
www.ebook3000.com

http://www.ebook3000.org

Mastering Redis

Take your knowledge of Redis to the next level to build
enthralling applications with ease

Jeremy Nelson

BIRMINGHAM - MUMBAI

[FM-2]

Mastering Redis

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016

Production reference: 1260516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-818-1

www.packtpub.com

www.ebook3000.com

www.packtpub.com
http://www.ebook3000.org

[FM-3]

Credits

Author
Jeremy Nelson

Reviewers
Emilien Kenler

Saurabh Minni

Commissioning Editor
Kunal Parikh

Acquisition Editor
Harsha Bharwani

Content Development Editors
Kirti Patil

Mayur Pawanikar

Technical Editors
Utkarsha Kadam

Tanmayee Patil

Copy Editor
Merilyn Pereira

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Abhinash Sahu

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

[FM-4]

About the Author

Jeremy Nelson is the metadata and systems librarian at Colorado College, a 4-year
private liberal arts college in Colorado Springs. In addition to working 8 hours a
week on the library's research helpdesk, providing information literacy instructions
to undergraduates, and supervising the library's systems and cataloguing
departments, Nelson is actively researching and developing various components
and open source tools in the Catalog Pull Platform for use by Colorado College, the
Colorado Alliance of Research Libraries Consortium, and the Library of Congress.
He is also co-founder and CTO of KnowledgeLinks.io, a semantic web startup.

His previous library experience includes jobs at Western State Colorado University
and the University of Utah. Prior to becoming a librarian, he worked as programmer
and project manager at various software companies and financial services
institutions. His first book, Becoming a Lean Library, published in 2015, applies lean
startup and lean manufacturing ideas to libraries and library operations. Nelson's
undergraduate degree is from Knox College and his master's of science in library
and information science is from the University of Illinois Urbana-Champaign.

www.ebook3000.com

http://www.ebook3000.org

[FM-5]

About the Reviewers

Emilien Kenler, after working on small web projects, began focusing on game
development in 2008 while he was in high school. Until 2011, he worked for different
groups and specialized in system administration.

In 2011, he founded a company that sold Minecraft servers while studying computer
science engineering. He created a lightweight IaaS (https://github.com/
HostYourCreeper/) based on new technologies such as Node.js and RabbitMQ.

Thereafter, he worked at TaDaweb as a system administrator, building its
infrastructure and creating tools to manage deployments and monitoring.

In 2014, he began a new adventure at Wizcorp, Tokyo. The same year, Emilien
graduated from the University of Technology of Compiègne.

Emilien has written MariaDB Essentials for Packt Publishing. He has also contributed
as a reviewer on Learning Nagios 4, MariaDB High Performance, OpenVZ Essentials,
Vagrant Virtual Development Environment Cookbook, and Getting Started with MariaDB -
Second Edition, all books by Packt Publishing.

https://github.com/HostYourCreeper/
https://github.com/HostYourCreeper/

[FM-6]

Saurabh Minni has an engineering degree with specialization in computer science.
A polyglot programmer with over 10 years of experience, he has worked in a variety
of technologies, including Assembly, C, C++, Java, Delphi, JavaScript, Android, iOS,
PHP, Python, ZMQ, Redis, Mongo, Kyoto Tycoon, Cocoa, Carbon, Apache Kafka,
Apache Storm, and ElasticSearch. In short, he is a programmer at heart and loves
learning new tech-related things each day.

Currently, he is working as technical architect at Near (an amazing start-up building
a location intelligence platform). Apart from handling several projects, he was
also responsible for deploying an Apache Kafka cluster. This was instrumental in
streamlining the consumption of data in big data processing systems such as Apache
Storm, Hadoop, and so on at Near.

Saurabh is also the author of a book on Apache Kafka, Apache Kafka Cookbook, Packt
Publishing.

He has also been a reviewer on the book Learning Apache Kafka, Packt Publishing.

He is reachable on Twitter at @the100rabh and on GitHub at https://github.com/
the100rabh/.

This book would not have been possible without the continuous
support of my parents, Suresh and Sarla, and my wife, Puja. Thank
you for always being there.

www.ebook3000.com

https://github.com/the100rabh/
https://github.com/the100rabh/
http://www.ebook3000.org

[FM-7]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

www.ebook3000.com

http://www.ebook3000.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Why Redis?	 1

Is Redis right for me?	 2
Experimenting with Redis	 4
Popular usage patterns	 10
Redis isn't right because …try again soon!	 12
Summary	 14

Chapter 2: Advanced Key Management and Data Structures	 15
Redis keys	 16

Redis key schema	 16
Key delimiters and naming conventions	 18

Manually creating a Redis schema	 21
Deconstructing a Redis object mapper	 24

Key expiration	 30
Key cautions	 30

Big O notation	 31
Computing big O notation for custom code	 33

Reviewing the time complexity of Redis data structures	 34
Strings	 35
Hashes	 36
Lists	 37
Sets	 38

Table of Contents

[ii]

Sorted sets	 39
Advanced sorted set operations	 42
Bitstrings and bit operations	 43
HyperLogLogs	 45
Summary	 46

Chapter 3: Managing RAM – Tips and Techniques
for Redis Memory Management	 47

Configuring Redis	 48
Master-slave	 48

32-bit Redis	 49
About the INFO memory	 50

Key expiration	 53
LRU key evictions	 58
Creating memory efficient Redis data structures	 67

Small aggregate hashes, lists, sets, and sorted sets	 67
Bits, bytes, and Redis strings as random access arrays	 74
Optimizing hashes for efficient storage	 75

Hardware and network latencies	 78
Operating system tips	 81
Summary	 81

Chapter 4: Programming Redis Part One – Redis Core,
Clients, and Languages	 83

Redis internals	 84
Understanding redis.h and redis.c	 89

Getting ready for Redis development with Git	 96
Exercise – creating your own redis command	 98

Redis Serialization Protocol (RESP)	 101
Pipelining	 104

Redis RDB format	 105
Coroutines using Redis and Python	 108

Todo list application using Node.js and Redis	 113
Replication and public access	 115

Summary	 116

www.ebook3000.com

http://www.ebook3000.org

Table of Contents

[iii]

Chapter 5: Programming Redis Part Two – Lua Scripting,
Administration, and DevOps	 117

The use of Lua in Redis	 117
Using KEYS and ARGV with Redis	 126
Advanced Lua scripting with Redis	 131

MARC21 ingestion	 131
Online Storefront Paper Stationery	 133
Interoperability using JSON-LD, Lua, and Redis	 136
Redis Lua Debugger	 140

Programming Redis administration topics	 144
Master-Slave replication	 144
Transactions with MULTI and EXEC	 147

Redis role in DevOps	 150
Summary	 151

Chapter 6: Scaling with Redis Cluster and Sentinel	 153
Approaches to partitioning data	 153

Range partitioning	 154
List partitioning	 157
Hash partitioning	 160
Composite partitioning	 161
Key hash tags	 162

Clustering Redis with Twemproxy	 163
Testing Twemproxy with Linked Data Fragments server	 164

Redis Cluster background	 170
Overview of running Redis Cluster	 171
Using Redis Cluster	 173

Live reconfiguration and resharding Redis cluster	 178
Failover	 181
Replacing or upgrading nodes in Redis Cluster	 184

Monitoring with Redis Sentinel	 185
Sentinel for Area Code List Partition	 188

Summary	 191

Table of Contents

[iv]

Chapter 7: Redis and Complementary NoSQL Technologies	 193
The proliferation of NoSQL	 193
Redis as an analytics complement to MongoDB	 199
Redis as a preprocessor complement to ElasticSearch	 211

Using Redis and ElasticSearch in BIBCAT	 212
ElasticSearch, Logstash, and Redis	 217

Redis as a smart cache complement to Fedora Commons	 219
Summary	 225

Chapter 8: Docker Containers and Cloud Deployments	 227
Linux containers	 228
Docker basics with Redis	 234
Layers in Docker images	 242

Docker filesystem backends	 244
Building images with a Dockerfile	 249

Hosting and publishing Docker images	 251
Docker and Redis issues	 252
Packaging your application with Docker Compose	 253
Redis and AWS	 257
Dedicated cloud hosting options	 259
Redis Labs	 259

DigitalOcean Redis	 260
Summary	 261

Chapter 9: Task Management and Messaging Queuing	 263
Overview of Redis Pub/Sub	 263
Pub/Sub RESP replies	 265

SUBSCRIBE and UNSUBSCRIBE RESP Arrays	 265
PSUBSCRIBE and UNSUBSCRIBE arrays	 266
Pub/Sub with Redis CLI	 267

Redis Pub/Sub in action	 269
First workstation using Python Pub/Sub	 271
Second workstation Node.js Pub/Sub	 274
Third workstation Lua Client Pub/Sub	 275

Redis keyspace notifications	 279
Task management with Redis and Celery	 283
GIS and RestMQ	 287

Adding task management with RestMQ	 290
Messaging with Redis technologies	 292

Messaging with Disque	 292
Summary	 294

www.ebook3000.com

http://www.ebook3000.org

Table of Contents

[v]

Chapter 10: Measuring and Managing Information Streams	 295
Extracting, transforming, and loading information with Redis	 295

Extracting JSON to transform into RESP	 302
Security considerations when managing Redis	 308

Redis protected mode	 309
Command obfuscation	 311
Operational monitoring with a Redis web dashboard	 311

Machine learning and Redis	 312
Naïve Bayes and work classification	 313

Creating training and testing datasets	 316
Extracting word Tokens from BIBFRAME Works	 318
Applying Naïve Bayes	 321

Linear regression with Redis	 324
Summary	 329

Appendix: Sources	 331
Index	 335

www.ebook3000.com

http://www.ebook3000.org

[vii]

Preface
The intention of Mastering Redis is to build upon your basic knowledge of Redis
through two ways; provide the deeper meaning of the context and theory behind
Redis and its technologies, and increase your practical day-to-day skills with
Redis. The Mastering in this book's title implies an ongoing process and not an end
destination. What is exciting about Redis is its ongoing and public evolution into the
powerful data manipulation and storage technology of today.

The philosophy behind Redis
Salvatore Sanfilippo has, over the lifespan of the project, articulated a distinct
view and opinion about the direction and functionality of Redis. In a January 2015
blog post about benchmarking Redis against other databases, Sanfilippo states "I
don't want to convince developers to adopt Redis. We just do our best in order to
provide a suitable product, and we are happy if people can get work done with
it. That's where my marketing wishes end." Sanfilippo and a small core group
of Redis developers follow the successful open source governance model of the
"benevolent dictator for life" (BDL), where a single person is the ultimate arbitrator
of what is committed into the Redis code base. The success of the BDL model,
evidenced by open source projects such as Linux kernel development and the
Python programming language, is replicated in Redis with Sanfilippo as its primary
developer and maintainer.

Preface

[viii]

The BDL model failure modes can be catastrophic if the dictator abandons the project,
or worse, is incapacitated through illness or death. Another significant problem
that has emerged particularly with Redis is when potential contributors submit pull
requests and action on their pull requests is delayed, or more often, ignored. To be
fair, the volume of changes that must be examined, tested, and merged into the main
code base can be substantial and requires a passionate and dedicated gatekeeper.
Linus Torvalds, the initial creator and current BDL for the Linux kernel project, has
seen his role evolve more into merging code contributed by others and providing
vision and leadership for Linux than writing code himself. Sanfilippo, while
acknowledging this problem in a thread on the main Redis e-mail distribution,
gives two main reasons for continuing with the current BDL model for Redis:

•	 A consistent vision for the project's development and future directions
•	 Accountability for any new or merged changes

Sanfilippo's vision of Redis, as an easy-to-configure, small-memory-footprint (for
itself and NOT for its datasets!) and reliable key-value data store has been crucial to
the continued rise in Redis's popularity among developers and organizations. His
vision does cause tension, especially when new features for Redis are proposed, such
as expiring specific sub-values in a hash or offering loadable modules for optional
functionality, and these features are rejected for inclusion into Redis. Sanfilippo's
desire to keep Redis small and focused on being a memory-only database drives his
decisions and development practice.

In 2011 blog post, he elucidated his vision for Redis in a seven-point manifesto for
Redis and the Redis development process. Briefly, here are the seven points:

1.	 A DSL for Abstract Data Types: Redis is a Domain-Specific Language (DSL)
for representing and using abstract data structures. These data structures
include both the operations (Redis commands) as well as the memory
efficiency and time complexity of storing and manipulating those data
structures with the associated Redis commands.

2.	 Memory storage is the #1: By storing all of the data in a computer's RAM,
Redis's performance across different systems is more consistent, the various
algorithms used to implement these data structures run in a more predictable
fashion, and more complex data types such as sorted sets are easier to
implement in an in-memory database.

www.ebook3000.com

http://www.ebook3000.org

Preface

[ix]

3.	 Fundamental data structures for a fundamental API: Redis implements a
fundamental API for its fundamental data structures. This API, made up
of Redis commands and corresponding data structures, tries to intelligibly
resemble the data structures the API reads and writes to the computer's
memory. Following this design, the Redis API builds more complex
operations into the API by building from simpler operations on data
structures in the API.

4.	 Code is like a poem: The most elusive of the seven points in this manifesto.
Sanfilippo gives his aesthetic preference for code that fits into a larger
narrative of the entire Redis project. His point is that Redis's coding style
and approach are geared for humans to construct a narrative. So, inclusion
of third-party code depends in part on how well the code fits into the large
narrative of Redis and Redis's source code.

5.	 We're against complexity: Complexity in code is to be avoided. Given a
choice to build a small feature with a lot of implementing of code or to
forgo the functionality, Redis will take the latter route and forgo the extra
complexity and overhead of adding complexity to the code base.

6.	 Two levels of API: Redis starts with a subset of its API to run in a distributed
manner and a larger, more functionality-rich API to support multikey
operations. This separation allows significant features such as the Redis
master-slave and Redis cluster modes of operation.

7.	 We optimize for joy: An emotional appeal and very intelligent statement,
for developers and operators of technology in general, the thrill of tuning
technology to solve difficult and complex problems does elicit feelings of
happiness and excitement about the future possibilities of Redis.

What this book covers
As you read Mastering Redis, two themes will emerge that parallel the development/
operations dualism of the popular and trendy operations and processes, commonly
known as DevOps. To help guide your approach to the material contained in the
chapters, each chapter's topics will be identified as either software development or
system operations focused. Due to the increasingly blurred line between the two,
getting a topical understanding of the topics in each trend increases your and your
team's abilities to quickly and efficiently develop and deploy Redis solutions for
your project or as a piece of your technological infrastructure requirements.

Preface

[x]

In the following diagram, each chapter's horizontal position visually represents
whether the topics weigh towards software development or systems operations:

DevOps Chapter Tracks

Chapter 1, Why Redis?, introduces the Redis development philosophy as articulated
by Salvatore Sanfilippo, the founder and primary maintainer of Redis.

Chapter 2, Advanced Key Management and Data Structures, builds upon your basic
knowledge of Redis by expanding and explaining Redis data structures and
key management, including the important topic of constructing meaningful and
expressive key schemas for your applications.

Chapter 3, Managing RAM – Tips and Techniques for Redis Memory Management,
looks at the various options Redis provides to optimize the memory usage in your
applications including Redis support for various caching and key eviction strategies
based on Less Recently Used (LRU) implementations in Redis.

www.ebook3000.com

http://www.ebook3000.org

Preface

[xi]

Chapter 4, Programming Redis Part One – Redis Core, Clients, and Languages, is an
advanced topic on programming applications. This chapter starts with an overview
of Redis's core C programming language implementation and includes an in-depth
examination of selected C code snippets to deepen your knowledge of Redis. It
continues with how to use three different Redis clients, with short programming
exercises in Python, Node.js, and Haskell.

Chapter 5, Programming Redis Part Two – Lua Scripting, Administration, and DevOps,
is an advanced topic on programming applications. It starts with an overview of
Redis server-side Lua scripting and how to use Lua more effectively with Redis. The
chapter next expands on a few popular programming design patterns with Redis,
with specific examples of how different people and companies have used these
patterns in their operations. This chapter ends with how Redis is used in typical
DevOps scenarios from the perspective of a software developer.

Chapter 6, Scaling with Redis Cluster and Sentinel, explores two relatively recent
additions to Redis—Redis Cluster and Redis Sentinel. Redis Sentinel is a special
high-availability mode for monitoring the health of masters and slaves, along with
the ability to switch if a failure occurs in any master or slave Redis instance. Redis
Cluster, mentioned previously, is now a production-ready way to store large amounts
of data that may be too big to fit into the memory of a single machine, by running
multiple Redis instances through key sharding. While these topics have more of an
operational focus, engineering solutions with Redis should, at the minimum, know
the benefits and limitations of how to use Redis Cluster.

Preface

[xii]

Chapter 7, Redis and Complementary NoSQL Technologies, starts with the recognition
that for most organizations, their information technology stack includes a
heterogeneous mixture of different types of data and processing solutions. Redis is
an ideal way to extend the functionality of other NoSQL data storages options, and
in this chapter, we'll see how Redis can be used with MongoDB, ElasticSearch, and
Fedora Digital Repository. This chapter should be of interest to both developers and
system administrators who may need to develop and support complex business
requirements with multiple solutions.

Chapter 8, Docker Containers and Cloud Deployments, shows how using Redis as in
Docker containers and images can simplify management and improve security and
reliability of your Redis solutions. Docker is an open source container technology
for applications that is rapidly being adopted by many enterprises. Building upon
Docker with Redis, we'll then examine specific challenges of using Redis on the
most popular computing cloud providers starting the largest and most established,
Amazon Web Services, followed by Google's Compute Engine and Microsoft Azure,
with special attention to other cloud service providers such as Rackspace and Digital
Ocean. We'll finish the chapter by examining Redis's offerings of specialized cloud
services that focus on hosting and managing your Redis instances.

Chapter 9, Task Management and Messaging Queuing, begins with an in-depth
exploration of Redis Pub/Sub commands. This involves first looking at various
examples of how publishers and consumers can communicate between different
processes, programs, Redis clients, operating systems, and remote computers.
Further in the chapter, we'll expand upon Redis Pub/Sub and look more generally
at using Redis as a messaging queue between different layers in an enterprise
computing ecosystem. This chapter ends by wrapping up all the concepts through a
detailed example of using Redis with Celery as task management and a messaging
queue with Pub/Sub support.

Chapter 10, Measuring and Managing Information Streams, builds upon the previous
chapter's concepts to show how Redis is be used as a real-time data aggregator for
disparate data streams of various technology systems used within an organization.
We'll then examine the Redis security model and new security features with the
latest version Redis. A web-based, operational dashboard will visualize the incoming
data flows into Redis using our knowledge of Redis clients. Next, we'll show how
to apply machine learning algorithms, such as Naive Bayes, to these Redis-based
information flows to provide a richer snapshot and deepen your understanding of
the operations occurring within an organization or department.

Appendix, Sources, acknowledges the source of extracts used in the chapters and
presents links chapter-wise for further reading.

www.ebook3000.com

http://www.ebook3000.org

Preface

[xiii]

Earn your Mastering Redis Open Badge
The Mozilla Foundation—the same open source organization that sponsors the
development of the Firefox web browser—started a project called Open Badges that
allows organizations to create and then issue portable and non-proprietary badges to
individuals to signal accomplishments:

At the Mastering Redis website, you have the opportunity to signal to your current
and potential employers your increased knowledge and skills with Redis by taking
a series of online quizzes and earning your Mastering Redis Open Badge. Your Open
Badge can be shared through popular social networking sites such as Facebook,
Twitter, or LinkedIn.

The Mastering Redis Open Badge is free to readers who have purchased the book.
However, for readers who don't own a copy, you can still earn your Open Badge at
the book's website for a nominal fee. The opportunity to connect with other badge
earners, learning from their experiences with Redis while sharing your own stories
and knowledge and thus encourages learning long after you have finished reading
Mastering Redis. Our hope is that this book can immediately help your understanding
of Redis and that by earning your Open Badge, you can document this professional
achievement.

What you need for this book
Redis is intended to be run under a POSIX-based environment such as Linux or
Mac OX with a modern C++ compiler. Microsoft Windows versions of Redis are
available but not officially supported. Please see the Windows section at http://
redis.io/download for more information. Examples in this book also use Python
3.5 with the Redis Python client (https://github.com/andymccurdy/redis-py),
Lua, and Node.js with the Redis Node.js client (https://github.com/NodeRedis/
node_redis).

Who this book is for
If you are a web developer with a basic understanding of the MEAN stack,
experience in developing applications with JavaScript, and basic experience with
NoSQL databases, then this book is for you.

http://redis.io/download
http://redis.io/download
https://github.com/andymccurdy/redis-py
https://github.com/NodeRedis/node_redis
https://github.com/NodeRedis/node_redis

Preface

[xiv]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"First, when you call a timeout with the EXPIRE command on a key, the timeout
can only be cleared if you delete the key or replace the key."

A block of code is set as follows:

defcreate_tea(datastore, name, time, size):
 # Increment and save global counter
 tea_counter = datastore.incr("global/teas")
 tea_key = "tea/{}".format(tea_counter)
 datastore.hmset(tea_key,
 {"name": name,
 "brew-time": time,
 "box-size": size})
 return tea_key

Any command-line input or output is written as follows:

127.0.0.1:6379> LATENCY HISTORY command

1) 1) (integer) 1433877379

 2) (integer) 1000

2) 1) (integer) 1433877394

 2) (integer) 250

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

www.ebook3000.com

http://www.ebook3000.org

Preface

[xv]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.
com/PacktPublishing/Mastering-Redis. We also have other code bundles
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Redis
https://github.com/PacktPublishing/Mastering-Redis
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[xvi]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringRedis_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

www.ebook3000.com

https://www.packtpub.com/sites/default/files/downloads/MasteringRedis_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringRedis_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.ebook3000.org

[1]

Why Redis?
Why Redis? Or, why any technology? Such questions are often mumbled under the
breath or asked by the more brave, cynical, or knowledgeable when encountering
any new technology or service. Sometimes, the answer is obvious, the technology
or service offers features and functionalities that meet an immediate need or
solves a vexing problem. In most situations, the reasons for adopting a technology
may not be as clear-cut or as apparent or are cloaked in sometimes hyperbolic or
indecipherable marketing jargon. Depending on your needs, Redis falls somewhere
closer to the obvious end of the spectrum instead of a marketing sales pitch. You may
already know and have used Redis for some uses, such as meeting a data storage
need or service requirement for an application, but you may not be aware of all that
Redis can do or how other people are using Redis in their own organizations. Redis,
best known for its speed, is not only fast in its execution but also fast in the sense
that solutions built with Redis have fast iterations because of the ease in configuring,
setting up, running, and using Redis.

The growing popularity of Redis, an open source key-value NoSQL technology, is
a result of Redis's stability, power, and flexibility in executing a wide range of data
operations and tasks in the enterprise, REmote DIctionary Server (Redis), is used by
a diverse set of companies from start-ups to the largest technology companies such
as Twitter and Uber, as well as by individuals and teams in government, schools,
and organizations. We'll start this chapter with a short survey of a few popular
design patterns for Redis and then, provide practical advice on determining whether
Redis is the right choice for you.

We'll then go through a detailed example of how Redis a legacy metadata format
used by public and academic libraries – including some museums – to illustrate
Redis's flexibility and power with just three data structures and an intentional key
design. Finishing this chapter off, we'll touch upon recently added functionalities
and commands to Redis.

Why Redis?

[2]

Is Redis right for me?
A relatively common question posted to the general Redis e-mail mailing list, asks
whether Redis is a good choice for a variety of uses, such as running reviews on a
website, caching results from MySQL databases queries, or meeting other specific
requirements that the poster might have for his/her project, product, website, or
system. In general, Redis excels as a tool for a fast read/write of data and has been
used with great success by small and large organizations alike for a wide range of
uses. Salivator Sanfilippo makes a strong case that Redis does not need to replace the
existing databases but is an excellent addition to an enterprise for new functionalities
or to solve sometimes intractable problems1.

Being a single-threaded application with a small memory footprint, Redis achieves
durability and scalability through running multiple instances on the current
multicore processors available in data centers and cloud providers. With Redis-rich
master-slave replication and now with Redis clusters are released in production,
creating multiple Redis instances are relatively cheap operation in terms of memory
and CPU requirements, allowing you to both scale and increase the durability of
your larger applications.

Redis allows you to conceptualize and approach challenging data analysis and
data manipulation problems in a very different manner as compared to a typical
relational data model. In an SQL-based relational database, the developer or database
administration creates a database schema that organizes the solution domain through
normalizing the data into columns, rows, and tables with connecting joins through
foreign-key relationships.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[3]

Even other NoSQL data storage technologies such as MongoDB or Elasticsearch
require the data to be modeled as JSON document data structures first before being
loaded into the actual storage. Redis skips this intermediate but necessary step
in these other technologies, by just providing sets of commands for specific data
structures such as strings, lists, hashes, sets, and sorted sets. In this approach, you
are algorithmically interacting with your data, constructing solutions directly with
how the data is stored in Redis and the available commands, and enabling a more
direct tuning and monitoring of the underlying operating system's memory and
hard disk space.

Thinking how data is represented and managed as basic computing data structures
such as lists, hashes, and sets, allows you to grasp both positive and negative
characteristics of the data and its structures in a more fundamental, mathematical
fashion. Going through the intermediate structuring process such as normalizing
your data for a relational database or converting it into a JSON document for
MongoDB or Elasticsearch, while valuable, imposes a structure that Redis does not.
As you architect your solutions, you may discover that your data and your problem
need more of the persistence and structure of a technology other than Redis, but in
the meantime, your exploration of the properties and the structure of data in Redis
will be a useful exercise because of this algorithmic approach to your information
and problem.

Why Redis?

[4]

Redis may not be the best technology to use when you have a large amount of
infrequently used data that does not require immediate access. An SQL-based
relational database or a document-store NoSQL technology such as CouchDB or
MongoDB may be a better choice than Redis. However, with Redis Cluster now
fully supported as of version 3, large datasets can be sharded and used in Redis
as a distributed key-value data store. As more organizations and individuals gain
experience with the use of Redis Cluster, expect that this reason to not choose Redis
for a project will fade away.

Experimenting with Redis
Redis's rich set of data types allows for easy and fast experimentation of data-based
algorithms and approaches on information. In my own experience with Redis,
this ability to quickly model and use solutions is based on the characteristics of
the different data structures of Redis and the flexibility in defining the structure
and syntax of the keys. I was impressed and excited to be able to name a chunk of
malleable data and to relate this name with other keys through the naming semantics
of the key. This is a great feature of Redis that is sometimes underappreciated as to
how powerful and useful a tool it can be in developing and understanding your data.

I first started experimenting with Redis in 2011 as a metadata and systems librarian
at Colorado College at the base of the Pikes Peak Mountain in Colorado. Most
libraries around the world store and structure their bibliographic data in a somewhat
surprisingly durable binary format called, MAachine-Readable Cataloging (MARC),
substantially developed in the late 1960s by Henriette Avram of the United States
Library of Congress. The current version, MARC 21, is officially supported by the
Library of Congress (however, it is in the process of replacing MARC with a new
RDF-based linked data vocabulary called BIBFRAME). MARC21 initially encoded
information about the books on the library's shelves and has been extended to support
e-books available for checkout; video, music, and audio formats; physical formats
such as CDs, Blu-ray discs, and online streaming formats; and academic libraries.
In fact, an increasingly large percentage of its budget is devoted to the purchase of
journal articles through online publishers and electronic-content vendors.

The MARC format is made up of both fixed length and variable-length fields
numbered in the three-digit range of 001–999, which in turn can have either character
data or subfields with data. In addition, each field can have up to two indicators that
modify the meaning of the field. Two of the most common and important MARC
fields are the 100 Main Entry – Personal Name field and the 245 Title Statement field.
Here is an example from David Foster Wallace's book Infinite Jest:

=100 1\$aWallace, David Foster

=245 10$aInfinite jest :$ba novel$cDavid Foster Wallace

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[5]

To use this MARC data in Redis, each MARC record was a hash key modeled as
marc:{counter} with the counter being a global incremental counter. Each MARC
field is a hash with the key modeled as marc:{counter}:{field}. As some MARC
fields are repeatable with different information, the hash key would include a global
counter such as marc:{counter}:{field}:{field-counter}. Simply storing these
two fields would result in the following six Redis commands:

127.0.0.1> INCR marc

(integer 1)

127.0.0.1:6379> INCR marc:1:100

(integer 1)

127.0.0.1> HSET marc:1:100:1 a "Wallace, David Foster"

OK

127.0.0.1:6379> INCR marc:1:245

(integer) 1

127.0.0.1:6379> HMSET marc:1:245:1 a "Infinite jest :" b "a novel"

c "David Foster Wallace"

OK

127.0.0.1:6379> HGETALL marc:1:245:1

1) "a"

2) "Infinite jest :"

3) "b"

4) "a novel"

5) "c"

6) "David Foster Wallace"

Why Redis?

[6]

This key structure in Redis looks like the following:

MARC in Redis

The storage of MARC data in Redis can be accomplished with just a single Redis
data type, a hash, along with a consistent key syntax structure. To improve the
usability of this bibliographic data in Redis and to realize a very common use case of
retrieving library data as a list of records sorted alphanumerically by title and author
name (in library parlance two access points) is also accomplishable with other Redis
data types such as lists or sorted sets.

Representing MARC fields and subfields in Redis by using hashes and lists was
informative. Further, I wanted to see if Redis could handle other types of book and
material metadata models that were being put forward as replacements for MARC.
The Functionality Requirements for Bibliographic Record, or FRBR, was a document
that put forward an alternative to MARC and was based on entity-relationship (ER)
models. The FRBR ER model contained groups of properties that were categorized
according to abstraction. The most abstract is the Work class, which represents the
most general properties to uniquely identify a creative artifact with such information
as titles, authors, and subjects.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[7]

The Expression class is made of properties such as edition and translations with a
defined relationship to the parent Work. Manifestations and Items are the final two
FRBR classes, capturing more specific data where Item is a physical object that is a
specific instance of a more general Manifestation.

With few actual systems or technologies that implement an FRBR model for library
data, Redis offers a way to test such a model with actual data. Using existing
mappings of MARC data to FRBR's Work, Expression, Manifestation, and Item, the
MARC 100 and 245 fields from the above would be mapped to an FRBR Work in
Redis as shown by these examples of using the Redis command-line tool, redis-cli, to
connect to a Redis instance:

127.0.0.1:6379> HMSET frbr:work:1 title "Infinite Jest" "created by"
"David Foster Wallace"

OK

This new work, frbr:work:1 can be associated with the remaining classes with the
following Redis keys and hashes:

127.0.0.1:6379> HMSET frbr:expression:1 date 1996 "realization of"
frbr:work:1

OK

127.0.0.1:6379> HMSET frbr:manifestation:1 publisher "Little, Brown and
Company" "physical embodiment of" frbr:expression:1

OK

127.0.0.1:6379> HMSET frbr:item:1 'exemplar of' frbr:manifestation:1
identifier 33027005910579

OK

In the previous example for Expression, a specific date is captured along with a
relationship back to frbr:work:1 through the realization of a property. Similarly,
the frbr:manifestation:1 hash has two fields; a publisher, and the physical
embodiment of. The physical embodiment of field's value is the frbr:expression:1
key that links the Manifestation back to the Expression. Finally the frbr:item:1
hash has a barcode identifier property and a relationship key back to the
frbr:manifestation:1 hash.

Why Redis?

[8]

In both the MARC and FRBR experiments, the Redis hash data structure provided
the base representation for the entity. This strategy starts to fail when there can be
more than one value for a specific property, such as when representing multiple
authors of a work. The first attempt to solve this problem for those properties with
multiple values is by creating a counter for each MARC field as outlined above. For
example, the MARC 856 field – Electronic Location and Access – stores the URL for
e-books or other material that has a network-resolvable URL. If we want to add two
URLs to the preceding MARC example, such as a link to the book in Google Books
and a wiki on the book, the Redis commands would be as follows:

127.0.0.1:6379> INCR global:marc:1:856

(integer) 1

127.0.0.1:6379> HMSET marc:1:856:1 ind1 4 ind2 1 u https://books.google.
com/books?id=Nhe2yvx6hP8C

OK

127.0.0.1:6379> HMSET marc:1:856:2 ind1 4 ind2 2 u http://infinitejest.
wallacewiki.com/

OK

This naming approach for the MARC keys meets the requirement for repeating
MARC fields, but how can we support the edge case wherein a single MARC field
has multiple, repeating subfields? The first pass to solve this problem may be to store
a string with some delimiter between each subfield as the value for a particular filed
in the MARC. This would require additional parsing on the client side to extract all
the different subfields, and we would lose any additional advantages that Redis may
provide if these multiple subfields were stored directly in Redis. The second approach
to solving the MARC field with multiple subfields in a MARC field would be to
further expand the Redis key syntax and use a list or some other data structure as
value for each subfield key. Expanding the MARC 856 example, if we wanted to add
a second e-book URL, maybe a URL to the Amazon Kindle version, it would look like
the following in Redis:

127.0.0.1:6379> LPUSH marc:1:856:1:u https://books.google.com/
books?id=Nhe2yvx6hP8C http://www.amazon.com/Infinite-Jest-David-Foster-
Wallace/

(integer) 2

127.0.0.1:6379> HSET marc:1:856:1 u marc:1:856:1:u

(integer) 0

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[9]

Storing multiple subfields in a Redis list works well, but what if I don't want any
duplicate values in a MARC field's subfields? This can be easily solved by the use of
Redis's set data type, which, by definition, only contains unique values. The use of
sets for the subfield values seems like a good solution, but it fails, if we need to keep
the ordering of the values in the subfield.

Fortunately, Redis's sorted set data type fits our use case admirably by ensuring a
collection of unique subfield values with no duplications, and finally maintaining,
the subfield ordering. The resulting Redis commands for storing the URLs of a book
in the MARC 856 field would look the following:

127.0.0.1:6379> DEL marc:1:856:1:u

(integer) 1

127.0.0.1:6379> ZADD marc:1:856:1:u 1

https://books.google.com/books?id=Nhe2yvx6hP8C 2

http://www.amazon.com/Infinite-Jest-David-Foster-Wallace/

(integer) 2

127.0.0.1:6379> ZRANGE marc:1:856:1:u 0 -1 WITHSCORES

1) "https://books.google.com/books?id=Nhe2yvx6hP8C"

2) "1"

3) "http://www.amazon.com/Infinite-Jest-David-Foster-Wallace/"

4) "2"

Why Redis?

[10]

In this example, we examined how to represent a legacy format for library data
called MARC, and how MARC's fields and subfields data can be stored in Redis by
using hashes, and how the storing of subfields changes as more requirements are
met, moving from storing subfields first as Redis lists, followed by sets, and finally
finishing by using the sorted set data type. This iterative experimentation hopefully
illustrates an important reason for using Redis, namely the ability to quickly test out
different methods of storing data and how the characteristics of different Redis data
types such as hashes, lists, sets, and sorted sets can be used to represent both the data
and some of the requirements for storing and accessing this data.

Popular usage patterns
A very popular use pattern for Redis is as an in-memory cache for web applications.
Redis is available as a caching option for popular web frameworks such as Django,
Ruby-on-Rails, Node.js, and Flask. As a popular caching technology Redis excels in
web applications for storing new data while evicting stale data. For web applications,
the cached data can range from single HTML character strings, widgets, and
elements to entire web pages and websites.

By utilizing Redis's ability to set an expiration time on a key, one of Redis' popular
caching strategies called Less Recently Used (LRU) is robust enough to handle even
the largest web properties, with the most popular content remaining in cache but stale
and little-used data being evicted from the data store. This caching use case doesn't
assume that the original web element or page is generated from the data in Redis; most
likely, the web content was dynamically generated from other sources of data with
Redis, in this use pattern, and operates as an excellent web caching layer in this setup.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[11]

The second popular use pattern for Redis is for the metric storage of such
quantitative data such as web page usage and user behavior on gamer leaderboards.
Using bit operations on strings, Redis very efficiently stores binary information on a
particular characteristic. Usage for a website could be stored with a key constructed
from a date such as page-usage:2016-11-01, which has a string attached with a bit
flipped to 1 the first time a web page is accessed by a user.

The daily usage for the website for November 1 can be obtained through a simple
BITCOUNT Redis command on the page-usage:2016-11-01 key. In a 2011 blog
post, individuals at a start-up named Spool explain in detail how they use bitmaps
and Redis bit operations to store the user activity on their website with this design
pattern.

Why Redis?

[12]

The third popular Redis use pattern is as communication layer between different
systems through a publish/subscribe (pub/sub for short) model, where one can post
messages to one or more channels that can be acted upon by other systems that have
subscribed to or are listening to that channel for incoming messages.

Typically, publishers do not need to know the specific subscribers to send messages
to them (say in a point-to-point messaging model); only the message contents and
what channel to send the message should be known. Similarly, a subscriber does not
need to know individual publishers, only the channel to receive messages. The pub/
sub pattern is nice because it scales easily, and the publishers and subscribers can be
very different programs and systems.

Redis isn't right because …try again
soon!
As an active open-source project, Redis adds new functionality and improvements
that may solve a problem that you or someone in your organization decided it
wasn't suited for in the past. Optimizing the use of such a valuable and functional
tool as Redis means understanding its recent history and keeping current with new
functionality being developed and tested for inclusion in the latest stable version
of Redis. Redis follows a common semantic versioning pattern of major.minor.
patchlevel with a minor even number denoting a stable version and an odd minor
number an unstable branch.

www.ebook3000.com

http://www.ebook3000.org

Chapter 1

[13]

For example, the Redis 2.8.9 release introduced two of the more significant
improvements, namely the HyperLogLog, a highly efficient data structure for a
population estimate and of unique elements, and the new ZRANGEBYLEX, ZLEXCOUNT,
and ZREMRANGEBYLEX commands for sorted sets. Both these are improvements that
will be discussed at length in Chapter 2, Advanced Key Management and Data Structures.
Redis Cluster – released for production use in early 2015 with Redis version 3.0 – is
one of most important additions to the Redis ecosystem, which we will go over in
much more detail in Chapter 6, Scaling with Redis Cluster and Sentinel.

For the next major release Redis added Geographic Information Systems (GIS)
commands and modified sorted sets along with new Lua scripting support for Redis
Cluster and a new Lua debugger in Redis version 3.2. To visualize the rate of change
to the Redis code base, the following graphic shows the rate of change in the Redis
code base during the Redis 2.x series to Redis version 3.0.

Why Redis?

[14]

Be aware of the dynamic nature of Redis development when asking yourself, why
Redis? The limitations that you thought Redis had might no longer be the case and
as you continue to grow your knowledge and improve your skills in mastering
Redis, keeping up with Redis changes should a critical priority as you improve
your existing technology and build new and exciting opportunities for the future.

Summary
The decision as to whether Redis is the correct choice for a new project or to solve a
data problem you might be experiencing really depends on the nature of your data
and what you're trying to accomplish with your project. Redis, unlike relational
databases or NoSQL document stores, does not require you to structure your data
first before using it. Redis provides a direct, more algorithmic manipulation of your
data through the use of a variety of data structures such as lists, hashes, sets, and
sorted sets. Even if Redis is not your final choice, the exercise of breaking down
your data into these data structures will help deepen the context and the analysis
of the issue that you're trying to solve. A detailed example of such experimentation
was given while representing a legacy library standard called MARC in the basic
Redis hashes, lists, sets, and sorted sets. We then briefly reviewed three popular
design patterns for using Redis as a web cache, Redis as the backend for a gamer
leaderboard, and Redis used as a publish/subscribe messaging system. We finish
this chapter by illustrating some recent changes to Redis that expand the types of
problems that Redis can be the primary data solution that in the past traditional SQL
database or other NoSQL technologies may have been adopted instead.

In the next chapter, we are going to first examine Redis keys and the importance of
organizing these keys with a Redis key schema generated either through a Redis
object mapper or through manual documentation. Chapter 2 then introduces the
Big O notation, followed by a systematic review of the basic Redis data structures
and commands based on time complexity measures, Chapter 2 finishes with an
introduction to some of the newer data structures and commands, including
bitstrings and HyperLogLog.

www.ebook3000.com

http://www.ebook3000.org

[15]

Advanced Key Management
and Data Structures

Using Redis as data storage in your application starts by considering two sides of the
solution: the keys and the data structures used as the key values in Redis. Coming
up with a good Redis key schema, syntax, and naming convention can mean the
difference between an effective and sustainable solution and a technological mess.
Because of the flexibility that Redis gives you by allowing most string serialization
as keys, much more intentional thought and design should be given to this important
step in designing a Redis-based project. Likewise, using an appropriate data
structure for any particular key also directly impacts the usability and functionality
of any application built with Redis. This chapter covers the following:

•	 Designing and managing a Redis key schema and the associated data
structures

•	 Using Redis client object mappers that use different strategies that hide the
specific key schemas and data structures

•	 Creating a simple application using a Javascript Redis object mapper and
analyzing how the object mapper uses Redis commands and data structures
as an example of a Redis key schema

•	 Introducing the Big O notation and how this measure of worst-case
algorithmic effectiveness at scale is used in evaluating the performance
of Redis's commands and how this performance directly relates to Redis's
underlying data structures

Advanced Key Management and Data Structures

[16]

This focus on the Big O notation in Redis's official documentation provides a method
of estimating the time complexity of an application's use of Redis and helps in
evaluating your Redis-based application's performance. Together, the Redis key and
values should complement and reinforce the solution, while balancing the memory
efficiencies of smaller-length keys with enough verbosity for explaining the purpose
of the keys to the application designer, developer, or end user.

Redis keys
Effectively, using Redis in your application involves understanding how Redis
stores keys and the operations to manipulate the key space within a Redis instance.
Running a 32-bit or 64-bit version of Redis dictates the practical limits to the size
of your Redis keys. For the 32-bit Redis variant, any key name larger than 32 bits
requires the key to span multiple bytes, thereby increasing the Redis memory usage.
Using 64-bit Redis allows for larger key lengths but has the downside that keys with
small lengths will be allocated the full 64 bits, wasting the extra bits that are not
allocated to the key name.

The flexibility of Redis allows for a wide diversity in how keys are structured and
stored. The performance and maintainability of Redis can be either positively or
negatively impacted by the choices made in designing and constructing the Redis
keys used in your database. A good general practice when designing your Redis keys
is to construct at least a rough outline of what information you are trying to store in
Redis and an initial idea of how the data will be stored in one of the many different
Redis data structures. Finally, you'll want to diagram how your data structures relate
to the other information stored in different keys in your Redis database. This process
is generally lumped under the rubric of "Redis Key Schema" construction, but your
Redis key schema doesn't need to be code-based, just a simple text file documenting
your syntax, how your keys relate to each other, and what data structures are stored
in your various keys, should be sufficient for small projects or use cases.

Redis key schema
Although the official Redis tutorial on data types1 recommends using a consistent
schema when naming keys, Redis itself does not have any schema checking or
validation functions although some basic validation can be done through the use
of the EXISTS and TYPE Redis commands. If your application requires that a Redis
key with a certain type exists in the instance, checking for the key's existence is
easily accomplished with the EXISTS command followed by the subsequent TYPE
command to confirm that the key is the expected Redis data structure stored in that
key location. Beyond these two commands, validating the Redis key syntax and
structure requires client-side code.

www.ebook3000.com

http://redis.io/topics/data-types-intro
http://www.ebook3000.org

Chapter 2

[17]

Adding this additional validation logic layer to your application may be useful if
your Redis application is to be shared across different systems and organizations. An
accurate and detailed Redis key schema can greatly assist you and the application
developers and operators in troubleshooting or debugging problems. Another
avenue to validate your Redis Key schema would be to include specific unit tests in
your Redis application that test for boundary conditions, schema key syntax, and
structure, along with the expected data structures for each validated key. The third
option for validating your Redis key schema is to use a DTD or another XML-based
validation of your key structure or to use a new schema validation technology such
as JSON Schema available at http://json-schema.org/.

Options for validating Redis keys

A good key schema should also provide guidance for adding new Redis keys to an
existing Redis-based application. There should not be any mysteries about what the
name of a new Redis key should be if the schema is descriptive and consistent. Know
and use both singular and plural forms of nouns to identify what and how many of
an entity is being saved to Redis. For example, book:1 could be a Redis hash storing
field related to a single book, while the Redis key books:sci-fiction could be a set
of all books that are classified as part of the science fiction genre. A sorted set could be
used for book sales ranking with the books:sales-rank key name with the number of
books sold as the weight or the sorted set score and the book key as the value.

http://json-schema.org/

Advanced Key Management and Data Structures

[18]

An example of a text-based Redis schema for a simple book application could look
like the following:

Name Redis data type Description Relationships

book:{counter} Hash Stores title, author,
ISBN, format,
copyright date, page
number, and price
metadata for a book

Key is stored in
different genre
sets and sales
ranking sorted
sets

books:{genre} Set A set of Redis keys
for books classified
as a genre, such
as popular fiction,
mysteries, science
fiction, and technical
books

Stores all book
keys that have
been classified
as a single genre.
Used with other
genre sets for
calculating
books in
multiple
genres with
SINTERSTORE
and books that
are only in a
single genre with
SDIFFSTORE

books:sales-rank Sorted set Stores the sales
ranking of each
book with the total
number of titles sold
as the score in the
sorted set

Stores the
ranking of all
Redis book keys

Adding key schema documentation as part of your project's source code repository is
a good practice to follow, even with simple, one-off Redis projects.

Key delimiters and naming conventions
You'll notice that in the last example that colon ':' is being used as a key delimiter.
The colon is one of the suggested delimiters for compound Redis keys. This is
just a convention, and you should feel free to use any other delimiter in your own
application. For a web application, using a forward slash '/' may make better sense
(although of course, you should never pass public URL requests directly to Redis
without some preprocessing to sanitize the user's request).

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[19]

Another delimiter for Redis keys is the period '.' making it easier to map to a
common object-oriented syntax favored by many of the most popular programming
languages such as C++, Object C, Python, Swift, and Ruby. There is nothing
precluding or preventing you from mixing delimiters in your Redis key schema
as long as the delimiter use is consistent and properly documented. The goal in
choosing which delimiters to use should be intelligibility and consistency both
to you and the eventual users of your application.

Where an effective Redis key schema excels is in establishing naming conventions
relating keys together. These relationships loosely couple Redis keys together onto
which application and business logic can be applied through client code. A Redis
key schema weaves a narrative relating your data in a way that is intelligible to you
and that meets your users' needs. Take, for example, the earlier book key schema and
expanding the requirements to include other media types in your Redis databases,
running a KEYS command from the Redis command-line tool, and doing some
formatting. These display a pattern and implicit relationships through the Redis
key schema:

all:sales-rank
global:book
book:1
book:2
book:3
books:genre:popular-fiction
books:genre:sci-fiction
books:format:ebook
books:format:paperback
books:sales-rank
global:film
film:1
film:2
films:genre:comedy
films:genre:drama
films:format:bluray
films:format:dvd
films:sales-rank

In this Redis application, both book and film provide the base prefix from which
supporting data structures are associated with either a singular book or film key or a
collection that contains additional entity hashes.

Advanced Key Management and Data Structures

[20]

Each work is a hash with the Redis key being the prefix along with a global counter.
Other supporting data structures, in this case, a book's or film's genre and format,
are Redis sets that store all the book or film keys that are classified as belonging to
a particular genre or format. For example, properties of Isaac Asimov's Foundation
would be stored in the book:2 hash, and book:2 would also be a member of the
books:genre:sci-fiction and books:format:paperback sets with entries in
both the books:sales-rank and all:sales-rank sorted sets. Likewise, Orson
Well's Citizen Kane, would be stored in the film:1 hash, with membership in the
films:genre:drama and films:format:dvd sets and entries in the films:sales-
rank and all:sales-rank sorted sets.

A common requirement in an application is the need to retrieve a collection of values
on the basis of common characteristics. In the book example, we may be tempted to
retrieve all the book genres with the KEYS command and a books:genre:* pattern.
The use of the Redis KEYS command is highly discouraged for applications running
in production as Redis needs to iterate through every single key in the datastore.
With a consistent naming convention and appropriate data structures such as set,
hash, or sorted sets, your application should not need to use the KEYS command for
retrieving values. The SCAN command, with an option for retrieving values from
Redis should not be thought of as a replacement for the KEYS command. The SCAN
command extracts a random slice of key and then, applies any existing pattern
provided with the MATCH option to the random slice. Going back to the previous
example, the following use of SCAN in a running Redis-cli program only works
if you have a small datastore:

127.0.0.1:6379> SCAN 0 MATCH books:genre*
1) "0"
2) 1) "books:genre:popular-fiction"
 2) "books:genre:mystery"
 3) "books:genre:teen"
 4) "books:genre:sci-fiction"
 5) "books:genre:fantasy"
 6) "books:genre:romance"

If your datastore is larger, using the same SCAN command may not return any
matches or only a small subset of the total number of matches. Much better would
be to store all the genre keys in a books:genres set that your application uses as an
index to quickly retrieve all of the book genre keys with an SMEMBERS command:

127.0.0.1:6379> SMEMBERS books:genres
1) "books:format:ebook"
2) "books:genre:popular-fiction"
3) "books:format:paperback"
4) "books:genre:sci-fiction"
5) "books:sales-rank"

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[21]

Testing your relationships and how they relate to each other through your Redis
key naming conventions will depend on a number of factors, including if your
application interacts directly with an active Redis instance. Adding unit tests
that specifically check your key delimiters as well as the naming conventions in
your Redis application ensures that the assumptions and requirements that your
application depends upon are accurately represented in the data being stored in
your Redis database. Here is an example of a unit test in Python that tests for a colon
delimiter for the Redis key schema book example (the full example is available for
download at http://mastering-redis.com).

def test_delimiter(self):
 """Method tests for a colon in Redis keys in the datastore."""
 first_key = self.test_db.scan(0, "book*", 1)[1][0].decode()
 self.assertTrue(first_key.startswith("book:"))

The first line uses the Python Redis client to run a book:* pattern with the scan
starting with an initial cursor of 0 and a count of one command returning the
first instance and decoding the string to unicode while saving it to the first_key
variable. The second line asserts that first_key starts with the prefix and delimiter
that we expected in our Redis schema. We'll next take a different scenario and
start by first outlining the major types of data that we want to capture in our Redis
application and then, discussing how we can use our business requirements and
nomenclature to create the corresponding Redis keys and data structures.

Manually creating a Redis schema
This graphic outlines our basic scenario of a simple two-product online storefront
from which we will construct our Redis schema.

http://mastering-redis.com

Advanced Key Management and Data Structures

[22]

Imagine that you have an online storefront selling paper products and you want to
manage different stationary products that are offered for sale. Embedded within this
seemingly simple business need, the following narrative starts with these separate
steps:

1.	 An online customer comes to our website looking to buy paper stationery.
2.	 We offer two choices of paper stationery: a blue rectangle package of 20

sheets printed on rice paper and a red square, and a 15-sheet stationery
package also printed on rice paper.

3.	 The basic entity in our example is a package of stationery that has three basic
properties: color, height, width, and number of sheets. (Until we start selling
paper stationery made out of non-rice paper, we will ignore material as a
property. Another future enhancement would be to add a more friendly,
human name for each stationery package).

4.	 Managing a small inventory of these two types of stationery, we record a
sale when a customer purchases a paper package from our website, noting
the time and the amount received, as well as decreasing the inventory by the
number of packages sold.

The first step in manually creating a Redis schema is establishing a global stationery
counter appended to a stationery prefix for the type and brand of stationery that
we are offering for sale. We'll store the color and dimension properties as fields in
a stationery:{id-counter} hash and store the number of sheets in a separate
string value in the stationery:{id-counter}:sheets key. These data structures
can be demonstrated with the following commands by using the Redis CLI program
connecting to an instance of Redis running on a local host:

127.0.0.1:6379> INCR global:stationery1

The returned integer 1 will be used as the id counter for the first stationery:

127.0.0.1:6379> HMSET stationery:1 color blue width '30 cm' height
'40 cm'OK

To associate the number of sheets for the stationery:1:sheets set, we use the
INCREBY command:

127.0.0.1:6379> INCRBY stationery:1:sheets 20(integer) 20

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[23]

Now, we call the INCR command again to generate the second id counter for our
second stationery type, populate the hash, and increment by 15 the number of sheets:

127.0.0.1:6379> INCR global:stationery
(integer 2)
127.0.0.1:6379> HMSET stationery:2 color red width '45 cm' height '45 cm'
15
127.0.0.1:6379> INCRBY stationery:2:sheets 15
(integer) 15

Next, the inventory of stationery packages for a particular type is stored using
the following key pattern, stationery:<stationery id>:inventory, with the
value in that key being a simple integer representing all of the available packages
for that type of stationery. This can be illustrated through the following Redis-CLI
commands where an initial inventory of 250 packages is set as an integer:

127.0.0.1:6379> SET stationery:1:inventory 250

When one or more packages are sold, the integer value stored in
stationery:1:inventory is decremented by the number of packages. Likewise,
when new packages of the stationery arrive from the distributor, the key is
incremented by the number of new stationery packages.

127.0.0.1:6379> DECR stationery:1:inventory
127.0.0.1:6379> INCRBY stationery:1:inventory 10

Sales information for each package is stored as a sorted set by using a Unix
timestamp (an integer that represents the time since the epoch) as the score
and the amount of sale as the value in a sorted set row. Using the Redis key of
stationery:1:sales for the sorted set, the Redis command for documenting a
twenty-dollar sale from the Redis CLI would be as follows:

127.0.0.1:6379> ZADD stationery:1:sales 1430861194 20.00

Even with this simplistic example, having a common pattern for the Redis keys gives
the Redis application a method of relating information between our data in an online
store for stationery.

Advanced Key Management and Data Structures

[24]

The following diagram shows how the information for each stationery type is
clustered and how sales and other information can quickly be extracted from the
datastore by using Redis.

Deconstructing a Redis object mapper
Redis's rich ecosystem offers a number of object mappers for Redis that hide the key
naming management from the designer and the user while offering, through client-
side code, a functionality that may be present in other data storage technologies.
Examining how a Redis object mapper implements this functionality with a
particular pattern of keys and data structures can help you learn about existing
patterns and allow you to extend and improve your own Redis-based applications.
Using a Redis object mapper can also be helpful if you do not want to re-implement
a functionality that may already exist and run it in production environments in your
code base. A few of the more popular programming languages have these object
mapper projects that all provide ways to persist object semantics and data in Redis
while offering more object-oriented methodologies and techniques for the developer
who may be more familiar with these techniques and ideas in their preferred
programing language. These object mappers manipulate Redis keys and values by
using the nomenclature and conventions of the programming language that the
object mapper has developed while hopefully reducing the maintenance and the
training overhead for Redis-based solutions in the organization.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[25]

For the node.js Redis object mapper called Nohm (available at https://github.
com/maritz/nohm/), the Redis schema is created through a JavaScript object model.
Returning to the previous paper-product web storefront example, modeling a
stationery entity with Nohm first requires defining a stationary JavaScript model
with color, height, and width properties by using the following code:

nohm.model('Stationary', {
 properties: {
 color: {
 type: 'string',
 unique: false,
 validations: [
 'notEmpty'
]
 },
 height: {
 type: 'string',
 unique: false
 },
 sheets: {
 type: 'integer',
 defaultValue: 20
 },
 width: {
 type: 'string',
 unique: false
 }
 }
});

Creating an equivalent stationary object in the stationery:1 hash from the previous
section generates the following Redis commands and values on a running Redis
database for a new stationary Javascript object with color, width, and height being
set to the same values as in stationery:1. Running the MONITOR command from the
redis-cli program provides the following output:

1431204654.386408 [0 127.0.0.1:61217] "info"
1431204654.404005 [0 127.0.0.1:61217] "get"
"paper:meta:version:Stationary"
1431204654.405394 [0 127.0.0.1:61217] "sismember"
"paper:idsets:Stationary" "-1431204204839"
1431204654.406943 [0 127.0.0.1:61217] "set"
"paper:meta:version:Stationary"
"1bf8ca04e698cd589baa17c661498b1109f8d65c"
1431204654.407516 [0 127.0.0.1:61217] "set"

https://github.com/maritz/nohm/
https://github.com/maritz/nohm/

Advanced Key Management and Data Structures

[26]

"paper:meta:idGenerator:Stationary" "default"
1431204654.407547 [0 127.0.0.1:61217] "set"
"paper:meta:properties:Stationary"
"{\"color\":{\"type\":\"string\",\"unique\":false,\"validations\":[\"n
otEmpty\"]},\"height\":{\"type\":\"string\",\"unique\":false},\"sheets
\":{\"type\":\"integer\",\"defaultValue\":20},\"width\":{\"type\":\"st
ring\",\"unique\":false}}"
1431204654.411575 [0 127.0.0.1:61217] "sadd"
"paper:idsets:Stationary" "i9hiar0q75vit5d9rgc5"
1431204654.418524 [0 127.0.0.1:61217] "MULTI"
1431204654.419119 [0 127.0.0.1:61217] "hmset"
"paper:hash:Stationary:i9hiar0q75vit5d9rgc5" "color" "blue"
"height" "40 cm" "sheets" "20" "width" "30 cm" "__meta_version"
"1bf8ca04e698cd589baa17c661498b1109f8d65c"

Unpacking this Redis database activity when a Nohm stationary object is saved to
Redis, we will examine each Redis key from and what the object mapper is doing
with the Redis key and the corresponding data structure in the Redis database.
From this analysis, the Redis key schema being used by Nohm becomes more
intelligible. We start building the Redis schema as a Nohm's Redis schema by
following a very common Redis design pattern of using a paper namespace for all the
object mapper's Redis keys and note that Nohm uses a colon as a key delimiter in its
underlying schema.

•	 paper:meta:version:Stationary: This Redis metadata key stores a string
version used for stationary stores the version. A random metadata version
string of 1bf8ca04e698cd589baa17c661498b1109f8d65c is then set as the
current value of this key. Nohm tracks each change that we make to the
stationary model and then stores version information of our model.

•	 paper:idsets:Stationary: This Redis set stores all stationary IDs. This set
is first checked with a negative UNIX timestamp, and then, an ID string of
i9hiar0q75vit5d9rgc5 is generated and added to this set. This set is used
to track stationary objects, and a random value should minimize problems
related to duplicate keys.

•	 paper:meta:idGenerator:Stationary: This Redis string is used by Nohm
to determine the method for generating an ID. The default option generates a
random string, while the increment option uses an integer counter.

•	 paper:meta:properties:Stationary: A Redis string stores the serialized
JSON metadata for the stationary object.

•	 paper:hash:Stationary:i9hiar0q75vit5d9rgc5: Wrapped in a Redis
transaction, the stationary Javascript object instance stores its property
values in a Redis hash by using i9hiar0q75vit5d9rgc5 as the last part
of its Redis key.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[27]

Next, add a second stationary package, say a red square, 45-cm high × 45-cm wide,
with an initial sheet count of 15 results to the following Redis keys in our database:

paper:meta:properties:Stationary

paper:meta:idGenerator:Stationary

paper:idsets:Stationary

paper:hash:Stationary:i9hjsdjv4o9csf8eeonj

paper:meta:version:Stationary

paper:hash:Stationary:i9hiar0q75vit5d9rgc5

We'll see how a more complicated Redis key schema comes into play using Nohm
to model the sales of a stationery item by using two supporting classes from the
schema.org metadata vocabulary, namely an offer (http://schema.org/Offer)
class and an order (http://schema.org/Order) class. The schema.org vocabulary
is cosponsored by Google, Microsoft, Yahoo, and Yandax for representing structured
data on the web. The Offer class contains the price and the available inventory along
with a priceCurrency property to support offers in other currencies. For now, our
default currency for priceCurrency will be the United States dollar. Our Order class
contains the acceptedOffer and orderDate properties, with the acceptedOffer
property linking to the specific order that we created for our stationery. So far,
we have only replicated the initial storage of each stationery package with Nohm.
Adding two new models to represent our sales, namely offer and order, we'll want
to be able to use the relationship modeling available in Nohm to link the stationery
objects. Unlike other object mappers for SQL-based databases that require the
relationship to be predefined before use, Nohm allows any model to be associated
with another model through a link method.

nohm.model('Offer', {
 properties: {
 inventoryLevel: {
 type: 'integer',
 unique: false
 },
 price: {
 type: 'float',
 unique: false
 },
 priceCurrency: {
 type: 'string',
 unique: false,
 defaultValue: 'USD'
 }
}
});

http://schema.org/Offer
http://schema.org/Order

Advanced Key Management and Data Structures

[28]

The order class contains two properties, namely orderDate and orderedItem,
although the order class could be expanded to include other order properties from
the schema.org vocabulary such as customer and discount as the requirements
change for the paper stationery web storefront. You'll notice that we didn't add
orderedItem as a formal property for the order class because we will be creating
orderedItem through a Nohm link to the item stationary.

nohm.model('Order', {
 properties: {
 orderDate: {
 type: 'datetime'
 },
 }
});

When a sale occurs, the Nohm approach is to create a linkage between the offer,
the order, and the stationery objects. After creating a new order instance with a
timestamp of when a sales transaction occurred, Nohm uses a couple of supporting
Redis sets to model the relationships between the three different classes. Nohm
stores the relationship information in a few different sets as seen from these snippets
from the Redis cli program:

First, paper:hashOffer: ia4ev8iu8cns7w6p968h is a hash key that sets its inventory
level property as 50 and the price as 15 for the red stationery.

