven moves between the locations during a patrol. If the poacher
traps an animal, his utility is 10,000, and 0, otherwise. The ranger’s cost is the sum of travelled distance plus the
poacher’s utility. We will discuss solutions to this game in two scenarios. Firstly, we assume that the poacher
always traps an animal obtaining the value of 10,000 if his snare is not eliminated by the ranger. As the value
10,000 is much greater than the distances in the graph, the optimal mixed strategy for the poacher is to put
the snare into the most distant locations from the base (i.e., locations 8,9). The precise probabilities on the
locations 9, 8, 2, 5, 4 are respectively 0.5, 0.492, 0.003, 0.002, 0.001. On the other hand, the ranger is uniformly
choosing among the paths (a) and (b) in Figure 18.3. Note that the paths consist of at most seven moves and
cover altogether all the locations. The value of the associated zero-sum game (i.e., the ranger’s cost) is 5,164.
The poacher’s utility is 5,000. Thus, the ranger saves every second animal on average.

Secondly, we consider a more realistic scenario, whose equilibrial strategies are shown in Figures 18.2 and 18.3.
Suppose that the poacher, if his snare is not eliminated, traps an an-imal at 30% of cases in all locations except
the location 6, where he is successful in 70% of the cases. So the poacher’s utility, provided that the snare is not
eliminated, in the location 6 is 7,000 and 3,000 in the remaining locations. Now the solution is not symmetric
as before. The location 6 is attractive for the poacher so it pays off for him to risk putting the snare into a closer
location. At the same time, the poacher should consider the locations 8 and 5 with higher probabilities 0.287
and 0.283. By this, the poacher forces the ranger occasionally to visit the left side of the graph while leaving
the attractive location 6 unvisited. On the other hand, the ranger tends to visit the location 6 often to balance
its attractiveness for the poacher. The value of the associated zero-sum game is 1,926. The poacher’s utility is
1,633. Thus, the poacher traps an animal roughly in 16% of the cases.
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Figure 18.2: The graph representing the park. The double circled vertex denotes the ranger’s base. The equilibrial strategy for the
poacher is depicted with the gray nodes. The respective probabilities of the locations 8, 5, 2, 6, 9, 4 are 0.287, 0.283, 0.276 , 0.131,
0.016, 0.005.

(a) (b) (c) (d)

Figure 18.3: Equilibrial strategy for the P-player for the second scenario with probabilies 0.416, 0.25, 0.166, 0.166 (a)–(d).

“Middle” Scenario “Diagonal” Scenario
Algorithm Error P1 Value P2 Value time(s) Iters Error P1 Value P2 Value time (s) Iters

Classical 0.0 3.1 2.9 3,430 34 0.0 3.11 2.89 2,590 23
PruningHeur 0.0 3.1 2.9 3,077 34 0.0 3.11 2.89 3,178 31

OrderingHeur 1.72 2.82 3.18 1,043 15 1.13 3 3 2,126 13

Table 18.1: Comparison of the approaches for scenarios with 3 UAVs and 6 resources. P1 and P2 stand for Player 1 and Player 2
respectively.

18.5 Experiments

As an optimal classical planner, we used the Fast Downward planner. with the potential heuristic or with pattern
databases (ipdbs). As an optimal temporal planner we used CPT4.

18.5.1 Temporal Planning Domains

We modeled the domain in PDDL (see Figures. 18.1–18.2 for code fragments). We abstracted graphs by consid-
ering only locations of interest (e.g., with an UAV, or a resource), where length of edges between these locations
correspond to minimum path length in the original graph. Reasoning with timestamps can be embedded into
the model by introducing “arithmetic” and “relation” predicates that represent essential operations (e.g., adding,
comparing). Enforcing ordering constraints for critical actions is done by introducing special facts representing
the order of each critical actions.

Table 18.1 shows the results of the comparison. The approximation error is equal to the difference of the value
of best response to Player 1 strategy and best response to Player 2 strategy, computed by the double-oracle
algorithm. In the diagonal case, the pruning heuristics led to the highest number of iterations, i.e., the number
of generated response plans until it converges, while the ordering heuristics approach led to the highest error.
Whereas the latter is expectable, the former is caused by the fact that the response plans might omit collecting
some resources.
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domain NE cov gmt maxt ml tl avgit mit avgP avgC
patrol 85 90 0.7 3.3 4 1 18.2 60 5.4 7.1
transport 13 14 0.7 7.2 17 0 11.8 21 5.2 7.2
transport-road 13 14 1.2 74.1 17 0 5.3 10 2.3 3.2
data-network 3 12 0.8 33.3 16 1 14.7 21 7.7 8.3
visitall 11 16 0.5 13.7 9 0 17.5 34 9.1 13.3

Table 18.2: Overall results for an optimal planner with ipdb. NE: the number of solved tasks; cov: the number of tasks where at least
one plan was produced; gmt: the geometric mean of the best-response computation times for the commonly solved tasks; maxt: the
maximum best-response computation time for the commonly solved tasks; ml:the number of tasks that failed due to the memory
limit; tl: the number of tasks that failed due to the time limit; avgit: the average number of iterations for the tasks solved by ipdb;
mit: the maximum number of iterations for the tasks solved by ipdb; avgP: the average size of the P-player’s support for the tasks
solved by ipdb; avgC: the average size of the C-player’s support for the tasks solved by ipdb.

18.5.2 Cost-Adversarial Planning Games

We evaluate the DO algorithm for cost-adversarial planning games in several domains. First, in the patrol domain
we introduced in the previous section. Particular instances of the patrol domain were generated based on the
underlying maps of locations of the 30 instances of the 2008 optimal-track version of the IPC transport domain.
For each map, we considered three variants limiting the number of moves the ranger can take at most to 6, 12,
and 18, respectively. Furthermore, we created variants of several domains from the IPC, namely transport, data-
network and visitall. For the transport domain, we considered two variants of the C-player’s pure strategies.
In the first one (we call it transport), the C-player can increase by a penalty the cost of a single drive action
determined by two locations x, y, and a truck t. So the penalty is applied only if the P-player applies exactly
that drive action. If another truck t ′ drives from x to y, the P-player pays no penalty. The second variant (called
transport-road) of the transport domain allows the C-player to increase simultaneously the cost of all drive
actions from x to y no matter which truck applies it. The first variant clearly allows larger flexibility for the
P-player to avoid the C-player’s trap. In data network, the C-player can choose a server s and a scripts sc and
increase simultaneously the cost of all actions processing the script sc on the server s no matter which data are
processed. In visitall, we allow the C-player to choose among particular move actions where apenalty is applied.
In all domains, the penalties increasing the base costs were generated randomly from the interval [1,000,10,000]
for each pure strategy.

The implementation of DO can be used with any optimal planner to compute the P-player’s best response.
The overall results with all considered optimal planners are shown in Table 18.2. The optimal planner was
able to solve the first planning task in the initialization of DO, which corresponds to the original cost function
disregarding the C-player. This translates into finding also the NE in most cases. Interestingly, the difference
between NE and cov suggests that inmost cases, if the underlying planner is able to find an optimal plan, the
DO algorithm will terminate with a satisfactory NE, too. Furthermore, Table 18.2 shows the average, maximum
numbers of iterations and the average size of the P-player’s and the C-player’s support.

18.6 Summary

Planning in zero-sum games concerns of finding plans that maximise the reward (or minimise the cost) for
accomplished (or failed) goals in the presence of an opponent sharing the same goals such that only one of the
actors can accomplish a given goal. Automated Planning can be incorporated into the DO algorithm.

Planning in adversarial environments (e.g., zero-sum games) requires to predict the strategy of the competitor,
so the agent can optimize its plan accordingly.
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To generate optimal mixed strategies (in Nash Equilibrium), DO can take tens of iterations until it converges
(and none of the player can improve its strategy) even for smaller tasks. It involves to cost-optimally solve two
planning tasks in each iteration, which is computationally expensive.

We introduced cost-adversarial planning games and showed which problems can be modelled by these games. In
particular, we illustrated how to model patrolling security games within this formalism. Further, we showed how
to solvethem using DO together with the tools from optimal classical planning and experimentally evaluated
our solution method.

It turns out that the runtime of optimal planners can be substantially influenced by the chosen cost function. This
suggests that CAPGs might serve as a reasonable benchmark to test optimal planners with respect to several
cost functions.

18.7 Bibliographic Notes

Actions of other agents can be represented as exogenous events [152]. There is a range of techniques that tackle
plan generation and execution under presence of exogenous events. For example, there are techniques based
on Markov Decision Processes (MDPs) [409], Monte-Carlo Tree Search [504], or reasoning about “dangerous
states” [121]. They do not consider scenarios where agents have conflicting goals and, hence, hinder each other
their pursuit towards goals.

To explicitly reason about adversaries while generating plans, game-theoretic methods have to be leveraged.
Importantly, agents may need to randomize over several plans, so the other agents have uncertainty about which
plan is going to be executed making it difficult for them to exploit such a strategy [440]. Existing techniques
involving planning and game theory focus on congestion games where the task is to find an optimal robust
multiagent plan for non-cooperating agents [375] or on Stackelberg games where the task is to find a pure
plan of the leader that is robust against the adversary [587]. Such techniques are not able to find randomized
strategies.

While there are several successful applications of game-theoretic algorithms in practice, for example in domains
of physical security [608] or protecting wildlife [250], most of the methods used for scaling-up are domain-
dependent and their transferability to other domains is limited.

The concept of planning in adversarial environment is not new [21]. Succinct symbolic representations of state
sets helped generating optimistic and strong cyclic adversarial plans [366, 127], a setting conceptually related
to FOND planning [400]. Such a setting, however, has to explore most if not all alternatives (in analogy to tradi-
tional game-tree methods such as minimax). Monte-Carlo Tree Search (MCTS) and Online Evolutionary Plan-
ning have been applied in adversarial environments such as the Hero Academy game [377], or Starcraft [378].
Deep Reinforcement Learning (DRL) has shown impressive results in Starcraft [634] and other (adversarial)
domains such as the games of Chess or Go [577]. MCTS and DRL approaches work “online”: they select the
most promising action (or move) in the current state of the environment, and they continue to do so until the
terminal state is reached.

The idea of combining planning and game theory has appeared in previous works, although mostly with different
goals. Often, the goal was to update the planning formalism to handle multiple agents and multiple goals the
agents can pursue [77, 79]. Delete relaxation has a tradition in classical planning [342, 62] as well as in temporal
planning [134].

A body of work concerning non-cooperative multiagent planning exploits game theory for generating plans
for each agent while minimizing conflicts with plans of other agents. Resolving such conflicts can be done by
translating the task into an invertible planning problem [274], or by selecting the best plan for each agent from
a set of pre-computed plans using a two-game approach [374]. Closer to the above work, the conflicts can also
be resolved by a best-response approach that iteratively improves plans of each agent [373]. Such an approach
has been used for planning Electric Autonomous Vehicles [375]. These works, however, focus on congestion
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games, for which a single plan can be optimally robust (a pure equilibrium is guaranteed to exist for this class of
games). This, however, is not true for most of the non-cooperative games and adversarial scenarios. [587] used
game theoretic framework of Stackelberg games and seek a pure plan of the leader that is robust against actions
of the adversary. Again, we seek a possibly randomized strategy which poses computation challenges that are
not present when restricting to pure strategies.

There are several existing methods that use the double-oracle incremental strategy generation method. The
original work by [471] was used in the setting where one player sought an optimal way to get through an area
unobserved while the other player placed the surveillance cameras. In that work and many other follow-up works
(e.g., see [364, 75]), the standard assumption is that the best response algorithm is capable of computing the
optimal plan (or at least a best response with a bounded error) given the strategy of the opponent. On the other
hand, the recent work combined reinforcement learning with double-oracle algorithm [436, 643] on domains
where computing (approximate) best response is not possible.

In terms of using domain-independent planning algorithms for computing the (best) response plans, finding an
optimal plan that accounts for best response is often computationally harder than finding any plan [331]. Many
planners produce sub-optimal plans and improve them until the allocated time expires or the plans cannot be
further improved [627]. [550] studied how effective and efficient is to combine DO with domain-independent
planning algorithms while considering varying time limits for providing the response plans and varying granu-
larity of the underlying planning tasks.

From the planning side, [587] used the game-theoretic framework of Stackelberg games for generating robust
plans against actions of the adversary. In a similar spirit, Plan Interdiction Games have been proposed to describe
the problem of attackers and defenders, where the former plans to intrude a computer network, while the latter
tries to prohibit attackers’ actions [445, 636]. A recent work about “Counterplanning” goes in a similar direction
as one agent tries to invalidate landmarks required by the opposite agent [523]. Planning-based techniques work
offline, i.e., they generate plans upfront, which are then executed (as they are).



Chapter 19

Model Checking

Model checking is the automated process of checking the correctness of one piece of software with another one.
Due to uncertainty of its execution order or of its inputs, the system under consideration shows non-deterministic
behavior. As the general problem of checking correctness is undecidable, model checking often resorts to val-
idating compliance with respect to temporal specification. Given a model M and some property specification
φ the task is to determine if the model formally implies φ , written as M |= φ . The simplest specifications are
safety properties and include global invariances and variable assertions. In automata-based model checking,
the property specification is provided in some form of temporal logics, which is compiled to an infinite-state
automata that runs concurrent to the model execution. Model and specification together result in a larger state
space, which has to be analyzed for the absence of error traces. Model checking usually amounts to exploring
the corresponding state space graph.

In this chapter we accelerate state space exploration for explicit-state model checking by executing complex
operations on the graphics processing unit (GPU). In contrast to existing approaches to enhance model checking
performing parallel matrix operations on the GPU, we parallelize the breadth-first layered construction of the
state space graph. To prevent revisiting of already explored states, all processed states are stored. If a state is
generated, it is first checked against the set of stored states. Due to the huge number of states and their large
sizes, time and memory demands for analyzing systems rise rapidly. For model checking safety properties, a
complete scan of the reachable (possibly reduced) search space suffices.

For efficient processing on the GPU, the input model is translated to the reverse Polish notation, resulting in a
representation as an integer vector. The GPU exploration algorithm then divides into two parallel stages. In the
first stage, each state is replaced with a Boolean vector to denote which transitions are enabled. In the second
stage, pairs consisting of replicated states and enabled transition IDs are copied to the GPU, then all transitions
are applied in parallel to produce the successors. Bitstate hashing is used as a Bloom filter to remove duplicates
from the set of successors in RAM.

19.1 Introduction

In1 the last few years there has been a remarkable increase in performance and capabilities of graphics process-
ing units (GPUs). Whereas quad-core CPU processors have become commonplace, in the years to come core
numbers are likely to follow Moore’s law. This trend to many-core processors is already realized in graphical
processing units. Modern GPUs are not only powerful, but programmable processors featuring high arithmetic
capabilities and memory bandwidths. Moreover, high-level programming interfaces have been designed for

1 This chapter is based on joint work with Damian Sulewski, Dragan Bosnacki, Anton Wijs, and Peter Kissmann. It puts together
and improves the work work from [67, 68, 603, 226].
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using GPUs as ordinary computing devices. Current GPUs, for example, feature up to thousands of scalar pro-
cessing units per chip.

The highly parallel GPU has rapidly gained maturity as a powerful engine for computationally demanding
numerical operations. The access of it is streamed, using a kernel function given to every scalar processing
unit. We apply general purpose GPU (GPGPU) technology to the state space generation for explicit-state model
checking. During the construction of the state space, we detect and eliminate duplicates and check a visited
state for possible violation of so-called safety properties. We apply breadth-first search (BFS) and can return
counterexamples of minimal length. It includes checking enabledness and generating the successors on the
GPU. FAM for the exploration is mainly limited by the size of the Bloom filter. Storing full state information
for expanding a state in RAM is optional, as the search frontier is managed on external memory. Eventually, the
entire reachable state space has been flushed to disk.

The state space generation algorithm is divided into two stages, executed on the GPU: 1) Checking enabled-
ness, i.e., testing the applicability of transitions against the current state; 2) Generating the set of successors
(one for each enabled transition and explored state). The core reason to operate in two subsequent stages is to
maximize space utilization of the graphics card. To please the GPU’s computational model, the reverse Polish
notation is chosen for achieving a flat bracket-free representation of expressions, since it offers the possibility to
concatenate all transition descriptions to one integer vector, yielding a memory- and time-efficient exploration.

After generating the successors, they must be checked for duplicates against the list of expanded states. This can
be done with either a complete method or with an incomplete but usually faster hashing method. We were able to
exploit multiple threads running on the CPU for parallelizing the access to the hash table. We preferred partial
search methods, because otherwise, for multi-threaded memorization at high-end exploration performance, a
non-trivial lock-free hash table implementation would be needed.

The GPU model checker (CuDMoC) takes the same input format as DiVinE, namely, DVE, but shares no code.
By changing the parser, however, the algorithms can be integrated to any other explicit-state model checkers,
including Spin. We assume Cuda supporting NVidia hardware, but there are trends on GPGPU programming
with other vendors, too.

For each of the two exploration stages, we obtain significant speed-ups of more than one order of magnitude
for analyzing benchmark protocols on the GPU. In BFS, hashing contributes only a small fraction to the overall
performance, so that we compute the hash values on the CPU.

19.2 GPU Essentials

Some of the design decisions in GPU model checking are closely related to the architecture. Thus, insights into
GPU architecture are essential. GPUs have multiple cores, but the programming and computational models are
different from the ones for multi-core CPUs. GPU programming requires a special compiler, which translates
the code to native GPU instructions. Roughly speaking, the GPU architecture is that of a vector computer with
the same function running on all processors. GPU architectures have different layers for accessing memory.
Moreover, nowadays GPUs forbid common writes to a memory cell but support a limited form of concurrent
read.

The numbers of cores on the GPU clearly exceed the ones on the CPU, but GPUs are limited to stream pro-
cessing. While cores on a multi-core processor work autonomously, the operations of cores on the GPU are
strongly correlated. One representative is characterized in Figure 19.1. With SLI, Tesla or Fermi technologies,
more cores and larger amounts of memory are available.

A scalar core is a streaming processor (SP), capable of performing single precision arithmetic. SPs are grouped
together with a cache structure and two special function units (performing, e.g., double precision arithmetic) to a
streaming multiprocessor (SM). Texture processing clusters (TPCs) form the top-level architecture and combine
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Figure 19.1: Prototypical GPU architecture.

SMs with a second cache. Since the cores are similar to an SIMD technology and operate on a lower frequency
than the CPU, a linear speed-up is not to be expected.

Memory is structured hierarchically, starting with the global memory (video RAM, or VRAM). Access to this
memory is relatively slow, but can be accelerated through coalescing, where adjacent accesses are combined to
one. Each SM includes some KB of memory (shared RAM or SRAM), shared between all its SPs and accessed
at a speed compatible to a register. Additional registers are also in each SP. Data must be copied to VRAM to
be accessible.

The kernel function executed in parallel on the GPU is driven by threads that are grouped together in blocks. The
TPC distributes the blocks on its streaming multiprocessors in such a way that none of the SMs runs more than
a thousand threads. A block is not distributed among different SMs. This way, for a given maximal block size,
at most a few blocks can be executed by one SM. Each TPC schedules several parallel threads, providing the
same chunk of code to all its SMs. Since all the SPs get the same chunk of code, SPs in an else-branch wait for
the SPs in the if -branch, being idle. After the threads have executed a chunk the next chunk is executed. Blocks
are executed sequentially on all the resources available. Threads which are waiting for data can be parked by
the TPC, while the SPs work on threads which have already received the data.

19.3 Probabilistic Model Checking

Algorithms for parallel probabilistic model checking on general purpose graphic processing units target the
numerical components of the traditional sequential algorithms. In particular, they capitalize on the fact that in
most of them operations like matrix–vector multiplication and solving systems of linear equations are the main
complexity bottlenecks.

Since linear algebraic operations can be implemented very efficiently on GPUs, parallel algorithms show consid-
erable runtime improvements compared to their counterparts on standard architectures. We implemented such
parallel algorithms on top of the probabilistic model checker PRISM. The prototype implementation was eval-
uated on several case studies, in which significant speedups over the standard CPU implementation of the tool
were observed. The work mainly considered discrete-time Markov chains (DTMCs) and the probabilistic com-
putation tree logic (PCTL). It shows that matrix-vector multiplication and solving systems of linear equations
are the corner-stones of most of the algorithms for probabilistic model checking.

Two algorithms that are parallel adaptations of the iteration method of Jacobi for solving linear equations were
presented. Jacobi was chosen over other methods that usually outperform it on sequential platforms because
of its lower memory requirements and potential to be parallelized because of fewer data dependencies. The
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algorithms feature sparse matrix–vector multiplication. It required a minimal number of copy operations from
RAM to GPU and back.

19.4 GPU Breadth-First Search

In the following, we provide the essentials for breadth-first explicit-state model checking on the GPU. We
show how to test enabledness for a set of states in parallel, and – given all sets of applicable transitions – how
to generate the successor state sets accordingly. We restrict ourselves to BFS for generating the entire search
space, since it is sufficient for verifying the safety properties. Even for model checking full LTL, which we do
not address, efficient BFS state space generation is often a crucial step.

We assume a hierarchical memory structure of SRAM (small, but fast parallel access) and VRAM (large, but
slow parallel access) located on the GPU, together with RAM located on the motherboard. The setting, illus-
trated in Figure 19.2, indicates the partition of memory into cells and of processing units into cores.

We observed that duplicate detection and elimination is not as CPU-inefficient in practice as we have expected.
This is maybe due to the large number of successors that are already eliminated within one BFS layer. In the
instances we looked at transition enabledness checking and successor generation were identified as the main
performance bottlenecks. As the BFS search frontier is also stored on disk, we can save RAM by reading states
to be expanded in blocks.

The intuition is to dispatch a set of operations to the GPU. For each BFS layer, the state space enumeration is
divided into two main computational stages that are called in Algorithm 19.1; Stage 1: generate sets of enabled
transitions based on checking the transition guards in parallel; and Stage 2: generate sets of successors based
on applying transition effects in parallel. The codes for checking enabledness (Algorithm 19.3) and generating
the successors (Algorithm 19.4) reflect that each processing core selects his share based on his group and thread
ID. For duplicate detection, a Bloom filter is provided.

In the first stage, a set of enabled transitions is generated by copying the states to the VRAM and replacing them
by a bitvector. In the second stage, sets of all possible successors are generated. For each enabled transition
a pair, joining the transition ID and the explored state, is copied to the VRAM. Each state is replicated by
the number of successors it generates in order to prevent memory from being allocated dynamically. The third
stage removes all duplicates, e.g., by bitstate hashing. For a better compression in RAM, we separate the search
frontier from the set of visited states on disk.

19.4.1 Preparing the Model

To check the transitions enabledness, a representation of them must be accessible by the GPU cores. While
an object-oriented data structure – where each expression in a process is realized as an object linked to its
substructures – might be a preferable representation of the model for CPU access, such a representation would
be less effective for GPU access.
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Algorithm 19.1: Breadth-first search on the GPU.
Input: initial state: s0
Output: set of all reached states: Closed

Open←{s0};Closed← /0; Enabled← /0; Successors← /0; ;; initialize search
while (Open 6= /0) ;; repeat until search terminates

Stage 1 - Generate sets of enabled transitions
while (|Enabled| 6= |Open|) ;; until all frontier states are processed

VRAM←{u ∈ Open | VRAM not full} ;; Copy nodes to VRAM
Enabled← Enabled∪GPU-MarkEnabled(VRAM) ;; GPU function

Stage 2 - Generate sets of successors
while (Enabled 6= /0) ;; Until all transitions processed

VRAM←{(t,s) | t ∈ Enabled and s fits t ∈ Open∧VRAM not full}
;; Move state copies for all enabled transitions of a state to VRAM

Enabled← Enabled\{t} ;; remove transitions from Enabled
Successors← Successors∪GPU-GenerateSuccessors(VRAM) ;; GPU function

Open← /0; ;; prepare next layer
Successors← Successors∩Closed; ;; remove explored states from successors set
Closed← Closed∪Successors; ;; extend set of explored states
Open← Successors; ;; add new layer to the search frontier

As described in Section 19.2, the GPU’s memory manager prefers sequential access to the data structures.
Moreover, to use coalescing many threads must access the same memory area in parallel. Hence, to speed up
the access to the model, data should reside in the SRAM of each multi-processor. This way a fast randomized
access can be granted, while the available space shrinks to at most SRAM size. Another positive aspect of
storing the model directly in the SRAM arises from the fast accessibility by all threads of a multi-processor, so
that the model must be copied only once from the VRAM to RAM.

Since the GPU should not access RAM and pointer manipulation on the GPU is limited, it is necessary to rewrite
the transition guard labels to be evaluated. This description has to be efficient in terms of memory and evaluation
time, since the size of the VRAM is small (compared to the computational power of the GPU). Furthermore, all
transitions should be moved into one memory block to take advantage of fast block transfers on the express bus.

19.4.1.1 Parsing the DVE Language

To use the benchmark protocols provided by the BEEM library DVE was chosen. The underlying theoreti-
cal model of the DVE language is that of communicating finite state machines and consists of several parts,
structured hierarchically, and identified as global variables and several processes on the top level. Processes are
divided into local variables, states and transitions, while transitions consist of guards and effects represented by
Boolean formula and variable assignments, respectively. Transitions are assigned to states and indicate which
state to activate if the transition is enabled. Given the process is in state s, only transitions assigned to s should
be checked. If a guard evaluates to true, the transition is enabled and the effects should be applied, assigning
the process a new state and optionally new values to some global or local variables. The example in Figure 19.3
shows the Anderson protocol with only one process. The array Slot and the variable next are global, while my_-
place is a local variable. The process can be in one of five states named as NCS, p1, p2, p3, CS where NCS is
the initial state. Note that transitions 2 and 3 cannot be applied concurrently, since only one of the guards can
be true.

Based on knowing the grammar, the model description can be parsed, and a syntax tree constructed. To store
different variable assignments and indicate in which state a process currently is, a byte vector can be used.
Figure 19.4 describes the state vector assigned to the example. Necessary space for each global variable is
reserved, followed by a byte indicating the current state of each process, and combined with space for the local
variables for each process.
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1 byte Slot[1] = {1 };
2 byte next=0;
3 process P_0 {
4 byte my_place;
5 state NCS, p1, p2, p3, CS;
6 init NCS;
7 trans
8 NCS -> p1 { effect my_place = next, next = next+1; },
9 p1 -> p2 { guard my_place == 3-1; effect next = next-3; },
10 p1 -> p2 { guard my_place != 3-1; effect my_place = my_place%3; },
11 p2 -> p3 { guard Slot[my_place] == 1; },
12 p3 -> CS { effect Slot[my_place]=0; },
13 CS -> NCS { effect Slot[(my_place+1)%3]=1;};
14 }

Figure 19.3: Fragments of the Anderson (1) protocol in DVE input language.
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Figure 19.5: Fragments of the transition vector.

The challenge is to store the representation of the transitions efficiently. On the GPU, the reverse Polish nota-
tion (RPN), i.e., a postfix representation of Boolean and arithmetic expressions, is very effective. It is used to
represent all guards and effects of the model in one integer array. This array is partitioned into two parts, one
for the guards, the other for the effects. A prefix assigns the guards and effects to its processes after creating the
array. In addition to the guards, each transition indicates the goal state the process will reach after applying the
effects. Tokens are used to distinguish different elements of the Boolean formulas. Each entry consists of a pair
(token,value) identifying the action to take. Consider the guard starting at position 8 of the array presented in
Figure 19.5 representing the guard of the second transition in the example (my_place==3-1;). It is translated to
the RPN as an entry of length 10 using tokens for constants, arithmetic operation and variables. Constant tokens,
also defining the type of the constant, are followed by the value. Arithmetic tokens identify the following byte as
an operator. One special token is the variable token, there is no distinction in arrays or variables, since variables
are arrays of length 1, so the token defines the type of the variable and is followed by the index to access it in
the state.

This yields a pointer-free, compact and flat representation of the transition guards. Converting the protocol to
the RPN notation and copying it to the GPU is executed before the model checking process starts. Using this
representation a check for enabledness of transitions in a process boils down to three steps: 1) checking the state
the process is in, by reading its byte in the state vector; 2) checking which transitions to check by reading the
global prefix of the integer vector describing the model; evaluation of all guards dependent on the actual state
and process on a stack.

To enable the transition given its ID, the representation starting at the position given by the second array has
to be evaluated. The advantage of this approach is being able to copy all information needed for the model
checking process into two blocks. Given that all guards and effects, respectively, are in adjacent memory cells,
we have a stream access for evaluating a large number of guards.
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Algorithm 19.2: CheckGuard: checking a guard for a state on the GPU.
Global: expression vector guards
Input: state vector state ; transition trans
Output: true, if guard evaluation was successful; false, otherwise

pos← start_of_guards(trans);
while pos < start_of_guards(trans)+ length_of_guards(trans);

if is_constant(guards[pos]) push guards[pos+1] on top of stack;
if is_operator(guards[pos]) pop var1 and var2 from stack;

result← var1 guards[pos] var2;
push result on top of stack;

if is_variable(guards[pos]) push state[guards[pos+1]] on top of stack;
pos← next_guard(trans,pos);

return result;

19.4.2 State Exploration on the GPU

For accelerating the joint exploration of states, we executed both the enabledness check and the generation of
successors on the GPU, parallelizing (the essentials of) the entire model checking process. We exploit the fact
that the order of explorations in one BFS-layer does not matter, so that no communication between the threads
nor explicit load balancing is required. Each processor is simply assigned to its share and starts operating.
Duplicate detection is delayed on the GPU and delegated to the CPU.

Still, there are remaining obstacles in implementing a fully-fledged model checker on the GPU. First, the state
size may vary during the verification. Fortunately, common model checkers provide upper bounds on the state
vector size or induce the maximal size of the state vector once the initial state has been read. Another technical
challenge is that the GPU kernel (though being C-like) does not exactly match the sources of the model checker,
such that all methods being called have to be ported to Cuda.

19.4.2.1 Checking Enabledness on the GPU

In the state exploration routine first, all transitions are checked, and then, the enabled ones are fired. Before the
execution the transition vector is copied to the SRAM for faster access. All threads access in parallel the VRAM
and read the state vector into their registers using coalescing. Then all threads access transitions[0] to find the
number of processes in the model. Next, all threads access guards[1] to find the state the first process is in. At
this point in time, the memory access diverges for the first time. Since processes have reached different states at
different positions in the search space, different guards must be evaluated. This does no harm, since the transition
vector is accessible in the SRAM and all access is streamed. After collecting the necessary information, all
threads call Algorithm 19.2. A stack consisting of pair entries (token,value) is used to evaluate the Boolean
formulas. The checking process boils down to storing the values on the stack, and executing all operations on
the two entries on top of the stack. The stack is used as a cache for all arithmetic operations and given that an
assignment is found, the value on top of the stack is written to the state.

In the first stage the VRAM is filled with states from the Open list. Then, Algorithm 19.3, executed on the
GPU, computes a bitvector B of transitions, with bit Bt denoting whether or not transition t applies. The entire
array, whose size is equal to the number of enabled transitions, is initialized to false. A bit is set if a transition
is enabled. Each thread reads one single state at a unique position defined by its ID and computes the set of its
enabled transitions. For improved VRAM efficiency we allow the vector of transitions to overwrite the states
they are applied to. Therefore, we utilize the fact that the number of transitions in a protocol is a constant
that does not exceed the size of the bitvector representation of a state. After having checked all transitions for
enabledness, the bitvectors are copied back to RAM.
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Algorithm 19.3: GPU-MarkEnabled: GPU kernel for transition enabledness check.
Global: transition guards in reverse Polish notation
Input: state vectors {s1, . . . ,sk} to check for enabledness
Output: array of transition sets {t1, . . . , tk} (overwrites state vectors with bitvectors)

for each group g do ;; partially distributed computation
for each thread p do in parallel ;; distributed computation

B← (false, . . . , false) ;; clear enabledness bitvector
for each possible transition t for sg·sizeof(g)+p do ;; select state transitions

B[t]← CheckGuard(s, t) ;; check enabledness and set according bit
sg·sizeof(g)+p← B ;; overwrite selected state

return {s1, . . . ,sk} ;; return overwritten states to CPU

Algorithm 19.4: GPU-GenerateSuccessors: GPU kernel for successor generation.
Global: transition postconditions effects in reverse Polish notation effects
Input: set of pairs (transition,state) {{t1,s1}, . . .{tk,sk}}
Output: set of successors (explored nodes are overwritten)

for each group g do ;; Partially distributed computation
for each thread p do in parallel ;; Distributed computation

sg·sizeof(g)+p← Explore(effects, tg·sizeof(g)+p,sg·p) ;; Generate successor
return {s1, . . . ,sk} ;; Feedback result to CPU

To evaluate a postfix representation of a guard, one scan through its representation suffices. The maximal length
of a guard times the number of groups thus determines the parallel running time, as for all threads in a group,
the check for enabledness is executed concurrently.

19.4.2.2 Generating the Successors on the GPU

After having fixed the set of applicable transitions for each state, generating the successors on the GPU is
relatively simple. First, we replicate each state to be explored by the number of enabled transitions on the CPU.
Moreover, we attach the ID of the transition that is enabled together with each state. Then, we move the array
of states to the GPU and generate the successors in parallel.

For the application of a transition to a given state, similar to processing the guards, the effect expressions have
been rewritten in reverse Polish notation (see Algorithm 19.4). Since this static representation resides in VRAM
for the entire checking process, and since it is addressed by all instances of the same kernel function, its access
is fast. The cause is that broadcasting is an integral operation on most graphics cards.

Each state to be explored is overwritten with the result of applying the attached transition, which often results in
small changes to the state vector. Finally, all states are copied back to RAM. The run-time is determined by the
maximal length of an effect times the number of groups, as for all threads in a group we generate the successors
in parallel.

19.4.2.3 Duplicate Checking on (Multiple Cores of) the CPU

Since the successors are generated in parallel, an efficient parallel method is necessary to detect duplicates
by checking the current state against the list of explored nodes. As in the Spin model checker, we use double-
bitstate hashing as a default. Looking at the number of states explored, the error probability for tens of gigabytes
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Table 19.1: Cross-comparing different versions of the GPU model checker. Running times given in seconds.

CuDMoC
Protocol 1 Core CPU 1 Core + GPU 8 Core + GPU States
anderson (6) 235 25 20 18,206,914
anderson (8) 1381 669 440 538,493,685
at (5) 404 36 29 31,999,395
at (6) 836 170 119 160,588,070
bakery (7) 296 30 28 29,047,452
bakery (8) 3603 250 182 253,111,016
elevator (2) 334 30 23 11,428,766
fisher (3) 41 10 9 2,896,705
fisher (4) 22 7 7 1,272,254
fisher (5) 1692 126 86 101,027,986
fisher (6) 107 16 13 8,321,728
fisher (7) 4965 555 360 386,281,613
frogs (4) 153 20 17 17,443,219
frogs (5) 2474 203 215 182,726,077
lamport (8) 867 70 49 62,669,266
mcs (5) 896 77 50 60,556,458
mcs (6) 12 7 7 332,544
phils (6) 422 36 27 14,348,901
phils (7) 2103 196 125 71,933,609
phils (8) 1613 105 70 43,046,407

of main memory is acceptably small. To parallelize bitstate hashing on multiple CPU cores, the set of successors
is partitioned, and all partitions are scanned in parallel. In bitstate hashing, a bit set is never cleared. As we
conduct BFS, state caches with different replacement strategies are also feasible.