1432589868.318914 [0 10.0.2.2:55200] "hmset"
"paper:hash:Offer:ia4ev8iu8cns7w6p9
68h" "inventoryLevel" "50" "price" "15" "priceCurrency" "USD"
"__meta_version" "
229e1d3b89b02804b4bdad9909fa75aa442197d5"

Next, the paper:relationKeys:Offer:ia4ev8iu8c ns7w6p968h and paper:r
elations:Offer:itemOffered:S tationery:ia4ev8iu8cns7w6p968h sets are
created; the first set stores all the keys to the sets that create the linkages between
offer and stationery with the itemOffered property. The second set stores all the
individual stationery IDs by creating a specific link between this specific offer and
the stationery.

1432589868.323265 [0 10.0.2.2:55200] "sadd" "paper:relationKeys:Offer:
ia4ev8iu8cns7w6p968h"
"paper:relations:Offer:itemOffered:Stationery:ia4ev8iu8cns7w6p968h"
1432589868.323281 [0 10.0.2.2:55200] "sadd"
"paper:relations:Offer:itemOffered:Stationary:ia4ev8iu8cns7w6p968h"
ia4ev8itec2wq9gc0qnt"

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[29]

When an order is received and thereby a sale is recognized, first, a Redis
paper:hash:Order:1 hash is created with the order date field, and with all Nohm, a
metadata version id is also stored with the hash as a field.

1432589868.325604 [0 10.0.2.2:55200] "hmset" "paper:hash:Order:1"
"orderDate"
"Mon May 25 2015 15:33:33 GMT-0600 (Mountain Daylight Time)"
"__meta_version" "a881a941cb6ff674a79c7f652f8d8153b7b47b"

Two additional sets, namely paper:relationKeys:Order:1 and paper:relatio
ns:Order:offer:Offer:1, create the linkage between our order and offer with
the first set storing all the relationship links for order and the second set storing the
specific Offer for the order that was added in the previous command:

1432589868.327808 [0 10.0.2.2:55200] "sadd"
"paper:relationKeys:Order:1" "paper:
relations:Order:offer:Offer:1"
1432589868.327829 [0 10.0.2.2:55200] "sadd"
"paper:relations:Order:offer:Offer:1" "ia4ev8iu8cns7w6p968h"

The following graphic illustrates the JavaScript code flow that creates this linkage
between stationery, offer, and order for our online paper store.

Advanced Key Management and Data Structures

[30]

Key expiration
A significant feature of Redis is the ability to set the expiration time for a key. By being
able to automatically delete expired keys, a Redis application can better manage both
the size and the memory usage of the datastore as well as reduce the amount of client
code for keeping track of every key in the datastore.

In the next chapter on optimizing and managing RAM for your Redis instance, the
topic of key expiration will be examined in more detail. Key expiration is most often
discussed in the context of keeping the memory usage of a Redis instance within
acceptable performance limits by ejecting the expired keys from the database. Redis
offers a number of different modes for setting the automatic ejection of expired
keys depending on your application's needs and performance limits, which can be
set either by setting an option in the your Redis configuration file or by run-time
commands sent to your Redis database.

Key cautions
Over the years, certain best practices have emerged that are briefly articulated in
Redis tutorial1. The practices revolve around the legibility and performance trade-
offs in your running Redis database and supporting client code. The size of the Redis
keys should be limited not only because of memory issues that may arise if the key
size is greater than 1024 bytes long but also because larger-size keys can be confusing
to the developer and the user of the Redis instance. Another problem of larger key
names is that as the size of the Redis instance increases, each one of these larger key
names begins to consume larger amounts of memory, thereby reducing the amount
of available memory for the data.

Likewise, if the key name is too small, the extra memory saved may not be worth
the problems that can occur later when trying to troubleshoot Redis or adding a
functionality through new Redis keys. For example, a key name of u11:2 may be
short but does not convey the meaning of what value is being managed while a key
name of the same data, user:11:clicks, is a better descriptor for the value stored
in this Redis key and the application context of this key. This can be a challenge for
applications that develop and evolve over time but can be mitigated by adopting a
consistent Redis key schema that allows room for further growth in the future. Even
a small amount of time devoted to thinking of possible future uses when developing
a Redis key schema can alleviate massive refactoring of the client code and data
migration in Redis to handle emerging needs from the use of your application by
individuals and other programs.

www.ebook3000.com

http://redis.io/topics/data-types-intro
http://www.ebook3000.org

Chapter 2

[31]

The Redis KEYS command should be used as a last resort as its use creates a long-
running blocking call on the Redis instance and can even result in Redis running out
of memory. SCAN provides an iterator over all of the keys in the Redis instance that
can be incrementally called upon all of the keys. The Redis SCAN, and the equivalent
HSCAN, SSCAN, and ZSCAN commands for hashes, sets, and sorted sets, respectively,
are relatively newer commands that meet a real requirement for Redis applications.
A note of caution when using SCAN and its related iterator commands is that
SCAN cannot guarantee that an element will be returned if that element was not
consistently present from the start to the end of the iteration.

Big O notation
As you may already know and fully appreciate, Salvatore Sanfilippo intentionally
documents the worst-case algorithmic performance of each Redis command on
Redis's website at http://redis.io/commands/. This focus on an algorithmic
measure of performance as a core actionable metric differentiates Redis from
the other data storage technologies. A mathematical definition of Big O is that
it "symbolically expresses the asymptotic behavior of a given function.2. Within
computer science and more pertinent to our understanding of the big O notation
within Redis, with this notation and understanding, we can classify the performance
of a Redis command by how the commands perform with increasing inputs to the
command over time.

Graphing Big O Notation

http://redis.io/commands/
http://mathworld.wolfram.com/Big-ONotation.html

Advanced Key Management and Data Structures

[32]

In the Redis documentation for each command, the time complexity of each Redis
command is given in these big O cases:

•	 The O(1) case in the big O notation is shorthand for increasing the number
of inputs that do not change the time or processing. In O(1) algorithms,
the upper bound of performance is in linear time, meaning that increasing
the number of inputs does not degrade performance but is bound by the
algorithm's complexity processing.

•	 The next best big O case is O(log n) or logarithmic time where for each input,
an operation is applied and the result returned is greater than N(1), but the
performance is equivalent to applying a logarithm to n.

•	 An intuitive grasp of the term O(n) in the big O notation follows the common
sense idea that adding an extra unit increases the amount of time by a
constant, proportional amount.

•	 In O(n log n) or log linear time, for each input, O(log n) is applied to the
 input. For practical purposes, each time input is more than doubled in an
O(n log n) algorithm.

•	 For O(n^2) or quadratic time, as the size of n increases, the amount of time
doubles. For each doubling of n, the time processed is four times as long. The
performance of O(n^2) algorithms may be acceptable at smaller values for n
but becomes quickly unrealistic for most uses as n increases in size.

•	 In the case of problems that are solvable in O(2^n) or exponential time, for
every additional input, the time doubles, making O(2^n) unusable for most
larger inputs of n.

•	 The most time-complex algorithms are noted in O(n!) factorial time where
processing becomes quickly prohibitive as n increases slightly. For example,
the difference for an O(n!) algorithm at 5 units vs. 6 units is significant (120
units of elapsed time vs. 720 units of elapsed time).

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[33]

Computing big O notation for custom code
With Redis documentation providing the big O notation for each command, we
can calculate a rough efficiency estimate of any proposed Redis-based solution. A
simplistic approach is to take the sum of all of the Redis commands' big O notations
for a certain level of n and then, estimate the big O notation for the implementing
code to reach a rough estimate of time efficiency for your entire solution. For
example, a simple cache in Redis may just be a single Redis SET and GET call, leading
to O(1) + O(1) ≈ 2 units of time for the solution. More complicated use cases
require more commands with higher big O notations.

Evaluating the time complexity of your data structures involves not just the data
structure itself but also the optimization of the total number of Redis commands,
both ingestion and extraction. Depending on your use case, it may be perfectly
acceptable to have poor time execution of your ingesting data into say, a sorted set,
with an equal to or lower than big O case for the access commands. The opposite
use case of low latency in ingesting large amounts of data, you need faster (low-
complexity big O cases) ingestion, while accessing the data may not need to be as
fast. For these situations, say when storing logging information that expires after a
certain amount of elapsed time, optimizing writes is more important than access,
although access is still important for the application.

So, returning to the stationery example from before, let us compare our first custom
Redis solution with the second Nohm-based solution focusing just on the Redis
commands since we do not have the client code yet for the first. We'll start by
examining the total time complexity of adding the blue and red stationery packages
to our Redis database.

Redis command O(n) Total
INCR +1 1

HMSET +3 4

INCRBY +1 5

HMSET +3 8

The total complexity for adding one stationery object to our custom Redis solution is
four, so adding an additional red stationery package brings our total to eight.

Advanced Key Management and Data Structures

[34]

Now, we will analyze the Nohm Redis Monitor command and summarize the result
of setting up and saving both the blue and the red stationery:

Redis Command O(n) Running total
INFO +1 1

GET +1 2

SISMEMBER +1 3

SET +1 4

SET +1 5

SET +1 6

SADD +1 7

HMSET +3 10

SADD +1 11

HMSET +3 14

The total complexity of adding one stationery object, including various setup
commands, to the Nohm solution is 10, and similar to our custom Redis solution, that
of adding an additional red stationery package is 14. Depending on your application
models, using a Redis object mapper in the programming language of your choice
may only have a relatively minor overhead as you scale your application. Ideally,
we keep the time complexity of our client code at the most, O(n log n), with the
goal being O(1) or O(log n). This grows increasingly difficult as your application
matures over time and lets you discover and work through edge cases and from end-
user feedback.

Although the differences between the summary time complexity of the two Redis
solutions is relatively small, the Nohm Redis object mapper provides a lot of
essential functionalities that we need to replicate if we want to build a full node.js
application by using Redis as our database. Again, there are tradeoffs between an
extremely fast but with limited support for object tracking and validation in our
custom Redis solution, or the additional functionality of object metadata and field
validations that Nohm provides to our application.

Reviewing the time complexity of Redis
data structures
With this understanding of the computing big notation, we'll next briefly review
Redis's basic data structures, paying attention to the time complexity implications of
using the data structure with the current commands supported by Redis.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[35]

Strings
The most basic data structure for Redis values is a string, the same data type as a
Redis key. Using Redis at its simplest is as a string-to-string key-value storage. Note
that Redis has similar performance characteristics to other key-value data storage
solutions such as Memecached3.

In Redis, a string does not merely contain alphanumeric characters as strings are
normally understood to be in higher-level programming languages, but contain
serialized characters in C, the principal programming language used in Redis. The
most basic GET and SET commands for Redis strings are O(1) operations, making
Redis extremely fast as a simple key-value store. The speed and ease of using GET
and SET should not be overlooked when thinking through your Redis solution. In
my own experience with Redis, I'll often jump prematurely to using one of Redis's
more complex data structures such as a sorted set, when a simple Redis string may
be a faster and less complicated approach to solving the problem in front of me.

For most Redis string operations, both access and ingestion commands are either
O(1) or O(n) in time complexity with the O(n) string commands being mostly bulk
commands such as GETRANGE, MSET, and MGET. The GETRANGE command is an O(n)
operation with n being the length of the return string. This makes intuitive sense
if we think of the operation as a series of small GET commands (although GET does
not return a subrange of a string value stored in the key). We can illustrate this with
Redis CLI, SET, and GETRANGE:

127.0.0.1:6379> SET organization:1 "The British Library"

127.0.0.1:6379> GETRANGE organization:1 4 10 "British"

Therefore, in this example, the big O notation for SET is +1 and the GETRANGE is
+6, the equivalent of retrieving six characters by issuing individual pseudo GET
commands.

Because Redis stores all data as strings, the type information for particular strings is
also maintained to support the INCR/DECR and bitstring commands. For the INCR
and DECR commands, the value stored is a base-10 64-bit signed integer string, which
if modified by the other Redis string commands such as APPEND, may corrupt the
value; therefore, further integer-related Redis commands will fail if applied to the
same key. We can easily replicate this situation from Redis CLI with the following
INCR, GET, and DUMP commands on the new:counter key:

127.0.0.1:6379> INCR new:counter(integer) 1
127.0.0.1:6379> GET new:counter
"1"
127.0.0.1:6379> DUMP new:counter
"\x00\xc0\x01\x06\x00\xb0\x95\x8f6$T-o"
127.0.0.1:6379> APPEND new:counter "a"

http://www.quora.com/What-are-the-differences-between-memcached-and-redis/answer/Animesh-Dash?srid=Kgp

Advanced Key Management and Data Structures

[36]

(integer) 2
127.0.0.1:6379> INCR new:counter
(error) ERR value is not an integer or out of range
127.0.0.1:6379> GET new:counter
"1a"
127.0.0.1:6379> DUMP new:counter
"\x00\x021a\x06\x00\x8br\x9a\x98-9\x9a\xa6"

Hashes
Hashes, otherwise known as dictionaries or associative arrays in other programming
languages, are data structures that map one or more fields to the corresponding
value pairs. In Redis, all hash values must be Redis strings with unique field names.
The field's values are simple Redis strings that are returned by calling the Redis
HGET or HMGET commands with the appropriate Redis key and one or more field
parameters. For many uses, Redis hashes provide excellent O(1) performance for the
HSET and HGET commands. Similar to the string bulk commands, the hash HGETALL,
HMSET, HMGET, HKEYS, and HVALS commands are all O(n) cases. If your hashes are
small, there may not be any appreciable difference between returning all of the
hash's keys and values with the HGETALL and HMGET commands. As your hash size
increases in terms of the number of fields and values, the difference between the
two can make a difference in your application. Take a hash with 1000 fields; if your
application only regularly uses 300, the time complexity of a call to Redis with the
HGETALL or HVALS command is O(1000), while with HMGET, the time complexity is
only O(300) because although both HGETALL and HMGET are both O(n) cases, the
HMGET upper bound is only the total number of fields being requested and not the
entire hash. Finding and replacing the HGETALL commands with HMGET is one way
to increase your application's Redis performance if the overall size of the hash is
small. For large hash sizes, an HMGET command returning a large number of values
can significantly impact the overall performance of Redis for other clients who are
blocked from receiving any values until the HMGET command finishes execution
within the Redis server. In this case, targeted HGET would be a better choice.

While Redis hash values cannot contain hashes, lists, or other data collection
structures, Redis does offer the HINCRBY and HINCRBYFLOAT commands, which allow
you to treat the string value stored in a field as an integer or a float, respectively. Redis
returns an error if you try to update a field's value with the wrong data type as seen in
the following example from the Redis command line:

127.0.0.1:6379> HMSET weather:2 temperature 46 moisture .001
127.0.0.1:6379> HINCRBY weather:2 temperature -1
127.0.0.1:6379> HGET weather:2 temperature
"45"
127.0.0.1:6379> HINCRBY weather:2 moisture 1
(error) ERR hash value is not an integer

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[37]

127.0.0.1:6379> HINCRBYFLOAT weather:2 moisture 1
127.0.0.1:6379> HGET weather:2 moisture
"1.001"

You'll notice that Redis treats the setting of the value of 1 as either an integer or a
float depending on the command.

Lists
Lists in Redis are ordered collections of strings that allow for duplicate string values.
A list in Redis is more accurately labeled and implemented as a linked list. Because
Redis lists are implemented as linked lists, adding an item to the front of a list with
LPUSH or to the end of a list with RPUSH is a relatively inexpensive operation performed
at a constant time complexity of O(1). For the LINSERT and LSET commands, the
time complexity is linear, O(n), but with some significant differences. For the LSET
command, where you can set a list value as an index value, the time complexity for the
n variable is the length of the list while setting either the first or the last value in the list
with LSET is O(1) because the lists are linked lists. For the LINSERT command, which
allows you to insert a value before or after a reference value, the abovementioned time
complexity is O(n), with n being the number of list elements that the command must
go through before reaching the reference value, with the worst case inserting a value
at the end of the list. Remember that with the big O notation, we're interested in the
worst case scenario, so the time complexity of the LINSERT command is considered to
be O(n), even if the reference value is the first list element making the time complexity
of the LINSERT command O(1) in this special case.

Advanced Key Management and Data Structures

[38]

For the LRANGE command, the official Redis documentation gives the complexity
class for this command as O(s+n), with s being the number of elements to offset
either from the head of the list or from the end of the list depending on the size of
the list. The n variable for LRANGE is the total number of elements to be returned.
If you want to return the entire list, the common list LRANGE pattern is LRANGE
mylist 0-1, which results in a time complexity of O(10+10) for a list of length 10.
LTRIM typically has a big O notation of O(n), where n is the number of elements
to be returned to the calling client. As mentioned in the official documentation for
the LTRIM command 4, using LTRIM with either RPUSH or LPUSH is a common way
to only store a fixed-length collection of elements. For example, if you only want to
keep the last seven days' worth of average temperature data, use the following Redis
commands:

127.0.0.1:6379> LPUSH temp:last-seven-days 30 45 50 52 49 55 51
127.0.0.1:6379> LPUSH temp:last-seven-days 56
127.0.0.1:6379> LTRIM temp:last-seven-days 0 6
127.0.0.1:6379> LRANGE temp:last-seven-days 0 -1
1) "56"
2) "51"
3) "55"
4) "49"
5) "52"
6) "50"
7) "45"

As we see, this pattern allows us to store the last seven days' average temperature
and when used in this way, the time complexity of our LTRIM command now
approaches O(1) as long as only one value is pushed on to the list at a time.

Sets
Sets in Redis are a type of collection primitive where the uniqueness of string values
is guaranteed but the ordering of these values is not. Redis sets also implement
union, intersection, and difference set semantics along with the ability to store the
results of these set operations as a new Redis set in the Redis instance. With the
current implementation of the Redis cluster, the union, intersection, and difference
set semantics are more limited and can only be used in a limited fashion. The SADD
command, which adds one or more values to a set, is O(n), where n is the number
of members to be added to the set. The important SISMEMBER command evaluates
whether a value is a member of the set or not and is an O(1) operation, while the
SMEMBERS command that returns all of the elements in the list is an O(N) operation.
Sets may have a similar performance to that of the other data structures in Redis or
in certain cases have much better memory usage when storing integers over hashes.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[39]

Where sets are extremely useful in Redis is its support for the union, intersection,
and difference set operations, all of which have different time complexities but again
are of much limited use with a Redis cluster.

The SUNION and SUNIONSTORE commands allow you to return all the members of
one or more sets to either the call client or a new set stored in Redis. Both these
commands are O(n), where n is the total number of members in all the sets. The
SINTER and SINTERSTORE commands returns the intersection or stores the set when
using the SINTERSTORE command. in Redis, the common members of one or more
sets result in a time complexity of O(n*m), where n is the size of the smallest set
and m is the total number of sets. Finally, the SDIFF and SDIFFSTORE commands
either return or store in Redis the difference between the first set and zero or more
subsequent sets. As for the SUNION command, the time complexity of SDIFF and
SDIFFSTORE is O(n), where n is the total number of members of all the sets. The
utility of the Redis sets is in these set operations that allow interaction at a very basic
Boolean logic level with your data. However, as your set size increases, the amount
of processing time increases at a minimum of O(n) time.

Sorted sets
In Redis, the sorted-set data type combines the characteristics of both Redis lists
and sets. Similarly to those of a Redis list, a sorted set's values are ordered, and like
a set, each value is assured to be unique. Of all the various data structures in Redis,
the sorted set is the closest to a killer feature. The flexibility of a sorted set allows for
multiple types of access patterns depending on the needs of the application. Using a
single sorted set for a player's scores in a game both the top and the bottom players are
easily fetched for a leaderboard by either the ZRANGE or ZREVRANGE Redis commands.

Advanced Key Management and Data Structures

[40]

For sorted sets, the ZADD command adds a member with a score to the sorted set.
The time complexity of ZADD is O(log(n)), meaning that as the size of the sorted
set increases, the rate of increase in the processing time is a constant. Therefore,
the difference between adding a new member to a large sorted set is trivial; the
difference between log(10000) ~ 9.21034037 and log(10001) ~ 9.21044036 is
.000099.

Another, very nice feature of Redis's sorted sets is that if the score is the same for all
or part of the elements in a sorted set, then the values in the sorted set are ordered
lexicographically, that is, by alphanumeric ordering. This characteristic can be
easily exploited as an easy way to order text strings in alphabetical order. We can
demonstrate this feature as follows: first we'll add seven colors to a sorted set
called colors:

127.0.0.1:6379> ZADD colors 0 red 0 blue 0 green 0 orange 0 yellow 0
purple 0 pink

Now, we can use the ZRANGE command to extract the colors in alphabetical order:

127.0.0.1:6379> ZRANGE colors 0 -1
1) "blue"
2) "green"
3) "orange"
4) "pink"
5) "purple"
6) "red"
7) "yellow"

With the ZREVRANGE command, we reverse retrieve our values in a reverse
alphabetical order:

127.0.0.1:6379> ZREVRANGE colors 0 -1
1) "yellow"
2) "red"
3) "purple"
4) "pink"
5) "orange"
6) "green"
7) "blue"

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[41]

In either case, in the colors sorted set, all scores are set to the same value as
demonstrated with a ZREVRANGE command with the keyword WITHSCORES as
follows:

127.0.0.1:6379> ZREVRANGE colors 0 -1 WITHSCORES
1) "yellow"
2) "0"
3) "red"
4) "0"
5) "purple"
6) "0"
7) "pink"
8) "0"
9) "orange"
10) "0"
11) "green"
12) "0"
13) "blue"
14) "0"

Advanced Key Management and Data Structures

[42]

Redis also provides specific commands to retrieve elements in a lexicographical
order through the LRANGEBYLEX and LREVRANGEBYLEX commands introduced in
Redis 2.8. These commands allow us to specify the start and the end of a sorted set
through a special syntax. The (character before a character string will exclude that
value, while the [will include it. Also, using a + is shorthand for all positive strings
and - for all negative strings. The following commands using the previous colors
sorted set can help illustrate these differences:

127.0.0.1:6379> ZRANGEBYLEX colors (b [p
1) "blue"
2) "green"
3) "orange"
127.0.0.1:6379> ZRANGEBYLEX colors - +
1) "blue"
2) "green"
3) "orange"
4) "pink"
5) "purple"
6) "red"
7) "yellow"

Advanced sorted set operations
Similarly to sets, sorted sets in Redis support the set operations of union and
intersection, although the time complexity of these operations for sorted sets is
worse than for sets. Another problem with the sorted set operations is that when
using a Redis cluster, union and intersection operations can only be used when the
sorted set keys have been sharded to the same hash slot and run on the same node.
The ZINTERSTORE Redis command has a time complexity of O(nk)+O(mlog(m)),
where n is the size of the smallest sorted set; k, the total number of sorted sets being
intersected, and m, the number of elements in the resulting final sorted set. Likewise,
for the ZUNIONSTORE command, the time complexity is O(n)+O(M log(M)) with n
being the total size of all the sorted sets and m being the total number of elements
in the final sorted set. Given the characteristics of sorted sets, the additional time
required for these two set operations may be an acceptable trade-off. It is good
to keep in mind this difference in performance between large sets and sorted sets
irrespective of whether the data and your requirements require ordering or not.

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[43]

Bitstrings and bit operations
Specialized uses of Redis strings with the corresponding commands allow for the
use of memory-efficient data structures in Redis for a comparatively small number
of bits, and depending on your use case and data, using sets or hashes would offer
better performance. In bitstrings, 8 bits are stored per byte, with the first bit at
position 0 being the significant one that is set to either 0 or 1. The maximum size for
Redis bitstrings is 512 MB, the same limitation for all Redis keys and values.

One reason that makes a bitstring so efficient and fast is that most of its commands
are the O(1) or O(n) operations. With SETBIT and GETBIT, bits are either set to 0 or
1 or the value retrieved by both O(1) operations and the use of a bitstring to store
the binary information across a range of sequential values is extremely fast. For the
BITOP, BITPOS, and BITCOUNT commands, the time complexity is O(n) but offers
power semantics for using bitstrings.

A common use case for bitstrings is storing data that can be represented as a Boolean
yes/no, as a zero or one, across a range of sequential keys. As first explained in
a blog post about creating an operational dashboard using Redis 4, storing usage
information by month, day, or even hour can be accomplished in a very efficient
manner by using a general usage Redis key. For example, if you wanted to track the
daily usage on a website, you could start with a simple customer: pattern that stores
a username, hashed password, and e-mail address for each customer, as follows:

127.0.0.1:6379> INCR global:customer
2445
127.0.0.1:6379> HMSET customer:2445 username mmaxwell password
'49fdb34f64be0a29af77ae77370a77232c3d6c37' email
mmaxwell@gmail.com

http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/

Advanced Key Management and Data Structures

[44]

Assuming that the customer: counter starts at zero, customer mmaxwell is the
2445th consecutive customer. Now, to record when mmaxwell visits our website on
February 11, 2016, we would set the 2445 byte in the 2016/02/11:usage bitstring as
one as follows:

127.0.0.1:6379> SETBIT 2016/02/11:usage 2445 1

If we wanted to see whether customer mmaxwell visited our website on that day, we
can retrieve the bit stored at 2445 with the GETBIT command as follows:

127.0.0.1:6379> GETBIT 2016/02/11:usage 2445
 (integer) 1

Finding the daily customer count on the website for February 11 is easily
accomplished through the BITCOUNT command as follows:

127.0.0.1:6379> BITCOUNT 2016/02/11:usage
 (integer) 365

On that date in February, we had 365 unique customer visits. Assuming that we
are tracking customer usage on a daily basis, we can use the BITOP command with
the OR operations to generate the usage across multiple bitstrings, which is then
stored in a new key as follows:

127.0.0.1:6379> BITOP OR 2016/02/week2:usage 2016/02/07:usage
2016/02/08:usage 2016/02/09:usage 2016/02/10:usage 2016/02/11:usage
2016/02/12:usage 2016/02/13:usage
127.0.0.1:6379> BITCOUNT 2016/02/week2:usage
(integer) 1834

To calculate a monthly total that is stored in a new key of 2016/02:usage, you can
then execute a second BITOP on all four weekly usage keys:

127.0.0.1:6379> BITOP OR 2016/02:usage 2016/02/week1:usage 2016/02/
week2:usage 2016/02/week3:usage 2016/02/week4:usage
(integer) 306
127.0.0.1:6379> BITCOUNT 2016/02:usage
(integer) 6893

Finally, a yearly count for the entire website can be accomplished with another
BITOP OR operation on all 12 monthly bitstrings:

127.0.0.1:6379> BITOP OR 2016:usage 2016/01:usage 2016/02:usage
2016/03:usage 2016/04:usage 2016/05:usage 2016/06:usage 2016/07:usage
2016/08:usage 2016/09:usage 2016/10:usage 2016/11:usage 2016/12:usage
(integer) 306
127.0.0.1:6379> BITCOUNT 2016:usage
(integer) 73190

www.ebook3000.com

http://www.ebook3000.org

Chapter 2

[45]

HyperLogLogs
The newest Redis data type is a probabilistic data structure that provides an
estimated count of unique items in a collection. Under typical or normal situations, to
get a unique count of a collection's items requires an amount of memory that is equal
to the number of items or at least a time complexity of O(n). Why? To ensure that
no items are double-counted if they are duplicated in the collection, the algorithm
must keep a record of each item for comparison with any new items. This amount of
overhead becomes quite large and expensive to calculate as the size of the collections
increases in the order of millions of items. In contrast, storing unique elements in
a HyperLogLog structure computes and stores an estimate of the size of the set as a
probability instead of the actual value with a relatively small error rate of less than
1%. Adding one or more elements to a HyperLogLog with the PFADD command is an
O(1) operation, while retrieving the count of unique items with a PFCOUNT command
on a single HyperLogLog is also an O(1) operation. With the PFCOUNT command,
you can also calculate the count for multiple HyperLogLogs, but the performance of
PFCOUNT is O(n) with n being the total number of keys.

To see the difference in performance between a set and a HyperLogLog, consider an
example where you have over 50,000 unique customers that are constantly being
added to and subtracted from by your enterprise CRM system. Storing the keys
for each of the 50,000 customers in a set can be easily accomplished through the
following commands:

127.0.0.1:6379> SADD customers-set customer:1 customer:2 customer:3 ...
customer:52111
127.0.0.1:6379> SCARD customers-set
 (integer) 52411

Execute the same operations using a HyperLogLog as follows:

127.0.0.1:6379> PFADD customers-hll customer:1 customer:2 customer:3
... customer:52111
 127.0.0.1:6379> PFCOUNT customers-hll
 (integer) 52213

We can see from this example that the HyperLogLog estimate of 52213 differs from
the actual count in the Redis set of 52411 by 198, a percentage difference of .004%
well under the worst-case HyperLogLog count estimate of .01%. Your results will
vary depending on the size of your data, but if you do not need an exact count
of unique items and a good enough estimate will work for your application, the
HyperLogLog is a new tool in your Redis solution.

Advanced Key Management and Data Structures

[46]

Summary
Any Redis application has two critical parts, namely the keys and the values that
are stored in these keys. For most Redis solutions, the design of your key names is
important whether you manually design a schema or use a Redis object mapper that
hides the details behind a client layer of abstraction. The performance of all Redis's
data structures and the corresponding write and access commands is evaluated using
the big O notation, a method used in computer science to calculate the worst-case
performance for an algorithm when this algorithm is given an increasing number
of inputs. Using the big O notation, we can estimate the effectiveness of our Redis-
based solutions by summarizing the performance of all our Redis commands in a
function, method, or class in our client code. Next, we carry out a basic complexity
analysis of Redis's strings, hashes, lists, and sets, while expanding on some advanced
usage of Redis's sorted sets, bitstrings, and HyperLogLogs data structures.

The next chapter will focus on a critical aspect of any Redis project, the need to
optimize, improve, and manage your available memory for your Redis database.
We'll expand upon how constructing your Redis key schema can impact your
memory usage both positively and negatively, and we'll also expand on the various
key expiration options that are available in Redis and how Redis's various caching
approaches including Least Recently Used (LRU) can help keep the size of your
Redis database within the constraints of your environment.

www.ebook3000.com

http://www.ebook3000.org

[47]

Managing RAM – Tips and
Techniques for Redis Memory

Management
More than most data storage technologies, the effective usage of Redis requires an
understanding of the computer's random access memory or RAM, as well as the
network and disk latency to track down performance bottlenecks, resource planning,
and allocation. With Redis loading all of your data into RAM, your application's
writes and reads are constrained by the technical limits of your hardware and
network connections then on slower hard disk read/writes operations used by more
traditional relational databases like Oracle or MySQL. As we saw in the last chapter,
the time complexity of your software and how it interacts with Redis becomes more
important as a target for suitable optimization. This chapter starts with a review
of a few of the memory-related directives that can be set in the redis.conf file
for configuring Redis.

Next in this chapter on optimizing memory, is a section on memory considerations
that are to be made when using Redis's master-slave replication followed by
the counter-intuitive topic of using a 32-bit version of Redis server for memory
maximization. After examining the options for expiring keys in Redis, we'll then
look at the related topic of the different policies for evicting keys that Redis can use
to handle the critical use case when it runs out of memory. A popular approach is
the Less Recently Used (LRU) caching algorithm used to evict keys. After using the
LRU approach, we'll experiment with the special, memory-efficient data structures
that Redis uses for smaller hashes, lists, sets, and sorted sets. This lends itself well to
a discussion of a Redis memory-saving key-value usage pattern for using hashes in
your Redis-based application. We'll finish the chapter with a short discussion about
the hardware and network latency issues and how Redis can partially compensate
for these latencies by adjusting memory usage.

Managing RAM – Tips and Techniques for Redis Memory Management

[48]

Configuring Redis
Running a memory-efficient Redis database starts with understanding all of the
memory related directives that can be set in the redis.conf configuration file. The
redis.conf file provides a rich, inline documentation for most directives, making
the sometimes complex options for memory optimization easier to understand,
change, and test. Most of the Redis configuration directives can also be set at
runtime using the CONFIG SET command.

For LRU related configuration directives are part of the LRU key evictions topic in
this chapter.

The first configuration directive that we'll examine that has memory trade-offs
is the rdbchecksumdirective, with the default value of yes places a cyclic
redundancy check 65-bit (CRC64) checksum at the end of an RDB snapshot file as an
anti-corruption measure. Performing an RDB snapshot with this CRC64 checksum
imposes a 10% increase in memory usage when Redis spawns a child process that
saves the snapshot in the disk.

The second configuration directive we'll examine is activerehashing. In
activerehashing, the main Redis hash table, which links the main keys to values,
is rehashed once per 100 milliseconds if this directive is set to yes. This rehashing
process releases the deleted keys' memory for use by the operating system, with
minimal impact on client connections as the activehashing occurs during downtime.
As recommended in the redis.conf comments, activerehashing should be set to
no if you have hard latency requirements, or if the Redis server needs to support a
high level of concurrent clients that could be delayed during active rehashing.

Master-slave
An excellent feature of Redis is the ability to scale and offer a high degree of reliability
through the use of master-slave replication. In this setup, a Redis instance can be
switched to a slave through the slave-of directive, which then allows the slave
instance to duplicate the data of another running Redis instance designated as
the master instance. Memory and latency—both hardware and network—directly
impact the performance of both the master and any attached slaves. Improving
Redis redundancy when used in the master-slave mode is about trade-offs that you
can make between the memory, hardware, and network traffic depending on your
circumstances.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[49]

The repl-disable-tcp-nodelay directive is one option for a better handling of
the network traffic congestion between the master and slave Redis instances. By
making the trade-off between denser data sync between the Master and instances
and less network traffic, this replication can improve the network performance in
high traffic situations.

32-bit Redis
In the official documentation on Redis.io's website on Memory Optimization3,
one suggestion is to compile Redis in 32-bit mode instead of using the default
64 bit instance.

Using a 32-bit Redis instances for datasets under 3 GB is smaller than the same
dataset in the 64-bit version of Redis. This can be illustrated in the following tests.
We'll launch two Redis instances, INSTANCE64 and INSTANCE32. We'll create a quick
Python function, test_redis_32k_65k, in a Python command line to create 100,000
keys using a UUID as a string value:

>>>def test_redis_32k_64k():

 for i in range(100000):

 key = "uuid:{}".format(i)

 value = uuid.uuid4()

 INSTANCE32.set(key, value)

 INSTANCE64.set(key, value)

>>> test_redis_32k_64k()

To see what happens to the memory usage of 32-bit verses 64-bit type of Redis
instances, we'll compare the output of two Redis-cli sessions by connecting
to each instance.

Managing RAM – Tips and Techniques for Redis Memory Management

[50]

For the Redis 32-bit instance:

127.0.0.1:6378> INFO memory

Memory

used_memory:12447072

used_memory_human:11.87M

used_memory_rss:13733888

used_memory_peak:12447072

used_memory_peak_human:11.87M

For the Redis 64-bit instance:

127.0.0.1:6379> INFO memory

Memory

used_memory:14871888

used_memory_human:14.18M

used_memory_rss:16805888

used_memory_peak:14871888

used_memory_peak_human:14.18M

About the INFO memory
Each value of the INFO memory means the following:

•	 used_memory: Number of bytes allocated by libc, jemalloc, or other allocated
used by Redis

•	 used_memory_human: Previous value formatted for human consumption in
megabytes

•	 used_memory_rss: Resident set size (rss) is the memory allocated as seen
by the OS and reported by UNIX tools like top

•	 used_memory_peak: Maximum memory in bytes used by Redis
•	 used_memory_peak_human: Previous value formatted for humans

in megabytes
•	 used_memory_lua: Bytes used by Redis's Lua subsystem
•	 mem_fragmentation_ratio: Ratio between used_memory_rss and

used_memory

•	 mem_allocator: The allocator that was used for Redis during compilation

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[51]

As we can see, for this simple test using identical data, the 32-bit Redis instance
uses 11.87 megabytes of RAM, while the 64-bit Redis instance uses 14.18 megabytes,
which is a relatively small difference attributable to the small sample of 100,000 keys
and the use of the Redis string data structure. To help illustrate the trade-offs and
possible issues between using 32-bit versus 64-bit Redis versions, we will compare
the results of storing 1 million integers, floats, and strings using the Redis string, list,
hash, and set data structures in the following table:

32-bit Peak Memory 64-bit Peak Memory Difference
SET command sets
1,000,000 keys with an
integer of 1

35.19 megabytes 54.79 megabytes 19.6 megabytes
or 36% more for
64-bit

SET command 1,000,000
keys with a float of
3.142

65.71 megabytes 85.26 megabytes 19.55 megabytes
or 22% more for
64-bit

SET command 1,000,000
keys with a value of
385e7bc8-0075-4922-
9dfa-a0b2592d5c78

96.23 megabytes 115.77 megabytes 19.54 megabytes
or 16% more for
64-bit

If your application uses integer sets, the 32-bit memory savings can be significant
as long as your overall memory requirements do not exceed the 4GB maximum
size limit. As the sizes and types of the values are stored, the memory savings
decrease significantly as a percentage difference between the 32-bit and 64-bit Redis
variations. For string-heavy applications that use sets, 64-bit Redis may be a better
choice because of the additional space per bit (32 vs. 64) along with more efficient
encoding of strings that is available with the 64-bit version.

For the hash data structure the differences between the 32-bit and 64-bit Redis
instances are not as great, as can be seen by the following table:

32-bit Peak Memory 64-bit Peak Memory Difference
Add 1,000,000 fields to
a Redis hash with the
field values set to 1

50.15 megabytes 69.69 megabytes 19.54 megabytes
or 28% more for
64-bit

Add 1,000,000 fields to a
Redis hash with all field
values set to 3.142

80.68 megabytes 100.24 megabytes 19.56 megabytes
or 19% more for
64-bit

Managing RAM – Tips and Techniques for Redis Memory Management

[52]

32-bit Peak Memory 64-bit Peak Memory Difference
Add 1,000,000 fields
to a Redis hash
with all field values
set to 385e7bc8-
0075-4922-9dfa-
a0b2592d5c78

111.18 megabytes 130.74 megabytes 19.56 megabytes
or 14.9% more for
64-bit

For Redis hashes, the overhead between 32-bit and 64-bit is roughly consistent at
19.56 regardless of what type of value is stored as the field values.

Running this same test with a Redis list has the following peak memory results:

32-bit Peak
Memory

64-bit Peak Memory Difference

Add 1,000,000
consecutive integers as
values to a Redis list

46.15 megabytes 61.69 megabytes 15.54 megabytes
or 25% more for
64-bit

Add 1,000,000
consecutive floats to a
Redis list

46.45 megabytes 77.24 megabytes 30.78 megabytes
or 39.8% more
for 64-bit

Adds the string
385e7bc8-0075-4922-9dfa-
a0b2592d5c78 1,000,000
times to a Redis list

76.97 megabytes 92.51 megabytes 15.54 megabytes
or 16.8% more
for 64-bit

For Redis lists in the 32-bit variant, storing integers and floats is significantly better
for lists that can be stored within the overall 32-bit limitations. Strings show the least
amount of improvement between 32 and 64-bit when stored in lists.

We'll now run our three tests using a Redis set to compare performance with a 32-bit
and 64-bit instance:

32-bit Peak Memory 64-bit Peak Memory Difference
Add 1,000,000 integers
to a Redis set

50.15megabytes 69.71 megabytes 19.56 megabytes
or 28% more for
64-bit

Add 1,000,000 floats to
a Redis set

50.45 megabytes 85.24 megabytes 34.79 megabytes
or 40.8% more for
64-bit

Add 1,000,000 unique
UUID strings to a
Redis set

80.97 megabytes 108.53 megabytes 27.56 megabytes
or 25.39% more
for 64-bit

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[53]

There are some considerations and cautions about using 32-bit instances.The use of
32-bit Redis has not been as widely deployed and tested among the Redis user base
and therefore may have undiscovered bugs compared to the 64-bit version. Another
caution is that bit-operations such as BITOP and BITCOUNT have been optimized for
Redis 64-bit versions and therefore are less efficient. Finally, setting the maxmemory
parameter—we will go into much more in-depth later in this chapter on caching—can
be more difficult with 32-bit version of Redis because communication, master/slave
replication, I/O buffers all can contribute to Redis randomly crashing if the maxmemory
is set too close to the 4 GB maximum for the 32-bit variant.

Key expiration
A simple and robust method to keep your Redis database from exceeding it's
available memory is to set timeouts on keys that will be automatically evicted after
the key's timeout expires. If your application does not need to retain stale or old data,
having an effective expiration strategy for your key-space will keep the memory
demands for your Redis application more manageable. A popular Redis design
pattern using key expiration is to save expired or evicted data into another relational
SQL database or other more disk-based NoSQL platform like MongoDB.

There are some aspects of key expiration that you should be aware of when
implementing this feature in your application. First, when you call a timeout with
the EXPIRE command on a key, the timeout can only be cleared if you delete the key
or replace the key. Any subsequent commands that alter the value do not change or
clear out any timeouts you set. Let's create a scenario where you are programming
an application that brews three types of teas. Each tea has a different brew time.
Our Redis key schema will use a forward slash delimiter instead of a colon as a
convenient shorthand if we want to add a REST service later, and we will use an
incremental unique counter. Each box will be an integer set for the total number of
tea bags. Finally, when the application brews a tea bag, we will pop a random integer
from the box, use that for the key counter, and then set an expiration timeout of the
length of the recommended time. When the tea bag key is evicted, the application
stops the brewing. We can now model and test this use case with the following
Python function that takes an instance of the Python client, a name, brew time, and
box size, and returns the newly created tea_key for further use in our application:

def create_tea(datastore, name, time, size):
 # Increment and save global counter
 tea_counter = datastore.incr("global/teas")
 tea_key = "tea/{}".format(tea_counter)
 datastore.hmset(tea_key,
 {"name": name,

Managing RAM – Tips and Techniques for Redis Memory Management

[54]

 "brew-time": time,
 "box-size": size})
 return tea_key

Now, we'll import the Redis module for Python, instantiate a StrictRedis class,
and create three teas as hashes from a Python shell with this function:

>>> import redis

>>>tea_datastore = redis.StrictRedis()

>>>earl_grey = create_tea(tea_datastore, "Earl Grey", 5, 15)

>>>earl_grey

'tea/1'

>>>tea_datastore.hgetall(earl_grey)

{b'box-size': b'15', b'name': b'Earl Grey', b'brew-time': b'5'}

>>>lavender_mint = create_tea(tea_datastore, "Lavender Mint", 2,

20)

>>>peppermint_punch = create_tea(tea_datastore, "Peppermint Punch",
4, 10)""""""

To add individual tea bags to the first box of tea for each of the tea types, we'll create
a second function:

def add_box_of_tea(datastore, tea_key, number):
 box_counter = datastore.incr("global/{}/boxes".format(tea_key))
 tea_box_key = "{}/box/{}".format(tea_key, box_counter)
 datastore.sadd(tea_box_key, *range(1,number+1))
 return tea_box_key

We'll add the first box for each type of tea from our Python shell, as shown here:

>>>earl_grey_box_1 = add_box_of_tea(tea_datastore, earl_grey, 15)

>>> earl_grey_box_1

'tea/1/box/1'

>>>tea_datastore.smembers(earl_grey_box_1)

{b'2', b'1', b'3', b'5', b'4', b'13', b'10', b'11', b'14', b'7',
b'12', b'15', b'6', b'8', b'9'}

>>>lavender_mint_box_1 = add_box_of_tea(tea_datastore,
lavender_mint, 15)

>>>tea_datastore.scard(lavender_mint_box_1)

15

>>>peppermint_punch_box_1 = add_box_of_tea(tea_datastore,

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[55]

peppermint_punch, 10)

>>>tea_datastore.scard(peppermint_punch_box_1)

10

Now, we will add a third function that takes the Redis instance and tea box key,
brews a random tea bag from each box by setting an expiration time equal to the
number of seconds of brew time for that type of tea, adds the tea bag key to a
brewing set, and finally returns the tea_bag_key:

defstart_brew(datastore, tea_box_key):
 tea_box = tea_box_key.split("/box")[0]
 # Brew time is in minutes, we multiple by 60 for expire in
 seconds
 expire_time = int(datastore.hget(tea_box, "brew-time"))*60
 tea_bag_number = datastore.spop(tea_box_key)
 tea_bag_key = "{}/bag/{}".format(tea_box_key,
 tea_bag_number.decode())
 datastore.set(tea_bag_key, "brew")
 datastore.expire(tea_bag_key, expire_time)
 datastore.sadd("brewing", tea_bag_key)
 return tea_bag_key""""""

Calling the start_brew function three times, once for each type of tea, creates three
tea bag keys and sets the expiration time depending on the type of tea:

Our final Python function iterates through all of the tea bags in the brewing set, polls
the remaining time for each tea bag with the TTL command, and then either prints a
message with the remaining time until the tea is finished brewing or a message that
the tea is ready to drink depending on whether there is any remaining time before
the tea bag key expires in our tea datastore:

def poll_brewing(datastore):
 active_tea_bags = datastore.smembers("brewing")
 for tea_bag in active_tea_bags:
 time_left = datastore.ttl(tea_bag)
 if time_left> 0:
 print("{} seconds left for {}".format(time_left,
 tea_bag))
 else:
 print("{} Ready to Drink!".format(tea_bag))
 # Remove expired tea bag from brewing set
 datastore.srem("brewing", tea_bag)

Managing RAM – Tips and Techniques for Redis Memory Management

[56]

We will call the poll_brewing Python function three times, once near the beginning:

>>>poll_brewing(tea_datastore)

80 seconds left for b'tea/2/box/1/bag/5'

215 seconds left for b'tea/3/box/1/bag/3'

243 seconds left for b'tea/1/box/1/bag/5'

Again in approximately 60 seconds:

>>>poll_brewing(tea_datastore)

22 seconds left for b'tea/2/box/1/bag/5'

157 seconds left for b'tea/3/box/1/bag/3'

185 seconds left for b'tea/1/box/1/bag/5'

And finally at around 90 seconds:

>>>poll_brewing(tea_datastore)

b'tea/2/box/1/bag/5' Ready to Drink!

124 seconds left for b'tea/3/box/1/bag/3'

152 seconds left for b'tea/1/box/1/bag/5'

If the value is altered for a key that has a timeout, for example, using the APPEND
command for a Redis string, the timeout still continues. From a Redis-cli session, we
can replicate setting a string value to a tea bag with a timeout of 300 seconds:

127.0.0.1:6379> SET tea/1/box1/bag/8 brew

OK

127.0.0.1:6379> EXPIRE tea/1/box1/bag/8 300

(integer) 1

First we'll check to see what is the remaining TTL for tea/1/box/1/bag/8, and
then we will add an additional text to the value held at the key, and check the TTL
again, as shown here:

127.0.0.1:6379> TTL tea/1/box1/bag/8

(integer) 288

127.0.0.1:6379> APPEND tea/1/box1/bag/8 ing

(integer) 7

127.0.0.1:6379> GET tea/1/box1/bag/8

"brewing"

127.0.0.1:6379> TTL tea/1/box1/bag/8

(integer) 259

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[57]

If SET or GETSET is called on a key with a set timeout, the timeout will be cleared and
then the key won't be evicted from the database. So, if SET is called on the tea/3/
box/1/bag/3 key before it has expired, when the TTL is called on the tea/3/box/1/
bag/3 key, Redis responds back with -1. This is a default message for the keys that
do not have a timeout.

127.0.0.1:6379> TTL tea/3/box1/bag/3

(integer) 225

127.0.0.1:6379> SET tea/3/box1/bag/3 brew

OK

127.0.0.1:6379> TTL tea/3/box1/bag/3

(integer) -1

So far, we have used the TTL as a polling mechanism to retrieve the value of any
remaining timeouts that have been set on the keys we are interested in. Using client-
side polling does have disadvantages, one of which is that if a delay occurs between
the client-code and the server, our tea could become over-brewed. Redis offers a
notification mechanism based on Pub/Sub that can be set up to send a message when
a key expires, functionality that we'll explore in a later chapter on Redis messaging.

You can also use the PERSIST command to clear out a timeout that has been set on an
existing key. Finally, calling EXPIRE on a key that has had a previous timeout set will
clear out and set a new timeout.

127.0.0.1:6379> TTL tea/1/box1/bag/8

(integer) 118

127.0.0.1:6379> EXPIRE tea/1/box1/bag/8 300

(integer) 1

127.0.0.1:6379> TTL tea/1/box1/bag/8

(integer) 295

Even though this example is contrived, it should illustrate the basic operations
of Redis key expiration. Redis sets the TTL with EXPIRE using an absolute UNIX
timestamp from the underlying operating system. If you set a timeout on a key but
then shut down the Redis database with the data saved into a snapshot, restarting
the Redis database after the timeout has expired will evict the key automatically.
Redis uses two methods for doing the actual expiration in the key-space, the first is
if the key is actively requested by a client, and the second method is a probabilistic
algorithm that randomly tests 20 keys with an associated expiration time stamp
and deletes all of the keys in the sample that have expired.

In this chapter's next topic, we will take this knowledge about key expiration and see
how Redis can modify it's behavior when it reaches its maximum allowed memory
and keys within the key-space have timeouts set.

Managing RAM – Tips and Techniques for Redis Memory Management

[58]

LRU key evictions
To demonstrate the various options for key evictions in Redis, we'll start with a
simple example by setting a small memory Redis instance that the maxmemory
directive sets to 1 megabyte. The maxmemory directive allows you set a hard upper
bound on the amount of memory that is available to a running Redis instance.
Echoing the warnings in the default redis.conf file, setting the maxmemory has
ramifications that we'll now see. To start with, we'll just create a very simple Redis
key schema, that of generating and storing a unique id for a web application. After
connecting to a Redis instance through Redis-cli, we'll run the following commands
to clear out our datastore and then set the maxmemory directive to 1 megabyte:
127.0.0.1:6379> FLUSHALL

OK

127.0.0.1:6379>CONFIG SET maxmemory1mb

OK

Next, we'll implement a function that takes a Redis instance, increments a global
uuid, and then generates a random UUID from the standard uuid Python module.
The add_id function code in Python is presented as follows in this code snippet:
>>> import uuid

>>>def add_id(redis_instance):

redis_key = "uuid:{}".format(redis_instance.incr("global:uuid"))

redis_instance.set(redis_key, uuid.uuid4())

When Redis runs out of memory, the default behavior - the noeviction policy - is
illustrated in the following image:

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[59]

The default maxmemory-policy policy is noeviction. In noeviction, no keys are set
to expire and any write commands will cause a Redis error if there is no available
memory to Redis. To confirm that our directives are set for experiment, we will
first check whether the maxmemory and maxmemory-policy are set to 1 megabyte
and a noeviction policy respectively that is confirmed by checking the values
 of this directives by running the following CONFIG GET commands in our
Redis-cli session:

127.0.0.1:6379>CONFIG GET maxmemory

1) "maxmemory"

2) "1048576"

127.0.0.1:6379>CONFIG GET maxmemory-policy

1) "maxmemory-policy"

2) "noeviction"

To test the noeviction policy, we will run a loop in Python until we receive an
error, as shown here:

>>> while 1:

add_id(local_redis)

Quickly, we receive an exception from the Redis client, as follows: redis.
exceptions.ResponseError, OOM command not allowed when used memory
> 'maxmemory'.

Our while loop cycles through 181 times before we hit the 1 megabyte memory limit,
with our counter value set at 181. Now to check the state of our datastore by running
the INFO memory command from the our Redis-cli and looking at the used_memory_
peak_human:

127.0.0.1:6379> INFO memory

Memory

used_memory:1048608

used_memory_human:1.00M

used_memory_rss:1769472

used_memory_peak:1048608

used_memory_peak_human:1.00M

used_memory_lua:35840

mem_fragmentation_ratio:1.69

mem_allocator:libc

Managing RAM – Tips and Techniques for Redis Memory Management

[60]

Now, if we retrieve the global uuid counter key we set in the add_id function, we
can see that we have 181 UUID stored in our 1 megabyte datastore which is the same
value as our counter variable we incrementally increase by one in our loop:

127.0.0.1:6379> GET global:uuid"181"

127.0.0.1:6379> GET uuid:181

"1930a94e-38ff-4dbd-8885-eb44aed96122"

From the Redis-cli, we'll test the noeviction policy by trying to increment a second
variable, like tmp:1, this is the error we receive:

127.0.0.1:6379> INCR tmp:1

(error) OOM command not allowed when used memory > 'maxmemory'.

When Redis tries to execute any write (SET, INCR, SADD, HSET, and so on) or other
commands that increase memory usage under no available memory conditions, you
will receive an error similar to the one seen in the preceding snippet. The next policy
we'll examine is how Redis handles LRU when one or more keys have a timeout set.
The first expiration LRU policy named volatile-lru evicts the less recently used
keys but only if those keys have an expiration timeout set with EXPIRE SET. If there
are not any keys that are eligible for eviction, Redis will return the same exception
when trying to write as in the noeviction policy.

An important note when using this policy is that when Redis runs out of memory it
will start deleting keys that have an expiration timeout even if there is time remaining
for the key. To test the volatile-lru policy, we'll flush our Redis instance. Running
the same loop without setting an eviction time on any of the keys results in the same
behavior as the noeviction policy:
127.0.0.1:6379>FLUSHDB

127.0.0.1:6379>CONFIG SET maxmemory-policy volatile-lru

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[61]

127.0.0.1:6379> GET global:uuid

"181"

127.0.0.1:6379> INFO memory

Memory

used_memory:1048608

used_memory_human:1.00M

.

.

Now, we're going to create a second function based upon the add_id and use a new
add_id_expire function to set an expiration time of 300 seconds on the first 75 keys
we create.

>>>def add_id_expire(redis_instance):

 count = redis_instance.incr("global:uuid")

redis_key = "uuid:{}".format(count)

redis_instance.set(redis_key, uuid.uuid4())

 if count <= 75:

redis_instance.expire(redis_key, 300)

Resetting our counter variable to zero and running our test again, we iterate through
the loop 238 times, 57 more times than when we ran our Redis instance with the
noeviction policy. The loop results are confirmed when we retrieve our global
increment variable global:uuid, check if uuid:1 and uuid:75 still exist, and check
if uuid:76 and uuid:238 exist with uuids in our datastore:

127.0.0.1:6379> GET global:uuid

"238"

127.0.0.1:6379> GET uuid:1

(nil)

127.0.0.1:6379> GET uuid:75

(nil)

127.0.0.1:6379> GET uuid:76

"9922e314-17f8-4630-a709-07a3c8a8019c"

127.0.0.1:6379> GET uuid:238

"1a1318ae-57b6-4a4a-a366-2727033a315d"

Managing RAM – Tips and Techniques for Redis Memory Management

[62]

As we expected, the keys uuid:1 to uuid:75 don't exist and during the loop an
additional 57 keys were created in the database compared to the default noeviction
policy. We can also see that we didn't create an additional 75 uuids only 57 more.
This is likely due to the fact that we ran out of memory after all of the keys with
expiration times had been evicted as we tried to add more keys without accounting
for the memory overhead needed for eviction.

Now, the next LRU-style eviction policy, allkeys-lru, is recommended if you expect
to add a power-law access pattern1 to your Redis database. The allkeys-lrupolicy
is a good initial choice if you are unsure of what eviction policy to use with this
important caveat. The allkeys-lru can delete any key in Redis and there is no way
to restrict which keys are to be deleted. If your application needs to persist some Redis
keys (say for configuration or reference look-up) don't use the allkeys-lru policy!

To test allkeys-lru, we'll flush the data from our Redis instance, set the
maxmemory-policy directive, and then run our original add_id function.

Running our experiment in Python with an infinite while loop using the original
add_id function, we went through hundreds of thousands of iterations (615,094)
before running out of memory. Running an INFO stats command in the Redis cli and
looking at the number of evicted keys in with the INFO stats, we see the following:

127.0.0.1:6379> INFO stats

Stats

total_connections_received:2

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[63]

total_commands_processed:1230193

.

.

evicted_keys:264524

In the allkeys-lru policy, Redis was able to process 1,230,193 commands by
evicting 264,524. Since all of our keys in this loop have the same usage (that is, we are
not retrieving any of the keys after our initial SET command), the Redis estimation
of LRU for the keys was consistent across the datastore. For our experiment, the
allkeys-lru eviction policy was effective in freeing memory for additional
keys by evicting stale keys in our datastore. To further test the allkeys-lru policy,
we will restart our experiment and only iterate 200 times through our loop (more
than our test of the noeviction policy but less then our volatile-lru test). The
following are the results of this iteration:

127.0.0.1:6379> GET global:uuid

"200"

127.0.0.1:6379> INFO stats

Stats

total_connections_received:2

total_commands_processed:614

.

.

evicted_keys:24

In this test, the allkeys-lru policy evicted 24 keys, we created the full 200 keys as
we would expect going through 200 iterations of our loop, but the problem is that we
don't know which of the 200 keys were evicted. To determine the missing keys, we'll
need to loop through all of our keys and test if the key exists or has been evicted.
This can easily be accomplished with the following Python code snippet:

>>> for i in range(1, 201):

 key = "uuid:{}".format(i)

 if not local_redis.exists(key):

 print(key)

Managing RAM – Tips and Techniques for Redis Memory Management

[64]

Here is the output of this code snippet (your' results from running this code should
vary from this list, if only slightly because of the probabilistic nature of Redis's
LRU algorithm):

uuid:15

uuid:17

uuid:23

uuid:29

uuid:39

uuid:46

uuid:50

uuid:57

uuid:67

uuid:68

uuid:83

uuid:86

uuid:89

uuid:110

uuid:116

uuid:121

uuid:128

uuid:130

uuid:146

uuid:147

uuid:150

uuid:151

uuid:175

uuid:176

There are a couple of things to note about these evicted keys that illustrate the
RedisLRU algorithm; first, the RedisLRU algorithm is not exact, as Redis does not
automatically choose the best candidate key for eviction, the least used key, or the
key with the earliest access date. Instead, Redis default behavior is take a sample
of five keys and evict the least used of those five keys. Going back to the preceding
list of evicted keys, we can see the results of this sampling strategy. If we want to
increase the accuracy of the LRU algorithm, we can the change the maxmemory-
samples directive in either redis.conf or during runtime with the CONFIG SET
maxmemory-samples command. Increasing the sample size to 10 improves the
performance of the RedisLRU so that it approaches a true LRU algorithm but with
the side-effect of more CPU computation.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[65]

Decreasing the sample size to 3 reduces the accuracy of RedisLRU but with a
corresponding increase in processing speed.

The next two maximum memory eviction policies—volatile-random and allkeys-
random—mirror the volatile-lru and allkeys-lru policies but do not use the
LRU algorithm. The volatile-random policy evicts a random key based on expiration
status that have been set on any keys. The entire keyspace is open for eviction in the
allkeys-random policy.

We can use both the add_id and add_id_expire functions to test these two policies.
First we'll run through the volatile-random policy with our experiment using a
modified version of the add_id_expire function that sets half of the Keys to an
expiration time of 5 minutes, allowing us to compare the performance of the volatile-
random policy to our other policies. Our results are different to the volatile-lru test
when we created a total of 246 keys. Unlike the volatile-lru policy, we need to an
O(n) operation to figure if a uuid:1 through the last uuid key we created were evicted.

Running a sample run of 1000 iterations of the add_id_expire function results in the
following performance:

127.0.0.1:6379> INFO stats

Stats

total_connections_received:2

total_commands_processed:1805

.

.

expired_keys:0

evicted_keys:499

Managing RAM – Tips and Techniques for Redis Memory Management

[66]

Notice that even though our add_id_expire function sets an expiration time on
half of keys added to our Redis instance, the small size of our sample set was such
that all of the keys were evicted before any of the keys expired under this test of the
volatile-lru policy. Checking the state of our keyspace, we find the following:

127.0.0.1:6379> GET global:uuid

"652"

127.0.0.1:6379> GET uuid:1

(nil)

127.0.0.1:6379> DBSIZE

(integer) 153

127.0.0.1:6379> GET uuid:652

(nil)

127.0.0.1:6379> GET uuid:651

"e42ce917-efe9-4657-b2d6-cccd0f26b19c"

In this test of the volatile-random policy, we ran out of memory before we could
complete the 1,000 iterations. During those 652 iterations – easily determined by
our GET global:uuid call – of our test, we created and evicted 499 keys while
retaining only 153 keys.

The last maximum memory policy is volatile-ttl. It is similar to volatile-lru
but with the additional characteristic that Redis will try to evict those keys based on
the time to live (TTL) of the key that is to be evicted from the Redis database.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[67]

Creating memory efficient Redis data
structures
The following are some of the methods for memory optimization in Redis:

Small aggregate hashes, lists, sets, and
sorted sets
For hashes, lists, and sorted sets, this special encoding is based on ziplist A Ziplist is
described from ziplist.c as follows:

The ziplist is a specially encoded dually linked list that is designed to be very
memory efficient. It stores both strings and integer values, where integers are
encoded as actual integers instead of a series of characters. It allows push and pop
operations on either side of the list in O(1) time. However, because every operation
requires a reallocation of the memory used by the ziplist, the actual complexity is
related to the amount of memory used by the ziplist.2.

Depending on the size, type, and contents of the data structure, the ziplist encoding
offers significant memory savings for your Redis database. Redis dynamically
switches between the ziplist and the default encoding for the data structure when
the current limit for that Redis data type is reached. To see this switch in action,
we'll create a Python function that displays this dynamic switch by printing the type
of encoding and size for a hash key when its default threshold is met:

def dynamic_encoding_switch(instance):
 for i in range(515):
 instance.hset("test-hash", i, 1)
 if i> 510:
 debug = instance.debug_object("test-hash")
 print("Count: {} Length: {} Encoding: {}".format(i,
 debug.get('serializedlength'), debug.get('encoding')))

Running dynamic_encoding_switch results in the following output to our Python
shell:

>>>dynamic_encoding_switch(local_redis)

Count: 511 Length: 2070 Encoding: ziplist

Count: 512 Length: 2439 Encoding: hashtable

Count: 513 Length: 2444 Encoding: hashtable

Count: 514 Length: 2449 Encoding: hashtable

Managing RAM – Tips and Techniques for Redis Memory Management

[68]

Why does Redis dynamically re-encode the hash from a ziplist to a hash table
in this case? This is because there is a trade-off between memory efficiency and
performance. The ziplist implementation in Redis achieves it's small memory size
by storing only three pieces of data per entry; the first is the length to the previous
entry, the second is the length of the current entry, and the third is the stored data.
This brevity comes at the cost of more computation (hence time) that is required
for changing the size and retrieving the entry versus the larger linked-list based
encodings that store additional pointers but is correspondingly faster in changing
and retrieving at larger sizes.

For hashes, the hash-max-ziplist-entries directive sets the total number of fields
that can be specially encoded as a ziplist with a default value of 512 fields. The hash-
max-ziplist-value directive sets the maximum size before the hash is converted
from a ziplist with a default size of 64. We can illustrate these two conditions with
the following very simplistic examples.

To test the size difference between ziplist and linked list for hashes, let's spin up
two identical instances of Redis. For our remaining tests in this chapter, we will keep
our first instance's configuration directives using Redis's default values and modify
the second instance's directives to force Redis to use the default encoding for each
data type.

Alert
Be aware that if you're trying to improve the memory performance
by adjusting the threshold values of sets, hashes, and lists with
ziplist on an existing datastore, any pre-existing values will remain
encoded in the original format. Changing these values' threshold
values does not re-encode old values but only changes any new
values that are added to Redis.

First, we'll set the hash-max-ziplist-entries to 0 for the second instance, create
and populate a hash with 500 fields containing identical fields and integers values
then compare the two using the DEBUG OBJECT command from the Redis-cli. for
these two Redis hashes. First, we'll create a small Python function to create our hash:

def plot_hashes(runs=500):

 reset()

 key = "test-hash"

INSTANCE2.config_set('hash-max-ziplist-entries', 0)

 run, zip_list, linked_list = [], [], []

 for i in range(runs):

 field = "f{}".format(i)

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[69]

INSTANCE1.hset(key, field, i)

INSTANCE2.hset(key, field, i)

debug1 = INSTANCE1.debug_object(key)

zip_list.append(debug1.get("serializedlength"))

debug2 = INSTANCE2.debug_object(key)

linked_list.append(debug2.get("serializedlength"))

Now, we'll run our function and then examine the results of the debug_object
command on test-hash for each object, as shown here:

>>>plot_hashes()

>>INSTANCE1.debug_object("test-hash").get("serializedlength")

3102

>>>INSTANCE2.debug_object("test-hash").get("serializedlength")

3764

If you compare the encoding size for these two identical hashes, you will find
that the standard hashtable encoding for test-hash results in a serialized length
of 3764 while the ziplist encoding for test-hash is 3102, a direct memory saving
(when serialized) of 662 bytes. Graphing the results as presented in the following
figure gives you only the memory savings but does not consider the additional
computation time the ziplist encoding requires as the size of hash increases:

Managing RAM – Tips and Techniques for Redis Memory Management

[70]

For lists, like hashes, the ziplist encoding is used for small lists with the thresholds
being determined by the list-max-ziplist-entries and the list-max-ziplist-
value with both directives having the same default values as the hash directives of
512 and 64 respectively. In the code file small_types_tests.py, there is a function
that sets the list-max-ziplist-value to 0 for the second instance. The function
then iterates through a number of runs, adding a random UUID to the same Redis
key in each Redis instance, and then saving the serialized length of each instance as
seen in this Python code snippet from the small_types_tests.py:

def plot_list_ziplist(runs=1000):

 reset()

INSTANCE2.config_set("list-max-ziplist-entries", 0)

 key = "test-list"

 run, zip_list, linked_list = [], [], []

 for i in range(runs):

run.append(i)

uid = uuid.uuid4()

INSTANCE1.lpush(key, uid)

INSTANCE2.lpush(key, uid)

debug1 = INSTANCE1.debug_object(key)

zip_list.append(debug1.get("serializedlength"))

debug2 = INSTANCE2.debug_object(key)

linked_list.append(debug2.get("serializedlength"))

We can see this difference between by comparing the two list encoding methods on
test-list in both Redis instances:

>>>INSTANCE1.debug_object("test-list").get("serializedlength")

15756

>>>INSTANCE2.debug_object("test-list").get("serializedlength")

18946

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[71]

For the first 512 UUIDs that are added to both lists, the size of the ziplist encoded
value is 15,787 while the size of the linked-list encoded value is 18,946, a memory
savings of 3190 bytes if using a ziplist.

While it may not be immediately apparent, but for very small lists, the linked-list
encoding for Redis lists is actually more efficient. We can see this more clearly if
we graph the first 50 list items as shown here:

For small lists, the default linked list encoding is more efficient than the ziplist
encoding but as the size of the list increases, the ziplist encoding becomes more
efficient.

Managing RAM – Tips and Techniques for Redis Memory Management

[72]

For sets the advantages of these special encodings only occurs if the set is small
and contains only integers. The Redis directive, set-max-intset-entries with
a default value of 512 will encode the set as an intset data type. Running the two
Redis instances experiment with the Python function and then retrieving the output
results in:

>>>INSTANCE1.debug_object("test-set").get("serializedlength")

1034

>>>INSTANCE2.debug_object("test-set").get("serializedlength")

2874

Finally, in examining and experimenting with the special encoding of sorted sets,
we will use the same two Redis instances and set the Rediszset-max-ziplist-
entries to 0 to force Redis to use a hashtable for the data encoding. For each ZADD
command, the plot_sortedset function adds a UUID to each instance with the
score set to 0 for lexical ordering of the UUIDs. To Author: Unclear? Please rephrase
for more clarity.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[73]

Comparing the results from our Python shell on the test-sorted-set in both
instances results in the following:

>>>INSTANCE1.debug_object("test-sorted-set").get("serializedlength")

4421

>>>INSTANCE2.debug_object("test-sorted-set").get("serializedlength")

4994

For the ziplist implementation, the test-sorted-set serialized length is 4,421 bytes
while the skiplist implementation serialized length of 4,994 a difference in favor of
the ziplist encoding of 573 bytes.

For all the ziplist implementations, the computation time increases significantly as
the size of the data structure grows larger. For your own Redis-based application,
adjusting these thresholds is a matter of balancing memory size with performance
realizing that any large ziplist data structure slows down when compared to
equivalent default data structure for the Redis data type.

Managing RAM – Tips and Techniques for Redis Memory Management

[74]

Bits, bytes, and Redis strings as random
access arrays
In both chapters one and two, we talked about the use of bitmaps in Redis using
various commands such as SETBIT, GETBIT, BITCOUNT, BITPOS, and BITOP.
To illustrate the memory savings of using bitmap over a set, let's return to the
tea example from earlier and look at how we could indicate whether a tea was
decaffeinated or not, an important decision for those of us trying to wake up or fall
asleep! A Redis set, with a key name of tea:caffeinated could easily solve this
issue. We could store the key name of each tea with caffeine in the set with the SADD
command. For the sake of this example, let's assume that we have over 10,000 teas
and over 60% has some traceable level of caffeine. Continuing with our initial Redis
key schema for teas and since we are using a unique incremental counter for each
tea, the tea/caffeinated set could be populated from a Redis-cli like this (assuming
tea:4 is something like green tea):

127.0.0.1:6379> SADD teas/caffeinated tea:1 tea:4

(integer) 2

To simulate our full 10,000 tea inventory, we'll use a function in the small_types_
tests.py Python module, populate_tea, to compare our initial approaches:

def populate_tea(full=True):
 for i in range(10000):
 if random.random() <= .6:
 member = i
 if full:
 member = "tea/{}".format(i)
INSTANCE1.sadd("teas/caffeinated", member)
INSTANCE1.setbit("teas/caffeine", i, 1)

In populate_tea, we call the random.random() method to generate a random value
between 0 and 1. To model our assumption that 60% of our teas have some caffeine,
we check to see if the value is below .6, and add a tea with caffeine to both our set,
teas:caffeinated and our bitmap teas:caffeine. Running this function we have
over 10,000 variety of teas:

>>>INSTANCE1.debug_object("teas/caffeinated").get("serializedlength")

53879

>>>INSTANCE1.debug_object("teas/caffeine").get("serializedlength")

1252

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[75]

To see how many teas in our inventory have caffeine, we can either run the SCARD
command on the teas/caffeinated set or the BITCOUNT command on the teas/caffeine
bitmap:

127.0.0.1:6379> SCARD teas/caffeinated

(integer) 6063

127.0.0.1:6379> BITCOUNT teas/caffeine

(integer) 6063

For our teas/caffeinated set, the serialized length is 53,879 bytes while our bitmap is
stored as a raw string with a serialized length of 1,252 a significant memory savings
of 52,627 bytes! Now, you might be wondering why we have the full parameter in
our populate_tea function? With our initial implementation, we stored a string key
for each tea. To reduce the size of the teas:caffeinated set, we set the function
parameter full to False and then we only store the integer of the tea counter. So,
running populate_tea with full=False, results in the following lengths for both
teas/caffeinated and the teas/caffeine from the Redis-cli:

>>>INSTANCE1.debug_object("teas/caffeinated").get("serializedlength")

17800

By using integers instead of strings in our teas/caffeinated set, we were able to drop
the size significantly from 52,879 to 17,800 bytes but our bitmap teas/caffeine is still
orders of magnitude smaller than our set. However, using bitmaps is not necessarily
a panacea. Sparse bitmaps that number in the hundreds of millions waste space as
only the first bit is set per offset, leaving the remaining bits per entry not being used.
Also, Redis integer sets and hashes provide additional functions that are difficult or
require a lot of client code to work correctly with bitmaps.

Optimizing hashes for efficient storage
In the Redis topic on Memory Optimization, Salvatore Sanfilippo writes about a
technique using Redis's hashes to implement a high-level and very memory-efficient
key-value data storage using Redis hashes. To illustrate how to use this technique,
we will return to the legacy representation of MARC records introduced in Chapter
1, Why Redis? and compare two approaches to storing MARC JSON serialization in
Redis. In the first experiment we will simply use a one-to-one MARC redis key to
MARC record JSON serialization stored as a string. For the second experiment,
we will use hashes to store the same JSON serializations.

Managing RAM – Tips and Techniques for Redis Memory Management

[76]

For both experiments, our Redis schema will use marc as a prefix, separated by a
colon, followed by a unique progressive counter, overall a simple and common
schema for Redis:

marc:25

marc:334

marc:8990

marc:122345

Our dataset will be just over 17,000 MARC21 records of the most popular material
checked out by the patrons of a small academic library at a private liberal arts
college. The ingestion algorithm we will use for each MARC record in our first
experiment will be these three lines in the basic_ingestion function included
in the following code:

def basic_ingestion(record):
 """Function takes a MARC record, converts it into JSON, and
then saves the result as string in Redis.
Args:
 record -- MARC21 record
 """
marc_json = record.as_json()
redis_key = "marc:{}".format(INSTANCE1.incr("global:marc"))
INSTANCE1.set(redis_key, marc_json)

Running this function from our Python command line starts with the popular_
records Python list of MARC records that we read from the pymarc.MARCReader
generator:

>>>marc_reader = pymarc.MARCReader(

 open('tutt-library-popular.mrc', 'rb'), to_unicode=True)

>>> for record in marc_reader:

base_ingestion(record)

The basic information about our Redis database after ingesting these MARC records
looks like this from the Redis-cli:

127.0.0.1:6379> DBSIZE

(integer) 17145

127.0.0.1:6379> INFO memory

Memory

used_memory:58283440

used_memory_human:55.58M

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[77]

used_memory_rss:58118144

used_memory_peak:58283440

used_memory_peak_human:55.58M

used_memory_lua:35840

mem_fragmentation_ratio:1.00

mem_allocator:libc

Our Redis database contains 17,145 keys, with each key storing a json
representation of our MARC record. The total size of the Redis database is 55.58
megabytes. Now, we'll store these same serialized JSON MARC records using an
approach based on Redis hashes.

First, we'll use a simple algorithm to split our keys into two parts; the first part will
be used as a key with the last two characters as a field name in a hash to a value.
Further, we'll stipulate that all of marc:{record-number} keys will end in integers.
Depending on what we use for our Redis schema (that is a Redis Object Mapper,
client validation code, or external schema validator), this condition can be enforced
as seen in this code snippet from the marc_hash.py module that can be downloaded
from the book's website or at this Github repository— https://github.com/
jermnelson/marc-redis.

def split_key(redis_key):
""""""
new_key, field = redis_key[:-2], redis_key[-2:]
 if not new_key.startswith('marc'):
 raise InvalidKeyError(redis_key, "Must start with marc")
 try:
int(field)
 except ValueError:
 raise InvalidKeyError(redis_key, "Last two characters must
 be integers")
 return new_key, field

After defining this function, we'll now test our ingestion with this second function
that takes a MARC21 record, serializes it to JSON, and then uses Python string
formatting to increment a global marc counter with the Redis instance:

def hash_ingestion(record):
marc_json = record.as_json()
redis_key = "marc:{}".format(REDIS.incr("global:marc"))

https://github.com/jermnelson/marc-redis
https://github.com/jermnelson/marc-redis

Managing RAM – Tips and Techniques for Redis Memory Management

[78]

The split_key function takes the existing Redis key and return the new field name
made up of the last two digits of the global:marc counter and the field's value is
the serialized json.

key, field =split_key(redis_key)
REDIS.hset(key, field, marc_json)

After defining these functions, running our test experiment on our MARC record
collection results in the following from Redis-cli:

127.0.0.1:6380> DBSIZE

(integer) 174

127.0.0.1:6380> INFO memory

Memory

used_memory:57823456

used_memory_human:55.14M

used_memory_rss:57851904

used_memory_peak:57836688

used_memory_peak_human:55.16M

used_memory_lua:35840

mem_fragmentation_ratio:1.00

mem_allocator:libc

Using this alternative method, storing these 17k+ MARC records are stored with
only 174 keys and the memory used is 55.14 megabytes, resulting in a saving of
431,536k over the basic string implementation.

Hardware and network latencies
In your application, performance issues can easily be mistaken for out-of-memory
issues with your Redis database when the problem may have to do more with
hardware or network latencies between your client application and your backend
server. Latency, as understood in the Redis community, is broken down in
three ways:

•	 Command latency: This is the amount of time it takes to execute a command.
Some commands are fast and operate in O(1) while other commands have
O(n) time complexity and are thereby a likely source of this type of latency.

•	 Round-trip latency: The time between when a client issues a command
and then receives the response from the Redis server that can be caused by
network congestion.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[79]

•	 Client-latency: If multiple clients attempt to connect to Redis at the same
time, concurrency latency can be introduced as later clients may be waiting
in queue for early client processes to complete.

To help debug issues, Redis has a special mode for monitoring command latency that
can be set in either redis.conf from issuing a CONFIG SET for the latency-monitor-
threshold directive. The Redis latency-monitor-threshold directive sets a limit in
milliseconds that will log all or some of the commands and activity (called events) of
the Redis instance that exceed that limit with a default of 0, meaning Redis does not
automatically run latency monitoring but must be actively set. Borrowing the example
from Redis's official documentation on latency monitoring, first we'll set the latency-
monitor-threshold directive to 100 milliseconds:

127.0.0.1:6379> CONFIG SET latency-monitor-threshold 100

Now we'll run a series of DEBUG SLEEP to demonstrate the various subcommands
and functionality of Redis's latency monitor.

127.0.0.1:6379> DEBUG SLEEP 1

127.0.0.1:6379> DEBUG SLEEP .25

127.0.0.1:6379> LATENCY LATEST

1) 1) "command"

 2) (integer) 1433877394

 3) (integer) 250

 4) (integer) 1000

The LATENCY command with the LATEST subcommand returns the latest Redis
commands that exceeded the latency threshold and includes the event name, UNIX
timestamp when the latency event occurred, latest event latency in milliseconds, and
the all-time maximum latency for this event. In our example, line 2) 433877394 is
the timestamp of the latest DEBUG SLEEP command, line 3) 250 is the result of DEBUG
SLEEP .25, and finally line 4) 1000 records our first DEBUG SLEEP 1 command.

The LATENCY HISTORY command and subcommand returns the latest 160 latency
events that are being tracked. Running this command from Redis-cli results in the
following:

127.0.0.1:6379> LATENCY HISTORY command

1) 1) (integer) 1433877379

 2) (integer) 1000

2) 1) (integer) 1433877394

 2) (integer) 250

Managing RAM – Tips and Techniques for Redis Memory Management

[80]

The results are tuples made up of the UNIX timestamp and the time in milliseconds
for each event.

The LATENCY command with the RESET subcommand can either clear all latency
events or just selected events by passing in one or more event names. The LATENCY
GRAPH command produces an ASCII-style graph of the logged latency events since
the last LATENCY RESET command. Here is the result from Redis-cli (some return
values have been removed for brevity):

127.0.0.1:6379> DEBUG SLEEP .5

OK

(0.50s)

127.0.0.1:6379> DEBUG SLEEP .3

127.0.0.1:6379> DEBUG SLEEP .8

127.0.0.1:6379> DEBUG SLEEP .2

127.0.0.1:6379> DEBUG SLEEP .6

127.0.0.1:6379> LATENCY GRAPH command

command - high 800 ms, low 201 ms (all time high 800 ms)

 #

_ | o

| | |

|o|_|

55544

95170

sssss

Finally, the LATENCY DOCKER mode provides a rich set of human-readable (but
with flashes of HAL 9000 from Stanley Kubrick's film 2001!) statistical data such as
average time between latency spikes, median deviations of those spikes as well as
human understandable analysis of the latency events and suggestions for reducing
the latency.

www.ebook3000.com

http://www.ebook3000.org

Chapter 3

[81]

Operating system tips
Redis is developed and runs most applications under POSIX supported operating
systems like Linux and many of its distributions, Macintosh OS and other BSD
derived operating systems, and other commercial UNIXes. The Redis project
does not officially support Microsoft Windows, although Microsoft's Open Tech
group develops and maintains a port to 64bit-based Windows. There have been
experiments running Redis with Raspberry Pi4 and Android5.

Tips for running Redis on Linux
You should disable the transparent huge pages in your kernel by running
the following:
echo never > /sys/kernel/mm/transparent_hugepage/
enabled

Set vm.overcommit_memory to 1 to avoid issues with background
saving with your Linux virtual machine by swapping.

Summary
This chapter started with some memory-related directives that can be set and then
we looked at the various policies for key eviction when Redis reaches the limits of its
available memory. Different memory-efficient encoding for small hashes, lists, sorted
sets, and sets under special conditions, sets were examined next. We then looked
at using bitmap strings as random access arrays followed by using hashes more
effectively as a high-level key-value store that is more memory efficient. Finally, we
took a look at how to use the Redis latency monitor mode to track problematic and
long-running Redis commands followed by a couple of tips for improving running
Redis on Linux. The next chapter switches the focus to software development and
starting with a tour of Redis's C source code and then switching to using Redis
clients using three different programming languages.

www.ebook3000.com

http://www.ebook3000.org

[83]

Programming Redis Part
One – Redis Core, Clients,

and Languages
In this chapter, Programming Redis Part One – Redis Core, Clients, and Languages, we'll
start with a tour of the Redis C source code, examining how the major Redis C header
and code files interrelate and work with each other, followed by a high-level code
execution flow so that we can implement our own new Redis command. Then, to
prepare for the next section on using Redis clients of two different programming
languages, we'll do a detailed breakdown of the Redis Dump Binary (RDB) format,
the binary format Redis uses in persisting snapshots of its database on disk. We will
also cover the Redis protocol specification, the low-level communication format that
clients use to communicate with the Redis server. Finally, we'll use these Redis clients
and programming approaches in different use cases.

Programming Redis Part One – Redis Core, Clients, and Languages

[84]

Redis internals
As a network server, Redis's internal operations follow a basic execution flow
where the server waits and listens for incoming connections on a port by accepting
the connection if the inbound client communicates with the correct syntax and
format called the REdis Serialization Protocol (RESP). After accepting the socket
connection, Redis yields a descriptor for nonblocking read and write operations
on the in-memory state of the database.

Redis Server Execution Flow

For the Redis server, the main function creates an event loop calling the aeMain
function that creates an infinite while loop. This loop tests the event loop's stop
property and exits if the test fails. Each iteration of the while loop in aeMain calls
the aeProcessEvents function with a pointer to the event loop along with any
flags. The aeProcessEvents function processes all the time-based events before
processing all the file events. Remember that POSIX systems treat running processes
as file descriptors, so even to read the values from memory, Redis treats these
reads as file descriptors in the event management code. In Redis, time-based events
control when the event loop processes its events depending on the flags passed to
the aeProcessEvents function. The events range from immediately, to the shortest
time possible, to blocking and waiting forever, all of which are set with a time
value structure.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[85]

Using the LLDB debugger on a running Redis instance, we can trace the execution
flow for a Redis session up until this point by looking at each frame. In the following
backtrace, we start with the most recent frame:

(lldb) thread backtrace

* thread #1: tid = 0xf41e, 0x00000001000047ef redis-
server`aeProcessEvents [inlined] aeGetTime(milliseconds=<unavailable>) +
8 at ae.c:186, queue = 'com.apple.main-thread', stop reason = step in

With Redis being a single-threaded server application, we start in thread #1 and
halt execution of the Redis server at a predefined breakpoint. Working backwards
from the most recent frame, we'll trace the history of this execution path back to the
beginning in frame #5.

 * frame #0: 0x00000001000047ef redis-server`aeProcessEvents [inlined]
aeGetTime(milliseconds=<unavailable>) + 8 at ae.c:186

As shown in the preceding code, starting with most current frame #0, the
aeGetTime function is called from the current aeEventLoop struct in frame #1.

 frame #1: 0x00000001000047e7 redis-server`aeProcessEvents + 108 at
ae.c:304

frame #1 is in our processTimeEvents function's while loop that calls the
aeGetTime function from frame #0 with two time reference parameters. The
processTimeEvents was called from frame #2's aeMain function.

frame #2: 0x000000010000477b redis-server`aeProcessEvents(eventLoop=
0x0000000100323150, flags=<unavailable>) + 651 at ae.c:423

In frame #2, the aeProcessEvents function is called with the current point to
eventLoop in aeMain, whose return value will eventually increment our processed
variable in the aeProcessEvents function.

frame #3: 0x0000000100004a1b redis-server`aeMain(eventLoop=
0x0000000100323150) + 43 at ae.c:455

In frame #3, we are in the while loop in aeMain that was called with a pointer to the
current eventLoop struct created in frame #4:

frame #4: 0x000000010000f1a8 redis-server`main(argc=<unavailable>,

In frame #4, the main function starts on line 3892 in redis.c followed by a call to
the ae.c's aeMain function:

argv=0x00007fff5fbffb20) + 1256 at redis.c:3892

 frame #5: 0x00007fff900185c9 libdyld.dylib`start + 1

Programming Redis Part One – Redis Core, Clients, and Languages

[86]

For frame #5, we see that the Redis server is being launched by the operating
system.

The aeEventLoop struct contains two important structures: an aeFileEvent that
contains the event loop's registered events, and a pointer called to the aeFiredEvent
struct. The aeFiredEvent struct contains two variables: one for the file descriptor,
and a bitmask describing the event. In the aeProcessEvents function, each
FileEvent uses the Linux epoll_wait system call through the aeApiPoll function,
which waits for any I/O activity on the file descriptors. This is a blocking call. The
aeApiPoll is implemented in ae_poll.c. When a read or write I/O operation
occurs on the aeFileEvent, the aeProcessEvents will eventually add an additional
entry to the fired struct.

The call function's first parameter is a pointer to the active redisClient along
with a flags integer. Within the call function, the command is sent to any client
that is in monitor mode before executing the command. The command is then
executed by calling the proc function on the active redisClient struct. The
execution flow is now dependent on the Redis command that has been received. One
of the simplest Redis commands is the PING command. This command causes the
server to replay the PONG response. The PING is implemented by the pingCommand
function in redis.c.

Running the LLDB debugger from the root directory of our Redis directory, we will
launch a running instance of Redis and set a breakpoint on pingCommand:

$ lldb

(lldb) file src/redis-server

Current executable set to 'src/redis-server' (x86_64).

(lldb) breakpoint set -f redis.c -l 2482
Breakpoint 1: where = redis-server`pingCommand + 9 at redis.c:2484,
address = 0x0000000100007639

Issuing the run command in our debugging session will launch Redis
server, getting the ascii screen of Redis.

(lldb) run
Process 642 launched: '/Users/jeremynelson/redis-dev/src/redis-server'
(x86_64)
642:C 08 Jul 06:54:17.092 # Warning: no config file specified, using the
default config. In order to specify a config file use
/Users/jeremynelson/redis-dev/src/redis-server /path/to/redis.conf
642:M 08 Jul 06:54:17.093 * Increased maximum number of open files to
10032 (it was originally set to 2560).

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[87]

 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 3.1.999 (8f302e56/1) 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
(' , .-` | `,) Running in standalone mode
|`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
| `-._ `._ / _.-' | PID: 642
 `-._ `-._ `-./ _.-' _.-'
|`-._`-._ `-.__.-' _.-'_.-'| |
`-._`-._ _.-'_.-' | http://redis.io `-._
`-._`-.__.-'_.-' _.-'
|`-._`-._ `-.__.-' _.-'_.-'| |
`-._`-._ _.-'_.-' | `-._
`-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

642:M 08 Jul 06:54:17.097 # Server started, Redis version 3.1.999
642:M 08 Jul 06:54:17.103 * DB loaded from disk: 0.006 seconds
642:M 08 Jul 06:54:17.103 * The server is now ready to accept connections
on port 6379

Next, we will open a second terminal window, launch redis-cli, and issue a PING
command:

$ src/redis-cli

127.0.0.1:6379> PING

Switching back to our running debugger terminal window results in the following
output:

Process 642 stopped
* thread #1: tid = 0x18cff, 0x0000000100007639 redis-server`pingComman
d(c=0x0000000103000000) + 9 at redis.c:2484, queue = 'com.apple.main-
thread', stop reason = breakpoint 1.1
frame #0: 0x0000000100007639 redis-server`pingCommand(c=
0x0000000103000000) + 9 at redis.c:2484
 2481 * in Pub/Sub mode. */
 2482 void pingCommand(redisClient *c) {
 2483 /* The command takes zero or one arguments. */
 -> 2484 if (c->argc > 2) {
 2484 addReplyErrorFormat(c,"wrong number of arguments for
'%s' command",
 2486 c->cmd->name);
 2487 return;

Programming Redis Part One – Redis Core, Clients, and Languages

[88]

With our execution halted at pingCommand, we examine the state of redisClient
by issuing the frame variable LLDB command and then by looking at the value
of c->argc:

(lldb) frame variable c
(redisClient *) c = 0x0000000103000000
(lldb) frame variable c->argc
(int) c->argc = 1

Here is the relevant snippet of the c source code with the line numbers for the
pingCommand function in redis.c:

2481 void pingCommand(client *c) {
2482 /* The command takes zero or one arguments. */
2483 if (c->argc > 2) {
2484 addReplyErrorFormat(c,"wrong number of arguments for '%s'
command",
2485 c->cmd->name);
2486 return;
2487 }
2488
2489 if (c->flags & CLIENT_PUBSUB) {
2490 addReply(c,shared.mbulkhdr[2]);
2491 addReplyBulkCBuffer(c,"pong",4);
2492 if (c->argc == 1)
2493 addReplyBulkCBuffer(c,"",0);
2494 else
2495 addReplyBulk(c,c->argv[1]);
2496 } else {
2497 if (c->argc == 1)
2498 addReply(c,shared.pong);
2499 else
2500 addReplyBulk(c,c->argv[1]);
2501 }
2502 }

From our code at line 2483, we can see that redisClient fails the if (c->args >
2) condition.

We can also examine our execution history by issuing the thread backtrace
command; we will omit the frames we've already examined:

(lldb) thread step-in
Process 642 stopped
* thread #1: tid = 0x18cff, 0x000000010000765f redis-server`pingComman
d(c=0x0000000103000000) + 47 at redis.c:2490, queue = 'com.apple.main-
thread', stop reason = step in

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[89]

frame #0: 0x000000010000765f redis-server`pingCommand(c=
0x0000000103000000) + 47 at redis.c:2490
2486 return;
2487 }
2488
-> 2489 if (c->flags & REDIS_PUBSUB) {
2490 addReply(c,shared.mbulkhdr[2]);
2491 addReplyBulkCBuffer(c,"pong",4);
2492 if (c->argc == 1)

Stepping over lines 2489-2496 results in the following output (omitting some of the
output for brevity):

(lldb) thread step-over
.
.
.
2497 } else {
-> 2498 if (c->argc == 1)
2499 addReply(c,shared.pong);
2500 else
2501 addReplyBulk(c,c->argv[1]);
(lldb) frame variable c->argc
(int) c->argc = 1

Just to confirm, we displayed the value of the c->argc variable as 1, so the
conditional then executes the addReply function. The addReply function then runs
the prepareClientToWrite function. The prepareClientToWrite function is called
when we expect new data to be sent to the calling client along with a REDIS_OK return
value and a write handler socket to write to the eventLoop. The execution flow returns
to the call function after the prepareClientToWrite function is completed. After the
command has finished processing, the call function returns to the processCommand
function. The processCommand function then returns a REDIS_OK or REDIS_ERR status
to the processInputBuffer function, thereby calling the resetClient command.
After the client has been reset, the processInputBuffer function returns control to the
aeProcessEvents function. Finally, the control is returned to the aeMain event loop of
the running Redis server instance.

Understanding redis.h and redis.c
A significant benefit of Redis being an open source project is that its C source
code is available for you to download, examine, and experiment as you learn and
understand Redis. Our survey of Redis source code starts by examining two code
files, redis.h and redis.c. These contain the primary source code to run the server.

Programming Redis Part One – Redis Core, Clients, and Languages

[90]

In the following paragraphs, we'll start by examining a few defined constants,
structures, and macros in redis.h.

At the beginning of the redis.h header file, the includes directive imports header
files from the standard C libraries such as stio.h, stdlib.h, and time.h as well
as other header files from dependencies such as pthread.h for Linux threading,
syslog.h, and lua.h. Next in redis.h, the mstime_t millisecond time type is
defined as a long signed integer type that is under 64 bits and can range in size
from −9,223,372,036,854,775,807 to +9,223,372,036,854,775,807. However, since we
are storing milliseconds, negative time values are not valid in this context and
therefore are not used in the Redis server or client code. After defining mstime_t,
the various helper macros, functions and API function interfaces used in the running
and managing of your Redis instances are defined by the local header files for
Redis's event library (ae.h), dynamic safe strings (sds.h), hash tables (dict.h),
linked lists (adlist.h), and a version of malloc that is aware of the total memory
available (zmalloc.h). Other header file that are defined for networking (anet.h),
ziplists, and integer set structures (ziplist.h and intset.h respectively), that were
introduced in the last chapter and finally, by the version.h, util.h, latency.h,
and sparkline.h header files.

After these include statements, redis.h defines the REDIS_OK constant as 0 and
the REDIS_ERR constant as -1. These two constants are used extensively in the
implementation code of the Redis commands contained in other source code files
in the Redis project. Next in the redis.h header file, default server configuration
values are defined and used in the absence of a Redis configuration file. For example,
the REDIS_SERVERPORT is defined as 6379, the maximum number of connected Redis
clients is set to 10,000 with the REDIS_MAX_CLIENTS defined as constant and REDIS_
DEFAULT_RDB_FILENAME is dump.rdb. Other look-up, metrics, and I/O-related
definitions follow the Redis default configuration values that lead up to a listing of
Redis command flags in redis.h.

These command flags in the redis.c code file are members of the redisCommand
struct. This struct is passed to the processCommand function that we'll discuss later in
this chapter. All the Redis commands (that is, GET, SET, HSET, and so on) are stored in
redisCommandTable, a C struct, that is defined in redis.c. In redisCommandTable,
each command is in a separate row that contains a number of settings specific to the
Redis command.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[91]

Each command row has the following fields (in order from left-to-right):

•	 Command name: The lowercase string name of the command.
•	 Function pointer: A pointer to the function that implements the command.
•	 Function arity: The number of arguments that the command function expects.
•	 Function sflags: The sflags field contains the strings for all the different

Redis command fields.
•	 The string values in the previous fields (sflags) and computes a bitmask

using the constants defined in redis.h.
•	 An optional function to extract and/or compute a command's key arguments.
•	 The index of an argument in a listing of arguments passed to the Redis

command, that is, the Redis key for the data structure value.
•	 The index of the argument that is the last key; this allows us to have Redis

commands that operate on multiple keys at a time.
•	 The total time in microseconds of the execution time of the command. This is

calculated by Redis and should always be set to 0.
•	 The total number of calls made by the command. This is mutable and is

calculated at runtime and should always be set to 0.

The following are the row entries for the GET and SET commands:

{"get",getCommand,2,"rF",0,NULL,1,1,1,0,0},
{"set",setCommand,-3,"wm",0,NULL,1,1,1,0,0},

For the first fields in the example, the lowercase command strings are get and set.
The second field in our example is for pointers to the getCommand and setCommand
functions. The third field, airty, for getCommand is 2; for setCommand we see -3,
which means that the number of arguments is greater than or equal to 3.

For the fourth field, the GET command has the rF flags, where r means a read
command with F denoting that it is also a fast command. This means that its big
O notation is either O(1) or O(log(N)). For such fast commands, the Redis server
event loop should never delay the execution of a command—in this example, the
GET command—if the kernel scheduler continues to provide time to the running
Redis server. The SET command values are as follows: w means this command is a
write command, m means that this command increases the memory used and is not
allowed to be used if Redis is out of memory. There are twelve other commands
flags for things such as random R, S for sort command, lowercase s to prohibit the
command to be called in a script.

Programming Redis Part One – Redis Core, Clients, and Languages

[92]

The fifth field takes the string values from the previous field (sflags) and computes
a bitmask for rF and wm. The sixth field is set to NULL for both of these commands.
This means that neither GET nor SET requires optional functions for retrieving key
arguments. The seventh field is the index of the argument. This is a key, and it's
value is 1 for both GET and SET. The seventh and eight fields, getCommand and
setCommand, are both 1, so each of these commands only accept one key in the first
argument of the argument list set in the command. For the ninth and tenth fields,
the values are set to 0 as should be the case because these are dynamic fields whose
values are calculated by running Redis.

These constants are first used in the redis.c header's processCommand function
that we first encountered in the previous function. The processCommand function
takes a pointer to a redisClient struct. The struct is fundamental in Redis, as it
describes the state of the communication between the internal Redis processes in
the server and the outside world. The networking.c createClient function takes
a single parameter, int fd, allocates memory, and stores the pointer to the struct.
The createClient then continues and initializes all of its important variables such
as pointers to the current active Redis database (redisDb). Also, other important
properties will be noted as we go through the following selected lines from
redisClient in redis.h:

529 typedef struct redisClient {
530 uint64_t id; /* Client incremental unique ID. */
531 int fd;
532 redisDb *db;

Line 530 defines a unique 64-bit integer ID, t_id, line 531 is the file descriptor
integer ID, and line 532 is a pointer to the Redis database:

537 int argc;
538 robj **argv;

Line 537 argc is the # of args for the command, and line 538 argv is a reference to the
return values from the command:

539 struct redisCommand *cmd, *lastcmd;

Line 539 defines the *cmd pointers to the current redisCommand struct and the
*lastcmd pointer to the previous redisCommand struc.

550 int flags; /* REDIS_SLAVE | REDIS_MONITOR | REDIS_
MULTI ... */

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[93]

Line 550 is the *flags bitmask containing the operating mode of the Redis server:

554 int repldbfd; /* replication DB file descriptor */
555 off_t repldboff; /* replication DB file offset */
556 off_t repldbsize; /* replication DB file size */

Lines 554, 555, and 556 are variables for the master-slave database file that is
replicated from the master instance to the all of its slaves.

564 char replrunid[REDIS_RUN_ID_SIZE+1]; /* master run id if this
is a master */
565 int slave_listening_port; /* As configured with: SLAVECONF
listening-port */

Line 564 is the master, run ID if the running Redis instance is a master, and line 565
is the port number that a Redis slave instance is listening on.

571 list *watched_keys; /* Keys WATCHED for MULTI/EXEC CAS */
572 dict *pubsub_channels; /* channels a client is interested in
(SUBSCRIBE) */
573 list *pubsub_patterns; /* patterns a client is interested in
(SUBSCRIBE) */

Line 571 is a pointer to the *watched_keys linked list if the Redis instance is in
multi/exec mode. Lines 572 and 573 are both pointers to linked lists that store
subscribed channels and patterns when Redis is in pub/sub mode.

576 /* Response buffer */
577 int bufpos;
578 char buf[REDIS_REPLY_CHUNK_BYTES];

Lines 577 and 578 store the RESP from the server executing the commands.

The processCommand function starts by first checking whether a quit command was
sent to the server and if it was, returning REDIS_ERR (the quit command is handled
in a separate function). Additional error checking is done in processCommand
as it checks whether the command even exists or if the command has the wrong
number of arguments. Instead of returning REDIS_ERR for these errors, the function
calls addReplyErrorFormat with a pointer to the command and an error message
before returning an REDIS_OK status because the Redis server is still functioning
correctly with the calling client. If the command requires authentication and the
client has not authenticated to the server, an addReply function is called with a no
authentication message and returns REDIS_OK. Following the authentication check,
processCommand redirects the command to a cluster shard or adds an error and
returns to the calling client.

Programming Redis Part One – Redis Core, Clients, and Languages

[94]

In the processCommand function, after the cluster error checking, the function checks
and handles the various cases when the Redis server is out of memory. First, after
trying to free up memory by removing volatile keys, the function returns if no memory
is available and the REDIS_CMD_DENYOOM constant is set. This function continues
with three distinct checks to see whether any write commands will be accepted. This
depends on the fact that the Redis instance is a slave and the min-slaves-to-write
has been set, or if there are problems persisting to disk, or if the Redis instance is slave
and is read only.

The next sections in the processCommand function handle special operating modes of
the Redis instance; in particular, the operations are restricted to only the SUBSCRIBE/
UNSCRIBE commands if Redis is in pub/sub mode. More error checks are done for
special cases, such as when the Redis instance is a slave and is disconnected from the
master, by restricting the available commands to INFO and SLAVEOF. For the special
edge case, when a Lua client's scripts are running too slow, the function flags the
command, calls addReply with an error message, and returns back to the calling
client. Finally, after all these error checks, processCommand actually executes the
command as either a singleton or as part of a MULTI/EXEC transaction.

Starting at line 1791, redis.h defines the five fundamental Redis object types
as follows:

/* Object types */
#define REDIS_STRING 0
#define REDIS_LIST 1
#define REDIS_SET 2
#define REDIS_ZSET 3
#define REDIS_HASH 4

Elsewhere in Redis's source code when we see an object type assigned to a Redis
object, we now know that this object type has integers values ranging from 0 through
4. After these Redis object type definitions, in redis.h, the Redis object encoding
types, such as Redis's hashtable, linked-list, ziplist, and intset, are assigned integer
values 0 through 8. These means that we can combine the object type with the
encoding type to reflect the actual data structure that is stored in a Redis key. So,
a small hash value would be REDIS_HASH with an encoding of REDIS_ENCODING_
ZIPMAP reflected as two integer values, 0 and 3.

Next, the sizing and other settings for both the Redis persistence modes are defined
in redis.h. For the snapshot RDB mode, Redis dynamically allocates bit size and
shrinks the size if the Redis key is small using the first two significant bits of the
key. If both the bits are set for these significant bits, redis.h defines four different
encodings constants:

•	 8 bit signed integers: **REDIS_RDB_ENC_INT** with a value of 0
•	 16 bit signed integers: **REDIS_RDB_ENC_INT16** as 1

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[95]

•	 32 bit signed integers: **REDIS_RDB_ENC_INT32** 2 as 2
•	 Compressed strings: **REDIS_RDB_ENC_LZF** 3 as 3

For AOF persistence mode, redis.h defines three states, REDIS_AOF_OFF, REDIS_
AOF_ON, and the state where Redis is waiting to be appended to the AOF file. This is
defined as 2 for REDIS_AOF_WAIT_REWRITE.

With a variety of different types of Redis clients, redis.h defines nineteen
different flags to set a bit to 1 using the << bitwise left-shift operator so that a
client information can be represented in a single byte. This bitmask sets a byte that
allows the Redis commands and other operational code in the code base to quickly
calculate and determine whether the client is a Redis slave or master, or whether
the client is monitoring in multiexecution mode with REDIS_MULTI, or whether it is
connected to REDIS_LUA_CLIENT with a Unix domain socket and is read-only with
REDIS_READONLY, or whether the client is in pub/sub mode using the bitmasks for
REDIS_PUBSUB. After the different client flag offset definitions, redis.h sets other
Redis client constants for client aspects such as the client block types, client request
types, client classes, and the slave replication states from both the slave and master
perspectives.

Defined in the next section of redis.h are the four different logging levels for Redis:
REDIS_DEBUG, REDIS_VERBOSE, REDIS_NOTICE, and REDIS_WARNING, with REDIS_
NOTICE set to the default logging level with the REDIS_DEFAULT_VERBOSITY constant
and a special raw log mode with REDIS_LOG_RAW that does not log a timestamp.

Interspersed in the same section as the logging directives are the settings for the
different data structures and encodings used in Redis. For example, REDIS_HEAD
and REDIS_TAIL are defined as 0 and 1 respectively for Redis lists; different sorting
options for sorted lists are defined, for example REDIS_SORT_ASC is defined as 1,
REDIS_SORT_DESC as 2, and REDIS_SORTKEY_MAX is set to 1024. In the previous
chapter, we explored the different performance trade-offs for special encoding of
lists, hashes, sets, and sorted sets and saw how to set directives such as hash-max-
ziplist-entries and hash-max-ziplist-value. The default values for these directives
are set in redis.h under the REDIS_HASH_MAX_ZIPLIST_ENTRIES and REDIS_HASH_
MAX_ZIPLIST_VALUE constants. Finally, Redis set operations are provided constants
with REDIS_OP_UNION set to 0 for the union operator, REDIS_OP_DIFF set to 1 for the
difference operator, and REDIS_OP_INTER set to 2 for the intersection operator.

Programming Redis Part One – Redis Core, Clients, and Languages

[96]

The different caching policies for Redis are assigned with progressive integers
starting with REDIS_MAXMEMORY_VOLATILE_LRU set to zero and finishing with
REDIS_MAXMEMORY_NO_EVICTION set to 5. The default caching policy, REDIS_
DEFAULT_MAXMEMORY_POLICY, is set to REDIS_MAXMEMORY_NO_EVICTION in redis.h.
Following this trend of defining various settings for Redis operation, such as Lua
scripts timeouts, unit definitions, and shutdown flags, a lot of other settings are
further defined in the redis.h source code file.

We'll skip the persistence, replication, multiexec, and clustering settings being set in
redis.h as we'll be covering the configuration of these different Redis operations in
future topics. Hopefully, you now have an idea of where the default values for your
Redis instances are being set and used in the Redis code base.

Getting ready for Redis development with Git
With Salvatore Sanfilippo licensing Redis under the Three Clause BSD Open Source
license and with the Redis code repository hosted on Github, we can actually make
a copy of the Redis source code and fork our own development version of Redis.
First, we'll open the command line in our Linux system and make sure we have
Git installed:

$ sudo apt-get install git

Next, we will go to the Redis Github repository at https://github.com/antirez/
redis/. To create a fork, first log in to GitHub (you will need to create a free account
if you don't already have an account), look in the upper-right corner and click on the
Fork button. Take a look at a close-up screenshot of the Fork button:

Redis Fork Button on Github

www.ebook3000.com

https://github.com/antirez/redis/
https://github.com/antirez/redis/
http://www.ebook3000.org

Chapter 4

[97]

Now you will be re-routed to your own fork of Redis and then you'll clone your fork
by doing the following (substitute your GitHub username for jermnelson), and you
should see a similar screen output as follows:

$ git clone https://github.com/jermnelson/redis.git redis-dev
Cloning into 'redis-dev'...
remote: Counting objects: 20195, done.
remote: Total 20195 (delta 0), reused 0 (delta 0), pack-reused 20195
Receiving objects: 100% (20195/20195), 9.62 MiB | 433.00 KiB/s, done.
Resolving deltas: 100% (13515/13515), done.
Checking connectivity... done.

You'll can keep your Redis fork in sync with the main Redis repository with the
following commands:

$ cd redis-dev

$ git remote -v

origin https://github.com/jermnelson/redis.git (fetch)

origin https://github.com/jermnelson/redis.git (push)

Next, we'll add an upstream sync so that we can pull changes from the Redis main
repository:

$ git remote add upstream https://github.com/antirez/redis.git

$ git remote -v

origin https://github.com/jermnelson/redis.git (fetch)

origin https://github.com/jermnelson/redis.git (push)

upstream https://github.com/antirez/redis.git (fetch)

upstream https://github.com/antirez/redis.git (push)

Now, when I want to pull any changes from the upstream unstable branch, I will run
the following command:

$ git fetch upstream

For our development on the Redis core repository, we'll create a new local-dev
branch:

$ git checkout -b local-dev

Finally, we'll merge any upstream changes with the following:

$ git merge upstream/unstable

Our forked version of Redis is now up-to-date with the latest unstable changes, and
we're ready to look at creating a new Redis C command in the next section.

Programming Redis Part One – Redis Core, Clients, and Languages

[98]

Exercise – creating your own redis command
One of the tutorials on the Redis website is on the implementation of an autocomplete
function using sorted sets in Redis. By improving partial word matches in a Redis
autocomplete approach, we can use English word metaphones—a number of different
algorithms to create sound-like representation of words. This method normalizes both
the user input that matched is then matched to indexed words.

Instead of implementing the Lawrence Philip's double-metaphone algorithm from
the ground up; we will base our new Redis command on the C source code of a
preexisting open source project located at https://bitbucket.org/yougov/
fuzzy/. We will first create two files, a double_metaphone.h as a header file
and a double_metaphone.c C source file. When we want to store a metaphone
of an existing word, we'll create two new Redis commands: GETDBLMETAPHN an
SETDBLMETAPHN. The SETDBLMETAPHN command takes a Redis hash key and a English
word, converts the word to a double-metaphone, and stores the result as either one
or two fields in the Redis hash with the value being the original word. Our second
Redis command, GETDBLMETAPHN, will take a pair of strings, convert the word to a
metaphone, and return either one or two fields that best match the term.

The syntax for SETDBLMETAPHN is this:

"SETDBLMETAPHN <key> <string>"

The syntax for GETDBLMETAPHN is as follows:

"GETDLBMETAPHN <key>" :

To add these commands to our Redis fork, we'll add go through the following steps:

1.	 Add our getMetaphone and setMetaphone function prototypes at the end of
our redis.h header file. Adding our function prototypes in this file allows
all other code that includes redis.h to use our functions.

2.	 Copy double_metaphone.h and double_metaphone.c to our src directory.
3.	 Add the getMetaphone and setMetaphone functions commands as two new

commands to redisCommandTable in redis.c.
4.	 Edit double_mectaphone.c and create a placeholder function for

getMetaphone.
5.	 For the getMetaphone function, we will retrieve the string value found at the

Redis key by calling the standard getGenericCommand implemented in the
t_string.c c code file.

www.ebook3000.com

https://bitbucket.org/yougov/fuzzy/
https://bitbucket.org/yougov/fuzzy/
http://www.ebook3000.org

Chapter 4

[99]

6.	 Continue editing double_metaphone.c and create a placeholder function for
the setMetaphone function.

Now, after compiling Redis, GETDBLMETAPHN will behave exactly as the GET
command if we run the following redis-cli session:

127.0.0.1:6379> SET metaphone:1 "Star Trek"

OK

127.0.0.1:6379> GETDBLMETAPHN metaphone:1 "Star Trek"

127.0.0.1:6379> GET metaphone:1 "Star Trek"

The function prototype for the getMetaphone function we added to redis.h takes
a pointer to redisClient and returns void or nothing. Expanding on our initial
implementation of just doing a call-out to getGenericCommand, we'll add a new
functionality to handle a case where the Redis key is not found. That is, we will
return the metaphones of the requested key. This provides us a quick and dirty way
to generate a double metaphone of a string if the string is not an existing Redis key in
the data store.

Programming Redis Part One – Redis Core, Clients, and Languages

[100]

This new behavior for getMetaphone would likely be not what we would design
and engineer in a production instance, but is suitable for the purpose of illustrating
what is possible in custom commands. With our knowledge of RESP, we can parse
the return buffer from our command and if the string returned is $-1, we'll call the
DoubleMetaphone function with our Redis key and an output code string. This string
will contain our phrase that has been converted to a double metaphone.

To handle the case of a missing Redis key, our getMetaphone function will return the
double metaphone of the Redis key:

void setMetaphone(redisClient *c) {
 c->argv[2] = tryObjectEncoding(c->argv[2]);
 setGenericCommand(c,1,c->argv[1],c->argv[2],NULL,0);
}

A future enhancement for the Double-Metaphone commands would be to change
NewMetaString and DestroyMetaString and other functions so that we can use
Redis's Simple Dynamic Strings that is defined in sds.h with the source code in the
sds.c file. These sds string structures are used extensively in the Redis code base
to support not only Redis keys and simple strings, but also Redis's data types such
as lists, sets, sorted-sets, hashes, and more complex value types. By refactoring our
metaphone code to use Redis's Simple Dynamic Strings, we eliminate the need to
implement a custom string type for our metaphone commands while leveraging the
existing simple dynamic strings in the Redis core code base.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[101]

Redis Serialization Protocol (RESP)
The Redis server communicates with its clients using the Redis protocol specification
or RESP. While Redis is the primary user of RESP, Salvatore Sanfilippo's latest
project Disque uses RESP but not Redis itself. In the Redis official documentation,
RESP is referred to as a Domain Specific Language (DSL). It is helpful to think of
RESP in this way, especially when we discuss the details of the specification as it
relates to all the different available clients for Redis in many different programming
languages. RESP serializes all the Redis data types and can easily represent different
data types such as simple strings, errors, integers, bulk strings, and arrays.

RESP Client-Server

Although not specifically restricted to TCP, RESP is often used within the context
of the Request-Response model supporting client-server applications. There are
exceptions to the Request-Response model RESP that supports such as:

•	 Pipelining when the client sends multiple commands to the server without
waiting for a response for each command

Pub/sub push channels when the server sends notifications to a channel with one or
more subscribers. While interacting with Redis, the client sends a command to the
Redis server as an array of bulk strings. The Redis server parses this using RESP and
responds with one of the following RESP types, depending on the command. The
Redis server response is one of these five types and is determined by the first byte:

1.	 A simple string indicated by +.
2.	 An error string is indicated by -.
3.	 An integer string is indicated by :.
4.	 A bulk string is indicated by $.
5.	 An array is *.

Programming Redis Part One – Redis Core, Clients, and Languages

[102]

The RESP termination characters are carriage return or line feed, traditionally
represented in ASCII as \r\n (CRLF).

For RESP simple strings, the beginning character is the plus sign character, +,
followed by string characters that cannot contain either a carriage return or line feed
at the end because the simple string is terminated with CRLF:

+OK\r\n

When the Redis server sends a simple string to a calling client, the client should
return the characters between the initial + and the \r\n that terminates the return
response. If a nonsensical command such as NOPE is sent from a client to the Redis
server, the RESP response would be as follows:

-ERR unknown command 'NOPE'\r\n. In case of an error, the Redis server returns
a RESP error that starts with a negative sign character, -, followed by an error
message and is again terminated with \r\n. The client typically raises an exception
on receiving a RESP error for conditions such as a wrong type of operation on a data
type or if the client sends a unknown command to the Redis server.

For more specific error conditions such as when, a LPUSH command is executed on a
hash key. This would result in the WRONGTYPE RESP error followed by the message in
the preceding response.

When a client issues the INCR and INCRBY commands, the server returns an RESP
integer like the following using redis-cliclient:

127.0.0.1:6379> INCR global:counter

:1\r\n

127.0.0.1:6379> INCRBY global:counter 10

:11\r\n

The RESP integer type starts with a colon byte, :, followed by an integer and
again is terminated with a CRLF (""). The returned integer string is a signed 64-bit
integer that can have any number of different values depending on the Redis client
commands.

In a RESP bulk string, the first byte is the dollar sign, $, with an integer length of
the contained string followed by a CRLF. Next, the actual string data and the RESP
bulk string are terminated with a second CRLF. Here are some examples of the RESP
bulk string:

$-1\r\n

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[103]

A RESP bulk string used to represent a null value has the length value of -1.

$0\r\n\r\n

An empty string has an integer length of 0 followed by two CRLFs.

$25\r\nA world of handmade sound\r\n

For the preceding sample string, "A world of handmade sound", the Redis bulk
string with that encoded data has a length of 25 and is surrounded by a pair
of CRLF.

Clients communicate with the Redis server using RESP arrays, and for certain
types of responses from the Redis server also RESP Arrays are used. RESP Arrays
are collections of other RESP types such as RESP simple strings, integers, and bulk
strings. The first byte in a RESP Array is an asterisk, *, followed by an integer
indicating the total number of commands, with CRLF terminator characters. Each
element in the RESP Array is a RESP type and does not have to be the same type.
This results in RESP Arrays that have multiple RESP types for elements. RESP
Arrays can also be made up of RESP Array elements as well thereby creating a
simple data hierarchy or a tree structure in RESP. RESP elements can also be null.
This can be done using the syntax for specifying null bulk string of $-1\r\n.

For example, a RESP Array of two RESP integers, 3 and 56, would look like as follows:

*2\r\n:3\r\n:56\r\n

A mixed RESP Array consisting of a RESP string, an RESP integer, and a RESP error
would be as follows:

*3\r\n$5\r\nhello\r\n:3\r\n-ERRWrong Type\r\n

Finally, a RESP array containing other RESP arrays would look like this:

*2\r\n*3\r\n:1\r\n$3\r\nAND\r\n$-1\r\n*2\r\n:3\r\n+OK\r\n

Programming Redis Part One – Redis Core, Clients, and Languages

[104]

A better illustration of RESP arrays and subtypes can be seen in this illustration:

RESP Array

Pipelining
A network optimization technique that uses RESP between Redis clients and
servers enables a client to issue multiple commands to a server without waiting
for a corresponding reply or acknowledgment from the server. Pipelining in Redis
attempts to reduce the Round Trip Time (RTT) between the server and client by
eliminating the need for the client to receive a server acknowledgment for each
issued command. In pipelining, the client parses the server response after sending
multiple commands at once. You can use pipeling mode directly from the Netcat
UNIX program or through a Redis client that supports Pipeling.

For example, you could send multiple commands to your running Redis server in a
pipeline for activities such as initializing a Redis key schema. We can demonstrate
this by sending the RESP to our running Redis server using Netcat by issuing the
following command that redirects its input to the locally running instance:

$ (printf "INCR\r\nglobal:book\r\nHMSET\r\n"; sleep 1) | nc localhost
6379
+ 1
+ OK

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[105]

We received +1 +OK as a single response back from our Redis server. This method of
pipelining shows the RTT savings as we make 1 RTT verses making three separate
calls if we issued each command separately from redis-cli:

127.0.0.1:6379> INCR global:book

(integer) 1

127.0.0.1:6379> HMSET book:1 title "Go Set a Watchman" creator "Harper
Lee"

OK

We can also use pipelining with a Redis client. This can be demonstrated using the
recommended client for Python, redis-py, available at https://github.com/
andymccurdy/redis-py.

Redis RDB format
Redis uses a binary format called RDB to persist snapshots of its in-memory data.
This is because the default mode for persistence in Redis RDB allows the entire
data set that is held in the memory to be restored if Redis unexpectedly quits, or
to load an existing dataset when Redis initializes. We'll examine the format of the
RDF file by first launching a Redis instance, saving a number of different keys
using various data structures, and using a hex editor along with Sripathi Krishnan's
Redis RDB tools found on GitHub at https://github.com/sripathikrishnan/
redis-rdb-tools Python module to examine in detail the format and structure
of the RDB format.

The RDB format does not use newline characters or spaces as delimiters. To
examine the specifics of some common Redis data structures, we'll issue the
following commands from the redis-cli (the return codes have been omitted
for this example):

127.0.0.1:6379> INCR global:book

127.0.0.1:6379> HSET book:1 author "Jane Austen"

127.0.0.1:6379> LPUSH book:1:edition:2 "copy 2" "copy 4"

127.0.0.1:6379> EXPIRE book:1:edition:2 400

https://github.com/andymccurdy/redis-py
https://github.com/andymccurdy/redis-py
https://github.com/sripathikrishnan/redis-rdb-tools
https://github.com/sripathikrishnan/redis-rdb-tools

Programming Redis Part One – Redis Core, Clients, and Languages

[106]

After these commands have been issued, we'll investigate dump.rdb by first opening
the file with vi in hex mode and then copying and examining the selected hexadecimal
characters and corresponding values from each line in the following tables:

Hexadecimal Value Description
52 R The first five bytes of every RDB file represents the

string REDIS. This is useful for the parser to confirm it is
a Redis binary dump. file format.

45 E

44 D

49 I

53 S

30 0 The next bytes, 30 3030 36, signifies the RDB version
number in big endian format 006, so this is version 6.30 0

30 0

36 6

fe \xfe fe 00 indicates that the database selector code fe is 0.
00 \x00

00 \x00 The 00 is a one byte flag indicating the value type.
0b \x0b

67 g The string global:book is stored in hexadecimal as
the key with the value set to 0.6c l

6f o

62 b

61 a

6c l

3a :

62 b

6f o

6f o

6b k

31 1

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[107]

Hexadecimal Value Description
10 \x10 This byte denotes the type of encoding for the value

stored in the string and is one of the following:
0: String
1: List encoding
2: Set encoding
3: Sorted Set encoding
4: Hash encoding
9: Zipmap encoding
10: Ziplist encoding
11: Inset encoding
12: Sorted Set in
Ziplist encoding
13: Hashmap in Ziplist
encoding

62 b The next Redis key and value stored in our dump.rdb
file is the book:1:edition:2 list6f o

6f o

6b k

3a :

31 1

3a :

65 e

64 d

69 i

74 t

69 i

6f o

6e n

3a :

32 2

00 \x00 The next two elements are the contents of the Redis list
with the size for the list member being 6. 06 \x06

63 c The list value of copy 4 stored as a string.
6f o

70 p

Programming Redis Part One – Redis Core, Clients, and Languages

[108]

Hexadecimal Value Description
79 y

20

34 4

08 \x08 08 is the value type of 0, with 06 representing the
length of the next list member.06 \x06

63 c The list value of copy 2 stored as a string.
6f o

70 p

79 y

20

32 2

Coroutines using Redis and Python
At the 2015 Open Repositories conference in Indianapolis, I was approached by
Mark Matienzo, Director of Technology at the Digital Public Library of America, to
join a team for pitching ideas at a contest sponsored by the conference. Our pitch
was for a Linked Data Fragments Server with caching that would enable people
and organizations to provide a simple and well-understood service to query and
get back RDF triples from a graph database instead of supporting full resource-
heavy SPARQL endpoints that even for the largest website is difficult to keep and
run for users. Linked Data Fragments, first proposed by Ruben Verborgh at Ghent
University in Belgium, constructs a triple pattern fragment made up of a subjects,
predicates, and object statements that combine to query a Linked Data store and
returns a Linked Data Fragment made up of triples matching the query along with
metadata and paging information.

Although our team did not win the pitch contest, with Mark's encouragement
along with the collaboration help of Aaron Coburn of Amherst College, I started
a new open-source project using Python and Redis that implements the Linked
Data Fragments specification. The source code repository is at https://github.
com/jermnelson/linked-data-fragments, with the first version being used in
two active projects, the Islandora eBadge and bibcat.org. The Islandora eBadge
project allows organizations to issue Mozilla Open Badges for users while storing the
resulting Open Badges in a digital repository. The bibcat.org project is the result
of a contract I had with the Library of Congress to design and implement a Linked
Data-based search and display system for the Library of Congress's new BIBFRAME
Linked Data vocabulary.

www.ebook3000.com

https://github.com/jermnelson/linked-data-fragments
https://github.com/jermnelson/linked-data-fragments
http://www.ebook3000.org

Chapter 4

[109]

My primary reasons for starting and continued development of the Linked Data
Fragments server centered around its obvious utility in the digital library systems
I was working on. The Linked Data Fragments server would also help other
organizations that deal with much larger scales such as the Library of Congress and
the Digital Public Library of America. Another important secondary reason was that
I was interested in a new Python module called asyncio for Asynchronous I/O that
offered a new (to me) model for network programming.

The first concept behind the asyncio module and this programming model is that the
scalability of a network program should be limited by the number of open sockets,
instead of by the availability of free threads in a modern POSIX-based operating
system. Most modern POSIX operating systems can easily handle thousands of open
socket connections, but are limited by the number of threads they can support at
any one time, typically in the range of a hundred. The second concept in the Python
asyncio module is in explicit cooperative multithreading, where events are dealt with
immediately or wait for additional events to occur while an erroneous call blocks
the execution of the entire application. This leads to many subtle multithreading
bugs such as incorrect manipulation of shared data structures between threads.2
In the asyncio module, Python adds additional syntax and operators that expand the
existing Python decorators to build explicit event-driven network code. This code
is scaled out based on I/O limits instead of the available threads in the operating
system's multithreading environment.

The Linked Data Fragments server contains two main files, server.py and cache.
py. The server.py implements a socket server to which clients send triple Subject-
Predicate-Object requests. These are parsed using a simple algorithm that generates
a triple pattern to search the Redis cache. In cache.py, we use the aioredis-based
and the asyncio-based Redis client. This we'll use to interact with our Redis cache
instance. The aioredis project's Git repository is available at https://github.com/
aio-libs/aioredis/. The primary developer of aioredis is Alexey Popravka.