19.5 Experiments

The GPU model checker CuDMoC uses a bitstate table with 81,474,836,321 entries consuming 9.7 GB of RAM.
Models are taken from the BEEM library. Table 19.1 analyses the performance of the GPU algorithm compared
to the CPU’s. We used the -deviceemu directive of the nvcc compiler to simulate the experiments on the CPU
(we found no significant speed difference between simulating the code with this directive and converting it by
hand to, e.g., POSIX threads). The table shows that using the GPU for the successor generation results in a mean
speed-up (sum of all 1 Core + CPU times / sum of all 1 core + GPU) of 22,456 / 2,638 = 8.51. Column 8 Core
+ GPU displays additional savings obtained by utilizing all eight CPU cores for duplicate detection, operating
simultaneously on a partitioned vector of successors. The comparison demonstrates only the influence to the
whole model checking process; larger speed-ups were reached by considering only this aspect.

In order to compare CuDMoC with the current state-of-the-art in (multi-core) explicit-state model checking,
we additionally performed experiments on the (most recent publicly available) releases of the DiVinE (version
2.2) and Spin (version 5.2.4) model checker. DiVinE instances were run with divine reachability -w N
protocol.dve with N denoting the number of cores to use and aborted when more than 11GB RAM was used.
Table 19.2 shows the comparison in running time of the one core and the eight-core versions. Of course, DiVinE
is not able to check some instances due to its exhaustive duplicate detection it needs to store all visited states in
full length, which is less memory efficient than bitstate hashing. One interesting fact in the frogs (5) protocol
is that DiVinE is only able to verify this instance in single-core mode. We assume that the queues, needed to
perform communication between the cores, consume too much memory. Additionally, we display the number
of reached states to indicate the number of states omitted. In the largest instance, the amount of states omitted is
at most 3%. The speed-up averaged over all successful instances is 3,088 / 863 = 3.58 for the one core and 632 /
484 = 1.31 for the eight-core implementation (DiVinE naturally utilizes all cores for expansion, while CuDMoC
uses the additional cores only for duplicate checking).

Spin is also able to manage an exhaustive representation of the closed list; however, due to
the memory limitations of an exhaustive search, we decided to compare CuDMoC against Spin
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Table 19.2: Comparing the GPU model checker with DiVinE. Times given in seconds, o.o.m denotes out of memory.

CuDMoC DiVinE
Protocol 1 Core 8 Core States 1 Core 8 Core States
anderson (6) 25 20 18,206,914 75 21 18,206,917
at (5) 36 29 31,999,395 118 33 31,999,440
at (6) 170 119 160,588,070 674 189 160,589,600
bakery (7) 30 28 29,047,452 95 26 29,047,471
bakery (8) 250 182 253,111,016 – - o.o.m
elevator (2) 30 23 11,428,766 74 21 11,428,767
fisher (3) 10 9 2,896,705 12 3 2,896,705
fisher (4) 7 7 1,272,254 5 1 1,272,254
fisher (5) 126 86 101,027,986 541 141 101,028,339
fisher (6) 16 13 8,321,728 37 10 8,321,728
fisher (7) 555 360 386,281,613 - - o.o.m
frogs (4) 20 17 17,443,219 69 15 17,443,219
frogs (5) 203 215 182,726,077 787 - 182,772,126
lamport (8) 70 49 62,669,266 238 68 62,669,317
mcs (5) 77 50 60,556,458 241 68 60,556,519
mcs (6) 7 7 332,544 0 0 332,544
phils (6) 36 27 14,348,901 122 36 14,348,906
phils (7) 196 125 71,933,609 768 - 71,934,773
phils (8) 105 70 43,046,407 405 - 43,046,720

Table 19.3: Comparing the GPU model checker with Spin and bitstate storage. Times given in seconds. Column Speed shows the
quotient states/time. Protocol mcs 5 was aborted after 10 hours, having generated 6,308,626.

CuDMoC Spin Bitstate BFS
Protocol 1 Core Speed States 1 Core Speed States
anderson (6) 25 728,276 18,206,914 26 698,282 18,155,353
anderson (8) 669 804,923 538,493,685 228 618,216 140,953,300
at (5) 36 888,872 31,999,395 40 790,811 31,632,471
at (6) 170 944,635 160,588,070 146 727,404 106,201,110
bakery (7) 30 968,248 29,047,452 29 942,202 27,323,870
bakery (8) 250 1,012,444 253,111,016 156 78,283 12,212,250
elevator (2) 30 380,958 11,428,766 19 601,239 11,423,554
fisher (3) 10 289,670 2,896,705 4 724,170 2,896,681
fisher (4) 7 181,750 1,272,254 2 636,131 1,272,262
fisher (5) 126 801,809 101,027,986 141 614,026 86,577,752
fisher (6) 16 520,108 8,321,728 13 639,997 8,319,972
fisher (7) 555 696,002 386,281,613 242 547,841 132,577,710
frogs (4) 20 872,160 17,443,219 19 916,191 17,407,634
frogs (5) 203 900,128 182,726,077 136 853,619 116,092,290
lamport (8) 70 895,275 62,669,266 8 917,817 7,342,543
mcs (5) 77 786,447 60,556,458 – – 0
mcs (6) 7 47,506 332,544 1 36,598 36,598
phils (6) 36 398,580 14,348,901 43 333,412 14,336,722
phils (7) 196 367,008 71,933,609 229 297,427 68,110,830
phils (8) 105 409,965 43,046,407 139 304,714 42,355,353

with bitstate hashing Spin has two options for performing reachability, BFS and DFS. Table 19.3
presents the results in BFS, which has no multi-core implementation. Spin experiments were per-
formed by calling spin -a protocol.pm; cc -O3 -DSAFETY -DMEMLIM=12000 -DBFS -DBITSTATE -o
pan pan.c; ./pan -m10000000 -c0 -n -w28;. For the sake of clarity, we also present the number of
reached states for both model checkers. We see that the number of states varies extremely for the larger in-
stances. We explain the diversity with the size of the bitstate tables (in Spin 228 = 268,435,456 entries were
chosen, as we could not increase this size because the remaining memory was occupied by the algorithm).
CuDMoC achieves an average speed of 637,279 compared to Spin with an average speed of 593,598. Although
the speed-up is not significant, we highlight the fact that CuDMoC stores all the reached states on external mem-
ory for later usage, while these states are lost in Spin. Storing the information on external storage in Spin leads
to a slowdown by a factor of 2 and more.

As the Spin BFS algorithm is not parallelizable, we were forced to compare our implementation to the DFS
version of Spin and bitstate hashing called via spin -a protocol.pm; cc -O3 -DSAFETY -DMEMLIM=8000
-DBITSTATE -DNCORE=N -DNSUCC -DVMAX=144 -o pan pan.c; ./pan -m10000000
-c0 -n -w27; (for one core), and ./pan -m10000000 -c0 -n -w25; (for eight cores) with N denoting the
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Table 19.4: Comparing the GPU model checker with Spin and partial state storage; time in seconds, speed in states/second.

CuDMoC Spin Bitstate
Protocol 8 Core Speed 1 Core Speed States 8 Core Speed States
anderson (6) 20 910,345 58 313,911 18,206,893 9 2,017,465 18,157,188
anderson (8) 440 1,223,849 1316 275,800 362,954,000 78 1,859,341 145,028,600
at (5) 29 1,103,427 90 355,547 31,999,291 12 2,630,998 31,571,983
at (6) 119 1,349,479 399 339,403 135,422,110 42 2,476,482 104,012,280
bakery (7) 28 1,037,409 48 573,577 27,531,713 8 3,413,837 27,310,696
bakery (8) 182 1,390,719 456 488,071 222,560,800 39 3,062,315 119,430,320
elevator (2) 23 496,902 47 243,165 11,428,769 8 1,427,956 11,423,654
fisher (3) 9 321,856 7 413,815 2,896,707 2 1,448,344 2,896,689
fisher (4) 7 181,750 2 636,128 1,272,256 1 1,272,298 1,272,298
fisher (5) 86 1,174,744 275 367,375 101,028,340 36 2,397,127 86,296,605
fisher (6) 13 640,132 20 416,086 8,321,730 4 2,079,982 8,319,929
fisher (7) 360 1,073,004 1372 281,557 386,296,530 63 2,098,240 132,189,170
frogs (4) 17 1,026,071 26 670,893 17,443,221 5 3,472,759 17,363,799
frogs (5) 215 849,888 289 632,427 182,771,630 24 3,878,232 93,077,570
lamport (8) 49 1,278,964 17 431,974 7,343,562 3 2,447,541 7,342,625
mcs (5) 50 1,211,129 81 358,055 29,002,474 14 2,343,949 32,815,294
mcs (6) 7 47,506 0 – 36,600 0 – 36,948
phils (6) 27 531,440 26 387,130 10,065,395 17 843,330 14,336,624
phils (7) 125 575,468 351 183,494 64,406,569 51 1,217,002 62,067,145
phils (8) 70 614,948 12 766,795 9,201,551 35 1,043,143 36,510,039

number of cores. Table 19.4 shows the running times and per node efficiencies for the tested protocols. imple-
mentations are identical in table 19.3; we present only the values for the eight-core implementation here. As we
can see, the eight-core implementation of the DFS algorithm is always faster than the CuDMoC implementation.
A closer inspection of the number of the visited states reveals that the number of cores has an impact on the size
of the bit-state table, thus resulting in different amounts of visited states. In the Anderson (8) protocol, which is
the largest checked protocol, CuDMoC identifies 538,493,685 unique states, while the Spin 8 core implementa-
tion reaches 145,028,600 states, omitting nearly 70% of the state space. Additional observations showed that at
the beginning of the search the speed is higher, since new states are reached more often, than at the end, where
many reached states have already been explored.

19.6 Summary

Explicit-state model checking on the GPU has the potential for growing towards an exciting research field.
Therefore, we presented a model checker for efficient state space generation for featuring explicit-state model
checking on the GPU. In the algorithm design we successfully attacked two causes of bad CPU performance of
the model checker: transition checking and successor generation and exploited a GPU-friendly representation
of the model. Bitstate-based duplicate detection has been delayed for and parallelized on the CPU. The results
show noticeable gains, likely to rise on more advanced GPU technologies.

Of course, improving the speed-up is still subject to further research. For example, computing the hash values
may be executed in parallel on the GPU, while generating the successor states. We restricted our exposition to
BFS. As other algorithms discussed in literature like best-first search for directed model checking may also be
streamed, they may be executed on the GPU.

So far, the model checker works on a modern but ordinary personal computer. The presented algorithm can,
however, be extended to computing clusters, e.g., by storing the search on shared external space, dividing a BFS
layer into partitions, and expanding them on different nodes of the cluster. For this case, however, duplicate
checking has to be synchronized. To lift the analyses to full LTL, one can attach GPU breadth-first search to
semi-external model checking. Together with large RAIDs of hard or solid-state disks, this results in a high-
performance LTL model checker, exploiting the current cutting edges of hardware technology.



348 19 Model Checking

19.7 Bibliographic Notes

The GPU’s rapid increase in both programmability and capability has inspired researchers to map computa-
tionally challenging, complex problems to it. These efforts in general purpose programming on the GPU (also
known as GPGPU or (GP)2U programming) have positioned the GPU as a compelling alternative to tradi-
tional microprocessors in high-performance computing. Since the memory transfer between the graphics card
and main board (on the express bus) is extremely fast, GPUs have helped to speed-up large-scale computa-
tions like sorting [301, 443], and computationally intensive applications like folding proteins [365], simulating
bio-molecular systems [513] or computing prefix sums [321].

GPUs are directly programmable in C using the Compute Unified Device Architecture Cuda. Instead of
the delayed elimination of duplicates for supporting large-scale analyses on disk [225], we consider RAM-
based model checking with Bloom filters [56] in the form of (double) bitstate hash tables [346]. State
space construction via BFS is the essential step and the performance bottleneck for checking large mod-
els [593, 84, 35, 434, 245, 633, 202]. Besides checking safety properties, variants of BFS generate LTL property
counterexamples of minimal length [279]. Moreover, BFS is the basis for distributed (LTL) model checking al-
gorithms like OWCTY [529] and MAP [82] as well as for constructing perfect hash functions from disk in
semi-external model checking [218].

Explicit graph algorithms utilizing the GPU (with a state space residing in RAM or on disk) were presented,
e.g., by [319]. In model checking, however, state space graphs are generated implicitly, by the application of
transitions to states, starting with some initial state. Additionally, considering the fundamental difference in the
architectures of the processing units, solutions developed for multi-core model checking [345], however, hardly
transfer to the GPU. For state-space generation on the GPU in search challenges like sliding-tile puzzles, large
speed-ups with respect to single-core CPU computation [227] were established. Based on computing reversible
minimal perfect hash functions on the GPU, one-bit reachability and one-bit BFS algorithms were proposed.
Specific perfect hash functions were studied. In solving Nine-Men-Morris a speed-up factor of over 12 was
obtained. Specialized hashing for ranking and unranking states on the GPU and a parallel retrograde analysis
on the GPU was applied. Unfortunately, the AI exploration approaches hardly carry over to model checking, as
general designs of invertible hash functions, as available for games, are yet unknown.

While [225] pioneered explicit-state model checking with delayed duplicate detection on the GPU by accel-
erating state set sorting, in the meantime there have been several attempts to exploit the computational power
located on the graphics card. In all other GPU-based model checking algorithms we are aware of; however, the
state space is generated on the CPU. For example, GPGPU-based probabilistic model checking [66] boils down
to solving linear equations via computing multiple sparse matrix-vector products on the GPU. The mathematical
background is parallelizing Jacobi iterations. While the PCTL probabilistic model checking approach acceler-
ates one iterated numerical operation on the GPU, for explicit-state LTL model checking we perform a single
scan over a large search space. As a result, we introduce a conceptually different algorithm, suited to parallel
model checking of large models.

Barnat et al. [34] presented a tool that accelerates LTL model checking. They adjusted the MAP algorithm to
the GPU to detect the presence of accepting cycles. As in bounded model checking [50], the state space was
generated in layers on the CPU, before being transformed into a matrix representation to be processed on the
GPU. The speed-ups are visible, but the approach is limited by the memory available on the GPU and able to
check properties in moderately sized models only.

Different options have been proposed to increase coverage [346], including the choices of hash functions, e.g.,
from a set of universal ones (our state hash functions borrowed from Rasmus Pagh [501] are universal). To
increase space utility, cache-, hash-, and space-efficient Bloom filters have been proposed [524] and compress a
static dictionary to its information-theoretic optimum by using a Golomb code. They have not been extended to
the dynamic case of breadth-first model checking. Moreover, hashing implementation refinements like sequen-
tial chaining and hash compaction techniques are available.



Chapter 20

Computational Biology

In this chapter we solve the multiple sequence alignment problem, a combinatorial challenge in computational
biology, where several DNA, RNA, or protein sequences interpreted as strings are to be arranged for high
similarity. The proposal applies randomized Monte-Carlo tree search with nested rollouts and can improve the
solution quality over time. Instead of learning the position of the letters, the approach learns a policy for the
position of the gaps. The Monte-Carlo beam search algorithm we use has a low memory overhead and can be
invoked with constructed or known initial solutions. Experiments show promising results in improving existing
alignments.

20.1 Introduction

Multiple1 sequence alignments (MSAs) are frequently used for the analysis of DNA, RNA, or protein sequences
in order to determine the evolutionary relation between species with a common ancestor, to predict the so-called
secondary/tertiary structure, as well as the functional centers, in which as few possible mutations as possible
occur (assuming that similar sequences inherit similar structures and function).

Algorithmically, MSA boils down to the cost-optimal alignment of strings. Smaller problems can be solved
optimally, and the dynamic programming solution relates to approximate string matching. We invoke fixed-
memory-bound randomized search that incorporates no expert knowledge in form of refined heuristics, but a
series of random walks (rollouts) to learn a mapping (policy) for sampling the search space. The algorithm
can improve over existing solutions and incorporates initial alignments into the search. As other algorithms are
memory-bound, with its low memory profile it can serve as an add-on over existing approaches.

We start with a concise formulation of the MSA problem. Given a set of n sequences S = {s1,s2, . . . ,sn} with
si ∈ Σ ∗ for all i = 1,2, . . . ,n, and Σ being a final alphabet. A sequence alignment (of length k) consists of a set
of n sequences A = {a1,a2, . . . ,an} with ai ∈ Σ ′∗ for all i = 1,2, . . . ,n, where Σ ′ = Σ ∪{“− ”} and “− ” /∈ Σ .
For each aligned sequence ai ∈ A we have length |ai| = k. If all letters “−” are removed from ai ∈ A, we get
back si. For n = 2, the alignment is pairwise, for n > 2 multiple. A gap G consists of a single or a sequence of
letters g = “−”. Moreover gaps_num(ai) is the number of empty letters in the aligned sequence ai ∈ A and |G|
the length of gap G. Particularly we have |G|= 1 for G = 〈g〉 and letter g is located at position gap_posi(g) in
sequence ai ∈ A.

For DNAs the alphabet ΣDNA is {A,G,C,T} denoting the nucleobases adenine, guanine, cytosine and thymine.
For RNA the nucleobase uracil, abbreviated by U , is used instead of thymine, so that ΣRNA = {A,G,C,U}. The
protein alphabet contains 20 amino acids.

1 This chapter is based on joint work with Zhihao Tang, and Peter Kissmann It puts together and improves the work from [229, 205].
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Figure 20.1: An MSA and its phylogenetic tree.

In an alignment all sequences are written on top of each other such that the number of columns with matching
letters is maximized. Gaps are inserted to slide letters in the alignment. A substitution occurs if two different
letters meet; a gap is a deletion and/or an insertion of a letter and called indel. The assumption is that the
alignment with the least number of indels is biologically most plausible.

Figure 20.1 shows an example of a protein MSA with n = 7 having no gaps, and the according phylogenetic
tree where internal nodes denote the ancestor sequences, where I (Isoleucine), L (Leucine), F (Phenylalanine),
K (Lysine) and S (Serine) are the one-letter abbreviations for the amino acids. To judge the quality of an MSA
an evaluation function is required.

An evaluation is a function F : A→ R. For a pairwise alignment A = {a1,a2} with ai = 〈ci1ci2 . . .cik〉 and
ci j ∈ Σ ′, i = 1,2 and j = 1,2, . . . ,k, its evaluation is the sum of similarities f of all alignment columns F(A) =
F(a1,a2) = ∑

k
j=1 f (c1 j,c2 j). For an MSA A = {a1,a2, . . . ,an} the evaluation F(A) is defined as the sum of

values for all sequence pairs, i.e.,

F(A) = F(a1,a2, . . . ,an) =
n−1

∑
i=1

n

∑
j=i+1

F(ai,a j).

Let A be the set of all MSAs that can be generated by a set of sequences S = {s1,s2, . . . ,sn}. The optimal
MSA A? ∈ A is an MSA with F(A?) = minA∈A F(A), if the evaluation is based on distances or F(A?) =
maxA∈A F(A). Given a set of sequences S = {s1,s2, . . . ,sn}, the MSA problem is to find the optimal MSA for
A? for S.

For a set of sequences more than one optimal MSA may exist (Figure20.2) yielding different biological ex-
planations. All solutions have the same edit-distance 4. F(A) can calculate not only the similarities (maximum
problems) but also the dissimilarities (minimum problems).

−T−CACG
GTAGA−G

−TC−ACG
GTAGA−G

−TCA−CG
GT−AGAG

−TCAC−G
GT−AGAG

−TCACG
GTAGAG

TCA−CG
GTAGAG GTAGAG

TCAC−G

Figure 20.2: Two sequences with 7 optimal MSAs.

We consider affine gap costs where gap opening has cost op and gap extension cost ex (per extension), so that
gap G has total cost P(G) = op+ ex · |G|.
For n sequences of maximal length q, standard dynamic programming (DP) computes an optimal solution with
memory O(qn) and time O(2n ·qn), so that alternative algorithms are required.

The algorithm iterative-deepening dynamic programming (IDDP) combines dynamic programming with
iterative-deepening A* on the graph representation of the DP matrix. It expands edges not nodes. A lower
bound h(e) is devised based on precomputed pattern database of triples. We have f (e) = g(e)+ h(e), so that
f (e) for an edge e is the estimated cost of a path of the start edge to reach the end edge via the current edge
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−AT−TA−TC−CT−AC−CA−TC−CT−GA−AG−TA−AT−AC−CA−TA−AT−AA−AA

−T T− TT −G C− CG −T C− CT

TG−G T−

Figure 20.3: The search tree for a sample pairwise alignment.

e IDDP inherits the advantages of DP and IDA*; it has a fixed ordering so that every node is visited once and
includes a lower bound for guidance.

20.2 Monte-Carlo Tree Search for MSA

Monte-Carlo search denotes a class of randomized tree search algorithms that has been designed for search
spaces with large node branching factors and weak evaluation functions. By learning the proper choice of
successors over time they can converge to the overall optimal solutions.

The intuitive method for the MSA problem is to enumerate possible alignments and after evaluating them, to
choose the best one. The search tree can be constructed by a sequence of decisions and solved via NRPA and
BeamNRPA. We study two possible encodings.

We assume that each letter v in Σ ′ has a fixed location index(v), so that for a string V = {v1,v2, . . . ,vn} in Σ ′∗

we obtain index(V ) = ∑
n
i=1 index(vi) · |Σ ′|n−i , where n is the length of V and |Σ ′| the size of the alphabet.

20.2.1 Construction of all Alignment Columns

An MSA consists of columns. Every column is a string in Σ ′n. In the search tree we generate, the root represents
an empty node and all other nodes a column in the alignment. Thus, an MSA corresponds to a path from the
root to the leaf (see Figure 20.3; optimal MSAs of Figure 20.2 have bold edges).

During the construction the first step is to recursively enumerate all possible strings that may appear in this
column (see Algorithm 20.2). The depth of the tree is n as all strings have to have the same length. In each
level for every letter of an alternative string si we have a) if all letters have been inserted then the following
columns are labeled by a gap; b) if there are remaining letters that have a fit, then they are inserted into the MSA
and the position i in this column either is the corresponding letter in si or a singleton-letter gap. Additionally,
the number of all alternative strings is returned. Temporary variables char_idx[i] store how many letters have
already been inserted to si.

In this model we learn which string should appear in which column. The maximal length of an MSA is the sum
of all input strings. A policy in this model is a mapping (∑n

i=1 |si|)×|Σ ′|n where |si| is the length of si.

A random MSA is constructed in Algorithm 20.1. Exploiting the policy, a string is randomly chosen. The
variable align_idx represents which column is currently constructed. With the variable and the index of an
alternative string, we can access the policy value and determine the probability of choosing it. The last step is to
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Algorithm 20.1: Constructing an alignment according to policy.

procedure alignment_col(alignment, policy)
char_idx←{1, . . . ,1}
align_idx← 1
col← alignment.start
repeat

col.num← enumeration(col.alternatives,char_idx,0)
sum = 0.0
for i← 1 to col.num do

value[i]← exp(policy[align_idx][col.alternatives[i]])
sum← sum+ value[i]

r← rand([0, . . . ,sum])
i← 1
sum← value[1]
while sum < r do

i← i+1
sum← sum+ value[i]

col.index← col.alternatives[i]
transform the index col.alternatives[i] to the corresponding
string

and save in col.string
for i← 1 to n do

if col.string[i] is not a gap then
char_idx[i]← char_idx[i]+1

align_idx← align_idx+1
col← col.next

until all sequences are read through
return alignment

Algorithm 20.2: Enumerate all possible alignments.

procedure enumerate(A,char_idx,seq_idx)
if seq_idx = 1 then

static num← 0
static str←{0,0, . . . ,0}

if seq_idx≤ n then
if char_idx[seq_idx]> |sseq_idx| then

str[seq_idx]← the index of the gap character
enumerate(A,char_idx,seq_idx+1)

else
str[seq_idx]← the index of the gap character
enumerate(A,char_idx,seq_idx+1)
str[seq_idx]← the index of the char_idx[seq_idx]-th

character in sequence sseq_idx
enumerate(A,char_idx,seq_idx+1)

else
num← num+1
transform the string str to the corresponding index

and save in a[num]
return num

update the variables to prepare for the next column. The steps are repeated until all letters have been inserted,
so that all columns are constructed and stored in a list. At the end, the MSA is evaluated and returned.

The enumeration process is recursive, starting with seq_idx = 0 and ending with seq_idx = n. As the transfor-
mation reads a string of length n, the worst case of Algorithm 20.2 takes Tenum(n) = 2 · Tenum(n− 1) steps
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Algorithm 20.3: Multiple sequence alignment with gaps.

procedure alignment_gap(alignment, policy)
for seq_idx← 1 to n do

alignment.gaps_num[seq_idx]←
alignment.length−|sseq_idx|
alignment.is_gap[seq_idx]←{FALSE, . . . ,FALSE}
for gap_idx← 1 to alignment.gaps_num[seq_idx] do

sum← 0.0
for pos← 1 to alignment.length do

if ¬alignment.is_gap[seq_idx][pos] then
value[pos]← exp(policy[seq_idx][gap_idx][pos])
sum← sum+ value[pos]

else
value[pos]← 0.0

r← rand([0, . . . ,sum])
pos← 1
sum← value[1]
while sum < r do

pos← pos+1
sum← sum+ value[pos]

alignment.gaps_pos[seq_idx][gap_idx]← pos
alignment.is_gap[seq_idx][pos]← T RUE

/* sort alignment.gaps_pos[seq_idx] or not */
return alignment

with Tenum(0) = O(n). This induces Tenum = O(n · 2n). We see that the time for constructing a column is
equal to Tcol = Tenum + 2 ·O(2n) + 2 ·O(n) +O(1) = O(n · 2n). Moreover, as we use the sum-of-pairs eval-
uation we get Teval = C2

n · k = O(k · n2), where k is the length of the sequence alignment. Together we have
Tcolalign = k ·Tcol +Teval = O(k ·n ·2n + k ·n2) = O(q ·n2 ·2n), with k = n ·q being the worst case, and q being
the maximal length of all sequences.

20.2.2 Construction of all Alignment Gaps

A sequence alignment is fully determined by the position of gaps. Based on this state representation idea for
each sequence si the policy is stored as a matrix of size gap(ai) · k, where gap(ai) is the number of gap letters
in the aligned sequence ai and k the length of the alignment. Again, Monte-Carlo tree search is used to learn,
where a gap letter is present in which column of the alignment.

If the length of the alignment is known, the number of gap letters can be determined upfront. Then the positions
of all gaps letters can be chosen one after the other. The temporary variable is_gap helps to determine all legal
gap positions. The algorithm is executed for all sequences until the entire MSA can be evaluated. After all gaps
in one sequence are done, we can sort them (line 20) which has pros and cons.

We avoid gap-only columns by moving the gap in the longest sequence to gap_posnew = (gap_posorg +(−1)i ·
b(i+ 1)/2c) mod k, i = 1,2,3, . . . (see Figure 20.4). We check that there are no gap-only columns left. If no
satisfying position can be found, the original one is maintained. Algorithm 20.3 does, however, not cover this
special case. Alternatively, we may allow gap columns, as they do not change the score.

The running time of this model is easy to analyze. A random alignment is constructed one by one. Sequence si

contains k−|si| gap letters. We obtain Tgapalign = O(∑n
i=1 ∑

k−|si|
j=1 (2k))+Teval = O(q2 ·n3), with k = n ·q in the

worst case and q being the maximal sequence length.
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Figure 20.4: Resolving gap-only columns.
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Figure 20.6: A star alignment tree of sequences {c,s1, . . . ,s6}.

20.2.3 Construction of an Initial Alignment

In the second model, prior knowledge is requested in the form of the length of the optimized alignment. This
information can be supplied by the user or via an initial alignment.

Let S = {s1, . . . ,sn} be a set of sequences and S′ a subset of S. Assume AS = {a1, . . . ,an} to be an MSA of S.
The projection of AS wrt S′ is the MSA pro j(AS,S′), constructed as follows

• all rows in AS that do not correspond to sequences in S′ are removed

• all columns that only contain gap letters are removed.

If AS′ = pro j(AS,S′), where AS′ is an MSA of S′, we say that AS is compatible with AS′ .

An example for S = {“ACGG”,“ATG”,“ATCGG”}, S′ = {“ACGG”,“ATG”} and S′′ = {“ATG”,“ACTCGG”}
is shown in Figure 20.5. We see an MSA AS of S, a projection pro j(AS,S′), and another projection pro j(AS,S′′).

An alignment tree for a set of sequences S is a labeled tree. In this tree the node set is S and every edge (i, j) is
labeled by the optimal pairwise alignment of two sequences si and s j.

In an alignment tree the relations between all sequence pairs are represented. There are different options for
constructing such a tree. We consider the special case of the tree being star-shaped (Figure 20.6).

The algorithm for constructing an initial MSA has two stages. The basis is a set of precomputed pairwise
alignments (see Algorithm 20.4). For each pair of sequences (si,s j) the distance to the optimal alignment is
computed. For each sequence si all distances of the optimal alignment corresponding to si are added. The
sequence with the minimal total distance is chosen as the center, all other sequences are leaves.

The second stage is to construct an MSA based on the pairwise alignment stored at the edges. Whenever an
MSA of the sequences {c,s1, . . . ,si} is constructed, the optimal pairwise alignment of c and si+1 is inserted.
This insertion preserves the rule once a gap — always a gap. Therefore, the constructed MSA is compatible
with all pairwise alignments in the alignment tree. For example, c = “ATGCATT”, s1 = “AGTCAAT” and
s2 = “ACTGTAATT”. The alignments of c and s1 or c and s2 are
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Algorithm 20.4: Constructing an initial alignment.

procedure initial_alignment()
for i← 1 to n do

for j← i+1 to n do
compute the optimal alignment of si and s j with distance
d∗(si,s j).

for i← 1 to n do
total[i]← 0
for j← 1 to n do

total[i]← total[i]+d∗(si,s j)
c← argmini total[i]
choose an arbitrary sequence s ∈ S\{sc}
let A be the optimal pairwise alignment of sc and s
S′←{sc,s}
while S′ 6= S do

choose an arbitrary sequence s ∈ S\S′

combine A with the optimal pairwise alignment of sc and s
S′← S′∪{s}

return A

a

a1

=

=

ATG−CATT

A−GTCAAT and

a′=A−TGC−ATT

a′2=ACTGTAATT

In the second alignment we find a gap prior to letter ‘T’ in d sequence a′. According to the golden rule the gap
in a′′ is preserved. Through the combination from a and a′ we can generate a′′ = “A–TG–C–ATT”, so that the
final MSA is

a′′

a′′1
a′′2

=

=

=

A−TG−C−ATT

A−−GTC−AAT

ACTG−TAATT

The MSA is not optimal as we could substitute a′′2 by “ACTGT–AATT”. It is, however, a good approximation.

A similarity cost function f is proper if 1) for all x ∈ Σ ′, we have f (x,x) = 0; 2) for all x,y,z ∈ Σ ′, we have
f (x,z) ≤ f (x,y) + f (y,z). Assuming a proper similarity cost function f , and d being the column sum of f ,
a set of sequences S = {c,s1, . . . ,sn} and a star alignment tree T with center c. If A = {a,a1. . . . ,an} is an
MSA of S with length k that is compatible with all optimal alignments in T , then for all 1 ≤ i, j ≤ n we have
F(ai,a j)≤ F(ai,a)+F(a,a j) = F∗(si,c)+F∗(c,s j).

We consider column r in MSA A. According to the second property of a proper cost function for an arbitrary
letter b∈ Σ ′ we have f (ai[r],a j[r])≤ f (ai[r],b)+ f (b,a j[r]). If b= a[r], we have f (ai[r],a j[r])≤ f (ai[r],a[r])+
f (a[r],a j[r]). The distance of a pairwise alignment is the sum of distances of all columns. Thus,

F(ai,a j) =
k

∑
r=1

f (ai[r],a j[r])≤
k

∑
r=1

(
f (ai[r],a[r])+ f (a[r],a j[r])

)
=

k

∑
r=1

f (ai[r],a[r])+
k

∑
r=1

f (a[r],a j[r]) = F(ai,a)+F(a,a j).

Following the assumption we have that the MSA A is compatible with all optimal alignments in T . Therefore,
the projections of A wrt {si,c} are optimal alignments of si and c. Following the first property of a proper cost
function, we have f (−,−) = 0, so that the distance of a pairwise sequence alignment does not change if an
only-gap column is removed. Hence, F(ai,a) = F∗(si,c), and F(a,a j) = F∗(c,s j). �



356 20 Computational Biology

1lcf(6) gal4(5) 1pamA(5) 2myr(4) 1ped(3) 4enl(3)
0

10

20

30

40

50

m
em

o
ry

(M
B
)

NRPA_gap without sort
BeamNRPA with beam = 2
BeamNRPA with beam = 4

1lcf(6) gal4(5) 1pamA(5) 2myr(4) 1ped(3) 4enl(3)
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

ti
m

e(
se

c.
)

NRPA_gap without sort
BeamNRPA with beam = 2
BeamNRPA with beam = 4

Figure 20.7: Space (top) and time needed by (Beam)NRPA.

Let S = {s1, . . . ,sn} be a set of sequences, f be a proper similarity cost function, F be the column sum of f , and
A = {a1, . . . ,an} be an MSA of S, constructed via Algorithm 20.4. Then, F(a1, . . . ,an)≤

(
2− 2

n

)
·F∗(s1, . . . ,sn).

We assume that MSA A? = {a?1, . . . ,a?n} is optimal for S, i.e., F(a?1, . . . ,a
?
n) = F∗(s1, . . . ,sn), and c = sn is the

center. We compute the distance between A and A?.

F(a1, . . . ,an) =
n−1

∑
i=1

n

∑
j=i+1

F(ai,a j) =
1
2

n

∑
i=1

n

∑
j=1

F(ai,a j)≤
1
2

n

∑
i=1

n

∑
j=1

(
F∗(si,c)+F∗(c,s j)

)
=

1
2
(

n−1

∑
i=1

n−1

∑
j=1

F∗(si,c)+
n−1

∑
i=1

n−1

∑
j=1

F∗(s j,c))

=
1
2
(

n−1

∑
j=1

n−1

∑
i=1

F∗(si,c)+
n−1

∑
j=1

n−1

∑
i=1

F∗(si,c)) = (n−1) ·
n−1

∑
i=1

F∗(si,c)

and

F(a?1, . . . ,a
?
n) =

n−1

∑
i=1

n

∑
j=i+1

F(a?i ,a
?
j) =

1
2

n

∑
i=1

n

∑
j=1

F(a?i ,a
?
j)

≥ 1
2

n

∑
i=1

n

∑
j=1

F∗(si,s j) =
1
2

n

∑
i=1

(
n

∑
j=1

F∗(si,s j)

)

≥ 1
2

n

∑
i=1

(
n

∑
j=1

F∗(c,s j)

)
=

1
2

n ·
n

∑
j=1

F∗(c,s j) =
1
2

n ·
n

∑
i=1

F∗(si,c)

Therefore, we have

F(a1, . . . ,an)

F∗(s1, . . . ,sn)
=

F(a1, . . . ,an)

F(a?1, . . . ,a
?
n)

=
(n−1) ·∑n−1

i=1 F∗(si,c)
1
2 n ·∑n

i=1 F∗(si,c)
= 2− 2

n
. �

The MSA that is constructed via the star-shaped alignment tree is, therefore, an upper bound for the distance of
the optimal MSA.