The aioredis module's main Python module—__init__.py—is available at
https://github.com/aio-libs/aioredis/blob/master/aioredis/__init__.py.
This imports a number of supporting Python for different components of this library
including connection.py, pool.py, util.py, and errors.py. The connection.
py Python module defines a create_connection function with a asyncio.
coroutine Python decorator. The first parameter to c address is a Python list, a
tuple that represents a host or port par, or a string for a Unix domain socket path
on the running Redis server followed by optional db, password, encoding, and loop
parameters.

https://github.com/aio-libs/aioredis/
https://github.com/aio-libs/aioredis/
https://github.com/aio-libs/aioredis/blob/master/aioredis/__init__.py

Programming Redis Part One – Redis Core, Clients, and Languages

[110]

The create_connection first yields a Python StreamReader and StreamWriter
from either a Redis open connection using the asyncio.open_connection in the
case of an address host and port, or an asyncio.open_unix_connection for a Unix
domain socket. Next, a connection instance of a RedisConnection class is created
using both the reader and writer from the previous steps along with the other
create_connection parameters.

The RedisConnection class provides a _read_data coroutine to respond to the
output from the Redis server along with two important methods, execute and
execute_pubsub. The lower-level parsing of the RESP requests and responses is
accomplished using the hiredis Python module that wraps the Hiredis Redis c client.
The execute method first checks whether the RedisConnection instance is in PUBSUB
mode, returns an error if it is before creating an asyncio.Future with the executed
Redis command. The execute_pubsub method instead of creating a future object,
with the Redis server that returns an asyncio.gather coroutine for coordinating both
publication and subscription channels and their associated patterns.

The commands module is made up groupings of related commands for hashes
(hash.py), lists (list.py), strings (string.py), sets (set.py), sorted sets (sorted_
set.py), and code files of other data structures. The commands module supports
generic commands in the generic.py file, publish/subscribe channel support in
pubsub.py, Lua scripting support with scripting.py, and Redis transactions with
transaction.py.

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[111]

The Linked Data Fragment server uses the aioredis module to manage and respond to
network requests that follow a simple subject, predicate, object triple format. Although
the Linked Data Fragments server could run on other web protocols than HTTP, the
initial design of the Linked Data Fragment server follows a simple HTTP GET request
using a URL pattern similar to this: http://linked-datastore-example.com/serv
er?predicate=schema:creator&object=Mark+Twain, where the missing element,
in this case a subject, does a search for all the subjects that match a schema:creator
value of Mark Twain. The Linked Data Fragment server then responds with a list of
subject-object-triples that match this triple fragment.

Supporting this design with the aioredis module, the Linked Data Fragment server
implements a simple Redis key schema. In our RDF implementation, we assume
that our triples must follow these constraints:

•	 A subject can either be a blank node or a valid URL (although the URL can
use a namespace prefix for brevity)

•	 A predicate must be a valid URL
•	 An object can be either a Blank Node, a valid URL, or a string literal

The Redis key schema uses the sha1 hash of each individual subject, predicate, or
object as a simple string key that stores the serialized value. We then store each triple
key in the following format—subject sha1: predicate sha1: object sha1, with the
value being the JSON-linked data representation of the triple. We could have just as
easily stored the RDF XML, Turtle, or other N-triples serialization. However, for the
convenience of implementation we use JSON, as it is the most commonly requested
output. Most of the triple singleton and triple keys are set with a TTL of one week
so that we can use our Redis LRU volatile algorithm for our caching.

For triples using a namespace prefix, we expand the prefix to complete the URL
before calculating the sha1 hash. Using sha1 hashes for our keys, we normalize our
URL and literal strings to a single identifier key. For example, if we wanted to store
a simple RDF graph of Mark Twain's three books: Adventures of Tom Sawyers,
Huckleberry Finn, and Roughing It, they would be stored with these keys:

Triple type Value sha1 hash key
Subject
URL

http://
books.com/
adventures-of-
tom-sawyer

9192f6c2ea49440a15aa72c7d9c8c74f77ba2bf9

Predicate
URL

http://schema.
org/creator

e7c68409090a3d30933a819b3654b659c94cbc39

Object
literal

Mark Twain 2b22164235bb360ad57c73ffffbd6550ddb366ef

http://linked-datastore-example.com/server?predicate=schema:creator&object=Mark+Twain
http://linked-datastore-example.com/server?predicate=schema:creator&object=Mark+Twain
http://books.com/adventures-of-tom-sawyer
http://books.com/adventures-of-tom-sawyer
http://books.com/adventures-of-tom-sawyer
http://books.com/adventures-of-tom-sawyer
http://schema.org/creator
http://schema.org/creator

Programming Redis Part One – Redis Core, Clients, and Languages

[112]

In our Redis database, we would store the triple as a key with an integer one. We can
replicate this Redis key schema from the redis-cli:

127.0.0.1:6379> SET 9192f6c2ea49440a15aa72c7d9c8c74f77ba2bf9 http://
books.com/adventures-of-tom-sawyer

OK

127.0.0.1:6379> SET e7c68409090a3d30933a819b3654b659c94cbc39 http://
schema.org/creator

OK

127.0.0.1:6379> SET 2b22164235bb360ad57c73ffffbd6550ddb366ef "Mark Twain"

OK

127.0.0.1:6379> SET 9192f6c2ea49440a15aa72c7d9c8c74f77ba2bf9:e7c684090
90a3d30933a819b3654b659c94cbc39:2b22164235bb360ad57c73ffffbd6550ddb36
6ef '[\n {\n "@id": "http://books.com/adventures-of-tom-sawyer",\n
"http://schema.org/creator": [\n {\n "@value": "Mark Twain"\n
}\n]\n }\n]'

OK

From the cache.py module, the current implementation uses the Redis SCAN
command to search for any given triple fragment pattern. The following is get_
triple coroutine:

@asyncio.coroutine
def get_triple(subject_key=None, predicate_key=None, object_key=None):
 redis = get_redis()
 pattern = str()
 for key in [subject_key, predicate_key, object_key]:
 if key is None:
 pattern += "*"
 else:
 pattern += "{}".format(key)
 pattern = pattern[:-1]
 yield from redis.scan(pattern)
 redis.close()

Using this single function, we can now match any of the following triple search
patterns:

For a subject search with a schema:creator predicate and a the string Mark Twain:

*:7c68409090a3d30933a819b3654b659c94cb

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[113]

Todo list application using Node.js and Redis
Amir Rajan, the author of the node.js Todo list application, uses Redis to add
and update a simple Todo web application. The Todo application uses the node.
js and expresses and redisses modules. We will first clone and then install all
the dependencies of the application including Express, a fast and minimalist web
framework for node.js and the Redis node.js client:

$ git clone https://github.com/amirrajan/nodejs-todo.git

$ cd nodejs-todo

$ npm install

After launching a Redis instance running on the default port 6379, we'll run the
server.js with node.js from the command line:

$ node server.js

Now, we'll open up a second terminal window and run a redis-cli session by first
checking the size of the Redis database and then running the MONITOR command:

127.0.0.1:6379> DBSIZE

(integer) 1

127.0.0.1:6379> MONITOR

OK

We'll then open http://localhost:3000 in a web browser and submit our first
Todo Redis as shown in this screenshot:

ToDo Redis Screenshot

http://localhost:3000

Programming Redis Part One – Redis Core, Clients, and Languages

[114]

The resulting todos hash value was set with our first Tai Chi form event with an
uuid Redis key:

1436158403.745530 [0 127.0.0.1:61551] "hset" "todos" "c93e53d4-4284-43f1-
a3ef-d350ca805bbc" "Practice Tai Chi form

If we shut down our Redis server, we get an unhandledexception in our node.js
application:

events.js:72

 throw er; // Unhandled 'error' event

 ^

Error: Redis connection to 127.0.0.1:6379 failed - connect ECONNREFUSED

 at RedisClient.on_error (/Users/jeremynelson/2015/nodejs-todo/node_
modules/redis/index.js:189:24)

 at Socket.<anonymous> (/Users/jeremynelson/2015/nodejs-todo/node_
modules/redis/index.js:95:14)

 at Socket.EventEmitter.emit (events.js:95:17)

 at net.js:440:14

 at process._tickCallback (node.js:415:13)

The functionality of Rajan's todo node.js is limited. By tracking two additional
pieces of information about our todo items, creation time and time completed or
canceled, we can note when items were initiated, when items were completed, and
the time of completion by comparing the two values for any particular todo item. To
capture these values as well as provide some additional functionality, we'll create
two Redis sorted sets: created:todos and completed:todo. When adding a new
member to either of the sorted sets, the UNIX timestamp as the score with the UUID
of each item as the value. In the JavaScript function handler for the /todos/create
route, we'll add the following call to the redis module after the todo item is saved to
the original hash value:

client.hset("todos", id, req.body.description);

client.zadd("created:todos", Date.now(), id);

We will then add a similar ZADD command to the JavaScript function handler for the
/todos/delete route:

client.hdel("todos", id);

client.zadd("completed:todos", Date.now(), id);

www.ebook3000.com

http://www.ebook3000.org

Chapter 4

[115]

To test our code additions to this application, we'll first save server.js, restart the
node, and then add two new items: Morning Code Review with Mike and Tai Chi 13
Posture Practice, to our item listing. We'll then click the done link in the web UI for
Morning Code Review with Mike. With our redis-cli, we first check to see whether
our two new sorted sets are present:

127.0.0.1:6379> KEYS *

1) "completed:todos"

2) "created:todos"

3) "todos"

Second, retrieve the values in each sorted set:

127.0.0.1:6379> ZRANGE created:todos 0 -1 WITHSCORES

1) "2b7dd99a-c1b3-4130-9372-00ea15f648f1"

2) "1436447038668"

3) "3a874008-7983-4861-b774-18baa5207fb3"

4) "1436447053529"

127.0.0.1:6379> ZRANGE completed:todos 0 -1 WITHSCORES

1) "2b7dd99a-c1b3-4130-9372-00ea15f648f1"

2) "1436447057307"

To calculate the total completion time for a todo item we can retrieve the score for
our Morning Code Review with Mike item, 1436447057307-1436447038668; a highly
unlikely total time of 1.8639 seconds for any code review!

Replication and public access
Now, let's add redundancy to our todo application's datastore and create a slave
instance that we'll use as a backup for our todo list. We'll create a new ReadOnly
function in the Node.js server.js file that will display a list using our Redis slave
instance. First, we'll create an Express route that maps the /readonly route to our
function:

function ReadOnly(req, res) {
 res.render('readonly');
}
app.post('/readonly', ReadOnly(req, res));

Programming Redis Part One – Redis Core, Clients, and Languages

[116]

We'll next create a copy of redis.conf for our slave instance and run it on port
6380. Our new function can then be run by passing in a readonly argument
when running the server.js code file:

$ node server.js readonly

Summary
This chapter started with an in-depth exploration of how Redis handles and
responds to client requests defined in multiple C header and code files. Then, we
took a detailed look at the source code. We examined the processCommand function
that works in relation to other functions and operations in Redis. We then went
through an exercise where we added two new Redis commands by coping and
retrofitting existing C code into our own development Redis branch.

The next sections were on the Redis Serialization Protocol and thewith a detailed
byte-level examination of the Redis binary persistence format. We then looked at
two different projects that use different Redis client implementations in Python
and Node.js.

Now that you have a better understanding of what is under the hood of Redis, in
Chapter 5, Programming Redis Part 2 – Lua Scripting, Design Patterns, and DevOps, we
will show how to add complex server-side Lua programs to Redis instead of creating
custom Redis commands. Chapter 5, Programming Redis Part 2 – Lua Scripting, Design
Patterns, and DevOps also introduces some popular design patterns for building
applications using Redis. The chapter finishes up with an overview of using Redis
in various DevOps circumstances.

www.ebook3000.com

http://www.ebook3000.org

[117]

Programming Redis Part
Two – Lua Scripting,

Administration, and DevOps
In this chapter, we will first focus on the capabilities and limitations of server scripting
in Lua. Lua scripts provides us with options to add complex behavior to Redis without
the need to modify the Redis source code. We will revisit some of the examples from
the previous chapters and see how these applications can be improved and simplified
with the use of Lua scripts. From there, we will slightly switch gears to focus on how
the two administration topics-Redis master-slave replication and transactions-impacts
your application designs. We'll finish the chapter by examining the role of Redis in a
typical DevOps environment, which many organizations of all sizes are adopting to
improve their delivery of information and computing resources.

The use of Lua in Redis
In his original 2011 blog post about the addition of server-side scripting to Redis,
Salvatore Sanfilippo lists three reasons why:

•	 Scripting increases the speed of Redis for some tasks by reducing the
bandwidth between the server and client, that is separate calls are sent to
Redis to read a value, apply some client-side computing to the value, and
then add the value back to Redis

•	 As most workflows in Redis tend to be I/O bound and not CPU bound,
scripting provides a better balance between the two

•	 Scripting allows the Redis server code base to remain fast and lean for
general abstractions, while giving users the ability to add specific server-
side functionalities

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[118]

The entire post can be found here: http://oldblog.antirez.com/
post/redis-and-scripting.html.

Later, server-side scripting was officially added to Redis using the Lua programming
language in version 2.6. Lua is a fast and lightweight-programming language
designed to be embedded into programs or added as a scripting environment for
other programming languages, particularly C and C++ programs as well as for
scripting gaming environments. Lua, "Moon" in Portuguese, has been designed,
sponsored, and maintained by LuaLab at the Pontifical Catholic University of Rio de
Janeiro in Brazil. Lua is used to extend the functionality of a Redis server by allowing
more complex logic and operations to be embedded into a running Redis instance.
A difference between Lua and other scripting languages, such as Python, Perl, and
Ruby, is that Lua is very fast and small compared to these other languages. Lua is
licensed under the MIT open source license and the source code for the language is
available for downloading at http://www.lua.org/.

Installing Lua
Installing Lua on your computer varies (of course!) according to the
operating system. For Linux and other POSIX-derived operating systems
including Mac OS X, you can follow these steps outlined on Lua's
website1:
curl -R -O http://www.lua.org/ftp/lua-5.3.1.tar.gz

tar zxf lua-5.3.1.tar.gz

cd lua-5.3.1

make {os-code} test

This will download the 5.3.1 version of Lua, extract, and then build it
for your system. To verify that Lua is complied and installed correctly,
change the locations of the directories so that they are inside the Lua
root directory and then run the test that will display the following:
$ make test

src/lua -v

Lua 5.3.1 Copyright (C) 1994-2015 Lua.org, PUC-Rio

After successfully executing the preceding test, you will learn and
experiment with a lot of of Lua' syntax and types by invoking the Lua
interpreter in interactive mode:
$ lua-5.3.1/src/lua

Lua 5.3.1 Copyright (C) 1994-2015 Lua.org, PUC-Rio

>

www.ebook3000.com

http://oldblog.antirez.com/post/redis-and-scripting.html
http://oldblog.antirez.com/post/redis-and-scripting.html
http://www.lua.org/
http://www.ebook3000.org

Chapter 5

[119]

While Lua scripts can be invoked directly with the Lua interpreter and run as a
standalone program, Lua really proves to be useful when it is embedded into other
programs. With Redis, Lua scripts are run inside the event loop of the Redis server.
These scripts are run after being loaded from the client and are either evaluated
directly with the EVAL or invoked later through a SHA1 digest of the Lua script that is
run with the EVALSHA command. The syntax of the EVAL command is as follows:

EVAL lua_script number_of_keys key [key..] arg, [arg …]

In the preceding command, the lua_script argument is a string of the Lua 5.1 script
that is run within the context of the Redis server. The number_of_keys parameter
is the number of the arguments that follow. They represent Redis keys. Next in the
command are the Redis keys used in the Lua script. Finally, there are zero or more
additional arguments that do not represent keys and are the last arguments passed to
the EVAL command.

To understand the syntax of Lua that is needed for Redis scripts as well as to
understand the limitations Redis imposes on scripting, we'll start with a simple
example and move on to a more involved example of Lua scripting.

From a Python shell, we will import the redis module, create a Python Redis client,
and then we will create a Lua script: first_script, that returns the Hello Redis
string without any keys or options passed to EVAL and with the required number of
keys argument set to 0:

>>> import redis

>>> datastore = redis.StrictRedis()

>>> first_script = """return "Hello Redis" """

>>> datastore.eval(, 0)

b'Hello Redis'

The Lua core syntax is deliberately kept small. Lua ignores spaces and new lines
except when the space is used as a delimiter between names and keywords. The
comments between tokens (or other lexical elements) are created by surrounding
the text with --[[and]]--. Lua accepts any combination of letters, digits, and
underscores for use as an identifier for variables, table fields, and labels except
that a variable name cannot begin with a digit. Lua has approximately 22 reserved
keywords that cannot be used as a name in Lua functions, and this includes typical
control flow keywords such as if else, elseif, while, and for and keywords
for defining functions such as goto, end, and return. Lua is case-sensitive, so the
addPerson and AddPerson functions would be interpreted in Lua as two different
functions. Another Lua convention for variable names is avoiding names that start
with underscore _. The underscore character followed by uppercase characters is a
convention that is used for Lua environmental variables such as version—_VERSION.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[120]

Using the print keyword in a Redis Lua script to the standard output. If you include
a print statement in your Lua script, the output will show up in the standard output
of Redis. We may the following Lua script that starts with a comment describing
what we're doing, followed by printing what version of Lua is running from our
Python shell:

>>> second_script = """--[[Prints Lua Version to Redis Output]]--

print(_VERSION)"""

>>> datastore.eval(second_script, 0)

In this case, we will display the following in the terminal window in which Redis is
running:

1139:M 27 Nov 12:03:49.640 * The server is now ready to accept
connections on port 6379

ions on port 6379

Lua 5.1

Notice that our comment is not displayed in the Redis server's output but the 5.1
version of Lua that is embedded in Redis is displayed by printing the _VERSION global
variable. If we use Lua's print statement, it will provide us with a quick method to see
the value of a variable in our Redis Lua script; however, it isn't the greatest method to
debug errors in our Lua scripts. Starting with Redis 3.2, an integrated Lua debugger is
now available in Redis and we will use it later in this chapter.

Lua variables are all first-class values and can be one of these eight different types:
number, string, boolean, function, nil, userdata, thread, and table. The number
type can be either integers or floats with Lua's default use of 64-bit integers and
double-precision 64-bit floats although Lua can be complied to use 32-bit. From our
third Lua script, you can see how a Lua number can be either an integer value or
a float value and how Lua can seamlessly convert between the two. The following
Lua script first creates two local variables, a and b, and displays the Lua types using
Lua's type function:

>>> third_script = """--[[Demos Lua int and float number type]]--

local a = 10

print(a)

print(type(a))

local b = a + 3.123

print(b)

print(type(b))"""

>>> datastore.eval(third_script, 0)

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[121]

This results in the following output from our Redis server:

10

number

13.123

number

Because Lua scripts are run in a strict mode in Redis, all script variables need to be
localized in the scope of the script. Redis does not allow global variables to be used
in Lua scripts. By default, Lua assumes all the variables are global. Since Redis rejects
global variables, all variable declarations in Lua must use the local keyword. Let's see
whether we can run the following Lua script snippet without the local keyword for
an a variable:

>>> datastore.eval("""a = 10

print(a)""",0)

Traceback (most recent call last):

 File "<pyshell#48>", line 2, in <module>

 print(a)""",0)

 File "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/
site-packages/redis/client.py", line 1899, in eval

 return self.execute_command('EVAL', script, numkeys,
 *keys_and_args)

 File
 "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/
site-packages/redis/client.py", line 565, in execute_command

 return self.parse_response(connection, command_name, **options)

 File
 "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/
site-packages/redis/client.py", line 577, in parse_response

 response = connection.read_response()

 File
 "/Library/Frameworks/Python.framework/Versions/3.4/lib/python3.4/
site-packages/redis/connection.py", line 574, in read_response

 raise response

redis.exceptions.ResponseError: Error running script (call to f_928273b0
02b0116d3428bab44baa7c2af82dddf3): @enable_strict_lua:8: user_script:1:
Script attempted to create global variable 'a'

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[122]

Lua supports string-to-number type coercion where a number is converted from a
string as well as a function to number that takes a string and returns a number. This
is useful to convert the values that you may pass to your script as arguments. These
optional values are accessible in a Lua script through a table called ARGV. Note
that all the ARGV argument values are passed to your Lua scripts as strings, so you'll
need to either convert or coerce the value to a Lua number if you want to perform
numerical operations on the value in your script. Here is what happens when we
pass 1 as an optional argument when running fourth_script:

>>> fourth_script = """--[[Demostrates string-to-number using ARGV[1]
]]--

print(ARGV[1].." is a "..type(ARGV[1]))

local a = tonumber(ARGV[1])

print(a.." is a "..type(a))

print(ARGV[1] + 2)"""

>>> datastore.eval(fourth_script, 0, 1)

The preceding code results in the following output from the Redis server:

1 is a string

1 is a number

3

The fourth_script introduces the .. string concatenation operation that allows you
to combine strings together in your scripts, Lua's string type is an 8-bit immutable
sequences of bytes with the strings being encoding agnostic. Boolean and nil are
similar to other programming languages with a Boolean being either a true value
or a false value and the nil representing a non-existent value, which evaluates to
a boolean false value. Lua strings can be delimited with either single ' or double
" quotes and support C-like escape sequences such as form-feed \f, newline \n,
carriage return \r, or vertical tab \v. Lua 8-bit strings can contain any byte in a literal
string using it's numerical hexadecimal value. We can illustrate this by running the
following Lua script in Redis.

>>> datastore.eval("""return "\x48\x45\x4C\x4C\x4F\x20\x57\x4F\x52\x4C\
x44" """, 0)

b'HELLO WORLD'

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[123]

The table in Lua is a type of associative array object that has a richer data structure
than a simple variable. Lua tables are a generic aggregate datatype that are also used
as sets and lists. Lua makes no distinction between these different types of collections
unlike other programming languages that have separate data types for lists and
sets. A Lua table offers index-based access to it's members as well as a dictionary-
like syntax where named keys can be used to retrieve specific values from the table.
In your Redis Lua scripts, the KEYS and ARGV variables are Lua tables that store the
Redis keys and optional arguments that you pass to both the EVAL and EVALSHA
command calls. A word of caution, Lua tables do not start with an index of 0 but
with an index of 1, which can cause confusion when you first learn Lua tables. Also,
the index cannot be a nil or NaN (not a number) value.

To illustrate the use of KEYS and ARGV as Lua tables, we will run a Lua script that
prints the type of the KEYS and ARGV variables:

>>> datastore.eval("""print("KEYS type="..type(KEYS))

print("ARGV type="..type(ARGV))""", 0)

This prints the following to the Redis server output:

KEYS type=table

ARGV type=table

We can also create new tables in our Redis Lua script by assigning a variable to an
empty table using curly brackets. In fifth_script, we will create an empty table
book, assign the first ARGV variable to the bf:Title property, and then return the
bf:Title property:

>>> fifth_script = """--[[Creates a Table for a Book based on ARGV]]--

local book = {}

book["bf:Title"] = ARGV[1]

return book["bf:Title"]"""

>>> datastore.eval(fifth_script, 0, "Breakfast of Champions")

b'Breakfast of Champions'

When a Lua table is used as an array, the same underlying table syntax remains.
Creating an array with a list of values in Lua is simple; in our sixth_script, we
will define a local table for a work week that returns the day based on the value we
pass to the Redis Lua script. Notice that we need to convert our ARGV[1] string to a
number in order to use the index-based Lua table notation:

>>> sixth_script = """--[[Work Week Script takes number ARGV[1] and
returns day]]--

local work_week = {"Monday", "Tuesday", "Wednesday", "Thursday",
"Friday"}

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[124]

return work_week[tonumber(ARGV[1])]"""

>>> datastore.eval(sixth_script, 0, 2)

b'Tuesday'

>>> datastore.eval(sixth_script, 0, 0)

If the index doesn't exist, a nil value is returned and nothing happens. Sending
in 4 as the ARGV[1] property returns the expected value from the work_week table:

>>> datastore.eval(sixth_script, 0, 4)

b'Thursday'

Tables have many roles in Lua and spending some to learn the nuances of tables will
benefit and improve your understanding when running Lua scripts on Redis server.
More information on Lua tables can be found at http://lua-users.org/wiki/
TablesTutorial.

The function type allows Lua programs to manipulate both Lua as well as C
functions. As first-class functions, Lua functions are passed by reference instead
of by value, making them more memory efficient than copying the value. A Lua
function has the following syntax:

functioncall ::= prefix_expression arguments

If the prefix_expression is of the function type, then this function (in the prefix_
expression slot) is called with the arguments parameter. If the prefix_expression
is not of a function type, then the prefix_expression _call metamethod is called
with the prefix_expression being the first parameter with the remaining parameters
being the original arguments. Defining a function in Lua starts with the function
keyword, followed by the arguments in brackets () with the body of the function
finally terminating in the end keyword. A Lua function may or may not return a
value using the return keyword. An example of a Fahrenheit to Celsius temperature
conversion Lua function is demonstrated in the seventh_script as follows:

>>> seventh_script = """--[[Fahrenheit to Celsius Temperature Converter
]]--

local ftoC = function(f)

 return (f-32) * (5/9)

end

return ftoC(ARGV[1])"""

www.ebook3000.com

http://lua-users.org/wiki/TablesTutorial
http://lua-users.org/wiki/TablesTutorial
http://www.ebook3000.org

Chapter 5

[125]

Now we can run seventh_script on some example Fahrenheit temperature values:
>>> datastore.eval(seventh_script, 0, 95)

35

>>> datastore.eval(seventh_script, 0, 50)

10

>>> datastore.eval(seventh_script, 0, 32)

0

>>> datastore.eval(seventh_script, 0, 0)

-17

>>> datastore.eval(seventh_script, 0, -40)

-40

The syntax to call a function, in this case the local ftoC Lua function, is similar
to other programming languages. In preceding the seventh_script example,
the ftoC function is called on the ARGV value we passed as the third value in
the datastore.eval calls using four different Fahrenheit temperatures. If your
application requires unit conversions, you can add Lua scripts, similar to this
Fahrenheit to Celsius unit conversion script, to normalize your data on the
server-side instead of in your client code.

Unlike other programming languages such as C, in Lua, functions are values that
can be assigned to a variable making the functions anonymous without requiring a
function name beforehand. As Lua functions are evaluated as any other expression,
functions are considered first-class and, as we can see from our example, we use
brackets () with zero or more arguments after the function-defined variables. If
the Lua function has a variable number of arguments, the syntax is to use an ellipsis
... followed by a closing bracket). Specific variables can be extracted using the
select keyword or can be stored into a table by surrounding the ellipsis with the { }
brackets. Lua functions can return any number of separate values that are distinct
from each other instead of being part of a larger container object. The eighth_
script starts by defining a local function called olympicMetals that returns three
strings, one for each metal.
>>> eighth_script = """--[[Lua function returning multiple variables
]]--

local olympicMetals = function()

 return "Gold", "Silver", "Bronze"

end

The Lua script now calls olympicMetals and assigns three variable before printing a
message:
 local gold, silver, bronze = olympicMetals()
 print("1st="..gold.." 2nd="..silver.." 3rd="..bronze)"""

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[126]

Switching back to the Redis server output, we will see the following:

1st=Gold 2nd=Silver 3rd=Bronze

Wrapping a function that returns multiple values with an outer set of brackets ()
will discard all of the return values except the first, which we can see if we modify
our eighth_script by wrapping the olympicMetals function with brackets and
returning the results:

>>> eighth_script = eighth_script + "\nreturn (olympicMetals())"

>>> datastore.eval(eighth_script, 0)

b'Gold'

Because Redis only returns a single value, evaluating Lua scripts that return multiple
values operates in a similar fashion by only returning the first value. We can get
around this limitation in our Redis Lua scripts using curly brackets { } to wrap any
function that returns multiple values as a Lua table instead. To see the contents of
our calling olympicMetals function, we will modify our Lua script by removing the
three metal variables and instead return the results as a Lua table, which the Python
Redis client returns as a Python list with the following three items:

>>> eighth_script = """--[[Lua function returning multiple variables
]]--

local olympicMetals = function()

 return "Gold", "Silver", "Bronze"

end

return {olympicMetals()}"""

>>> datastore.eval(eighth_script, 0)

[b'Gold', b'Silver', b'Bronze']

Using KEYS and ARGV with Redis
We have already been using the keys and optional arguments that are accessible as
the KEYS and ARGV Lua tables in our Lua server-side scripts in Redis. To illustrate
this, we'll run ninth_script that echoes back a Lua table with the KEYS and ARGS
variables as members to the Redis client:

>>> ninth_script = """--[[Returns all KEYS and ARGV as members of a Lua
Table]]--

return {KEYS[1], KEYS[2], ARGV[1], ARGV[2]}"""

>>> keys_and_args = ["Airline:1", "Airline:2", "Singapore Airlines",
"Southwest"]

>>> datastore.eval(ninth_script, 2, *keys_and_args)

[b'Airline:1', b'Airline:2', b'Singapore Airlines', b'Southwest']

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[127]

We can refactor this script—now called tenth_script—so that instead of requiring
explicit keys for the Lua table, we can create a for loop that iterates through all of
the values in KEYS and ARGV and returns the resulting Lua table:

>>> tenth_script = """--[[Demostrates creating a Lua table with both
KEYS and ARGV]]--

local airlines= {}

for i,k in ipairs(KEYS) do

 table.insert(airlines, k)

end

for i,k in ipairs(ARGV) do

 table.insert(airlines, k)

end

return airlines"""

>>> datastore.eval(tenth_script, 2, *["Airline:1", "Airline:2",
"Singapore Airlines", "Southwest"])

[b'Airline:1', b'Airline:2', b'Singapore Airlines', b'Southwest']

In this script, the local keyword precedes the airlines variable assignment to
an empty table with curly brackets. We are using a function called ipairs to loop
through both KEYS and ARGV that ensures the table is accessed in order starting
at index 1, an important characteristic with a position-based EVAL command that
assumes both KEYS and ARGS are accessed inside the Lua script in order.

Redis commands can be called within a Lua script using either the redis.call
or redis.pcall functions that use the Redis Lua module. The major differences
between these two Redis calls is how errors are handled. An error that occurs when
executing the redis.call will pass through the error to the Redis client that issued
the EVAL command. The redis.pcall, on the other hand, captures the error into a
Lua table and returns the table to the calling client, making redis.pcall easier for
error-checking and handling in the Redis client. If you're using a Redis client, the
difference in your client application may be minimal. For instance, the Python
Redis module raises a redis.exceptions.ResponseError regardless of you
using redis.call or redis.pcall in your Lua script.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[128]

Because Lua and Redis data types are different, Redis needs to transform incoming
data to the corresponding Lua type and then transform the results of the script
execution to the RESP values of Redis. The following table shows the corresponding
mapping between Lua and RESP values.

Redis Datatype Lua Datatype
Redis integer reply Number
Redis bulk reply String
Redis multi bulk reply Table
Redis status reply Table with a single OK field
Redis error reply Table with a single ERR field
Redis nil bulk reply False Boolean value
Redis integer reply of 1 True Boolean value

A common pattern in Redis applications that we have discussed in earlier chapters
is maintaining a global counter that is appended to a key pattern with a delimiter
to make a unique key with which data is then inserted into Redis depending on the
data structure. For example, we have a global book counter that is used to create a
hash key where properties are stored. Using a Lua script we can reduce the number
of Redis calls by half:

>>> add_book_lua = """local book_id = redis.pcall('INCR', 'global:book')

local book_key = "book:"..book_id

redis.pcall("HMSET", book_key, "title", ARGV[1], "author", ARGV[2])

return book_key"""

>>> datastore.eval(add_book_lua, 0, "Moby Dick", "Herman Meville")

b'book:1'

Now, we will retrieve all of the fields and values in our new Book hash:

>>> for field, value in datastore.hgetall('book:1').items():

 print(field, value)

b'author' b'Herman Meville'

b'title' b'Moby Dick'

While it is certainly feasible to use the EVAL command for Lua scripts, the preferred
method to run Lua scripts is through Redis's script loading and execution. With
simple Lua scripts, the overhead of sending the script on each invocation to the
Redis server is acceptable and minimal; however, the downside is that the entire text
of the script must be used every time this Lua script is used in the application. For
more complex and larger Lua scripts, network latency may become a concern as each
invocation now sends the entire script over the network.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[129]

Restrictions and considerations when using Lua scripts in Redis
Blocking: Be careful of long-running Lua scripts or when using larger
and complex Lua scripts. Because of Redis's single-threaded nature,
these scripts block execution for other clients until completed!
Atomaticy of scripts: To ensure that Lua scripts are pure functions
when run on any Redis instance, that is, I need to be confident that
running a particular Lua script on Slave 1 and Slave 2 is the same;
otherwise, debugging side effects and constructing unit testing
becomes a much greater challenge. Any Redis write command
should perform in an identical fashion given the same arguments.
Commands such as SPOP that randomly return a value and write
back to Redis are prohibited and will cause an error if called from a
Lua script.
Limited Lua libraries: The Redis Lua environment only includes the
following Lua libraries: table, string, math, debug, cjson, and
cmsgpack.
Cluster support: Lua scripts can be run on a Redis cluster as long as
the script operates on keys that are on the same hash slot.

To provide a flexible method for loading Lua scripts once in the Redis server, Redis
provides a SCRIPT LOAD command that takes the string of the Lua script and returns
the SHA1 hash of the script. Clients can then call a hashed digest of the Lua script
along with the KEYS and ARGV arguments using the EVALSHA command. The SCRIPT
LOAD command syntax is as follows:

SCRIPT LOAD script

Redis computes the SHA1 of a Lua script that has been loaded into Redis using the
SCRIPT LOAD command, which returns the SHA1 digest that can be executed using
the EVALSHA command.

Along with the ability to load Lua scripts into a running Redis instance, Redis also
provides three other SCRIPT subcommands to help manage these scripts in the
Redis server's script cache:

SCRIPT EXISTS script_SHA1 [script_SHA1…]

The SCRIPT EXISTS command takes one or more SHA1 digest values and checks to
see whether the script is the Redis server's script cache. This is done by returning an
array of integers with a value of 1 for each SHA1 digest argument found and zero for
the SHA1 digests that are absent from the script cache.

SCRIPT KILL

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[130]

The SCRIPT KILL command is for long-running Lua scripts that may have an
internal error or may be hung-up in a race condition. As the Redis server is single-
threaded and blocks on each EVAL or EVALSHA call, the SCRIPT KILL command will
interrupt the running process and return an error to the script and call client.

SCRIPT FLUSH

The final command, SCRIPT FLUSH, clears the Redis server script cache and any
subsequent EVALSHA commands will return an error until a SCRIPT LOAD command
is issued with a new Lua script.

Going back to our add_book_lua script, we can generate the SHA1 digest for the
script with the following:

>>> add_book_sha1 = datastore.script_load(add_book_lua)

>>> add_book_sha1

'946ba456ead00a1787f6579097fc8df2fb30e17b'

With the SHA1 of this function, we can use this hash digest with a different client; in
this case, our Redis-cli client. We will first check to see whether the script exists and
then add a new book hash key by calling the EVALSHA command:

127.0.0.1:6379> SCRIPT EXISTS 946ba456ead00a1787f6579097fc8df2fb30e17b

1) (integer) 1

127.0.0.1:6379> EVALSHA 946ba456ead00a1787f6579097fc8df2fb30e17b 0 "I
Know Why the Caged Bird Sings" "Maya Angelou"

"book:2"

127.0.0.1:6379> HGETALL book:2

1) "title"

2) "I Know Why the Caged Bird Sings"

3) "author"

4) "Maya Angelou"

If the Redis script cache is flushed, we should get an error if we attempt to call the
SHA1 digest of the Lua script with a third book:

127.0.0.1:6379> SCRIPT FLUSH

OK

127.0.0.1:6379> EVALSHA 18b5c2930c60be193478b990e2c8d5afda9116e4 0 "The
Adventures of Sherlock Holmes" "Sir Arthur Conan Doyle"

(error) NOSCRIPT No matching script. Please use EVAL.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[131]

Advanced Lua scripting with Redis
Now that we have a basic understanding of Lua scripting in Redis, we will see how
we might refactor a few examples from the previous chapters to use Lua scripts.
We'll also note potential problems that might occur while using Lua scripting
including introducing hidden complexities and harmful performance implications
of these changes. Lua scripting is a valuable tool, but must be used in the context
of its limitations with server-side scripts in Redis.

In Chapter 3, Managing RAM: Tips and Techniques for Redis Memory Management,
we will modified our tea and coffee Python code to use Lua scripts for bitmap
operations, and finally, in Chapter 4, Programming Redis Part One: Redis Core, Clients,
and Languages, we modified both the linked data fragments as well as our Node.js
applications to use Lua scripts.

MARC21 ingestion
From our first chapter example of ingesting the MARC21 records into a Redis key
schema structure, we'll use a loaded Lua script. The main reason why we might want
to shift processing to the Redis server is to reduce the number of Redis commands
issued between the client and server to a single call with EVALSHA that contains all
the information that we want to populate a number of keys in our datastore. To start,
we'll create a Redis Lua script called marc_ingestion_script_:

>>> marc_ingestion_script = """--[[MARC ingestion Lua script]]--

local marc_key = KEYS[1]

if redis.call("exists", marc_key) < 1 then

 marc_key = "marc:"..redis.call("incr", "marc")

end

The Lua script starts by assigning the marc_key variable to KEYS[1] and then checks
for the existence of marc_key in the Redis. If the marc_key doesn't exist, then it is
initialized with the marc: string that appends the integer returned by a Redis call
incrementing a global MARC record variable.

local marc_fld_id = redis.call("incr", marc_key..":"..KEYS[2])

local marc_fld_key = marc_key..":"..KEYS[2]..":"..marc_fld_id

Next, a MARC field ID is created by incrementing a global variable that is created by
combing the marc_key field with the value in the KEYS[2], which we assume is the
MARC field code. We finish this by creating the MARC field key by concatenating
the original marc_key, the MARC field code, and the MARC field id.

redis.call(elpushhall(elpush, marc_fld_key)

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[132]

We then add the marc_fld_key to a marc_key list. This list collects all the fields in
reverse order as they are added to the datastore.

for i,k in ipairs(KEYS) do
 if i > 2 then
 redis.call("HSET", marc_fld_key, k, ARGV[i-2])
 end
end
return marc_fld_key"""

Because the order of the remainder of the keys are the fields for the marc_fld_key
hash matters, we will use the ipairs call to ensure that we start iterating through the
KEYS at index 1. Since KEYS[1] and KEYS[2] are already in use, we will start to map
each key starting with KEY[3] with a corresponding value in the ARGV table variable.
The last line returns the new Redis key for the MARC field.

We will use this Lua script by saving the result of the SCRIPT LOAD command in a
marc_ingestion_sha1 variable in our Python shell:

>>> marc_ingest_sha1 = datastore.script_load(marc_ingestion_script)

>>> marc_ingest_sha1

'90eba74ace34ee70ad8705a9baab9e888c5c7740'

For our MARC record of David Foster Wallace's Infinite Jest, we will first define a
Python list to store the keys and arguments for a MARC 100 field and then we would
call marc_ingestion_script using the EVALSHA function with the marc_ingest_
sha1, the number of keys set to 3, and the field list as parameters:

>>> field = [None, 100, "a", "Wallace, David Foster"]

>>> datastore.evalsha(marc_ingest_sha1, 3, *field)

b'marc:1:100:1'

The retrieval of the 'a' subfield from the marc:1:100:1 hash is confirmed by the
following:

>>> datastore.hget('marc:1:100:1', 'a')

b'Wallace, David Foster'

For the entire MARC 245 field with multiple MARC subfields, we would first create
the keys and arguments list and then call EVALSHA using marc:1 as KEYS[1]:

>>> field245 = ["marc:1", 245, "a", "b", "c", "Infinite Jest :", "a
novel", "David Foster Wallace"]

>>> datastore.evalsha(marc_ingest_sha1, 5, *field245)

b'marc:1:245:1'

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[133]

>>> datastore.lrange("marc:1", 0, -1)

[b'marc:1:245:1', b'marc:1:100:1']

The marc_ingestion_script allows us to reduce the number of round-trips
between our Redis client and server from between 3 and 5 to a single EVALSHA call.

Online Storefront Paper Stationery
In Chapter 2, Advanced Key Management and Data Structures, we had an example of
Online Storefront Paper Stationery. In this, we created a Redis key schema with
accompanying logic relating keys together to manage the inventory of two types
of paper that are updated when an online sale occurs in the online store. Just as a
quick reminder, here is the graphic outline the example from Chapter 2, Advanced Key
Management and Data Structures:

To shift the logic and key maintenance from the Redis client to the Redis server, we
will create two Lua scripts to handle the Redis interactions and reduce the number
of individual calls we make to the Redis instance. The downside of shifting to
Lua scripts for these tasks may mean that the readability of the code in a Python
application will decrease. Instead of seeing how the individual Redis calls relate to
each other in Python, we now require the programmer to understand Lua as well.
Another reason you may wish to shift logic and key management from Python code
to Lua is if you are considering a switch in programming languages for the project.
Your new application will not have to replicate the logic, but just call the EVALSHA
with the proper Lua script digests with correct KEYS and ARGV.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[134]

We'll start refactoring the online storefront paper stationery example by creating
a Lua script called new_stationary_script that takes zero Redis keys but four
value arguments for the stationery color, width, height, and the number of sheets
in a package of stationery. The Lua script will return the new stationery Redis key,
as follows:

>>> new_stationary_script = """local stationery_key = "stationery:"..
redis.call("incr", "global:stationery")

redis.call("hmset", stationery_key, "color", ARGV[1], "width", ARGV[2],
"height", ARGV[3])

redis.call("incrby", stationery_key..":sheets", ARGV[4])

redis.call("set", stationery_key..":inventory", ARGV[5])

return stationery_key"""

Calling SCRIPT LOAD and saving the sha1 hash as the new_stationary_sha1
variable, we can then call EVALSHA with the sha1 hash of this Lua script resulting in
the following output when we send in the values for our blue and red stationery:

>>> new_stationary_sha1 = datastore.script_load(new_stationary_script)

>>> datastore.evalsha(new_stationary_sha1, 0, *['blue', "30 cm", "40 cm",
20, 100])

b'stationery:1'

>>> datastore.evalsha(new_stationary_sha1, 0, *['red', "45 cm", "45 cm",
15, 50])

b'stationery:2'

Now we will check to see whether the new_stationary_script worked correctly by
first retrieving the stationery:1 hash, the number of sheets for the stationary:2
key, and the inventory for stationary:2 using the following code:

>>> datastore.hgetall('stationery:1')

{b'height': b'40 cm', b'color': b'blue', b'width': b'30 cm'}

>>> datastore.get("stationery:2:sheets")

b'15'

>>> datastore.get("stationery:2:inventory")

b'50'

Now after these two stationeries have been added to Redis using this Lua script, we
will next create a second Lua script called record_sale to record an online sale:

>>> record_sales = """--[[Records a Stationery Sale]]--

local sales_sorted_set = KEYS[1]..":sales"

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[135]

redis.call("decrby", KEYS[1]..":inventory", ARGV[1])

redis.call("zadd", sales_sorted_set, ARGV[2], ARGV[3])

return true"""

The record_sale Lua script takes the stationery's Redis key as KEYS[1], the total
number of packages sold in ARGV[1], a UNIX timestamp from ARGV[2], and the total
sales amount in ARGV[3]. The script then decrements the inventory Redis key by
the number of packages sold. The record_sale finished by adding a new entry to a
sorted set of the stationery's sales using a sorted set with the score being the UNIX
timestamp and the value of the sorted set being the sales amount. We'll record a sale
in Python by first importing the time module to generate our UNIX timestamp:

>>> import time

>>> first_sale = ['stationary:1', 2, time.time(), 20]

>>> first_sale

['stationary:1', 2, 1448837693.338041, 20]

In the following code snippet, we have created a Python list for the first sale of two
blue stationery packages:

>>> record_sales_sha1 = datastore.script_load(record_sales_script)

We can then test our Lua script by saving the SHA1 of this script as record_sale_
sha1 and then running EVALSHA with first_sale:

>>> datastore.evalsha(record_sales_sha1, 1, *first_sale)

1

>>> datastore.zrange("stationary:1:sales", 0, -1, withscores=True)

[(b'20', 1448837693.338041)]

With these two Lua scripts, this online stationery store implementation is simplified
so that the application developer can focus on the web-specific interactions and the
interface, while not needing to worry about data manipulation and the Redis key
schema. While creating a consistent Redis key schema, an important role for Redis's
Lua server-side scripting is that the Redis key creation and management can be
handled for most cases within the application's Lua scripts and not in the client-side
code, although most Redis object mappers continue to use client-side code to do this
for their applications.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[136]

Interoperability using JSON-LD, Lua, and
Redis
In Chapter 3, Managing RAM – Tips and Techniques for Redis Memory Management, we
were using a Redis key schema to mirror a web service using forward slashes / as
a key delimiter for a tea brewing service. Lua scripts running in Redis can directly
use a smaller JSON structured as linked data. For our tea examples, we'll use the
https://schema.org/ and the http://www.productontology.org/JSON-LD
vocabularies to store tea information. Instead of maintaining additional ingestion
code to convert the JSON-LD into a Redis HASH, we'll create three JSON-LD strings
for each tea type. Why might this be an advantage? First, by providing and using
each of the three tea bag information stored as JSON-LD vocabularies, we will use
this same format to interoperate with the tea suppliers downstream and upstream
from customer demand. The following is the information for our tea brewing service
structured as a http://schema.org/ recipe for Earl Grey tea:

{
 "@context": {
 "": "https://schema.org",
 "pto": "http://www.productontology.org/id/"
 },
 "@id": "26bca550-db2b-445c-9253-4076e0bb968f",
 "@type": "Recipe",
 "cookTime": {
 "@type": "Duration",
 "@value": "PT5M"
 },
 "recipeIngredient": {
 "@type": "pto:Tea",
 "name": "Earl Grey"
 },
 "recipeInstructions": {
 "@type": "ItemList",
 "name": "Tea Box",
 "numberOfItems": 15
 }
}

The first Lua script that we will create adds a new brand of tea by storing the raw
JSON data in an incremented global variable as string in our Redis datastore. This
will also create supporting tea bags similar to individual tea boxes and bags stored
as Redis list. The availability of JSON on the web, both publishing and consuming,
means that you can provide easy interoperability with Redis using a Lua JSON
library on the Redis server.

www.ebook3000.com

https://schema.org/
http://www.productontology.org/JSON-LD
http://schema.org/
http://www.ebook3000.org

Chapter 5

[137]

Our first Lua script will increment a global/tea variable, create and save a key for
the tea with the JSON string passed as a string at the new key and finish by creating
a list for the first tea-box populated with tea-bags using the cjson Lua library that is
available for use in Redis Lua scripts:

local tea_key = "tea/"..redis.pcall("incr", "global/teas")

redis.pcall("set", tea_key, ARGV[1])

local box_id = redis.pcall("incr", "global/"..tea_key.."/box")

local box_key = tea_key.."/box/"..box_id

local box_json = cjson.decode(ARGV[1])

for i=1, box_json["recipeInstructions"]["numberOfItems"] do

 redis.pcall('rpush', box_key, i)

end

return tea_key

Once this Lua script is loaded with a return SHA1 digest saved as a variable, we can
then add our three examples by running the addAllTeas JavaScript function in the
load.js Node.js file:

function addAllTeas(client) {
 console.log("Adding all Teas");
 fs.readFile("add-tea.lua", "utf8", function(err, data) {
 var add_tea_lua = data;
 client.script("load", add_tea_lua, function(err, data) {
 var add_tea_sha = data;

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[138]

 var tea1 = addTea("earl-grey.json", add_tea_sha);
 var tea2 = addTea("lavender-mint.json", add_tea_sha);
 var tea3 = addTea("pepperment-punch.json", add_tea_sha);
 });
 });
 console.log("Finished");
 return true;
}

After running the load.js script from the command-line, we can examine the results
with a new Redis Python client instance that we'll name as tea_redis:

>>> tea_redis.llen("tea/1/box/1")

20

>>> tea_redis.llen("tea/2/box/1")

20

>>> tea_redis.llen("tea/3/box/1")

15

Because the tea information is stored as a raw JSON string, we can decode the JSON
string on the client-side using the Python JSON module:

>>> import json

>>> earl_grey = json.loads(tea_redis.get("tea/3").decode())

>>> earl_grey["recipeIngredient"]["name"]

'Earl Grey'

While this solution will work, we can also improve our tea application by decoding
the JSON and returning the value of any JSON hash value by creating the following
Lua script on the server-side:

if redis.call("exists", KEYS[1]) == 1 then
 local raw_json = redis.call("get", KEYS[1])
 local tea = cjson.decode(raw_json)
 return tea[ARGV[1]][ARGV[2]]
else
 return nil
end

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[139]

Loading this script and then calling it from our Python shell provides us with a
method to retrieve values from a smaller raw JSON. If our JSON objects are large, the
Lua script may take too long to parse and return the value, as Redis will be blocked
until the session is finished:

>>> with open("get-tea-info.lua") as fileobject:

raw_lua = fileobject.read()

>>> get_tea_sha1 = tea_redis.script_load(raw_lua)

>>> tea_redis.evalsha(get_tea_sha1, 1, "tea/1", "recipeIngredient",
"name")

b'Lavender Mint'

The final Lua script that we'll create for this example will wrap a tea brewing session
by extracting the first tea bag from an existing box list and then steeping the tea for
a predetermined time limit for each type. When the tea bag's time has expired, our
application alerts the awaiting person that the tea is ready.

if redis.call("llen", KEYS[1]) < 1 then
 return nil
end
local tea_key = string.sub(KEYS[1], string.find(KEYS[1], "tea/%d+"))
local tea = cjson.decode(redis.call("get", tea_key))
local cook_time = tea["cookTime"]["@value"]
local brew_seconds = tonumber(string.sub(cook_time, string.find(cook_
time, "%d+"))) * 60
local bag_key = KEYS[1].."/bag/"..redis.call("lpop", KEYS[1])
redis.call("set", bag_key, 1)
redis.call("expire", bag_key, brew_seconds)
return bag_key

In our Lua script, we first check whether the tea box passed in as KEYS[1] is empty,
and it returns nil if there are no teabags left in the list. Next, we will use the Lua
standard string library to construct the tea key with a Lua pattern that matches the
string.find function. This is passed to string.sub to get the tea key. We then
decode the JSON value stored in the tea key, extract the number of minutes using the
string.sub and string.find functions, and multiple by 60 to get the total number
of seconds. Next, a bag_key is constructed from our second key, the tea box key, and
then we construct our tea bag key with the key schema pattern of tea/{tea-id}/box/
{teabox-id}/bag/{teabag-id}. The tea-bag ID is obtained by running an LPOP
command that returns the first element of the tea box list. We then set a timeout based
on our brew_time local variable before returning the teabag key. This can be queried
by our client with a ttl command until the key is evicted from our Redis instance.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[140]

To test our Lua script with Redis, we'll return to our Python shell and open our
Lua script:

>>> with open("brew-tea.lua") as file_object:

 brew_tea_lua = file_object.read()

>>> brew_tea_sha1 = tea_redis.script_load(brew_tea_lua)

After saving the SHA1 in the brew_tea_sha1 variable, we'll call EVALSHA and save
the resulting tea-bag Redis key:

>>> tea_bag_key = tea_redis.evalsha(brew_tea_sha1, 1, "tea/2/box/1")

>>> tea_bag_key

b'tea/2/box/1/bag/1'

We'll query our Redis instance with the ttl command to see how much time is
remaining:

>>> tea_redis.ttl(tea_bag_key)

159

>>> tea_redis.ttl(tea_bag_key)

59

>>> tea_redis.ttl(tea_bag_key)

-2

After the tea bag has been brewed, Redis returns a -2 to the client. As we have
already noted in the previous chapter, having the client poll the server is not the
optimal design for your application. Instead, using the Redis key expiration event
notification feature, you can watch a key pattern have your application respond
to the event when the tea_bag key has expired. In this case, the tea robot would
remove the tea-bag. This example demonstrates how you can use JSON directly in
your Redis application and perform more complicated workflows, such as brewing
tea, on the server side.

Redis Lua Debugger
A major improvement new in Redis version 3.2 is a dedicated Lua debugger for
troubleshooting problems with Lua scripts running on your Redis server. The Lua
debugger runs in a forked server process from the main Redis event loop which
means that multiple debugger sessions can be run simultaneously while other
development is occurring on the server. By default, any data that was changed
during the debugger session is roll-backed when the debugging session terminates or
an alternative mode for the debugger can be enabled that persists data changes made
in the Redis server’s data during the debugging session (although this synchronous

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[141]

debugging mode blocks the Redis server through-out the debugging session). The
Lua debugger for Redis uses a client-server model where the Lua debugger operates
remotely on the with output from the debugger being feed back to the client, in this
case a special mode of the Redis-cli client.

To illustrate the use of the Lua debugger, we’ll need to have a running Redis 3.2
server and Redis-cli client. Next, we’ll create a small Lua script that takes one or
more e-mails, adds them to a chat room stored as a Redis list, and finally returns
the total number of participants that are currently in the chat room. This Lua script,
chatroom.lua, is available for download at the Mastering Redis website and is
included as follows:

01 --[[Lua script for simple chatroom management]]--
02 local chatroom_key = KEYS[1]
03 for i, email in ipairs(ARGV) do
04 redis.call(“LPUSH”, chatroom_key, email)
05 end
06 return redis.call(“LLEN”, chatroom_key)

To start the Redis Lua debugger, we’ll call this script from our Redis-cli with the
–ldb and the –eval and the path to the chatroom.lua file option followed by a
chatroom key, a comma, and three e-mail addresses stored in the ARGV:

~$ redis-3.2.0/src/redis-cli --ldb --eval chatroom.lua aikido-fan:456 ,
“mu@aiki.com” “at@maf.info” “kc@chiaikido.io”

Lua debugging session started, please use:

quit -- End the session.

restart -- Restart the script in debug mode again.

help -- Show Lua script debugging commands.

* Stopped at 2, stop reason = step over

-> 2 local chatroom_key = KEYS[1]

The Redis-cli is now in a special Lua debugger mode and no longer responds
to Redis commands but to debugging commands. The Lua debugger starts in a
stepping mode with the debugger stopping at the first line of Lua code, in this the
setting of a local Lua variable for the KEYS[1] value. The step (alias is a single s
character) command executes the Lua code, in this case line 2 in chatroom.lua:

lua debugger> step

* Stopped at 3, stop reason = step over

-> 3 for i, email in ipairs(ARGV) do

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[142]

With line 2 executed, we can see the values of all local variables that are present in
the current session with the print command (with a p character alias):

lua debugger> print

<value> chatroom_key = “aikido-fan:456”

Starting on line 3 in our Lua loop, we will iterate once through the loop and then
issue another print command:

lua debugger> s

* Stopped at 4, stop reason = step over

-> 4 redis.call(“LPUSH”, chatroom_key, email)

lua debugger> print

<value> chatroom_key = “aikido-fan:456”

<value> (for generator) = “function@0x257ad70”

<value> (for state) = {“mu@aiki.com”; “at@maf.info”; “kc@chiaikido.io”}

<value> (for control) = 1

<value> i = 1

<value> email = “mu@aiki.com”

The result of issue the step command (using the s alias) twice and then a print
command show the value of the variables, in this case we can see the loop values
and the current iteration of the i counter variable is 1 and the current email variable
value is mu@aiki.com.

Adding a break point with the Lua debugger is simple with the break command
(with a b alias) followed by the line number in the Lua script. We’ll add a break point
at line 6 and then issue a continue (alias c) command to finish iterating through the
for loop:

lua debugger> b 6

 5 end

 #6 return redis.call(“LLEN”, chatroom_key)

lua debugger> c

* Stopped at 6, stop reason = break point

->#6 return redis.call(“LLEN”, chatroom_key)

www.ebook3000.com

mailto:mu@aiki.com
http://www.ebook3000.org

Chapter 5

[143]

Separately, you can also add breakpoints in your Lua scripts by adding redis.
breakpoint() expression in your code. The redis (r alias) Lua debugger
command allows you to issue Redis command to the server while in the Lua
debugger, we can see the current elements in the aikido-fan:456 Redis key with
the LRANGE Redis command:

lua debugger> redis lrange aikido-fan:456 0 -1

<redis> lrange aikido-fan:456 0 -1

<reply> [“kc@chiaikido.io”,”at@maf.info”,”mu@aiki.com”]

Here we see the emails of the chat room’s participants. Another useful Lua debugger
command is the trace (t alias) that shows the current backtrace of the Lua debug
session, the list (l alias) with optional line parameter for showing the source code
around the current location:

lua debugger> t

In top level:

->#6 return redis.call(“LLEN”, chatroom_key)

lua debugger> list

 1 --[[Lua script for simple chatroom management]]--

 2 local chatroom_key = KEYS[1]

 3 for i, email in ipairs(ARGV) do

 4 redis.call(“LPUSH”, chatroom_key, email)

 5 end

->#6 return redis.call(“LLEN”, chatroom_key)

To exit the debug mode, we can either issue an abort (a alias) or a continue
command that will drop your Redis-cli session back to it’s normal Redis operation
mode or the quit command to complete exit your session:

lua debugger> abort

(error) ERR Error running script (call to f_2c7fbbfbe9fe0c7d7cfe6a4a70212
a3147560f7d): @user_script:6: script aborted for user request

(Lua debugging session ended -- dataset changes rolled back)

127.0.0.1:6379>

The new Lua debugger should prove to be a particularly important tool as you
develop and troubleshoot your Redis application’s Lua scripts.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[144]

Programming Redis administration
topics
Man Redis features and operational modes provide additional capabilities and
restrictions when you are programming applications for your customers and
stakeholders. As we have seen, adding Lua scripts to our application transfers even
more business logic and data manipulation to the Redis instance, but with important
restrictions and trade-offs. In the next sections, we'll do a tour of the administrative
features of Redis that are pertinent to programming applications. First, we'll look at
Redis's replication solution with Master-Slave instances, and then Redis transaction
support and see how each of these features offer opportunities and trade-offs in our
applications that have operational implications.

Master-Slave replication
A fundamental administrative topic to consider when programming with Redis is
the decision about when to use Master/Slave replication for added stability, scaling,
and performance, Redis data for application use. In replication, Redis instances
designated as Masters have exact copies of their data stored on separate Redis
instances designated as Slaves. This opens up a number of different possibilities of
automatic backups, isolated write masters from more open slaves, and responding to
spikes in user demand. We'll do a quick review of launching the simplest one-to-one
Master/Slave setup

First, we'll launch our terminal and start up our master and slaves:

$ screen ../redis/src/redis-server

$ Ctrl-a

$ screen ../redis/src/redis-server --dbfilename slave.rdb --port 6380

$ Ctrl-a

In the preceding code, using the screen command, we first launched a new Redis
instance with an empty datastore running on the default Redis port of 6379 and used
the dump.rdb filename as it's snapshot. Then using the Ctrl-a C command, we created
a new screen window and launched our second Redis instance that will be our slave,
use as it's RDB filename slave.rdb as well as running on port 6380 to avoid a port
conflict with the default master running on Redis default port. Finally, we created a
new screen window on which we will run our Python command shell. We will create
two Redis clients, one connected to the Master instance and another is first_slave,
which is a client for the Redis instance that will replicate first_master:

>>> import redis

>>> first_master = redis.StrictRedis()

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[145]

>>> first_slave = redis.StrictRedis(port=6380)

>>> first_master.dbsize()

0

Now we'll add some data to our new master. To make a larger dataset, we will create
a Lua function that iterates a number of times through a variable that is passed to it
and simply creates a string value as an incremented ID:

>>> increment_lua = """for i=1,ARGV[1] do local key='test:'..i redis.
call('SET', key, 'value='..i) end"""

>>> increment_lua = """for i=1,ARGV[1] do

 local key='test:'..i

 redis.call('SET', key, 'value='..i)

end"""

>>> first_master.eval(increment_lua, 0, 100000)

We will confirm that we have one hundred thousand keys in our master Redis
datastore with the DBSIZE, as follows:

>>> first_master.dbsize()

100000

We will extract a few sample keys and confirm that our values are set according to
what we specified in our Lua script by running the MGET command:

>>> for value in first_master.mget("test:1", "test:50000",
"test:100000"):

 print(value)

b'value=1'

b'value=50000'

b'value=100000'

We'll now return to first_slave and check whether this Redis instance is empty;
we will issue a DBSIZE command and then issue the SLAVEOF command to begin
the sync with the master that currently holds our 100,000 test keys:

.>>> first_slave.dbsize()

0

>>> first_slave.slaveof(host='localhost', port=6379)

True

>>> first_slave.dbsize()

100000

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[146]

Using Ctrl + A to loop through our active screen windows, we will observe the
running Master and see that a background fork started as soon as the SYNC
command was received from our new slave:

1076:S 25 Jul 14:38:46.556 * SLAVE OF localhost:6379 enabled (user
request)

1076:S 25 Jul 14:38:46.705 * Connecting to MASTER localhost:6379

1076:S 25 Jul 14:38:46.706 * MASTER <-> SLAVE sync started

1076:S 25 Jul 14:38:46.706 * Non blocking connect for SYNC fired the
event.

1076:S 25 Jul 14:38:46.706 * Master replied to PING, replication can
continue...

1076:S 25 Jul 14:38:46.706 * Partial resynchronization not possible (no
cached master)

1076:S 25 Jul 14:38:46.706 * Full resync from master:
1b82a2315ec3c9daf5a37a7a11360469770494a7:1

1076:S 25 Jul 14:38:46.757 * MASTER <-> SLAVE sync: receiving 217808
bytes from master

1076:S 25 Jul 14:38:46.758 * MASTER <-> SLAVE sync: Flushing old data

1076:S 25 Jul 14:38:46.758 * MASTER <-> SLAVE sync: Loading DB in memory

1076:S 25 Jul 14:38:46.769 * MASTER <-> SLAVE sync: Finished with success

To see if our slave now has a copy for our Redis master, we will confirm whether the
values are the same for both first_master and first_slave:

>>> for key in ["test:345", "test:67864"]:

print(first_master.get(key), first_slave.get(key))

b'value=345' b'value=345'

b'value=67864' b'value=67864'

A recent improvement to the resynchronization process for Redis's is it's
implementation of the PSYNC command that improves durability and reduces
network traffic if the replication link between the master and slave is broken during
a standard SYNC command. If the repl-backlog-size directive is set and a size is
specified, an in-memory backlog of the replication stream is saved by the master.
This is done so that, if the replication link between it and the master's slaves is
broken, the backlog allows the slave client to continue replicating the master's
snapshot instead of beginning an entirely new replication process with the master.
This feature reduces network traffic and improves stability if network latency exists
between the Redis master and slaves.

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[147]

Transactions with MULTI and EXEC
Transactions, where Redis commands are run in single sequential order by being
sandwiched between the MULTI and EXEC commands. Redis transactions differ from
the transactions used in SQL-based relational databases as they do not retrieve
values to act upon, which is possible with SQL transaction. A more significant
difference is errors can occur during the execution of a command and Redis will
continue executing the remaining queued commands and not rollback the previous
commands as it is done in a SQL relational database transaction.

To understand how Redis transactions are queued up and execute commands in
order from our existing first_master Redis instance, we'll create a transaction for
the movie-attendance Redis key and then we will increment movie-attendance in
movie_attend_transaction:

>>> movie_attend_transaction = first_master.pipeline(transaction=True)

>>> movie_attend_transaction.incr("movie-attendance")

StrictPipeline<ConnectionPool<Connection<host=localhost,port=6379,db=0

In the second terminal window, we'll launch a second Python shell and create a
Redis client for first_master2, and then retrieve the movie-attendance variable that
was incremented in our first Python shell:

>>> import redis

>>> first_master2 = redis.StrictRedis()

>>> first_master2.get("movie-attendance")

Nothing was returned because we still haven't executed the transaction. We may
issue our second Python shell as follows:

>>> first_master2.incr("movie-attendance")

1

Now in our original Python session, we will issue the EXEC command on movie_
attend_transaction and then we'll see what is the value of movie-attendance with
first_master:

>>> movie_attend_transaction.execute()

[2]

>>> first_master2.get('movie-attendance')

b'2'

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[148]

Why is the value of movie-attendance 2 if we started the transaction before the
first_master2 client was issued in the INCR command? The MULTI command is run
when EXEC is issued on the transaction that was executed and not when the movie_
attend_transaction issued the INCR command. By default, MULT/EXEC creates a
queue of Redis commands that are executed during a blocking call when EXEC is
issued. This may be very understandable if we want to lock the value, so if a movie-
attendence variable is incremented in a transaction and the movie-attendence
value is modified by another client, like we demonstrated, then the transaction will
fail following an optimistic locking to Redis keys, such as movie-attendence, using
the WATCH command with check-and-set (CAS) approach.

Optimistic Locking with CAS

To better illustrate the use of optimistic locking, we'll use telnet to access the master
Redis instance and run WATCH with MUTLI and EXEC to illustrate optimistic locking
with Redis transactions. First, we will return to our Python shell and remove the
movie-attendance key:

>>> first_master.delete('movie-attendance')

1

Now we'll connect with telnet, use WATCH for the movie-attendance key, and then
run the following transaction with MULTI-EXEC.

bash-3.2$ telnet localhost 6379

Trying ::1...

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[149]

Connected to localhost.

Escape character is '^]'.

WATCH movie-attendance

+OK

MULTI

+OK

SET movie-attendance 15

+QUEUED

EXEC

*1

+OK

Now we'll check the value of movie-attendance from our Python shell:

>>> first_master.get('movie-attendance')

b'15'

The transaction executed correctly and set the movie-attendance value to 15 as we
expected. Now we will repeat the telnet session using WATCH and see what happens:

WATCH movie-attendance

+OK

MULTI

+OK

SET movie-attendance 23

+QUEUED

Now, going back to our Python shell, we'll change the movie-attendance value and
then go back and run EXEC in our telnet session:

>>> first_master.set('movie-attendance', 5)

True

Back to the telnet session, we get the following:

EXEC

*-1

Because we ran WATCH on movie-attendance, changing the value to 5 in the Python
shell results in a -1 return when we attempt to run the transaction. Note that the Lua
scripts running on Redis operate in a similar fashion: the operations in the script are
atomic and if the script fails, changes to the datastore are aborted.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[150]

Redis role in DevOps
DevOps embraces a vision of enterprise technology that is a combination of
traditionally siloed departments or divisions made up of Software Development
(Engineering), Technology Operations, and Quality Assurance, where these three
important functions are merged into a single organizational unit. This new unit
emphasizes communication and cooperation among the various components while
focusing on ways to automate and integrate development, quality testing, and
production of technology services and resources. By focusing on these interrelated
aspects of information technology, DevOps means to reduce the time-to-market
or time-to-release of a new IT service, lower failure rates and runtime bugs, and
increase recovery time if a product or service fails catastrophically.

Redis fits very well into this model due to a number of features including Redis's
ease-of-deployment, rigorous unit and functionality testing of core and supplementary
Redis technology, and the ease of automation through tools such as Chief, Ansible,
Puppet, and Docker.

DevOps

www.ebook3000.com

http://www.ebook3000.org

Chapter 5

[151]

Salvatore Sanfilippo writes about the use of Redis as a glue technology that
complements if not supplements traditional databases or legacy systems in an
enterprise. Over time, an organization accumulates a certain level of technical debt
that is defined as the amount of effort required to fix or in some way remediate
problems in a code base. CAST research labs estimate that the average cost to an
organization per 300,000 lines of code is $1,083,000, or an average of technical
debt per line of code can be $3.61.3. In a truly hybrid development-operations
environment, operations code, such as a Lua scripts, introduce new avenues where
source code can accumulate and contribute to the overall burden of maintainable
code that the combined operations must address.

This is not to assert that incurring technical debt by introducing new code can be
avoided. As an agile-based process with multiple development iterations of the code
base, DevOps responsively adapts and changes with the business or operational
environment shifts that happens with introductions of new competitors and strategic
changes occurring within an organization's existing competition. The kind of code
addition that is ideally minimizes in a functioning DevOps organization is in the
growth of glue code for connecting directly incompatible vendor-siloed applications,
legacy systems, and whatever current work-flow that is required by a business
requirement. Redis offers an alternative by allowing the data to be structured so that
it directly responds to new requirements. This can be a radical conceptual leap and
offers something analogous to the Bridge4 structural design pattern for separating
abstraction from it's implementation and the Adapter/Wrapper/Translator5
structural design pattern, which converts the interface of a class into another
interface that the consuming client or process would expect.

Summary
This chapter started with a detailed examination of the Redis server scripting
language called Lua before going into some examples of using Lua scripts with the
EVAL command. This was followed by loading and then executing Lua scripts with
the SCRIPT LOAD and EVALSHA commands. Next, we went back and saw how using
Lua scripts can simplify the application logic in the earlier examples of the previous
chapters, such the MARC21 ingestion, online stationery store, the linked data
fragments server, and various node.js applications. The next section showed
how in different Redis operational modes, such as Master-Slave replication and
transactions, impact the Redis application design.

The final section was on how the role of Redis in the increasingly popular enterprise
organizational structure called DevOps is flexible enough and well-suited for data
storage and manipulation needs of both developers and operational staff.

Programming Redis Part Two – Lua Scripting, Administration, and DevOps

[152]

In our next Chapter 6, Scaling with Redis Cluster and Sentinel, we will shift our focus to
the more operational aspects of Redis; first with an exploration of the Redis cluster
capabilities that allows large data problems to be spread across Redis instances, and
second, with the monitoring and failover features of Redis Sentinel.

www.ebook3000.com

http://www.ebook3000.org

[153]

Scaling with Redis Cluster
and Sentinel

This chapter first explores a crucial strategy of scaling large datasets with Redis by
partitioning, or splitting up, the data across multiple Redis instances. By looking
at various algorithms that different groups and projects have taken in sharding
data, including one of the most successful efforts to do this with Redis, Twitter's
Twemproxy project. This provides the background and history behind one of the
biggest changes to Redis in the past few years; the inclusion of Redis cluster into the
stable branch of Redis in version 3. We'll move from the Twemproxy approach to
sharding Redis instances, to the strategy ultimately adopted and implemented in the
Redis cluster. We will then experiment with using a Redis cluster with a couple of
large datasets and see how client application code should be modified to be able to
use the Redis cluster.

Regardless of the partitioning strategy taken to use Redis with large data, managing
and supporting the large number of Redis instances led to the development and
release of Redis Sentinel, a monitoring and failover program included with Redis
that addresses the challenges of monitoring large number of running Redis instances,
particularly when using Redis's master-slave replication.

Approaches to partitioning data
Partitioning data, where keys are divided and assigned to specific instances, is
an important strategy for breaking up large databases or datasets that cannot be
loaded into any single machine's available memory. With partitioning, computation
and resources are no longer limited to what is available to a single Redis instance
but expands and scales your application to include multiple processor cores and
machines running and connecting to other Redis instances through network
interfaces, routers, and adapters to other machines.

Scaling with Redis Cluster and Sentinel

[154]

There are usually three different avenues for partitioning data with Redis—client-side
partitioning, proxy assisted partitioning, and query routing. In client-side partitioning,
the partitioning logic is contained in the client code that selects the correct partition
or Redis node based on either an algorithm, storing extra information, or some
combination of the two. With proxy-assisted partitioning, Redis clients connect to
a proxy middleware that then routes the client's requests to the correct Redis node.
We will be exploring one of the most popular projects that support this partitioning
approach in a later section in this chapter on Twemproxy. The final implemented
avenue for Redis partitioning is query routing where any client querying a random
node in the cluster will be routed to the correct node containing the key, the approach
taken in the current implementation of Redis cluster.

Range partitioning
Often, the simplest method to implement a partitioning strategy on either server or
client-side, Range partitioning, does require management code and data structures
to keep track of what key is assigned to a particular instance. At its core, Range
partitioning assigns an incoming key to an instance based on whether the key is
inside a particular range of values that have been assigned to an instance:

Range partitioning

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[155]

A simplified version of a Range partitioning in Redis is to start with a defined
number of Redis instances; in this example, we will arbitrarily pick five running
Redis instances and assign a range of IDs to each instance. We will store a bitstring
for each instance with a bit flipped to 1 for all IDs that are in the instance's assigned
range. When a new key is created using a global increment, we will check each
partition with a GETBIT call to see whether the new ID is in the assigned range for
that partition and if it is, the key will be stored in the Redis instance for that partition.

Here is a short Python function, set_range_partitions, that sets the bits for
our partitions:

def set_range_partitions(datastore, partitions=5, size=20000):
 for i in range(0, partitions):
 key = "partition:{}".format(i+1)
 start = i*size + 1
 end = start + size
 for offset in range(start, end):
 datastore.setbit(key, offset, 1)

We now have five partition keys that store bitstrings for their range of keys. Because
these keys do not take up much memory, we can store a copy on each of our five
Redis instances. We'll first examine partition:1 from a Redis-cli session:

127.0.0.1:6379> BITCOUNT partition:1

(integer) 20000

127.0.0.1:6379> GETBIT partition:1 1

(integer) 1

127.0.0.1:6379> GETBIT partition:1 20001

(integer) 0

As we would expect, partition:1 size is 20000, its first flipped bit starts at offset 1
and is as follows:

127.0.0.1:6379> BITCOUNT partition:5

(integer) 20000

127.0.0.1:6379> GETBIT partition:5 80000

(integer) 1

127.0.0.1:6379> GETBIT partition:5 99999

(integer) 1

Scaling with Redis Cluster and Sentinel

[156]

To calculate which partition a new key will be stored at is a matter of performing a
bitstring operation on the stored partition keys. The easiest method would be to issue
a GETBIT command with the new key's numeric ID and see whether it is set to 1 for
each of the partitions:

127.0.0.1:6379> GETBIT partition:1 568

(integer) 1

127.0.0.1:6379> GETBIT partition:2 568

(integer) 0

127.0.0.1:6379> GETBIT partition:3 568

(integer) 0

127.0.0.1:6379> GETBIT partition:4 568

(integer) 0

127.0.0.1:6379> GETBIT partition:5 568

(integer) 0

We would then use partition:1 for our key interesting-key:568:

127.0.0.1:6379> SET interesting-key:568 "Some data"

OK

For a second key with an ID 83697, we would repeat the process of checking each
partition bitstring (the first three GETBIT checks are omitted):

127.0.0.1:6379> GETBIT partition:4 83687

(integer) 0

127.0.0.1:6379> GETBIT partition:5 83687

(integer) 1

The second key is stored in the fifth running Redis instance of our ad hoc cluster and
is running on port 6382, which we connect to with a running a new Redis-cli session
and using that Redis instance to set our second key:

127.0.0.1:6382> SET interesting-key:83697 "Another key with info"

OK

There are both positive and negative aspects when using the range partition
approach to sharding a dataset. Conceptually, range partitioning is the easiest to
comprehend and implement; however, as you can see we do incur an overhead
cost both in tracking the partitions with a Redis bitstring data structures as well as
developing custom client code to manage both the key assignment to the partition
as well as retrieval and updating keys from the cluster of running Redis instances.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[157]

List partitioning
Similar to Range partitioning, List partitioning is where a partition is assigned a
list of values and if the Redis key has one of the values in a list, it is assigned to
that partition. To illustrate list partitioning, we'll start with a simple telephone
application that stores the phone numbers from across the United States into one of
three running Redis instances. What key is assigned to which of three running Redis
instances will be based on a list of area codes assigned to each instance:

List partitioning

Like Range partitioning, using List partitioning requires intermediary data structures
to support the assignment and tracking of keys in the datastore. In this case, we
will populate three hashes, with each hash having the area code as the field and the
geographic area (country or US state) as the value store for the area code. Because area
codes are not necessarily numbered consecutively, we cannot use range partitioning.

Scaling with Redis Cluster and Sentinel

[158]

We will first open a tab-delimited text file containing the area codes, extract the area
code and geographic name from each row, and then assign the first 106 area codes to
partition one, the next 106 area codes to partition two, and finally, the last 107 area
codes to partition three. We will save the three Redis keys by following the schema
area_code:partition:{id}, with our first Redis instance also functioning as the
first partition:

def assign_codes_to_partitions(filename, datastore):
 with open(filename) as area_codes_file:
 area_codes = area_codes_file.readlines()
 area_code_shard1 = "area_code:partition:1"
 area_code_shard2 = "area_code:partition:2"
 area_code_shard3 = "area_code:partition:3"
 for i, row in enumerate(area_codes):
 fields = row.split("\t")
 code = fields[0]
 geo_name = fields[1]
 if i < 106:
 slot= area_code_shard1
 elif i >= 106 and i < 212:
 slot = area_code_ shard 2
 else:
 slot = area_code_ shard 3
 datastore.hset(hash_key, code, geo_name.strip())

To confirm that the first Redis node has three keys and the size of each hash is what
we expect by using a Redis-cli session:

127.0.0.1:6379> DBSIZE

(integer) 3

127.0.0.1:6379> HLEN area_code:partition:1

(integer) 106

127.0.0.1:6379> HLEN area_code:partition:2

(integer) 106

127.0.0.1:6379> HLEN area_code:partition:3

(integer) 107

We will need a second function that takes a phone number, a list of values (name,
address, mobile, or landline) and list of nodes in our cluster, looks up the area code
to get which node to save the phone number hash to, and then saves the values to
the sharded Redis instance node:

def save_phone_number(phone, values, cluster):
 area_code = phone[0:3]

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[159]

 if cluster[0].hexists("area_code:partition:1", area_code):
 shard = cluster[0]
 elif cluster[0].hexists("area_code:partition:2", area_code):
 shard = cluster[1]
 else:
 shard = cluster[2]
 shard.hmset(phone, values)

Testing our first phone number from our interactive Python shell, we will execute the
save_phone_number Python function like this:

>>> save_phone_number(
 "719 555 1212",
 {"name": "Jeremy Nelson",
 "type": "Mobile"},
 cluster)

Based on list partition, the phone number "719 555 1212" is saved as a hash in
node 3 of our ad hoc cluster:
127.0.0.1:6379> HEXISTS area_code:partition:2 719

(integer) 1

We can confirm by opening a second terminal window to a Redis-cli session with our
third node and retrieving all of the fields and values from our "719 555 1212" key:

$ ~/redis/redis-cli -p 6381

127.0.0.1:6381> hgetall "719 555 1212"

1) "type"

2) "Mobile"

3) "name"

4) "Jeremy Nelson"

With this setup, we should be able to distribute a large number of phone numbers
across our three shards. What is missing from our sharding strategy is the means to
easily add additional shards as our dataset grows. Because our algorithm is based
on the distribution of area codes, we cannot just add more nodes as needed without
restructuring our lists. Our strategy also assumes that North American phone
numbers are equally distributed among the area codes, with new area codes being
added when the existing number of area codes in a region by the North American
Numbering Plan Administration (NANPA). While not impossible, we could manually
implement a resharding approach so that when the NANPA adds a new area code,
an equal number of area codes are moved from their respective node and reassigned
to a new node. Unlike the range partition, we do not require the area codes to be
ordered or continuous but we do need to add custom client sharding code for
managing our small cluster of Redis instances.

Scaling with Redis Cluster and Sentinel

[160]

Hash partitioning
In Hash partitioning, a hash algorithm calculates what shard a key is assigned to
the datastore. A typical hash function calculates a value from a key and performs a
modulo operation on the value based on the number of shards or instances available
in the datastore. In a 2011 blog post titled, Redis Presharding1, Salvatore Sanfilippo
outlines a basic and simple hashing algorithm that takes a Redis key, hashes it with
something like the SHA1 or CRC, and then does a modulo operation to calculate a
location or node to store the key in. Sanfilippo encourages an approach of running
many different instances of Redis when creating a cluster, he uses 128 Redis
instances in his example for hashing Redis keys on the client side:

Hash partitioning

In the Java programming language, hashing is widely used with a required
hashCode() method for classes that create a single 32-bit signed hash value when
digesting the data stored in a class instance. In one example of using a Java client
and Redis for hash sharding, a key made up of an e-mail address is routed to a Redis
instance in a cluster by calling the Java hashCode() method of the e-mail string and
storing the key in an email bucket2.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[161]

Composite partitioning
In a composite partitioning strategy, keys are assigned to an instance by different
combinations of Range, List, or Hash partitioning. Redis cluster uses a form of
composite partitioning called consistent hashing that combines features of the
Hash and List partitioning to calculate a key's instance or node in Redis cluster
terminology. Called a hash slot, it is the key's CRC16 hash value and then a
computation of a modulo using 16384. The specific algorithm used by Redis cluster
to calculate the hash slots for a key is simply the cyclic redundancy check (CRC) using
a polynomial length of 17-bits or CRC16 with a theoretical maximum number of
cluster nodes 16,284 with each node being a running Redis instance. To effectively
use Redis cluster's consistent hashing algorithm, a minimal three Redis nodes are
necessary in your Redis cluster.

For a three-node Redis cluster, the hash slots are assigned with the following:

•	 The first master having hash slots 0 to 5500
•	 The second master node being assigned hash slots 5501 to 11,000
•	 The third master having the remainder of 11,001 to 16,384 hash slots

The actual hash slot for the key is calculated as the modulo of CRC16 of the key
divided by 16384 like this:

HASH_SLOT = CRC16(key) modulo 16384

The official Redis cluster specification provides a reference implementation of the
CRC16 XModem, refer bullet point number 3 in Appendix, Sources, Chapter 6: Scaling
with Redis Cluster and Sentinel, that is also available in the Redis source code directory
in the crc15.c code file. We can see the hash slot allocation in action if we connect to
a running 3-node Redis cluster using our Redis-cli with the -c parameter:

127.0.0.1:9001> SET book:1 "Mason and Dixon"

OK

127.0.0.1:9001> SET book:2 "Centennial"

-> Redirected to slot [12948] located at 127.0.0.1:9003

OK

Scaling with Redis Cluster and Sentinel

[162]

Our first key, book:1, the hash slot is calculated as crc16("book:1") modulo 16384
is 759. In this particular cluster, the master node residing at port 9001 is allocated
hash slots 0 to 5500 so with the client issuing the SET command stays on the same
node. In our second key, book:2, the hash slot is calculated to be crc16("book:2")
modulo 16384 to be hash slot 12938, which is allocated to the master node at 9003.
Instead of doing this hash slot calculation manually, Redis provides a convenient
command CLUSTER KEYSLOT that will perform this calculation for you:

127.0.0.1:9001> CLUSTER KEYSLOT book:1

(integer) 759

127.0.0.1:9001> CLUSTER KEYSLOT book:2

(integer) 12948

Key hash tags
An important exception to the Redis cluster's standard hash slot allocation discussed
previously is the use of hash tags in the Redis key string that is restricted to the
calculation of the hash slot to the characters just within the hash tag. In a Redis key,
the hash tags are the characters contained between the first occurrence of the opening
brace { and the closing brace }. This forces keys to reside in the same in the hash slot
and Redis node in the cluster. This is important because the Redis cluster only offers
limited support for multi-key commands while still completely supporting the core
Redis commands for the entire cluster. If multi-key commands are needed, all of the
keys must reside on the same node so the hash slot calculation can be restricted to
just the hash tag. We can test this by returning to our Redis-cli session by first trying
to issue a MSET command with keys that do not use the hash tags:

127.0.0.1:9001> MSET book:3 "Shogun" book:4 "Gone Fishin"

(error) CROSSSLOT Keys in request don't hash to the same slot

This is because the hash slot for book:3 is calculated as crc16("book:3") modulo
16384 is 8885 and the hash slot for "book:4" is crc16("book:3") modulo 16384 is
4690. Now, we'll try the same command but use hash tag "{book}":

127.0.0.1:9001> MSET {book}:3 "Shogun" {book}:4 "Gone Fishin"

OK

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[163]

In this example, we want both book keys to reside on the same node so we created
the {book} hash tag and issued two SET commands, the first redirected us to the
first node because "book" hash slot, crc16("book") modulo 16384, is 1337 and the
second key resides on the same node that we can confirm by the following:

127.0.0.1:9001> keys *

1) "{book}:3"

2) "book:1"

3) "{book}:4"

Clustering Redis with Twemproxy
Twemproxy is an open source project released by Twitter for creating a caching
proxy between a client and backend made up of either Memecache or Redis
instances. Twemproxy separates the client calls, in our case any suitable Redis client,
from the datastore backend through the use of an intermediary middleware. This
middleware then implements a sharding strategy based on your preferences that
are set in a configuration YAML file. Twemproxy supports twelve different hash
functions including md5, crc16, two versions of crc32, four variants of the Fowler-
Noll-Vo (FNV), among others with the default being a fnv1a_64 hash functions.

With Twemproxy being a C program such as Redis, the steps to get Twemproxy
running require a couple of different methods. To get started quickly, go to
https://github.com/twitter/twemproxy/releases and download Twempoxy's
distribution tarball. (You can also download a source tarball or clone the repository
with Git, both requiring the additional step of running autoconf before running the
following configure command):

$ tar xvf nutcracker-0.4.1.tar.gz

$ cd nutcracker-0.4.1/

$./configure

$ make

$ sudo make install

https://github.com/twitter/twemproxy/releases

Scaling with Redis Cluster and Sentinel

[164]

Before running Twemproxy, we will need to update and configure the proxy to use
Redis, and map our running Redis instances as Twemproxy's backend cache servers:

Twemproxy overview

Testing Twemproxy with Linked Data
Fragments server
To start our testing of Twemproxy with Linked Data Fragments server, our backend
Redis cluster will be made up of four Redis instances. Two Redis instances will
be master nodes for our Linked Data cache. The remaining Redis instances will
replicate the master nodes by running as slave nodes. We added and implemented
a lightweight REST API for our Linked Data Fragment server project by using a
Python framework for building REST APIs that were released and maintained by
Rackspace called Falcon.

In the api.py Python module, a new class for a Triple REST endpoint is
implemented with two methods; an on_get method for HTTP GET call that returns
a serialized JSON of a simple RDF graph of the triple stored at the key in this syntax
of {subject sha1}:{predicate sha1}:{object sha1} and an on_post method
for creating a new triple based on the sha1 digests of the subject, predicate, and
object and then storing a 1 integer as a value. In the client code, if the triple key is
found to exist, then a JSON Linked Data representation of the triple is generated by
first splicing the key into its three digest values for the subject, predicate, and object,
retrieving those values held at the sha1 digest keys, and constructing the return
JSON string on the fly.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[165]

Comparing the performance of the Linked Data Fragments server involved the
creation of test data sets made up of BIBFRAME-based RDF graphs from two sources:

•	 Library of Congress MARC records for all records matching the terms
"Mark Twain" and the "Bible"

•	 All MARC21 records of the most popular material at Colorado College's
library based on the number of checkouts

Altogether, the two datasets represented a total of over 50,000 distinct graphs made
up over 5,000,000 individual triples.

We will extend and continue to isolate our Redis-based code in our project by first
creating a cache directory and moving and renaming our cache.py to the new
directory and renaming it as aioredis.py. We will then create a new Python
module in this same directory, and call it twemproxy.py.

To begin our testing, we'll first need to modify Twemproxy's YAML configuration
file located at nutcracker-0.4.1/conf/nutcracker.yml. We'll be creating a
simplified configuration with single server pools, alpha, for our Redis nodes
running on ports 6379 through 6383. Here is the YAML configuration for alpha:

alpha:
 listen: 127.0.0.1:22121
 hash: fnv1a_64
 distribution: ketama
 auto_eject_hosts: true
 redis: true
 server_retry_timeout: 2000
 server_failure_limit: 1
 servers:
 - 127.0.0.1:6379:1
 - 127.0.0.1:6380:1
 - 127.0.0.1:6381:1
 - 127.0.0.1:6382:1

To connect to alpha, we will use the Twemproxy port 22121. Under the servers
setting, the Redis instances are listed and mapped to the remaining ports. In the hash
option, we selected fnv1a_64, the 64-bit variant of the FNV has function. The FNV
hash function is fast but is not suitable for cryptographic use because of the chance of
brute-force collusion detection. Other choices for the hash function that Twemproxy
provides are CRC (which we already discussed) as well as others. Choosing a hash
function will depend on a few factors including the speed of computation and the
likelihood of hash collusion.

Scaling with Redis Cluster and Sentinel

[166]

The distribution option in alpha is set to ketama, a hash distribution algorithm
that hashes keys to unsigned integers on a circle continuum. Each number links to
the server it is hashed with. A specific key's integer is matched to the closest higher
number that circle backs to the first number in the circle when a key integer exceeds
the maximum value in the continuum. Other distribution options include modula,
where the server for a particular key is computed from a modula operation and a
random option that selects the server that the key is to be assigned randomly from
the available Redis servers running in the backend. After launching four Redis
instances, being sure to specify separate ports and RDB filenames for each Redis
instance, we will open another command line window and launch Twemproxy:

$./src/nutcracker

[2015-08-17 06:30:52.957] nc.c:187 nutcracker-0.4.1 built for Darwin
14.0.0 x86_64 started on pid 626

[2015-08-17 06:30:52.958] nc.c:192 run, rabbit run / dig that hole,
forget the sun / and when at last the work is done / don't sit down /
it's time to dig another one

With Twemproxy running, we can connect to port 22121 with our Redis-cli and
issue commands:

$ redis/src/redis-cli -p 22121

To use our Lua scripts in our Redis instances, we'll open a Python command line,
and loop through all four of the running Redis instances and load the add_get_
triple.lua into each instance:

>>> import redis

>>> with open("/linked-data-fragments/redis/add_get_triple.lua") as fo:

add_get_triple = fo.read()

>>> cluster = []

>>> for port in range(6379, 6383):

 instance = redis.StrictRedis(port=port)

 instance.script_load(add_get_triple)

 cluster.append(instance)

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[167]

Switching back to the running Redis-cli session that is connected to Twemproxy and
calling the EVALSHA with the sha1 hash of add_get_hash results in the following:

127.0.0.1:22121> EVALSHA a5bb6a5952e578bdd2ddd9ede268ab28c6b90eb4 3
http://example.com/book/1 http://schema.org/name "Origins Reconsidered"

"2c866521408acafb64b0e67d17822260d68aadde:30cd0bd17373373839fb3a0ffaa6bba
51a17ba6c:574dbf58ad0e51382993cadec21742ae4de5aef8"

After Twemproxy evaluated the Lua script, the returned string is a triple made up of
the SHA1 of each value in the KEYS variable.. However, if we try to retrieve the sha1
key of 2c866521408acafb64b0e67d17822260d68aadde we get back a nil value in
our Redis-cli session:

127.0.0.1:22121> GET 2c866521408acafb64b0e67d17822260d68aadde

(nil)

So what happened? Because our Lua script populates the sha1 keys for each subject,
predicate, and object in our RDF triple, it bypasses Twemproxy even if we directly
connect to our first Redis instance; we can confirm the three keys have been set in
only one instance and have not been proxied as follows:

127.0.0.1:6379> KEYS *

1) "30cd0bd17373373839fb3a0ffaa6bba51a17ba6c"

2) "2c866521408acafb64b0e67d17822260d68aadde"

3) "574dbf58ad0e51382993cadec21742ae4de5aef8"

127.0.0.1:6379> MGET 2c866521408acafb64b0e67d17822260d68aadde
30cd0bd17373373839fb3a0ffaa6bba51a17ba6c
574dbf58ad0e51382993cadec21742ae4de5aef8

1) "http://example.com/book/1"

2) "http://schema.org/name"

3) "Origins Reconsidered"

Scaling with Redis Cluster and Sentinel

[168]

Using Twemproxy in the Linked Data Fragments server means that the current Lua
scripts for creating and populating the RDF triples is not possible; therefore, the logic
that exists in the Lua scripts would need to be added to the twemproxy.py module.
Since this logic was added in the original implementation of the Redis cache but
removed when Lua scripting was implemented in the project, we'll add the sha1
hashing logic back to the twemproxy.py module. This illustrates an important point
about using Twemproxy and Redis in your project—all interactions between your
client code and your cache must be run through the proxy and not through direct
writes to the Redis instances themselves:

Linked Data Fragments server Twemproxy

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[169]

After updating twemproxy.py with the additional code to create our sha1 hashes for
each triple, we can then retest the performance of Twemproxy. First, we will create
a new Lua script—get_triple—that takes a triple and returns a string JSON-LD
representation of the triple:

local subject_sha1, predicate_sha1, object_sha1 = split(KEYS[1], ":")
local output = '[{"@id": "'
output = output..redis.pcall('get', subject_sha1_)..'",'
output = output..redis.pcall('get', predicate_sha1)..'":[{'
local object = redis.pcall('get', object_sha1)
if string.sub(object,1,string.len("http")) == 'http' then
 output = output..'"@id": "'
else
 output = output..'"@value": "'
end
output = output..'"'..object..'"}]}]'
return output

Next, we will load our Colorado College MARC21 test record test into our
Twemproxy that is running with four Redis instances. After the test records are
loaded, we will connect to each of the Redis instances with Redis-cli to determine
the size and amount of memory being used in each of the instances:

127.0.0.1:6379> DBSIZE

(integer) 903287

127.0.0.1:6379> INFO memory

Memory

used_memory:176939920

used_memory_human:168.74M

127.0.0.1:6380> DBSIZE

(integer) 836812

127.0.0.1:6380> INFO memory

Memory

used_memory:164487104

used_memory_human:156.87M

127.0.0.1:6381> DBSIZE

(integer) 942231

127.0.0.1:6381> INFO memory

Memory

used_memory:184067520

Scaling with Redis Cluster and Sentinel

[170]

used_memory_human:175.54M

127.0.0.1:6382> DBSIZE

(integer) 879448

127.0.0.1:6382> INFO memory

Memory

used_memory:172414320

used_memory_human:164.43M

Our Twemproxy Linked Data Fragments has a total of 3,561,778 separate keys with a
total memory used between the four instances of 665.58 MB. Before the Redis Cluster
was developed and released for both beta testing and finally into production with
Redis version 3, Twemproxy was the preferred method for clustering your Redis
data. With the large momentum behind the release and testing of the Redis cluster
and the relative lack of development activity being done on Twemproxy, you would
be better off using the Redis cluster instead of Twemproxy.

Redis Cluster background
The beginning of what eventually became the Redis cluster started with an
announcement by Salvatore Sanfilippo in 2011 to the Redis e-mail list and a subsequent
blog post, refer bullet point number 4 from Appendix, Sources,
Chapter 6: Scaling with Redis Cluster and Sentinel. Earlier discussions about Redis
clustering support started in 2010 with the first mention of the term redis-cluster in
an e-mail message to the Redis-db listserv, refer bullet point number 5 in Appendix,
Sources, Chapter 6: Scaling with Redis Cluster and Sentine. Development and testing of the
Redis cluster continued from 2011 through 2015. In an October 2014 follow-up blog
posting, Sanfilippo relates how over the 4+ years since his first commit in March 2011
related to Redis Cluster, he had to redesign, implement, and test the functionality of
Redis Cluster on numerous occasions as he became more familiar with the challenges
surrounding distributed computing at scale. During those years of development, the
Redis community tried and often failed to effectively handle two issues; the first was
how to shard data across N number of Redis instances and second, how to gracefully
handle a failed node under certain conditions. In response to the second issue,
Sanfilippo started Redis monitoring and failover work into what became Redis's high
availability solution, Redis Sentinel, the final topic of this chapter.

Although Redis Cluster does offer a mechanism for increasing the size and scale
of the dataset that can be managed by Redis, Redis Cluster cannot offer a strong
consistency guarantee that data will not be lost when propagating data. As a
distributed system, a write to a Redis master node is acknowledged immediately
to the calling client before the master node propagates the data to its slaves. If the
master node fails before the new data is propagated to its slaves and a slave node is
promoted to master, then the data is lost.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[171]

With Redis Cluster default operating propagation mode as an asynchronous process
(Redis Cluster continues to write and operate during client interactions), the cluster's
performance is favored over data consistency in the masters and slaves nodes. If
data consistency is more important to your application over raw performance, Redis
Cluster offers the WAIT command that changes the data propagation to more of a
synchronous process where the client is blocked until a specified number of slaves
acknowledge any write commands or a timeout has occurred. Using WAIT only
improves Redis Cluster data consistency and safety but still cannot guarantee the
strong data consistency as a distributed data store.

Setting the configuration directive node timeout for Redis Cluster means that if the
master node does not respond within the timeout window, the master node is
considered as failing by the rest of the master nodes and is replaced by one of its
slaves. The original master, in this scenario, stops accepting writes because it hasn't
received any communication with the other master nodes in the cluster.

Overview of running Redis Cluster
Nodes in a Redis Cluster are Redis instances that are either masters or slaves. A
master Redis instance is allocated one or more of the 16,384 available hash slots
where Redis keys are assigned to a hash slot based on the CRC16 hashing of the
key and taking the remainder of dividing the CRC16 by the number of masters.
When a Redis cluster is running, each node has two TCP sockets open; the first
is the standard Redis protocol for connecting clients, the default being port 6379
and the second port is calculated from the sum of the first port plus 10000 (16379
for the default port) that runs the Cluster's binary protocol for node-to-node
communication. Clients should never need to connect directly with the cluster bus
port but with the lower, standard port. Nodes in the Redis Cluster use the Redis
cluster bus to connect with every other node in a mesh network topology. This
means that for a Redis cluster of six nodes made up of three masters and three slaves,
each node regardless of its replication status, has five outgoing and five incoming
TCP connections. These connections are always alive and continually respond to
pings from other nodes in the cluster. These messages, called Heartbeat Packets,
contains a Node ID, currentEpoch, node flags, bitmap of hash slots served by the
sender, TCP base port, sender's view of the state of the cluster (up, failing, and
failed), and master node ID if the sender is a slave.

Scaling with Redis Cluster and Sentinel

[172]

To avoid exponential growth of messages between nodes in the cluster, a gossip
protocol is used that along with a configuration updating process contains the
number of messages being sent between all of the nodes in the cluster's mesh:

Running Redis Cluster

TCP connection requests through the Redis Cluster bus are always accepted by
any cluster node but the node will only reply with information other than an
acknowledgement response if the requesting node is part of the cluster. There are
two ways for a node to be considered part of the Redis cluster. The first method of
node cluster membership is if a first node sends a MEET message to second node, the
second node must accept the first node as part of the cluster. The MEET command is
set through the issuing of the CLUSTER MEET command. The second method of node
cluster membership is a gossip algorithm based on a logical transitive relationship
between nodes. If node 1 and node 2 are both part of the cluster and node 2 knows
node 3, then eventually node 1 will exchange gossip message with node 2 about
node 3, thereby node 1 registers node 3 as part of the Redis cluster. This allows for
dynamic auto-discovery of other nodes in the cluster while providing for a more
robust Redis cluster that does not need a significant overhead for coordinating
adding new nodes to the cluster during runtime.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[173]

Understanding what is called an epoch in the context of Redis Cluster explains how
Redis Cluster creates a version history throughout the lifespan of the running Redis
Cluster. Epoch is a 64-bit unsigned integer that is incremented during such nodes
events as adding a new master node. The epoch is stored in the currentEpoch
variable that at the cluster's initialization, all master and slave nodes are set to 0.
When a message is received using Redis's gossip protocol that includes the epoch in
the message's header, if the receipt's epoch is less then message's epoch value, then
the Redis receipt node updates it's currentEpoch value to the highest epoch value. In
this way, the cluster eventually agrees upon the highest value for the epoch value and
provides a linear path of events that significantly change the underlying composition
of the master nodes in the cluster. When a slave is promoted to a master node as a
failover event in the epoch, this means that slaves can be added incrementally on
different running virtual machines without causing an updated epoch but when a
slave is promoted to a new master, its is significant because such a promotion could
potentially change the runtime characteristics of the entire node or have unexpected
ramifications and consequences at a later time.

Using Redis Cluster
As a production-level clustering solution for an enterprise Redis cluster has a mature
set of tools for performing management functions related to running cluster of Redis
nodes. Redis cluster supports the following functions primarily through an included
Ruby script, redis-trib.rb utility:

•	 Resharding and failover
•	 Moving or creating new allocations of hash slots in the cluster
•	 Handling error conditions such as master failing
•	 Adding or replacing master or slave nodes in the cluster
•	 Upgrading a master or slave instance

To test these various functions in Redis cluster, we will return to the area code
example introduced earlier in the chapter and migrate our list-based solution to
use Redis cluster instead of our custom client code. Building from the official Redis
cluster tutorial example at http://redis.io/topics/cluster-tutorial, we will
run the simplest recommended three master with three slave Redis cluster. The
create-cluster utility bundled with Redis is the easiest method to run a Redis
cluster, which we will use for the area codes. First, we'll create a new config.sh file
for our specific Redis cluster options:

$ cd redis/utils/create-cluster

$ vi config.sh

Scaling with Redis Cluster and Sentinel

[174]

#!/bin/bash

PORT=9000

TIMEOUT=2000

NODES=6

REPLICAS=1

Our cluster starts with port 9000, a latency time out of 2 seconds, six nodes made
up of three master nodes, and three slave nodes. If we wanted to bump up the
number replicas, increasing the replicas means each master will have that number
of slave instances.

After saving our config.sh, first we need to install the Redis gem for Ruby:

$ sudo gem install redis

Now, we run the create-cluster script to create and start our cluster:

$ cd ~/redis/util/create-cluster

$./create-cluster start

Starting 9001

Starting 9002

Starting 9003

Starting 9004

Starting 9005

Starting 9006

$./create-cluster create

>>> Creating cluster

Connecting to node 127.0.0.1:9001: OK

Connecting to node 127.0.0.1:9002: OK

Connecting to node 127.0.0.1:9003: OK

Connecting to node 127.0.0.1:9004: OK

Connecting to node 127.0.0.1:9005: OK

Connecting to node 127.0.0.1:9006: OK

>>> Performing hash slots allocation on 6 nodes...

Using 3 masters:

127.0.0.1:9001

127.0.0.1:9002

127.0.0.1:9003

Adding replica 127.0.0.1:9004 to 127.0.0.1:9001

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[175]

Adding replica 127.0.0.1:9005 to 127.0.0.1:9002

Adding replica 127.0.0.1:9006 to 127.0.0.1:9003

M: 9ed33dd148ba6546431b2439d1e85b3b742ef336 127.0.0.1:9001

 slots:0-5460 (5461 slots) master

M: de3ec68f65de532080e296be3a2b1502e35fe281 127.0.0.1:9002

 slots:5461-10922 (5462 slots) master

M: c12d7eae35befeb8530d6fec366fb34aaed9eefc 127.0.0.1:9003

 slots:10923-16383 (5461 slots) master

S: 623b9338e6fc277634a741e7f56c8a08240ff7d0 127.0.0.1:9004

 replicates 9ed33dd148ba6546431b2439d1e85b3b742ef336

S: f6efd99a0505072ca3539a629674eb88ffaaa78f 127.0.0.1:9005

 replicates de3ec68f65de532080e296be3a2b1502e35fe281

S: b9656e82c01ca7d085b6386d7ca8383903897157 127.0.0.1:9006

 replicates c12d7eae35befeb8530d6fec366fb34aaed9eefc

Can I set the above configuration? (type 'yes' to accept): yes

Running the create-cluster command first connects to all six running nodes and
then performs the hash slot allocation between the three masters running on ports
9001, 9002, and 9003. Accepting this configuration, the redis-trib.rb script that
the create-cluster script uses outputs the following:

>>> Nodes configuration updated

>>> Assign a different config epoch to each node

>>> Sending CLUSTER MEET messages to join the cluster

Waiting for the cluster to join.

>>> Performing Cluster Check (using node 127.0.0.1:9001)

M: 9ed33dd148ba6546431b2439d1e85b3b742ef336 127.0.0.1:9001

 slots:0-5460 (5461 slots) master

M: de3ec68f65de532080e296be3a2b1502e35fe281 127.0.0.1:9002

 slots:5461-10922 (5462 slots) master

M: c12d7eae35befeb8530d6fec366fb34aaed9eefc 127.0.0.1:9003

 slots:10923-16383 (5461 slots) master

M: 623b9338e6fc277634a741e7f56c8a08240ff7d0 127.0.0.1:9004

 slots: (0 slots) master

 replicates 9ed33dd148ba6546431b2439d1e85b3b742ef336

M: f6efd99a0505072ca3539a629674eb88ffaaa78f 127.0.0.1:9005

 slots: (0 slots) master

 replicates de3ec68f65de532080e296be3a2b1502e35fe281

Scaling with Redis Cluster and Sentinel

[176]

M: b9656e82c01ca7d085b6386d7ca8383903897157 127.0.0.1:9006

 slots: (0 slots) master

 replicates c12d7eae35befeb8530d6fec366fb34aaed9eefc

[OK] All nodes agree about slots configuration.

>>> Check for open slots...

>>> Check slots coverage...

[OK] All 16384 slots covered.

To confirm that we have a six-node cluster running three masters and three slaves,
we will start a Redis-cli session with a special parameter -c to run and be able to
switch between the various master's hash slots:

$../../src/redis-cli -c -p 9001

127.0.0.1:9001>

Issuing the CLUSTER INFO command displays the state of our running cluster:

127.0.0.1:9001> CLUSTER INFO

cluster_state:ok

cluster_slots_assigned:16384

cluster_slots_ok:16384

cluster_slots_pfail:0

cluster_slots_fail:0

cluster_known_nodes:6

cluster_size:3

cluster_current_epoch:6

cluster_my_epoch:1

cluster_stats_messages_sent:5430

cluster_stats_messages_received:5430

Getting specific information from the running nodes is possible by issuing the
CLUSTER NODES command:

127.0.0.1:9001> CLUSTER NODES

b9656e82c01ca7d085b6386d7ca8383903897157 127.0.0.1:9006 slave
c12d7eae35befeb8530d6fec366fb34aaed9eefc 0 1439299522348 6 connected

f6efd99a0505072ca3539a629674eb88ffaaa78f 127.0.0.1:9005 slave
de3ec68f65de532080e296be3a2b1502e35fe281 0 1439299522348 5 connected

de3ec68f65de532080e296be3a2b1502e35fe281 127.0.0.1:9002 master - 0
1439299522348 2 connected 5461-10922
c12d7eae35befeb8530d6fec366fb34aaed9eefc 127.0.0.1:9003 master - 0
1439299522348 3 connected 10923-16383

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[177]

9ed33dd148ba6546431b2439d1e85b3b742ef336 127.0.0.1:9001 myself,master - 0
0 1 connected 0-5460

623b9338e6fc277634a741e7f56c8a08240ff7d0 127.0.0.1:9004 slave
9ed33dd148ba6546431b2439d1e85b3b742ef336 0 1439299522348 4 connected

Now, we will create a random phone number generator to populate our cluster;
more realistically, this data could be generated from a CRM application or other
source of customer data. We will use our existing North American area code data to
start our ten digit random phone number generator:

>>> import random

>>> def random_phonenumber(area_code):

 number = str(area_code)

 for i in range(7):

 number += "{}".format(random.randint(0,9))

 return number

Using the Redis cluster Python library—redis-py-cluster—available at
https://github.com/Grokzen/redis-py-cluster, we will first import and
then instantiate a Python Redis cluster to populate our Area code application:

>>> from rediscluster import StrictRedisCluster

>>> startup_nodes = [{"host": "localhost", "port": 9001}]

>>> area_code_cluster = StrictRedisCluster(startup_nodes=startup_nodes)

We will then create a second function that imports our area-code.txt CSV file and
returns a dictionary made up area codes mapped to a geographic region by first
iterating through each line in the for text file object, creating a list of fields, and then
converting the string of the area code to an integer and setting the Python dictionary
value to the second element in our a field's list:

>>> def area_code_dict(filepath):

 with open(filepath) as fo:

 lines = fo.readlines()

 area_codes = dict()

 for row in lines:

 fields = row.split("\t")

 area_codes[int(fields[0])] = fields[1].strip()

 return area_codes

https://github.com/Grokzen/redis-py-cluster

Scaling with Redis Cluster and Sentinel

[178]

Our final function randomly selects an area code from a list of code keys from the
area code Python dictionary, calls the previously defined random_phonenumber
function, and then saves the random phone number as a Redis hash to our running
Redis cluster with a geographicArea field set to the value from area_codes
dictionary:

>>> def populate_cluster(total):

 codes = list(area_codes.keys())

 for i in range(total):

 number = random.randint(0, len(codes)-1)

 area_code = codes[number]

 phone_number = random_phonenumber(area_code)

 area_code_cluster.hsetnx(phone_number, "geographicArea", area_
codes[area_code])

>>> populate_cluster(150000)

We then populate our Redis cluster with 150,000 random phone numbers. In the
test run for this chapter (if you are repeating these exercises on your own, your
distribution of keys in the hash slots will be different), our results are broken
down like this:

Master Slave Size
Hash slot one 127.0.0.1:9001 127.0.0.1:9004 50005

Hash slot two 127.0.0.1: 9002 127.0.0.1:9005 49971

Hash slot three 127.0.0.1:9003 127.0.0.1:9006 50020

From these results, we can see that our numbers are almost evenly distributed across
all three hash slots with a total variance between the three master nodes is 49, less
than .01 percent difference between the three hash slots. Using these area codes as
our test cluster, we will now go through a series of exercises to illustrate a number of
important operations and features of using Redis cluster.

Live reconfiguration and resharding Redis
cluster
Redis cluster offers a number of commands for adding and removing nodes at
runtime. To add a new empty node to the cluster first requires the node to be added
to the cluster and then one or more slots in the existing nodes to be reassigned to the
new node.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[179]

The CLUSTER ADDSLOTS command is primarily used for the manual creation of
a Redis cluster and assigns a subset of the 16,384 available hash slots while the
CLUSTER DELSLOTS command is used for manually modification of the cluster or for
testing and debugging.

The CLUSTER SETSLOT command is used in multiple ways depending on the use
case. The CLUSTER SETSLOT {hash slot number} NODE {node-id} form is used
to assign a slot to a specified node under limited conditions. Otherwise, the CLUSTER
SETSLOT takes either a MIGRATING or IMPORTING form depending on whether you
want to work with the destination node with MIGRATING or with the source node
with IMPORTING. For the CLUSTER SETSLOT {hash slot number} MIGRATING
{desination node id} command and subcommand, the node will continue to
accept queries for keys in it's assigned hash slots but redirects the calling client for
key requests that don't exist in the node to the new hash slot on a different node. If
command contains multiple keys then the behavior varies depending on whether
the key exists or not or emits a TRYAGAIN error.

Likewise, when CLUSTER SETSLOT is set to the IMPORTING mode, the source node
will refuse any requests about the hash slot and a MOVED redirection that is preceded
by the ASKING command. The ASKING command sets a one-time flag on the client
that forces the node to send only the next query to the specified node and not
permanently redirect to the node with the assigned hash slot as is the case with
a MOVED error.

To test the live configuration commands, we will spin up a new Redis master node
running on port 9007 that has the configuration directive cluster-enabled set to
yes and then, we'll add the new node to our area code cluster with new Redis-cli
session using the CLUSTER MEET command:

127.0.0.1:9007> CLUSTER MEET 127.0.0.1 9002

OK

We can confirm that our new node is part of the cluster by running the CLUSTER
INFO command again and noting the cluster_known_nodes values:

127.0.0.1:9007> CLUSTER INFO

cluster_state:ok

cluster_slots_assigned:16384

cluster_slots_ok:16384

cluster_slots_pfail:0

cluster_slots_fail:0

cluster_known_nodes:7

cluster_size:3

Scaling with Redis Cluster and Sentinel

[180]

cluster_current_epoch:6

cluster_my_epoch:3

cluster_stats_messages_sent:1037

cluster_stats_messages_received:1037

We will manually transfer one slot to prepare for the migrating any keys to the new
master node that has a random ID of ed862747677b458cf6c79f58b29b4e4c09a9603b:

127.0.0.1:9007> CLUSTER SETSLOT 12000 NODE
ed862747677b458cf6c79f58b29b4e4c09a9603b

OK

To double check, running CLUSTER SLOTS will now show the slot assignments
(although no keys have been migrated to the new master node):

127.0.0.1:9007> CLUSTER SLOTS

1) 1) (integer) 0

 2) (integer) 5460

 3) 1) "127.0.0.1"

 2) (integer) 9001

 4) 1) "127.0.0.1"

 2) (integer) 9004

2) 1) (integer) 10923

 2) (integer) 16383

 3) 1) "127.0.0.1"

 2) (integer) 9003

 4) 1) "127.0.0.1"

 2) (integer) 9007

 5) 1) "127.0.0.1"

 2) (integer) 9006

3) 1) (integer) 5461

 2) (integer) 10922

 3) 1) "127.0.0.1"

 2) (integer) 9002

 4) 1) "127.0.0.1"

 2) (integer) 9005

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[181]

From this output, we can see that our new node has indeed been assigned to the
correct hash slot range.

Although the current CRC16-based composite hashing with Redis cluster does an
acceptable job of equally distributing keys across all of its master nodes, your actual
application's data may require you to reshard your cluster to better balance the load
between the cluster's nodes. Fortunately, this process is relatively simple using the
redis-trib.rb Ruby-based utility included with Redis:

Redis cluster resharding

Failover
With Redis cluster running multiple masters with corresponding one or more slave
nodes, normally when a master node fails, any of it's slaves will automatically be
elected to replace the master node. This slave election starts when the slave's master
is in a FAIL state, the master is assigned one or more hash slots, and the length
of time between the last successfully connection between the slave and master is
below a calculated threshold using the cluster-slave-validity-factor configuration
directive. When a master has multiple slaves, a rank is calculated among the slaves
with the highest rank given to the slave the most complete replication of the master's
contents. After the slave has been promoted to the new master, the cluster's epoch is
incremented and the change to the new master is propagated to the other nodes in
the cluster through the gossip protocol.

Scaling with Redis Cluster and Sentinel

[182]

An important aspect of how Redis cluster improves reliability of a running cluster is
in the slave node distribution among Redis masters. In our simple three masters and
three slaves setup, a slave replacing a master due to the master failing means that the
new master does not have a backup slave instance. If the new master fails, the cluster
can no longer read or write from the hash slots served by failed master so the cluster
itself will fail and data that was in those hash slots will no longer be available and
perhaps even worse, permanently lost. In more durable setups, masters will have
multiple slaves and if the master fails, the highest ranked slave is promoted to the
new master with the remaining slaves switching over and becoming slaves of the
newly promoted master.

To illustrate the Redis Cluster failover mode, we will rerun our area code example,
only this time we will increase the number of slaves per master to two, bring the total
number of nodes in our cluster to 9 in the config.sh file. To start with an empty
Redis Cluster, we run the following command to the create-cluster script:

$./create-cluster clean

Now, we will issue the create-cluster start and create-cluster create
commands to start up our new 9-node Redis cluster. We will again execute the
populate_cluster function to populate our cluster with 150,000 North American
phone numbers that have been sharded between the three master instances but now
being backed up by two slave replicas instead of one.

After the cluster has been populated, we now connect with a Redis-cli session using
the –c parameter to run in cluster node and issue the CLUSTER SLOT command to
display the running master and two slave nodes:

127.0.0.1:9001> CLUSTER SLOTS

1) 1) (integer) 5461

 2) (integer) 10922

 3) 1) "127.0.0.1"

 2) (integer) 9002

 4) 1) "127.0.0.1"

 2) (integer) 9007

 5) 1) "127.0.0.1"

 2) (integer) 9006

2) 1) (integer) 0

 2) (integer) 5460

 3) 1) "127.0.0.1"

 2) (integer) 9001

 4) 1) "127.0.0.1"

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[183]

 2) (integer) 9004

 5) 1) "127.0.0.1"

 2) (integer) 9005

3) 1) (integer) 10923

 2) (integer) 16383

 3) 1) "127.0.0.1"

 2) (integer) 9003

 4) 1) "127.0.0.1"

 2) (integer) 9008

 5) 1) "127.0.0.1"

 2) (integer) 9009

Now, we will open a second Redis-cli session connect to the master node running
at 127.0.0.1:9003 that is assigned hash slots 10823 to 16383 and issue a DEBUG
SIGFAULT command to simulate a master node failure:

127.0.0.1:9003> DEBUG SEGFAULT

Could not connect to Redis at 127.0.0.1:9003: Connection refused

(0.90s)

not connected>

Shifting back to our original Redis-cli session, if we reissue the CLUSTER SLOT
command, we can see that the original master node running on port 9003 is no
longer present and that its slave running on port 9009 has been elected as the new
master (the other nodes have been omitted for clarity):

127.0.0.1:9001> CLUSTER SLOTS.

.

3) 1) (integer) 10923

 2) (integer) 16383

 3) 1) "127.0.0.1"

 2) (integer) 9009

 4) 1) "127.0.0.1"

 2) (integer) 9008

Scaling with Redis Cluster and Sentinel

[184]

To improve the cluster's resiliency, Redis Cluster implements what is called a replica
migration, an algorithm that reallocates the slaves to a different master node if the
master node does not have a slave node. If, referring back to our preceding area
code example, we experience a second failure of the master node serving hash slots
10923-16383, our last slave running on port 9008 is promoted to master. Now, the
new master does not have a slave node so Redis Cluster will migrate one of the other
slaves of a different master node to the new master node so that at least one or more
slaves are present for every node in the cluster. In this way, Redis Cluster through
replica migration is able to eventually ensure that at least one slave covers all of the
masters in the node. Typically, a master with multiple slaves will only migrate a
single slave to a slave-less master; however, this behavior can change by adjusting
the cluster-migration-barrier configuration directive that limits the number of
slaves that can be migrated to another Redis master node in the cluster.

Replacing or upgrading nodes in Redis
Cluster
There may come a time when you will need to manually replace a running master or
slave node in your Redis Cluster. The Redis Cluster automatic failover process that
promotes a slave node to master that we saw in the last section may not be sufficient
for the operational needs in your application.

In long running applications, a role Redis excels at in the Enterprise, there may come
a time when you need to update the version of Redis you're running either due to a
critical bug fix or just to keep your running Redis cluster current with the latest Redis
stable version. The process for upgrading a Redis node in the cluster is similar to the
process of replacing a node. First, a CLUSTER FAILOVER command is issued to one
of the slaves of the master node we are either replacing or upgrading that then turns
the old master node into a slave while promoting the slave to master. Second, the old
master (now a slave) is replaced with a new updated node.

When replacing or upgrading a node in Redis Cluster you can also issue a CLUSTER
RESET command followed by either a SOFT or HARD parameter to remove an old
master node or reassign it's hash slots. If the node is a slave, the command will turn
the node into a master node discarding any data in the process. The CLUSTER RESET
command all of the hash slots that were assigned are released and all of the other
nodes in the node table so that the node does not know the state of other nodes in
the cluster. In a HARD cluster reset, the epoch variables of the node—currentEpoch,
configEpoch, and lastVoteEpoch—are all set back to 0 and the node ID is assigned
a new random ID.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[185]

Finally, the old node's ID and IP address will still be remembered by other nodes
in the cluster particularly if the reset was only a SOFT reset. As other nodes will still
attempt to connect to the old node ID through the gossip protocol, issuing a CLUSTER
FORGET Redis command that removes the old node ID from the node table and
enforces a 60 second timeout to prevent the node with same node ID to be readded
to the cluster. In the next section, we'll take a look at a more general solution for
monitoring Redis instances with Redis Sentinel.

Monitoring with Redis Sentinel
Redis Sentinel is a special operating mode of Redis for monitoring running Redis
master and slave instances. Redis Sentinel allows for a failing master instance to
be replaced by a replicated slave and other types of failures thereby giving users
of Redis a high availability option for their application. Beside monitoring and
automatic failover, Redis Sentinel also provides notification options where Redis
Sentinel will alert the system administrators or other programs through an API
when a critical error occurs in a monitored Redis instance. Redis Sentinel also assists
in operational management by being a configuration provider for client automatic
discovery of services. While simple in theory, Redis Sentinel is used in very complex
workflows and monitoring/failover scenarios in the Enterprise.

As a distributed system, Redis Sentinel requires at least three instances for a robust
deployment. Multiple Sentinels cooperate to detect failing masters by requiring a
majority of the Sentinels to agree that a failure has occurred as a technique to reduce
false positives about a master's availability, that is, dropping a functioning master
even though it's status is fine. Multiple Redis Sentinels also cooperate by continue
functioning if one or more of the Sentinel instances themselves fail as a hedge
against failures in the monitoring system. Unlike the Redis server, running a Redis
Sentinel instance requires a configuration file to operate correctly with an example of
sentinel.conf file that is included every Redis distribution.

Scaling with Redis Cluster and Sentinel

[186]

Sentinel's default TCP port for communicating with other Redis Sentinels is port
26379 that must be open on any servers that are running a Redis Sentinel instance.
Ideally, each Redis Sentinel should be run on separate physical or virtual machines
with different operating characteristics, such as availability zones, for reducing the
possibility of a single point of failure in the software stack, physical hardware, or
network connections:

Redis Sentinel overview

Using Redis Sentinel does not guarantee strong consistency in data because Redis
itself uses asynchronous replication in most master/slave and Redis Cluster setups.
Proper deployment of Redis Sentinel can minimize the chances of writes being
dropped by reducing the time window for such loss of writes to happen. Any Redis
clients that are used in your application should be Redis Sentinel aware and most of
the popular Redis clients already offer Redis Sentinel support.

As mentioned previously, a running Redis Sentinel instance requires a configuration
file. In the example, sentinel.conf, there are a number of important configuration
directives for customizing your Redis Sentinel setup depending on the organization
and makeup of your Redis application. The first, the sentinel monitor directive
specifies what Redis master this Sentinel instance will monitor and requires four
parameters: a name for the master, an IP address of the master, the port number,
and a quorum level.

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[187]

Redis Sentinel automatically monitors any replicated slaves of a Redis master. The
sentinel down-after-milliseconds directive and subcommand specifies the
number of milliseconds that the Sentinel instance cannot communicate with a master
before the master instance is considered down. These directives are repeated for each
master that the Redis Sentinel is monitoring.

Redis Cluster quorum
When using Redis Sentinel, an important concept to understand is
quorum—a threshold number required for Sentinel instances to agree
that a master is down—set with the Sentinel monitor directive. When
individual Sentinel instances attempt and fail to communicate with a
master instance, they will send a PFAIL (possible fail) message to other
Sentinels, when the number of Sentinel instances that fail to reach the
master and send their own PFAIL messages reach the quorum number a
FAIL message must sent by Redis Sentinel before any failover mitigation
is attempted.

Another important function of Redis Sentinel is how to set up a notification message
when a failure condition occurs in the masters that Redis Sentinel is monitoring.
In the sentinel.conf configuration file, the sentinel notification-script
configuration directive specifies a bash or other script to run in the case of a
WARNING-level event. This script should accept two arguments—the event type
and event description—that can then be launched to notify an administrator through
whatever preferred communication channel used by the operations staff including
e-mail, SMS, IRC, or even other monitoring systems through API calls. To use the
notification script in Redis Sentinel, the script must exist in a location that the Redis
Sentinel can access and the script must be set with the execute bit set to True.

While getting Redis Sentinel configured and running is relatively simple, deciding on
a Redis Sentinel setup for your particular requirements is more challenging because
of performance trade-offs, desired persistence, network partitioning, and machine
resources availability. At the minimum, your Redis Sentinel setup should include
at least three running instances that ideally would be running on separate physical
machines; including any virtual machines dedicated to your client application such
as the Web, database, and application servers. Going back to the different examples
used in this chapter, we will now outline a Redis Sentinel setup for the Area Code
List Partition.