20.3 Experimental Results

BAliBASE is a library of biological alignments that optimize an informal biological meaning. Having a formal
sum of pairwise scores on BAliBASE entries cannot replace a comparison with bioinformatics competitors.



20.3 Experimental Results 357

NRPA_gap with/without Sorting

BeamNRPA, beam = 2, beam = 4

BeamNRPA_initial, beam = 2, beam = 4

Figure 20.8: Learning curves of 1ped.

However, our interest is showing the potential of Monte-Carlo search for the MSA problem in terms of saving
space and post-hoc optimization.

Reference 1 consists of 82 sequence groups, partitioned into nine classes according to the length (short, medium,
long) and similarity (large, medium, small). Among those we chose test 3, consisting of 28 sequence groups with
three to six sequences of different similarity. From the set of MSAs we chose 1ped and 4enl (three sequences)
and 1lcf (six sequences), together with the groups 2myr (four), ga14 (five), and 1pamA (four), which are sup-
posedly the hardest. The implementation supports FASTA and MSF formats. The web presentation comes with
manual close-to-optimal solutions.

For these sequence groups at most 20 MB RAM was allocated, which is by far lower than the one in IDDP and
variants. On the other hand, BeamNRPA was better than NRPA: the wider the beam, the better the solution.
The number of rollouts for BeamNRPA is beam · iterationlevel (we allow a beam width other than 1 only in
level 1), and chose beam = 1,2,4, iteration = 50 and level = 3. BeamNRPA with beam = 1 is NRPA. The
initial alignment is defined by the star algorithm and improved by the optimizer.

In NRPA_col a policy is a matrix of size (∑n
i=1 |si|)× |Σ ′|n, so that the memory requirements are exponential

in n. This leads NRPA_col to fail for five or six sequences and to bad results in many others. For NRPA_gap
a policy is a matrix of size (k− |si|)× k for every si, so that memory requirements are polynomial in |si| and
k. Only four of 28 groups needed more than 10 MB space, and 20 MB was the overall maximum. For DP and
its variants the space complexity is O(|s1| · . . . · |sn|). A biological sequence (DNA/protein) may have over one
thousand bases/amino acids. Hence, the memory requirements are huge. The algorithm saves only the positions
of all gaps in an alignment. Obviously, the number of gaps is much less than the length of an aligned sequence.
Therefore, the required memory in the program is small.

Sample learning curves for 1ped and 1pamA are shown in Figures 20.8 and 20.9. NRPA_gap without sorting
often resulted in a better quality than with sorting, where 1pamA, 2myr and 1lcf are the only exceptions. Thus,
we used no sorting in BeamNRPA. Memory and time performances of NRPA and BeamNRPA are cross com-
pared in Figure 20.7. The wider the beam, the higher the computational cost. On the other hand, as shown in
Figure 20.8, the larger the search tree, the better the solution found by BeamNRPA.

If the initial alignment could be improved after determining the alignment, we called the adaptation function 10
times (α-value of 1) to come up with an initial policy. For the sequence group 1ped an alignment better than
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Figure 20.9: Learning curves of 1pamA.

the initial one was found quickly (see Figure 20.8). The initial alignment of 1pamA had a score of minus 8,291.
Unfortunately, for this hardest group BeamNRPA did not improve much within the given parameter range (see
Figure 20.9).

Finally, we optimize solutions from the BAliBASE benchmark with BeamNRPA_gap. The results show an
improvement (with respect to the cost function) in 20 groups, equal results in six groups (1ac5, 1bgl, 1dlc,
1fieA, 1gpb, 1gtr) and worse result in two groups (1pamA and 1taq). Altogether there are 28 sequence groups.
For the groups “1pamA” and “1taq” the program cannot return a better solution than BAliBASE (from beam
= 2 and 4). For these six groups (1ac5, 1bgl, 1dlc, 1fieA, 1gpd and 1gtr) the program returns the same good
solutions as BAliBASE (from beam = 2 and 4). For the other 20 groups the better solutions are found from beam
= 2 or 4 (beam = 2 sometimes can return a better solution than beam = 4).

20.4 Summary

In this chapter we applied Monte-Carlo tree search for the multiple sequence problem. The results for learning
gaps with BeamNPRA are promising. The approach has a low memory overhead, can be used from scratch and
for post-hoc optimization. With respect to the cost function, we found improvements to BAliBASE alignments.

It is possible to improve the policy representation by learning inter-dependencies of gap positions within the set
of sequences. A further yet unexplored option is the parallelization of BeamNRPA. The advantage of Beam-
NRPA is that it is easier to parallelize as all policies in the beam can be read and updated concurrently. It has
the additional feature that it can be parallized in every level of the search. As the number of iterations is usu-
ally larger than the number of threads, the searches in each thread are iterative. Another option to deal with
concurrency issues in the parallelization is to use low-level compare-and-swap.
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20.5 Bibliographic Notes

Computational biologists have declared the MSA problem to be a holy grail [315]. One reason is that solv-
ing this problem often leads to a high memory demand, which has been partially leveraged with frontier
search [338, 420], refined heuristics, and variants of memory-limited [675, 674] or iterative-deepening heuris-
tic search [562]. Most of these approaches provide strategies to limit exploring the search space induced by
dynamic programming [42]. Tools like Clustal(W/Omega) and Blast compute approximate MSAs with proba-
bilistic models. IDDP has been proposed by [562]. A partial expansion alternative to IDDP has been proposed
and parallelized by [326].

Known computational biology algorithms for the MSA problem are Clustal-Omega [575], MUSCLE [235, 236],
and MAFFT [387]. For a rising number of sequences, the MSA problem is NP-hard [640]. Precursory work
showed considerable scaling but often neglects biological relevant features like the inclusion of similarity cost
matrices and affine gap costs. Exceptions are iterative deepening dynamic programming [562], its externaliza-
tion [205], and a search variant using partial expansion [326]. Still, the memory requirements rise exponentially
with the problem complexity (measured in the sum of the input sequences). The algorithm that we chose has
successfully been used for vehicle routing [106, 194].

In [105] it has been said that parallelizing NRPA is involved, since the policy has to be shared among the threads.
However, a series of optimization problems have been solved, e.g., TSPs with Time Windows [538, 108, 106]
and Morpion Solitaire [105, 545].

The evaluation function by [446] is used to compute edit distances. For DNA alignment we support scoring
matrices used in WU-BLASTN [335] and FASTA [506], and for protein alignment the PAM (Point Accepted
Mutation) matrix [149, 60], the PET91 matrix [370], and BLOSUM (BLOck SUbstitution Matrix) [334]. An
algorithm to construct an initial alignment automatically is described in [431].



360 20 Computational Biology

BeamNRPA_gap with initial alignment
beam = 2 beam = 4

len score time mem len score time mem
1ajsA 457 -2663 2126 11M 459 -2680 4169 15M
1cpt 468 -937 1669 9792K 467 -828 3313 12M
1lvl 501 -2027 1915 11M 502 -1961 4117 13M

1pamA 730 -11736 12350 53M 728 -11896 23831 73M
1ped 402 -556 722 5128K 402 -430 1447 6664K
2myr 598 -4788 6150 26M 595 -4501 11504 37M
4enl 425 -892 997 6124K 427 -903 1959 8228K
gal4 492 -4643 4813 22M 488 -4342 8832 30M
1ac5 551 641 3084 13M 545 802 6090 19M
1adj 432 3210 479 9552K 429 3392 964 9552K
1bgl 1072 1958 7248 47M 1071 3890 13190 47M
1dlc 655 2555 2550 18M 654 2615 5029 18M
1eft 419 1355 957 8572K 417 1440 1888 8576K

1fieA 702 5565 1147 22M 703 5567 2250 22M
1gowA 542 1138 1975 12M 542 1225 3925 15M
1pkm 474 1809 834 10M 473 2081 1652 10M
1sesA 494 2917 2238 16M 488 3379 4390 16M
2ack 561 -509 3557 20M 556 -215 7039 22M
arp 490 435 3209 15M 488 622 6341 20M
glg 553 2568 3222 19M 551 2620 6376 19M

1ad3 464 5133 611 10M 463 5121 1210 10M
1gpb 877 17561 4097 53M 878 17578 7891 53M
1gtr 466 7671 1162 16M 465 7658 2289 16M
1lcf 799 2330 8778 58M 799 3392 17135 58M

1rthA 565 8897 1120 23M 563 9022 2202 23M
1taq 978 1889 7947 62M 977 1879 15483 62M

3pmg 619 6744 2006 16M 620 6731 3936 16M
actin 416 7883 824 13M 416 7916 1622 13M

BeamNRPA_gap for BAliBASE optima (BBO)
BBO beam = 2 beam = 4
score len score time mem len score time mem

1ajsA -1292 449 -1264 1698 9852K 449 -1258 3378 13M
1cpt 520 461 558 1397 8440K 461 602 2750 10M
1lvl -750 516 -750 2284 12M 516 -720 4522 16M

1pamA -2366 677 -5252 8715 39M 678 -3290 17215 54M
1ped -42 398 -15 647 4548K 396 40 1274 5956K
2myr -1490 554 -1561 4018 21M 554 -1452 8048 28M
4enl -336 441 -293 1164 7428K 438 -265 2298 9804K
gal4 -876 439 -811 2168 11M 438 -779 4283 15M
1ac5 2375 524 2375 2141 11M 524 2375 4247 15M
1adj 4037 421 4064 200 2192K 421 4087 395 2556K
1bgl 7394 1002 7394 2263 11M 1002 7394 4505 15M
1dlc 4906 638 4906 1733 9724K 638 4906 3419 11M
1eft 2211 412 2257 921 6100K 412 2257 1831 7232K

1fieA 6815 689 6815 640 4300K 689 6815 1279 5628K
1gowA 2710 546 2712 2112 11M 545 2730 4135 15M
1pkm 2981 468 2981 617 4252K 468 2984 1231 5428K
1sesA 5896 465 5896 1086 6488K 465 5907 2167 8520K
2ack 3470 536 3473 2321 11M 536 3473 4542 15M
arp 3875 450 3889 1492 8556K 450 3891 2974 11M
glg 4959 514 5007 1502 9268K 513 5109 2937 10M

1ad3 5409 459 5415 491 4100K 459 5426 982 4752K
1gpb 20141 854 20141 2605 12M 854 20141 5145 17M
1gtr 8807 451 8807 665 4320K 451 8807 1321 5660K
1lcf 25001 747 25007 4168 19M 747 25015 8268 26M

1rthA 10400 556 10475 788 4940K 556 10472 1575 6336K
1taq 13545 949 13048 5222 25M 949 13300 10482 34M

3pmg 7867 589 7869 956 6080K 589 7868 1899 7912K
actin 8489 415 8556 793 5108K 415 8530 1575 6620K



Chapter 21

Logistics

The dynamics and complexity of planning and scheduling processes in groupage traffic require efficient, proac-
tive, and reactive system behavior to improve the service quality while ensuring time and cost-efficient trans-
portation. At first, we, therefore, implement a multiagent system to emerge an adequate system behavior and
focus on the decision-making processes of agents that is based on the Traveling Salesman Problem (TSP) with
aspects like contract time windows, individual restricted capacities of trucks, premium services and varying pri-
orities of dynamically incoming orders. We present an optimal depth-first branch-and-bound asymmetric TSP
solver with constraints on tour feasibility and depot reachability at any step of the process. We use established
benchmarks as well as its inclusion in a real-life multiagent-based simulation. Simulated scenarios are based
on real customer orders and are applied on real-world infrastructures. The results reveal that efficient optimal
decision making in multiagent systems increases the service quality and meets the requirements and challenges
in logistics.

In this chapter we also look at packing problems that naturally arise in container loading. Given a set of 3D ISO-
oriented objects and a container, the task is to find a packing sequence of the input objects consisting of the ID,
location, and orientation that minimizes the space wasted by the packing. Instead of the decision problem, we
look at the packing optimization problem, minimizing the total height of a packing. The solution uses extreme
points and applies Monte-Carlo tree search with policy adaptation. The implementation is considerably simple
and conceptually different from mathematical programming branch-and-bound and local search approaches.
Nonetheless, the results in solving 2D and 3D packing problems are promising.

21.1 Introduction

Vehicle Routing One1 challenge is to optimize the planning and controlling processes in groupage traffic to im-
prove the service quality while ensuring cost- and time-efficient transport processes. To meet the high require-
ments on complexity and dynamics, we implement a multiagent system to ensure a flexible system behavior and
develop efficient and optimal decision-making algorithms for participating agents.

In transport logistics the decision making often relies on efficient solutions to the Traveling Salesman Problem
(TSP), a touchstone for many general approaches in combinatorial optimization. In our application of a for-
warding agency, the TSPs are generated via shortest path reductions of route networks. Each order to be served
corresponds to one city in the TSP.

Due to one-way streets, we consider asymmetric TSPs (ATSPs). Many ATSP solvers consider the according
Assignment Problem (AP), which can be solved by the Hungarian algorithm or refined approaches, followed

1 This chapter is based on joint work with Max Gath, Moritz Rohde, Ashraf Abdo, Christoph Greulich, Malte Humann, Otthein
Herzog, and Michael Lawo. It puts together and improves the work from [197, 196, 1].
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by some tour patching strategies. ATSPs can be converted into symmetric TSPs, but this requires doubling the
number of cities. Empirical TSP exploration results often partially refer to the 8th DIMACS Challenge.

Many additional constraints apply in practice. Besides capacity and time constraints we have a certain mix
of pick-up and backhaul and premium service constraints to be served in the tour, while other non-premium
services are optional (but should be maximized). We also consider TSPs with delivery and backhauls; not to be
mixed with delivery and pick-up. With the mix of premium and non-premium tasks we generate a preference
problem that includes a combination of hard and soft constraints.

In the vehicle routing problems with capacity, time and premium services constraints, backhauling and dynamic
change, determining the optimal solution quickly becomes intractable.

Packing Industrial robots have eventually found their way into container packing and unpacking. Such intelli-
gent packaging robots pack and unpack containers with loose packages fully automatically. Some companies
have such systems already operating in their logistics centers.

A robot packing system (shown in Figure 21.1) consists of a chassis beneath the robot, a telescope conveyor,
a 3D laser scanner, and an interchangeable gripper system. The robot is positioned on the chassis, which is
connected to the conveyor belt. This can be extended mechanically and transports robot and chassis into the
container. That way the work envelope of the robot will be extended, and the gripper arm of the robot can reach
any point in the container. By use of the 3D laser scanner possible gripping positions for the pile of object can
be analyzed and an optimal unloading sequence and collision-free trajectories can be computed. The removed
packages are then transported by the conveyor belt until the container is completely empty.

In this chapter we look at the inverse problem of optimally packing 3D objects into a container to maximize its
load. For loading, the same hardware as outlined above can be used. Compared to the unloading, the loading
process is simpler in handling, since the sizes of the goods and the respective positions for pick-up and drop-
down are defined. But still there are big challenges especially for the loading of parcel with unequal sizes and
weights in containers or swap-bodies.

Whereas parcels are mostly imported in containers they are often distributed in swap-bodies. Here the maxi-
mum height of the pile is relevant. DHL, for instance, ordered a maximum stacking height of two meters to
reduce accidents when dropping goods. Optimizing the loading process to achieve a compact and solid pile is a
requirement for the effective and safe transport and subsequent unloading process.

Our industrial example is finding a tight packaging of objects into one or several containers (see Figure 21.2).
Due to the ever-increasing globalization of trade, the amount of cargo shipped in containers is on the rise
and the efficient utilization of transportation capacity will be a competitive advantage for companies. Using
less containers for shipping a specific number of goods will reduce the costs, not only because of the lower
number of containers required, but also because potential breakage is reduced through the dense packing. If the
available storage is limited, deciding which items to defer to a later shipment is also an important issue regarding
profit and customer satisfaction, e.g., by not violating deadlines. But the problem of packing small items into
large objects is not necessarily limited to loading containers and trucks. The large objects can range from
pallets to ships and planes or even warehouses. Depending on the large receiving object, the set of small items
may also include said pallets and containers, irregularly shaped items like furniture, or just small rectangular
boxes. The general problem can be considered a cutting and packaging problem and, therefore, also covers
material utilization when cutting glass or wood for example. It is even possible to use this concept for scheduling
problems by redefining the axis appropriately. Assuming a limited number of workers and machines that require
uninterrupted processing time for a specific order, cutting and packing methods can be used to schedule workers
and machines to reduce the downtime when neither enough workers nor machines are available.

The 3D packing problem is a true extension of the rectangle packing problem, already known to be a hard
optimization problem. Even the bin packing problem is known to be NP-complete. While pseudo-polynomial
time algorithms have been derived for the 1D packing problem, no such results have been derived for the 3D
packing problem. We study the packing problem that maximizes the volume utility of a single container with and
without orientation restrictions on the boxes. A solution is an ordering of (possibly oriented) objects together
with a set of coordinates. We enforce objects to form a connected arrangement of objects. Objects are only



21.2 Dispatching in Groupage Traffic 363

stable if their center of mass rests on top of another object. We assume that unoccupied space can be filled with
other material so stability is not a concern for this study.

Figure 21.1: Container packing scenario with mobile robot platform and conveyor belt.

Formally, we are given a set of rectangular boxes B = {b1, . . . ,bn} and a rectangular container C. Let xi, yi and
zi represent the three dimensions of the box bi, and X , Y , and Z represent the three dimensions of the container.
The objective of the problem is to select a subset S ⊆ B and assign a position to each box b j ∈ S in the 3D
space of container C such that ∑b j∈S x j · y j · z j is maximized subject to the constraints that all boxes must be
totally contained in C, no two boxes intersect in 3D space and every edge of the packed box must be parallel or
orthogonal to the container walls.

If oriented boxes are to considered, the values of triples (x j,y j,z j) can be permuted. Given that for all j the
values of x j, y j, and z j are pairwise different, for the 2D problem we have 2! = 2 possible orientations, while in
3D we have 3! = 6 different orientations of an object (suppose an unoriented package has dimension 1×2×3;
consequently, there are six different orientations that lead to the following rotated dimensions for this package:
1× 2× 3, 2× 1× 3, 1× 3× 2, 2× 3× 1, 3× 1× 2, and 3× 2× 1). In the 3D strip packing problem that we
consider in this chapter, we are given a set of 3D rectangular items and a 3D open box B. The goal is to pack
all the items in B such that the height of the packing is minimized. We consider the most basic version of the
problem, where the items must be packed with their edges parallel to the edges of B. In the oriented case, we
allow rotation. A trivial upper bound Xmax for the height of the packing is ∑

n
i=1 xi. Of course, more effective

bounds can be derived.

The problem of the center of mass of a box is apparent. It is dependent on the package weight distribution and
whether additional support bridges can be inserted to support overhanging parts. The problem of packing many
small boxes into a single larger box is part of a number of cutting, packing, scheduling, and transportation appli-
cations. There are several heuristic solvers, but the progress in exact solvers that can deal also with orientation,
in general, and integer programming solvers, in particular, has been limited.

21.2 Dispatching in Groupage Traffic

In groupage traffic, several orders to different destinations with less-than-truckload (LTL) shipments are served
by the same truck to decrease total cost. In pickup tours, trucks transport loads from their origin to a local depot
where the shipments are consolidated to build economical loads. Through LTL networks the load is transported
to a depot in the destination area where each good is delivered to its destination. The process planning com-
plexity is even increased by individual qualities of shipments like weight, volume, priority, and value. Handling
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Figure 21.2: Container packing solution.

the complexity is aggregated by the high degree of dynamics that result also from unexpected events, such as
an exact amount and properties of shipments are not known in advance.

Quality of service is an important factor to succeed in the economic objectives. The transportation of so-called
premium services must be guaranteed with respect to their time windows while considering other hard con-
straints, e.g., the capacity of vehicles. In order to increase service quality through short transit times and reliable
deliveries it is mandatory to handle the high degree of dynamics and complexity of logistic processes with
adaptive, reactive system behavior.

Regarding the dispatching processes each vehicle has to find a tour with minimum costs, such that each pickup
and delivering stop is visited exactly once and the tour returns to a central depot. This problem can be described
by a TSP with stops i, i ∈ {1,2, . . . ,n}. All distances between two stops i and j are given by ci, j ∈ R+ with
ci,i = 0 for 1≤ i, j≤ n. Feasible solutions are permutations of (1,2, . . . ,n) with the additional constraint that the
first and the last city to visit is the depot. Real transport infrastructures are commonly represented by directed
graphs, so that we search an optimal tour for an ATSP. In logistic transport networks participating forwarding
agencies must pay high amounts of penalty if they are not fulfilling the agreed commitments. Therefore, we
distinguish hard premium service constraints that must be delivered on date of receipt and soft non-premium
service constraints that can be delayed by up to two days.

Pickup and delivery of premium services is mandatory and defined by

pi =

{
1, if i is a premium stop
0, otherwise (21.1)

Hence, the priority of premium stops is higher than that of other stops.

The optimal tour of the asymmetric TSP must be feasible and fulfill the following requirements ordered by their
priorities for the variables:

xi, j =

{
1, if (i, j) is part of the tour
0, else (21.2)

1. Maximize the number of transported premium services: max∑
n
i=1 ∑

n
j=1 pi · xi, j

2. Maximize the number of visited stops: max∑
n
i=1 ∑

n
j=1 xi, j

3. Minimize the total cost of the path: min∑
n
j=1 ∑

n
i=1 ci, j · xi, j subject to

a. ∑
n
i=1 xi, j = 1 for all j ∈ {1, . . . ,n};

b. ∑
n
j=1 xi, j = 1 for all i ∈ {1, . . . ,n};

c. xi, j = {0,1} for all j, i ∈ {1, . . . ,n};



21.2 Dispatching in Groupage Traffic 365

d. ∑ j∈S ∑i∈S xi, j ≤ |S|−1 for all S⊆ {1, . . . ,n}.

We assume that all premium stops must be traversed such that we have to find the tour with minimum costs
that includes all premium services and the maximum number of stops while satisfying all time and capacity
constraints. Therefore, the problem changed into a maximizing-minimizing problem.

21.2.1 Constraint ATSP Solving

To apply Branch-and-bound (BnB), we extend depth-first search (DFS) with upper and lower bounds. To de-
termine a lower bound for the ATSP, we transform it into the Assignment Problem (AP), which can be solved
with the Hungarian algorithm in O(n3). While the AP is a relaxation of the asymmetric TSP, it can be used as
a heuristic function for the ATSP. In order to solve the AP, we extend the cost matrix with the distance from
the depot to the current node (we want to return to the central depot which is not necessary the starting point).
After solving the AP, we subtract it to compute the current lower bound. For increasing the upper bound (which
is the sum of the weights in the subgraphs) we determine the minimum value to merge the subgraphs of the AP
by comparing the respective columns and rows in the cost matrix and choosing the arcs with minimum costs.

An initial upper bound can be obtained by constructing any solution, e.g., established by a greedy approach.
Unfortunately, for larger TSPs the branching process consumes a lot of time to determine a greedy solution.
Therefore, we additionally computed the upper bound U at each node by applying Karp-Steel patching. As with
standard DFS, the first solution obtained might not be optimal. With depth-first BnB (DFBnB), however, the
solution quality improves over time together with the global value U until eventually the lower bound L(u) at
some node u is equal to U . In this case an optimal solution has been found, and the search terminates.

A Constraint ATSP is an ATSP in which additional state constraints are applied. States are only discarded from
the search if they do not fulfill the constraints. This weakens but does not invalidate the lower bound. For
example time and capacity constraints as well as priorities must be satisfied.

For time constraints, the due date di for latest pickup (or delivery) at each stop i∈ {1, . . . ,n} has to be met. Each
stop may require additional individual processing time δi (e.g., for loading), which can be compiled away (the
solution value then changes by ∑

n
i=1 αi). In some cases, release dates ri, i ∈ {1, . . . ,n} are given, at which the

order at stop i becomes issued. If the arrival is too early, we must wait for time βi.

For the TSPTW we choose the net time for traversing the edges to be minimized rather than the total time,
which, nonetheless, is progressed for adaption to release and check with due dates. The travel time between
stops πi and π j on tour π is denoted by ti, j, i, j ∈ {1, . . . ,n}. Additional capacity constraints for the vehicle yield
a Capacitated TSP.

Let wi be the freight weight at stop i and ∆w be the maximum weight of the vehicle. A tour π with stops
{π1, . . . ,πn} and depot d is feasible for the capacitated TSPTW if for all i = 1,2, . . . ,n we have ∑

i
l=1(αi +βi +

ti−1,i)≤ di, ∑
i
l=1 wi ≤ ∆w, and d = πn.

The pseudo-code is shown in Algorithm 21.1. The procedure is invoked with the number of cities n the depot d,
cost 0 and upper bound U set to some reasonable estimate (U can obtained using some heuristics; the lower it
is, the better the pruning, but in case no upper bound is known, it is safe to set U to ∞). The tour is maintained
globally and updated during backtracking. Another global variable best keeps track of the actual solution path.
DFBnB sorting the set of successors according to increasing L-values is an optional refinement to the algorithm
that often aids in accelerating the search for finding an early solution.

Release and due dates in TSPTWs induce a precedence relationship at each city. The relationship implies a
partial ordering, so that a city can be selected as a successor of city only if it does not violate the imposed
ordering. Given a bitvector of a cities visited so far the subsumption check for precedence can be executed by
native Boolean operations in O(1). Similarly, premium services are checked on the word level.



366 21 Logistics

Algorithm 21.1: DFBnB for Constraint TSPs.
DFBnB(n,u,g,U)

tourdepth(u)← u
if (depth(u) = n−1)

if (g+ cu,d <U)
best← tour; U ← g+ cu,d

else
for each v j in nextcities(u)

if Constraint(v j)
if (g+h(v j)<U)

call DFSBnB(n,v j,g+ cu,v j ,U)

If no pruning was taking place, every possible solution would be generated, so that the optimal solution would
eventually be found. Sorting of children according to the L-values has no influence on the algorithm’s complete-
ness. The condition L(v j) < U confirms that the node’s lower bound is smaller than the global upper bound.
Otherwise, the search tree is pruned, as for admissible weight functions exploring the subtree cannot lead to
better solutions than the one stored with U . All further pruning rules (like precedence or premium service prun-
ing) cut off infeasible branches from the search tree so that the solution will be optimal for the TSP problem
looked at. Precedence pruning retains optimality for the TSPTW, while capacity pruning remains optimal for
capacitated TSP, etc. This shows that Algorithm 21.1 is optimal for an admissible lower bound, (wrt the above
pruning rules).

With ha we define the heuristic that is derived from solving AP. The Hungarian algorithm for computing the
solution, as well as lower bound offsets based on the tour being Hamiltonian takes time O(n3). It can incremen-
tally be computed in O(n2), but bookkeeping becomes involved. With hc we define the heuristic that is defined
as the sum of the column minima in the distance matrix. If cities are visited, column minima are subtracted from
the sum. The travel distance back to the depot is added on top. We compute hc incrementally in O(1) time and
space. Let u be the successor of v, and mi be the precomputed minima of columns i, i = {1, . . . ,n} in distance
matrix D. Moreover, let the heuristic value of the depot d be defined as hc(d) = ∑

n
i=1 md,i. For each expanded

node u we compute h′ = h(u)−md if u = d, and h′ = h(u)− cu,d , otherwise. For each generated successor v of
u we have hc(v) = h′−mv + cv,d .

An advantage of the tree structure is that the constraint checks are available in constant time and space. The cur-
rent time, capacity and premium service information are stored at each node. Considering the time efficiency of
the algorithm, in our implementation we thus rely on the fact that the bitvectors can be realized by one computer
word: we have bitvectors for the cities seen, the relative ordering among them imposed by the time window, and
the priority service constraints. All bitvector operations (setting, clearing of bits, check for subsumption) run in
O(1).

To determine the optimal solution for a TSP with premium services we extend the algorithm. We assume that all
premium stops must be traversed so that we have to find the tour with minimal costs that includes all premium
services and the maximal number of stops while satisfying all time and capacity constraints. Therefore, the
problem changed into a max-min problem and branching is not applicable by comparing the costs to the lower
bound L. We have to find a feasible solution that includes all premium services within maximum search tree
depth and the shortest distance within that depth.

To speed up search for a first solution in depth n− 1, the computation of the lower bound is disabled and a
subtree is cut if the current tour is not a feasible tour. We prune the tree with the following rule using bitvec-
tors and Boolean operations. Before starting the search, we sort the premium services by their capacities. The
number of premium services that are included in the best solution is saved and updated if a better solution is
found. Next, we compute the difference ∆ between the number of currently included premium services and the
number of premium services in the best-known solution. Afterwards, the weight of ∆ lightest not considered
premium services is accumulated, and we check if they exceed the maximum capacity of the truck. The solution
remains optimal and complete because a feasible solution with more premium service exists. The pruning rule is
applied to regular orders accordingly if all premium services are included within the tour. The application of this
pruning rule is optional, because it is done in O(∆) time (for summing up the weight of orders not considered).
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Nevertheless, it speeds up the algorithm if good solutions are known in advance, the maximum capacity of the
truck is reached and no more orders can be operated. In this case big subtrees can be pruned early. If we find a
first feasible complete tour objectives 1. and 2. in Def. 21.2 are fulfilled.

Let w be the word width of the computer. The incremental solver for the Asymmetric TSP with Time Windows,
Capacity, and Premium Service Constraints and heuristic hc runs in O(n/w) per node. It allocates O((n3/w)
space in its initialization phase. The space consumed for the distance matrices as well as their compression
and copies is O(n2). The matrices for successor reordering and filtering take O(n2) and each state on the stack
requires O(n/w) space. As the stack is limited by the depth times the number of successors, its memory needs
are also bounded by O((n/w) · n2). All other structures (tours, interval sizes, rows and columns and minima,
partial ordering bitvectors, successor sets and visited flags) take at most O(n) space.

After satisfying the premium services, the remaining objective is to reduce the total cost and the problem has
changed to a classical TSP with constraints. As a result, the computation of lower and upper bounds described
above is activated. In this case, less nodes are expanded because the searching process is goal-directed. If
heuristic ha instead of hc is activated, the efforts at each node are higher.

21.2.2 Agent Dispatching and Simulation

In our setting agents represent trucks and orders. Whenever a new transport request has to be processed, a new
agent is created that represents an order. The goal of the agent is to find a proper transport service provider to
pick up or deliver the shipments with respect to the time windows and premium service constraints. The agent
starts the contract-net protocol for negotiating with available transport service providers. All operating trucks are
represented by an agent as well. The truck agents evaluate the proposals by determining its additional costs for
transporting. In order to schedule new orders also while transporting other shipments, the truck has to consider
its current capacity constraints and position. For example, picked up shipments reduce the capacities, and the
position of the vehicle affects the determination of shortest ways and tours. Consequently, we link the planning
and decision-making processes of the agents directly with their execution behaviors and consider all relevant
observed changes of the environment as well as the internal state of the agent within the decision making and
tour planning. On the other hand, new plans can effect the executed actions of the agents. Therefore, the truck
agents check during driving, if the next stop has changed and if necessary he adapts the tour. In real processes as
well as in the simulation the handing processes (boarding and deboarding of shipments) must not be interrupted.
This requirement is satisfied by not adopting plans that manipulate the running handling processes.

To transport a premium service instead of conventional orders or another premium service by driving a shorter
distance, already accepted orders may not be included in the new plan. If these orders have not been boarded the
truck agent sends a message to the agent that acts on behalf of the corresponding order. Afterwards, the order
agent negotiates with other transport service providers again. Potentially, this results in a series of computation
and communication intensive negotiations between agents to achieve small improvements. To weaken this effect
(especially if several shipments are processed consecutively within a short time window and the global allocation
changes significantly) the agent waits for a certain period before it starts the negotiation procedure. For optimal
decision making, agents must solve a TSP for each proposal. Consequently, numerous TSPs have to be solved
in the planning and controlling processes.

Applying simulation for evaluating multiagent systems before their deployment in real applications is an ac-
curate cost and time reducing method. The physical world within the simulation environment is modeled as
directed graph. Nodes represent traffic junctions or logistic sources and sinks, while edges represent different
types of ways, e.g., roads, motorways, trails, and waterways. To model sound planning and controlling processes
in the logistic domain, we extended our system to import transport infrastructures from OpenStreetMap (OSM)
databases. The directed graph includes information about the real-world speed limits, the distance as well as
the type of an edge. Particularly within large infrastructures, determining the shortest path between nodes is
an essential, costly, and time-consuming procedure within the decision-making process of an agent. However,
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search(level, iterations, pol)
best.score = MAXVALUE
if (level == 0)
eval = rollout()
best.score = eval
best.packing = packing

else
policy[level] = pol
for(i=0; i<I; i++)
r = search(level - 1,I,pol)
score = r.score
if (score < best.score)
best.score = score
best.packing = r.packing
adapt(best.packing,score,level)

pol = policy[level]
return best

Figure 21.3: NRPA (left), extreme points in 2D and 3D (right)

computing the distance matrix between cities is essential for solving the TSP on a shortest path reduced graph.
Computing a distance matrix requires many shortest-path queries with a fixed starting node and is time-critical.
Hence, we adapted the search procedure and saved the last visited nodes within a hash map as well as in the
heap as long as the start node had not changed. While processing new search requests we check in constant time
if the shortest path to the node was already found and retrieve the corresponding node from the heap. Otherwise,
shortest path search is continuing at the last expanded node. We extended the search with a cache.

21.3 Container Packing with Nested Monte-Carlo Search

The Nested Monte-Carlo search algorithm is parametrized with the level of the search which denotes how
deep the search is, and with the number of iterations, that shows how strong the policy learning effect within
the search is. At each leaf of the recursive search (Level 0), a rollout is invoked. A rollout corresponds to a
(possibly constraint violating) packing. A rollout performs and evaluates a random run to construct a packing.
An example setting is a level-5 search with 50 iterations, which leads to 505 rollouts.

Policy adaptation, that changes the probabilities of choosing the successor states in the rollout based on the
success of previous experiences. Rather than navigating the tree directly the approach instead uses gradient
ascent on the rollout policy at each level of the nested search.

The pseudo-code implementation of NRPA for the packing problem is shown in Figure 21.3 (left). We see that
the evaluation of a Level k search relies on the result obtained in Level k− 1 search and that the results are
propagated bottom-up.

21.3.1 Extreme Points

The basic idea of extreme points is that when an item j with sizes X j, Yj and Z j is added to a given packing
and is placed with the left-back-down corner in position (x j, y j,z j) it generates a series of new extreme points,
where additional objects can be placed. The new extreme points are generated by projecting the points with
coordinates (x j +X j, y j,z j), (x j, y j +Yj,z j) (x j, y j,z j +Z j) on the orthogonal axes of the container. In 2D this
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leads to at most two extreme points generated for each object being placed, while in 3D we have at most six
extreme points (see Figure 21.3, right). Each point is projected on all items lying between item i and the wall
of the container in the respective direction. If there is more than on item on which a point can be projected, the
algorithm chooses the nearest one. Moreover, to avoid wasted space by additionally sliding the object we urge
them to respect connectivity and gravity constraints.

If the container is empty, the first object is placed in position (0,0,0) generating extreme points at (X j, 0,0), (0,
Yj,0), (0, 0,Z j).

While the extreme point approach applies to floating-point size data, in our experiments we decided to discretize
the domains of the object and container sizes to integers. This change supports operations in the integer range
progressing a global layout of the objects. The test of intersection and the projection simplifies.

21.3.2 Box Packing

The most important function to be applied in NMC is the rollout. Code profiling indicates that most time is
spent in this function. In a rollout we randomly walk down the search tree from root to a leaf node to form a
complete packing.

The pseudo-code implementation of the rollout function for the packing is depicted in Algorithm 21.2 (left).
Using visited flags, successors are eliminated from the set of all possible values, so that any generated solution
necessarily has to be a permutation of boxes. Some parameters such as visited-flags, the set of successors found,
the current assignment of packages to container cells, as well as the incrementally generated packing (including
ID, location, and orientation) and the (layered) policy tables are kept globally in class member variables. The
function legal places all remaining objects on all possible extreme points. The outcome is a list of successors m
of (possibly oriented) objects together with their coordinates l and orientation o.

To avoid the generation of clearly dominated solutions it also slides objects (in turn) towards lower x-, y- and
z-coordinates. This ensures that the packing is connected and (to some extent) stable. As we do not expect
knowledge on the weight distribution within an object, we do not compute the center of mass. This constraint
can be added by the user or bypassed by adding additional bridges.

The number of violations to the enforced constraints can be included into the cost function evaluation that is
returned to the NMC algorithm. The major objective of the cost function is to reduce the number of layers in
x-direction. As a minor objective, the number of remaining extreme points are minimized. Our implementation
features orientation of rectangles.

Objects are placed into a one-sided open container of cells. This is done by setting the respective cells to the
id of the object. The resulting set of extreme points is computed in the update procedure. While objects must
fit into the x- and y-dimension of the container, they are allowed to exceed the z-dimension. At the end of the
rollout procedure, all cells of the container are cleared.

Furthermore, packing is a global variable or the parameter and includes the object, its location, and its orienta-
tion. Copying of pol and policy is already done in the search procedure. We need a temporary, which makes the
code harder to read.

For the packing problem, adjacencies are less important compared to absolute coordinates. In an existing policy
P, rollouts children s′ for a node s are chosen wrt eP(s,s′). The successors are choosin using a roulette wheel
fitness selection based on these values. Initially, all policy values are set to 0. As the entire state-to-state table
surely is too big, it is projected to an essential part to be learnt.

Given a packing that improves the current best cost value, policy adaptation (see Algorithm 21.2, right) performs
gradient descent as follows. The sequence of children s′ = (s′0, . . . ,s

′
l) of states s = (s0, . . . ,sl) with si+1 = s′i

has the probability Prob(s,s′) = ∏
l
j=0 eP(s j ,s′j)/∑

l
i=0 eP(s j ,s′i). The gradient of the logarithm at j of this term is
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Algorithm 21.2: Rollout and policy adaptation functions for the container packing optimization problem.
rollout()
cost = objectsSize = 0;
nextreme = 1; extreme[0] = 0;
for (j=0;j<N;j++) visited[j] = false;
while (objectsSize < N) {
successors = legal(nextreme);
sum = 0;
for (i=0; i<successors; i++)
value[i] = exp(pol[code(l[i],o[i

],m[i])]);
sum += value[i];

mrand=random(sum);
i=0; sum = value[0];
while (sum<mrand) sum += value[++i];
object = m[i];
location[objectsSize] = l[i];
orientation[objectsSize] = twist[i

];
objects[objectsSize++] = object;
place(object,twist[i],l[i]);
visited[object] = true;
nextreme =
update(object,twist[i],l[i],

nextreme);
if (cost < x+sizes[object].x)
cost = x+sizes[object].x;

clear(cost);
return 1000 * cost + nextreme;

adapt(packing, cost, level) {
for (j=0;j<N;j++)
visited[j] = false;

object = 0;
nextreme = 1;
extreme[0] = 0;
for(p=0; p<N; p++)
successors = legal(nextreme);
object = packing.objects[p];
l = packing.location[p];
o = packing.orientation[p];
layer[level][code(l,o,object)]

+=
ALPHA;

z = 0.0;
for(i=0; i<successors; i++)
z += exp(pol[code(l,o,m[i])]);

for (i=0; i<successors; i++)
layer[level][code(l,o,m[i])]

-=
ALPHA*
exp(policy[code(l,o,m[i])])/z

;
place(object,o l);
nextreme =
update(object,l,o,nextreme);

visited[object] = true;
clear(cost);

Figure 21.4: Solutions to two square packing problems (for 25 objects). The 1× 1 square is removed from the input and assumed
to fit.

1− eP(s j ,s′j)/∑
l
i=0 eP(s j ,si), so that we add α to the best chosen successor and subtract α · eP(s j ,s′j)/∑

l
i=0 eP(s j ,s′i)

from the others, where α is a factor for accelerating the learning process. This ensures that policy adaptation
increases the probability of the solution sequence. The policy learned is a mapping from objects together with
their orientation to the y- and z-coordinates.

Policies are copied top-down, adapted bottom-up, and improved while progressing from one successor to its
sibling.

The solution for packing the squares packing squares 1× 1 to 25× 25 into a box of size 43× 129 problem is
shown Figure 21.4. In the implementation, objects are represented by their boundary surfaces. In a discretized
occupancy grid representation, this makes intersection tests easier.
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Table 21.1: Results in Dumas’ TSPTW Benchmark (Exp. nodes and CPU time for the two heuristics are shown).

Prob. Cost Eh Th Ec Tc
n20w20.001 378 49 < 1s 2,784,766 < 1s
n20w20.002 286 97 < 1s 3,234,936 < 1s
n20w20.003 394 138 < 1s 4,944,477 < 1s
n20w20.004 396 156 < 1s 2,331,312 < 1s
n20w20.005 352 41 < 1s 4,017,260 < 1s
n20w40.001 254 38,022 3s 103,087,541 18s
n20w40.002 333 88 < 1s 11,388,523 2s
n20w40.003 317 1,409 < 1s 21,158,796 3s
n20w40.004 388 7,676 1s 35,117,607 6s
n20w40.005 288 10,287 2s 20,801,644 3s
n20w60.001 335 40,810 14s 223,904,879 43s
n20w60.002 244 97,144 7s 81,367,918 15s
n20w60.003 352 399,127 27s 31,292,739 5s
n20w60.004 280 4,055,453 258s 1,245,195,466 238s
n20w60.005 338 105,393 10s 104,049,862 18s
n20w80.001 329 316,992 35s 288,653,549 56s
n20w80.002 338 260,552 36s 166,880,630 33s
n20w80.003 320 15,959 3s 208,526,467 42s
n20w80.004 304 1,258,898 80s 373,077,547 73s
n20w80.005 264 5,224,435 438s 1,660,621,704 332s

n20w100.001 237 1,635,101 52s 1,232,596,799 279s
n20w100.002 222 68,954 7s 2,203,174,867 531s
n20w100.003 310 13,382,035 765s 2,586,795,810 538s
n20w100.004 349 34,289 2s 1,213,551,958 266s
n20w100.005 258 688,887 44s 2,308,713,055 548s

21.4 Experiments

21.4.1 Groupage Traffic

In the first setting we generated a fully-connected random graph of k nodes with edge weights in [0..C]. With
C = 10 our solver can handle problems with 500 cites. For C = 100, and up to 100 cities, the experimental
outcome shows that there are rare unfortunate cases that need hours for computation, but generally remain
tractable. For smaller values of n (the number of cities) and more complex TSPs, our incremental solver with
constant time per node was often more effective than computing at each node.

Next, we extended the solver with time windows and focused on the performance of applied heuristics. As
release and due times are more difficult to generate randomly, we took an existing benchmark set of TSPTW
problems. The results in Table 21.1 examine the search efforts for DFBnB with hh and hc. We see that while the
number of nodes is substantially lower for hh, the solving time is sometimes (but not always) larger than for hc,
indicating that the more constrained the problem is, the worse the AP approximation and the better the search
with a simpler heuristic. Note that our best results were obtained with a combination of both heuristics, using
the more expressive one in the top part of the tree and the less expressive one in the bottom part of the tree.

To investigate the interactions between agents we implemented several scenarios. The transport infrastructure
contains 124,462 nodes and 292,521 edges. We started a reverse geocoding process to map the address infor-
mation to coordinates and determined the nearest neighbor node in the map, to link the addresses with graph
nodes. The real weight, premium service constraints, latest delivery times as well as the incoming dates are at-
tached with the order. Since exact delivery times are not available, only the date is considered during evaluation.
Thus, we modeled the dynamics by generating new orders successively until all orders of this day have been
dispatched. In real transport processes, vehicles with interchangeable units are sent to stops where numerous
shipments have to be handled. Consequently, we did not consider orders if more than six orders had to be picked
up at the same stop. While the dynamics of the planning and controlling processes of delivery tours are limited
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Figure 21.5: Black/White bars show the percentage of picked up premium/conventional services in the selected scenario.

since that shipments have to be loaded before starting the transport processes, we only consider pickup orders
and simulate the planning processes simultaneously to the execution of plans.

We modeled seven scenarios. In each scenario 1,265 orders are distributed within a whole week while the
number of trucks is varying. About six percent of the total number of modeled orders are premium services.
Table 21.2 shows the computation times elapsed during each simulation run for computing the distance matrix
with the shortest-path algorithm as well as the time for solving the TSP specified in Def. 21.2. The results reveal
that more computation time is required for the reduction of the real-world infrastructure graph to a minimum
distance matrix between relevant nodes than for optimally solving of the TSP. Consequently, the shortest path
matrix computation is the most expensive part of the decision-making process of the agent, if we are considering
the computational effort. Moreover, Table 21.2 indicates that the number of TSPs rises with the number of
available trucks. That is obvious, because the TSP solver is an essential part within the decision-making process
of each truck.

Table 21.2: CPU time in ms for solving the TSP as well as for shortest path searches during the matrix computations.

#Trucks #TSP time for time for
solving TSP in ms matrix computation in ms

5 6,122 199,043 4,912,094
10 11,893 324,566 16,588,955
20 22,457 604,675 56,845,930
25 26,751 972,579 75,882,546
30 31,542 2,246,511 94,921,678
40 40,759 7,979,063 144,742,544
60 56,152 79,704,147 225,749,232

Figure 21.5 shows the percentage of picked-up premium and conventional orders within each scenario. We see
that the agent system considers premium services with higher priorities. Even with five trucks nearly 50% of
all premium services are sill picked up, while more than 90% of conventional orders are postponed to other
days. An increase of the number of available trucks leads to processing more premium services as well as more
conventional orders. If about 70% of all premium services were satisfied, only transported conventional orders
increased.
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21.4.2 Packing

As an indicator for the simplicity of the implementation our single-core C/C++ packing implementation consists
of less than 400 LOC. It is generic and supports 2D and 3D non-oriented and oriented packings. The support of
higher dimensions would only require different projection and intersection functions. The Java implementation
was competitive with the C/C++ program.

21.4.2.1 2D Packing

For 2D rectangle packing, we look at Korf’s square packing instances. These combinatorial problems are defined
as constraint satisfaction and not as a strip packing minimization problems. Nonetheless, with our general
approach we could solve several benchmark problem instances with NRPA using six levels and 20 iterations.
The results presented in the form Problem ID : L×B (time,rollouts) were as follows.

2 : 2×3 (0.1s, 1),
3 : 3×5 (0.1s, 1),
4 : 5×7 (0.1s, 2),
5 : 5×12 (0.1s, 13),
6 : 9×11 (0.1s, 50),
7 : 11×14 (0.1s, 48),
8 : 14×15 (0.2s, 3,728),
9 : 15×20 (0.2s, 8,502),
10 : 15×27 (0.1s, 97),
11 : 19×27 (55s, 3,520,193),
12 : 23×29 (8s, 329,903),
13 : 22×38 (4s, 8,557),
14 : 23×45 (11s, 335,798),
15 : 23×55 (3s, 1,947),
16 : 28×54 (1m31s, 1,658,002),
18 : 31×69 (31.4s, 463,297),
20 : 34×85 (23m15s, 3,483,648), and
22 : 39×98 (49m26s, 4,418,323).

We always took the larger container size value as the undefined one. In contrast to Korf’s approach that is based
on heuristically guided depth-first branch-and-bound search with a lower bound for computing wasted space
based on a reduction to bin packing we leave the container open, and, therefore, do not rely on calculating
wasted space.

21.4.2.2 3D Packing

For evaluating 3D packing algorithms, we first generated 3D objects as follows. The sizes of the objects to
be packed into a container of size [1..Xmax]× [1..Ymax]× [1..Zmax] were random choices in [1..bXmax/2c]×
[1..bYmax/2c]× [1..bZmax/2c]. To visualize the outcome of the NRPA optimization process in 3D, one packing
example is illustrated in Figure 21.6 (left).

In small up to moderately-sized benchmarks, we tested the effect of varying the parameters of the search, namely
changing the values level and the iterations in NRPA. Table 21.3 shows the obtained packing quality in terms of
the chosen cost function. Shallow search led to smaller runtimes and still good results.

In Figure 21.6 (right) we show four learning curves of an NRPA search with 2 levels, 100 iterations, and up to
200 objects. The experiment with 100 iterations took about half an hour, the one with 150 one hour, and the one
with 200 two-and-a-half hours.
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n 10 15 20 25 30 35 40 45 50
5,7 4,418.4 6,629.0 8,438.6 9,853.0 11,862.8 14,267.8 15,882.2 18,283.4 20,287.4

4,10 4,420.6 6,633.8 8,639.6 9,847.8 12,659.8 14,283.8 16,082.8 18,682.4 20,694.8
3,22 3,819.2 6,027.6 8,039.6 10,044.4 11,658.2 13,672.6 15,273.2 17,886.4 20,096.0

2,100 3,819.0 5,828.8 7,831.4 9,241.2 12,459.6 12,461.2 16,271.6 16,472.2 19,290.8

Table 21.3: Solution quality in terms of the cost function value obtained by NRPA search for the oriented packing problem with
Ymax = Zmax = 10 averaged over 5 trials.

Figure 21.6: Sample 3D packing (left); learning curves for NRPA for a varying number of oriented objects (right, n =
50,100,150,200 read from bottom to top). The x-axis is the number of rollouts, the y-axis denotes the obtained solution qual-
ity in terms of the cost function.

By reducing the number of rollouts, we could scale the algorithm to optimize packings to 2,000 boxes and
more, and, thus that we could handle packing problems for industrial-sized containers. The time complexity for
the rollout operation is substantial, so we could only select a small number of rollouts (depending on the time
provided). However, this was already sufficient for first optimizations as NRPA is what is called an anytime
algorithm, which provides a first solution quickly and improves over time.

In an industrial case of 3D container packaging of axis-aligned boxes we even managed to solve an industrial
benchmark of 224 rectangular ISO-oriented boxes (in two possible orientations) to be packed in five 40” high-
cube and one 20” standard containers, while respecting some additional constraints like some freespace at the
door region (see Figure 6.1).

21.5 Summary

We looked at two challenging problems in logistics. First, we have studied a dispatching system matching the
requirements of forwarding agencies in groupage traffic. To face the dynamics of consecutively incoming orders
and high dynamics, we implemented a reactive and proactive multiagent system. The agents link the planning
and scheduling processes directly with their actions. Therefore, changes of the environment can be considered
during runtime and induce a reactive behavior. We focused on the planning and decision-making processes of
the agents and developed an efficient TSP solver that is crucial for negotiation with service customer agents.
The optimal branch-and-bound TSP solver was time and space efficient: it incrementally checks resource, time,
and premium service constraints in O(1) time and space per generated search tree node. Moreover, after the
allocation of less than a cubic number of computer words upfront at initialization time –for the search stack
contents and other structures (including copies of the distance matrix)– no additional memory is requested
during the search, avoiding a slow-down to fragmented memory allocations.

We have also seen a possible approach to solve multi-dimensional packing problems by applying nested Monte-
Carlo tree search with policy adaptation. The optimization algorithm is based on a combination of random
choice and reinforcement learning and yields a trade-off between state space exploitation and exploration.
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The implementation is flexible: It can handle additional placing constraints as well as alternative orientation.
The obtained solution quality in a series of benchmarks is promising and calls for further refinements. One core
advantage of the search is the anytime behavior: after executing the first random rollout in the NRPA a feasible
packing is known. Another important feature are the low memory requirements. Only the amount of space for
storing the packing and the policies at each level of the search and all container cells have to be present. As the
rollouts can be executed in parallel, implementations on a multi-core CPU and a many-core GPU are possible. So
far, we have worked with a single-threaded implementation, but experimented with several processes executed
in parallel.

There are many interesting problem variants to be solved in container packing. In some cases. ISO-oriented
boxes and the restriction to six possible orientations might be too inflexible, so that different angles and place-
ments based on a CAD model of the object are of interest. As complete enumeration approaches are harder for
this case, we expect further potential of applying the above randomized search approach.

Especially the inclusion of dynamics is crucial. If only parts of the conveyor belt are accessible, we have an
online instead of an off-line optimization problem for which an algorithm with a good competitive ratio has to
be designed. Additional to the packing there might also be ordering constraints, due to the partial delivery of
products to the customers. If customer A is visited before customer B on a delivery tour, the objects should be
placed in a way that it should be possible to unpack objects for A without moving packages for B.

In general, the logistic process chain of handling consumer goods in a distribution center is to unload them from
a carrier to sort, sometimes store and finally distribute them. Transportation is the linking process of these steps.
Carriers of the arriving goods are commonly pallets or, if the goods are loaded loosely, containers or trucks.
There is a variety of solutions for the automation of most of the tasks mentioned above, except the unloading
process. The manual execution of this process is a very tiring and not ergonomical activity, because there are
many recurring movements and manipulation of goods with high weight.

21.6 Bibliographic Notes

Depth-first branch-and-bound (DFBnB) has been refined for the TSP [671]. Symmetric TSPs (STSPs), for which
edge costs are the same in both directions, are usually optimally solved with algorithms relying on the quality
of the Held-Karp lower bound [369]. Karp-Steel patching goes back to [383].

Agent-based commercial systems are used within the planning and controlling processes of containerized freight
[164]. Team formation and interaction protocols have been designed for efficient resource allocation [564].
Agent-based systems have optimized planning and controlling processes within dynamic environments [257].
Ranges of application have been provided for industrial logistic processes [579].

For the TSP with release and due time window constraints (TSPTW), exact dynamic-programming algorithms
exploit elimination tests to reduce the state space [173]. Variants can also be applied to TSPTW problems
with precedence constraints. Frequently, branch-and-cut algorithms are the method of choice [24]. Introducing
capacities constraints links to constraint solving.

In a study about the contents of containers arriving in European ports it was identified that 46.7% of the goods
come in boxes of different size [177]. Another study [541] stated that for contract logistics the biggest number
of parcels have a weight of 5-15 kg. On average 1,200 parcels fit in a 40’-container. Regarding this value the
maximum payload of a 40’-container of approx. 30 tons can hardly be exploited by parcels. From the economical
point of view for the full capacity of a container an optimal stacking is required with no or minimal gaps between
the goods.

Nested Monte-Carlo (NMC) [105] is a randomized search method that has been successfully applied to solve
many challenging combinatorial problems, including Klondike Solitaire [53]. NMC has also been applied to
routing problems. For example, NRPA search has also been applied to efficiently solve the well-known Traveling
Salesman Problem with Time Windows (TSPTW) optimally or very close to the optimum for small problem
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instances with up to 50 cities [108]. Algorithmic refinements lead to solving single-vehicle pickup and delivery
problems with time windows and capacity constraints with up to 200 cities to be visited [195].

There are several heuristic approaches to solve variants of the container loading problems [52, 166, 474, 406,
289], but they often have difficulties to scale to a larger number of objects, and do not cover orientation.

2D rectangle intersection for n objects can be tested by a divide-and-conquer approach in O(n lgn) time [312].
The drawback is that intersections are detected only after all rectangles are placed leading to many invalid
placements during the rollout. In 3D the axis-aligned bounding boxes (AABB) algorithm is practically fast but
requires O(n2) for the test. There is also the option of using range trees (with fractional cascading) for a query
time of O(lg2 n); the time for construction the range tree, however, rises to O(n lg2 n) and is not incremental.
Moreover, the algorithm is involved [151].

Rectangle packing has been studied in [416, 417]. Alternative approaches for non-square 2D packing problem
have been addressed by [352] and high precision rectangles have been considered by [479, 353].

The work by Lim and Ying [452] proposes a new method for the 3D container packing problem that deviates
from the traditional approach of wall building and layering. It uses the concept of building growing from mul-
tiple sides of the container. The idea of this 3D packing algorithm comes from the process of constructing a
building. Boxes are placed on the wall of the container first as it builds the basement on the ground. After that,
other boxes will be placed on top of the basement boxes. Following this process, boxes will be placed one on
top of another. Every wall of the container can be treated as the ground for boxes to stack on. One drawback of
the approach is that it does not consider gravity constraints.

Crainic et al. introduce the extreme point concept and present a new extreme point-based rule for packing items
inside a 3D container [139]. The extreme point rule is addressed independently of the packing problem and
can handle additional constraints, such as fixing the position of the items. The extreme point rule is also used
to derive new constructive heuristics for the three-dimensional bin-packing problem. This rule was used in the
space defragmentation heuristic [673].



Chapter 22

Additive Manufacturing

This chapter considers solving a problem in combinatorial search: the automated arrangement of irregular-
shaped objects for industrial 3D printing. The input is a set of triangulated models; the output is a set of location
and orientation vectors for the objects. The algorithm consists of three stages: 1) translation of the models into
an octree; 2) design of an efficient test for pairwise intersection based on sphere trees; and 3) computation of
an optimized placement of the objects using simulated annealing. We compare several sphere-tree construction
methods and annealing parameter settings to derive valid packings.

22.1 Introduction

Additive1 manufacturing (AM) has an increasing range of applicability. Compared to classical manufacturing
it shows several advantages. Previously impossible shapes and structures are available, leading to prototypes
that can be produced without a large supply or production chain. Hence, the manufacturing of new products
is accelerated, the according costs are reduced, and a wide range of user-specified products can be produced.
Given the 3D model of the product, it can be produced overnight and delivered to the consumers. While 3D
printing (3DP) is one AM technique (processes that sequentially deposit material onto a powder bed with inkjet
printer heads), nowadays, both terms used as umbrella terms for several technologies, which include laser stere-
olithography (SL), selective laser sintering/melting (SLS/SLM), electron beam melting (EBM), layer laminate
manufacturing (LLN), and fused layer modeling (FLM).

To save production time and cost, the joint print of several objects is crucial. A valid packing for a set of objects
(o1, . . . ,on) into a box B = [0..x,0..y,0..z] with (x,y,z) ∈ R3 subject to objective function f is a sequence of
location coordinates (xi,yi,zi) ∈R3 (e.g., for the centers of mass of oi) and rotation angles (αi,βi,γi) ∈ [0,2π)3,
1≤ i≤ n, which is collision-free (for all 1≤ i 6= j≤ n objects oi and o j do not overlap), fits completely in box B,
and optimizes f . Packing algorithms should: 1) be robust to overcome inaccuracies in the input model, 2) support
general user-supplied objective functions, 3) preserve a minimal pairwise distance between the objects.

22.2 Sphere-Tree Construction

Bounding volume hierarchies (BVHs) are recursive tree data structures that at the leaf nodes include a primitive
volume data type. There are various sorts of BVHs, e.g., based on AABBs, OBBs (oriented bounded boxes),
cones, ellipsoids, and convex hulls. With sphere trees (Figure 22.1) we chose BVHs for which translation,

1 This chapter is based on joint work with Paul Wichern. It improves the work from [234].
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Figure 22.1: Levels of a sphere tree.

Algorithm 22.1: Creation of an Octree.

procedure InOutOctree(T , bT , cmin)
O← octree of T with smallest cube around bT as root
for c ∈ cells of O do

mark c as INTERNAL
cstart ← corner leaf cell of O
BreadthFirstMark(O, cstart , EXTERNAL)
return O

rotation and intersection are fast: a collision of spheres A and B wrt origins cA and cB and radii rA and rB is
detected by evaluating ‖cA− cB‖2 < rA + rB. If there is no intersection on a coarser level of granularity higher
up in the tree, there will be none on a finer level.

The midpoint (x,y,z) of the sphere on four points (xi,yi,zi), 1 ≤ i ≤ 4, together with the check of collinearity,
can be computed by evaluating the equation

det
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Octree The simplest algorithm to construct a sphere tree is by extending the corresponding octree. Algo-
rithm 22.1 distinguishes in- and outside leaf cells in the octree, with T as the set of object triangles and bT
as its bounding box, and cmin as minimal cell size. It marks cells in breadth-first order, starting with an initial
external one. All cells belong to the interior of the object. For the subsequent construction of a sphere tree, in
Algorithm 22.2 a sphere is generated for each internal cell (see Figure 22.2).

Medial Axis Another sphere-tree construction method exploits the medial axis, a generalized Voronoi nearest-
boundary distance diagram data structure residing in the interior of objects (see Figure 22.3). As the exact
medial axis can be complex, computational approaches for its construction usually resort to its approximation.

Sphere-tree construction via the medial axis operates in stages (illustrated in Figure 22.4). In the first stage, an
initial 3D Voronoi diagram for the object vertices is constructed that approximates the exact medial axis. The
Voronoi edges/faces that do not cross the object boundaries are the building blocks of the medial axis skeleton.
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Algorithm 22.2: Sphere construction via Octree.
procedure SphereByOctree(T , bT , cmin)
O← InOutOctree(T , bT , cmin)
Stree← O\{o ∈ O | o marked as EXTERNAL}
replace every cube in Stree by its surrounding sphere
return Stree

Figure 22.2: Conversion of an octree into a sphere tree.

Figure 22.3: Exact medial axes in 2D and 3D.

Figure 22.4: Constructing a sphere tree via medial axis approximation: 1) computing a Voronoi diagram of the object vertices,
2) extracting the approximation of the medial axis of the object, 3) generating a sphere cover, 4) computing the triangulation of
centers, 5) merging spheres.

Together with the distance to the boundary they define the set of spheres to cover the object. Then, with the
help of a triangulation of the centers (red), we incrementally merge spheres that have been constructed. Too
aggressive merging strategies, however, negatively influence the runtime and are avoided.

For complex objects (see Figure22.5), the Voronoi diagram is extended by sampling random points on the object
surface. Such adaptive sampling starts with a set of points on the surface of the object, and is extracted from
the medial axis approximation. One sampling option is to exploit an underlying grid, but on curved boundaries
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Figure 22.5: Curved object (left), and one, where all vertices, but not all edges are covered (right).

with small but lengthy triangles, cells might still not be sampled. Therefore, we decided to recursively construct
coverage points (see Figure 22.6).

Figure 22.6: Problem of grid sampling (left) and recursive construction of coverage points (right).

Figure 22.7: Steps in ImprovedAdaptiveSampling: 1) Voronoi diagram, 2) medial axis approximation, 3) spheres constructed, 4)
new point generated (red), 5) updated axis, 6) final sphere cover.

We apply coarse sampling for the initial Voronoi diagram and insert the additional set of coverage points on the
surface for the resulting spheres (Figure 22.7) in a refinement step. Followed by this, an error value is computed,
which denotes how far a sphere exceeds the surface. For all spheres that have a value that is too large, the medial
axis is refined, until no sphere remaining in the result set exceeds the error threshold. Eventually, all sample
points and the model itself were finally covered with spheres.

Sphere Packing The sphere packing algorithm operates in voxel space, which is a discretized grid representa-
tion of the workspace. The input is the set of octree cells that have been identified as being inside. The algorithm
incrementally adds a sphere in the cell that has the largest distance to the surface. Next, all distances are updated,
and the algorithm iterates (see Figure 22.8). As the result of the algorithm needs to be an object, spheres must
be inflated to provide a complete object cover.

22.3 Robustness Considerations

Figure 22.9 illustrates subtle but important aspects that affect the robustness of the packing algorithms, namely
orientation, holes, and self-intersections. Other issues are isolated triangles, open and multiple edges, or degen-
erate triangles.
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Figure 22.8: Steps in the construction of a sphere packing (top to bottom, left to right): 1) determining distances of grid centers
to the nearest boundary point, 2) drawing a corresponding sphere, updating the distance information, 3) final result of iterating the
process

Figure 22.9: Robustness issues: wrong orientation & holes (left), self-intersection (right).

Figure 22.10: Separating in- from exterior octree cells (top), impact of small and large holes (bottom).

Objects may have inverse orientation, defined by the normals of the triangles. As an example, in the visualization
the model bunny (left) is shown in red, illustrating that its orientation is reversed. The algorithm is robust with
respect to this artifact.

For interior detection Figure 22.10 shows that small holes may be captured correctly, but for larger holes there
might be semantic problems that arise. The approach of imposing a minimal cell size for an object boundary
aligns with the observation that a 3D printer assumes that even a flat surface has some positive volume.

the runtime, so that good trade-offs between running time and robustness are needed. For illustration pur-
pose, we conducted an experiment for sphere computation with very large coordinates that with data type float
(IEEE Standard 754) took 0.11 seconds and produced 50,006 errors, with data type double took 0.12 seconds
and produced 481 errors, with data type SoftFloat128 we got 1.21 seconds and six errors, and with BigInte-
gers/Rationals 51.53s and no error. We used a combination of the data types with a quick check of validity that
achieves the acceptable trade-off with 0.43 seconds, while still producing no error.

22.4 Global Optimization

To evaluate a state in Algorithm 22.3 we assume a set of models M, their sphere trees Strees, a build envelope e,
a set of evaluation functions F = { f1, . . . , fn}, and a score of colliding leaves δ .
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Algorithm 22.3: State evaluation function.

procedure EvaluateState(M, Strees, e, F , δ )
ccollisions← 0
for stree ∈ Strees do

ccollisions← ccollisions + number of leaves in stree not completely inside e
for atree,btree ∈ Strees,atree 6= btree ∧ index of atree < index of btree do

ccollisions← ccollisions + CollisionCount(atree, btree)
return δ · ccollisions +∑

n
i=1 fi(M)

Algorithm 22.4: Estimating the amount of overlap.

procedure CollisionCount(a, b).
if a and b do not overlap then

return 0
else if a and b are leaves then

return 1
else

c← 0
for achild ∈ children of a do

for bchild ∈ children of b do
c← c + CollisionCount(achild , bchild)

return c

Figure 22.11: 3D printing support triangles of different granularity and object orientation.

Algorithm 22.4 recursively computes the number of intersections of spheres tree leaves, which is combined
with the overall objective function (such as maximizing centrality and minimizing height). For more advanced
optimization functions, the user can supply his own evaluation function. For example, additional support (see
Figure 22.11) is dependent on the rotation of the object and needed not only for stabilization of the object but
also for the transport of heat. Its cost must be implemented in a user-defined objective function.

Given the neighborhood relation and the evaluation function, an initial packing can be optimized. We choose
simulated annealing (SA, see Algorithm 22.5) as the global optimization process. It allows sub-optimal deci-
sions with a probability that is decreasing with the temperature temp. Differently from the research of finding an
optimal 3D AABB packing, we used simulated annealing with respect to minimal translation step size qstepsize
and rotation stepsize qangle. Using sphere trees, the search primitives for checking intersection and translation
are fast, so that SA converges more effectively to a good solution.

Complexity Considerations Collision counting has a worst-case time complexity of O(n1n2) for two trees of
size n1 and n2 but is faster in practice.

Assuming m to be the number of models, |T | to be the number of input triangles, n to be the number of cells
in the octree, c to be the number of cooling steps, n1,n2 to be the number of nodes in two sphere trees, and
nmax to be the number of nodes in the largest sphere tree, we get the worst-case run-time complexities shown
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Algorithm 22.5: Packing optimization via simulated annealing.

procedure SimulatedAnnealing(s, f , c)
i← 0
u← ubest ← s
temp← 1
while temp > 0 do

unext ← ExpandRandom(u, temp)
if f (unext)< f (u) then

u← unext
if f (u)< f (ubest) then

ubest ← u
else

r← Random(0, 1)
if r < e ( f (unext )− f (u))/temp then

u← unext
i← i+1
temp← Cooling(temp, i, c)

return ubest

Table 22.1: Complexity of SA, assuming octree construction.

Algorithm Run-Time Complexity
InOutOctree O(|T |)
SphereTreeByOctree O(|T |)
CollisionCount O(n1n2)

EvaluateState O(m2n2
max)

SimulatedAnnealing O(cm2n2
max)

Total O(m|T |+ cm2n2
max)

in Table 22.1. For the sake of brevity, we assume sphere trees generated directly from the octrees. Finding the
exterior cells may take O(|T |) time, which dominates sphere-tree construction.

SA terminates if the temperature after c steps has reached zero. The running time of one step heavily depends
on EvaluateState, which is supplied by the user and, therefore, can be arbitrarily complex. In Algorithm 22.3
we chose a default implementation for the evaluation function based on collision counting, for which Evaluat-
eState has a worst-case bound of O(m2n2

max) so that the overall time complexity is O
(
m|T |n+ cm2n2

max
)

(see
Table 22.1).

22.5 Experimental Results

We take publicly available 3D CAD models, including the model cow of the University of North Carolina (with
5,804 triangles), the model bunny of Stanford University (69,451), and the model ShowPart from Renishaw
(250,934, see Figure22.12). Further models are angel, dragon, hand, buddha and belong to the Stanford 3D
Scanning Repository and Greg Turk’s Large Geometric Models Archive.

Table 22.2 compares some selected sphere tree construction algorithms. For the sphere tree computed via medial
axis, we also measure the impact of a larger branching factor of interior nodes. A visualization for applying three
different construction algorithms to the cow model is shown in Figure 22.13.

For the initial state we placed the objects on a sphere around the center and started the simulated annealing
process (maximizing centrality or minimizing height, see Figure 22.14). As expected, the octree construction
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Figure 22.12: Complex 3D object with magnified parts.

Figure 22.13: Sphere trees constructed via medial axes, octrees, and sphere packings.

Table 22.2: Sphere-tree construction (b: branching factor).