Scaling with Redis Cluster and Sentinel

[188]

Sentinel for Area Code List Partition
The Redis node setup for the Area Code List Partitioning example has three master
Redis nodes and we will add three slave nodes that replicate these masters. To
simplify our deployment, each master and corresponding replicated slave will run
on a separate virtual machine. Our Redis Sentinel setup in this case is to implement
the recommended minimum Redis Sentinel number with three Sentinels each
running on the same VM as a master with the Redis Sentinel quorum set to 2:

Sentinel setup for Area Code List Partition

After manually loading and launching two Redis instances and an instance of Redis
Sentinel in each of our three test virtual machines, we will start a Redis-cli session
and connect to the Redis Sentinel port of 26379 on VM2 (we will truncate some of the
results and only display a few important properties):

127.0.0.1:26380> SENTINEL masters

1) 1) "name"

 2) "vm3"

 3) "ip"

 4) "172.26.6.145"

 5) "port"

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[189]

 6) "6379"

 ...

 13) "last-ping-sent"

 14) "421859"

 15) "last-ok-ping-reply"

 16) "421859"

 ...

 25) "role-reported"

 26) "master"

 ...

 29) "config-epoch"

 30) "0"

 31) "num-slaves"

 32) "1"

 ...

 33) "num-other-sentinels"

 34) "3"

 35) "quorum"

 36) "2"

2) 1) "name"

 2) "vm2"

 3) "ip"

 4) "127.0.0.1

 5) "port"

 6) "6380"

 ...

 13) "last-ping-sent"

 14) "0"

 15) "last-ok-ping-reply"

 16) "400"

 ...

 23) "role-reported"

 24) "master"

 ...

 27) "config-epoch"

 28) "0"

Scaling with Redis Cluster and Sentinel

[190]

 29) "num-slaves"

 30) "1"

 31) "num-other-sentinels"

 32) "3"

 33) "quorum"

 34) "2"

 ...

3) 1) "name"

 2) "vm1"

 3) "ip"

 4) "172.29.40.33"

 5) "port"

 6) "6379"

 ...

 13) "last-ping-sent"

 14) "421859"

 15) "last-ok-ping-reply"

 16) "421859"

 25) "role-reported"

 26) "master"

 ...

 29) "config-epoch"

 30) "0"

 31) "num-slaves"

 32) "0"

 33) "num-other-sentinels"

 34) "3"

 35) "quorum"

 36) "2"

 ...

www.ebook3000.com

http://www.ebook3000.org

Chapter 6

[191]

Summary
The biggest change to Redis in the release of the 3.x series is the inclusion of a
working, stable, and production-ready Redis Cluster. Redis Cluster is the preferred
method of scaling and splitting your data among different Redis instances running
on separate machines. While Redis Cluster implements one method of hashing
incoming keys through the use of a composite partitioning method and that
combines features from hash and range partitioning, there are other options to scale
your data through the use of client-side partitioning methods, a few which were
illustrated in this chapter. We also examined a popular open source alternative
for sharding and partitioning data from Twitter called Twemproxy that provides
an intermediary proxy that handles the hash and assignment logic between the
application and the Redis instance backends. We then turned back and examined
in detail some of the features and functionality of Redis Cluster including its
resharding, failover, replacing, and upgrading options that allow for long-running
Redis Clusters handling large volumes of data. Finally, this chapter introduced some
advanced usage of Redis Sentinel to monitor a range of different Redis application
setups using examples from earlier in the chapter.

In Chapter 7, Redis and Complementary NoSQL Technologies, we see how Redis can
complement other NoSQL technologies to provide a complete solution for your
application needs.

www.ebook3000.com

http://www.ebook3000.org

[193]

Redis and Complementary
NoSQL Technologies

While Redis and now, Redis Cluster fulfill many requirements for data storage in
consumer and enterprise applications, other data-centered technologies may be
required to completely meet the expectations and use cases of your projects. We'll
start with a brief survey of the major types of data storage technology starting
with a traditional SQL database followed by document and graph databases,
search indexing, key-value, and the wide-column store. The upcoming sections
will illustrate how Redis complements the NoSQL technologies of MongoDB,
ElasticSearch, and Fedora Commons. In each case, we will see how Redis can be
used to extend functionality or provide the "glue" technology to integrate with
other systems by building upon your knowledge from previous chapters. We'll
also examine some of the costs and possible hurdles with integrating Redis into
another NoSQL or other data storage technology.

The proliferation of NoSQL
In the past ten years, a profusion of data storage technologies have emerged as
options for data-intensive applications. Loosely broken down into major categories
by how the technology stores, manipulates, and returns data, their popularity
is tracked and ranked. Redis, as a key-value store, has improved in usage and
popularity and now ranks in the top 10 data storage technologies, refer bullet
point number 1 in Appendix, Sources, Chapter 7: Redis and Complementary NoSQL
Technologies.

Redis and Complementary NoSQL Technologies

[194]

Relational databases, particularly those that support SQL, are the oldest and most
popular data storage technologies. Starting with the large enterprise Relational
Database Management Systems (DBMS) from Oracle and Microsoft, to the widely
popular MySQL (now owned by Oracle) and Postgres open source systems, has
become part of the mix of data storage technologies used by most enterprises. For
smaller organizations, one of these DBMS may be the only data storage technology
that they have available to use and often these databases are part of a larger customer
management system, accounting, inventory, or other enterprise-level technology. In
a relational database, data is organized into tables that generally represent a single
entity with each row representing an instance of the entity with columns containing
the entity's variables that can be required or not. The row has either a unique ID or
a composite key made up of individual columns. Tables are related to each through
the use of foreign keys, where the primary key of one table is stored in a column of
a second table, and the application or database system is able to connect the data
through joining the tables by these foreign key relationships. A relational database is
normalized if data in individual columns is not duplicated in other tables. The most
popular choice for structuring and querying relational databases is the declarative
language SQL (structured query language) that has become the de-facto standard
for most major databases with some variation on how each system implements and
sometimes extends SQL:

Relational Databases

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[195]

Document-oriented databases, in contrast to relational databases, are based on
managing and manipulating semi-structured data structures, informally called
documents. In the next section, we will examine one of the most popular document
stores called MongoDB but other document-oriented databases include CouchDB,
Sedna, DocumentDB from Microsoft, Jackrabbit, and Informix from IBM, and
MarkLogic. As long as the document has some type of structure, the format of the
document can vary with such formats as XML, JSON, and YAML being common
choices. Both XML and JSON formats are popular choices and have evolved into
distinct niches within the broader document-oriented database. Regardless of
the format, a document store typically relies on the structure of data to provide
a method of querying or retrieving the document, with each document having a
unique ID that represents the document itself. Many of the most-popular document-
oriented databases have a custom query language for retrieving documents with the
performance of these queries varying between the different document stores:

Document Store Databases

Redis and Complementary NoSQL Technologies

[196]

A graph database uses nodes, edges, and properties for storing and manipulating
data. Nodes in a graph represent a subject or entity that contains one or more
properties, with the edges being the connections or relationship between the
different nodes in the database. A graph database allows for easier inference on the
relationships between the different nodes through basic associative logic. Graph
databases lack a formal schema that as a consequence allows for easier integration
with heterogeneous data sources. Some well known graph databases include
AllegroGraph, Blazegraph (formally BigData), InfiniteGraph, Neo4j, OpenLink
Virtuoso, Oracle's NoSQL and Spatial products, OrientDB, and Stardog. The most
popular method for retrieving and querying a graph database is through the graph
database's implementation and support for SPARQL—the SPARQL Protocol and
the RDF Query Language. SPARQL allows users to construct complex queries for
retrieving nodes and for manipulating the properties and edges between nodes:

Graph Databases

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[197]

Although technically classified as a subset of document-oriented database, full-
text search data stores are focused on fast retrieval of results based on a user query
without some of the more robust manipulation and management functionality seen
in other types of document stores. Popular search-based systems based on Lucene
are ElasticSearch and Solr, with other search oriented systems such as Sphinx and
Xapian also available as a full-text search technology. Most of these search indexes
take free-form user queries, tokenize or deconstruct the query, before performing
a lookup into the search index. Most of these search data stores are missing
transactional or other features used in more robust data technologies.

The next NoSQL type are key-value stores—with Redis being the most popular
and widely used example of a key-value database—where keys are used to retrieve
values, which are being increasingly used for a wide range of applications. While
Redis, the topic of this book after all, offers a rich set of data types with supporting
functionality, other key-value stores only implement a form of an associative array
where a key retrieves an opaque value that is then used in the calling client code.
Key-value stores can be broken down into different categories but not many of these
key-value databases span multiple categories. For key-value databases that offer
eventually consistency guarantees of if no updates occur, then the last-updated
value will be available in all nodes in a distributed datastore. Examples of eventual
consistency include Amazon's DynamoDB, Orcale's NoSQL Database, and Riak. The
second category of key-value databases provide an ordering of the data by either the
key or value with examples of ordered databases including Berkeley DB, HyperDex,
InfinityDB, and LMDB. The third category of key-value datastore are memory-only
with Redis being the most well known but other RAM databases include Aerospike,
Oracle's Coherence, memcached, and OpenLink Virtuoso. The final category of key-
value datastores are disk bound, either solid-drive or rotating disk where the data
is read/write to disk. Examples of disk bound databases include BigTable, Hibari,
LevelDB, and Tokyo Cabinet.

Redis and Complementary NoSQL Technologies

[198]

The final category of NoSQL databases is wide column store. Like relational
databases, wide-columns have tables, rows, and columns but unlike a relational
database the structure of the tables and columns can vary from row to row. Apache's
Cassandra and HBase both are wide-column stores and both support MapReduce, a
popular approach to distributed computing:

Wide Column Store

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[199]

Redis as an analytics complement to
MongoDB
As one of the most popular NoSQL data storages, MongoDB, is classified as a
document store where the data is organized around manipulation and searching a
variant of JSON-based documents called BSON (short for binary serialized object
notation). MongoDB, the Mongo name is extracted from the word humongous, was
started by the MongoDB Inc. company in 2007 and was released under an open
source license in 2009. MongoDB is still sponsored and developed by MongoDB Inc
with customers having the option to purchase enterprise support and hosting for
MongoDB from the company:

MongoDB Document Store

Redis and Complementary NoSQL Technologies

[200]

As a document-oriented data storage, MongoDB stores BSON objects instead of
having rows and tables like a relational database. MongoDB does not provide a way
to formally join different documents together nor does it support atomic transactions
on multiple documents where all operations are guarantee to be executed. MongoDB
does provide secondary indexes to improve search and atomic operations at the
document-level and also has an expressive query language for retrieving documents
from the datastore. Similar to Redis, MongoDB provides master-slave replication
with automatic failover where a slave is promoted to master in the case of a master
failing. MongoDB also supports the ability to shard across multiple nodes through
a range-based partitioning. MongoDB organizes its BSON documents through the
use of Collections that group together documents but unlike tables in a RDBMS
system, the documents in a Collection do not need to have the same structure.
MongoDB does not have a formal schema that has to be defined beforehand; instead
MongoDB's dynamic schema is generated from the structure of the BSON documents
that can be altered at runtime. MongoDB does cache documents in RAM but does
not have a separate cache for application use.

As a general-purpose data store, MongoDB is used in a wide range of applications and
is part of the MEAN stack made up MongoDB, ExpressJS, AngularJS, and Node.js.
ExpressJS is a Node.js web application framework with AngularJS providing the
dynamic client-side web frontend backed by MongoDB providing the application's
storage needs. The use of MEAN has exploded in popularity with organizations
interested in providing an end-to-end JavaScript application with JSON being stored
and retrieved through ExpressJS and Node.js that is then passed through the rich-client
HTML written with AngularJS.

Before MongoDB implemented a form of time-to-live (TTL) functionality, Redis was
often used to trigger automatic deletion of MongoDB documents or collections in the
datastore. As Cody Powell relates in a 2012 blog posting, refer bullet point number 2
in Appendix, Sources, Chapter 7: Redis and Complementary NoSQL Technologies, his use
of a MongoDB as a cache was time-intensive, as a backend datastore for mobile
gaming app recommendation engine, so although reading from the MongoDB was
fast, inserting data took too long for his requirements. Later versions of MongoDB do
implement TTL on collections so this use case for Redis and MongoDB is no longer
necessary when performance-tuning an application.

In a pair of articles from 2014, refer bullet point 3 in Appendix, Chapter 7, Redis and
Complementary NoSQL Technologies and 2015 refer bullet point 4 in Appendix, Chapter 7,
Redis and Complementary NoSQL Technologies, DJ Walker-Morgan of Compose explores
how Redis can complement MongoDB by shifting functionality and queries that
MongoDB can do but is expensive both in terms of memory consumption and time but
are easy to accomplish through Redis' built-in datatypes.

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[201]

In the first article, Walker-Morgan relates how a client was experiencing bottlenecks in
their MongoDB application when they needed to increment a per-customer counter in
a MongoDB database. With each insert requiring a write to disk, the throughput for a
single instance of MongoDB slowed down to around 1,500 writes per minute.

Instead of creating multiple MongoDB shards to support just this incremental
requirement, using Redis for incrementing per-customer counters was much faster
and did not require extensive refactoring of the MongoDB datastore for the client. In
the second article, Walker-Morgan outlines how Redis' ability to directly manipulate
data is a powerful addition to MongoDB. His first example returns to Redis' ability
to quickly increment and store integers and how to model these increments through
Redis' key schema conventions. In the second example, he goes through the process
of setting and then later retrieving a count of users through the use of Redis'
implementation of the HyperLogLog datatype:

MongoDB and Redis

To experiment how Redis complements and extends MongoDB, we will model a use
case where we take a MARC21 record, serialize it to JSON and store it in a single
MongoDB instance. First, we'll use a Redis instance to store record usage counters
using Redis bit-strings to provide a count of patrons per day that then are used to
create aggregate metrics per arbitrary time periods.

Redis and Complementary NoSQL Technologies

[202]

By separating the metrics and analytics from the data storage, in this case using
Redis for metrics and MongoDB for the data storage, this design encourages an
approach that aligns with a librarian's ethos of concern for patron's privacy. An
ethical design for a library catalog protects and limits the type and amount of
identifiable information to protect the privacy of our patrons' information seeking
behavior. There is often a tension between two library ideals, as codified in the
American Library Association's code of ethics, where patron service and protection
of privacy are at odds when we provide sub-par service by not tracking, analyzing,
and then personalizing and customizing the search experience for our patrons. Using
Redis in this context for user analytics, particularly through counting and activity
metrics, means we can minimize the chance for privacy abuses by storing non-
identifiable aggregate data in Redis while keeping MongoDB backend storage for
permanent storage of the library system.

We'll start by downloading a MongoDB binary from www.mongodb.org (substitute
your platform and the current MongoDB stable release), extracting the contents from
the file, creating a data directory, and then running Mongo with its default settings:

$ wget https://fastdl.mongodb.org/osx/mongodb-{platform}-x86_64-
{version}.tgz

$ tar -xvf mongodb-{platform}-x86_64-{version}.tgz mongodb

$ cd mongodb

$ mkdir -p data/db

$./bin/mongod --dbpath {path-to-data-db}/data/db

In a second terminal window, we will install the official Python client for MongoDB
and launch a Python instance:

$ pip3 install pymongo

$ python3

Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

Now, we'll load a MARC21 file, pick a MARC21 record from the marc_records Python
list, and then display our MARC21 JSON object:

>>> import json, pymarc

>>> marc_records = [r for r in pymarc.MARCReader(open("/var/tmp/sample-
marc.mrc", "rb"), to_unicode=True)]

>>> sample_record = marc_records.pop(67)

www.ebook3000.com

www.mongodb.org
http://www.ebook3000.org

Chapter 7

[203]

>>> marc_json = json.loads(sample_record.as_json())

>>> marc_json

{'fields': [{'001': '4356682'}, {'008': ' eng '},

 {'035': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'.b10019947'}, {'b': 'tbp'}, {'c': '-'}]}},
 {'035': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'(CoCC)102429'}]}}, {'040': {'ind2': ' ', 'ind1': ' ', 'subfields':
[{'a': 'MUU'}, {'c': 'MUU'}, {'d': 'm.c'}]}},
 {'049': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'COCA'}]}},

 {'090': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'PR2825.A2 B7 1967'}]}},

 {'100': {'ind2': ' ', 'ind1': '1', 'subfields': [{'a':
'Shakespeare, William,'}, {'d': '1564-1616.'}]}},

 {'245': {'ind2': '4', 'ind1': '1', 'subfields': [{'a': 'The
merchant of Venice /'}, {'c': 'edited by John Russell Brown.'}]}},

 {'250': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a': '7th
ed., rev.'}]}},

 {'260': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'London :'}, {'b': 'Methuen,'}, {'c': '1964, 1967 printing.'}]}},

 {'300': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'lviii, 174 p. ;'}, {'c': '22 cm.'}]}},

 {'490': {'ind2': ' ', 'ind1': '1', 'subfields': [{'a': 'The
Arden edition of the works of William Shakespeare.'}]}},

 {'490': {'ind2': ' ', 'ind1': '1', 'subfields': [{'a': 'The
Arden Shakespeare Paperbacks.'}]}},

 {'504': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'Includes bibliographical references.'}]}},

 {'700': {'ind2': ' ', 'ind1': '1', 'subfields': [{'a':
'Brown, John Russell.'}]}},

 {'800': {'ind2': ' ', 'ind1': '1', 'subfields': [{'a':
'Shakespeare, William,'}, {'d': '1564-1616.'}, {'t': 'Works.'}, {'f':
'1954.'}]}},

 {'800': {'ind2': ' ', 'ind1': '1', 'subfields': [{'a':
'Shakespeare, William,'}, {'d': '1564-1616.'}, {'t': 'Works.'}, {'f':
'1954.'}, {'s': 'Paperbacks.'}]}},

 {'830': {'ind2': '0', 'ind1': ' ', 'subfields': [{'a':
'Arden edition of the works of William Shakespeare.'}]}},

 {'907': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'.b10019947'}]}},

Redis and Complementary NoSQL Technologies

[204]

 {'902': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'150104'}]}},
 {'999': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'b': '2'},
{'c': '940803'}, {'d': 'm'}, {'e': 'a'}, {'f': '-'}, {'g': '4'}]}},

 {'994': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'tbp'}]}},

 {'945': {'ind2': ' ', 'ind1': ' ', 'subfields': [{'a':
'PR2825.A2 B7 1967'}, {'g': '1'}, {'i': '33027001268287'}, {'j': '0'},
{'l': 'tbp '}, {'h': '0'}, {'o': '-'}, {'p': '$0.00'}, {'r': '-'}, {'s':
'-'}, {'t': '1'}, {'u': '10'}, {'v': '0'}, {'w': '0'}, {'x': '1'}, {'y':
'.i10024165'}, {'z': '940804'}]}}],

 'leader': '01144nam 2200313 4500'}

Before inserting our marc_json into our Mongo database, we'll need to import
the pymongo Python module for MongoDB and instantiate a Mongo client:

>>> from pymongo import MongoClient

>>> client = MongoClient()

To insert our marc_json as a MongoDB document, we'll first create a Mongo
database and collection and then call the insert_one method to insert our
marc_json into our MongoDB datastore and store the resulting ID:

>>> marc_db = client.marc_db

>>> marc_collection = marc_db.marc_collection

>>> sample_record_id = marc_collection.insert_one(marc_json).inserted_id

>>> sample_record_id

ObjectId('55e9958f0f55c501f6802edf')

Before implementing both a usage counter and population count in Redis, we'll
instantiate a Python Redis client and connect to a single Redis instance running
on the default localhost:6379:

>>> import redis

>>> marc_redis = redis.StrictRedis()

We'll start by inserting the ObjectId into a Redis sorted set with the weight being an
incremented insertion offset that we'll use later to record usage of MARC record:

>>> offset = marc_redis.incr("insertion-offset")

>>> marc_redis.zadd("marc-insertion", offset, str(sample_record_id))

1

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[205]

Now, we will populate both our MongoDBs with the JSON versions of our MARC
records, while also incrementing our insertion-offset counter and adding the
MongoDB ObjectId to the sorted set marc-insertion using the insertion-offset
as the score. The preceding logic is available as the Python function process_records
in the marc_example.py Python code file, available under the Apache2 license, which
accompanies this chapter and is available as a download for this book's website or
GitHub repository. We'll import the process_records from the marc_example and
run our sample MARC records through it:

>>> import marc_example

>>> marc_example.process_records(marc_records)

After running our test record set, we should be able to get a population count from
two sources, our Redis instance and our MongoDB datastore:

>>> marc_collection.count()

17145

>>> marc_redis.get('insertion-offset')

b'17145'

So, to test our hypothesis that using Redis as a real-time analytics technology is
faster in retrieving the count; we will use the Python timeit code module for
measuring execution time of small code snippets. In this test, the retrieval of a count
from a MongoDB collection of MARC JSON records and the current value of the
insertion-offset from the marc_redis instance will run with the default number
of runs set to 1 million:

>>> marc_collection_timeit = timeit.timeit(stmt=marc_collection.count)

>>> marc_collection_timeit

167.59296235199963

For the Redis test, we'll need to run a setup statement that creates our Redis Python
client, marc_redis, and then run a GET command on the insertion-offset
integer sting:

>>> redis_get_timeit = timeit.timeit(stmt='marc_redis.get("insertion-
offset")',

 setup="import redis; marc_redis=redis.StrictRedis()")

>>> redis_get_timeit

66.52741511400018

Redis and Complementary NoSQL Technologies

[206]

This crude testing example does not account for any latencies from either Python
code clients for Redis or MongoDB; the difference between the two in running this
GET command and the MongoDB collection's count method call is that our Redis
analytics returns a population count over 2 times faster than MongoDB. The GET
command has a O(1) time complexity and performs this well against our MongoDB
test, we can also test a different Redis command, ZCARD, to retrieve a population
count in O(1) time complexity:

>>> redis_zcard_timeit = timeit.timeit(stmt='marc_redis.zcard("marc-
insertion")',

 setup="import redis; marc_redis=redis.StrictRedis()")

>>> redis_zcard_timeit

66.67229959900033

As we would expect, both ZCARD and GET take approximately the same time to
retrieve 1,000,000 count calls of 66 seconds. With this outcome, we could adjust our
Redis analytics key schema and instead of having both an increment for the offset,
we could use a single sorted set to meet this requirement.

An interesting exercise for the reader would be to benchmark MongoDB
and Redis client performances by repeating this experiment using Ruby,
Node.js, and Java MongoDB, and Redis clients.

With even this small sample size of fewer than 20,000 MARC21 records, we can
move to the next experiment of tracking daily usage of MARC records in our
MongoDB/Redis catalog. To track this usage using MongoDB requires creating a
new collection, marc_usage where we'll store a JSON object containing a BSON
time-stamp and the MARC21object ID. We'll use a MongoDB query to retrieve all
usage in a 24-hour period. Our Redis solution will use the MongoDB ID offset by
first retrieving the score with the ZRANK command in the marc-insertion sorted set
and then flipping the bit at that offset in a bit-string for the day. In our example, we
will define usage if a MARC record was used in a checkout event, which only occurs
once a day.

In the marc_example code file, another function named add_mongo_daily_usage,
creates and writes a usage document made up of a time-stamp and a reference to
the object ID:

def add_mongo_daily_usage(object_id, date):
 usage_collection = MARC_USAGE.usage_collection
 usage_document = { "datetime": date.isoformat(),
 "marc-id": str(object_id) }
 return usage_collection.insert_one(usage_document).inserted_id

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[207]

A similar function for the bit-string flip based on the object ID is called
add_redis_daily_usage:

def add_redis_daily_usage(offset, date):
 usage_key = date.strftime("%Y-%m-%d")
 MARC_REDIS.setbit(usage_key, offset, 1)

To simulate usage traffic for 90 days, a daily run of between 500 to 1,000 random
offsets that generate both a MongoDB usage document using the add_mongo_daily_
usage function as well as a bitstring flipped in the Redis analytics instance with
a call to the add_redis_daily_usage function. We will execute the run_usage_
simulation function found in marc_example to generate test data from which we
will run performance testing to retrieve daily usage from both our MongoDB as well
as our Redis analytics instance:

def run_usage_simulation(seed_seconds, runs=90):

 seconds_in_day = 60*60*24

 max_records = int(MARC_REDIS.get('insertion-offset'))

 for day in range(runs):

 timestamp = datetime.datetime.utcfromtimestamp(

 seconds_in_day*day + seed_seconds)

 daily_usage = random.randint(500, 1000)

 for use in range(daily_usage):

 offset = random.randint(1, max_records)

 result = MARC_REDIS.zrange('marc-insertion', offset, offset)

 if len(result) < 1:

 continue

 object_id = result[0]

 add_mongo_daily_usage(object_id, timestamp)

 add_redis_daily_usage(offset, timestamp)

Running this simulation result gives us two ways to determine the total usage
count during the 90-day time period. Storing the usage document in the usage_
collection means we can get a rough count by executing the usage_collection.
count method in our Python terminal session:

>>> usage_collection.count()

66712

Redis and Complementary NoSQL Technologies

[208]

After populating a simulated 90-day usage period and storing the results in
MongoDB and in Redis, we will now compare the performance of doing a daily
query against both MongoDB and Redis by comparing the performance by first
retrieving the count using the following MongoDB query:

>>> usage_collection.count({ "datetime": { '$lt': '2015-11-
06T00:00:00.0', "$gt": "2015-11-05T00:00:00.000Z"}})

681

Computing the same daily usage count using Redis involves using the BITCOUNT
Redis command on a single day:

>>> marc_redis.bitcount("2015-11-05")

671

Why is there a 10 unit difference between the MongoDB and our Redis bitcount for
the date November 5th? One possible reason is that a single MARC document may
have been used multiple times in a single day with corresponding usage documents
for each occurrence. We can investigate this discrepancy further by running our
query again but this time iterating through all of the results and check to see if there
are ten duplicates:

>>> nov5_ids = {}

>>> duplicates = 0

>>> for doc in daily_usage:

 marc_id = doc.get('marc-id')

 if marc_id in nov5_ids:

 duplicates += 1

 else:

 nov5_ids[marc_id] = 1

>>> duplicates

10

This simple test confirms that our problem is with handling multiple checkouts
during a single day in our simulation. We can address this data issue through a
number of different ways in our current implementation. Improving our MongoDB
query to filter out duplicates could be one solution but it introduces additional
code complexity to the solution that now needs to be maintained by operations in a
production environment. A better solution is to improve run_usage_simulation by
replacing the random.randint function call with the following code:

 daily_usage = random.randint(500, 1000)

 offsets = random.sample(range(1, max_records), daily_usage)

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[209]

 for offset in offsets:

 result = MARC_REDIS.zrange(

 'marc-insertion',

 offset,

 offset)

To retest, we'll start with an empty MongoDB and Redis instance, and executing
run_usage_simulation again results in the same number when we repeat our
daily count for both the MongoDB and Redis test for November 5th:

>>> usage_collection.count({ "datetime": { '$lt': '2015-11-
06T00:00:00.0', "$gt": "2015-11-05T00:00:00.000Z"}})

577

>>> marc_redis.bitcount("2015-11-05")

577

Now, we'll run a timeit comparison again and run 10,000 trials to average the
performance for retrieving a daily count first with a test Redis test:

>>> redis_setup = """import redis

marc_redis = redis.StrictRedis()"""

redis_daily_count_test = timeit.timeit(stmt= """marc_redis.
bitcount("2015-11-05")""",

 setup=redis_setup,

 number=10000)

>>> redis_daily_count_test

0.6927584460008802

Now, we will do the same for a MongoDB test:

>>> mongodb_setup = """from pymongo import MongoClient

client = MongoClient()

usage_collection = client.marc_usage.usage_collection"""

>>> mongo_stmt = """usage_collection.count({ "datetime": { '$lt': '2015-
11-06T00:00:00.0', "$gt": "2015-11-05T00:00:00.000Z"}})"""

>>> mongodb_daily_count_test = timeit.timeit(

 stmt=mongo_stmt,

 setup=mongodb_setup,

 number=10000)

>>> mongodb_daily_count_test

274.93577796200043

Redis and Complementary NoSQL Technologies

[210]

Even at the relatively low number of trials, the difference in time between our Redis
and MongoDB daily usage is stark, under a second for retrieving 10,000 usages with
Redis verses over 274 seconds for running the MongoDB query. Again the usual
caveats apply, your test results will vary depending on your hardware and software
setup and that for the MongoDB there may be optimizations in constructing the
document and the query that could improve MongoDB's performance for this example.

Using the BITOP Redis command, we further calculate the total record usage during
that time span by running the following command in a Redis-cli session connected
to our Redis analytics instance:

127.0.0.1:6379> BITOP OR "2015:christmas-week" "2015-12-19" "2015-12-20"
"2015-12-21" "2015-12-22" "2015-12-23" "2015-12-24" "2015-12-25"

(integer) 2143

127.0.0.1:6379> BITCOUNT "2015:christmas-week"

(integer) 4710

Running the same query from our Python MongoDB client results in:

>>> usage_collection.count({ "datetime": { "$gt":
"2015-12-19T00:00:00.000Z", '$lt': '2015-12-26T00:00:00.0', }})

5371

Why aren't these retrieved values the same? This is because of the nature of the
BITOP OR operation does not actually do a bitcount, but instead is the union of all of
the bitmaps, any bit that is set to 1 is only counted once, even if it appears multiple
times in other days. In other words, the Redis key 2015 :christmas-week stores all
of the unique usage during the time-span, not the total number of visits. We can
confirm this by looping through each day, retrieving the BITCOUNT for each day,
and adding it to our total:

>>> christmas_count = 0

>>> for day in range(19, 26):

 key = "2015-12-{}".format(day)

 count = marc_redis.bitcount(key)

 christmas_count += count

 print(key, count, christmas_count)

2015-12-19 656 656

2015-12-20 784 1440

2015-12-21 745 2185

2015-12-22 891 3076

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[211]

2015-12-23 825 3901

2015-12-24 616 4517

2015-12-25 854 5371

From this simple example, we can see how Redis complements a MongoDB datastore
by being more efficient at tasks that are time-consuming and expensive in MongoDB.
Not all data is well suited as a JSON document and that was tested using the Python
timeit module. Allowing Redis to handle your analytics in an application that uses
MongoDB as the primary data-storage will improve the speed for counting and other
reporting tasks while simplifying the data persistence in MongoDB with a properly
structured BSON format.

Redis as a preprocessor complement to
ElasticSearch
ElasticSearch started off as a JSON-based frontend to Lucene. Lucene is an open
source enterprise search index sponsored by the Apache Foundation that is also the
core search technology for another popular search-based technology called Solr.
ElasticSearch indexes JSON documents into a Lucene index and uses a custom JSON-
base DSL (domain specific language) for querying the search index. ElasticSearch
uses sharding and clustering techniques for scaling search to include large data sets.
ElasticSearch powers searching for a number of well known websites including
Netflix, The New York Times, Cisco, eBay, and Goldman Sachs.

Redis and Complementary NoSQL Technologies

[212]

The main sponsor of ElasticSearch, the for-profit company Elastic.co, also supports
a number of other technologies that complement or build upon the ElasticSearch
search index including Logstash, a log harvester that indexes logs into ElasticSearch,
and Kibana, a visualization tool for ElasticSearch. Using all three together with Redis
will be highlighted later in this chapter.

ElasticSearch Search Index

Using Redis and ElasticSearch in BIBCAT
During the design and development of a linked-data bibliographic search and
display system for the Library of Congress (shortened to BIBCAT for bibliographic
catalog) uses Redis as a initial deduplication method for preprocessing BIBFRAME
1.0 RDF graphs. Although ElasticSearch could easily be used for deduplication using
an ElasticSearch term query against the BIBFRAME authorizedAccessPoint triples,
using Redis instead, we can more closely match the triple patterns through the
Linked Data Fragments Server that is faster as well as simplifying the matching logic.

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[213]

Using the Linked Data Fragments Server also allows for alternative testing of matching
algorithms and approaches such as one used by OCLC at https://viaf.org, a
website that aggregates official national libraries assertions (called authorities) about
people such as authors, composers, artists, photographers, illustrators, organizations,
subjects, and other entities that have an identifiable roles or relationships with creative
works.

To start, we will retrieve the latest ElasticSearch TAR file from https://www.
elastic.com/, extract ElasticSearch, and run an instance:

$ wget https://download.elastic.co/elasticsearch/elasticsearch/
elasticsearch-1.7.1.tar.gz

$ tar xvf elasticsearch-1.7.1.tar.gz

$ mv elasticsearch-1.7.1

$./elasticsearch/bin/elasticsearch

In our example, we will just use the default mappings and configuration for
ElasticSearch although in the actual BIBFRAME datastore, we load custom mappings
and configuration specific to the BIBFRAME vocabulary. For this example, we'll start
by creating BIBFRAME RDF graphs from two MARC21 samples files, the first made of
MARC21 records related to Jane Austen's Pride and Prejudice and the second sample
made up of MARC21 records related to Hermin Meville's Moby Dick:

>>> import pymarc

>>> pride_and_prejudice = [r for r in pymarc.MARCReader(open("/var/tmp/
automatic-bibframe-classification/ColoradoCollege/pride-and-prejudice.
mrc", "br+"), to_unicode=True)]

>>> moby_dick = [r for r in pymarc.MARCReader(open("/var/tmp/automatic-
bibframe-classification/ColoradoCollege/moby-dick.mrc", "br+"), to_
unicode=True)]

>>> len(pride_and_prejudice)

30

>>> len(moby_dick)

22

Next, we'll run the 52 MARC records through the convert2bibframe function that
uses the marc2bibframe project from the Library of Congress and a socket server
function xquery_socket that wraps the converter with a lightweight socket server
using Jython, the Python project for running Python code on a JVM:

>>> def convert2bibframe(record):

return xquery_socket(pymarc.record_to_xml(record, namespace=True))

>>> pp_bibframe = [convert2bibframe(r) for r in pride_and_prejudice]

https://viaf.org
https://www.elastic.com/
https://www.elastic.com/

Redis and Complementary NoSQL Technologies

[214]

When running the conversion on the Moby Dick MARC records, we receive an error
with one of the records, record 9, from the convert2bibframe XQuery function.
Looking at the problematic record, we discover that it is missing the MARC 001 field
required by the BIBFRAME conversion process. When we add a stub 001 field, the
conversion works correctly:

>>> moby_dick[9].add_field(pymarc.Field('001', data='1415005'))

>>> md_bibframe = [convert2bibframe(r) for r in moby_dick]

>>> len(md_bibframe), len(pp_bibframe)

(22, 30)

Our total number of triples can be calculated using the Python sum method that
applies a summation function to each graph, returning the total number triples
in each of the graphs for both the Pride and Prejudice and the Moby Dick lists of
BIBFRAME RDF graphs:

>>> (sum(len(g) for g in pp_bibframe), sum(len(g) for g in md_bibframe))

(7116, 3113)

The 52 MARC21 records in our graph produce 10,229 triples. Each triple will be the
input to our Redis preprocessor that will deduplicate the subjects, and add the triple
to the Redis Cache before creating a JSON body for indexing into ElasticSearch. For
example, in our Pride and Prejudice sample set, we would expect to see Jane Austen
as an author and as a subject and our catalog should be able to converge all of the
separate Jane Austen BIBFRAME Person entities into a single entity before being
indexed into ElasticSearch. To confirm, we will first create a SPARQL query to run
on each of our Pride and Prejudice BIBFRAME graphs:

>>> sparql_query = """PREFIX bf: <http://bibframe.org/vocab/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?sub ?pt

WHERE {

 ?sub rdf:type bf:Person .

 ?sub bf:authorizedAccessPoint ?pt

}"""

If we just want to see what RDF subjects are BIBFRAME Persons, we will just display
the Person in our first BIBFRAME graph:

>>> for row in pp_bibframe[0].query(sparql_query):

 print(row[1])

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[215]

Ehle, Jennifer, 1969-

Chancellor, Anna.

Bamber, David.

Steadman, Alison, 1946-

Sawalha, Julia, 1968-

Whitrow, Benjamin.

Langton, Simon.

Bonham-Carter, Crispin.

Harker, Susannah.

Firth, Colin, 1960-

Austen, Jane, 1775-1817.

Austen, Jane, 1775-1817--Film adaptations.

If we perform the same query on our last graph, we would expect to see at least one
other subject with the bf:authorizedAccessPoint to be Austen, Jane, 1775-
1817:

>>> for row in pp_bibframe[-1].query(sparql_query):

 print(row[1])

Cronin, Richard, 1949-

McMillan, Dorothy, 1943-

Austen, Jane, 1775-1817.

As we add each RDF graph to our Redis Cache, we will go through and check to see
whether the subject has a BIBFRAME authorized AccessPoint and if this property
matches a preexisting subject. If a match exists, the original subject is substituted
for the incoming subject and any triples that do not already exist for the original
subject are added to the Linked Data Fragments Server as additional triples with
the pre-existing subject and the new predicates and objects:

def dedup_bibframe(graph, cache_datastore):

 query = graph.query(SPARQL_PERSON_QUERY)

 for row in query:

 subject = row[0]

 access_point = row[1]

 access_point_digest=hashlib.sha1(

 str(access_point).encode()).hexdigest()

 pattern = "*:{}:{}".format(

 BF_AUTH_PT_DIGEST,

Redis and Complementary NoSQL Technologies

[216]

 access_point_digest)

 existing_subjects = cache_datastore.keys(pattern)

 if len(existing_subjects) > 0:

 subject_digest = existing_subjects[0].split(":")[0]

 new_subject=rdflib.URIRef(

 cache_datastore.get(subject_digest))

 for pred, obj in graph.predicate_objects(

 subject=subject):

 graph.add((new_subject, pred, obj))

 graph.remove((subject, pred, obj))

 return graph

Our second Python function goes through the list of BIBFRAME graphs and runs
our deduplication function dedup_bibframe on each graph and then adds each of
the graph's triples into our Redis Cache using the Linked Data Fragments server's
add_triple function before calling our third function index_graph that then
indexes the graph's JSON serialization as the body for our ElasticSearch index:

def process_graphs(graphs):

 for graph in graphs:

 graph = dedup_bibframe(graph)

 for s,p,o in graph:

 add_triple(cache_datastore, str(s), str(p), str(o))

 index_graph(graph)

After all of the RDF graphs have been ingested into the Linked Data Fragments
Server, we can then query Redis to see if there are any duplicate BIBFRAME People
in our cache by first calculating the SHA1 hash digest of the authorized access
points for Jane Austen and Herman Melville as well as the digest for BIBFRAME
authorizedAccessPoint:

>>> jane_sha1_digest = hashlib.sha1('Austen, Jane, 1775-1817.'.encode()).
hexdigest()

>>> jane_sha1_digest

'4c4da79455d1cee81d7d8737026f0607835f4e77'

>>> herman_sha1_digest = hashlib.sha1('Melville, Herman,
1819-1891.'.encode()).hexdigest()

>>> herman_sha1_digest

'04d0ae092106877146b59ef161409ae25f43df92'

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[217]

>>> auth_access_pt_digest = hashlib.sha1(str(BF.authorizedAccessPoint).
encode()).hexdigest()

>>> auth_access_pt_digest

'a548a25005963f85daa1215ad90f7f1a97fbe749'

Next, we'll see if there are duplicate subjects by using the SHA1 for each access point
and construct a Redis pattern that we will use to retrieve any keys that match our
pattern. If our deduplication algorithm is correct, we should only see one triple when
we evaluate the pattern using the Redis KEYS command against our Redis cache:

>>> jane_pattern = "*:{}:{}".format(auth_access_pt_digest, jane_sha1_
digest)

>>> jane_pattern

'*:a548a25005963f85daa1215ad90f7f1a97fbe749:4c4da79455d1cee81d7d8737026f0
607835f4e77'

>>> bibcat_redis.keys(jane_pattern)

[b'2b6f885ab822be23947c5a822b928554cf25d4cd:a548a25005963f85daa1215ad90f7
f1a97fbe749:4c4da79455d1cee81d7d8737026f0607835f4e77']

>>> herman_pattern = "*:{}:{}".format(auth_access_pt_digest, herman_sha1_
digest)

>>> herman_pattern

'*:a548a25005963f85daa1215ad90f7f1a97fbe749:04d0ae092106877146b59ef161409
ae25f43df92'

>>> bibcat_redis.keys(herman_pattern)

[b'9cf06cced925d745e8bd6ce74ea28950d9a41c64:a548a25005963f85daa1215ad90f7
f1a97fbe749:04d0ae092106877146b59ef161409ae25f43df92']

In this example, we are using Redis and the Linked Data Platform Fragments server
to preprocess incoming RDF graphs before the graphs are serialized and indexed
into our ElasticSearch search index. We are avoiding indexing any transitory or
needless duplicate information that is part of the cache but should not be indexed
as an ElasticSearch document before we have a graph that has all of the persons
deduplicated.

ElasticSearch, Logstash, and Redis
Logstash is an open source program that takes operating and error logs from a wide
range of programs and indexes these logs into ElasticSearch for better analysis and
searching of logs while also offering a rich visualization and reporting through the
Kibana project. The three technologies, ElasticSearch, Logstash, and Kibana are often
referred to as the "ELK Stack" and is a popular data log visualization combination.
Logstash accepts different input data sources that are configured and run through
input plugins. A Redis input plugin is available that takes incoming Redis messages
and Logstash indexes the message into ElasticSearch.

Redis and Complementary NoSQL Technologies

[218]

In some of the more complex ELK configurations, Redis is used as a message
queue (a topic we will be exploring in more detail in a later chapter) that as logged
events are captured by input plugins, the event notification is pushed to a message
queue and then a Logstash message input plugin takes and indexes the event into
ElasticSearch. Redis is one of the options for the message queue and it is relatively
easy to configure and activate both the message output and input plugins when
configuring and then deploying Logstash and ElasticSearch.

Redis Message Queue with Logstash

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[219]

Redis as a smart cache complement to
Fedora Commons
One of a more specialized NoSQL data storage technology used in the digital library
and archival fields is an open source project called Fedora Commons, a Java-based
linked data platform, for storing and preserving digital objects. This platform stores
the metadata describing an object as an RDF graph; however, to fully leverage the
capabilities of the Fedora Commons, commonly shortened to just Fedora (although
this does introduce some confusion especially between the Fedora, the digital
repository, and Fedora the Linux distribution), you need an attached SPARQL triple-
store with the most popular being Apache's Fuseki and Blazegraph. Most libraries
and other cultural heritage institutions that use Fedora as their digital repository also
use a web presentation frontend with the two most popular choices being a Drupal-
based open source project called Islandora (http://islandora.ca) and a Ruby-on-
Rails open source project called Hydra (http://projecthydra.org/). Both of these
projects also provide a Fedora interface to a Solr search index in their applications
for full-text searching of ingested digital objects that have textual content like born-
digital documents or through a workflow that takes the raw images from a scanned
text, like a book or article, performs optical character recognition (OCR), and
indexes the resulting text in the associated Solr instance:

Typical Fedora Repository

http://islandora.ca
http://projecthydra.org/

Redis and Complementary NoSQL Technologies

[220]

Prior to version 4, the Fedora digital repository had limited support for storing RDF
triples and required a relational database (typically MySQL or Postgre) for storage
and management of the metadata necessary for describing and manipulating the
digital objects stored in the repository. As interest grew into looking for new ways to
describe these digital objects, the community surrounding Fedora Commons made a
bold departure from the previous architecture by moving towards a fully functioning
linked-data solution.

Linked Data started with an article, please refer bullet point 5 in Appendix, Sources,
Chapter 7: Redis and Complementary NoSQL Technologies, in 2006 by Sir Tim
Berners-Lee where he lists four rules for exposing data on the Web in a way
that is machine actionable. They are:

•	 Use URIs as names for things
•	 Use HTTP URIs so people can look up those names
•	 When someone looks up a URI, provide useful information using RDF

and/or SPARQL
•	 Include links to other URIs so they discover more things

Using these rules, the World Web Consortium (W3C) released in 2015 a
recommendation available at http://www.w3.org/TR/ldp/ for a Linked Data
Platform that was then adopted by the Fedora development community as a
requirements source for Fedora 4. The Fedora 4 component stack stores objects and
datastreams to disk using two Java-based datastorage technologies ModeShape and
Infinispan to provide access and preservation REST services. These REST services
allow you to create new Resources that can be containers that are described as RDF
graphs or binaries that also have associated metadata. Fedora also request the use
of an external triplestore with the most popular options being Apache's Fuseki and
Blazegraph both of which provide an HTTP SPARQL endpoint for running queries
and updating the graphs. To facilitate and ease the overhead of keeping Fedora in
sync with the triplestore, Fedora publishes notification events on a Java Messaging
Service (JMS) topic that through JMS broker offers OpenWire and STOMP protocols
that can be interacted with a variety of programming languages including Java,
Python, Ruby, and PHP. For more complex messaging applications, such as keeping
a triplestore consistent with the Fedora repository, Apache Camel routes are used
that respond to create, update, or delete events that occur from users or processes
interacting with the repository.

In the Linked Data Fragments Server, if an incoming pattern is not matched in the
Redis cache, a SPARQL query is sent to the triplestore SPARQL endpoint and the
query is run. If a triplestore returns a value, the Redis cache is updated with the new
triple and the result is returned to the requesting client. If the SPARQL query fails to
retrieve any information matching the query, an HTTP error is returned to the client.

www.ebook3000.com

http://www.w3.org/TR/ldp/
http://www.ebook3000.org

Chapter 7

[221]

To illustrate how the interaction between a Blazegraph SPARQL endpoint that
mirrors the RDF graphs contained in a Fedora repository and the Redis-based Linked
Data Fragments Server, we will model a portion of Nelson Mandela's genealogy
using persistent RDF containers in Fedora that represent a person using the RDF-
based vocabulary from http://schema.org/.

We will start with a simple RDF graph in the Turtle format that uses a schema.org
person node for Nelson Mandela, his father, and mother that is saved as the file
nelson-mandela.ttl:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix schema: <http://schema.org/> .

@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

<https://en.wikipedia.org/wiki/Nelson_Mandela> a schema:Person ;

 schema:name "Nelson Rolihlahla Mandela" ;

 schema:parent <http://personuid.info/3eaa6bd7-cfa0-4ded-a8f9-
b745618bb4d2>,

 <http://personuid.info/e8205b68-0af8-4faa-947d-0f22f3a3a77d> .

<http://personuid.info/3eaa6bd7-cfa0-4ded-a8f9-b745618bb4d2> a
schema:Person ;

 schema:name "Nonqaphi Fanny Nosekeni" .

<http://personuid.info/e8205b68-0af8-4faa-947d-0f22f3a3a77d> a
schema:Person ;

 schema:name "Nkosi Mphakanyiswa Gadla Henry" .

With this simple graph loaded into our Python shell as mandela_graph that relates
Nelson Mandela's parents to him, we will create a subgraph for each subject, and
POST each of the subject's graph to Fedora Commons, which will automatically
add the RDF graph to Blazegraph:

>>> sparql = """SELECT DISTINCT ?subject WHERE { ?subject ?pred ?obj .
}"""

>>> for row in mandela_graph.query(sparql):

 subject = row[0]

 result = requests.post("http://localhost:8080/fedora/rest")

 new_subject = rdflib.URIRef(result.text)

 subject_graph = rdflib.Graph()

http://schema.org/

Redis and Complementary NoSQL Technologies

[222]

 subject_graph.parse(str(new_subject))

 subject_graph.namespace_manager.bind(

 'schema',

 'http://schema.org/')

 subject_graph.add((new_subject, rdflib.OWL.sameAs, subject))

 for pred, obj in mandela_graph.predicate_objects(

 subject=subject):

 subject_graph.add((new_subject, pred, obj))

 update_result = requests.put(str(new_subject),

 data=subject_graph.serialize(format='turtle'),

 headers={"Content-Type": "text/turtle"})

After launching an instance of the Linked Data Fragments server, we first query
Blazegraph for all of the triples in our genealogy application, displaying an example
triple, and then ingesting each triple into the Redis cache using our previous defined
add_triple function from a Python shell:

>>> result = requests.post(

 "http://localhost:8080/bigdata/sparql",

 data={"query": "SELECT ?s ?p ?o WHERE { ?s ?p ?o .}",

 "format": "json"})

>>> bindings = result.json().get('results').get('bindings')

>>> len(bindings)

122

>>> print(bindings[8])

{'s': {'value': 'http://localhost:8080/fedora/rest/7f/61/e3/d0/7f61e3d0-
7e53-4d4f-809f-8158631b1608',

 'type': 'uri'},

'p': {'value': 'http://fedora.info/definitions/v4/repository#mixinTypes',
'type': 'uri'},

 'o': {'value': 'schema:Person', 'type': 'literal', 'datatype': 'http://
www.w3.org/2001/XMLSchema#string'}}

>>> for row in bindings:

 add_triple(redis_cache,

 row.get('s').get('value'),

 row.get('p').get('value'),

 row.get('o').get('value'))

www.ebook3000.com

http://www.ebook3000.org

Chapter 7

[223]

We'll use node.js for our web application and query the Linked Data Fragments
Server using the N3 (https://www.npmjs.com/package/n3) RDF Node.js library
developed by the Ruben Verborgh who is also the originator of the linked data
fragments approach to accessing RDF triples. First, we'll install this Node.js library:

$ npm install n3

n3@0.4.3 node_modules/n3

To experiment using this library to parse and add triples to the Linked Data
Fragments, we will run a Node.js shell session and then load the n3 library:

$ node

> var N3 = require('n3');

We will now load the core fs Node.js library to read the nelson-mandela.ttl file
into a string:

> var fs = require('fs');

> var mandela_ttl = '';

> fs.readFile('nelson-mandela.ttl', 'utf8', function(error, data) {

 if (error) {

 return console.log(error);

 }

 mandela_ttl = data;

 });

Next, we'll create an n3 RDF parser, and parse mandela_ttl and print each RDF
triple to the console (we'll only display the first two triples to illustrate how N3
represents triples in JavaScript):

> var parser = N3.Parser();

> parser.parse(mandela_ttl, function(error, triple, prefixes) {

... if (triple) {

..... console.log(triple);

..... } else {

..... console.log("Finished");

..... }

... });

> { subject: 'https://en.wikipedia.org/wiki/Nelson_Mandela',

 predicate: 'http://www.w3.org/1999/02/22-rdf-syntax-ns#type',

https://www.npmjs.com/package/n3

Redis and Complementary NoSQL Technologies

[224]

 object: 'http://schema.org/Person',

 graph: '' }

 { subject: 'https://en.wikipedia.org/wiki/Nelson_Mandela',

 predicate: 'http://schema.org/name',

 object: '"Nelson Rolihlahla Mandela"',

 graph: '' }

Now, to set up the example, we will go back to our Python shell and remove the
triple pattern for Nelson Mandela's father's name:

>>> redis_cache.exists(

"56b5bce1875a80f1975edadf3316dc1d0caa1733:30cd0bd17373373839fb3a0ffaa6bba
51a17ba6c:543718498c1fb0ee1fe75744728f22ea25e8d47f")

True

>>>redis_cache.delete("56b5bce1875a80f1975edadf3316dc1d0caa1733:30cd0bd1
7373373839fb3a0ffaa6bba51a17ba6c:543718498c1fb0ee1fe75744728f22ea25e8d4
7f")

1

The logic flow for the Linked Data Fragments server is to query the SPARQL
datastore if no results are found from an initial query. If the triple is found in the
triplestore, the triple is added to the cache and returned back to the calling function.
Since we removed the Redis key for the father's name, if we connect to the running
REST API for the Linked Data Fragments Server with the subject being the father's
URI and the predicate being the http://schema.org/name from our Node.js
session, the Linked Data Fragments server should query our Blazegraph SPARQL
endpoint, add the triple back to the cache, and return the completed answer in JSON.

www.ebook3000.com

http://schema.org/name
http://www.ebook3000.org

Chapter 7

[225]

Summary
This chapter started with a survey of data storage technologies, starting with the
most popular, a relational database system supporting SQL. From the relational
databases, we examined document datastores focusing on MongoDB with BSON
documents. Following document datastores, graph databases were briefly examined
finishing with full-text search and key-value data-storage, highlighting Redis. We
finished the survey by examining wide column datastores.

Four detailed examples of using Redis as a complement were demonstrated
with an experiment using MongoDB to store usage data verses Redis and the
performance and reduction in complexity of the application using Redis for analytics
in a hypothetical MARC21 catalog. The second example explored using Redis as
preprocessor for deduplicating BIBFRAME RDF graphs using the Linked Data
Fragments Server as a transitory datastore. The third example showed Redis and
the Linked Data Fragments Server complement the Graph Linked Data Platform
combination of Fedora Commons and Blazegraph.

Continuing on the DevOps track to Mastering Redis, the next chapter delves into
how Docker containers and Redis open up new and better methods for IT operations
and development.

www.ebook3000.com

http://www.ebook3000.org

[227]

Docker Containers and
Cloud Deployments

Are you puzzled by the exploding popularity of Docker and the growing interest
in building and running applications with Linux containers in the past few years?
Using Docker in your organization offers real efficiency improvements in how
applications are developed but more importantly, how applications are deployed,
secured, and restored in a production environment. Docker is based on the container,
basically a Linux "operating-system virtualization" approach that allows multiple
applications to run in isolated environments within a single Linux host instance.
Running Redis within Docker allows for configuration and other setup options to
be defined in a Linux environment that can be replicated and isolated from other
processes and applications. While Docker offers much in the way of improving
operational efficiencies, hosting your Redis databases on public or private clouds is
another option and, in fact, most of the popular cloud providers support running
Docker containers on their platforms thereby reducing and shifting the work load
from your organization to a third-party. This chapter finishes by examining the
cloud hosting options for Redis from three providers; Amazon, Redis Labs, and
DigitalOcean as examples of how to use Redis in the cloud.

Docker Containers and Cloud Deployments

[228]

Linux containers
Docker containers are based on already existing functionality, such as cgroups and
namespaces, that was in the Linux kernel prior to the first Docker release in 2013.
In the Linux kernel, cgroups is a feature that isolates and limits CPU, memory, disk
I/O, and network access processes that are all bound by the same criteria. cgroups
also capture all STDOUT, STDERR, and STDIN output from a container and store
the results in accessible logs from outside the container itself. Related to cgroups,
kernel namespaces allow groups of processes to cluster together such that these
processes are isolated and cannot access other resources in the OS. Specific Linux
subsystems that have their own namespaces include the PID namespace, network
namespace, mount namespace, IPC namespace, and user namespace, that all contain
the processes to a single "virtual" view of the OS without have even knowledge of,
other system or user processes that may be also running in the Linux machine. While
other Linux container implementations such as LXC (https://linuxcontainers.
org/) exist, by far, the most popular Linux container project has been Docker,
although Docker can use LXC as the backend. Docker's native container is called
libcontainer that has been in use since Docker version 0.9, and supports many
commands that LXC does not.

A container is a lightweight Linux environment that encapsulates an application and
all of its dependencies into a single package that is runnable and can be deployed in
a consistent and reliable manner. Particularly for server-side applications that may
use Redis and other technologies such as web and application servers, a container
approach means all of these subsystems are wrapped into a single object that can
be launched, stopped, and restarted like a single application. Docker, the company,
has developed a suite of supporting open source software now bundled in Docker
Toolbox that includes the Docker engine that manages containers. Docker Inc also
provides the largest source for pre-build containers, called images at https://hub.
docker.com, where Docker images can be found and downloaded for launching
containers. One reason for the explosive growth in popularity of Docker is because of
the ease of use of the platform surrounding containers that Docker Inc. has cultivated
and built out to support this technology.

www.ebook3000.com

https://linuxcontainers.org/
https://linuxcontainers.org/
https://hub.docker.com
https://hub.docker.com
http://www.ebook3000.org

Chapter 8

[229]

Linux Containers

What Docker containers really provide to your application is a static runtime
environment that can then be replicated and run in different contexts. Running
containers share the underlying host's Linux kernel but then the container supplies
its own environment. For example, if a programmer is using Ubuntu to develop an
application but in production the application needs to run in a SELinux environment,
Docker allows for Ubuntu to run in the container with the host running SELinux.
Containers eliminate a whole class of complex operational issues that can arise when
different distributions are used in development versus deployment. Containers
encapsulate such aspects of your application as the data, code, libraries, and systems
dependencies. All of the requirements and external dependencies can be packaged
and run inside a container that does not then interact with or mutate any of host's
environmental variables or processes. The environment packaging removes an entire
set of problems and debugging nightmares when running multiple applications in
the same operational environment.

Docker Containers and Cloud Deployments

[230]

Docker containers are copy-on-write by default so that changes made to the
container are local to that container and not to any other containers being run by the
host computer. This also means that any new containers made from an image do not
have any of the programs or changes propagate from a prior running container of
the same Docker image. In this manner, we are assured that every container that is
generated from a Docker image starts from a predictable and repeatable initial state.

Virtual Machines versus containers
A common reaction to first hearing about Linux containers is how are
containers different from virtual machines? The basic difference between
the two is where virtualization occurs in the software stack. A virtual
machine abstracts the hardware that an operating system requires to
run, while a container runs at a higher level on the stack by abstracting
the operating system for applications. A container supplies only the
executables and library interfaces required to mimic the operating system
for the application taking advantage that Linux distributions all use
the same underlying Linux kernel. When virtual machines are used in
infrastructural roles, such as web or application servers, database servers,
and so on, applications that run in these systems often have complex
interactions that may interfere with each other when run in the same
environment. Another key difference between Docker containers and
VMs is the speed in launching and shutting down a container versus the
starting or stopping of a VM. Depending on the application, container
start up in a matter of milliseconds while a Virtual Machine can take
seconds or minutes to fully start up. Docker containers are effectively
applications that do not require a full boot-up as required for a Virtual
Machine. Likewise, containers can shut down almost instantaneously
while a Virtual Machine can take seconds to do a full-shutdown. It is
because of this speed that containers can operate make them attractive for
scaling out when traffic or usage dramatically increases.

Most Docker solutions are usually a combination of virtual machines and containers
and together they provide flexibility and usability for application development
and eventual deployment in production for the end users of the application. The
advantages of using virtual machine is that new machines can be easily created
and deployed in minutes versus the prior months that were needed in the past to
purchase, load, and configure a physical server in a datacenter. VMs can be easily
created, moved, and removed rapidly as operational circumstances change and
allow for better hardware utilization by allowing multiple machines to be hosted on
a single, physical computer instead of needing multiple servers for different roles.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[231]

The growth of VMs has also enabled the growth of computing clouds (public,
private, or hybrid) where a single VM image can be run or deployed on multiple
vendor clouds such as Amazon EC2, Rackspace, DigitalOcean, Google Cloud, and
Microsoft Azure. VMs also enable different pricing and cloud computing models
such as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or Software
as a Service (SaaS). Later in this chapter we introduce a couple of Redis-specific
cloud options that operate at the higher level PaaS or SaaS options.

Containers also better support and align more closely with service-oriented
architecture (SOA) or microservices design patterns for application development
and support. In SOA, many small services that typically communicate over network
or some other communication protocol are aggregated into an application. This
approach allows the problem or application to be decomposed into smaller units
that interoperate over a set of well-defined interfaces with each and with external
services. If the service can be isolated enough so that it is more atomic, then the
easier it is to encapsulate the logic and dependencies for the service, and the more
likely the service will be reused by other components or applications in the future.
As containers and services are likely to have the same cardinality, that is, services
and containers that run a single process are equivalent in their requirements and so
containers are a natural fit for supporting SOA and microservices. This matching also
enables operation groups to better support these discrete services, with each service
having its own environment and dependencies that can be isolated and restarted if
the service fails. Docker containers are also well-suited for other operational roles
such as a Continuous Integration (CI) platform, partner distribution, running either
as a cloud deployment, or as a local executing program.

Another aspect of containers that is worth mentioning is the ability to fine-tune
inter-service communication between different containers. With containers,
communication can occur over a localhost IP loopback, directories can be shared
between containers thereby supporting UNIX sockets, memory mapped files,
or named pipes, and shared memory or over kernel semaphores and messages
queues. Containers can also be run in complete isolation from each other based
on Linux namespaces.

Docker Containers and Cloud Deployments

[232]

Docker containers can be broken down into types of container based on their usage.
The most common container type is an application container that is further broken
down into executable containers and service containers. Executable containers are
designed to be run binaries from the command-line and allow the binary to run on
different host operating systems than the original OS that the binary was compiled
on. Service containers encapsulate application services and typically run in the
background as a daemon. Machine containers house the nonkernel elements of a
Linux distribution and are usually used as a base image for more complex containers
as well as providing a mechanism to run and test different Linux distributions from a
single host OS. The final type of Docker container is a volume container that does not
run or execute any programs but provides a wrapper around persistent volumes for
use by other containers.

The Docker architecture is made up a Linux daemon (called the Docker engine) and
one or more Docker clients that connect to the Docker engine through a REST API. The
Docker daemon listens on a Unix socket located on the host machine at /var/run/
docker.sock and is owned by the docker group. Communication between the Docker
client and server is not encrypted by default so opening up access to the daemon from
outside your trusted network could result in a security risk as outside clients can run
processes with elevated privileges. Depending on whether you are running Docker
on an Ubuntu host, the configuration for the Docker daemon is in a settings file at /
etc/default/docker while the settings file on Red Hat Enterprise is at /usr/lib/
systemd/system/docker.service. Logs for the Docker daemon are stored on a
Ubuntu host at /var/log/upstart/docker/log. In addition, the Docker engine uses
the /var/lib/docker directory as the Docker's primary working directory:

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[233]

Docker Architecture

Docker clients can connect to local or remote Docker daemons using either the -H
switch when running client commands or the DOCKER_HOST environmental variable
can be set for host and port by running the following Bash command export
DOCKER_HOST="tcp://0.0.0.0:4646" that changes the default port that the client
connects and sends messages to the REST API. Using a proxy server with Docker
client is accomplished by setting on the following environmental variables: HTTP_
PROXY, HTTPS_PROXY, or NO_PROXY.