Model Approach Leaves Depth Time
ShowPart Octree 105,027 8 0.95s

Medial Axis (b = 16) 33,483 6 44.27s
Medial Axis (b = 8) 33,483 8 45.64s
Medial Axis (b = 4) 33,483 11 53.45s
Medial Axis (b = 2) 33,483 24 78.58s

Bunny Octree 14,095 7 0.20s
Medial Axis (b = 16) 25,755 6 23.86s
Medial Axis (b = 8) 25,755 8 25.07s
Medial Axis (b = 4) 25,755 11 27.14s
Medial Axis (b = 2) 25,755 21 36.91s

Cow Octree 8,142 7 0.03s
Medial Axis (b = 16) 1,634 4 1.70s
Medial Axis (b = 8) 1,634 6 1.76s
Medial Axis (b = 4) 1,634 8 1.80s
Medial Axis (b = 2) 1,634 17 2.10s

Angel Octree 28,790 8 1.44s
Medial Axis (b = 16) 7,875 5 14.75s
Medial Axis (b = 8) 7,875 7 15.24s
Medial Axis (b = 4) 7,875 10 15.98s
Medial Axis (b = 2) 7,875 20 18.57s

Dragon Octree 14,394 7 2.06s
Medial Axis (b = 16) 13,961 6 23.64s
Medial Axis (b = 8) 13,961 7 24.24s
Medial Axis (b = 4) 13,961 11 25.10s
Medial Axis (b = 2) 13,961 21 31.58s

Hand Octree 5,390 7 1.38s
Medial Axis (b = 16) 3,866 5 12.54s
Medial Axis (b = 8) 3,866 6 12.99s
Medial Axis (b = 4) 3,866 9 13.23s
Medial Axis (b = 2) 3,866 18 14.23s

Buddha Octree 48,428 8 3.00s
Medial Axis (b = 16) 15,080 5 32.31s
Medial Axis (b = 8) 15,080 7 33.65s
Medial Axis (b = 4) 15,080 11 34.24s
Medial Axis (b = 2) 15,080 22 44.22s

was by far faster, but in all but one case (bunny) the medial axis yielded fewer leaf nodes of the sphere tree.
Decreasing the branching factor further slows down sphere-tree construction.

Besides changing the user-supplied optimization function we experimented with different branching strategies
in the simulated annealing algorithm: translation and/or rotation on one/all axis and of one/all models; the best
results were obtained with translating or rotation of one model and one axis at a time. Dynamically adapting the
cooling to the number of rotational and translational steps was fortunate (see Figure 22.16).

Despite the considerably larger number of leaves, the intersection test for sphere trees based on the octree
data structure was the fastest. As indicated in Figure 22.15 with tight upper and lower bounds for the cover, a



22.6 Summary 385

Figure 22.14: Arrangement of 3D objects, maximizing centrality (left) and total height (right).

Figure 22.15: Min. (blue) and max. distance (red) of medial axis sphere-tree cover of object (green).
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Figure 22.16: Result of the optimization process.

possible reason for this unexpected behavior might be that the spheres in the octree have a smaller overlap than
for the construction via the medial axis. Moreover, in the optimization algorithm we do not aim at the Boolean
decisions, but compute the number of intersecting spheres. For sphere trees constructed via the medial axis
computation, we obtain the best performance with a sweet spot branching factor b≈ 4.

22.6 Summary

In the area of combinatorial search there is a large body of research on packing regular-shaped objects (squares,
rectangles, boxes). In this chapter we have seen an approach to solve the packing problem of irregular-shaped
objects, which has practical implications on 3D printing to save both production time and cost. The goal was



386 22 Additive Manufacturing

to find a collision-free arrangement preserving a minimal distance between the objects and optimizing a user-
defined objective function.

The algorithm is practical and its refined implementation is used in industrial practice, which has direct implica-
tions on the software’s flexibility and quality. The user can put additional requirements in the objective function,
like a small height, a high surface quality, a low number of supports, less stretch, and small distances for the
laser travel. Advanced topics are stability and extractability. For the concurrent print we allow flexible change to
the objective function as the evaluation changes quickly with respect to customer demands, varying hardware,
and chosen materials.

The research interest is studying the data structure for engineering the efficiency of the optimization algorithm,
which boils down to frequently computing some score for the intersection of objects. The experimental study
reveals that there might not be a uniformly best intersection routine. While medial axis and sphere packings
produce a smaller number of spheres, computing the intersection volume is often slower than using sphere trees
extracted straight from the octrees.

The packings we found at the end of the simulated annealing process were all valid. The results were better
if the step size was dynamically adjusted to the temperature parameter. The simple evaluation function relied
on counting the number of intersections (as an indicator for computing the volume of the sphere tree inter-
section area) to improve the arrangement of objects. Other global optimization procedures only need efficient
intersection tests for reducing the set of possible successor candidates.

22.7 Bibliographic Notes

A number of research papers on the efficient packing of objects for 3D printing have been published: [660]
separates the work into two classes: 3D packing and searching for an optimal orientation, which we consider
in common; [360] applies genetic algorithms to place the models close to the working space center using a
hierarchical structure of axis-aligned bounding boxes (AABBs) for collision detection; [492] improves manu-
facturing time, surface quality and the volume of support also using genetic algorithms for the optimization;
[500] optimizes average surface quality and manufacturing time, comparing particle swarm optimization with
genetic algorithms for finding the Pareto optimum; [140] provides an overview on AABB algorithms, while
[237] is concerned about heuristically packing concave/convex bodies, assuming no noise in the input; [660]
optimizes height, surface quality and support volume, as well as genetic algorithms and octrees for AABB col-
lision detection, thus being limited to rotations of 90 degrees. Another option is to sample random packings,
while incrementally learning their best arrangement [197].

Bretshaw [78] calls the algorithm of [277]. Depending on the density of the sampling [355], the approximation
can be made arbitrarily exact. 3D Voronoi diagrams are the geometric dual of the according Delaunay tessella-
tions, which are more convenient to compute [646]; we used the algorithm of Bowyer and Watson [313]. For
querying points in such a nearest-neighbor database, randomized data structures and random walk algorithms
are recommended [485, 156].

Packing squares into rectangles has been studied in [416, 417], discrete rectangles in [352] and high-precision
rectangles in [479, 353]. A new method for packing boxes grows an arrangement of objects from multiple
sides of the container [452]. Industrial tools with restricted functionality for packing irregular-shaped object
in the context of 3D printing include Magics Sintermodule and NetFab Professional. Other tools (CAMWorks,
MOSAIX, Nest++, ProNest, Nshaker& NEstimate) are limited to 2D.



Chapter 23

Robot Motion Planning

Motion planning aims to increase the ability of robots to plan and act on their own. Efficient and safe motion
planning algorithms are crucial for the applications of robots in life and industry. One of the most developed
motion planning for these requirements is sampling-based motion planning, such as rapidly exploring random
trees (RRT), and its improvement RRT*.

We will look at the physical traveling salesman problem (PTSP), i.e., the simulation of the continuous operation
of a vehicle for finding multiple goals in a gridworld with obstacles. After we precompute cell-precise single-
source shortest paths, we determine a tour to follow, solving different variants of the TSP. For moderately-sized
problems, we apply optimal depth-first branch-and-bound with O(1) time spent per search tree node. For larger
problems, we apply randomized search with policy adaptation to learn from good tours.

Next, we develop an efficient approach that enables a more realistic robotic vehicle to inspect all the regions
of interest while avoiding collisions and reducing the distance traveled. Again, a key aspect of the approach
is the transformation of the multi-region inspection task into a clustered TSP. This is achieved by generating
several inspection points on the medial axis of each region to increase visibility and by grouping the inspection
points according to their color. We implement a solver based on branch-and-bound search to effectively find
low-cost tours. These tours serve to guide sampling-based motion planning as it expands a motion tree in search
of a collision-free and dynamically feasible trajectory to carry out the multi-region inspection task. Sampling-
based motion planning and the TSP solver work in tandem, exchanging information to improve the quality
of the tours and motion trajectories. The approach is evaluated in simulation, using high-dimensional models
with second-order dynamics of robotic vehicles to carry out inspection tasks in complex environments. For
surface inspections we are given a 3D environment with a set of objects that need to be inspected, and an
inspection quality α . The objective is to compute a set of waypoints whose joint visibility ratio is at least α and
a dynamically feasible and collision-free trajectory that enables the aerial vehicle to reach all the waypoints.
The approach minimizes the number of the waypoints and the overall distance traveled by the aerial vehicle.

23.1 Introduction

As1 a combination of task and motion planning, we are concerned about motion planning for multiple goals.

Additionally, to the classical TSP that calls for minimizing the total distance traveled within a tour of the
salesman, the physical traveling salesman problem (PTSP) features a model of velocity that leads to changes of
system states in matters of direction, friction and acceleration of the agent’s vehicle. The objective of the PTSP
is to visit the maximum number of waypoints of the map in the minimum number of time steps. The map of the

1 This chapter is based on joint work with Xuzhe Dang, Mihai Pomarlan, Erion Plaku, Baris Can Secim, Sara Rashidian, and Yazz
Warsame. It puts together and improves the work work from [145, 216, 222, 645, 527].
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environment can be flexible and may resort to a two-dimensional board, where waypoints are scattered around,
and multiple obstacles are present.

While the single-objective PTSP only calls for minimizing total simulation time, the so-called multiobjective
PTSP (MO-PTSP) additionally calls for minimizing other criteria, e.g., the fuel level and damage to the vehicle.
Hence, a variety of other objectives which affect these criteria have to be taken into account.

Given that TSP is NP-hard (even in the strong sense), with a rising number of waypoints, real-time constraints
and complex side-effects, PTSP is a computational challenge. We apply policy adaptation for computing tours
and for controlling the vehicle; integration of induced physics, like angular or surface change, and more gen-
eral cost functions; and graph search engineering, i.e., the adaptation and tuning of the shortest paths search
algorithms (SSSP), resulting in high-speed graph search.

We generalize the problem to colored waypoints, where from each color at least one waypoint has to be col-
lected. This variant is called generalized TSP, GTSP for short. The depth-first branch-and-bound (G)TSP solver
is optimal. We study complexity results for solving SSSPs and (G)TSPs: the backtrack solver requires at most
constant time per node and SSSP has a linear-time worst-case overall performance.

As defects to objects such as pipeline leakage can result in tremendous economic loss, surface inspection is
one of the most important problems in modern robotics. Given a set of objects located in an environment with
obstacles, the task is to find a least-cost obstacle-avoiding path that inspects all objects.

A common approach to solve the inspection problem in polygonal environments is to first compute a minimal
set of waypoints by solving the art gallery problem and then to use an efficient TSP solver to compute a path for
the robot towards visiting these waypoints. Both subproblems are NP-hard, so that the combined result might
only be approximate for the entire task. Moreover, such solution waypoints are often attached to walls and
obstacles and, thus, difficult to reach.

We use colors to ensure that regions with the same color are inspected in order. Many approaches that consider
visibility and obstacle-avoidance constraints on the tour do not provide a mechanism to specify constraints
on the order in which the regions are inspected. In a first setting, the environment, obstacles, and regions of
interest are represented as a bitmap image. A crucial aspect of the presented approach is the transformation of
the inspection problem into a clustered TSP (CTSP) over an undirected, colored, and weighted graph. This is
achieved by first generating waypoints that will enable the robotic vehicle to inspect each user-specified region
of interest.

In 2D, we adapt a grass-firing transformation algorithm and subsequent filtering to effectively generate these
waypoints on the medial axis of each region and to ensure that the entire region can be inspected by visiting
its waypoints. In 3D, we use skeletonization and waypoint sampling together with filtering. By grouping the
waypoints according to their regions, the inspection problem is transformed into a CTSP where each point
inherits the color of its region. A depth-first branch-and-bound search efficiently solves the resulting CTSP
and computes a low-cost tour that enables the robotic vehicle to inspect all the regions. Finally, a controller is
employed to drive the robotic vehicle from one waypoint to the next as specified by the tour.

The efficiency of the approach derives from its ability to generate a small number of waypoints while at the same
time obtaining a good coverage of the regions that need to be inspected. The approach is evaluated in sampling-
based motion planning within a simulation using high-dimensional models with second-order dynamics of
robotic vehicles to carry out inspection tasks in complex environments.

23.2 RRT, RRT*, and Deep RRT*

The algorithm rapidly exploring random tree (RRT) expands a search tree by randomly generating new samples
and connecting them. This sampling strategy is fast and efficient. It finds a collision-free path for the robot in a
low-dimensional space. However, the number of samples generated by this random strategy will grow fast with
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Figure 23.1: Comparison of RRT* and Deep RRT*. The top row shows the results of RRT*. The bottom row shows the results of
Deep RRT*. The blocks points represent obstacles. The curly lines represent the tree nodes.

the increasing sizes and dimensions of the space, so that algorithms like RRT and its improved variant RRT*
(refining the search tree by shortcuts) will be computationally expensive.

Algorithm Success Rate Tree Size Time
RRT* 97.4% 199.87±150.01 0.60±0.72
Deep RRT* 90.1% 74.28±126.93 0.36±1.19

Table 23.1: Resuts RRT* vs Deep RRT*

Instead of using a random sample strategy, Deep RRT*, however, trains a model to guide the sampling strategy.
The model uses a similar architecture to MPNet that contains two neural networks – the encoder network and
the policy network. The first part of the model, the encoder network, embeds the obstacles state space that is
represented by point clouds into a latent space. The second neural network is a policy network (see Chapter 4).
Given the current tree node state, the goal state, and the latent space from the encoder, the policy network
predicts the distribution of the subsequent node. Then, Deep RRT* expands the tree by sampling a new node
with the predicted distribution. The model, both encoder network and policy network, is trained by self-play. In
each iteration, Deep RRT* finds N successful paths from trees with a set of predefined state spaces, randomly
generated initial states, and randomly generated goal state, and then store these paths in a rollout buffer in each
epoch. Then, Deep RRT* trains the model.

RRT* was implemented as benchmark algorithm and compared with Deep RRT*. We trained and tested Deep
RRT* in the same 2D environments used by MPNet. The 2D environment contains 110 different scenarios.
We used 100 scenarios to train the model and keep the remaining scenarios for testing. Each testing scenario
contains 2000 different initial and goal configurations. We randomly selected 500 configurations of those. In
the experiments, the maximum number of nodes of the tree is set to 1000 for RRT*, and 300 for Deep RRT*.
During the planning, once a node expanded is located in the goal region, the path is returned. Otherwise, the
problem is considered unsolved.

Figure 23.1 shows four scenarios, each solved by RRT* (top row) and Deep RRT* (bottom row). Table 23.1
presents the success rate, search tree size and CPU-time comparison of Deep RRT* against RRT* on the testing
scenarios. As Table 23.1 shows, Deep RRT* is more efficient and faster than RRT*. The size of the search tree
built by Deep RRT* is only 37.16% of the size of the search tree built by RRT*. The average time to find a path
with Deep RRT* is 0.36s, and the average time to find a pathwith RRT* is 0.6s. The success rate of Deep RRT*
is, however, reduced by 7.3%. We find that in most of unsuccessful cases, when the search tree is expanded
close to the goal area, the new node generated by Deep RRT* misses it and generates samples randomly in
the area close to the goal until it reaches it, or the maximum number of samples is exceeded. Adding weighted
entropy to the loss function and reducing it during the training helps.
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Figure 23.2: The Physical TSP.

23.3 Physical TSP

The main purpose of the PTSP (see Figure 23.2) is to provide a benchmark for combined task and motion
planning in interactive computer games. Within the PTSP framework, ships move autonomously through the
gridworld by applying thrust and rotation, with up to six different actions available to the ship (a Boolean input
indicating the ship either to accelerate or not, and a number indicating a rotation to the left, to the right or no
rotation at all). All actions are applied to the ship as forces that update its position, orientation, and velocity
at each time step. The framework provides different sets of 2D benchmark maps of blocking and non-blocking
cells with 10-50 waypoints. The ship can only move along non-blocking cells to reach the waypoints.

The crucial parts of the software framework are the controller and the TSP solver. The controller adapts the map
to a proper world model and determines the shortest path from the current position of the ship towards every
available waypoint. The solver then calculates a solution to the TSP based on the shortest paths provided by
the controller and reports it back to the controller. Given the TSP solution, the controller navigates the ship by
performing multistep operations (called macro actions or macros) which consist of acceleration, rotation, and
braking.

In the default controller of the framework, each map is approximated by a weighted graph (each 64 cells are
merged into one graph node), in which we compute pairwise shortest paths between the start location and each
of the waypoints. These distances are then fed as a matrix into a TSP solver, and –utilizing the imposed schedule
of waypoints– the controller software performs random search on macros. It is not required to return the ship to
the location where it started from, which transforms the search for a (min-cost) simple cycle to a simple route
in the underlying graph.

The execution model of the framework is real-time: actions have to be committed at a rate of about 40ms.
The startup time is 0.1s for each waypoint in the scene. As part of the framework, besides computer play,
the interface allows replay of preceding games, and human players to participate in solving the problem using
interactive steering.

In one generalization of the PTSP (see Figure 23.3, left) we aim at solving a PTSP with colored waypoints. In
a tour each color has to be visited at least once, so that all colors but not necessarily all waypoints are visited in
a tour. This generalized PTSP (GPTSP) is a natural extension to the PTSP that is related to finding a clustered
PTSP where we must visit every waypoint in a pre-defined cluster before approaching the next.

Another variant of the PTSP extends the above features by additional types of obstacles. This provides a testbed
for multi-objective PTSP (MO-PTSP) solutions. While reaching all waypoints is still the primary objective,
three different, equally important secondary objectives have been chosen: time taken to reach every waypoint,
damage inflicted on the ship, and the amount of consumed fuel. Fuel can be picked up in form of fuel tanks.
Additionally, the extended framework provides different types of obstacles as shown in Figure 23.3 (right): lava
is a non-blocking cell which inflicts high damage on the ship; damaging surface is a blocking cell which inflicts
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Figure 23.3: An instance for the Generalized PTSP with waypoint IDs (left), and one for the MO-PTSP (right).

high damage on the ship in case of collision; and elastic surface is a blocking cell which makes the ship bounce
back without taking any damage in case of collision.

More formally, the object state consists of a triple o = (c,v,d) of location c = (cx,cy), velocity v = (vx,vy) and
direction d = (dx,dy), which are changed according to the imposed dynamics of the system. An additional color
may be associated to o.

Waypoints are static objects. There are other factors involved, like the size of the ship for collision detection,
that we abstract from: for collision it is assumed to be 3/2 times a predefined radius, so that by enlarging the
obstacles by this radius (or by taking Minkowski sums) we assume that the location of the ship is a point in
Euclidean space.

A map is a labeling of cells with object types (e.g., @ for obstacle, C for waypoint, L for lava, _ for freespace,
S for ship). A game state g is a triple (o,F,W ) of current object state of the ship together with a list F of fuel
tanks and a list W of waypoints visited. The score of a game state is a triple s = (t,d, f ) and records the time
t consumed so far, the damage d taken, and the fuel level f of the ship. It is possible to optimize the values t,
d and f individually or to take a linear combination: with each set of coefficients (α1,α2,α3) in optimizing the
cost function α1 · t +α2 ·d +α3 · f one can find an element of the so-called Pareto frontier.

For precomputing an order of waypoints, the PTSP is discretized to a non-physical TSP variant. In terms of
object states, o= (c,v,d) is projected to location φ(o) = c = (cx,cy). Even though this is a rough approximation,
solving the standard TSP often gives a plausible ordering for the PTSP. Because of the physics involved, we
model the problem as an Asymmetric TSP (ATSP), which in general is more difficult to solve, but in return
more flexible for incorporating complex cost functions.

23.4 Shortest Paths

To find an appropriate schedule of waypoints, shortest paths in the octile gridworld are precomputed via pro-
jecting the current system state to the grid cell. In essence, by precomputing shortest paths, the gridworld is
contracted to a weighted graph of waypoints.

The shortest paths from each waypoint to each pixel is precomputed and stored in an array for further lookups.
One may apply flood-fill single-source shortest path (SSSP) search implementation that was studied in Chap-
ter 2. While color filling assigns a color to each cell starting by the initial one, the SSSP variant is aimed at
assigning shortest path distances to the cells. Instead of cost-first search, the flood-fill algorithm explores the
gridworld row-wise. Cells (beyond an obstacle) in the rows above and below the current position are marked for
further processing and put into a queue. After each extraction of a node from the queue, the process continues
testing shortest-path improvement in each visited cell.
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The result is an improved locality of the search; given that memory storage is row-major, processing the array
row-wise yields faster memory access to a sequence of cells compared to alternative access patterns. The shortest
path algorithm extension to the flood-fill algorithm is cache-efficient. In contrast to Dijkstras’ algorithm or
A* with consistent estimates, however, it can lead to many reopenings as cells may be expanded before their
shortest path distance value has settled. In other words, the flood-fill algorithm is not optimal in the number of
node expansions.

We know that, in the worst case, the number of re-openings in a graph in A* with inconsistent heuristic estimates
can be exponential in the size of the state space and thus lead to an exponential number of node visits! Hence,
one question is how worse the running time of Flood-Fill algorithm (for computing shortest paths) can be.

Given a gridworld with v cells. There are examples for which the flood-fill algorithm requires Ω(v2) time in the
worst case. Take the following grid with 3k cells ni, j for 1≤ i≤ 3 and 1≤ j ≤ k

L L L L L L L L L L L L L L L L L L L L L L L L L L L L . . . L
@ @ @ @ @ @ @ @ @ @ @ @ @ @ . . . @
S . . .

Cells n1, j, j≥ 1, in the first row are lava and incur a cost of 2, cells in the second row alternate between obstacles
(n2,2 j−1) and being free (n2,2 j) with a cost of 1. Cells n3, j in the third row are all free. Start is cell n3,1. Now the
Flood-Fill algorithm traverses the third row completely, inserting all the freespace cells in between the obstacles
into the queue. Processing these entries from left to right leads to a continuous improvement, as the new path to
a lava-labeled cell in the first row will always be shorter than an existing one. Hence, the first row is scanned a
linear number of times, for a quadratic number of expansions in total.

Given that edge costs are constant and that for each pass to the queue at least one node on the optimal path
becomes settled (as it is in the Bellman-Ford algorithm), we have strong arguments that the complexity remains
polynomial. The lack of a linear worst-case complexity bound, however, calls for alternatives.

Moreover, the flood-fill algorithm is less flexible than a graph-based solution which is applicable to several other
workspace decompositions (triangulations, trapezoidal maps) in robot motion planning.

However, traditional graph search implementations are often too slow. For graph search in the PTSP, the lack
of performance is the main reason to apply either flood-filling algorithms, or to rely on grid approximations. To
finish the preprocessing within startup time, the default implementation approximates the input graph, in which
A* searches pairwise shortest paths. One additional drawback about approximation is that for every non-cached
entry, grid cells must be mapped to the graph, leading to a nearest neighbor search.

There is a refined implementation of the SSSP algorithm of Dijkstra (and A* with a consistent heuristic) for
the PTSP that has optimal worst-case linear-time complexity. We use an implementation for Dijkstra’s SSSP
algorithm based on radix heaps. For v nodes and e edges in the graph, the running time for completely annotating
a graph with minimal start-to-node distances is O(e+ v logC), where C is the maximum weight (a.k.a. cost,
length) of an edge. In other words, weights are values in {1, . . . ,C}.
To stay within integer range (the radix heap also works for floating point numbers, but logC is larger) for the
octile gridworld of the PTSP, we use the approximation 577/408 of

√
2. Then we multiply the cost of each

node by 408 and divide the solution cost by the same value. Even for thousands of search nodes, the difference
|
√

2−577/408|= 0.0000021239 is small enough not to influence the outcome. This keeps C sufficiently low, so
that logC can be considered as a constant (64 on a 64-bit computer), for an optimal Θ(e+v) =Θ(v) worst-case
time performance (the number of edges is at most eight times the number of nodes). For the PTSP we have
the weights are positive integer numbers small enough not to exceed the integer representation for accumulated
distances at each node.
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23.5 TSP Search

The name PTSP indicates that the problem of serving an initial list of waypoints to the controller is a TSP. TSP
is NP-hard in the strong sense, which makes it hard to approximate. For a polynomial q let πq be the restriction
of π to inputs I s.t. max(I)≤ q(|I|), where |I| is the length of I. Then π is strongly NP-hard if πq is NP-hard. The
problem πq for the TSP is the NP-hard Hamiltonian path problem, where a graph on n nodes has a Hamiltonian
path, if its longest path has length n− 1. This means for a growing number of waypoints n it is unlikely that a
polynomial-time algorithm exists. Inapproximability results, however, must be taken with care: if the triangular
inequality holds (such as in the Euclidean plane): using Christofides’ algorithm the TSP can be approximated
with factor 1.5.

For TSP good lower bounds are known. For the generalized TSP, GTSP for short, tight lower bounds are more
difficult to derive. As the GTSP generalizes the TSP (immediate by setting k = n) it inherits its strong NP-
hardness. Let us look at the number of possible simple paths in a graph that form possible tours. For k = n
colors this is the original TSP and we count n! possible tours. This does not mean that every algorithm for
solving the TSP has to have a complexity of n!≈

√
(2πn)(n/e)n. There is a dynamic algorithm with complexity

O(n2 · 2n) as follows. Define S ⊆ M, M = {2, . . . ,n} and F(S, i) to be the shortest route starting at 1, ending
at i that visits each waypoint in S exactly once. Then, for |S| = {i}, we have F({i}, i) = d1,i and F(S, i) =
min j∈S, j 6=i{F(S\{i}, j)+d j,i} with final answer min2≤i≤n{F(M, i)+di,1}.
Similarly to the TSP, the number of tours does not neccessarily determine the runtime. We briefly describe a
dynamic programming approach to find a colored tour (a simple path of mutually disjoint colors) for the GTSP.
We are only interested in the decision problem, to find out whether or not a colorful simple path exists. We fill a
table T (s, t,C) (with values of type Boolean), where s and t are the source and the target locations and C is the
set of colors of size i. We set T (s, t,C) = true if and only if there is a tour of length i from s to t. For i = 1 we
have C = {c} so that T (s, t,C) = true if and only if t = s with color c. For i = 2 we have C = {c1,c2} so that
T (s, t,C) = true if and only if there is an edge (s, t) in the graph with color c1 for s and color c2 for t. For i+1
colors, we traverse the ith level. For each cell w marked true, we look at the successors of w. If its color c does
not appear in C, we mark T (s, t,C∪{c}) = true. If there is a cell marked true in the last row, a colored tour has
been found.

Comparing a TSP on (n/2) waypoints with a GTSP of (n/2) colors, shows that there are a factor 2k more tours
in the first problem than in the second. However, in terms of possible tours, a TSP on n colors is larger than a
GTSP with (n/2) colors, given that n!/(n/2)! = n · (n−1) · . . . · (n/2+1)≥ 2n/2 for n≥ 2. For k = n/c colors
there are a factor (n/k)k more tours in the GTSP than in a TSP of k waypoints. In summary, the smaller the
k, the smaller the number of tours, but if we fix the number of waypoints in the TSP to the number of colors
allowed in the GTSP, then the second problem is harder.

23.5.1 Optimal TSP Solving

As the default TSP solver was too slow for solving PTSPs with n ≥ 30 waypoints, we implemented an incre-
mental depth-first branch-and-bound (DFBnB) planner.

As one heuristic we use the relaxation of the TSP. The Hungarian algorithm (HA) solves the assignment problem
(AP, see Programs 23.1 and 23.2). It runs in cubic time if called from scratch and in quadratic time if computed
incrementally. For a small number of waypoints n≈ 15 blind search is the fastest way to compute the best tour.
For n ≈ 50, HA is good enough to cut off branches in the DFBnB tree to help the solver to come up with an
optimal tour. Compromises are weaker bounds that take less time. For the GTSP weaker heuristics apply.

Let dn/we = O(1). The DFBnB (G)TSP solver is optimal and, besides the efforts for computing the heuristic,
has a constant-time worst-case performance at each generated search node. Space is at most quadratic in n.
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The DFBnB solver avoids recursion and is based on a pre-allocated stack. This way all space needed is allocated
prior to the search. With maximum depth n and at most n successors at a search node the memory requirements
are O(n2). The trick to avoid duplicating the vector of waypoints already visited on a backtrack is to employ a
bitvector. In the w = 64-bit computer era for current benchmark sizes it is safe to assume dn/we= O(1).

To establish O(1) incremental time for the work at each search node in the GTSP we pre-compute an array of
bitvectors masks m[i], one for each color i ∈ {1, . . . ,k}, with m[i] j = 1 iff waypoint G j, j ∈ {1, . . . ,n}, has color
i. If color i is visited during a depth-first traversal, then we use the update vector seen using the or bitvector
operation, i.e., we set seen = seen∨mi to change the status of all waypoints of color i. As bitvector operations
are assumed to be constant time operations, the update time at each search node remains constant.

If more and more constraints are added, the lower bound from the AP is no longer tight. Examples from vehicle
routing are time windows or capacity constraints. In the PTSP, we have that the pairwise distance table between
two waypoints is not sufficient to predict the system behavior and that objectives like the change in the angle
are becoming more prominent factors. Tracking angular change involves a computation for three waypoints
and affects the accuracy of the lower bound, so that finding the optimal plan for the physically enhanced cost
function becomes much harder.
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Program 23.1: Hungarian method to solve assignment problem (first part).

public int HungarianMethod(int g, int city, int depth) {
int c = N - depth, ci = 0, count = 0, minval = 0, zero0 = 0, zero1 = 0;

for (int i=0; i<c; i++)
for (int j=0; j<c; j++)

mask[i][j] = cost[i][j] = copy[i][j] = 0;
for (int i=0; i<c; i++) rowCover[i] = colCover[i] = 0;
for (int i=0; i<N; i++) {

if (((used >> i) & 1L) > 0) continue;
int cj = 0;
for (int j=0; j<N; j++) {

if (((used >> j) & 1L) > 0) continue;
copy[ci][cj] = cost[ci][cj] = dist[i][j];
if (i == j) copy[ci][cj] = cost[ci][cj] = Integer.MAX_VALUE;
if (start != city && i == start) {

if (j == city) copy[ci][cj] = cost[ci][cj] = g;
else copy[ci][cj] = cost[ci][cj] = Integer.MAX_VALUE;

}
cj++;

}
ci++;

}
int step = 1; boolean finished = false;
while (!finished) {

switch (step) {
case 1:

for (int i=0; i<c; i++) {
minval=cost[i][0];
for (int j=0; j<c; j++) if (minval>cost[i][j]) minval = cost[i][j];
for (int j=0; j<c; j++) cost[i][j] -= minval;

}
for (int i=0; i<c; i++)

for (int j=0; j<c; j++)
if ((cost[i][j]==0) && (colCover[j]==0) && (rowCover[i]==0)) {
mask[i][j] = colCover[j] = rowCover[i] = 1;

}
for (int i=0; i<c; i++) rowCover[i] = colCover[i] = 0;
step = 3; break;

case 3:
for (int i=0; i<c; i++)

for (int j=0; j<c; j++)
if (mask[i][j] == 1) colCover[j]=1;

count=0;
for (int j=0; j<c; j++) count += colCover[j];
if (count >= c) finished = true; else step = 4;
break;

case 4:
int[] row_col = new int[2];
while (true) {
row_col[0] = -1; row_col[1] = 0;
int i = 0; boolean done = false;
while (!done) {

int j = 0;
while (j < c) {

if (cost[i][j]==0 && rowCover[i]==0 && colCover[j]==0) {
row_col[0] = i; row_col[1] = j; done = true;

}
j++;

}
i++;
if (i >= c) done = true;

}
if (row_col[0] == -1) { step = 6; break; }
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Program 23.2: Hungarian method to solve assignment problem (second part).

else {
mask[row_col[0]][row_col[1]] = 2;
boolean starInRow = false;
for (int j=0; j<c; j++)

if (mask[row_col[0]][j]==1) { starInRow = true; row_col[1] = j; }
if (starInRow==true) { rowCover[row_col[0]] = 1; colCover[row_col[1]] =

0; }
else { zero0 = row_col[0]; zero1 = row_col[1]; step = 5; break; }

}
}
break;

case 5:
count = 0;
int[][] path = new int[c*c][2];
path[count][0] = zero0; path[count][1] = zero1;
boolean done = false;
while (!done) {

int r = -1;
for (int i=0; i<c; i++) if (mask[i][path[count][1]]==1) r = i;
if (r>=0) {

count++;
path[count][0] = r; path[count][1] = path[count-1][1];

}
else done = true;
if (!done) {

int t = -1;
for (int j=0; j<c; j++) if (mask[path[count][0]][j]==2) t = j;
count++;
path[count][0] = path[count-1][0]; path[count][1] = t;

}
}
for (int i=0; i<=count; i++) {

if (mask[(path[i][0])][(path[i][1])]==1) mask[(path[i][0])][(path[i][1])] = 0;
else mask[(path[i][0])][(path[i][1])] = 1;

}
for (int i=0; i<c; i++) rowCover[i] = colCover[i] = 0;
for (int i=0; i<c; i++)

for (int j=0; j<c; j++)
if (mask[i][j]==2) mask[i][j] = 0;

step = 3; break;
case 6:

minval = Integer.MAX_VALUE;
for (int i=0; i<c; i++)

for (int j=0; j<c; j++)
if (rowCover[i]==0 && colCover[j]==0 && (minval > cost[i][j]))

minval = cost[i][j];
for (int i=0; i<c; i++) {

for (int j=0; j<c; j++) {
if (rowCover[i]==1) cost[i][j] += minval;
if (colCover[j]==0) cost[i][j] -= minval;

}
}
step = 4; break;

}
}
for (int i=0; i<c; i++)

for (int j=0; j<c; j++)
if (mask[i][j] == 1) { assignment[i][0] = i; assignment[i][1] = j; }

int sum = 0;
for (int i=0; i<c; i++)
sum += copy[assignment[i][0]][assignment[i][1]];

return sum - g;
}

}
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23.5.2 Suboptimal TSP Solving

For effective suboptimal TSP solving, we distinguish between two major search options: local search and
Monte-Carlo search, the latter being a class of randomized tree search algorithms that back up values from
the leaves of the search tree back to the decision nodes to direct the search towards the best plan found, while
maintaining exploration breadth.

Local Search relies on tour mutation operators (like 3-OPT) or refined node insertion schemes. The alternative
is nested rollout policy adaptation (NRPA), an extension to nested Monte-Carlo search (NMC). In Chapter 5
we have learnt NMC to be a recursive algorithm that performs a certain number of rollouts, where a rollout is
a random path in the search tree starting from the root and ending at a leaf that can be evaluated to some score
value. The search method in NMC takes the level l as an argument and decrements the value by 1 in every
recursive call. If the value has decreased to 1 (or to 0 depending on the implementation), a rollout is initiated.
At each choice point of a rollout the algorithm chooses the successor that gives the best score when followed by
a single random rollout. Similarly, for a rollout of level l it chooses the successor node that gives the best score
when followed by a rollout of level l− 1. Roughly speaking, the search intensifies with increasing recursion
depth.

Policy adaptation leads to considerable performance improvements. Rather than navigating the tree directly,
NRPA instead uses gradient ascent on the (Boltzman softmax) rollout policy at each level of the search. The
planner learns a policy in form of a likelihood mapping from going from one waypoint to another. The policy is
initialized to zero and is adapted each time a tour improvement has been found. Moreover, by the virtue of the
nestedness of the search, the policy tables are refreshed (one table acts in each level of the search), so that we
obtain a compromise between exploration and exploitation during the search. We observed that NRPA is more
efficient than the backtrack solver for TSP problems with n > 40.

The NRPA algorithm selects, evaluates, and backs up random tours, adapting policies in form of n×n matrices
(stored globally) at each of the at most l levels of the search. Besides backing up a tour at the end of each rollout,
NRPA allocates no additional space during the search, so that in each level of the search only one best tour is
active. Thus, for a level l search and n waypoints, the (G)TSP NRPA solver requires O(ln2) space.

It is, however, necessary to enhance the TSP solver with processing information on the inherent physical con-
straints in the PTSP. It is not difficult to observe that the sign of the determinant

D(p,q,r) =

∣∣∣∣∣∣
1 px py
1 qx qy
1 rx ry

∣∣∣∣∣∣
determines whether r = (rx,ry) lies left or right of the line defined by p = (px, py) and q = (qx,qy). More-
over, |D(p,q,r)| in fact is twice the surface of the triangle T = (p,q,r) determined by p, q, and r. We use
|D(p,q,r)| as one term to our cost function to support the observation that small surfaces lead to good steer-
ing behavior of the ship. The surface spanned for a path of projected states p = (c1 = φ(s1), . . . ,ck = φ(sk)) is
∑

k
i=2 |D(ci−2,ci−1,ci)|. By applying Sarrus’ rule we have |D(p,q,r)|= |qxry+ pxqy+ pyrx− pyqx− pxry−qyrx|,

which shows that the computation itself is simple.

The triangle surface supports the two concepts applied, angular change and indirectness, where the latter refers
to the difference in path length between two waypoints of the computed path distance to the straight-line distance
in the Euclidean metric space.

A compromise between the accumulated path distance value δ and path surface value ∆ had to be found. For
surpassing lava we multiplied the edge weight to a grid cell by some constant α: the higher α the more the ship
avoids crossing the lava area.

Once the order of waypoints to be visited has been computed, it is forwarded to the controller, which then
aims at following it. The controller needs some limited lookahead to allow smooth steering. In the default
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Figure 23.4: Input for the colored inspection problem (left). Approximation of the medial axis generated by the grass-firing transfor-
mation algorithm as well as the inspection points generated by the approach (right). The red areas are not visible from the inspection
points (inspection quality was set to α = 0.99).

implementation this is done by issuing random searches with respect to multistep operations (called macro
actions). Within a macro action, no change in the already selected action proposal is allowed.

In an existing policy P rollout children s′ for a node s are chosen with respect to eP(s,s′). The choice of successors
is done using a roulette wheel fitness selection based on these values. Initially, all policy values are set to zero. As
the entire state-to-state table surely is too big, it is projected to an essential part to be learnt. In the standard TSP
this is a mapping from waypoint to waypoint, while for the controller we have a mapping from the path position
to the macro action to be chosen. Given a tour that improves the current best cost value, policy adaptation now
performs gradient descent to ensure that the probability of a good tour increases.

Hence, we included policy adaptation in the controller. Due to the limited time of execution, we decided not to
rely on the outcome of an NMC. Each time a new improving random path with respect to the existing policy
(initial random) is computed, a (Bellman) update is issued to update the policy. Since computation time is a
scarce resource, when executing a macro action (where no decision takes place) the remaining computing time
is used to improve the policy. This option already present in the pure random controller reminds of a chess
playing program that analyzes different lines of play also at the opponent’s turn.

23.6 Inspection Problem

For solving the inspection problem, we have to find suitable waypoints automatically.

In our first setting we assume the environment to be specified as a bitmap image I consisting of obstacles
O1, . . . ,Om and regions R = {R1, . . . ,Rn} that should be inspected, as shown in Figure 23.4. Each region Ri ∈ R
defines a contiguous area in I which does not intersect any other region or obstacle. Obstacles are colored in
� and the unoccupied area U = I \ (R1∪ . . .∪Rn∪O1∪ . . .∪Om) is colored in �. The user specifies the color
of each region Ri ∈ R, denoted by color(Ri). The only requirement is that color(Ri) is neither � nor �. This
provides a general definition as it allows for the same color to be used for different regions. The set of all region
colors is defined as colors(R) = {color(Ri) : Ri ∈ R}. For a point p ∈I , color(p) denotes its color.

Colors allow the user to group regions and specify desired constraints on how the robot should carry out the
inspection. In particular, the robot is required to inspect all the regions in one color group before inspecting the
region from another, where a color c ∈ colors(R) defines the color group {Ri ∈ R : color(Ri) = c}.
The robot carries out the inspection by taking snapshots at different locations, and the inspection points should
be automatically computed. The robot can take a snapshot of a region Ri ∈R only when it is inside Ri. As a result,
a point q ∈ Ri is considered visible from p ∈I iff pq ∈ Ri, i.e., the straight-line segment from p to q remains
entirely in Ri. Let vis(Ri, p) denote the area of Ri that is visible from a point p ∈I , i.e., vis(Ri, p) = {q ∈ Ri :
pq ∈ Ri}. Note that vis(Ri, p) = /0 when p 6∈ Ri. The area of Ri visible from a collection of points p1, . . . , p` ∈I
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is defined as vis(Ri, p1, . . . , p`) =
⋃`

j=1 vis(Ri, p j). When considering all the regions in R, the visible area is
defined as vis(R, p1, . . . , p`) =

⋃
Ri∈R vis(Ri, p1, . . . , p`). The quality of a collection of points p1, . . . , p` ∈I is

defined in terms of the fraction of the area in R that it enables the robot to inspect, i.e.,

quality(R, p1, . . . , p`) =
area(vis(R, p1, . . . , p`))

area(∪Ri∈RRi)
. (23.1)

A tour, denoted by tour(p1, . . . , p`), defines an ordering of the points p1, . . . , p`. The notation Γi, where Γ =
tour(p1, . . . , p`), refers to the i-th point in the tour. The inspection problem can now be stated as follows: Given
a desired inspection quality 0 < α ≤ 1, a bitmap image I consisting of obstacles O1, . . . ,Om, regions R =
{R1, . . . ,Rn}, and the start point p∗ ∈I , compute a collection of points p1, . . . , p` ∈I where the robot is going
to take the additional snapshots to carry out the inspection task; a tour Γ = tour(p∗, p1, . . . , p`), which starts at
p∗ and specifies an ordering of the points p1, . . . , p`; and a path, denoted by path(Γ ), which connects the points
in the order defined by Γ ;

such that quality(R, p∗, p1, . . . , p`) ≥ α; path(Γ ) is collision free; and color groups are inspected in order, i.e.,
∀i, j,k ∈ {1, . . . , |Γ |} : � 6∈ {color(Γi),color(Γj),color(Γk)}∧ i < j < k∧color(Γi) 6= color(Γj) =⇒ color(Γi) 6=
color(Γk)

The approach seeks to reduce the number of points p1, . . . , p` it needs to carry out the inspection task. To
further reduce the distance traveled by the robot, the points in tour(p∗, p1, . . . , p`) will be connected with short
collision-free paths.

23.7 Method

Pseudocode is shown in Algorithm 23.1. The approach starts by generating several inspection points on the
medial axis of each region Ri ∈ R to increase the visible area (Algorithm 23.1). The approach uses a grass-firing
transformation algorithm to efficiently approximate the medial axis.

A key aspect of the approach is the transformation of the inspection problem into CTSP over an undirected,
colored, and weighted graph G = (V,E,color,cost). More specifically, the vertex set V consists of the inspection
points generated by the approach, and the start point p∗ (Algorithm 23.1). Each p ∈ V inherits the color of the
region that contains it, i.e., if p ∈ Ri then color(p) = color(Ri); if p ∈U then color(p) =�.

The set of edges contains all pairs, i.e., E =V ×V . The cost of an edge (p1, p2) ∈ E is defined as the length of
the shortest path from p1 to p2. An optimized implementation of Dijkstra’s shortest-path algorithm is used to
compute the all-pairs shortest paths (Algorithm 23.1).

A branch-and-bound search is developed to solve the resulting CTSP (Algorithm 23.1) by computing a low-cost
tour Γ which starts at p∗, visits each vertex in V , and inspects the clustered groups in order. After computing
Γ , the approach relies on a controller to move the robot from one inspection point to the next as specified by Γ

(Algorithm 23.1).

The rest of the section describes the main steps of the approach in more detail.

23.7.1 Generating the Inspection Points

Pseudocode for generating the inspection points is shown in Algorithm 23.2. In order to increase the visible
area, the approach seeks to generate the inspection points on the medial axis of each region Ri ∈ R. In a discrete
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Algorithm 23.1: Pseudocode for inspection

Input: α: inspection quality, 0 < α ≤ 1; bitmap image I consisting of obstacles O = {O1, . . . ,Om}, regions R =
{R1, . . . ,Rn} that should be inspected; p∗ ∈I : start point

Output: a short, collision-free, path that solves the inspection problem

inspectionPts← GenerateInspectionPoints(I ,α)
G = (V,E,color,cost), where V ← inspectionPts∪{p∗} and E←V ×V
data← AllPairsShortestPaths(I ,V )
for (p1, p2) ∈ E do

cost(p1, p2)← length(RetrievePath(data, p1, p2))
〈p1, . . . , pr〉 ←CT SPsolver(G, p∗)
FollowTourVehicleController(p1, . . . , pr)

Algorithm 23.2: GenerateInspectionPts(I ,α)

Input: I : bitmap image; α: desired inspection quality, 0 < α ≤ 1
Output: a set of inspection points

h← height(I ); w← width(I )
B← zeros(h,w) {grass-fire transformation}
for (i, j) ∈ {0, . . . ,h−1}×{0, . . . ,w−1} do

if color(I (i, j)) 6∈ {�,�} then
B(i, j)← 1+min{B(i−1, j),B(i, j−1)}

for (i, j) ∈ {h−1, . . . ,0}×{w−1, . . . ,0} do
if color(I (i, j)) 6∈ {�,�} then

B(i, j)← 1+min{B(i+1, j),B(i, j+1)}
skeleton← extract most intense pixels in the brightness map B {select inspection points}
skeleton← f ilter(skeleton)
inspectionPts← skeleton
currScore←VisScore(I , inspectionPts)
for p ∈ skeleton do

newScore←VisScore(I , inspectionPts\{p})
if newScore≥ α ∨ currScore = newScore then

inspectionPts← inspectionPts\{p}
currScore← newScore

return inspectionPts

grid, e.g., as imposed by the bitmap image I , it is possible to approximate the medial axis by applying skele-
tal algorithms. One particularly efficient approach is the grass-firing transformation algorithm which uses two
passes over I to compute the Manhattan distances from the obstacles for each pixel (Algorithm 23.2). Inter-
preting distances as brightness, the medial axis approximation is obtained by extracting the skeleton consisting
of the locally brightest pixels (Algorithm 23.2). Figure 23.4 shows an example of the medial axis computed by
the grass-firing transformation.

The points on the medial-axis skeleton are filtered to determine viable candidates for the inspection points (Al-
gorithm 23.2). The filtering process removes points that are too close to the obstacles, imposes some minimum
separation among inspection points, and gives preference to branching points, which have a degree of 3 or more
in the skeleton graph. In our examples, the filtering process brought down the number of inspection points from
thousands to 100–200. This is still a large number that would impose considerable runtime requirements on the
CTSP solver and the vehicle controller.

To further reduce the number of inspection points while maintaining the desired inspection quality, candidates
are also filtered according to the overall visibility score. The visibility score for a collection of points provides
an efficient approximation of the inspection quality measure (Eqn. 23.1). The process we apply computes the
visible area for each p ∈ inspectionPts by casting light rays in all eight grid directions. To account for the color
constraints, the light intensity becomes zero when encountering an obstacle or leaving the region Ri ∈ R that
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contains p. The lightmaps computed for each p∈ inspectionPts are merged into an overall visibility map, where
each q∈I is marked as visible when it is visible from at least one inspection point. VisScore(I , inspectionPts)
(Algorithm 23.2) is then computed by dividing the number of visible pixels by the number of pixels correspond-
ing to regions in R.

The visibility score is used to further reduce the number of inspection points while maintaining the inspection
quality (Algorithm 23.2). For each candidate inspection point p∈ skeleton, we compare the visibility score with
and without p. If the visibility score for inspectionPts\{p} is at least α , then p is removed from the inspection
points since the inspection quality is still high. The point p is also removed when it does not impact the visibility
score, i.e., it remains the same for inspectionPts\{p} and inspectionPts.

23.7.2 CTSP Solver

As described earlier, the inspection problem is transformed into a CTSP over an undirected, colored, and
weighted graph G = (V,E,color,cost). Given that each vertex p∈V inherits the color of the region that contains
it, the objective is to compute a low-cost tour which starts at p∗ ∈ V and visits each vertex in V according to
their color.

Formally, a colored tour is defined as follows. Let G = (V,E,color,cost) denote an undirected, colored, and
weighted graph. Let p∗ ∈ V denote the start vertex. A sequence of vertices 〈p1, . . . , pr〉 constitutes a valid
colored tour if {p1, . . . , pr}=V ; p1 = p∗; ∀i ∈ {1, . . . ,r−1} : (pi, pi+1) ∈ E; and ∀i, j,k ∈ {2, . . . ,r} : i < j <
k ∧ color(pi) 6= color(p j) =⇒ color(pi) 6= color(pk).

An optimal clustered tour is a colored tour with minimum cost, where the cost of the tour is defined as the sum
of the weights associated with the edges of the tour.

Our CTSP solver is based on depth-first branch-and-bound search (DFBnB). For applying DFBnB to the prob-
lem, we extended depth-first search (DFS) with upper and lower bounds. In this context, branching corresponds
to the generation of successors, so that DFBnB generates a branch-and-bound search tree. One way of obtaining
a lower bound L for the problem state u is to apply an admissible heuristic h with L(u) = g(u)+ h(u), where
g denotes the cost for reaching the current node from the root, and h is a function that always underestimates
the remaining cost to reach a goal. As with standard DFS, the first solution obtained might not be optimal. With
depth-first branch-and-bound, however, the solution quality improves over time together with the global value
U until eventually the lower bound L(u) at some node u is equal to U .

23.7.3 Following the CTSP Tour

Once a tour Γ is computed, a vehicle controller is employed to drive the robot from one inspection point to the
next in the order defined by Γ . The vehicle is controlled by setting the acceleration (on or off) and turning the
vehicle left, right, or keeping it straight. The state of the vehicle at time step t is described by the orientation dt ,
velocity vt , and position pt . The equations of motions are defined as

dt+1 =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
dt , (23.2)

vt+1 = (vt +dt+1atK)L, (23.3)
pt+1 = pt + vt+1, (23.4)

where θ is a fixed angle which determines the rotation at each time step (θ is 0 if the action is to go straight),
K is the acceleration constant, at is 1 if the acceleration is on and 0 if it is off, and L is the friction loss factor.
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Table 23.2: Solving (top) the standard inspection problem (bottom) the inspection problem with colored regions.

Map Preprocess IPs Cost Steps
01 0.95s ± 0.24s 4 767.5 ± 0 583.8 ± 11.5
02 0.45s ± 0.02s 6 1,171.5 ± 0 967.5 ± 84.9
08 0.32s ± 0.01s 4 1,965.4 ± 0 2,142.3 ± 76.3
19 1.69s ± 0.10s 13 2,451.6 ± 57.8 2,144.5 ± 76.0
24 0.91s ± 0.02s 12 1,818.4 ± 0 1,577.3 ± 27.7
35 0.57s ± 0.04s 11 1,478.4 ± 0 1,171 ± 50.5
40 0.38s ± 0.03s 5 975.8 ± 0 804 ± 16.0
45 0.68s ± 0.01s 12 1,792.1 ± 0 1,506.3 ± 24.5
61 0.72s ± 0.14s 1 123.3 ± 0 162 ± 6

Map Preprocess IPs Cost Steps
01 1.98s ± 0.01s 9 1,727.5 ± 0 1,387.7 ± 44.4
02 2.69s ± 0.12s 12 1,930.2 ± 0 1,543.8 ± 36.6
08 1.98s ± 0.05s 10 1,614.0 ± 0 1,422 ± 116.6
19 11.74s ± 0.45s 30 3,558.0 ± 55.5 4,324.1 ± 186.8
24 4.68s ± 0.24s 17 2,546.9 ± 0 2,187.4 ± 76.9
35 2.36s ± 0.08s 12 1,863.4 ± 10.3 1,607 ± 90.8
40 1.97s ± 0.02s 9 1,566.5 ± 0 1,380.6 ± 62.3
45 2.96s ± 0.03s 14 2,348.9 ± 7.9 2,323.2 ± 161.8
61 1.53s ± 0.08s 4 1,323.6 ± 0 1,082.3 ± 19.4

Columns indicate the following: (Map) map number; (Preprocess) time to process the input image, generate the inspection points,
and compute the shortest paths (Algorithm 23.1); (IPs) number of inspection points generated by the approach; (Cost) estimated
traveled distance when following the inspection tour; (Steps) the number of steps taken by the controller. Results are given averaged
over 10 runs,± standard deviation. Waypoint counts are the same for all runs of a map-problem pair, hence no standard deviation.

The vehicle inertia is preserved, which makes the navigation more challenging. The execution model of the
controller is real-time. The controller has numerous applications ranging from modeling non-player characters
in interactive games to approximating steering behavior of mobile robots. The testbed has raised significant
interest in combined task and motion planning.

23.8 Evaluation

The PTSP system is implemented in Java to cooperate with the PTSP simulator.

23.8.1 PTSP Simulation

The approach is first evaluated in the PTSP using generated maps with random distribution of goal regions and
obstacles, as shown in Figure 23.4. Experiments are conducted under two scenarios. In the first scenario, the
robot is required to inspect the entire area not occupied by obstacles, i.e., I \ (O1∪ . . .∪Om). This corresponds
to the standard inspection problem where there is only one color. In the second scenario, the robot is required
to inspect only the colored regions. Each region was assigned one of three colors. In all the experiments, the
inspection quality α was set to 0.99. Every experiment is run 10 times; results report the average and standard
deviation statistics.

Table 23.2 displays the results of the two sets of experiments: the standard inspection problem and the inspection
problem with colored regions. The results show the approach works well under different scenarios and environ-
ments, generating low-cost tours. The runtime, which includes the time to process the input image, generate the
waypoints, and compute the shortest paths (Algorithm 23.1), is about 1s for the standard inspection problems
and generally between 1.5s and 3s for the inspection problems with colored regions.

The first competitor is Random. It constructs a random valid tour. For one version of DFBnB (denoted as DFBnB
+ AP) we imposed at most 10,000 node expansions and a heuristic based on the assignment problem (AP), while
for the latter we applied at most 100 million node expansions and the trivial heuristic, always returning zero.
The results of these comparisons, obtained as averages over three runs, are shown in the plots in Figures 23.5 to
23.7.

Note that the precomputation efforts (Algorithm 23.1) are the same for all the CTSP solvers. Results in Fig-
ure 23.5 show that Random is the fastest CTSP solver but, as shown in Figure 23.6, it generates high-cost
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Figure 23.5: Mean runtime for each CTSPsolver to compute the CTSP tour. In many instances, the runtime was just a few millisec-
onds; hence, it is not visible in the graph.
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Figure 23.6: Mean tour cost as computed by each CTSP solver. Note slight difference in the cost function: MC processes floating
point data, while DFBnB uses integers.

1 2 3 4 5 6 7 8 90
1
2
3
4
5
6
7
8

DFBnB+AP
DFBnB
MC
Random

problem instance

co
nt

ro
lle

r t
im

e 
[s

]

Figure 23.7: Mean number of steps taken by the controller when following the CTSP tour computed by each CTSP solver.

tours. In terms of costs (Figure 23.6), DFBnB is no clear-cut winner. This is also corroborated by the results in
Figure 23.7 which shows that the number of steps taken by the simulator is similar when following the tours
computed by DFBnB. DFBnB, however, can be much faster (see Figure 23.5), especially for smaller instances.
DFBnB has a low variance as it is a deterministic algorithm.

When considering hard problem instances, the difference in the runtime for various algorithms can depend on
the parameters chosen, namely the maximum number of expansions in DFBnB and the depth and width of the
recursion tree in MC. These parameters provide a mechanism that can be tuned by the user in striking the right
balance between runtime and solution cost.

23.8.2 Robot Simulation

As part of the problem is to find multiple goals in a complex environment, Figure 23.8 shows some problem
domains and models we looked at in our robot simulation experiments.

Figure 23.9 shows the runtime results when varying the number of goals from five to 100 and the number of
groups from 10 to 100, using clustering as well as random partitioning of goals into groups. The results show
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(a) scene 1: ground vehicle (b) scene 2: snake

(c) scene 3: aerial vehicle (d) models

Figure 23.8: Scenes and models. Goal regions are labeled with the group id. The first scene shows 100 goals clustered into 30
groups. The second scene shows 100 goals partitioned at random into 10 groups of 10 goals per group. The third scene shows 50
goals partitioned into 20 groups. In the third scene, the aerial vehicle is not allowed to fly outside the boundaries or above the walls;
the only way to go from one room to the next is to fly through the open windows.

that in all cases the introduced system (Dromos) is significantly faster than the other planners. Even in the case
of 100 goals, Dromos can find a solution in 2 to 2.5 seconds. In contrast, an LTL motion planner suffers from
scalability issues due to its reliance on the combination of the LTL automaton with the roadmap graph and
the fixed order in which to visit the color groups as imposed by the LTL formula. In contrast, Dromos uses
GTSP tours to guide the motion-tree expansion. When the expansion along a particular GTSP tour becomes too
difficult, Dromos uses the selection penalties to promote expansion along alternative GTSP tours. Figure 23.9
also shows that Dromos is significantly faster than Dromos[rand], which uses random tours instead of Dromos.
These results demonstrate the importance of using low-cost tours to guide the expansion of the motion tree.

23.8.3 2D Inspection

Inspection experiments were carried out using several challenging 2D scenes, as shown in Figure 23.10, where
the robot has to avoid numerous obstacles and pass through narrow passages to inspect the colored regions.

In a general inspection setting it is evident that even with a very large number of waypoints due to their size
robots may not see everything (take a ball attached to a wall). Therefore, we transform the polygonal world into
an image, and determine the medial axis in the resulting bitmap. While this can only result in an approximate
result, the advantage of the approach is that it is robust even for complex obstacle shapes.
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Figure 23.9: Results on the mean runtime. Due to significant differences in runtime, logscale is used for the y-axis with the label
showing the actual value rather than its logarithm. Each bar indicates the standard deviation.

Experiments have been conducted and show the impact of the number of colors, inspection quality, and the
importance of using CTSP tours to guide the motion-tree expansion.

23.8.4 3D Inspection

Inspection in 3D is involved, as visibility aspects become complex. One has to decide between volume and
surface inspection (we take the latter), and between inside and outside inspection (we do both). In 3D the
subject of interest for inspection is a mesh, while the 3D substitute for the 2D medial axis approximation is a
skeleton (the medial axis may have facets in 3D).

There are range and angle limitations of the visibility sensors that are relevant in practice but, for the sake of
simplicity, we assume an unlimited sensor range. We also restrict ourselves to generating waypoints of only
one color. It is not difficult to extend the setting to include all these additional constraints. Moreover, we need a
robot that can fly. A 3D quadcopter model for doing surface inspection is provided in Figure 23.11.

Figures 23.12 and 23.13 show inside and outside surface inspections of complex 3D models carried out by
the quadcopter. The waypoints generated were passed as input to the sampling-based motion planner, which
computed a collision-free and dynamically feasible motion trajectory that enabled the quadcopter to reach each
waypoint. The running time for the motion planner was negligible.
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scene 1 scene 2

scene 3 scene 4

Figure 23.10: The snake-like robot model and scenes. Inspection points are shown as small squares colored with the inverse color
of the region. The inspection points were automatically generated based on the desired inspection quality, set to 99.9%. The
triangulation is also shown.

Figure 23.11: Physics-based model of the quadcopter used for the aerial inspection tasks.

23.9 Summary

The demands for a tight integration of task and motion planning in computer game playing and robotics have
resulted in a rising research interest in the PTSP. We have presented and extended an existing PTSP engine.
In both cases, we reduced the number of parameters of the search. We expect improved performance using
machine learning to fine-tune the simulation parameters.

We have included efficient optimal and suboptimal TSP solvers, where the former is tuned for constant node
performance and the latter exploits recent advances in Monte-Carlo tree search. For steering the ship in the
simulator, we added policy adaptation. We also offered a new way of computing tours with a small change in
direction through computing the surface of the ship’s trajectories and used radix heaps for efficient SSSP search
with the algorithm of Dijkstra.
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Figure 23.12: Scenes where the quadcopter is required to inspect the inside surface of the 3D model. The dots indicate the waypoints
generated. The dotted line indicates the paths that the quadcopter needs to follow. After the waypoints were generated, the motion
planner took 1/2 to 3 seconds to find a solution.

Using a graph for representing the grid helps to overcome the problem of the grid resolution being increased.
Methods like Flood-Fill are bound to 2D, while the graph representation supported in the engineered shortest-
path search is not.

We also developed an effective approach for the inspection problem with colored regions, integrated with
sampling-based motion planning so that it can work for complex robotic systems with non-linear dynamics.
The colored tours serve to guide the sampling-based motion planner, which in turn would provide informa-
tion about the feasibility of each tour. A key aspect of the approach was the transformation of the inspection
problem into a CTSP over an undirected, colored, and weighted graph. The approach relied on a grass-firing
transformation algorithm to effectively approximate the medial axis of each colored region. The approach re-
lied on ray casting and visibility scores to generate inspection points on the medial axis that would enable the
robot to achieve the desired inspection quality. An effective CTSP solver was developed based on depth-first
branch-and-bound search in to compute low-cost inspection tours. Experiments using different environments
and inspection tasks provided promising validation.
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Figure 23.13: Scenes where the quadcopter is required to inspect the outside surface of the 3D model. The blue dots indicate the
waypoints generated. The yellow dotted line indicates the paths that the quadcopter needs to follow. After the waypoints were
generated, the motion planner took 0.5s-3s to find a solution.

23.10 Bibliographic Notes

Competitions at editions of the Conference on Computational Intelligence and Games (CIG) illustrated the
progress in solving the physical traveling salesman problem. The winner of all PTSP competitions [509, 368]
was the Purofvio system, developed by a research team from the University of York [508], with multi-objective
PTSPs considered in [522]. The system applies Monte-Carlo search with macro actions and a TSP solver for
choosing the waypoint ordering. Additionally, UCT [25] was adapted [510].

Depth-first branch-and-bound with applications to solve TSP is considered in [670, 671]. Even though the
discrete setting simplifies significantly from high-dimensional non-linear motion planning for robotics con-
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trol [515], successful solutions can serve as heuristics and to improve computer game play, autonomous logis-
tics, and underwater inspection [242].

For a detailed presentation of the scan-line flood-fill algorithm along with the pseudo-code we refer the reader
to [508]. By utilizing a queue, Flood-Fill shares similarity with the Bellman-Ford algorithm for computing
shortest paths via iterated scans over the search graphs [136]. There are speed-up techniques for shortest path
search [323, 412, 638, 36].

The Hungarian algorithm to solve the assignment problem is studied by [371]. From SAT solvers, however,
we know that NP-hardness results for the worst-case time complexity alone is not necessarily the end of the
success story [631]. This is also true to some extent for unconstrained TSPs. By using tight lower bounds
close-to-optimal solutions for thousands of waypoints have been found [371].

The first transformation from GTSP into the TSP was introduced by Lien et al. [451]. Later, Dimitrijevic and
Saric [163] developed another transformation that decreased the size of the corresponding TSP. Behzad and
Modarres [40] provided an efficient transformation. The main idea is simple. The number of waypoints remains
unchanged and the waypoints in each cluster are connected in a cycle with all edges having zero cost. To avoid
splitting the cycle the weights of inter-custer edges are increased by a large value M so that the solution cost
rises by exactly kM. One obvious difference of our depth-first search approaches and solving the transformation
for the GTSP is that we generate tours of length k, while in the compilation the tours have length n.

Approaches to find waypoints [64] often start with a collection of points that is not minimal but is easy to
approximate and is expected to provide good coverage. The work in [668, 449] uses the skeleton of a 3D region,
whose boundaries are defined by meshes, to define an initial set of waypoints, which is then pruned using
integer-linear programming. Another approach selects waypoints from skeleton points of a 2D environment, but
prunes the number of waypoints less aggressively with a simple heuristic since their goal is to keep visibility on
a moving target while minimizing the motion of the robot, rather than inspecting the entire workspace [23]. The
work in [394] uses a decomposition of a 2D environment into convex polygons to quickly place the waypoints
without attempting to minimize their number. Medial axis points are also considered good waypoint candidates,
but medial axis itself is hard to compute exactly, so approximation algorithms based on Voronoi diagrams have
been explored [246].

There are different approaches to solving TSPs depending on the size of the problem. Branch-and-bound tech-
niques that rely on sophisticated lower bounds have proven effective in solving large unconstrained problems
[670]. Integer programming branch-and-cut solvers have been shown to be most effective in finding optimal
solutions for highly constrained TSPs. Neighborhood local search algorithms are often used when the objective
is to find satisfying tours [43].

Visiting several polygonal regions through a shortest tour has been tackled in [247] through self-organizing
maps; a watchman route problem is handled by first providing a convex cover set of the environment. The work
in [146] selects waypoints by creating a probabilistic roadmap [393] and then uses an approximate TSP solver
on the shortest-path graph to compute a tour.

Sampling-based path planning is also used to iteratively construct a set of waypoints for a 3D environment
and create a cyclic path containing them, which is then smoothed and shortened using heuristics so as to not
reduce the space visible from the waypoints. The work in [503] uses a sampling-based approach to integrate
waypoint selection and pathfinding, so as to guarantee waypoints can be reached given the robot’s dynamics.
These sampling-based approaches are shown to be probabilistically complete and to asymptotically converge to
the optimal path.

The linear-time grass-firing algorithm has been proposed by [58]. Depth-first branch-and-bound goes way back
to computer science history, we suggest consulting Korf’s work [413].



Chapter 24

Industrial Production

A discrete event system (DES) is a dynamic system with discrete states and transitions, which are triggered by
events. We apply a software model checker to a discrete event system that controls the industrial production of
autonomous products. The flow of material is asynchronous and buffered. This chapter aims to find concurrent
plans that optimize the throughput of the system. In mapping the discrete event system directly to the model
checker, we model the production line as a set of communicating processes, with the movement of items mod-
eled as channels. Experiments show that the model checker can analyze the DES, subject to the partial ordering
of the product parts. It derives valid and optimized plans with several thousands of steps using constrained
branch-and-bound.

24.1 Introduction

Discrete1 event (dynamic) systems (DES) provide a general framework for systems where the system dynamics
not only follow physical laws but also additional firing conditions. DES research is concerned about perfor-
mance analysis, evaluation, and optimization of DES. As the systems are often only available as computer
programs, it turns out to be difficult to describe the dynamics of these systems using closed-form equations. In
many cases, discrete event system simulation (DESS) is chosen to describe the DES dynamics and for perfor-
mance evaluation. Between consecutive events, no change in the system is assumed to occur; thus the simulation
can directly jump in time from one event to the next. Each simulation activity is modeled by a process. The idea
of a process is like the notion in model checking, and indeed one could write process-oriented simulations using
independent processes. Most DESS systems store information about pending events in a data structure known
as an event queue. Each item in the queue would at minimum contain the following information: a timestamp
and a piece of software for executing an event. The typical operations on an event queue are inserting a new
event and removing the next event (the one with the lowest timestamp) from the queue. It may also be necessary
to cancel a scheduled event.

DESS is probably the most widely used simulation technique. Similar approaches are system dynamics (SD),
and agent-based simulation (ABS). As the name suggests DES model a process as a series of discrete events.
They are built using entities (objects that move through the system); events (processes which the entities pass
through); and resources (objects which are needed to trigger event). SD is related to DES, focusing on flows
around networks rather than queueing systems; it considers stocks (basic stores of objects); flows (movement
of objects between different stocks in the system); delays (between the measuring and then acting on that
measurement). ABS is a relatively new technique in OR and consists of: autonomous agents (self-directed
objects which move about the system) and rules (which the agents follow to achieve their objectives). Agents
move about the system interacting with each other and the environment. Earlier simulation software was efficient

1 This chapter is based on joint work with Christoph Greulich. It puts together and improves the work from [201, 199, 304].
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but platform-dependent, due to the need for stack manipulation. Modern software systems, however, support
lightweight processes or threads. By the growing amount of non-determinism, however, DESS encounters its
limits to optimize the concurrent acting of individual processes.

With the advances in technology, more and more complex systems were built, e.g., transportation networks,
communication and computer networks, manufacturing lines. In these systems, the main dynamic mechanism
in task succession stems from synchronization and competition in the use of common resources, which requires
a policy to arbitrate conflicts and define priorities, all kinds of problems generally referred to under the generic
terminology of scheduling. This type of dynamics hardly can be captured by differential equations or by their
discrete-time analogues. This is certainly the reason why those systems, which are nevertheless true dynamic
systems, have long been disregarded by formal method experts and have been rather considered by operations
researchers and specialists of manufacturing with no strong connections with system theory. The dynamics are
made up of events, which may have a continuous evolution imposed by some called software once they start,
but this is not what one is mainly interested in: the primary focus is on the beginning and the end of such events,
since ends can cause new beginnings. Hence, the word discrete includes time and state.

In this chapter, we utilize the state-of-the-art model checker Spin as a performance analysis and optimization
tool together with its input language Promela to express the flow production of goods. There are several twists
needed to adapt Spin to the optimization of DES(S) that are uncovered in the sequel of the text. Our running case
study is the Z2, a physical monorail system for the assembling of taillights. Unlike most production systems,
the Z2 employs agent technology to represent autonomous products and assembly stations. The techniques
developed, however, will be applicable to most flow production systems. We formalize the production floor as a
system of communicating processes and apply Spin for analyzing its behavior. Using optimization mechanisms
implemented on top of Spin, in addition to the verification of the correctness of the model, we exploit its
exploration process for optimization of the production.

For the optimization via model checking, we use many new language features from the latest version of the Spin
model checker, including loops and native C-code verification.

24.2 Preliminaries

24.2.1 Discrete Event Simulation

An entity is an object of interest in the system, and an attribute is a (relevant) property of an entity. Attributes
are state variables, while activities form part of the model specification and delays form part of the simulation
result. The (system) state is a set of variables needed to describe the status of the system (e.g., length of a queue),
which is aimed to be complete and minimal at any point in time.

The occurrence of a primary event (e.g., arrival) is scheduled at a certain time, while a secondary event (e.g.,
queueing) is triggered by a certain condition becoming true. An event is an occurrence which is instantaneous
and may change the state of the system. The (future) event list PQ controls the simulation: it contains all future
events that are scheduled and is ordered by increasing time of events. Operations on the PQ are insert an event
into PQ (at an appropriate position!), remove first event from PQ for processing, and delete an event from
PQ. Thus, PQ is a priority queue. As operations must be performed efficiently, the common implementation
of an event queue is a (binary) heap. With such a data structure, access to the next event requires O(1) time,
while inserting/deleting an event requires O(log(n)) time, where n is the number of events currently in the
queue. Depending on the implementation (e.g., Fibonacci heaps), there are other trade-offs, with constant-time
insertion and O(log(n)) (amortized) deletion. The generic DES simulation algorithm looks as follows: 1) if PQ
empty, then exit; 2) remove & process first primary event e from PQ; 3) if conditional event e′ enabled, then
remove & process e′, goto 3, else goto 1.
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Figure 24.1: Train game.