Docker images are container templates that are either created locally or can be
downloaded from either a local or enterprise registry of Docker images, or can
be download from a public Docker image repository. The most active and large
repository of Docker images is available from Docker at http://hub.docker.
com/. A Docker container is a running instance of a Docker image. Included in the
thousands of images available on Docker Hub, are base images for all of the most
popular Linux distributions such as Ubuntu, Fedora, Debian, CirrOS, CentOS, and
CoreOS as well as prepackaged images for the most applications including nginx,
WordPress, MongoDB, MySQL, and Redis. When launching a Docker container
from an image, if the image isn't found locally, Docker looks next at Docker Hub
for a matching image and if the image is found, downloads the image and creates
the container.

http://hub.docker.com/
http://hub.docker.com/

Docker Containers and Cloud Deployments

[234]

Docker initially started off being written in Python but over the years Docker, Inc has
reimplemented and improved Docker by writing Docker in Go, the programming
language developed and supported by Google. As an open source technology
released under the Apache 2 License, Docker can be forked or downloaded at
https://github.com/docker/docker.

Docker basics with Redis
If you are already a Docker user, please skip this section as we will explain the
steps to getting starting with Docker by running the official Redis Docker image
available at https://hub.docker.com/_/redis/. Depending on your operating
system, directions for installing Docker are available at https://docs.docker.com/
installation/. For Macintosh and Windows host operating systems, installation
of Docker involves the use of the Docker Toolbox lightweight Linux system that has
been designed to run Docker container execution on these platforms. Alternatively,
you can use a VM manager such as VirtualBox to run a Linux distribution to install
and run Docker. To run the Docker daemon on Linux requires a Linux kernel that is
newer than version 3.10 and is 64-bits. Docker's goal is to eventually run on a wide
range of processors and operating systems with including Window Server 2016.

After you have installed Docker on Linux, you can make your life easier by adding
your current user to a new Docker group with the following command after we open
a new terminal window:

$ sudo usermod -aG docker {your-username}

Be sure to log out and log back in to ensure that the current user is an active member
of the new Docker group. Using Docker on Windows or Macintosh with Docker
Toolbox will set up and load the necessary environment variables for use on those
platforms. Next, we will see what version of Docker is active before launching our
first container, the Docker hello-world image:

$ docker --version

Docker version 1.8.2, build 0a8c2e3

$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

535020c3e8ad: Pull complete

af340544ed62: Pull complete

library/hello-world:latest: The image you are pulling has been verified.

Important: image verification is a tech preview feature and should not be
relied on to provide security.

www.ebook3000.com

https://github.com/docker/docker
https://hub.docker.com/_/redis/
https://docs.docker.com/installation/
https://docs.docker.com/installation/
http://www.ebook3000.org

Chapter 8

[235]

Digest: sha256:02fee8c3220ba806531f606525eceb83f4feb654f62b207191b1c92091
88dedd

Status: Downloaded newer image for hello-world:latest

Hello from Docker.

This message shows that your installation appears to be working
correctly.

If you have Docker running correctly, a daemon will be running in the background
that is used to coordinate and run the pulled containers or any newly constructed
containers. Next, we will pull the official Redis Docker container with the Docker
PULL command:

$ docker pull redis

Using default tag: latest

latest: Pulling from library/redis

ba249489d0b6: Pull complete

19de96c112fc: Pull complete

d990a769a35e: Pull complete

.

.

.

library/redis:latest: The image you are pulling has been verified.
Important:

image verification is a tech preview feature and should not be relied on
to provide security.

Digest: sha256:3c3e4a25690f9f82a2a1ec6d4f577dc2c81563c1ccd52efdf4903ccdd2
6cada3

Status: Downloaded newer image for redis:latest

We can see if there are any running Docker containers by using the Docker ps
command:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS

So far, we haven't launched any running Docker containers. We can see if there are
any existing containers being managed by the Docker engine by running the same
command but with the -a parameter to see all existing containers:

$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

Docker Containers and Cloud Deployments

[236]

822c7c12672f hello-world "/hello" 34 minutes ago Exited
(0) 34 minutes ago pensive_pasteur

Docker containers are assigned a unique UUID with a shortened version being
displayed under the CONTAINER ID column, for our hello_world container, the
shortened UUID is 822c7c12672f. If you don't specify a name of your container, the
Docker engine will create a random name, in this case, pensive_pasteur. Your own
containers will most likely be a different random name. Using the --name switch
allows your to set the name of the container explicitly; however, container names
must be unique within the scope of the Docker daemon running on the host. We will
now launch a container by using the run command based upon the official Redis
image we downloaded earlier.

We will pass the --detach=true parameter to run in the background, the
--name=redis to name our container redis instead of a random name, and we will
also pass a parameter to map the container's default Redis port of 6379 to the Docker
host port of 6379 with the -p 6379:6379 parameter that returns a container sha1 ID:

$ docker run --detach=true --name=redis -p 6379:6379 redis

51fde4c2100f64fbc720fb395e2857be8b98a78e50ba75d0dbaed89ded4c1b18

Now, by rerunning the ps command we should see our new active redis container:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

51fde4c2100f redis "/entrypoint.sh redis" About a
minute ago Up About a minute 0.0.0.0:6379->6379/tcp redis

Opening a new terminal window, we will launch a Redis-cli instance and see if we
can connect to the Redis instance running in our Docker container:

 ~/redis/src/redis-cli

127.0.0.1:6379> DBSIZE

(integer) 0

To halt our redis Docker container, we use the Docker stop command and confirm
that our container is no longer active by issuing the ps command:

$ docker stop redis

redid

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[237]

Docker containers can also be run in the interactive mode with a pseudo tty
by passing the -it parameters to the Docker run command and dropping
--detach=true to run the container in the foreground. For now, we will go ahead
and remove our redis Docker container from our local environment before creating
a new Redis container in the interactive mode:

$ docker rm redis

redis

$ docker run -it -p 6379:6379 redis

Docker Containers and Cloud Deployments

[238]

Our Redis container's default execution path is to run Redis without any
configuration file on port 6379 with STDERR and STDOUT being redirected to your
screen. In production, you would run your Redis container in the background. To
assist in troubleshooting or debugging, running your container in the foreground in
a pseudo terminal session can be helpful to track down Redis- and Docker-related
issues. To close and stop your container, select Ctrl + C from your keyboard to
the active window where Redis container is running. We can bypass this default
execution path when running our Redis container by providing a path to an
executable as a parameter after specifying the image:

$ docker run -it -p 6379:6379 redis /bin/bash

root@55ec569c1ded:/data#

By passing in the path to bash, running this command drops you into a root session
in your container. From this Command Prompt, we can explore our Redis container
by displaying the contents of the /etc/os-release file:

root@55ec569c1ded:/data# cat /etc/os-release

PRETTY_NAME="Debian GNU/Linux 7 (wheezy)"

NAME="Debian GNU/Linux"

VERSION_ID="7"

VERSION="7 (wheezy)"

ID=debian

ANSI_COLOR="1;31"

HOME_URL="http://www.debian.org/"

SUPPORT_URL="http://www.debian.org/support/"

BUG_REPORT_URL="http://bugs.debian.org/"

From this display, we see our Redis image is based upon the Debian Linux
distribution. From our root terminal session in our running container, we can check
to see that the container is running its own network interfaces by:

root@55ec569c1ded:/data# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

 inet6 ::1/128 scope host

 valid_lft forever preferred_lft forever

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[239]

8: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UP

 link/ether 02:42:ac:11:00:03 brd ff:ff:ff:ff:ff:ff

 inet 172.17.0.3/16 scope global eth0

 valid_lft forever preferred_lft forever

 inet6 fe80::42:acff:fe11:3/64 scope link

 valid_lft forever preferred_lft forever

Finally, we will check the contents of the current /data directory and exit our
running container:

root@55ec569c1ded:/data# ls

root@55ec569c1ded:/data# exit

Docker Containers and Cloud Deployments

[240]

Because we did not launch Redis in our container, the /data directory was empty
and did not contain a dump.rdb file. We'll now run a new Redis container, naming
it redis, and running it in the background making the container available on port
6379 by mapping it to the host port 6379:

$ docker run --detach=true --name=redis -p 6379:6379 redis

In a second terminal window, we will run our Redis-cli and add a new key:

127.0.0.1:6379> dbsize

(integer) 0

127.0.0.1:6379> set book 1

OK

127.0.0.1:6379> BGSAVE

Background saving started

Now, if we want to connect to our running redis container, we can use the Docker
exec command to - with the -i switch to run the session interactively and the -t flag
to run a pseudo tty session to check the contents of the /data directory:

$ docker exec -it redis /bin/bash

root@e4629ca31026:/data# ls

dump.rdb

Two other arguments that the exec Docker command accepts are -d or
--detach=true to run the command on the running container in the background
and -u or --user= to execute a command under a specific username or UID.

Another useful Docker command for examining running containers is the logs
command. The logs command displays the container's captured STDOUT/STDERR
output and the log command accepts a --tail parameter similar to the UNIX tail
program for displaying 1 or more lines from the end of the log file. Running the
command on our container and restricting the output to the last five lines in the log
file results in the following output when selecting our redis container:

$ docker logs --tail 5 redis
1:M 22 Sep 13:44:20.510 * The server is now ready to accept connections
on port 6379
1:M 22 Sep 13:47:22.755 * Background saving started by pid 18
18:C 22 Sep 13:47:22.817 * DB saved on disk
18:C 22 Sep 13:47:22.818 * RDB: 6 MB of memory used by copy-on-write
1:M 22 Sep 13:47:22.849 * Background saving terminated with success

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[241]

Two other Docker commands top and stats allow you to examine additional
runtime and environmental variables and processes in a running container.
The top command shows the running process in the redis container:

$ docker top redis

UID PID PPID C
STIME TTY TIME CMD

999 15553 696 0
06:38 ? 00:00:00 redis-server
*:6379

stats displays a live status view of the redis container, which we can test by
running Redis CLI session to issue a couple of commands and then seeing the results:

CONTAINER CPU % MEM USAGE/LIMIT MEM %
NET I/O

redis 0.20% 6.619 MB/1.579 GB 0.42%
1.296 kB/5.044 kB

The Docker commands start, restart, and attach along with stop, allow for
greater control of the Docker containers that may reside in your local Docker
repository. First, we will stop our running redis container:

$ docker stop redis

redis

Second, we will start our Redis container and confirm that redis is still active with
the ps command:

$ docker start redis

redis

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

e4629ca31026 redis "/entrypoint.sh redis" 46 hours
ago Up 3 seconds 0.0.0.0:6379->6379/tcp redis

Using the attach Docker command brings the container up to the foreground and
displays its STDOUT/STDERR output. Be careful, because if you send a Ctrl + C to the
now active window, it will send a kill signal (SIGINT) to the container, stopping it:

$ docker attach redis

^C1:signal-handler (1443097862) Received SIGINT scheduling shutdown...

Docker Containers and Cloud Deployments

[242]

1:M 24 Sep 12:31:02.861 # User requested shutdown...

1:M 24 Sep 12:31:02.861 * Saving the final RDB snapshot before exiting.

1:M 24 Sep 12:31:02.864 * DB saved on disk
1:M 24 Sep 12:31:02.864 # Redis is now ready to exit, bye bye...

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

To avoid shutting down your container after you have attached to the container, you
can instead use the Ctrl + P and Ctrl + Q key combination to detach from the running
container. Ctrl + C will work if you initially started your container with the --sig-
proxy flag set to false. Now that that we stopped our Redis container, we can issue
a restart command to activate and run our redis container:

$ docker restart redis

redis

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

e4629ca31026 redis "/entrypoint.sh redis" 46 hours
ago Up 4 seconds 0.0.0.0:6379->6379/tcp redis

With these core set of commands to manage your Docker containers, we shift to
the next important component of Docker, understanding and creating images that
provide the runtime template for our containers.

Layers in Docker images
While being able to run your application within a Docker container is, in of itself,
a great feature, it is only in combination with a Docker image—a template for
container creation—that the advantages of Docker start to become apparent. Docker
images are constructed by adding new file system layers on top of preexisting file
system layers. Each layer is made up of a static feature, such as the executables,
libraries, and other configuration for an application, program, or utility. Upper
level layers file paths that match preexisting files in lower layers mask the file from
executing code.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[243]

For example, say you start with the existing official Redis layer, adding a new layer
with its own redis.conf configuration file will mask any existing redis.conf file
that is located at the same filepath or location:

Layers of Docker Images and Containers

A Docker Base image is an image that does not have a parent and are typically made
up of the operating system, such as Ubuntu or CentOS, and the root filesystem.
For security-operations reasons, you can also create an empty Docker Base image
and then add only the necessary files to run an application as separate and distinct
layers. The filesystem within an image layer is read-only and a running container
cannot change the file in a lower image layer although the file can be changed and
saved that masks the lower image layer's file. Immutable files in an image file system
allows one image to provide a consistent and repeatable environment to run multiple
containers with the same results while also reducing the disk and memory footprint
of containers that share the same parent images within a running instance of the
Docker host.

Docker Containers and Cloud Deployments

[244]

When a container is first started, its filesystem is initially empty. Any writes
from running processes in the new running container are saved in the container's
filesystem, and as mentioned before, any files that match existing files in any of the
lower-level image layers are masked. Container filesystems contain only the changes
between the file and any underlying file system states in the container's image layers.
Starting from the top, all of the changes made by the container and all of the existing
image layer filesystems are collectively called the union filesystem. The lowest layer
in the stack is called bootfs and supplies the in-memory filesystem interface to the
Linux kernel, and bootfs also supplies the kernel library interface as well to upper
image layer processes.

Each Docker container and image has a parent image except for Docker's base
images. Docker images are built from intermediate images and these intermediate
layer images do not have a repository name or tag and are used together to provide
source layers for the parent images of a container or image. These intermediate
layers are not used as standalone images or used directly by the container but can be
shared by multiple descendant images thereby saving disk and resource space for
use directly by containers and final images.

Docker filesystem backends
Depending on the Docker host, there are a number of different filesystem backends
used by images and the resulting copy-on-write interactions that a running container
may execute during operation. Docker's preferred filesystem type is advanced multi-
layered unification filesystem (aufs) that implements a union mount where file level
information is stored with shared storage with other filesystems in a single mount
point. Ubuntu, Debian, and other Linux distributions use aufs as the default. Red
Hat and CentOS are two very popular Linux distributions that do not enable aufs as
a default. The number of layers in a Docker images is limited by aufs default number
of layers at 127. Docker also supports btrfs for filesystem snapshot where block
level scheme with shared storage requires the Docker host files located at /var/
lib/docker use btrfs filesystem with each image and container layers are stored
as subvolumes at /var/lib/docker/btrfs/subvolumes. Docker hosts running
Red Hat and CentOS systems use the devicemapper filesystem as a default where
like btrfs, block level scheme are used to support layers and shared storage. Other
filesystems that Docker supports are vfs for universal support on the Docker host but
is inefficient because vfs do not support snapshotting of layers but create separate
directories for each layer with a deep copy of the parent layer. Finally, Docker also
supports the OverlayFS union mount for other file systems.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[245]

The docker images command displays all of the images present in the Docker host
and snippet of this display for an example environment is demonstrated here:

$ docker images

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

<none> <none>
1bbc3672404f 2 weeks ago 521.9 MB

java 8-jre
81f1a5272622 2 weeks ago 487.9 MB

redis latest
2f2578ff984f 2 weeks ago 109.2 MB

Docker images are stored on a Linux host in the default location at /var/lib/
docker/aufs/layers and in our example environment can be displayed by
switching to root, changing directories, and displaying the contents:

$ sudo su

cd /var/lib/docker/aufs/layers

ls

00db3659acd05f0a98a41d69cab0791055844fcee84f7f53ab2b0cbfd27cb9ae

017d6be562b544d03de624546b63ba8e9c0b21ce3bfd05a32058e9b39efc8672

0225617d4328e423e5e98ad28efd6e10063242aafeaad9a9758865f026b0a732

038233a03eefb40279ac0eb3a2a87b2961ce819c8ca9c6f938e456d68bde6297

04ac98492065dc05dac0d5da333afcdad50b4e886b9efc3599ea48ea39683ea0

The Docker containers directory located at /var/lib/docker/containers has a
separate directory for each container and holds the container's metadata and log
files. Each container directory is the unique ID and we can retrieve the first part of
the container's ID for our redis container by running the docker ps -a command:

docker ps -a

CONTAINER ID IMAGE COMMAND
CREATED STATUS PORTS NAMES

e4629ca31026 redis "/entrypoint.sh redis" 5
days ago Exited (0) 3 days ago redis

Docker Containers and Cloud Deployments

[246]

Now, we change directories to our container and display the contents of the
directory:

cd /var/lib/docker/containers/
e4629ca310264f7f4a930dcdaf5f8a91710b8a2fe5109996dffdf9adbfd5c5a8/

ls

config.json

e4629ca310264f7f4a930dcdaf5f8a91710b8a2fe5109996dffdf9adbfd5c5a8-json.log

hostconfig.json

hostname

hosts

resolv.conf

resolv.conf.hash

The config.json files contain runtime and environmental variables for running
the Redis container. The json log file is what is displayed when running the Docker
command docker logs redis as well as storing the activity in the container.

A running container in Docker generates deltas—stored on the Docker host—of
copy on write (COW) data that is either existing files from parent layers that have
been modified or any new files that have been created by processes in the container.
These diffs are stored in the /var/lib/docker/aufs/diff/ directory. To view these
changes, using the docker diff command displays the changes in the container's
filesystem layer. Add (A), Delete (D), and Change (C) are the three types of deltas that
are captured and displayed when running the container. First, we will run the diff
command on our new redis container and we see nothing has changed:

$ docker diff redis

$

Next, we'll open a Redis CLI session, add a key, and issue a BGSAVE command to
persist RDB snapshot to the container's file system layer:

$ redis/src/redis-cli

127.0.0.1:6379> SET person:1 "Lucy van Pelt"

127.0.0.1:6379> GET person:1

"Lucy van Pelt"

127.0.0.1:6379> BGSAVE

Background saving started

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[247]

Creating a Docker image is accomplished one of two ways; taking a snapshot of
a modified running container or building a new Docker image from a Dockerfile,
a simple text format containing a list of Dockerfile specific commands. The first
method of image creation, taking a snapshot of a running container, is the simplest
method. For example, if we wanted to create a custom image based on the official
Redis image, load some data, and then save the result as a new image, we would go
through these steps:

First, we'll stop and remove our redis container:

$ docker stop redis

redis

$ docker rm redis

redis

Second, we'll launch a fresh Redis container instance in the background and then
connect to the container with the docker exec command:

$ docker run –-detach=true –p 6379:6379 –-name=redis redis

2f0b562fe09c4b9663cf3e122d3256ecaf96773c459536dcb9674fd0d347ce26

$ docker exec –it redis /bin/bash

root@2f0b562fe09c:/data#

The running Docker container does not have any data yet, so we'll open up a second
command line, launch a Redis CLI instance, confirm we have an empty Redis
database, and then load some data into our custom Redis image:

$ redis/src/redis-cli

127.0.0.1:6379> DBSIZE

(integer) 0

127.0.0.1:6379> MSET ichi one ni two san three shi four go five roku six
shichi seven hachi eight kyuu nine ju ten

OK

After we saved our ten keys (a count of Japanese one through ten with the English
translation as the string value), we go back to our first terminal window and confirm
that there is a now a dump.rdb file in our data directory:

root@2f0b562fe09c:/data# ls

dump.rdb

Docker Containers and Cloud Deployments

[248]

A less desirable method for creating an image that contains the dump.rdb file of our
persisted data we'll first exit our running redis container and then issue a docker
commit command, passing in the author and message parameters that create a
custom Redis image to a redis-japanese-numbers repository and then confirming
that our new image is available by displaying a list of images:

root@2f0b562fe09c:/data# exit

exit

$ docker commit --author="Jeremy Nelson" --message="Japanese Numbers"
redis jermnelson/redis-japanese-numbers

6ef38a2d2efb5253db128d4fbaad6379679c2dc5d533e0b54750e1653e038cae

$ docker images

REPOSITORY TAG IMAGE ID
CREATED VIRTUAL SIZE

jermnelson/redis-japanese-numbers latest 6ef38a2d2efb 2
minutes ago 109.2 MB

redis latest 2f2578ff984f 3
weeks ago 109.2 MB

Now, we will stop our redis container and launch a new Docker container based on
the new redis-japanese-numbers image:

$ docker run --detach=true -p 6379:6379 jermnelson/redis-japanese-numbers

6537f3e95269439aa976d8220a4c7f6b7c1815ba19fd04814d7c9415f3ae6571

To check to see whether our new image contains the saved data, we'll connect with a
Redis CLI and check whether there is any data available:

$ redis/src/redis-cli

127.0.0.1:6379> dbsize

(integer) 0

So what happened, where is our data? This is a common "gotcha" because the base
redis image mounts its data at the /data directory as a data volume. Any volumes
in a container are not saved when launching containers because of the way Docker
persists and shards data through its volume syntax. Committing a running container
as a new image does NOT persist any mounted volumes.

This is a feature of Docker and it means that if we want to persist our rdb files, we
have a couple of options, including restarting Redis with a file path different from
the /data directory for our dump.rdb file or we can use the second method for
creating a Docker image by using a Dockerfile.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[249]

Building images with a Dockerfile
As we saw in the previous section, creating a Docker image through a snapshot of a
running container is a very manual process requiring you to connect to, install, and
then later commit your changes in order to create a working image. Fortunately,
the second and preferred method for creating a new Docker image is to use a text-
based Dockerfile instead of committing changes on a running container to create an
image. A Dockerfile is composed of a series of instructions that create an image in the
order the commands are written in the file. Each command creates a separate layer
in the Docker image so care should be taken to minimize the number of commands.
Having too many layers will create a bloated image that takes longer to build,
download, or upload to your Docker host. The first command of all Dockerfiles is
the FROM command that specifies the parent image from which the new image will
be built upon which most of the time will be a Operating System image. The current
recommendation for the operating system base image is to use the Alpine Linux
Image as it provides a full OS and has been optimized for use as a base container in
Docker at less than 100 megabytes:

Structure of a Dockerfile

Docker Containers and Cloud Deployments

[250]

The RUN, ADD, and COPY Dockerfile commands perform most of the real work in a
Dockerfile. The RUN instruction executes one or more Linux commands in the image
and is useful for installing packages and other dependencies in your application.
Multiple commands can be concatenated into a single RUN instruction by separating
each Linux command with double ampersands (&&). Another suggestion is to put
each of these command on separate lines using the backslash (\) character. The
ADD and COPY commands are similar in that they transfer files to the image; however,
ADD offers additional functionality in that TAR file are automatically extracted to the
local file system and ADD can also download a file from a URL. The COPY command
clones any local files relative to the Dockerfile location on the host and saves those
files to the image. If there are files that you want to exclude from the COPY command,
create a .dockerfile in the root directory where your Dockerfile is located and
similar to the .gitignore file, the COPY command will not clone any files that match
the patterns in the .dockerfile to the image.

The VOLUME and EXPOSE commands provide outside access between the Docker host
and the image and the subsequent containers that are run off the image. The VOLUME
command provides a mount-point between the image's filesystem and the Docker
host and can be a directory or file located on the host that is then available for saving
and persisting data between container sessions. The EXPOSE instruction specifies an
internal port number in the image that can then be mapped to a Docker host port
number when the container is launched with the -p parameter and its use is seen in
the previous examples when we ran the redis image with port number 6379 on the
host is mapped to the same port within the image.

The ENTRYPOINT and the CMD instructions are also related but provide different
functionality within the image. The ENTRYPOINT instruction specifies the default
executable to be run when the image is instantiated into a running container. Script
files can also be the target with the ENTRYPOINT instruction where configuration and
set-up instructions are part of the bash script that then calls the main executable to
be run. Alternatively, the CMD instruction allows you to specify the software to run
in the image along with any parameters to be passed into the software's executable.
The official Redis Dockerfile used the CMD instead of the ENTRYPOINT instruction and
is CMD ["redis-server", "/etc/redis/redis.conf"] where the location of the
redis.conf file is passed to the redis-server executable. Regardless, if you use
CMD or ENTRYPOINT in your Dockerfile, you'll want to specify the directory location in
the image where the executable or script is located by using the WORKDIR instruction
to set the location to run the command in your image.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[251]

Hosting and publishing Docker images
After creating custom Docker images through either a committing a snapshot of
a running Docker container or by writing a Dockerfile and building a new image,
Docker provides a way number of ways to allow you to share your image. Docker,
the company, sponsors a service for hosting your image at https://hub.docker.
com/ where you can upload your image after creating an account by using the
docker push {repository}/{image-name}:{tag} command that then is available
for use. With the free account level on Docker Hub, you have one free private
repository and an unlimited number of public images. A paid membership on
Docker Hub provides you multiple private repositories on Docker Hub depending
on your level of membership.

If you do not wish to use Docker Hub but you would like to provide your image
for use by others in your organization, a part of the Docker Corporations affiliated
project Docker Toolkit available at https://github.com/docker/distribution
allows you to host your own repository. It should be no surprise that the mechanism
that this project employs is a Docker image that you run locally by running the
following command on your Docker host:

$ docker run –-detach=true -p 5000:5000 --restart=always --name registry
registry:2

From this Docker command, we are running a container instance of the registry
image in the background and is available on port 5000. A new parameter --restart
is set to always so that if the container fails, the Docker host will automatically
restart the container. With the registry running on port 5000, if you want to push
your custom Redis image to your local container, you'll need to tag it to point to the
registry, in this case localhost:5000. If you intend to share your private registry
with others in your organization, you'll likely want to have a dedicated server with
its own network name. Here are the steps to first push the official Redis image to
your registry by tagging it:

$ docker tag redis localhost:5000/redis

With the redis image now tagged, we can push this image to our locally running
repository on port 5000:

$ docker push localhost:5000/redis

The push refers to a repository [localhost:5000/redis] (len: 1)

2f2578ff984f: Image successfully pushed

https://hub.docker.com/
https://hub.docker.com/
https://github.com/docker/distribution

Docker Containers and Cloud Deployments

[252]

54647d88bc19: Image already exists

ed09b32b8ab1: Image already exists

.

.

.

ba249489d0b6: Image successfully pushed \nlatest: digest: sha256:1b47e11f
b5d6395aa1631f60e61cc92d21308d55485e1316c8c8421fc4c07385 size: 34407

The registry image uses a Docker volume container to store all related registry
information about the images saved in your locally hosted Docker repository.

Docker and Redis issues
In the chapter on Redis Cluster and Sentinel we didn't cover some major issues
that can occur when trying to deploy Redis's high availability solution when using
Docker. Docker performs a dynamic port reallocation when using the –p directive
when launching a new Docker container. Sentinel's auto discovery of other running
Sentinel process as well as discovering a list of slaves from a master assumes a fixed
port numbers, this Sentinel feature will break if the internally running Sentinel on a
Docker container is mapped to a different port.

To use Sentinel with Docker you have two options: the first is to update the
sentinel announce-ip and sentinel announce-port for each of Docker container
running Sentinel so that the Docker Sentinel is broadcasting (or announcing) the
correct IP address and port number to other running Sentinel instances in your Redis
operation. The second option (and likely the easiest to implement if you are starting
your Sentinel setup and Redis configuration from scratch) is to either map the same
ports on the host as on the container with the –p parameter (that is, –p 26379:26379
when running any container that has Redis Sentinel running), or you can pass in the
--net=host parameter that does this mapping automatically. Using this option is
somewhat limiting because you then cannot run multiple Docker containers on the
same port with each container having a Sentinel running because only one container
can be mapped to the Docker host port at a time.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[253]

Packaging your application with Docker
Compose
Decomposing application to effectively use Docker often requires multiple running
containers of different Docker images. If your application has multiple containers
that are linked to each other, manually coordinating the management of application's
Docker containers (starting, stopping, and so on) can be time consuming and
prone to errors, especially if you forget any of the necessary parameters for
specific containers (that is, you may have a volume container that is linked to your
application container, with your application container requiring different port
mappings). Fortunately, there is an open source project, Docker Compose, sponsored
by Docker, Inc. that alleviates a lot of these problems.

Docker Compose is automatically included if you installed Docker Toolbox. Docker
Compose can also be installed by following the directions at http://docs.docker.
com/compose/. To illustrate the use of Docker Compose in an application, we'll
create a very simple Flask web application that just displays the current output of
the Redis INFO command in an HTML document. We will also demonstrate Docker's
nice inter-container communication by linking our application container with our
previously created Redis container using Docker Compose.

To start, here is the Python source code for our simple Flask application, called info.
py that, after importing Flask, the render_template function, and the Python Redis
client, creates an application and a Redis client instance. Note that the Redis client's
host name is redis, the name of our Redis container that we'll link to in our Docker
Compose YAML configuration file. This application has a single function, default,
that returns HTML template (not shown) that displays the results of executing the
info command in a formatted table to the requesting web browser:

from flask import Flask, render_template

import redis

 app = Flask(__name__)

 redis_db = redis.StrictRedis(host='redis')

@app.route("/")

def default():

 return render_template(

 'index.html',

 info=redis_db.info())

if __name__ == '__main__':

 app.run(host='0.0.0.0', port=5001, debug=True)

http://docs.docker.com/compose/
http://docs.docker.com/compose/

Docker Containers and Cloud Deployments

[254]

In the same root directory where we have our info application, we'll create a
minimum Dockerfile that extends the Python 3.4 base image, exposes port 5001, and
finally executes our code file with the Dockerfile CMD command:

FROM python:3.4.3

RUN pip3 install flask redis

COPY . /info_app

WORKDIR /info_app

EXPOSE 5001

CMD ["python", "info.py"]

The next stage in creating our Docker Compose project is to create a YAML
configuration file called docker-compose.yml. The first section in our configuration
file will define a new container for our application that we call info. In the info
section, a build directive refers to the Dockerfile we created and the links directive
lists the name of our Redis container. In the ports directive, we'll map the internal
port that the app is running 5000, to port 8080 on the Docker host. Finally, we'll
define our Redis container that is based on the official Redis image on Docker Hub.
Our docker-compose.yml file is displayed here:

info:

 build: .

 links:

 - redis

 ports:

 - "8080:5001"

redis:

 image: redis

Now that we have the necessary pieces are in place, we can attempt to build our
application with docker-compose:

$ docker-compose build .

redis uses an image, skipping

Building info...

Step 0 : FROM python:3.4.3

 ---> 575cb3ad9b67

Step 1 : RUN pip3 install flask redis

 ---> Running in 5342e1c49874

Collecting flask

 Downloading Flask-0.10.1.tar.gz (544kB)

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[255]

Collecting redis

 Downloading redis-2.10.3.tar.gz (86kB)

Collecting Werkzeug>=0.7 (from flask)

 Downloading Werkzeug-0.10.4-py2.py3-none-any.whl (293kB)

Collecting Jinja2>=2.4 (from flask)
 Downloading Jinja2-2.8-py2.py3-none-any.whl (263kB)
Collecting itsdangerous>=0.21 (from flask)
 Downloading itsdangerous-0.24.tar.gz (46kB)
Collecting MarkupSafe (from Jinja2>=2.4->flask)
 Downloading MarkupSafe-0.23.tar.gz
Installing collected packages: Werkzeug, MarkupSafe, Jinja2,
itsdangerous, flask, redis
 Running setup.py install for MarkupSafe
 Running setup.py install for itsdangerous
 Running setup.py install for flask
 Running setup.py install for redis
Successfully installed Jinja2-2.8 MarkupSafe-0.23 Werkzeug-0.10.4
flask-0.10.1 itsdangerous-0.24 redis-2.10.3
 ---> 21d5378d91b3
Removing intermediate container 5342e1c49874
Step 2 : COPY . /info_app
 ---> b65c476ad781
Removing intermediate container 001debb1ff52
Step 3 : WORKDIR /info_app
 ---> Running in 59a5a7f29c4a
 ---> 5a7557640f84
Removing intermediate container 59a5a7f29c4a
Step 4 : EXPOSE 5001
 ---> Running in 8ccd0b16a8a7
 ---> 9451da0dc4ba
Removing intermediate container 8ccd0b16a8a7
Step 5 : CMD python info.py
 ---> Running in 59e66bc7787c

 ---> 8e165172aa53\nRemoving intermediate container 59e66bc7787c
Successfully built 8e165172aa53

This launches and builds our application's image and we can then launch our
application from the command line with the docker-compose up command and
pass in the –d parameter to run in the background:

$ docker-compose up –d

Starting infoapp_redis_1...

Starting infoapp_info_1...

Docker Containers and Cloud Deployments

[256]

We can now check if our application is being displayed by opening up our web
browser and pointing it to http://localhost:8080/ as shown in the following
screenshot:

To check to see what containers are running, we see there are two containers running
on our Docker host:

$ docker ps
CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES
b4ac9d5a18dc infoapp_info "python info.py" 7
minutes ago Up 2 minutes 0.0.0.0:8080->5001/tcp infoapp_
info_1

6662e75f3ffc redis "/entrypoint.sh redis" 37
minutes ago Up 2 minutes 6379/tcp infoapp_
redis_1

We see our two containers running in the background and Docker-compose
conveniently named both containers using the infoapp_info_1 and infoapp_
redis_1.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[257]

Now, we'll open a second terminal window and connect to our Redis database using
our Redis-cli:

$ redis/src/redis-cli

127.0.0.1:6379> INFO

Error: Server closed the connection

So what happened? One of the great features of Docker is that we isolate our services
in containers from external processes but the services can still connect and use
services by linking from our application container. Docker Compose handles all of
the underlying container linkages and would be equivalent to us running our info
container by manually linking our Redis container that doesn't expose any ports.

Besides easing the burden of building and running our application with multiple
containers, Docker Compose also allows you to gracefully and easily shutdown your
application's services with a docker-compose stop command:

$ docker-compose stop

Stopping infoapp_info_1... done

Stopping infoapp_redis_1... done

As we can see even with this simple example of a web application, Docker Compose
simplifies the management and provisioning of our containers and bypassing all of
the error-prone manual steps for running multiple containers. In either case, Docker
Compose is an essential companion when using Docker in your workflow.

Redis and AWS
Amazon Web Services (AWS), through its ElastiCache service available at https://
aws.amazon.com/elasticache/, offers a Redis protocol in-memory cache that
provides you with the Redis command set but using Amazon's own backend. This
includes functionality for automating common virtual machine tasks such as patch
management and failure detection and recovery. Scaling with ElastiCache is also
easier than other options because you can configure and add more Cache nodes
through the AWS Management Console as your application's operational demands
increase due to greater demands from your customers or internal clients in your
organization. Pricing for ElastiCache varies depending on your usage where you
pay only for the resources your ElastiCache nodes consumes while operating your
application. Because ElasticCache is only Redis protocol compliant and does not use
Redis server in the backend, there are some limitations that should be considered
when using ElastiCache with your Redis clients.

https://aws.amazon.com/elasticache
https://aws.amazon.com/elasticache

Docker Containers and Cloud Deployments

[258]

For starters, ElastiCache is currently restricted to Redis 2.8 and earlier commands
and functionality, so all of the Redis Cluster commands are not available. If your
application does require sharding across multiple Redis masters, when using
ElastiCache means you'll need to use a fully client-based sharding approach for
your data and not use Redis Cluster. ElastiCache does offer types of nodes that are
equivalent to Redis master and slave instances:

Running Redis on AWS

Another option for running Redis on AWS, and one that many take advantage of, is
to spin-up hardware virtual machine (HVM) instance on Amazon's Elastic Compute
Cloud (EC2). To run Redis on an EC2 virtual machine, you'll want to minimize latency
when Redis forks its process to save to disk by selecting an EC2 instance with multiple
cores so that the workload per CPU core is minimized. You'll also want to disable
OS swapping because if your Redis instance exceeds the available RAM, with OS
swapping enabled, your Redis instance will become very slow as Redis attempts to
access and write data to disk through the swap. Many organizations and individuals
are running their development and operational Redis databases on AWS through
dedicated EC2 VMs and with Amazon's aggressive pricing, getting up and running
with Redis on AWS is an attractive and compelling reason to use Redis on AWS.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[259]

Dedicated cloud hosting options
There are a number of companies that offer dedicated Redis hosting where you
do not have to worry about the operational specifics of the operating system and
environment that is running Redis. Instead you can quickly launch and use Redis
without worrying about hosting a virtual machine or other system management
tasks. Instead of providing a review for all of these Redis service providers, we will
look at two of the most popular options for dedicated Redis hosting, the first from
Redis Labs at https://redislabs.com/, and the second is using DigitalOcean's
Redis hosting service.

Redis Labs
In 2015, Salvatore Sanfilippo creator and principal developer of Redis, accepted
a position at Redis Labs as the lead for open source development and Redis Labs
also became the principal sponsor of Redis as well. Redis Labs is headquartered in
Mountain View, California with their Research and Development offices located
in Tel Aviv, Israel. Redis Labs offers two Redis products (as well as a Memecached
hosting service) Redis Labs Enterprise Cluster (RLEC) and Redis Cloud. RLEC is an
enterprise cluster product that encapsulates multiple Redis databases into a highly
scalable and available environment running in a Docker container. RLEC supports
multiple types of configuration including a single Redis instance with one Master
node, highly available Redis master instance with one or more Redis slave instances,
a Redis cluster database with multiple master shards, and finally a setup similar
to Redis Cluster with multiple master shards instances with each master being
replicated to one or more Redis slave instances. RLEC can be downloaded and used
within your own environment or you can purchase a commercial subscription to use
RLEC in production in your environment or through any of the most popular cloud
providers such as AWS, Google, Microsoft, Heroku, and others.

Redis Labs also offers a fully-managed Redis hosting option for organizations
through their Redis Cloud that can run on the customer's choice of public or private
clouds. Pricing for Redis Cloud at the time of writing ranged from a free level at 30
MB to $36 a month for 500 MB, to $71 for GB, to $338 for 5 GB all fully supported
and hosted by Redis Labs. Additional space is available as a pay-as-you-go service
of 10 percent per 15 GB increments over the maximum price. If your needs include
complex setups for master-slave replication, high availability, and cluster-support,
part of the services provided by Redis Labs is to manage all of the configuration and
operational support as part of their premium services. The downside, of course, is
that these services are not cheap but the extra support may be well worth it to you or
your organization.

https://redislabs.com/

Docker Containers and Cloud Deployments

[260]

DigitalOcean Redis
While other cloud providers offer Redis specific hosting, DigitalOcean is one of
the least expensive and provides a Redis-specific virtual machine used in their
naming schema—a "droplet", a virtual machine running Ubuntu 14.04 with Redis
preinstalled that can be launched in minutes from their easy-to-use web console.
Depending on how the droplet is configured, the monthly costs for running a
minimum droplet with 512 MB RAM and 1 CPU core with 1 GB SSD hard disk is
5 dollars per month ranging up to $640 a month for 64 GB RAM and 20 CPU cores
with 640 GB hard disk size.

Digital Ocean recommends securing your Redis application (not bad advice for any
Redis cloud server) by either enabling the requirepass Redis configuration directive
in the redis.conf file located at /etc/redis/ in the Redis droplet or you could
issue the CONFIG SET requirepass {your-redis-password} to the running Redis
instance on your droplet. In the same article, they also recommend updating the
/etc/init.d/redis system startup script by changing the CLIEXEC directive to:

CLIEXEC="/usr/local/bin/redis-cli -a your_redis_password"

In this droplet, remote access to the Redis instance is disabled by the bind directive
set to 127.0.0.1. You'll need to either comment-out or delete the bind directive
from the running Redis instance and then restart the Redis service by issuing this
command after you connect to your droplet through an ssh session:

$ sudo service redis restart

While DigitalOcean is just one of many options to run Redis on a public cloud,
compared to other options, Digital Ocean's Redis droplet is a simple option for
quickly getting a small-to-medium Redis database up and running.

www.ebook3000.com

http://www.ebook3000.org

Chapter 8

[261]

Summary
This chapter introduced Docker, a container technology for Linux, that can ease the
difficulties of managing Redis-based applications by providing isolated, replicated,
and fast application virtualization without the need to launch a new virtual machine.
We went through the steps to download and launch a container instance of the
official Redis Docker image and showed how to send in various command-line
options for running Redis in a Redis container. We then looked at how Docker
compose can be used to automate and simplify the deployment of multiple
containers in a typical application. Finally, we examined three-cloud hosting options
for running your Redis application and some of the advantages and disadvantages of
each option. In Chapter 9, Task Management and Messaging Queuing we will turn back
to more application design and development and look in much more depth on how
to use Redis Pub/Sub functionality for messaging and other types of functionality
between applications that can be implemented and optimized in Redis.

www.ebook3000.com

http://www.ebook3000.org

[263]

Task Management and
Messaging Queuing

While the uses of Redis in enterprise are many, Redis's support for the publication/
subscription (Pub/Sub) messaging design pattern allows for a fast and easy way to
use Redis as a messaging broker. Redis's role in richer and more feature complete
messaging frameworks also gives the application designer added flexibility if Redis's
own Pub/Sub is insufficient for the requirements of the application or the project.

Overview of Redis Pub/Sub
Redis Publisher/Subscriber - Pub/Sub for short - is a messaging model that is fast
and stable. Instead of processes sending messages directly to each other, a publisher
or sender submits messages to one or more channels and the receivers or subscribers
that have subscribed to a channel receive all messages posted to the specific
channels. If you design your application being mindful of race conditions and the
possibility of delivery failure, Pub/Sub offers fast messaging solutions.

Conceptually, Redis Pub/Sub is similar to Really Simple Syndication (RSS), or
the atom formats used by websites to publish feeds for consumption by clients or
readers. In either case, neither the website publisher nor the consuming client are
directly sending messages to each other. The client connects and consumes the
content from feeds from those websites' publications – either blogs, data, podcasts,
or other media. Like RSS, Redis Pub/Sub, and other publish/subscribe systems, the
advantage of this messaging pattern is better scalability for the systems for more
dynamic networks.

Task Management and Messaging Queuing

[264]

Instead of having to build management and coordinating code for routing messages
between specific senders and receivers, large numbers of senders and receivers just
need to post and receive messages from a channel. The downside of publication/
subscription message pattern is that the publisher syntax is not easy to modify or
change. For Redis, the Pub/Sub publisher message and commands are stable and not
likely to change, and Pub/Sub messages formats are also stable and broken up into
three or four parts that we will examine in the next section:

Pub/Sub Messaging Patterns

More specifically, Redis implementation of Pub/Sub is a type of topic-based
messaging pattern that are called channels in Redis's nomenclature. Other
alternatives to topic-based messaging systems are Pub/Sub systems that route
messages based on the characteristics or metadata of the message. An example
of a topic-based messaging system might be error-handling logging code in an
application where a message is sent that includes levels, such as INFO, DEBUG, ALERT,
or SEVERE that depend on the type of logic, I/O, or network failure in an application.
A responding subscriber may send an e-mail if a message is marked or tagged as
ALERT or SEVERE level. This type of functionality, while not directly supported
by Redis, can be implemented by having separate INFO, DEBUG, ALERT, or SEVERE
channels that subscribing processes would send emails to if a message is received in
the ALERT or SEVERE channels.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[265]

Pub/Sub RESP replies
In Redis Pub/Sub, the messaging format is in RESP Array reply with three or four
elements. The first element in the Pub/Sub messaging format determines the type
of message and can be one of these four Redis commands, SUBSCRIBE, UNSCRIBE,
PSUBSCRIBE, and PUNSUBSCRIBE.

SUBSCRIBE and UNSUBSCRIBE RESP Arrays
Connecting to a Redis instance with two connections, the first with a standard Redis
CLI client and the second with telnet, we will illustrate the RESP reply for three
element commands SUBSCRIBE and UNSUBSCRIBE:

$ telnet localhost 6379

Trying ::1...

Connected to localhost.

Escape character is '^]'.

SUBSCRIBE info

*3

$9

subscribe

$4

info

:1

In this SUBSCRIBE command, the first element is $9 followed by carriage-return line
feed. The second element is the channel, info, that the client is subscribing to, with
the third element in a subscribe message being the number of channels that the client
is currently subscribed to receive messages. In our Redis CLI, we'll send a message
with the PUBLISH command to the info channel:

127.0.0.1:6379> PUBLISH info "Sending a message"

(integer) 1

The resulting RESP message array for our subscribing telnet client with the message
is as follows:

*3

$7

message

$4

Task Management and Messaging Queuing

[266]

info

$17

Sending a message

This three-element array, with the first element being the message keyword,
followed by the second element being the channel info, followed finally with
the text string of the actual message, "Sending a message" is RESP for most
channels when a client uses the SUBSCRIBE command.

Now, we'll issue an UNSUBSCRIBE command with the channel info:

UNSUBSCRIBE info

*3

$11

unsubscribe

$4

info

:0

In this UNSUBSCRIBE message, the second element in the message array is set if the
client successfully unsubscribed from the channel, with the last element in the array
indicating the number of channels the client is still subscribed to, if the number is
zero, then the client is no longer in pub/sub mode and can send any normal Redis
command to the server.

PSUBSCRIBE and UNSUBSCRIBE arrays
The PSUBSCRIBE command is a four element array command and includes all of the
fields as SUBSCRIBE with an additional field for the pattern being matched. In our
telnet session, we'll issue a PSUBSCRIBE command using an asterisk * to subscribe
to all of the channels that start with info:

PSUBSCRIBE info*

*3

$10

psubscribe

$5

info*

:1

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[267]

For the PSUBSCRIBE command, the second element in the RESP Array is info* being
the pattern that matched, the third element being the original channel, and the fourth
element being the message body. The psubscribe format is for the special case when
the client subscribes to a channel through a pattern matching, which we'll discuss in
more detail in the next section of this chapter. Sending a second message from our
Redis-cli session:

For the PUNSUBSCRIBE command, the RESP Array that is returned from the Redis
server includes three elements with the pattern for all the channels that match
the pattern:

PUNSUBSCRIBE info*

*3

$12

punsubscribe

$5

info*

:0

Pub/Sub with Redis CLI
The basic publish/subscribe commands with Redis start with a client issuing a
SUBSCRIBE command followed by the name of a channel, in this case a generic
status channel in a Redis CLI session:

$ redis/src/redis-cli

127.0.0.1:6379> SUBSCRIBE status

Reading messages... (press Ctrl-C to quit)

1) "subscribe"

2) "status"

3) (integer) 1

Now, in a different terminal window (either using the screen utility or opening up
a separate tab in your terminal client), start a second Redis CLI client and submit a
message from client to the status channel with the PUBLISH command:

$ redis/src/redis-cli

127.0.0.1:6379> PUBLISH status "Ok, everything working"

(integer) 1

Task Management and Messaging Queuing

[268]

Switching back to our original Redis-cli window, we can see the results as follows:

1) "message"

2) "status"

3) "Ok, everything working"

Unlike other clients, exiting the subscribe mode with our first Redis CLI session
requires a Ctrl + C key combination that quits the Redis CLI session and drops you
back to the bash shell. We'll relaunch Redis CLI and start monitoring all channels
that start with status using the PSUBSCRIBE command:

^C

$ redis/src/redis-cli

127.0.0.1:6379> PSUBSCRIBE status*

Reading messages... (press Ctrl-C to quit)

1) "psubscribe"

2) "status*"

3) (integer) 1

Returning to our second Redis CLI session where we submitted our first message,
we'll go ahead and send a few messages to a status-error, status-alert, and
stats channels:

127.0.0.1:6379> PUBLISH status-error "Program failed to run"

(integer) 1

127.0.0.1:6379> PUBLISH status-alert "Program approaching maximum memory"

(integer) 1

127.0.0.1:6379> PUBLISH stats "100 Clicks"

(integer) 0

The results of sending these PUBLISH commands to our first client that is subscribed
to these channels using the PSUBSCRIBE are as follows:

1) "pmessage"

2) "status*"

3) "status-error"

4) "Program failed to run"

1) "pmessage"

2) "status*"

3) "status-alert"

4) "Program approaching maximum memory"

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[269]

So, using the PSUBSCRIBE pattern, the monitoring Redis-cli session received
messages from both the status-error and status-alert channels, but didn't
receive any messages from the stats channel because the glob-pattern didn't match
that channel. You'll also notice that there are four elements in the PMESSAGE response,
which now includes what channel is matched with the original glob-pattern.

An important limitation of Pub/Sub that should be noted is that Redis's Pub/Sub
implementation does NOT provide reliable delivery of messages, that is, Redis
Pub/Sub is fire and forget. Messages published to a channel are not guaranteed to
be delivered to the client monitoring the channel by subscription. For example, if
a Pub/Sub client monitoring a channel fails and later reconnects and subscribes to
the channel, the client will not receive the messages that were posted to the channel
during the interim.

Redis Pub/Sub in action
To see how Redis Pub/Sub may be used within an application context, we'll look
at modeling a simple Kanban manufacturing setup that involves three stations in
the construction of a toy airplane in an imaginary factory at the North Pole: Elves
Mfg. Inc. Kanban is a management philosophy and a set of techniques that was
first developed and popularized by Toyota Manufacturing in the construction of
automobiles that showed drastic improvement in quality and reliability over the past
fifty years. Based on Toyota's success with lean manufacturing, the practices and
philosophy surround Kanban spread to other manufacturers in Japan – particularly
suppliers and other companies supporting Toyota – and spread across the world. By
the early 2000s, lean manufacturing has become accepted and used in a wide range
of manufacturing, service, governmental, and non-profit organizations to improve
the quality of their products and services under tight budget constraints.

Use the PUNSUBSCRIBE * command to stop monitoring all channels and
return your Redis client to normal Redis mode.

Task Management and Messaging Queuing

[270]

In a traditional manufacturing line at a factory, each workstation takes the result of
the previous manufacturing station and adds and assembles material, before sending
the partially completed product to the next station in the manufacturing line. The
overall goal of the traditional manufacturing system is continual throughput for all
workstations, with the most products manufactured in the least amount of time,
resulting in more profits as costs per unit decline with higher total volumes. This
type of manufacturing tends to result in very top-down, centralized command-
and-control structures that are tightly coupled across the enterprise. If a step fails,
the entire operations grinds to halt with the excess work-in-process inventory
accumulating at the stations behind the station with the error, and the work slowing,
or even stopping, for work stations further down stream in the manufacturing
line. This process is identified as a "push process" in the lean start-up and lean
manufacturing literature and is contrasted by a "pull process" used in Kanban, and is
the heart of "just-in-time" manufacturing and increasingly service-oriented processes.

In the more realistic and manual Kanban implementation, each manufacturing
step has physical color-coordinated cards with relevant product details attached
and associated with a bin of materials at each step in the production of a product.
Each bin has a level of partially completed product that is consumed in the process
of manufacturing in that step. When the level of inventory is depleted in a bin, a
Kanban card and the empty bin is sent to the previous step and replaced with a
full-bin that also contains a Kanban card. The first step in the process signals that
an order for supplies needs to be sent to the supplier.

To simulate three different workstations, we'll create three applications in different
programming languages both as a way to illustrate how heterogeneously messaging
with Redis Pub/Sub works and as an example of a Kanban work-flow. The product
our manufacturing factory will construct is a child's "Jack-in-the-Box", where a child
turns a lever and at a random moment, the lid pops open and a clown head pops out:

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[271]

Jack-in-the-Box Kanban

First workstation using Python Pub/Sub
The first workstation in our hypothetical North Pole product takes a raw piece of
wood, constructs a five-sided cube with a lid, and passes the resulting box to the
second step in the manufacturing line. We will create a Python class that monitors a
Kanban channel, requests the raw material from the supplier if the bin drops below
a threshold, builds the box, and then sends the bin, with an accompanying Kanban
message, to our second workstation.

Task Management and Messaging Queuing

[272]

The second manufacturing station in our Elves Mfg factory has a bin of completed,
painted cubes, and sends the bin when it receives a message while monitoring the
Kanban channel for a "PULL Paint" message. At the second workstation, when a
message is received, the completed bin is forwarded on to the last step along with a
"PULL Box" message to the kanban channel for a bin of roughly constructed wooden
boxes. After the bin is received from the previous station, the second workstation
paints, installs hinges on the lid, and now has a work-in-progress bin ready to send
when a "PULL Paint" message in the Kanban channel is received from the final
workstation on our assembly line. At the final workstation, a bin of painted boxes
from the second workstation is available as an input. When an "ORDER Jack-in-
the-box" message is received on the kanban channel, a painted box is taken from the
bin, a pop-up mechanism and the doll are assembled, and the resulting completed
Jack-in-the-Box toy is sent to the shipping department to a bag for the North Pole
Sleigh Shipping Company.

The Python code for step one in the manufacturing assembly line is a
BuildBoxWorkstation class that is initialized with a Redis instance, sets a bin and
threshold when a kanban message is sent to a supplier for more raw material, and
the class monitors the kanban channel for a message indicating a completed bin of
boxes is ready for the second workstation. An instance of the BuildBoxWorkstation
class also monitors an operations channel for starting and stopping work on the
assembly line:

class BuildBoxWorkstation(object):

 def __init__(self,
 database = redis.StrictRedis()):
 self.database = database
 self.messages = self.database.pubsub()
 self.messages.subscribe("kanban")
 self.messages.subscribe("operations")
 self.input_bin, self.output_bin = 0, 0
 self.threshold = 5

In this class, a run method creates an event-loop where messages are polled and
responded to depending on the channel and the message. Just as a shortcut and not
to respond to SUBSCRIBE, UNSUBSCRIBE, PSUBSCRIBE, and PUNSUBSCRIBE (to build
a more robust system, we would want to create handlers for all of these types of
messages), we'll ignore any messages that is an integer, as seen here:

 def run(self):
 while 1:
 for item in self.messages.listen():
 channel = item.get('channel')
 message = item.get('data')

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[273]

 type_of = item.get('type')
 if type(message) == int:
 continue
 message = message.decode()

 if channel == b"kanban":
 if message.startswith("PULL Box"):
 self.__construct_box__()
 if channel == b"operations":
 if message.startswith("STOP"):
 return

When a message comes through one of the channels that the BuildBoxWorkstation
instance is monitoring, either ordering raw materials or creating a bin of boxes
and lids as an input bin for the Jack-in-the-box paint step. The internal method
__construct_box__ first checks to see if there is any raw wood material in the
input_bin and if the amount is below the threshold, an "ORDER wood" message
is sent in the __pull_material__ method, as seen here:

 def __pull_material__(self):
 # Sends message to supplier to order wood
 message = "ORDER wood"
 self.database.publish("kanban", message)
 print("{}, input_bin={}".format(message, self.input_bin))
 # For convenience we'll just add an order of 5
 # to our input bin in a real operation, an order
 # would be placed, hopefully with a kind supplier API
 self.input_bin += 5

Next, the output_bin is filled with assembled wooden boxes from the input_bin
and a "READY box" message is published to the kanban channel for processing by
the second step in the manufacturing process, and then both input and output bins
are set to 0. The __construct_box__ is as follows:

def __construct_box__(self):
 if len(self.input_bin) > 0:
 self.input_bin -= 1
 if len(self.input_bin) <= self.threshold:
 self.__pull_material__()
 # Cuts and assembles box with a lid
 self.output_bin = [i for i in range(1, len(self.input_bin))]
 # Sends Kanban Message to next station
 self.database.publish(
 "kanban",
 "READY Box {}".format(len(self.output_bin)))
 # Bins are now empty
 self.input_bin, self.output_bin = 0, 0

Task Management and Messaging Queuing

[274]

Second workstation Node.js Pub/Sub
The second workstation's code is implemented with Node.js and is available in
the paint_cube.js source file at the book's website and GitHub repository. In the
paint_cube.js file, the first lines import the node_redis module to create two
Node.js Redis clients:

var redis = require("redis"),
 client = redis.createClient(),
 client_subscriber = redis.createClient();

After creating two Redis instances, the first function in paint_cube.js of the second
workstation creates a Javascript object containing a Redis client as the object's
database and two Javascript integer variables for both the input and output bins that
are set to 0:

function PaintCubeWorkstation(redis) {
 var self = this;
 self.database = redis;
 self.input_bins = 0;
 self.output_bins = 0;

After setting these initial variables, the PaintCubeWorkstation instance then creates
a log message for subscribing to any channels:

self.database.on("subscribe", function(channel) { console.
log("Subscribed to "+channel); } self.database.subscribe("kanban");
self.database.subscribe("operations");

The function callback in our PaintCubeWorkstation instance responds to Redis
messages that come through the operations and Kanban Pub/Sub channels:

 self.database.on("message", function(channel, message) {
 if(channel === "operations") {
 if(message === "STOP") {
 self.database.unsubscribe();
 self.database.end();
 console.log("Stopping PaintCubeWorkstation");
 process.exit(1);
 }
 }
 if(channel === "kanban") {
 if(message === "PULL Paint") {
 console.log("Output bins " + self.output_bins);
 if(self.output_bins > 0) {
 client.publish("kanban", "READY Painted " +
self.output_bins);
 self.output_bins -= 1;

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[275]

 } else {
 client.publish("kanban", "PULL Box");

 }
 }
 if(message.indexOf("READY Box") === 0){
 self.input_bins += 1;
 console.log("Input bin size " + self.input_bins)
 for(i = 0; i<=self.input_bins; i++) {
 // adds hinges and paints each box and adds to output bin
 console.log("\tAdds hinges and paints " + i);
 self.output_bins += 1;
 }
 client.publish("kanban", "READY Painted " +
self.output_bins);

 }
 }

 }

The final lines in the paint_cube.js file instantiate a PaintCubeWorkstation object
with the callback function to handle any messages sent to the channels that are being
monitored by the object.

Third workstation Lua Client Pub/Sub
The software code we'll be using for the final work station that assembles the
Jack-in-the-Box for the customer are a couple of server-side Lua scripts that
we'll call from our Redis CLI and a client-side Lua script for subscribing and
responding to messages. Like the BuildBoxWorkstation Python code and the
PaintCubeWorkstation
Node.js code, the client-side Lua script responds to a toy order by first using any
existing Jack-in-the-Box toys in its current output bin and then publishing a message
to the kanban message channel requesting new partially completed toys from the
second workstation when the third workstation is running low.

To set up the local environment to support Redis client-side Lua scripts, we'll need to
first install the LuaRocks package manager for Lua at https://luarocks.org/ after
you have installed the latest version of Lua (if you haven't already) from http://
www.lua.org/. With LuaRocks installed, we'll next need to install the redis-lua
client located at https://github.com/nrk/redis-lua with the following command
(assuming you are using Linux or Mac):

$ sudo luarocks install redis-lua

https://luarocks.org/
http://www.lua.org/
http://www.lua.org/
https://github.com/nrk/redis-lua

Task Management and Messaging Queuing

[276]

After the Lua Redis client is installed, we can then create a subscription service for
handling and responding to messages on the kanban and operations channels. The
lua script, finish_toy.lua, contains the functions that listen to these channels
and calls the appropriate server-side Lua scripts for publishing messages to the
kanban channel based on receiving an "ORDER Toy" message. Unlike the code for the
previous two workstations, the final workstation has a single bin that has a Lua
table type in the finish_toy.lua.

At the beginning of the Lua client script finish_toy.lua we import and set up two
Redis clients for use later in the script and we create a Lua variable toys for finished
Jack-in-boxes that are ready for delivery, and a Lua table channels:

local redis = require 'redis'

local client = redis.connect('127.0.0.1', 6379)

local publisher = redis.connect('127.0.0.1', 6379)

local toys = 0

local channels = {"kanban", "operations" }

Next, we define two functions – build and deliver – that are called in a main
function when either a "PULL toy" or "READY Painted" Jack-in the-Box messages
come when monitoring the kanban channel.