Program 24.1: Train game (initialization).

public class Event {
public int arrival, type, number, location;
public Event(int a, int t, int n, int l) { arrival = a; type = t; number = n; location = l; }

};
public class MainMenuController : MonoBehaviour {

public static int [,] network = new int [,] {
{0,100,200,-1,-1,-1,-1,-1,-1,-1},
{100,0,-1,-1,-1,200,400,-1,-1,250},
{200,-1,0,-1,-1,-1,100,-1,-1,-1},
{-1,-1,-1,0,150,200,100,60,-1,200},
{-1,-1,-1,150,0,350,-1,100,250,300},
{-1,200,-1,200,350,0,-1,350,-1,100},
{-1,400,100,100,-1,-1,0,-1,250,-1},
{-1,-1,-1,60,100,350,-1,0,150,-1},
{-1,-1,-1,-1,250,-1,250,150,0,-1},
{-1,250,-1,200,300,100,-1,-1,-1,0}};

public static string [] location = new string [] {"Bremen", "Hamburg", "Dortmund",
"Frankfurt", "Munich", "Berlin", "Cologne", "Stuttgart", "Freiburg", "Dresden"};

public static bool selected = false;
public static int time = 0,loc = 0,number = 90,bonus = 0,kind = 0,balance = 200000;
public static string dest = "",board = "";
public static string [] type = new string [] {"ICE","IC","RE","EC","EN","RB"};
public static int [] speed = new int [] {5,4,2,3,2,1};
public static int [] capacity = new int [] {20,13,7,10,6,4};
public static int [] cost = new int [] {1000000,250000,100000,200000,90000, 75000 };
public static int [] trains = new int [] {0,0,0,0,0,0};
public static int [] from = new int [] {5,9,2,6,8,7,6,8,5,0,5,9,2,1,4,7,6,8,5,0};
public static int [] destination = new int [] {7,6,8,5,0,5,9,2,6,8,7,6,8,5,0,1,2,4,3,1};
public static int [] status = new int[] {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
public static int [] train = new int[] {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
public static int [] types = new int[] {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
public static int [] duration = new int []

{180,270,250,100,100,250,260,220,240,120,530,320,260,250,330,440,550,500,120,610};
public static int [] reward = new int [] {8000,7000,5000,9000,10000,

5000,6000,12000,4000,2000,3000,2000,6000,5000,3000,4000,5000,20000,2000,1000};

We assume exact timing, i.e., deterministic time. However, by different choices of points for generating succes-
sor events, the simulated DES itself is non-deterministic. Events inserted with priority t are generally assumed
to remain unchanged until deletion at time t.

As an example of a simple discrete event system, we consider the Train Game (see Figure 24.1 and Pro-
grams 24.1 to 24.3). The story line of the game is the following. You are a railway company. You can buy
trains to transport passengers. Every train type has its own cost and speed. Passengers impose start and target
locations and max. travel time. For their successful transport a reward is paid. Trains operate between cities to
be selected. Events happen chronologically. Instead of maintaining a priority queue we resort the events.
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Program 24.2: Train game (event list, start and update function).

public static List<Event> events = new List<Event>();
public Text mapText, taskText, topText;
void Start () {

try { mapText = GameObject.FindGameObjectWithTag("MapText").GetComponent<Text>(); }
catch (Exception) { }
try { taskText = GameObject.FindGameObjectWithTag("TaskText").GetComponent<Text>(); }
catch (Exception) { }
try { topText = GameObject.FindGameObjectWithTag("TopText").GetComponent<Text>(); }
catch (Exception) { }

}
void Update () {

if (topText != null) { topText.text = "Time: " + time + " Money: " + balance + " Location: " + location[loc]; }
if (mapText != null) {
mapText.text = "Map:\n";
for (int i=0;i<location.Length;i++)

for (int j=i+1;j<location.Length;j++)
if (network[i,j] > 0)
mapText.text += " " + location[i] + " −> " + location[j] + " = " + network[i,j] +".\n";

}
if (taskText != null) {
taskText.text = "Tasks:\n";
for (int i=0;i<from.Length;i++)

if (status[i] == 1)
taskText.text += " −> " + location[destination[i]] + " in " + duration[i] + " m, + " + reward[i] + " [ " +

train[i] + " ] \n";
for (int i=0;i<from.Length;i++)

if (status[i] == 0)
taskText.text += location[from[i]] + " −> " + location[destination[i]] + " in " + duration[i] + " m, + " +

reward[i] + "\n";
}

}

24.2.2 Flow Manufacturing

Flow manufacturing systems are DES installed for products that are produced in high quantities. By optimizing
the flow of production, manufacturers hope to speed up production at a lower cost, and in a more environmen-
tally sound way. In manufacturing practice there are not only flow lines (with stations arranged one behind
the other), but also more complex networks of stations at which assembly operations are performed (assembly
lines). The considerable difference from flow lines, which can be analyzed by known methods, is that several
required components are brought together to form a single unit for further processing at the assembly stations.
An assembly operation can begin only if all required parts are available.

Performance analysis of flow manufacturing systems is generally needed during the planning phase regarding
the system design, when the decision for a concrete configuration of such a system must be made. The planning
problem arises, e.g., with the introduction of a new model or the installation of a new manufacturing plant.
Because of the investments involved, an optimization problem arises. The expenditure for new machines, for
buffer or handling equipment, and the holding costs for the expected work-in-process face revenues from sold
products. The performance of a concrete configuration is characterized by the throughput, i.e., the number of
items that are produced per time unit. Other performance measures are the expected work in process or the idle
times of machines or workers.

We consider assembly-line networks with stations, which are represented as a directed graph. Between any two
successive nodes in the network, we assume a buffer of finite capacity. In the buffers between stations and other
network elements, work pieces are stored, waiting for service. At assembly stations, service is given to work
pieces. Travel time is measured, and overall time is to be optimized.

In a general notation of flow manufacturing, system progress is non-deterministic and asynchronous, while the
progress of time is monitored.

A flow manufacturing system is a tuple F = (A,E,G,≺,S,Q) where A is a set of all possible assembling actions;
P is a set of n products; each Pi ∈ P, i ∈ {1, . . . ,n}, is a set of assembling actions, i.e., Pi ⊆ A; G = (V,E,w,s, t)
is a graph with start node s, goal node t, and weight function w : E → R≥0; ≺ = (≺1, . . . ,≺n) is a vector of
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Program 24.3: Train game: Starting a game and new arrivals.

public void NewGame() {
if (events.Count==0) return;
selected = false;
int differ = -time;
events.RemoveAt(0);
events.Sort((x, y) => x.arrival.CompareTo(y.arrival));
Event e = events[0];
int l = e.location, a = e.arrival, t = e.type, n = e.number;
differ += a;
for (int i = 0; i<reward.Length;i++)
if (status[i] > 0) duration[i] -= differ;
time = a; loc = l; number = n; kind = t;

}
public void StartTutorial() { SceneManager.LoadScene("Tutorial"); }
public void StartMap() { SceneManager.LoadScene("Map"); }
public void StartTasks() { SceneManager.LoadScene("Tasks"); }
public void StartBuy() { SceneManager.LoadScene("Select"); }
public void StartBoard() { if (events.Count==0) return; board = ""; SceneManager.LoadScene("Passenger"); }
public void StartArrival() {

if (selected) return;
if (events.Count==0) return;
for (int i=0;i<reward.Length;i++)

if (destination[i] == loc && status[i] == 1 && train[i] == number) {
bonus = reward[i];
if (duration[i] > 0) balance += bonus;
status[i] = 2;

}
dest = "";
bool goal = true;
for (int i=0;i<reward.Length;i++)

if (status[i] < 2) goal = false;
if (goal) SceneManager.LoadScene("Game"); else SceneManager.LoadScene("Arrival");

}
public void ShowCredits() { SceneManager.LoadScene("Credits"); }
public void Exit() { Application.Quit(); }

}

assembling plans with each ≺i ⊆ A×A, i ∈ {1, . . . ,n}, being a partial order; S ⊆ E is the set of assembling
stations induced by a labeling ρ : E→ A∪{ /0}, i.e., S = {e ∈ E | ρ(e) 6= /0}; Q is a set of (FIFO) queues of finite
size, i.e., ∀q ∈ Q : |q|< ∞, together with a labeling ψ : E→ Q;

Products Pi, i ∈ {1, . . . ,n}, travel through the network G, meeting their assembling plans in the form of orders
≺i ⊆ A×A of the according assembling actions A. For defining the cost function we use the set of predecessor
edges Pred(e) = {e′ = (u,v) ∈ E | e = (v,w)}.
Let F = (A,E,G,≺,S,Q) be a flow manufacturing system. A run π is a schedule of triples (e j, t j, l j) of edges e j,
queue insertion positions l j, and execution time-stamps t j, j ∈ {1, . . . ,m}. The set of all runs is denoted as Π .
Each run π partitions into a set of n plans πi = (e1, t1, l1), . . . ,(em, tm, lm), one for each product Pi, i ∈ {1, . . . ,n}.
Each plan πi corresponds to a path, starting at the initial node s and terminating at goal node t in G.

The objective in a flow manufacturing system for product i is to minimize

max
1≤i≤n

wait(πi)+ time(πi)

over all possible paths with initial node s and goal node t, where

• time(πi) is the travel time of product Pi, defined as the sum of edge costs time(πi) = ∑e∈πi w(e), and

• wait(πi) the waiting time, defined as wait(πi) = ∑(e,t,l),(e′,t ′,l′)∈πi,e′∈Pred(e) t− (t ′+w(e′)).

With cost(πi) = wait(πi)+ time(πi), as overall objective function in a flow manufacturing system for product i
we have
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Figure 24.2: Assembly scenario for taillights.

min
π∈Π

max
1≤i≤n

cost(πi) = min
π∈Π

max
1≤i≤n

∑
e∈πi

w(e)+ ∑
(e,t,l),(e′,t ′,l′)∈πi,e′∈Pred(e)

t− (t ′+w(e′))

= min
π∈Π

max
1≤i≤n,(e,t,l)∈πi

t +w(e)

subject to the side constraints that: time stamps on all runs πi = (e1, t1, l1) . . .(em, tm, lm), i ∈ {1, . . . ,n} are
monotonically increasing, i.e., tl ≤ tk for all 1 ≤ l < k ≤ m; after assembling all products are complete, i.e.,
all assembling actions have been executed, so that for all i ∈ {1, . . . ,n} we have Pi = ∪(e j ,t j ,l j)∈πi{ρ(e j)}; the
order of assembling product Pi on path πi = (e1, t1, l1) . . .(em, tm, lm), i ∈ {1, . . . ,n}, is preserved, i.e., for all
(a,a′) ∈≺i and a = ρ(e j),a′ = ρ(ek) we have j < k; all insertions to queues respect their sizes, i.e., for all
πi = (e1, t1, l1) . . .(em, tm, lm), i ∈ {1, . . . ,n}, we have that 0≤ l j < |ψ(e j)|.

24.3 Case Study

The Z2 production floor unit consists of six workstations where human workers assemble parts of automotive
taillights. The system allows production of certain product variations and reacts dynamically to any change in the
current order situation, e.g., a decrease or an increase in the number of orders of a certain variant. As individual
production steps are performed at the different stations, all stations are interconnected by a monorail transport
system. The structure of the transport system is shown in Figure 24.2. On the rails, autonomously moving
shuttles carry the products from one station to another, depending on the products’ requirements. The monorail
system has multiple switches which allow the shuttles to enter, leave or pass workstations and the central hubs.
The goods transported by the shuttles are also autonomous, which means that each product decides on its own
which variant to become and which station to visit. This way, a decentralized control of the production system
is possible.

The modular system consists of six different workstations, each operated manually by a human worker and
dedicated to one specific production step. Different parts can be used to assemble different variants of the tail-
lights. At the first station, the basic metal-cast parts enter the monorail on a dedicated shuttle. The monorail
connects all stations; each station is assigned to one specific task, such as adding bulbs or electronics. Each
taillight is transported from station to station until it is assembled completely.

In the DESS implementation of the Z2 system (see Figure 24.3), every assembly station, every monorail shuttle
and every product is represented by a software process. Even the RFID readers which keep track of product
positions are represented by software processes, which decide when a shuttle may pass or stop.
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Figure 24.3: Layered architecture of models and agents for the Z2.

Most processes in this DESS resemble simple reflex methods. These processes just react to requests or events
which were caused by other processes or the human workers involved in the manufacturing process. In contrast,
the processes which represent products are actively working towards their individual goal of becoming a com-
plete taillight and reaching the storage station. To complete its task, each product has to reach sub-goals which
may change during production as the order situation may change. The number of possible actions is limited by
sub-goals which have already been reached, since every possible production step has individual preconditions.

The product processes constantly request updates regarding queue lengths at the various stations and the overall
order situation. The information is used to compute the utility of the expected outcome of every action. High
utility is given when an action leads to fulfillment of an outstanding order and takes as little time as possible.
Time, in this case, is spent either on actions, such as moving along the railway or being processed, or on waiting
in line at a station or a switch.

The Z2 DES was developed strictly for the purpose of controlling the Z2 monorail hardware setup. Nonetheless,
due to its hardware abstraction layer, the Z2 DES can be adapted to other hardware or software environments. By
replacing the hardware with other processes and adapting the monorail infrastructure into a directed graph, the
Z2 DES has been compiled to a DESS. Such an environment, which treats the original Z2 modules like black
boxes, can easily be hosted by a DESS. Experiments showed how closely the simulated and the real-world
scenarios match.

For this study, the model with timers (to measure the time taken between two graph nodes) was provided. Since
the hardware includes many RFID readers along the monorail, which all are represented by an agent and a
node within the simulation, we simplified the graph and kept only three types of nodes: switches, production
station entrances and production station exits. The resulting abstract model of the system is a weighted graph
(see Figure 24.4), where the weight of an edge denotes the traveling/processing time of the shuttle between two
respective nodes.

24.4 Promela Specification

Promela is the input language of the model checker Spin, the ACM-awarded popular open-source software veri-
fication tool, designed for the formal verification of multi-threaded software applications, and used by thousands
of people worldwide. Promela defines asynchronously running communicating processes, which are compiled
to finite state machines. It has a C-like syntax and supports bounded channels for sending and receiving mes-
sages. Channels in Promela follow the FIFO principle: They implicitly maintain order of incoming messages
and can be limited to a certain buffer size. Consequently, we are able to map edges to communication channels.
Unlike the original Z2 ABS, the products are not considered to be decision making entities within our Promela
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Figure 24.4: Weighted graph model of the assembly scenario.

model. Instead, the products are represented by messages which are passed along the node processes, which
resemble switches, station entrances and exits.

Unlike the original DESS, the Promela model is designed to apply a branch-and-bound optimization to evaluate
the optimal throughput of the original system. Instead of local decision making, the various processes have
certain nondeterministic options for handling incoming messages, each leading to a different system state. The
model checker systematically computes these states and memorizes paths to desirable outcomes when it ends
up in a final state. As mentioned before, decreasing production time for a given number of products increases
the utility of the final state.
We derive a Promela model of the Z2 as follows. First, we define a global bound for the number of stations and
switches. We also define the data type storing the index of the shuttle/product to be byte. In the model, switches
are realized as processes and edges between the units by the following channels.

chan entrance_to_exit[STATIONS] = [1] of {shuttle};
chan exit_to_switch[STATIONS] = [BUFFERSIZE] of {shuttle};
chan switch_to_switch[SWITCHES] = [BUFFERSIZE] of {shuttle};
chan switch_to_entrance[STATIONS] = [BUFFERSIZE] of {shuttle};

As global variables, we have bitvectors for marking the different assemblies.

bit metalcast[SHUTTLES]; bit electronics[SHUTTLES];
bit bulb[SHUTTLES]; bit seal[SHUTTLES]; bit cover[SHUTTLES];

Additionally, a bitvector denotes when a shuttle with a fully assembled item has finally arrived at its goal
location. Another bitvector sets for each shuttle whether it has to acquire a colored or a clear bulb.

bit goals[SHUTTLES]; bit color[SHUTTLES];

A switch is a process that controls the flow of the shuttles. In the model, a non-deterministic choice is added
either to enter the station or to continue traveling onwards on the cycle. Three of four switching options are
made available, as immediately re-entering a station from its exit is prohibited.

proctype Switch(byte in; byte out; byte station) {
shuttle s;
do
:: exit_to_switch[station]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_switch[out]!s;
:: switch_to_switch[in]?s; switch_to_entrance[station]!s;
od

}
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The entrance of a manufacturing station takes the item from the according switch and moves it to the exit. It
also controls that the manufacturing complies with the capability of the station.

First, the assembling of product parts is different at each station; in the stations 1 and 3 we have the insertion
of bulbs (station 1 provides colored bulbs, station 3 provides clear bulbs), station 2 assembles the seal, station 4
the electronics and station 0 the cover. Station 5 is the storage station where empty metal casts are placed on the
monorail shuttles and finished products are removed to be taken into storage. Secondly, there is a partial order
of the respective product parts to allow flexible processing and a better optimization based on the current load
of the ongoing production.

proctype Entrance(byte station) {
shuttle s;
do
:: switch_to_entrance[station]?s;

entrance_to_exit[station]!s
if
:: (station == 4) -> electronics[s] = 1;
:: (station == 3 && !color[s]) -> bulb[s] = 1;
:: (station == 2)-> seal[s] = 1;
:: (station == 1 && color[s]) -> bulb[s] = 1;
:: (station == 0 && seal[s] && bulb[s] && electronics[s])-> cover[s] = 1;
:: (station == 5 && cover[s]) -> goals[s] = 1;
:: else
fi

od
}

An exit is a node that is located at the end of a station, at which assembling took place. It is connected to the
entrance of the station and the switch linked to it.

proctype Exit(byte station) {
shuttle s;
do
:: entrance_to_exit[station]?s; exit_to_switch[station]!s;
od

}

A hub is a switch that is not connected to a station but provides a shortcut in the monorail network. Again, three
of four possible shuttle movement options are provided

proctype Hub(byte in1; byte out1; byte in2; byte out2) {
shuttle s;
do
:: switch_to_switch[in1]?s; switch_to_switch[out1]!s;
:: switch_to_switch[in1]?s; switch_to_switch[out2]!s;
:: switch_to_switch[in2]?s; switch_to_switch[out1]!s;
od

}

In the initial state, we start the individual processes, which represent switches. This defines the network of the
monorail system. Moreover, initially, we have that the metal cast of each product is already present on its carrier,
the shuttle. The coloring of the taillights can be defined at the beginning or in the progress of the production.
Last, but not least, we kick off by inserting shuttles on the starting rail (at station 5).

init {
atomic {

byte i;
c_code { cost = 0; }
c_code { best_cost = infinity; }
for (i : 0 .. (SHUTTLES)/2)){ color[i] = 1; }
for (i : 0 .. (SHUTTLES-1)) { metalcast[i] = 1; }
for (i : 0 .. (STATIONS-1)) { run Entrance(i); run Exit(i); }
run Switch(7,0,5); run Switch(0,1,4);
run Switch(1,2,3); run Switch(3,4,2);
run Switch(4,5,1); run Switch(5,6,0);
run Hub(2,3,8,9); run Hub(6,7,9,8);
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Algorithm 24.1: DFBnB Algorithm.

DFBnB(F = (A,E,G,≺,S,Q))
Initialize upper bound U
π ′← π ← /0
DFS(F,(s, . . . ,s),0,U)
return π ′

DFS(F,u,π,U)
π ← extend(π,u)
if (u = (t, . . . , t))

if (cost(π)<U) π ′← π; U ← cost(π)
else for each v in successors(u)

if (cost(π)+h(v)<U) DFS(F,v,π,U)

for (i : 0 .. (SHUTTLES-1)) { exit_to_switch[5]!i; }}
}

We also heavily made use of the term atomic, which enhances the exploration for the model checker, allowing
it to merge states within the search. In contrast to the more aggressive d_step keyword, in an atomic block all
communication queue actions are blocking.

24.5 Optimized Scheduling

We improve branch-and-bound (BnB) optimization. Branching is the process of spawning subproblems, while
bounding refers to ignoring partial solutions that cannot be better than the current best solution. To this end,
lower and upper bounds and are maintained as global control values on the solution quality, which improves
over time.

For applying BnB to general flow manufacturing systems, we extend depth-first search (DFS) with upper (and
lower) bounds. In this context, branching corresponds to the generation of successors, so that DFS can be casted
as generating a branch-and-bound search tree. One way of obtaining a lower bound L for the problem state u
is to apply an admissible heuristic h with L(u) = g(u)+h(u), where g denotes the cost for reaching the current
node from the root, and h is a function that always underestimates the remaining cost to reach a goal.

As with standard DFS, the first solution obtained might not be optimal. With depth-first branch-and-bound
(DFBnB), however, the solution quality improves over time together with the global value U until eventually
the lower bound L(u) at some node u is equal to U (see Algorithm 24.1).

We applied branch-and-bound optimization within Spin. Essentially, the model checker can find traces of several
hundreds of steps and provides trace optimization by finding the shortest path towards a counterexample if run
with the parameter ./pan -i. As these traces are step-optimized, and not cost-optimized, we use variable cost
as follows.

c_state "int min_cost" "Hidden" c_state "int min_cost" "Hidden"
c_code { int cost; } c_code { int cost[SHUTTLES]; }
c_track "cost" "sizeof(int)" "Matched" c_track "cost" STRING "Matched"

While the cost variable increases the amount of memory required for each state, it also limits the power of Spin’s
built-in duplicate detection, as two otherwise identical states are considered different if reached by different
accumulated cost. If the search space is small, so that it can be explored even for the enlarged state vector,
then this option is sound and complete, and finally returns the optimal solution to the optimization problem.
However, there might be simply too many repetitions in the model so that introducing cost to the state vector
leads to a drastic increase in state space size, so that otherwise checkable instances now become intractable. We
noticed that even by concentrating on safety properties (such as the failed assertion mentioned), the insertion of
costs causes trouble.
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24.5.1 Guarded Branching

Costs have to be tracked for every shuttle individually. The variable cost of the most expensive shuttle indicates
the duration of the whole production process. Furthermore, the cost total provides insight regarding unnecessary
detours or long waiting times. Hence, minimizing both criteria are the optimization goals of this model.

In Promela, every do-loop is allowed to contain an unlimited number of possible options for the model checker
to choose from. The model checker randomly chooses between these options; however, it is possible to add an
if -like condition to an option: If the first statement of a do option holds, Spin will start to execute the following
statements, otherwise, it will pick a different option. Since the model checker explores any possible state of
the system, many of these states are technically reachable but completely useless from an optimization point of
view. To reduce the state space size to a manageable level, we add constraints to the relevant receiving options
in the do-loops of every node process.

Peeking into the incoming queue to find out which shuttle is waiting to be received is already considered a
complete statement in Promela. Therefore, we exploit C-expressions (c_expr) to combine several operations
into one atomic statement. For every station t and every incoming channel q, a function prerequisites(t,q)
determines if the first shuttle in q meets the prerequisites for t.

shuttle s;
do
:: c_expr{prerequisites(Px->q,Px->t)} -> channel[q]?s; channel[out]!;
od

At termination of a successful run, we use use the integer array cost[SHUTTLES] of the Promela model. It
enables each process to keep track of its local cost vector and is increased by the cost of each action as soon
as the action is executed. This enables the model checker to print values to the output only if the values of the
current max cost and total cost have improved.

terminate:
c_code {
int max = 0, total = 0, j;
for (j=0; j<SHUTTLES; j++) {
total += cost[j];
if (cost[j] > max) max = cost[j]; }

if (max < min_cost) { min_cost = max; putrail(); Nr_Trails--; };
}

For solution reconstruction, we write a file for each new cost value obtained, temporarily renaming the trail file
as follows.

char mytrailfile[512];
sprintf(mytrailfile, "%s_t%d_st%d.pr", base,min_cost,total);
char* y = mytrailfile;
swap(&TrailFile, &y);
putrail();
swap(&y, &TrailFile);

24.5.2 Process Synchronization

Due to the nature of the state space search of the model checker, processes in the Promela model do not make
decisions. Nonetheless, the given model is a distributed DES consisting of a varying number of processes, which
potentially influence each other if executed in parallel.



422 24 Industrial Production

We addressed this problem by introducing an event-based time progress to the Promela model. Whenever a
shuttle s travels along one of the edges, the corresponding message is put into a channel and the cost of the
respective shuttle is increased by the cost of the given edge.

shuttle s;
do
:: c_expr{ canreceive(channel,Px->q,Px->station) }

-> channel[q]?s
c_code { cost[s] += Px->c; }
channel[out] ! s;

od

We introduce an atomic C function canreceive(q) that returns true, only if the first item s of q has minimal
cost(s), changing the receiving constraint to the following.

c_code {
int canreceive(int channeltype, int arrayidx, int station) {

int channelidx = -1;
switch(channeltype) {

case xyz: channelidx = now.xyz[arrayidx]; break; [...]
}
if(channelidx > -1 && q_len(channelidx) > 0) {

int shuttle = qrecv(channelidx, 0, 0, 0);
int minimum = infinity;
for (int j=0; j<SHUTTLES; j++) {

if (cost[j] < minimum) minimum = cost[j]; }
return (minimum == cost[shuttle]); }

return 0;
}

Within Spin, the global Boolean variable timeout is automatically set to true when all current processes are
unable to proceed, e.g., because they cannot receive a message. Consequently, for every shuttle p, all processes
will be blocked, and timeout will be set to true. We add a process that enforces time progress whenever
timeout occurs (final is a macro for reaching the goal).

active proctype watchdog() {
do
::timeout -> c_code{ increase(); } ; assert(!final);
od

}

Time is delayed as follows: if the minimum event in the future event list is blocked (e.g., a shuttle is not first
in its queue), we compute the wake-up time of the second-best event. If the two are of the same time, a time
increment of 1 is enforced. In the other case, the second-best event time is taken as the new one for the first. It
is easy to see that this strategy eventually resolves all possible deadlocks. Its implementation is as follows.

int increase() {
int j, l = 0, minimum = cost[0];
for (j=1; j<SHUTTLES; j++)

if (cost[j] < minimum) { minimum = cost[j]; l = j; }
int second = infinity;
for (j=0; j<SHUTTLES; j++) {

if (cost[j] < second && cost[j] > minimum)
second = cost[j]; }

cost[l] = (second == infinity) ? minimum + 1 : second;
}

As a summary, the constrained and bounded depth-first exploration has turned into the automated generation
of the underlying state space of the DES, using c-code to preserve the causality of actions and to simulate the
future event list.
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class Arena {
public:
Move rollout[MaxLength]; int length;
Arena() {
length = 0;
for (int i = 0; i< STATIONS; i++) {
switch2entrance[i]->clear(); exit2switch[i]->clear();
entrance2exit[i]->clear();

}
for (int i = 0; i< STATIONS + 2*HUBS; i++) switch2switch[i]->clear();
for (int i = 0; i < SHUTTLES; i++) {
wait[i] = 0; cost[i] = i * 70; goals[i] = 0; color[i] = i%2;
metalcast[i] = 1; diffusor[i] = electronics[i] = bulb[i] = seal[i] = 0;
switch2entrance[5]->push(i);

}
}
int code (Move m) { return m; }
int legalMoves (Move moves [MaxLegalMoves]) {

int m[3], mvs = 0;
while (mvs == 0) {

for (int p = 0; p < agent.size(); p++) {
int k = agent[p]->nextLegalMove(m);
for(int l=0;l<k;l++) moves[mvs++] = p*3 + m[l];

}
if (mvs == 0) increase_time();

}
return mvs;

}
void play (Move m) { rollout[length++] = m; agent[m/3]->executeMove(m%3); }
bool terminal () {

int reached = 1;
for (int j=0; j<SHUTTLES; j++) reached &= goals[j];
return (reached) || length == MaxLength-1;

}
double score () {

int maximum = 0, total = 0;
for (int j=0; j<SHUTTLES; j++) if (cost[j] > maximum) maximum = cost[j];
int reached = 0;
for (int j=0; j<SHUTTLES; j++) reached += !goals[j];
return (reached * 1000) + maximum;

}
}

Figure 24.5: Code for Z2 multiagent system optimization.

class Agent {
public:
Agent() {}
virtual void executeMove(int m) = 0;
virtual int nextLegalMove(int* moves) = 0;

};

Figure 24.6: Code for abstract agent class.

24.6 Game Encoding

In the encoding as a single-player game, the number of acting agents is significantly reduced in comparison to
the original DES. Like the encoding of model-checker-based approaches, decision making is modeled into the
nodes while shuttles are merely integer values which are passed along the edges.

Each edge is modeled as a queue to make sure that no shuttle can pass another. When put on an edge, a shuttle
receives a waiting time which corresponds to the cost of the specific edge. A synchronizing function ensures
that time progresses for all shuttles. The node at the end of a directed edge is allowed to receive a shuttle only if
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class Switch : public Agent {
public:
int In, Out, Station, B, C;
Switch(int in, int out, int s, int b, int c):
Agent(),In(in),Out(out),Station(s),B(b),C(c) {}
void executeMove(int move) {

if (move == 0) {
int Shuttle = switch2switch[In]->pop();
wait[Shuttle] += C; cost[Shuttle] += C;
switch2entrance[Station]->push(Shuttle);

}
if (move == 1) {

int Shuttle = switch2switch[In]->pop();
wait[Shuttle] += B; cost[Shuttle] += B;
switch2switch[Out]->push(Shuttle);

}
if (move == 2) {

int Shuttle = exit2switch[Station]->pop();
wait[Shuttle] += B; cost[Shuttle] += B;
switch2switch[Out]->push(Shuttle);

}
}
int nextLegalMove(int* moves) {

int mvs = 0;
if (receives(SW2SW_EN,In,Station)) moves[mvs++] = 0;
if (receives(SW2SW_PASS,In,Station)) moves[mvs++] = 1;
if (receives(EX2SW, Station,Station)) moves[mvs++] = 2;
return mvs;

}
};

Figure 24.7: Code for one agent.

void increase_time() {
int min = INF, d = 1;
for (int p = 0; p < SHUTTLES; p++)

if (0 < wait[p] && wait[p] < min) min = wait[p];
if (min < INF) d = min;
for (int p = 0; p < SHUTTLES; p++)

if (wait[p] - d >= 0) { wait[p] -= d; cost[p] += d; } else wait[p] = 0;
}
bool receives(int channeltype, int i, int station) {

int result = 0; Channel* channel = NULL;
switch(channeltype) {

case EN2EX: channel = entrance2exit[i]; break;
case EX2SW: channel = exit2switch[i]; break;
case SW2SW_PASS: channel = switch2switch[i]; break;
case SW2SW_EN: channel = switch2switch[i]; break;
case SW2EN:

if (entrance2exit[station]->length() >= 1) channel = NULL;
else channel = switch2entrance[station];
break;

}
if (channel != NULL && channel->length() > 0) {

int shuttle = channel->front();
if (wait[shuttle] <= 0) result = 1;

}
return result;

}

Figure 24.8: Code for increase-time and receive action.

it is first in its queue and its waiting time has passed. If a shuttle can be received by a node, the node provides a
legal move for each outgoing edge. Hence, a set of all legal moves over all active agents can be obtained.

To play the game, the player has to choose one of the agents and one of its actions as the next move. The goal
of the game is to finish a predefined number of products in the shortest possible time before a predefined length
is exceeded. The smaller the makespan for each agent found by the algorithm the higher the score of the play.
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Table 24.1: Sequences of events for n = 3 products. (Product⇒ Station, where⇒ indicates a finished production step.)

ABS LVT DES
0⇒ 4 0⇒ 4 0⇒ 4
1⇒ 2 1⇒ 4 1⇒ 4
0⇒ 3 2⇒ 4 2⇒ 4
2⇒ 1 0⇒ 3 0⇒ 3
0⇒ 2 2⇒ 3 1⇒ 2
1⇒ 4 1⇒ 2 2⇒ 3
0⇒ 0 1⇒ 1 0⇒ 2
2⇒ 4 2⇒ 2 1⇒ 1
0⇒ 5 1⇒ 0 2⇒ 2
1⇒ 1 0⇒ 2 0⇒ 0
2⇒ 2 2⇒ 0 1⇒ 0
1⇒ 0 0⇒ 0 2⇒ 0
2⇒ 0 1⇒ 5 0⇒ 5
1⇒ 5 2⇒ 5 1⇒ 5
2⇒ 5 0⇒ 5 2⇒ 5

More formally, the (board) game is defined as (B,b0,d,F,r) where B is the set of (board) positions, in our case
consisting of all queue content, shuttle locations, and their respective cost values. The start position s0 has all
shuttles and all queues being empty; d : B→ 2B specifies the set of allowed actions for each q ∈ B, The set
of final positions F consists of all states in which either all the individual goals or the maximal step sized is
reached, and r : B→ N is the score function adding a constant (e.g., 1,000) for each individual unreached goal,
on top of the maximum of the individual cost values.

The components of the game induce a tree in the natural way with B as nodes, root b0, d as edges and the final
positions as leaves. A play(out) is then a path in the tree from b0 to some leaf.

The software implementation (see Figures 24.5 to 24.8) is based on a framework which allows to employ several
search algorithms such as MCS, NMCS, NRPA, BEAM-NRPA and HD-NRPA. For our experiments, we only
focused on HD-NRPA since it is the most advanced implementation and provided the best results.

24.7 Evaluation

We compare the results of the exploration minimizing local virtual time (LVT) to the ones simulating the discrete
event system (DES). We also present results of simulation runs of the original implementation on hardware. The
Promela models do not rely on local decision making but on searches for an optimal solution systematically.
Therefore, both Promela models resemble a centralized planning approach.

For smaller problems we experimented with Spin’s parallel BFS, as it computes optimal-length counterexam-
ples. The hash table is shared based on compare-and-swap (CAS). We also tried supertrace (bitstate hashing) as
a trade-off. Unfortunately, we had to drop the experiments for cost optimization. Swarm tree search found many
solutions, but due to the increased amount of randomness, for the optimized scheduling in general no better
results than ordinary DFS were found.

In each experiment run, a number of n ∈ {2, . . . ,20} shuttles carry products through the facility. All shuttles
with even IDs acquire clear bulbs, all shuttles with odd IDs acquire colored ones.

A close look at the experiment results of every simulation run reveals that, given the same number of products to
produce, all three approaches result in different sequences of events. However, LVT and DES propose the same
sequence of production steps for the product of each shuttle. The example given in Figure 24.1 shows that for
all shuttles 0 . . .2, the scheduling sequence is the same in LVT and DES, while the original ABS often proposes
a different schedule. In the given example, both LVT and DES propose a sequence of 4,2,1,0,5 for shuttle 1.
To the contrary, the ABS approach proposes 2,1,4,0,5 for shuttle 1. The same phenomenon can be observed
for every n ∈ {2, . . . ,20} number of shuttles.

All three simulation models keep track of the local production time of each shuttle’s product. In ABS and LVT
simulation, minimizing maximum local production time is the optimization goal. Steady, synchronized progress
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Table 24.2: Simulated production times for n products in the original ABS and Spin simulation, including the amount of RAM
required to compute the given result. (* indicates complete state space exploration within the given RAM usage.)

ABS LVT DES NRPA
Products Max. Prod. Time Max. Prod. Time RAM Max. Prod. Time RAM Max. Prod. Time Length

2 4:01 3:24 987 MB* 2:53 731 MB* 2:54 48
3 4:06 3:34 2154 MB* 3:04 503 MB 2:59 72
4 4:46 3:56 557 MB 3:13 519 MB 3:08 99
5 4:16 4:31 587 MB 3:25 541 MB 3:13 123
6 5:29 4:31 611 MB 3:34 565 MB 3:22 153
7 5:18 5:08 636 MB 3:45 587 MB 3:38 186
8 5:57 5:43 670 MB 3:55 610 MB 3:45 213
9 6:00 5:43 692 MB 4:06 635 MB 3:52 240
10 6:08 5:43 715 MB 4:15 557 MB 3:52 267
20 9:03 8:56 977 MB 5:59 857 MB 5:40 516

of time is maintained centrally after every production step. Hence, whenever a shuttle has to wait in a queue, its
total production time increases. For the DES model, progress of time is managed differently. Results show that
max. production time in DES is lower than for LVT and ABS in all cases.

For every experiment, the amount of RAM required by DES to determine an optimal solution is slightly lower
than the amount required by LVT, as shown in Table 24.2. While the LVT required several iterations to find
an optimal solution, the first valid solution found by DES was already the optimal solution in any conducted
experiment. However, the LVT model can search the whole state space within the RAM limit (given by our
machine) for n ≤ 3 shuttles, whereas the DES model is unable to search the whole state space for n > 2. For
every experiment with n > 3 (LVT) or n > 2 (DES) shuttles respectively, searching the state space for better
results was cancelled when the RAM limit was reached.

While the experiments indicate that the DES is faster and more memory efficient than the LVT approach,
we observe that the mapping cost to time in the DES is limited. Assuming that events are processed by the
time stamp while inserted in the priority queue, is a limitation. We look at extensions of the future event list
supporting the priority queue operation increaseKey. In our experiment if one element in a process queue was
delayed, all the ones behind it were delayed as well. While DES and LVT are both sound in resolving deadlocks,
LVT has the more accurate representation for the progress of time.

As with the DES/LVT model, in cost we measure travel time plus an initial waiting time. To assist the solver in
finding valid solutions, we added the objective function to the term (er ∗10)+(br ∗10)+(sr ∗10)+(dr ∗100),
where er, br, sr, and dr are the violations to the assembling status of electronics, bulbs, seals, and diffusors,
respectively.

24.8 Summary

Simulation provides a method to approximate the behaviour in a real system (and, hence, can be used for
testing scenarios). Constructing the model can prove useful in achieving greater understanding of the system.
In this chapter, we presented a novel approach for model checking (instead of simulating) DES. The research
is motivated by our interest in finding and comparing centralized and distributed solutions to the optimization
problems in autonomous manufacturing.

Using model checking for optimizing DES is a relative new playground for formal method tools in the form of a
new analysis paradigm. The formal model in Promela reflects the routing and scheduling of entities in the DES.
Switches of the rail network were modeled as processes, the edges between the switches as communication
channels. Additional constraints to the order of production steps enable us to carry out a complex planning and
scheduling task. There is lot of room for improvement in the decentralized solution, since the model checker
found more efficient ways to route and schedule the shuttles on several occasions. Furthermore, the model
checker could derive optimized plans of several thousand steps. As with directed model checking, heuristics are
expected to guide the search towards finding a good schedule faster. By looking at the limits and possibilities of
LVT and DES, alternatives to represent time have to be considered.
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Randomized Monte-Carlo search performed even better than a systematic exploration. The advanced NRPA
algorithm learns good successors and has a smaller memory footprint than exhaustive methods (if they store
states for eliminating duplicates). The main advantage with respect to a systematic enumeration of the state
space is that the random choices do not rely on a fixed traversal ordering, and that for a good performance, we
do not have to assist the model checker by ordering the non-deterministic choices manually.

Compared to depth-first search and branch-and-bound, Monte-Carlo tree search is less dependent on finding a
very good ordering of the successors. Even hand-coded pruning like checking prerequisites was not needed to
arrive at high-quality solutions in a short amount of time. Nonetheless, there is noticeable impact of hand-coded
information, as additional guidance information encoded in the cost function increased the performance of the
search substantially.

So far, we haven’t extended Spin by Monte-Carlo tree search but gave an alternative implementation based
on an existing single-player game optimization framework. Thus, on a first glance, a head-to-head compari-
son is seemingly unfair: Spin is aimed at general software verification, and with a granularity on lines of the
running Promela code, it does produce much longer traces than the search framework, which is based on non-
deterministic action choices only. Moreover, Spin already supports randomization in its swarm search wrapper,
but swarm algorithms are based on random depth-first search, while Monte-Carlo search with policy adaptation
improves over time, and, thus, learns the structure of the underlying problem. Nestedness of the search leads to
exponential refreshment of policies, and, therefore, offers a trade-off between exploitation and exploration.

The interface for such randomized search with Monte-Carlo tree search is simple and flexible, only the functions
rollout and adaptation have to be implemented properly. In fact, we are confident that the implementation of
a Model Checker based on Monte-Carlo tree search is only a matter of time. At the end, only the successor
generating function must be modified. This line of thinking could be viewed as putting together the power
of directed model checking, guiding the search space traversal, and evolutionary algorithms, maintaining a
population of policies based on random runs.

24.9 Bibliographic Notes

The model checker Spin has been implemented by Gerard Holzmann [347]. The optimization approach origi-
nally invented for Spin was designed for state space trees [548, 547], while the proposed approach also supports
state space graphs. Scheduling via model checking has been pioneered by Binksma [83], and Wijs [654]. The
work is especially inspired by [83, 454] and [547]. In standard Spin, the trivial heuristic h ≡ 0 is used, but
in HSF-Spin [215], a few heuristic functions have been implemented. Bošnački and Dams [65] suggested to
exploit the timeout command to model real-time with Spin.

One of the most interesting problems in manufacturing is job shop scheduling [30]. When solving the scheduling
problem, a set of n jobs must assigned to a set of m machines. Consequently, the total number of possible
solutions is (n!)m. The problem complexity grows when the number of required resources increases, e.g., by
adding specific tools or operators to run machines. For an additional set k of necessary resources, the number
of possible solution increases to ((n!)m)k [573]. In the related flow shop scheduling problem, a fixed sequence
of tasks forms a job [276]. It is applicable to optimize the makespan. The real-world Z2 production floor unit
has been presented in [480]. The Z2 DES has been transferred to a DESS in [305] and a centralized solution
minimizing the agents’ local virtual time has been given by [303].

Flow line analysis is a more complex setting, often done with queuing theory [463, 93]. Pioneering work in
analyzing assembly queuing systems with synchronization constraints analyzes assembly-like queues with un-
limited buffer capacities [322]. It shows that the time an item must wait for synchronization may grow without
bound, while limitation of the number of items in the system works as a control mechanism and ensures sta-
bility. Work on assembly-like queues with finite buffers all assume exponential service times [48, 453, 348]. A
rare example of model checking flow production applied timed automata that were used for simulating material
flow in agricultural production [330].
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The automated generation of plans for a given task is an integral part of problem solving in a computer. In action
planning [491], we are confronted with the descriptions of the initial state, the goal (states) and the available
actions. Based on these we want to find a plan containing as few actions as possible (in case of no- or unit-cost
actions) or with the lowest possible total cost (in case of general action costs). The process of fully-automated
property validation and correctness verification is referred to as model checking [129]. Given a formal model of
a system M and a property specification φ in some form of temporal logic like LTL [290], the task is to validate,
whether or not the specification is satisfied in the model, M |= φ . If not, a model checker usually returns a
counterexample trace as a witness for the falsification of the property.

Planning and model checking have much in common [295, 126]. Both rely on the exploration of a potentially
large state space of system states. Usually, model checkers only search for the existence of specification errors
in the model, while planners search for a short path from the initial state to one of the goal states. Nonetheless,
there is rising interest in planners that prove insolvability, and in model checkers to produce minimal counterex-
amples [224].

In terms of leveraging state space search, over the last decades there has been much cross-fertilization between
the fields. For example, based on Satplan [392] bounded model checkers exploit SAT representations [50] of
the system to be verified, while directed model checkers [215, 430] exploit panning heuristics to improve the
exploration for falsification; partial-order reduction [628, 296] and symmetry detection [268, 455] limit the
number of successor states, while symbolic planners [128, 366, 217] apply functional data structures like BDDs
to represent sets of states succinctly.

There are different options for finding optimized schedules with the help of a model checker that have been
proposed in the literature. First, in the Soldier model of [548], rendezvous communication to an additional syn-
chronized process has been used to increase cost, dependent on the transition chosen, together with a specialized
LTL property to limit the total cost for the model checking solver. This approach, however, turned out to be lim-
ited for our purpose. An alternative proposal for branch-and-bound search is based on the support of native
C-code in Spin (introduced in version 4.0) [547]. One case is the TSP, but the approach is generally applicable
to many other optimization problems.



Chapter 25

Further Application Areas

What is AI? In an industrial context you will hear the ones saying a threat to the world by thinking machines
superior to humans, or other stating storing a number in the computer means that the machine has learnt.
We think both statements, reflecting either a strong or a weak view on AI, are not pragmatic. In this book
we, therefore, align with an efficiency- and performance-oriented interpretation of AI, which we denote as
Algorithmic Intelligence. The very same AI can beat a human in a competition on a fast machine, and lose on a
slower one.

In this chapter we highlight that programming and algorithm engineering remains at the core of the development
of intelligence, while aiming at real-world applications. We give insights to the design principles, requirements,
and evaluation of machine learning algorithms, and, then, list several potential AI projects for the software
industry.

25.1 Introduction

Machine1 intelligence is increasingly influencing our lives. It has been characterized by Arthur Samuel (1959)
as the field of study that gives computers the ability to learn without being explicitly programmed. Automated
learning, however, is still largely a mystery. During training, we feed AI systems with data, but what conclusions
the AI draws from this, according to which logic and which criteria it then makes decisions, is usually inscrutable
for people.

A lot of research is still needed to understand how learning models work. And to develop new methods that
provide more meaningful contextual information must reflect on how AI systems work, so that people can
understand decisions and recognize possible wrong ones and prejudices more easily. Explainability and trans-
parency of AI processes are closely linked and are central goals for governance. Projects should go beyond the
previous approaches to meet the requirements of a digitized society. Currently, graphical tools are an important
part of this effort, but this solution is nowhere near sufficient. A combination of novel approaches is necessary
to understand AI systems. The desire is traceability, explainability and transparency, especially for practical
applications. The main aim is to strengthen trust in AI systems, as there is no trust without transparency.

Some methods, such as the shopping basket analysis, offer confidence as a quality measure of rule induction.
Confidence speaks of the trust that you put in an inference. For example, if a database is filled with very few
case studies, the result of the AI conclusion is often less trustworthy than with a lot of data.

What is the difference of confidence and accuracy?

1 joint work with Andreas Wulfes, Andree Lüdke, Ashraf Abdo, Björn Schwarze, Hendrik Rothe, Luisa Strelow, Lara Luhrmann,
Salome Gindre, Tino Wahler, and Vanessa Just
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Confidence defines the probability of the event (or probability of input to fall in different classes). If a class has high
probability, then it has high confidence. Confidence value can be calculated for single input as well giving the meaning as
how much the algorithm is confident for that class. On the other hand, accuracy defines the skill of the learning algorithm
to predict accurately. It defines the percentage of correct predictions made from all predictions — Hena Bawa.

Confidence and confusion matrices as evaluation criteria are closely related to correlation and covariances,
which measure the interplay of properties. In stochastics, the correlation matrix is a symmetrical matrix that
records the correlation between the components of a random vector. The correlation matrix can be obtained from
the variance-covariance matrix and vice versa. The correlation matrix can be interpreted as a generalization of
the variance of a 1D random vector over several dimensions. It is used, among other things, for the study of
eigenvalues and -vectors as in principal component analysis (PCA) and in singular value decomposition, as well
as for feature selection and Kalman filtering.

The singular value decomposition (SVD) is at the root of most ways of analyzing datasets that are matrices.
One important reason why the SVD is so important is that it is defined for every matrix A with m rows and n
columns of rank k. The SVD A =USV T for (orthonormal) matrices U and T , where U has dimension (m× r),
T has dimension (n× r). SVD has been extended to matrices with missing entries. The matrix product in the
SVD can be simplified to A = ∑

r
k=1 σkukvT

k , where uk is the k-th column of U , and vT
k is the transpose of the

k th column of V . This simplification decomposes A into the sum of r matrices of rank 1. The SVD is most
interesting because of the following property. Let Uk be the k leftmost columns of U , then Uk is an (m× k)
matrix whose columns are the same as the first k columns of U . Similarly, let V − k be the k leftmost columns
of V . Let Sk be the (k× k) diagonal matrix, whose diagonal entries are S1,1 to Sk,k. Define Ak = UkSkV T

k The
rank of Ak is k. Eckhart and Young proved in 1936 that Ak = minX :rank(X)≤k ||A−X ||2, which means that among
all matrices of rank k or less, Ak has the smallest squared error with respect to A. The squared error is simply
||A−X ||2 = ∑

m
i=1 ∑

n
j=1(Ai j−Xi j)

2 and is sometimes called the Frobenius norm of the matrix A−X . In short,
the SVD essentially provides the best low-complexity approximation of a given matrix A≈UkSkV T

k .

PCA is a mathematical construction closely related to SVD. It is used in practice to find a more concise repre-
sentation of the data points during dimensionality reduction. PCA is widely used but has some drawbacks. First,
it is sensitive to the scaling of features. Without changing the correlations between features, if some features are
multiplied by constants, then the PCA changes. Second, PCA is unsupervised. It does not consider any label
that is to be predicted. The directions of maximum variation are usually not the directions that differentiate best
between examples with different labels. Third, PCA is linear. If the data points have a nonlinear structure, PCA
will not capture it.

To assess how well a trained model fits the data, in practice one looks at the following two metrics:

Sensitivity: the likelihood that the model will predict a positive outcome for an observation when the outcome
is indeed positive.

Specificity: the probability that the model will predict a negative outcome for an observation when the out-
come is indeed negative.

Terms often used are positive (P): number of real positive cases in data; negative (N): number of real negative
cases in data; true positive (TP) = hit; true negative (TN) = correct rejection; false positive (FP) = false alarm,
type I error or underestimation; and false negative (FN) = type II error or overestimation.

Other values are derived: recall, hit rate, or true positive rate (TPR); selectivity or true negative rate (TNR);
precision or positive predictive value (PPV); negative predictive value (NPV); miss rate or false negative rate
(FNR); fall-out or false positive rate (FPR); false discovery rate (FDR); false omission rate (FOR); accuracy
(ACC); balanced accuracy (BA); and F1 score.

In the first step, we start with monitored learning, in which we have training examples that have been pre-
classified by experts and whose occurrence in new, yet unknown data sets or a hazard value can be identified.

For validation, the data is divided into test and training set. A simple, first supervised learning process can be
generated from a metric distance measure and a set of so-called labeled data. In case-based reasoning such as
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k-nearest neighbor, a reconciliation of existing labeled data for a new data point is suggested. Many classifiers
are linear, i.e., they are based on the separation of the positive and negative examples in a vector space with a
linear parting plane.

With the so-called kernel trick, simple linear separation methods can be applied to data that cannot be linearly
separated. Here, the feature vector in the learning process, be it the simple linear classifier or the support vector
machine, the perceptron, or the alike, is lifted into a higher-dimensional space, where this separation is possible.

An easy way to visualize these two metrics is to create a receiver operating characteristic curve (ROC curve).
This is a graph that shows the sensitivity and specificity of a logistic regression model. A model with high
sensitivity and high specificity has an ROC curve that is oriented towards the upper left corner. A low sensitivity,
low specificity model has a curve that is close to the 45-degree diagonal. The area under curve (AUC) gives us
an idea of how well the model can differentiate between positive and negative results. The AUC can be between
0 and 1. The larger the AUC, the better the model can classify the results correctly. We will be using AUC to
compare the performance of two or more models. The model with the higher AUC is the model with the best
performance.

In unsupervised learning, there is no training data with predefined classifications that can be used for orientation.
These can be found, for example, through clustering. In addition to the feature vector, a distance measure, a so-
called metric, always plays a role. Simple metrics for numerical data include the Euclidean distance, derived
from the so-called 2-norm, or another p-norm with p 6= 2 (e.g., absolute-sum or infinity-norm). In the case of
strings, the Levenshtein or edit distance could help, which turns out to be the set of editing operations and can
be found with dynamic programming.

Of course, linguistic peculiarities can also be used here (removal of fill words), etc. A frequency analysis in
texts (bag of words) can also lead to a measure of distance (often used with spam filters). For time series
there are similar distance measures as those of the dynamic time warp (DTW) procedure, which is based on the
approximate character string search. There are similarities between DTW and the Needleman-Wunsch algorithm
(global alignment) and the Smith-Waterman algorithm (local alignment). Distances between more complex data,
e.g., in tree structures or graphs, can also be found using feature vectors. As soon a metric space (M,d) with
real-valued distance measure d is available, machine learning processes can be used.

Mathematically, a mapping d : M×M → R is called a metric on M if the following conditions are satisfied
for any elements x, y and z of M: (1) positive definiteness: d(x,y) ≥ 0 (2) symmetry: d(x,y) = d(y,x) (3)
triangle inequality: d(x,y)≤ d(x,z)+d(z,y). This applies to all distance measures considered above; also note
(1) follows from (2) and (3). E.g., for clustering, inter- and intra-cluster distances are measured and linked
to a target value that needs to be optimized for an at least locally optimal clustering (k-means, k-medoid).
Also hierarchically organized agglomerative clustering (e.g., with thresholding dendrograms); or density-based
clustering methods are based on a suitably selected distance measure. Whether the metric refers to a string
problem or a tree distance problem, a time series or a combination of several submetrics, is dependent on the
internal and extended, enriched representation of the problem at hand in a suitable data structure.

Regularization is the method for avoiding model parameters growing into the extreme, they are usually included
into the loss function for the error to be minimized. Consider, a matrix factorization with model parameters for
each person and for each movie, and a training set of 500,000 ratings for 10,000 viewers and 1,000 movies. A
rank-50 unregularized factor model is almost certain to overfit, as the number of parameters is larger than the
number of data points for training. We can typically improve generalization by using a large value for the rank,
while reducing the effective number of parameters via regularization.

There are numerous application areas. Our selection indicates a mixture of algorithmic solutions to project
problems, and gives some hindsights on what further questions might arise in daily practice within the body of
a larger software company.

The actual meal may look different on every plate but the core of intelligent inference in practice remains
algorithmic. In our daily project work in the software industry, we crossed the following topics. They can serve
as on an outlook, on what the work on the algorithmic foundation of artificial intelligence is capable of, and
where it may head to. As a matter of being revenue drivers for real companies, this time we do not go into full
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algorithmic details. Even if not shown to the reader, for each of the topics, however, there is a working POC
implementation (mainly as Jupyter Notebooks in Python using ML libraries).

Before we dive into describing the problems, let us meditate. What are additional requirements for an AI in
practice?

Freedom from discrimination: AI systems should treat everyone in a non-discriminatory and fair manner.
For example, if AI is used as a guide for medical treatment, loan making, or job dying, then the same
recommendations apply to all people with the same symptoms, conditions, or professional qualifications. AI
developers and be made aware of how (human) prejudices find their way into AI. And they should themselves
reflect the diversity of the world in which we live.

Reliability: AI systems must be able to operate reliably, securely and continuously, and not only under normal
conditions, but also under unexpected circumstances or when they are attacked. Rigorous testing during
development and implementation is critical. People should always play a pivotal role in making decisions
about how and when to use AI systems.

Protection of privacy: Like other cloud technologies, AI systems also comply with applicable data protection
laws. These require transparency in the collection, processing and storage of data and provide suitable control
mechanisms for consumers so that they can decide for themselves how their data is used. AI systems may
only use private data in accordance with applicable data protection standards and must protect data securely
against theft.

Accessibility: For AI to benefit everyone, it must also incorporate human needs and experiences. AI systems
should generally be designed to understand the context, needs, and expectations of the people who will use
them. Design principles geared towards accessibility and inclusion help developers identify potential barriers.

Transparency: AI will affect people’s lives, so we should say when, and provide contextual information about
how, AI systems work, so that people can understand AI decisions and recognize possible wrong decisions
and prejudices more easily.

Accountability: As with other technologies, with AI systems, the people who die, who develop and deploy
them, are responsible for their use. When creating accountability standards for AI, we should draw on exper-
tise and best practices from other areas such as healthcare and data protection.

We see that the demands on an AI system are considerably high. In our opinion, full transparency is too high a
requirement. Self-explanatory AI systems are very difficult to design. How can a deep neural network that has
trained thousands and thousands of weight vectors and represents a complex graph-based real-value function as
a black box, explain why it recognizes what and how? Nonetheless there are neuro-symbolic approaches that
help to reason about data-driven inferences via adding symbolic representation and reasoning of knowledge.

After this brief reflection, we are ready to go on. In the following we give some insights to use cases and
potential projects.

25.2 Vacancy Simulation and Temporal Pattern Mining in Smart Homes

Home automation is building automation for a home, called a smart home or smart house. A home automation
system will monitor and/or control home attributes such as lighting, climate, entertainment systems, and appli-
ances. It may also include home security such as access control and alarm systems. When connected with the
Internet, home devices are an important constituent of the Internet of Things (IoT).

There is a growing application for machine learning based on data that is logged in relational DBs of smart home
router devices. This data can be extracted and exported and can be used to generate patterns for automated
control when leaving the house, or to detect temporal rules of frequent behavior. There are algorithms like
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PivotMiner for short patterns and CTD for complex disjunctive temporal patterns in form of a tree. Some
inferences are costly and have to be tuned to yield an acceptable speed. The crucial measure for these algorithms
is the confidence in the application of rules. It is also possible to compare the computer-generated rules with the
ones of the users.

25.3 Form Filling

Filling online forms can be a tedious task, as this often is repetitive and time-consuming. When OCR scans of
orders are provided and keywords are detected, there is still the problem of missing values. The AI must predict
these, based on historical data. This data imputation problem is a machine learning task to predict the values in
each cell. It is usually solved via an iterative (boosting) approach, beginning with simple values like the mean
of existing data and then using machine learning with the output values being the entry of a requested cell. The
classification values are judged either by given data or by user feedback, which in turn lets the algorithm learn
new values. Additional attention has to be given to the fact that some data like addresses becomes outdated.

25.4 Demand and Sales Prediction for Retail Trade

Financial forecasting is essential for all companies, especially in retail trade. The input are large databases
of weekly/monthly turnover sales, e.g., partitioned in many individual shops of a bigger retail company, and
the predictions wanted are the sales of the next month, allowing to also predict the upcoming demand. The
automatically inferred model can be compared with the model that is manually drawn by sales experts in the
company, which also allows to select and reduce the essential features for the machine learning process. Tools
like singular value decomposition and principal component analysis apply. Time series prediction algorithms
approaches like various moving averages are applicable.

25.5 Geo-Location Tagging for Better Goods Assortment

No doubt that the surrounding infrastructure in terms of schools, hospitals, shops, highly populated vs urban
area etc. have a large impact on the shopping behavior of people especially in certain stores (e.g., fashion,
daily needs). To combine previously web-crawled and subsequently tagged geo-location data together with
the goods assortment is of high importance for the distributor/seller. To interplay of spatial knowledge with
the prediction of the demands merged into one algorithm requires a combined machine learning classification
algorithm and several statistical stages of clustering as well as the application of correlation and covariance
matrices. Afterwards, the results can be visualized in an annotated (open street) map.

25.6 Automated Inventory List Creation with Vision and Speech

Compiling inventory lists is a tedious task especially for the combination of searching, displaying and note-
keeping. Suppose that we have a big wardrobe, with employees that must take pictures of all clothes and classify,
which type, color, size, texture and further features the fashion has, e.g., for which person age and sex a fashion
object suits. This process can be half-automated by using neural nets for vision, and further algorithms for
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speech detection. While there are some precompiled networks for vision and speech, they must be adapted to
meet this task.

25.7 Temporal Task-Motion Planning for Robots with Resources

There is an emergent need to enhance the capabilities of robots deployed in factories, warehouses, and other
logistics operations. In these settings, robots are required to pick up and deliver objects from multiple locations
within certain time frames. This gives rise to challenging task-and-motion planning problems, as it intertwines
logical and temporal constraints about the timing of operations with geometric and differential constraints re-
lated to obstacle avoidance and robot dynamics. Due to the limited load capacity, a robot may have to deliver
some objects before being able to pick up others. As a result, the robot may have to travel longer, which could
violate the temporal constraints. When not all tasks can be completed within the specified time frame, the robot
also must decide which tasks to abandon, while seeking to complete as many of the remaining tasks as possible.
Autonomous robots also need a reliable way to preserve their energy level and to recharge, while performing
a task such as inspection or surveillance. Toward this objective, we consider the multi-goal motion-planning
problem with multiple recharging stations, where a robot operating in a complex environment must reach each
goal while reducing the travel distance and the number of times it recharges. We search over a discrete abstrac-
tion, which is obtained via a probabilistic roadmap, and use a reward function to calculate when, where, and
whether it is beneficial to recharge. This results in short tours that also reduce the number of recharges. Such
tours are used to guide sampling-based motion planning as it expands a tree of collision-free and dynamically
feasible motions. For nonlinear dynamical robot models operating in obstacle-rich environments the efficiency
of the approach is highlighted.

25.8 Optimizing Integrated Production and Route-Planning

Given several production units located on some map, the task might be to plan the combined production and
delivery of goods according to the dynamically incoming orders including the time for the delivery. Such pro-
duction units often run 24/7 at different locations and have certain capacity limitations. The production might be
split into several chunks and should be small. Even the production waste might be sold and must be accounted
for. The distance to the customer has an impact on the cost, so that route planning must be linked to the selection
of the production venue. There are two options to solve the problem: one is Monte-Carlo tree search (e.g., with
NRPA), the other is rather classical Operations Research (OR) via Mixed-Integer Linear Programs (MILP), with
a two-stage approach. In the first stage a possible fragmented solution must be found that respects the ordering
and (per day) resource constraints, finding an assignment from units to he orders, the second stage optimizes
order execution in the units for minimizing their split.

25.9 Safe Travel Recommendation with Movement Data

In the touristic industry there are many data-driven inference task. If bookings are centrally stored, then refined
algorithmic solutions are needed to predict the change of customer’s booking behavior based on historical data
and incoming news available in different multimedia sources. Post-COVID there still will be the need to track
the flow of people e.g., in a resort to balance load and to prevent infections. Tracking data can be used for
mapping. Algorithms can infer if traces of people have an overlap in time and space. Interestingly, the color
nearest–neighbor problem solves this problem in sorting time O(n lgn); the number of colors (in the set of



25.12 Recommender Systems for eCommerce 435

traces) does not matter. This is also applicable to determine, if some salesmen could have met during their
travel.

25.10 Improved Static Code Analysis with Machine Learning

In the areas of formal methods and software engineering, there are several algorithms to perform static analysis
of code. This is used to detect redundant code or programming rule violations. This is usually done following
variable dependencies to remove possible flaws. e.g., in device drivers. One newer but highly demanding request
is to find security issues in the code, i.e., which contain vulnerabilities for intrusions like buffer overflows. It is
thought as an addition for the compiler that warns the programmer of producing code that may enable malicious
attacks. Machine learning algorithms based on textural pattern detection and graph structures, like abstract
syntax tree, call graphs etc. apply. The detection does not have to be perfect but to provide a low false positive
rate and a timely response during coding. Engineered algorithms are needed, also because of the heterogenous
data structures (graph, trees, strings) to be learnt. To apply machine learning algorithms, graph embeddings and
traversals are key ingredients.

25.11 Contract Prediction on Account Transaction Series

Another interesting task is to infer existing contracts of a customer on the mere basis of account transactions
data. The data might be present at bank institutions and been provided by the customer while using account
apps. This can be exploited for the advertisement of alternative contracts. While mostly monthly and simple,
transactions could also be weekly or irregular. Machine learning can be used to predict the next transaction that
will be executed, and a series of transactions may be clustered to a contract (e.g., insurances, rent, electricity
bills, regular payments) as one means for offering people better deals. The algorithmic challenge is to include
background knowledge about the kind of vendor, their interconnection; sometimes even the inclusion of geo-
localized data helps. As transactions are often done electronically, one could even infer more complex financial
patterns in the user behavior.

25.12 Recommender Systems for eCommerce

Recommender Systems are undoubtedly one of the major revenue drivers in online shops and eCommerce. Be-
sides WalMart, who was first to analyzed shopping bills, it was Netflix that broke through with recommendation
of films to customers. Nowadays, based on such collaborative filtering algorithms at Amazons and other online
shops, there always is recommendation based on analyzing link, purchase, and GUI interaction. Both have ap-
plication to recommend articles for sale, e.g., in an online fan shop. On top of users given only a session ID,
another problem to solve is the generation of stem product numbers for better generalization of rules. Another
problem is that the bills in smaller online shoppings are often sparse, so that some more preprocessing must be
done to apply association rule mining algorithms. Furthermore, dynamic information must be used for dynamic
pricing.
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25.13 Predictive Maintenance to Produce Assemblies

The problem in this project was to predict upcoming maintenance needed within the steel production to prevent
an early the wearout of motors of the welding units. A vector of sensory information on the production process
and the actuators is continuously recorded, and historical data on maintenances is given in separate files. The
inference task boils down to do time series prediction. One additional obstacle is that there often is a time shift
in between the time series patterns. There are several different options, one is the generation of sliding windows
for the time series to allow traditional learning algorithms to be executed, another is case-based reasoning based
a distance metric for time series dynamic time warp. Side issues are detecting and removing trends and finding
periods of repetition automatically via a Fourier transformation.

25.14 Knowledge for Retail

As a unique opportunity to support smart retail use cases may include intelligent intra-logistics, branch setup
optimization, retailing with smart refrigerators, and service robots. All aspects come with the goal of optimizing
and automating the merchandise management, as well as to provide the customer with detailed advice from
employees and a new shopping experience. A basic technology are so-called digital semantic twins, which
digitally mirror the stationary branch. This enables robots, for example, to fill shelves automatically, or to set
up individual stationary markets that adapt to customer behavior.

25.15 Industrial Inspection

In many areas of industrial engineering parts of high-end assemblies were inspected with microscopes. In a res-
olution of micrometers, the images of produced parts are examined and stitched, to discover defects or obscuring
particles. For this to work effectively, companies apply automated imaging. To reduce the working load of the
human microscope operator, an individual inspection plan is generated for every object shape. The task is to
find an algorithm to minimize the number of high-resolution images for inspection for objects of various shape,
and to generate a list of inspection waypoint, for which a compete cover is generated. Minimizing the number
of shots results in saving time and resources during object surface quality control in high-end manufacturing.
Similarly, high-resolution pictures arise from stitched images of drone images during the automated flight in-
spection of the blades of windmills, of bridges, or buildings, etc. The task is to find defects in the surfaces fully
automatically, or at least to lower the number of images for manual validation. If the motion planning problem
is resolved for the drone, different classification algorithms from computer vision are needed.

25.16 Skill Recommendation

One last possible application in our small selection is to develop a recommender system for skill suggestions
in employee training. The general recommendation would be of the type You have skill X and Y. Employees
with these skills are likely to also have skill Z. Such recommendation can be used for staff training, or in
managing project teams and tribes. Such skill recommender could cover: a) the identification of significant
patterns between employee skills and b) the generation of recommendations using suitable algorithms. The
research question would be: how can a recommender system based on collaborative filtering generate skill
suggestions for continuous employee training? Different matrix factorization methods apply, but also page rank
approaches can be used.
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Excellent online resources include Andrew Ng’s Stanford Machine Learning lectures. We also highlight the
work by Charles Elkan on predictive analytics and data mining. Moreover, there is a continuously and rapidly
growing body of publications at AI conferences (e.g., AAAI, IJCAI, ECML, ICML, KR, NIPS, SOCS, ICAPS).
Of course, journals like the Artificial Intelligence Journal or the Journal of Artificial Intelligence Research also
publish exciting research.

One IBM study revealed that 82 percent of companies would like to use Artificial Intelligence to increase sales.
However, 60 percent of the total of 5,000 surveyed decision-makers stated that they were concerned that they
would be held responsible for possible wrong decisions by the systems.

The criteria for a good learning process are often measured by the accuracy of their prediction. Alternatively,
criteria such as precision or yield are combined. We are often familiar with this problem of different negatives
from statistically ambiguous relationships in Corona tests.

Software implementations of classification, clustering and recommendation algorithms include R, Weka, the
ScipY and Scikit-Learn, Implicit and Surprise Python libraries, Orange, MATLAB,SPSS,SAS, STATA, SQL
Server Analysis Services, and many, many more. The reference for the PivotMiner for the inference on se-
quential short patterns is [325], while the one CTD for complex disjunctive temporal patterns is [498]. The
colored nearest neighbor solution can be found here [4]. There are many more. We suggest the reader to do
some literature snowballing on his/her own.
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event matrix score, 123
event queue, 411
event type, 120
event-driven multiagent-simulation system,

308
evolunationary computing, xii
evolutionary computing, viii
evolutionary learning, 191
exact computation, 381
exact medial axis, 378
expert card, 224
expert game, 217
expert knowlege, 130
explainability, 429
explanation, 258
explanation layer, 143
explicit-state model checking, 337, 347
explicit-state model checking on the GPU,

348
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front-end, 166
frontier search, 207
FSM behavior, 299
FSM learning, 191
full Delaunay hierarchy, 164
fused layer modeling, 377
fusing approach, 138
future event list, 412, 422
fuzzy control, viii

fuzzy ogic system, xii
fuzzy pattern matching, 138

game, 391
game description language, xv, 281
game encoding, 110
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game-theoretic method, 334
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heuristic search, 18
heuristic search planning, 257
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IEEE floating point value, 46
IIS, 145
illegal state, 279
image, 153, 209, 285
image-to-image, 164
imbalanced data, 152
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intrusion detection system, 129
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Kinback’s hand strength system, 238
Klondike Solitaire, 104
Klondike solitaire, 375
knowledge base, 217, 279
knowledge elicitation, 219
knowledge reasoning, 225, 226, 432
knowledge representation, viii, 225, 226,

432
knowledge set, 225
knowledge-based recommendation, 322
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last-mile connectivity, 297
LASVM, 164
latitude, 167
lava, 397
lazy greedy search, 269
LCM, 9
learning curve, 373
least common multiplier, 9
legal and regulary implication, 255
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MAP, 348
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Mastermind, 28
MAT, 172
match, 144
Math Kernel Library, 84

Index



444

mathematical program, 361
Mathlab, 3
matix factorization, 431
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minimax search, 295
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Occam’s razor, 272, 277
OCR scan, 433
octile grid, 41
octree, 377
off-line learning, 315
off-line optimization problem, 375
on-line learning, 315
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Operations Research, 104, 434
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optimal plan, 258
optimization via model checking, 412
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parallel event, 125
parallel NRPA, 359
parallel processing, 166
parallelisim for the masses, 200
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Pascal’s triangle, 9

path, 415
pathfinding, 409
pattern, 121
pattern collection, 278
pattern database, 35, 260
pattern database compression, 207
pattern database heuristic, 257
pattern length estimation, 133
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real-time execution model, 390
rear hand, 225
recall, 119, 125, 430
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recommender system, 309, 322, 435
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recursive Monte-Carlo search, 256
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self-explnatory system, 432
semi-external model checking, 347
sensitive-based clustering, 431
sensitivity, 430
sensor fusion, 145
sentiment analysis, 183
sequence alignment, 349
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some hope card, 236
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sound algorithm, 227
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state space explortation, 337
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