The build function prints a message and increments the global toys variable by one:

function build ()
 print("Building Toy "..toys)
 toys = toys + 1
end

The deliver function sends a "READY Toy" message to the kanban, prints some text,
and decrements the toys variable:

function deliver ()
 publisher:publish("kanban", "READY Toy")
 print("Toy delivered")
 toys = toys - 1
end

The main function creates a pubsub loop, checks the value of the message and
determines what step to follow in the workstation based on the message's channel
and payload. When a STOP message comes through the operations channel, the
pubsub mode is aborted and this workstation ceases operation by returning a
Boolean. Depending on the message's payload in the kanban channel, either a toy is
delivered and/or a "PULL Paint" message is published to the kanban channel.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[277]

Finally, when the PaintCubeWorkstation posts a "READY Painted" message to the
kanban, the Lua script's build and then the deliver functions are called as a result,
as seen here:

for msg, abort in client:pubsub({ subscribe = channels}) do
 if msg.kind == 'message' then
 if msg.channel == "operations" then
 if msg.payload == "STOP" then
 print("Stopping Finish Toy")
 abort()
 end
 elseif msg.channel == "kanban" then
 if msg.payload == "PULL Toy" then
 if toys > 0 then
 deliver()
 else
 publisher:publish("kanban", "PULL Paint")
 end
 elseif msg.payload == "READY Painted" then
 build()
 deliver()
 end
 end
 end
end

With the code in place for these three workstations, we can run a simulation of
a Jack-in-the-Box Kanban run by starting a command-line terminal session and
launching all three of the workstations' code using the UNIX screen utility. We
will start by launching a Redis CLI session:

127.0.0.1:6379> PUBLISH kanban "PULL Toy"

(integer) 3

The "PULL Toy" message initiates an action in the Lua and prints out the following
to the command line:

$ lua finish_toy.lua

Final Assemble Toy Workstation

Pull Paint box

Building Toy 0

Toy delivered

Task Management and Messaging Queuing

[278]

Monitoring the second, we can see the result of the Node.js PaintCubeWorkstation
object:

$ node paint_cube.js

In Paint Cube Application

Subscribed to kanban

Subscribed to operations

Output bins 0

Input bin size 1

 Adds hinges and paints 0

 Adds hinges and paints 1

The first workstation responds to the "PULL Box" message sent by the Paint Cube
workstation, which results in the following display in the terminal window for the
build_box Python module:

$ python3 build_box.py

Running BuildBoxWorstation

ORDER wood, input_bin=0

READY Box 4

READY Box 3

READY Box 2

Now, we'll post a STOP message to the operations channel that each workstation is
also subscribed to, which should stop each workstation from our Redis CLI session:

127.0.0.1:6379> PUBLISH operations "STOP"

(integer) 3

The build_box.BuildBoxWorkstation instance outputs the following after
responding to the STOP message:

Stopping

$

The Node.js PaintCubeWorkstation logs a message to the console and sends a 1
integer to the process.exit call to terminate script execution to the bash shell when
responding to the STOP message on the operations channel:

Stopping PaintCubeWorkstation

$

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[279]

The finish_toy.lua script main function prints a text string and returns control
back to the bash shell:

Stopping Finish Toy

$

In this simple implementation of a Kanban signaling manufacturing assembly-line
for Jack-in-the-Box toys, a pull demand process builds each toy instead of a push
manufacturing process. To simulate how Redis Pub/Sub messaging uses different
programming systems, we created three different scripts in Python, Node.js, and
Lua, and showed how using each respective programming language's Redis
client could interoperate using just a Redis Pub/Sub messaging framework and
associated commands.

Redis keyspace notifications
A common use case when using Redis is the ability for an application to respond to
changes that may occur to the value stored at a particular key or keys. Fortunately,
since version 2.8, Redis provides a mechanism for client code to subscribe to a Pub/
Sub channel that monitors events related to data. Called keyspace notification,
functionality for monitoring events like all the commands that change a given key,
all keys receiving specific commands such as HSET, or all keys that are about to be
deleted because of an EXPIRE command. Using Redis Pub/Sub allows existing Redis
clients that already implement Pub/Sub to use keyspace notification to respond to
changes in the Redis data.

When a command is issued that triggers a Redis keyspace notification, two
events occur that monitoring clients can respond to; the first is called a Key-space
notification and the second is called a Key-event notification. In a Key-space
notification event, a message is sent to a channel, __keyspace@0_:your_key hset,
when a field value is changed at the Redis hash your_key key.

Task Management and Messaging Queuing

[280]

At the same time, another message is sent as a Key-event notification to the __
keyevent@0_:hset your_key channel for clients monitoring any HSET commands in
the Redis instance:

Redis Keyspace notification

Redis keyspace notification is disabled by default, because although this
functionality is not an intensive operation in terms of memory, it still requires
additional CPU resources. To enable keyspace notification, either enable and modify
the notify-keyspace-events configuration directive in redis.conf or through
the CONFIG SET Redis command. The notify-keyspace-events directive takes
a number of parameters in order to determine which type of channel (keyspace or
keyevent) and what will be posted to these channels:

•	 K parameter is for all keyspace events.
•	 E parameter is for all keyevent events. One or both must be present for these

notifications to be enabled, otherwise no channels will be enabled.

The type of commands to monitor is determined by the following:

•	 $ for strings
•	 l for lists
•	 s for sets

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[281]

•	 h for hashes
•	 z for sorted sets

Finally, the x parameter is for a message when a key has expired and the e parameter
is for a message when a key has been evicted because a maxmemory condition has
been triggered in the running Redis instance.

Going back to the Linked Data Fragments server project, Redis keyspace notifications
are used in the latest iteration of the project. Instead of using KEYS or SCAN with
string-matching globs for matching triple patterns, the latest version of the Linked
Data Fragments server uses hashes for representing triples, but there is not a way
to automatically delete fields from these hashes when an element has expired and
been evicted from the Redis instance due to the LRU policy set in the Redis cache.
Although people have requested the feature of setting an expiration on individual
fields in a hash, this currently doesn't exist in Redis without any plans to do so in the
future. Instead, we can replicate this functionality through the use of Lua scripting and
keyspace notifications.

To enable keyspace notifications, we'll edit the main redis.conf file for the project
and change the notify-keyspace-events configuration directive to include the
following parameters AE to monitor all key events for expiration.

In the main cache module cache/__init__.py for the linked data fragments server,
a new function remove_expired monitors the key event channel __keyevent@_: for
expired keys. As a cache backend, the Linked Data Fragments server sets an expiration
time limit for each individual subject, predicate, and object SHA1 hash that is stored
in Redis. When a particular key expires, we'll first check for any associated predicate-
object, subject-predicate, and subject-object hashes, iterate through these hashes, and
remove the expired hash digest from any associated hashes for other keys.

The remove_expired function calls three functions: remove_subject, remove_
object, and remove_predicate that all remove the secondary keys for the expired
digest as well as any members or fields (depending on what Redis data structure
strategy is being used to represent triples in the Redis cache) that may in other
secondary keys in the cache. Here is the remove_expired Python function:

def remove_expired(**kwargs):
 datastore = kwargs.get("datastore", redis.StrictRedis())
 strategy= kwargs.get("strategy", "string")
 database = kwargs.get('db', 0)
 if strategy.startswith('string'):
 return
 expired_key_notification = "__keyevent@{}__:expired"
 expired_pubsub = datastore.pubsub()
 expired_pubsub.subscribe(expired_key_notification)

Task Management and Messaging Queuing

[282]

 for item in expired_pubsub.listen():
 sha1 = item.get("data")
 transaction = datastore.pipeline(transaction=True)
 remove_subject(sha1, transaction, datastore)
 remove_predicate(sha1, transaction, datastore)
 remove_object(sha1, transaction, datastore)
 transaction.execute()

While the remove_subject, remove_object, and remove_predicate functions are
similar in structure and purpose, the following remove_subject function illustrates
the general approach of removing any members or fields of related keys that are
either subjects, predicates, or objects in the represented triples in the Linked Data
Fragments server's Redis cache:

def remove_subject(
 digest,
 transaction,
 datastore=redis.StrictRedis()):
 subject_key = "{}:pred-obj".format(digest)
 if not datastore.exists(subject_key):
 return
 for row in datastore.smembers(subject_key):
 predicate, object_ = row.split(":")
 pred_subj_obj = "{}:subj-obj".format(predicate)
 if datastore.exists(pred_subj_obj):
 transaction.srem(pred_subj_obj,
 "{}:{}".format(digest, object_))
 obj_subj_pred = "{}:subj-pred".format(object_)
 if datastore.exists(obj_subj_pred):
 transaction.srem(
 obj_subj_pred,
 "{}:{}".format(digest, predicate))
 transaction.delete(subject_key)

For example, say the URL http://catalog.coloradocollege.edu/abde34 SHA1
hash 1dac26e30da98f3b64ce7e0e6de9704e18deefd1 has the following Redis hash
1dac26e30da98f3b64ce7e0e6de9704e18deefd1:pred-obj that stores all of the
predicates and objects SHA1 hashes that together make-up the complete triple. When
1dac26e30da98f3b64ce7e0e6de9704e18deefd1 expires, a message is sent to the
channel and the remove_expired function then goes through the fields for the attached
hash and removes all references of 1dac26e30da98f3b64ce7e0e6de9704e18deefd1
from any of the sets or hashes that are stored in the Redis cache.

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[283]

Task management with Redis and Celery
Celery, an asynchronous task queue project available at http://www.
celeryproject.org, is based on distributed message passing and allows execution
of individual tasks. With Celery, you can specify different message broker backends,
with Redis being one of the supported message brokers. In a basic use case for
Celery, a Celery application or instance is created for handling such operations as
creating tasks and managing workers that respond to those tasks.

To show how Celery can be used in a simple application, we'll implement an
application based on the following scenario: a small school district with a single
high school wants a class room reservation system for after-school activities. While
there are many approaches you could take to create a simple room reservation
system, we'll go ahead and build a Python-based system that uses Celery and Redis
to manage the room reservations in this high school. Each room that is available for
reservation will switch its state from any of these states:

•	 Cancelled

•	 Confirmed

•	 Denied

•	 Mediated

•	 Tentative

When a reservation task is sent to the room reservation system from other applications,
the returned state depends on a number of factors. If the room is available to book,
a Tentative or Confirmed status will automatically be returned depending on the
user or application's permissions. If the room cannot be booked because the room is
already booked, a Denied status will be returned to the user. If the user or application
does not have permissions to reserve a particular room a Mediated status is returned.
In a typical school setup, teachers would automatically be able to reserve rooms and
students can tentatively reserve rooms from the school's website:

http://www.celeryproject.org
http://www.celeryproject.org

Task Management and Messaging Queuing

[284]

A tablet is attached to the door for each of these rooms that should display the
status of the reservation while also showing upcoming reservations for the room.
The purpose of this architecture, using a task and messaging framework like Celery,
is that we can easily add more rooms that respond to reserve requests as well as
displaying their current state.

To start, we will create a new directory for our project and create three files, __
init__.py, backend.py, and tasks.py. The __init__.py can be blank and is
present in this directory to be able to use our application as a Python module. In
the backend.py code file, we'll import the celery module and create a Celery
application using a Redis broker:

from celery import Celery

app = Celery("room_reservation",
 broker="redis://localhost",
 backend="redis://localhost/1")

The Celery app uses our Redis instance as both a messenger broker and the backend
result store. In the tasks.py code file, the Celery application app will be imported
and a task decorator used to indicate that the availability, reserve and book,
cancel, search, and room functions are Celery tasks:

from celery import app

STATUS = ['Cancelled',
 'Confirmed',
 'Denied',
 'Mediated',
 'Tentative']

@app.task
def availability(room):
 .
 .
 .

@app.task
def book(status):
 .
 .
 .

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[285]

@app.task
def reserve(room, start, duration):
 .
 .
 .

@app.task
def search(text):
 .
 .
 .

@app.task
def room(name):
 .
 .

The basic task flow for our room reservation system starts with a reserve function
that takes an instance of a Room object, room, the event's start time, and the total
duration of the event. The reserve task does two things; first it checks to see if
the room can be reserved by checking the state of the room with an availability
function call with the start time, and a second availability call with the total time
made up of the start time plus the duration. If the room is available, the reserve
task issues a lock on the room's availability that begins at the start time and lasts
until with a delay equal to the start time plus the duration. The room lock is a simple
implementation and not at all robust for a multi-instance Redis setup with multiple
masters and slaves, with risks of a race condition developing if the Redis instance
fails and the lock is not released. Incoming reserve tasks will attempt to lock a non-
existent room key for this application. A more robust distribute lock manager – like
the Redlock implementation linked from the official Redis documentation at http://
redis.io/topics/distlock – would be implemented for production-level use in a
room reservation situation.

When a room is no longer being used, the lock expires and the availability task
function will return True for further reserve tasks. The cancel task function is for
situations where a meeting room becomes available earlier before the room key
has expired or if a room was reserved for a future time and the meeting or event is
canceled. The cancel function acquires the lock and deletes it from the Redis result
datastore so the room is now available for use. The availability task function
checks for an existing room key and if it is found, returns False to the calling client
and True if the room's key is not found.

http://redis.io/topics/distlock
http://redis.io/topics/distlock

Task Management and Messaging Queuing

[286]

To run the Celery worker for the room_reservation module from the command-
line, the following command will run Celery:

$ celery -A room_reservation worker -l info

The following screenshot of running this command shows the results:

For example, to check the availability of room 101, we'll start a Python shell, import
our availability task and run the task immediately:

$ python3

Python 3.4.3 (default, Oct 14 2015, 20:28:29)

[GCC 4.8.4] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from room_reservation.tasks import availability

>>> result = availability.delay("room-101")

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[287]

The availability task is executed immediately with the Celery worker displaying
the following:

[2015-10-24 12:41:18,637: INFO/MainProcess] Received task: room_reservation.
tasks.availability[abc10c51-beb3-4e8b-abc5-21dda4dd7ddf]

[2015-10-24 12:41:18,641: INFO/MainProcess] Task room_reservation.
tasks.availability[abc10c51-beb3-4e8b-abc5-21dda4dd7ddf] succeeded in
0.0029513250046875328s: -1

A client application sends a reserve task in similar fashion that then uses the
availability and book tasks to accomplish a distributed and asynchronous
room booking using Celery and Redis.

GIS and RestMQ
Geographical data structures and commands have been added to Redis's 3.2 branch
and offer new opportunities to add GIS capabilities to Redis-based projects. Before
we examine how a GIS-based messaging system can be built with Redis, we'll
explore the basic operations of these newer geographical-based commands.

Currently, the geographical commands and functionality is only available
in the Redis 3.2 version. To use these commands, you'll need to download
the 3.2 release of Redis and compile it for use.

The geographical-based commands operate by using a technique called geohashing
that is a latitude/longitude encoding system which constructs a hierarchical spatial
structure dividing space into buckets on a grid. The geohash algorithm was created
by Gustavo Niemeyer for the http://geohash.org web service. The construction
of geohash allows for nearby geographical locations to share the same initial
characters that, as the hash's characters are defined, the precision of the location
becomes progressively restricted to a point. Because nearby locations share prefixes,
geohashing allows the user to gradually broaden the scope of their search by
removing characters from the right-hand side of the geohash.

http://geohash.org

Task Management and Messaging Queuing

[288]

The first Redis commands to support geographical applications we will look at are
GEOADD and GEODIST. The GEOADD command takes a key and one or more triples
made up of a latitude, longitude, and member name. The geohashes of locations
are stored in Redis as sorted sets, hence the need for a member. To use GEOADD, first
launch a Redis 3.2 instance and then in either a separate terminal window or using
screen, a different session, launch Redis CLI program to connect to the datastore.
We will build a ski weather messaging application that sends a task with the current
slope conditions to a skier's or snowboarder's cellphone. We'll use GEOADD to create
a Colorado Ski Mountain that contains the longitude and latitude for four Ski resorts
in Colorado, USA:

127.0.0.1:6379> GEOADD colorado_ski_mountains -106.926982 38.905476
"Crested Butte"

(integer) 1

127.0.0.1:6379> GEOADD colorado_ski_mountains -106.3381 38.502855
"Monarch Mountain"

(integer) 1

127.0.0.1:6379> GEOADD colorado_ski_mountains -106.822146 39.165098
"Aspen Mountain"

(integer) 1

127.0.0.1:6379> GEOADD colorado_ski_mountains -106.355999 39.605234 "Vail
Mountain"

(integer) 1

To use the colorado_ski_mountains Redis key, we can use the GEODIST command
to calculate the distance in meters between the Crested Butte Ski Mountain and
Aspen Mountain with the following command:

127.0.0.1:6379> GEODIST colorado_ski_mountains "Crested Butte" "Aspen
Mountain"

"30263.881549595"

We can also return the distance in kilometers or miles by using the following
command switches:

127.0.0.1:6379> GEODIST colorado_ski_mountains "Crested Butte" "Aspen
Mountain" km

"30.263881549595002"

127.0.0.1:6379> GEODIST colorado_ski_mountains "Crested Butte, Colorado"
"Aspen Mountain" mi

"18.80515090011744

www.ebook3000.com

http://www.ebook3000.org

Chapter 9

[289]

The GEOHASH command returns the geohashes of one or more elements. With Crested
Butte and Aspen Mountain relatively close to each other, as seen with this result of
GEOHASH, notice that the two left-most characters, "9w", are the same:

127.0.0.1:6379> GEOHASH colorado_ski_mountains "Crested Butte" "Aspen
Mountain"

1) "9wgvqfd0ud0"

2) "9wunc1y3px0"

The GEOPOS command returns the longitude and latitude of a member of a GEO
sorted set. Here is the longitude and latitude for Vail and Monarch Mountains:

127.0.0.1:6379> GEOPOS colorado_ski_mountains "Vail Mountain"

1) 1) "-106.35600060224533"

 2) "39.605234833330236"

127.0.0.1:6379> GEOPOS colorado_ski_mountains "Monarch Mountain"

1) 1) "-106.33809953927994"

 2) "38.502854184479808"

With the GEORADIUS command, you pass in the geohash key, a center location in
longitude and latitude, and a radius in either meters, kilometers, feet, or miles will
return the nearest locations from the center. The GEORADIUS includes these additional
options with the WITHCOORD option to get each location's longitude and latitude, the
WITHDIST option provides the distance between the location and the center radius,
and the WITHHASH option provides the raw geohash-encoded set score. Taking the
longitude and latitude of the center of the state of Colorado in the United States, we
can then demonstrate these various options of the GEORADIUS command from our
Redis-cli session:

127.0.0.1:6379> GEORADIUS colorado_ski_mountains -105.692242 38.875350
100 km

1) "Vail Mountain"

2) "Monarch Moutain"

127.0.0.1:6379> GEORADIUS colorado_ski_mountains -105.692242 38.875350
100 km WITHCOORD

1) 1) "Vail Mountain"

 2) 1) "-106.35600060224533"

 2) "39.605234833330236"

2) 1) "Monarch Moutain"

 2) 1) "-106.33809953927994"

 2) "38.502854184479808"

Task Management and Messaging Queuing

[290]

127.0.0.1:6379> GEORADIUS colorado_ski_mountains -105.692242 38.875350
100 km WITHHASH

1) 1) "Vail Mountain"

 2) (integer) 1396750187740657

2) 1) "Monarch Moutain"

 2) (integer) 1396482048060275

Adding task management with RestMQ
With these Redis geographic commands available, we'll now add task management
functionality by using RestMQ. RestMQ is an open source project that implements
a message queue in Python and can be downloaded and installed from https://
github.com/gleicon/restmq. RestMQ can be run as a Docker container and
instead of installing and running RestMQ with Redis, we'll first clone the repository:

$ git clone https://github.com/gleicon/restmq.git
Cloning into 'restmq'...
remote: Counting objects: 796, done.
remote: Total 796 (delta 0), reused 0 (delta 0), pack-reused 796
Receiving objects: 100% (796/796), 241.22 KiB | 0 bytes/s, done.
Resolving deltas: 100% (426/426), done.
Checking connectivity... done.

Because we want to run the 3.2 branch of Redis in order to use the GIS commands,
we'll modify the restmq Dockerfile to download and extract the redis- TAR file,
compile redis-server, and copy it to /usr/bin/redis-serve with this RUN line as
the Dockerfile:

RUN apt-get install -y wget && \ wget http://download.redis.io/releases/
redis-3.2.0.tar.gz && \
 tar xzvf redis-3.2.0.tar.gz &&\
 cd redis-3.2.0 && \
 make && \
 cp src/redis-server /usr/bin/redis-server

Because Redis 3.2 runs in protected mode as a default, we'll need to modify the
restmq/dockerfiles/supervisor/redis.conf and add the following at the line 2:

command=/usr/bin/redis-server --protected-mode no

We'll then issue the following Docker commands to build the RestMQ image and
then run RestMQ on port 8888 and a Redis instance on the default port of 6379:

$ docker build –t restmq .

$ docker run --rm -p 6379:6379 -p 8888:8888 restmq

www.ebook3000.com

https://github.com/gleicon/restmq
https://github.com/gleicon/restmq
https://github.com/gleicon/restmq
http://www.ebook3000.org

Chapter 9

[291]

The RestMQ server running on port 8888 accepts HTTP GET, POST, and DELETE
methods as verbs in a simple REST service at http://localhost:8888/q/<queue-
name> where:

•	 GET requests remove an object from a RestMQ queue
•	 POST requests insert an object into a RestMQ queue
•	 DELETE requests purge the queue

To illustrate a weather application with a function for monitoring weather events
and alerts of all the ski resorts when an event is within a 100 km radius, the following
Python function monitor_weather is an application that polls a RestMQ queue for
events, extracts the latitude and longitude for the weather event, runs a GEORADIUS
Redis command, and then posts an alert to a RestMQ queue specific to each resort:

def monitor_weather(
 base_url,
 datastore=redis.StrictRedis()):
 channel_url = "{}/c/monitor".format(base_url)
 monitor_resp = requests.get(channel_url, stream=True)
 line_buffer = str()
 for char in monitor_resp.iter_content():
 line_buffer += char.decode()
 if line_buffer.endswith('\r\n'):
 line = line_buffer[0:-2]
 if line.startswith('null'):
 break
 message = json.loads(line)
 result = json.loads(message.get('value'))
 if 'location' in result:
 location = result.get('location')
 alert = result.get('event')
 in_ski_area = datastore.execute_command(
 "GEORADIUS",
 "colorado_ski_mountains",
 location.get('longitude'),
 location.get('latitude'),
 100,
 "km",
 "WITHHASH")
 # Goes through each resort and add a weather alert
 # to a queue resort's hash value

http://localhost:8888/q/%3cqueue-name
http://localhost:8888/q/%3cqueue-name

Task Management and Messaging Queuing

[292]

 for row in in_ski_area:
 queue_url = "{}/q/{}".format(base_url, row[1])
 alert_result = requests.post(queue_url,
 data={"value": alert}

From this function we can see how a GIS application using Redis for both GIS
calculations and as a message queue backend can be developed and used in a
fairly simple fashion. To see the all of the steps in using monitor_weather, please
check-out the app.py module documentation. In the next section we'll examine
another messaging alternative that doesn't use Redis server but is built using RESP
and Redis design patterns.

Messaging with Redis technologies
In distributed systems design, a popular usage pattern is to implement a message
queue where producers and consumers communicate across a middleware platform.
The producers and consumers are not necessarily running on the same machine with
the messaging backend that may not use Redis's own Pub/Sub commands.

Messaging with Disque
In early 2015, Salvatore Sanfilippo announced and then released the first alpha
release of a new distributed message broker project called Disque, with the source
code available at https://github.com/antirez/disque. Disque is based on
the Redis protocol, but does not actually use the Redis server. Redis clients can
communicate and use Disque; however, a number of language-specific Disque clients
for many of the most popular programming languages have been released and are
available from the Disque's GitHub main page.

To get Disque running is similar to Redis. First, open a terminal window and either
clone the Disque repository with Git or download the code repository as a ZIP file
at https://github.com/antirez/disque/archive/master.zip:

$ git clone https://github.com/antirez/disque.git
Cloning into 'disque'...
remote: Counting objects: 2565, done.
remote: Total 2565 (delta 0), reused 0 (delta 0), pack-reused 2565
Receiving objects: 100% (2565/2565), 1.38 MiB | 441.00 KiB/s, done.
Resolving deltas: 100% (1617/1617), done.
Checking connectivity... done.

Next, we change directories to Disque and then run the make command:

$ cd disque
$ make

www.ebook3000.com

https://github.com/antirez/disque
https://github.com/antirez/disque/archive/master.zip
http://www.ebook3000.org

Chapter 9

[293]

After Disque has been compiled, we'll start-up Disque and start investigating its
capabilities as a distributed job or task queue for a hypothetical situation where an
intra-solar communication system between Earth, the moon, Mars, and an asteroid
and comet is desired. The design pattern for Disque is similar to Redis in that we'll
create a cluster of nodes running on different ports using copies of the disque.conf
file for each running node. To begin our experiment with using Disque, we'll create
a project directory and copy our disque.conf four times:

$ mkdir solar-com

$ cd solar-com

$ cp ~/disque/disque.conf .

To run a simple Disque instance (if you're interested in running Disque in cluster
mode, see the documentation on the Disque website), run disque-server:

$ ~/disque/src/disque-server disque.conf

Now, we'll create two messages and send it to the Earth queue using the Disque
client with the ADDJOB command that takes as its first parameter a text string for the
queue name and as its second parameter the name of the job, with a final parameter
being a timeout in milliseconds:

$ ~/disque/src/disque

127.0.0.1:7711> ADDJOB Earth "Get latest news" 0

DI11e16675a292b568ad0e7a01ecc51aeeeb53bd9105a0SQ

With the GETJOB Disque command with the FROM keyword, we retrieve any jobs
from the Earth queue, once for each message that is in the queue we call:

127.0.0.1:7711> GETJOB FROM Earth

1) 1) "Earth"

 2) "DI11e16675a292b568ad0e7a01ecc51aeeeb53bd9105a0SQ"

 3) "Get latest news"

Now, we'll send a second message with ADDJOB to the Moon queue and retrieve the
message from the Moon queue with GETJOB:

127.0.0.1:7711> ADDJOB Moon "Get moon rock sample" 0

DI11e166757cd789784008299f7a393dbcdd36e14d05a0SQ127.0.0.1:7711> GETJOB
FROM Moon

1) 1) "Moon"

 2) "DI11e166757cd789784008299f7a393dbcdd36e14d05a0SQ"

 3) "Get moon rock sample"

Task Management and Messaging Queuing

[294]

We can see that the output is similar to a Redis-cli session, with Disque offering a
richer set of messaging options than Redis but built using the Redis nomenclature
and the successful execution model of Redis.

Summary
In this chapter, we covered in detail Redis support for the Publish/Subscribe
messaging model with Redis's special Pub/Sub mode that clients enter when issuing
either a SUBSCRIBE or with glob-style pattern matching variant PSUBSCRIBE Redis
commands. When in Pub/Sub mode, other Redis commands cannot be used with the
client and the client will monitor one or more channels for any incoming messages.
Other clients can push messages to a channel using the PUBLISH Redis command, and
all clients subscribing to that channel, either directly or through pattern matching,
will receive those messages. To illustrate how to use Redis Pub/Sub with three
different programming languages and clients, we constructed a simplified Kanban
manufacturing process for constructing Jack-in-the-Box toys for a fictional North
Pole company. We then examined two task and messaging frameworks – Celery and
RestMQ – that use Redis to implement richer and more robust messaging for client
applications, in this case a school room reservation example and a geographic-app
that uses Redis's new GIS commands with RestMQ. Finally, we examined a relatively
new project from Redis creator Salvatore Sanfilippo called Disque, that uses RESP
(so Redis standard clients can connect and use) to manage a distributed, in-memory,
message broker as a C-based non-blocking networked server.

Our final chapter takes and builds upon the knowledge and skills from other
chapters in Mastering Redis and shows how Redis can be used in many ETL
workflows as a critical component in many "big data" analytics and management
in modern enterprises.

www.ebook3000.com

http://www.ebook3000.org

[295]

Measuring and Managing
Information Streams

This chapter focuses on Redis's role in capturing information and data analytics
leading to actionable knowledge for organizations. We'll start with a detailed
description and examples of how to extract, transform, and load large volumes of data
into Redis through mass insertion and other techniques. Next, we will examine how
security considerations can impact management, along with a web-based dashboard to
display runtime statistics with Redis. Finally, we'll experiment with using Redis with
machine learning techniques such as Naïve Bayes and linear regression.

Extracting, transforming, and loading
information with Redis
Redis's flexibility and speed make it an ideal candidate for many extract, transform,
and load (ETL) processes for both homogeneous data as well as complex and
heterogeneous data sources that are becoming increasingly common in the
modern organization.

Measuring and Managing Information Streams

[296]

Unlike expensive and proprietary ETL systems, Redis's open source model offers
capabilities that even these commercial systems lack, while giving the small and
medium-sized enterprise opportunities to improve the flow of their own, constantly
growing, and increasingly complex data:

Extract-Transform-Load Processing

Importing data through most Redis clients, even using Redis clients that support
transactions and command pipelining, is slow and inefficient due to the penalty of
round-trip write and reply from the Redis server to the Redis client. Most clients do
not support non-blocking I/O mode and often cannot parse the replies back from the
Redis server in a manner that maximizes throughput between the client and the server.
We have, through most of the examples in this book, ignored these performance hits
when importing large amounts of data into a running Redis instance. As mentioned in
the official Redis documentation on mass insertion of data refer bullet point number
1 in Appendix, Sources, Chapter 10: Measuring and Managing Information Streams, the
preferred method for feeding data into Redis by the fastest means possible is by
generating a text file containing raw Redis protocol (RESP). This RESP text file can then
be fed into either Netcat, or into the Redis-cli program, using a special pipeline mode.

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[297]

Illustrating the differences between using a Redis client to send multiple commands
in a transaction versus the pipeline method of inserting raw RESP into Redis by
modifying the existing ingestion code taken from the Linked Data Fragments Server
project. Our first step is to create a simple script that uses the Linked Data Fragments
Server Lua script, called add_get_triple, to create and store SHA1 digest of
elements into a Redis instance. Depending on which option is passed into the script
when ingesting a triple into a Redis instance, a triple representation in the Linked
Data Server will either be a single string, three hashes, or three sets, depending on
the strategy. For our testing purposes, we'll use the set strategy so that for each triple
we will either create a new set or add to an existing set for each subject, predicate,
and object in a triple.

For a triple made up a subject with a SHA1 hash of
440bd91cb8b77850e5ca4cc648adaa3769b5a7ab for the URL http://dp.la/api/
items/971d73fd2dfd6376f258dd6a533697a5#sourceResource, a predicate SHA1
hash of 2298d2f28daae5f02504a5b048d0c036ea73e3bd for the URL http://purl.
org/dc/elements/1.1/description, the Dublin Core Description element, and
a SHA1 hash of fe8fb512487c2a945f03e0efcfe8c670ea861f60 of a string literal
for the object. We can explore these Redis keys and data structures using a Redis-cli
session to a get a general feel of what we want the end data to look like:

127.0.0.1:6379> GET 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab

"http://dp.la/api/items/971d73fd2dfd6376f258dd6a533697a5#sourceResource"

127.0.0.1:6379> GET 2298d2f28daae5f02504a5b048d0c036ea73e3bd

"http://purl.org/dc/elements/1.1/description"

127.0.0.1:6379> GET fe8fb512487c2a945f03e0efcfe8c670ea861f60

"Relief shown by hachures. Includes 1 inset map in 2 sections: Mission du
Docteur Bayol a Timbo en 1881."

To represent this triple, we also have three sets:

•	 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:pred-obj for all of the
subject's predicates and objects

•	 2298d2f28daae5f02504a5b048d0c036ea73e3bd:subj-obj for all of the
predicate's subjects and objects

•	 fe8fb512487c2a945f03e0efcfe8c670ea861f60:subj-pred for all of the
object's subjects and predicates

http://purl.org/dc/elements/1.1/description
http://purl.org/dc/elements/1.1/description

Measuring and Managing Information Streams

[298]

The size of each of these sets is easily retrieved using the SCARD command:

127.0.0.1:6379> SCARD 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:pred-obj

(integer) 25

127.0.0.1:6379> SCARD 2298d2f28daae5f02504a5b048d0c036ea73e3bd:subj-obj

(integer) 62473

127.0.0.1:6379> SCARD fe8fb512487c2a945f03e0efcfe8c670ea861f60:subj-pred

(integer) 1

Conceptually, the size of these sets is within reason, as a subject graph for a digital
item is 25, while the common Dublin Core description metadata element is much
larger at 62,473, and finally, the literal string object only has one subject and
predicate. The contents of each of these sets is just the SHA1 hash digests of the
corresponding triple fragment, which can be retrieved in various ways using the
SMEMBERS or SSCAN Redis commands; we can test if the remaining elements are
present in the set with the SISMEMBER command. We'll start first with the subject:

127.0.0.1:6379> SSCAN 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:pred-obj 0

1) "28"

2) 1) "490fd4e5ac1e267bbd873e6df9f79f6e21bb39a4:a7efd7cea070322c1f9e0b34
641afdea7e9eed09"

 2) "d82a0c98602164078281e22c3d2096c214887d4e:5972d70a66a4f74a915ffd29
a6afe09c89353986"

 3) "490fd4e5ac1e267bbd873e6df9f79f6e21bb39a4:601230576f399ca97b523372
1ce327e0bbd4f206"

 4) "490fd4e5ac1e267bbd873e6df9f79f6e21bb39a4:5b15ed3dd0b60e11d575d29c
640cea554cf91d82"

 5) "2298d2f28daae5f02504a5b048d0c036ea73e3bd:fe8fb512487c2a945f03e0ef
cfe8c670ea861f60"

 6) "54aed229df691a2f772c19d4396852b26f960827:1586bf7cee37fa79f91d94d2
210591205365432a"

 7) "2298d2f28daae5f02504a5b048d0c036ea73e3bd:6a645f0ef32ac10c04201498
242bd6fa7bf7dc91"

 8) "d9e34bac9b6f5b13a338df39bf61ec1965bab39d:15073464d418bafe273534b3
30ebf3a4cba5cae1"

 9) "490fd4e5ac1e267bbd873e6df9f79f6e21bb39a4:c4aae22fdbf6c4799741377f
4054d2efcaa247a3"

 10) "2298d2f28daae5f02504a5b048d0c036ea73e3bd:68b04fe437611ca606c29aa9
e96a7e3f8f31d707"

127.0.0.1:6379> SISMEMBER 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:pred-
obj 2298d2f28daae5f02504a5b048d0c036ea73e3bd:fe8fb512487c2a945f03e0efcfe8
c670ea861f60

(integer) 1

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[299]

Next, we'll retrieve values from the large number of members in the object's set by
using the SSCAN command with a MATCH parameter to restrict to just those members
that match the subject SHA1 that we're interested in:

127.0.0.1:6379> SSCAN 2298d2f28daae5f02504a5b048d0c036ea73e3bd:subj-obj 0
MATCH 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:* COUNT 100000

1) "0"

2) 1) "440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:68b04fe437611ca606c29aa9e
96a7e3f8f31d707"

 2) "440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:6a645f0ef32ac10c042014982
42bd6fa7bf7dc91"

 3) "440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:fe8fb512487c2a945f03e0efc
fe8c670ea861f60"

 4) "440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:7581c0c2d4d7e33db91e689dc
a8b84e1f449ac24"

 5) "440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:19bc513b98fa411e352f7f10d
4ee59c1c49c036c"

127.0.0.1:6379> SISMEMBER 2298d2f28daae5f02504a5b048d0c036ea73e3bd:subj-
obj 440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:fe8fb512487c2a945f03e0efcfe8
c670ea861f60

(integer) 1

We will use the SMEMBERS to retrieve all of the subjects and predicates for the object:

127.0.0.1:6379> SMEMBERS fe8fb512487c2a945f03e0efcfe8c670ea861f60:subj-
pred

1) "440bd91cb8b77850e5ca4cc648adaa3769b5a7ab:2298d2f28daae5f02504a5b048d0
c036ea73e3bd"

Using the University of Illinois data set, refer bullet point number 2 in Appendix,
Sources, Chapter 10: Measuring and Managing Information Streams from the Dp.la
website as the raw RDF graph input, the JSON linked data (JSON-LD) file is parsed
with the Python rdflib module into a RDF graph. The new RDF graph has the
following characteristics:

Size of raw JSON-LD file 101 MB
Number of triples 605,150
Unique subjects 132,671
Unique predicates 34
Unique objects 227,302

Measuring and Managing Information Streams

[300]

Using the Lua script add_get_triple in the Linked Data Fragments Server,
ingesting on average 5,000 triples took about 2.53 minutes on a 4-core 16 GB of RAM
workstation, that took approximately five hours to ingest the complete data set using
this Python function:

def ingest_graph(graph, lua_script_digest, datastore):
 start = datetime.datetime.now()
 counter = 0
 print("Started ingesting {} triples at {}".format(len(graph),
start.isoformat()))
 for subject, predicate, object_ in graph:
 datastore.evalsha(lau_script_digest, 3, subject, predicate,
object_)
 if not counter%10 and counter > 0:
 print(".", end="")
 if not counter%100:
 print(counter, end="")
 if not counter%100 and counter > 0:
 print(":{} mins".format((datetime.datetime.now()-start).
seconds / 60.0))
 counter += 1
 end = datetime.datetime.now()
 print("Finished at {} total time {}".format(end, (end-start).
seconds / 60.0))

The resulting Redis dump.rdb file for this data set is 181 megabytes, with a total
number of Redis keys at 605,150.

If you already have your data extracted and loaded into Redis, using the rdb tool
from https://github.com/sripathikrishnan/redis-rdb-tools project allows
you to transform a Redis dump.rdb (or any Redis rdb file) to RESP format that can
then be loaded into Redis using the bulk ingestion process. After installing this
project either using pip install rdbtools or cloning the project and then running
sudo Python setup.py install will enable us to use the rdb executable. Executing the
following command generates the RESP file and pipes the output to dpal_resp.txt:

$ rdb --command protocol dump.rdb > dpla_resp.txt

We can then use the UNIX time command to get an estimate of how long it takes to
mass insert the dpla_resp.txt file into an empty Redis instance using the netcat
UNIX utility:
$ time (cat dpla_resp.txt; sleep 10) | nc localhost 6379 > /dev/null

real 0m14.265s

user 0m0.127s

sys 0m1.459s

www.ebook3000.com

https://github.com/sripathikrishnan/redis-rdb-tools
http://www.ebook3000.org

Chapter 10

[301]

Retrieving the total size and then flushing the Redis instance in a separate terminal
window:

127.0.0.1:6379> DBSIZE

(integer) 605150

127.0.0.1:6379> FLUSHALL

OK

(1.71s)

Finally, we'll perform a second test using the Redis-cli program in pipeline mode:

$ time cat dpla_resp.txt | ~/redis/src/redis-cli --pipe

All data transferred. Waiting for the last reply...

Last reply received from server.

errors: 0, replies: 2025798

real 0m3.750s

user 0m0.259s

sys 0m0.411s

Now, back in our interactive Redis-cli session, we confirm that all data has been
loaded by running the DBSIZE command again:

127.0.0.1:6379> DBSIZE

(integer) 605150

Ingesting the RESP file using both Netcat and Redis-cli takes significantly less time
to load then our initial Python script took to ingest the original JSON-LD file. Take
this into consideration when looking at the various data and information flows in
your application, especially applications that perform common ETL workflows, like
ingesting large quantities of data into a Redis datastore.

Knowing the incoming JSON data structure for each of these records, we can create
a function to output the SHA1 for each subject, predicate, and object that generates
the RESP file instead of using the Redis client and sending commands directly to
the running Redis instance. This bulk uploading is somewhat easier and definitely
orders of magnitude faster, although we will need to do some manipulation and
JSON filtering in order to transform the JSON linked data into the RESP format
before we can load the data set into Redis. To transform this JSON linked data into
RESP requires a way to filter out the structural metadata of the RDF record as well as
expanding individual fields to a full URL before calculating the SHA1 hash digest of
either the predicate or object elements.

Measuring and Managing Information Streams

[302]

Extracting JSON to transform into RESP
Like many ETL workflows, before extracting and transforming the data, we need
additional structural information about the record before the information can be
transformed into a format for loading. Fortunately, dp.la provides a comprehensive
description of their record format, what they call their Metadata Application Profile
(MAP), available at http://dp.la/info/developers/map/. The dp.la MAP uses
a combination of Dublin Core metadata standard and the Europeana Data Model
(EDM) for their records, each with their own namespace that is used in the JSON-LD.

This code performance is poor and an alternative approach to speed up the ingestion
to the Linked Data Fragment server is to parse the JSON Linked Data file, calculate
the SHA1 hashes for the subject, predicate, and objects, and then generate the RESP
text file. To assist in outputting the RESP, a generate_redis_protocol function
will be used:

def generate_redis_protocol(cmd):
 proto = ""
 proto += "*" + str(len(cmd)) + "\r\n"
 for arg in cmd:
 proto += "$" + str(len(arg)) + "\r\n"
 proto += arg + "\r\n"
 return proto

Before using the generate_redis_protocol function, the loading of the raw JSON-
LD file is accomplished by first loading the file object into a Python list containing
the records – the record is a Python dictionary – using the standard JSON Python
module that is imported next:

>>> import json

>>> dpla_ui = json.load(

 open("/tmp/university_of_illinois_at_urbana-champaign"))

>>> len(dpla_ui)

18103

Displaying a section of a random record's JSON dictionary gives the structure and
a sense of what information is available with the following abbreviated annotation
of this DP.LA record that was harvested from the University of Illinois's digital
repository:

>>> record = dpla_ui[5678]

www.ebook3000.com

http://dp.la/info/developers/map/
http://www.ebook3000.org

Chapter 10

[303]

Using this sample record, we will first get a feel for the structure and content of this
JSON-LD object to determine the subjects, predicates, and objects we want to extract,
so we can be build our extraction and transformation script. To begin, we take a look
at what are the top-level keys in this Python dictionary:

>>> record.keys()

dict_keys(['ingestionSequence', '_id', 'ingestType', 'admin', 'object',
'isShownAt', 'aggregatedCHO', '_rev', 'dataProvider', 'originalRecord',
'sourceResource', 'id', 'ingestDate', '@type', '@context', '@id',
'provider'])

The @context section of this JSON-LD record defines the default namespace for all
of the properties:

>>> record.get('@context')

'http://dp.la/api/items/context'

Part of the JSON-to-RESP script dpla2resp.py output will need to expand all of
the properties based on the http://dp.la/api/items/context and http://www.
europeana.eu/schemas/edm/ URLs:

>>> record.get('@id')

'http://dp.la/api/items/b85d182ccb7d800c8c13b65743ef9ac7'

The @id key in this record dictionary is the subject with an URI of http://dp.la/
api/items/b85d182ccb7d800c8c13b65743ef9ac7 will need to set to the key SHA1
of d7210e2eca59b8c25086dbef406b2a41720f079c:

>>> item_hash = hashlib.sha1(record.get('@id').encode())

>>> item_hash.hexdigest()

'd7210e2eca59b8c25086dbef406b2a41720f079c'

With this item_hash and @id, we generate our first RESP by calling the generate_
redis_protocol function with a list made up of three items:

>>> resp = generate_redis_protocol(["SETNX", item_hash.hexdigest(),
record.get('@id')])

>>> print(resp.encode())

*3\r\n

$5\r\n

SETNX\r\n

$40\r\n

d7210e2eca59b8c25086dbef406b2a41720f079c\r\n

$55\r\n

http://dp.la/api/items/b85d182ccb7d800c8c13b65743ef9ac7\r\n'

http://dp.la/api/items/context

Measuring and Managing Information Streams

[304]

Going back to our original Redis instance called dpla_redis with the loaded DPLA
University of Illinois triplestore, we can now retrieve all of the predicates and objects
of this record to see what fields we need to extract from the record JSON to create
our RESP file:

>>> dpla_redis = redis.StrictRedis()

>>> for row in dpla_redis.smembers("d7210e2eca59b8c25086dbef406b2a41720f0
79c:pred-obj"):

 print(dpla_redis.get(row.decode().split(":")[0]))

b'http://www.europeana.eu/schemas/edm/isShownAt'

b'http://www.europeana.eu/schemas/edm/provider'

b'http://www.europeana.eu/schemas/edm/dataProvider'

b'http://www.europeana.eu/schemas/edm/object'

b'http://purl.org/dc/elements/1.1/_rev'

b'http://www.europeana.eu/schemas/edm/aggregatedCHO'

b'http://www.w3.org/1999/02/22-rdf-syntax-ns#type'

b'http://dp.la/terms/SourceResource'

The RDF @type for this record will need to be expanded to the full URL of
http://www.openarchives.org/ore/terms/Aggregation, but is stored in
the JSON record with a namespace, as follows:

>>> record.get('@type')

'ore:Aggregation'

For this subject we will extract predicate and object values from the other fields in the
record dictionary, including the isShownAt dataProvider, object, aggregateCHO,
SourceResource, and the _rev key in in JSON-to-RESP script's aggregation2resp
function. The aggregation2resp function starts by getting this aggregation record's
RDF ID, creating a SHA1 hash of the aggregation record's IRI, generating the RESP
for the new record using a Redis MSETNX command for the RDF class IRI, and its
value, and then creating a Redis set key for storing all of the predicate and objects
of this use later in the function, starting with the RDF class value:

def aggregation2resp(record):
 raw_protocol = ''
 record_iri = record.pop("@id")
 record_hash = hashlib.sha1(record_iri.encode())
 record_type = record.pop("@type")
 rdf_type_hash = hashslib.sha1(str(rdflib.RDF.type).encode())

www.ebook3000.com

http://www.openarchives.org/ore/terms/Aggregation
http://www.ebook3000.org

Chapter 10

[305]

 record_type_hash = hashlib.sha1(record_type.encode())
 raw_protocol += generate_redis_protocol(
 ["MSETNX",
 record_hash.hexdigest(),
 record_iri,
 rdf_type_hash,
 str(rdflib.RDF.type),
 rdf_type_value_hash.hexdigest(),
 record_type])
 record_pred_obj = "{}:pred-obj".format(record_hash)
 raw_protocol += generate_redis_protocol(
 ["SADD",
 record_pred_obj,
 "{}:{}".format(rdf_type_hash, record_type_hash)])

For the record keys, the aggregation2resp function goes through the Europeana
vocabulary's isShownAt, dataProvider, object, aggregateCHO properties and adds
the full IRI of each property and corresponding SHA1 hash if it doesn't exist within
RESP, using the Redis MSETNX command:

 for key in record.keys():
 # EDM simple triples
 if key in ['isShownAt',
 'dataProvider',
 'aggregatedCHO',
 'object']:
 key_iri = getattr(EDM, key)
 key_hash = hashlib.sha1(key_iri.encode())
 key_value = record.get(key)
 key_value_hash = hashlib.sha1(key_value.encode())
 raw_protocol += generate_redis_protocol(
 ["MSETNX",
 key_hash.hexdigest(),
 key_iri,
 key_value_hash.hexdigest(),
 key_value])

Measuring and Managing Information Streams

[306]

After these EDM properties are added to RESP string, the corresponding Redis set
RESP for the subject, predicate, and objects from the individual EDM properties
are generated for the subj_pred_key, edm_subj_obj, and the edm_subj_pred
Redis keys:

 raw_protocol += generate_redis_protocol(
 ["SADD",
 record_pred_key.hexdigest(),
 "{}:{}".format(
 key_hash.hexdigest(),
 key_value_hash.hexdigest()])
 edm_subj_obj = "{}:subj-obj".format(key_hash.hexdigest()
 raw_protocol += generate_redis_protocol(
 ["SADD",
 edm_subj_obj,
 "{}:{}".format(record_hash.hexdigest(,
 key_value_hash.hexdigest()])
 edm_subj_pred = "{}:subj-pred".format(
 key_value_hash.hexdigest())
 raw_protocol += generate_redis_protocol(
 ["SADD",
 edm_subj_pred,
 "{}:{}".format(record_hash, key_hash)])

The aggregation2resp function creates and adds a Dublin-core _rev value to the
protocol:

 if '_rev' in record:
 dc_rev_hash = hashlib.sha1(getattr(DC, '_rev').encode())
 dc_rev_value = record.get('_rev')
 dc_rev_value_hash = hashlib.sha1(dc_rev_hash.encode())
 raw_protocol += generate_redis_protocol(
 ["MSETNX",
 dc_rev_hash.hexdigest(),
 getattr(DC, '_rev'),
 dc_rev_value_hash.hexdigest(),
 dc_rev_value])
 raw_protocol += generate_redis_protocol(
 ["SADD",
 record_pred_key,
 "{}:{}".format(dc_rev_hash.hexdigest(),
 dc_rev_value_hash.hexdigest())])
 raw_protocol += generate_redis_protocol(

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[307]

 ["SADD",
 "{}:subj-obj".format(dc_rev_hash.hexdigest()),
 "{}:{}".format(record_hash.hexdigest(),
 dc_rev_value_hash.hexdigest())])
 raw_protocol += generate_redis_protocol(
 ["SADD",
 "{}:subj-pred".format(dc_rev_value_hash.hexdigest()),
 "{}:{}".format(record_hash.hexdigest(),
 dc_rev_hash.hexdigest())])

For the aggregation record's sourceResource, provider, and originalRecord
predicates, the values are other RDF subjects that also need RESP output
generated by the dpla2resp.py script. These three RESP generation functions
are sourceResource2resp, provider2resp, and originalRecord2resp. For our
sample record, we can examine each of the Python dictionaries and generate the
SHA1 hash keys for the aggregation record properties, as seen here in our Python
shell for the sourceResource property:

>>> source_resource_subject = record.get('sourceResource').get('@id')

>>> source_resource_subject_hash = hashlib.sha1(source_resource_subject.
encode())

>>> print(source_resource_subject, source_resource_subject_hash.
hexdigest())

http://dp.la/api/items/b85d182ccb7d800c8c13b65743ef9ac7#sourceResource
e777561816eb6ff634b310cbb3e19ad09cdd2a4c

In the actual dpla2resp function, the other functions of these subjects are expanded
and the RESP is generated and added to the RESP stream that will be passed to the
bulk upload process.

Measuring and Managing Information Streams

[308]

The Python code we have so far is too verbose and is in need of refactoring to
simplify and generalize some common patterns that will be left up to the reader
to explore on your own. The output RESP for the aggregation2resp function is
displayed in the following graphic:

Security considerations when managing Redis
A criticism of Redis is its weak out-of-box security and the lack of safeguards. Prior
to Redis 3.2, bringing up a Redis instance on a public server exposed the server to
any traffic connecting to the default port of 6379. The main operational assumption
with regards to security with Redis is that Redis runs in a secured network with
trusted clients accessing the datastore. Applications that access Redis, such as a web
server implementing a cache, would provide the necessary security to isolate Redis
from direct interaction with untrusted input by the users of the application.

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[309]

A general recommendation regarding security and Redis is to use other technology,
which at a minimum should be a firewall, if running a public server, to provide
access controls between the running Redis instance and the outside world. If your
situation requires your client to connect over the public Internet to a Redis server,
you should consider using an SSL proxy (one recommendation is using spiped at
http://www.tarsnap.com/spiped.html) to encrypt the channel, as Redis itself
does not offer encryption communication between the client and server.

Redis protected mode
Starting with Redis 3.2, a Redis instance will no longer be accessible from outside the
environment it is being run in. This special operational mode, called Redis protected
mode, occurs when two conditions exist:

•	 The server is not explicitly binding to one or more IP addresses using the
bind directive in the redis.conf configuration file

•	 No password is set in the redis.conf configuration file with the
requirepass directive

We can easily simulate this situation by running Redis 3.2 in a virtual machine
and then attempting to connect to the instance with our Redis Python client from
our host:

127.0.0.1:6379> dbsize

(error) DENIED Redis is running in protected mode because protected mode
is enabled, no bind address was specified, no authentication password is
requested to clients. In this mode connections are only accepted from the
loopback interface.

If you want to connect from external computers to Redis you may adopt one
of the

 following solutions: 1) Just disable protected mode sending the command
'CONFIG

 SET protected-mode no' from the loopback interface by connecting to
Redis from the same host the server is running, however MAKE SURE Redis
is not publicly accessible from internet if you do so. Use CONFIG REWRITE
to make this change permanent.

2) Alternatively you can just disable the protected mode by editing the
Redis configuration file, and setting the protected mode option to 'no',
and then restarting the server.

3) If you started the server manually just for testing, restart it
with the '--protected-mode no' option. 4) Setup a bind address or an
authentication password. NOTE: You only need to do one of the above
things in order for the server to start accepting connections from the
outside.

 http://www.tarsnap.com/spiped.html
 http://www.tarsnap.com/spiped.html

Measuring and Managing Information Streams

[310]

As you can see from this error message, to disable Redis's protected mode requires
connecting to a Redis server instance with a Redis client running in the same
environment and running CONFIG SET command:

127.0.0.1:6379> CONFIG SET protected-mode no

Alternatively, you can either change the protected-mode directive in the redis.
conf file to no, use the bind directive to restrict access to selected IP addresses and
network interfaces, or use requirepass directive to set a password for clients to
provide when connecting to the Redis instance.

Passwords in Redis are stored and transmitted in plain text! If an attacker
is able to snoop on the traffic between a client and a Redis server, the
password is compromised. Likewise, if the attacker can access a Redis
server's redis.conf configuration file, the password is stored in the file
in plain text as well.

To see how setting a password works with Redis, we'll restart the Redis server
running in a VM, and add a simple password, v3ryBadPassw0rd, to a Redis
configuration file. Relaunching our Redis server instance, we'll connect with
a Redis-cli client and issue a simple DBSIZE command:

127.0.0.1:6379> DBSIZE

(error) NOAUTH Authentication required.

The NOAUTH error message was received by the client because the password defined
in the redis.conf configuration file was not sent to the Redis server using the AUTH
command:

127.0.0.1:6379> AUTH v3ryBadPassw0rd

OK

127.0.0.1:6379> DBSIZE

(integer) 0

After a successful AUTH command with the correct password, subsequent calls by
the client are processed normally by the Redis server. In master-slave replication, if
the master Redis instance has a password set, slaves of that master need to set the
masterauth configuration directive in its redis.conf file.

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[311]

Command obfuscation
While Redis does not have the equivalent of access controls for specific commands in
a mixed use environment where some clients may need to have reduced privileges,
Redis does provides a method to disable or obfuscate Redis commands so that even
if a client is compromised, certain commands, such as CONFIG SET, FLUSHALL, or any
write commands, are unavailable or disguised for use by connecting clients.

To demonstrate command obfuscation with the rename-command command, we will
open a copy of redis.conf and add the following lines:

rename-command CONFIG aReallyLongConfigtoGuess
rename-command FLUSHALL ""
rename-command DEL ""

Setting a Redis command to an empty string "" will disable the command. We'll test
by starting a new Redis 3.2 server using this redis.conf and then with a Redis-cli
session attempting the following:
127.0.0.1:6379> CONFIG GET maxmemory

(error) ERR unknown command 'CONFIG'

127.0.0.1:6379> aReallyLongConfigtoGuess GET maxmemory

1) "maxmemory"

2) "0"

127.0.0.1:6379> FLUSHALL

(error) ERR unknown command 'FLUSHALL'

When renaming Redis commands, be sure NOT to use a numeral as the first
character in your command, otherwise Redis will go into an infinite loop on your
client! Other Redis commands that you may want to rename include KEYS, PEXPIRE,
DEL, SHUTDOWN, BGREWRITEAOF, BGSAVE, SAVE, SPOP, SREM, RENAME, and DEBUG.

Operational monitoring with a Redis web dashboard
Monitoring the state of multiple systems with a web-based operational dashboard is
common enough that there are open source dashboards projects that allow real-time
observation of running Redis instances, including any master-slave, or the complex
topology of a Redis cluster. Commercial Redis hosting companies such as Redis Labs
offer similar services for monitoring and responding to problems through a dashboard
interface. In 2012 Nitin Kumar wrote a blog post, refer bullet point number 3 in
Appendix, Sources, Chapter 10: Measuring and Managing Information Streams, announcing
the release of RedisLive, a dashboard for monitoring Redis instances using, primarily,
Redis INFO and MONITOR command.

Measuring and Managing Information Streams

[312]

RedisLive, available on GitHub at https://github.com/nkrode/RedisLive, offers
a web-based dashboard for displaying the activity and current latency spikes of your
monitored Redis instance. RedisLive requires at least one dedicated Redis instance to
store statistics, although there is an option to use a SQLite database instead.

Besides web-based specific monitoring tools such as RedisLive for Redis, dedicated,
native apps for Android and Apple's iOS for system monitoring also offer more
general ways to monitor your system:

Monitoring Redis with the RedisLive Dashboard

Machine learning and Redis
While the hype cycle continues for what is generally called "Big Data", Redis offers
numerous ways to actually accomplish some of what the advertising and media is
promising to business users and leaders. Besides being a good choice for performing
quick-and-dirty loading and manipulation of data, Redis also performs well as a
staging platform for data in a transitional mode that is later manipulated towards
a final state, depending on the application. Redis use as a datastore in machine
learning techniques and approaches helps as an easily malleable store supporting
a particular learning algorithm.

www.ebook3000.com

https://github.com/nkrode/RedisLive
http://www.ebook3000.org

Chapter 10

[313]

This section takes two supervised learning tasks, Näive Bayes and linear regression,
to demonstrate different approaches to statistical analysis with Redis as a transitory
datastore for intermediate results. For the first example, the dataset is a pre-existing
set of 52 MARC21 records for Jane Austen's Pride and Prejudice and Herman
Melville's Moby Dick. This dataset will be converted to BIBFRAME entities and then
randomly divided into two datasets, one for training the algorithm and the other to
test the testing Näive Bayes dataset. For the linear regression example, we will take
three of publicly available datasets and combine them into a master dataset that we
will then split into two random groups again, and like the Naïve Bayes, use one for
testing the linear regression and one to test the results.

For the second example, a weather time series data will be used to calculate
summary statistics, while storing the resulting computations like mean and variance
to a Redis instance. Taking a similar approach as described by Sachin Joglekar in a
2015 blog post, refer bullet point 4 in Appendix, Sources, Chapter 10: Measuring and
Managing Information Streams, Efficient computation and storage of basic data statistics
using Redis, we'll keep the raw weather data as CSV files and using the numpy
Python module, store the results of computing various linear regressions for specific
questions in a Redis instance. This linear regression example uses a simplified
approach to linear regression that only uses two variables, an independent variable x
and a dependent variable y for illustration purposes. Although these types of models
do not allow for multiple dependent variables that is typically the case for many
problems, the simplified model is a surprisingly powerful tool, and once you are
able to understand the specifics and approach, computing the regression for multi-
variable models is an easy progression to make.

Naïve Bayes and work classification
Thomas Bayes, an 18th century English clergyman and amateur mathematician, first
described how the probability of an event can be calculated or later altered based on
other conditions that may be related to the event. Bayes' theorem can be succinctly
stated as:

Measuring and Managing Information Streams

[314]

Where the probability of an event A given that B has occurred is calculated as the
product of the probability of B given A and the probability of A divided by the
probability of event B, the conditional probability of an event is said to be dependent on
the existence of prior events. Naïve Bayes is commonly used for such classification
tasks as identifying spam in either e-mail or comments sections of a website:

Naïve Bayes verses Standard Probability

In developing a usable catalog with the BIBFRAME 1.0 vocabulary from the
Library of Congress, a challenge of classifying an unknown Work as either an
existing Work in the catalog or as a new Work is not necessarily a simple or
easy task. The BIBFRAME vocabulary has built into its resource specification a
specific property called authorizedAccessPoint that is intended to provide a
crude mechanism for de-duplicating entities, that is, if two Works share the same
authorizedAccessPoint then the Works are assumed to be the same. This approach
is acceptable for a quick analysis, but there are a number of problems with just
relying on a character string for this task. First, even a slight difference in the original
recording of a title means that the presence or absence of a punctuation mark or if a
word is capitalized or not results in a strict classification where Works that should
be classified as the same by humans are not considered to be the same Work by an
automated process. Using just string comparisons of the authorizedAccessPoint
for Works for classification results in a higher level of false negatives (Works are
not being classified the same but should be) than most librarians or cataloguers are
comfortable with in their catalogs, as well as introducing a source of confusion for
patrons or end users that are attempting to search the catalog to find material.

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[315]

A more forgiving approach would account for these minor variations in the
authorizedAccessPoint while still being robust enough to minimize the chances of
false positives when identifying potential Works as pre-existing Works in the catalog.
Another complicating factor is that in late 2015, the Library of Congress released
version 2.0 of BIBFRAME that removed the authorizedAccessPoint property from
most of the classes, thereby making it even more critical to develop a strategy de-
duplication or algorithmic that is more sophisticated in handling this important task.
Fortunately, Näive Bayes can be used to train algorithms that use multiple inputs
instead of just relying on the simplistic string matching used in just the depreciated
authorizedAccessPoint element.

In the first iteration of a Näive Bayes approach to de-duplicating Works in
BIBFRAME, we use two characteristics of Works that usually present, namely the
Work's title and the Work's creator, to determine the likelihood that a new Work can
be classified as a previous Work. Ideally, this approach accounts for minor spelling
variations in both the Title and the Creator to minimize incorrect identifications,
either by the algorithm incorrectly identifying a Work as a pre-existing Work, or the
more likely scenario, where these minor variations cause two Works to be identified
as separate when in fact they are the same Work. Another complicating factor in
this Work identification is that there is no robust or agreed-upon definition of what
constitutes a Work in bibliographic theory; in practice this delineation is usually
more pragmatic and data-driven.

OCLC, one of the largest companies in the library services industry, outlines their
approach and algorithms for clustering similar Works (defined within an influential
bibliographic theory called FRBR) in a 2003 article, refer bullet point number 5 in
Appendix, Sources, Chapter 10: Measuring and Managing Information Streams. In the
article, Work clusters in WorldCat (the name of OCLC's flagship union catalog
made up of hundreds of millions of items from library collections primarily in
North America) are identified by matching the main entry – typically the author
responsible for the work – and keywords extracted from the title. Similar approaches
have been tried in the intervening years by OCLC with a 2014 announcement that
all of their WorldCat records now provide Work identifiers based on schema.
org's CreativeWork definition for all of their collections, along with an explanatory
website at http://www.oclc.org/developer/develop/linked-data/worldcat-
entities/worldcat-work-entity.en.html.

http://www.oclc.org/developer/develop/linked-data/worldcat-entities/worldcat-work-entity.en.html
http://www.oclc.org/developer/develop/linked-data/worldcat-entities/worldcat-work-entity.en.html

Measuring and Managing Information Streams

[316]

Creating training and testing datasets
Starting with two MARC21 pride-and-prejudice.mrc and moby-dick.mrc
files, we will process and convert these records to BIBFRAME RDF graphs using
the Library of Congress MARC2BIBFRAME Xquery project hosted on GitHub at
https://github.com/lcnetdev/marc2bibframe. In this Library of Congress
project, Works are identified and created based on MARC21 fields and records,
but not de-duplicated either locally or remotely from a larger catalog. In our
Python shell, we'll first import the pymarc Python module and create two lists
of MARC21 records:

>>> import pymarc

>>> pride_and_prejudice_recs = [r for r in pymarc.MARCReader(open("pride-
and-prejudice.mrc", "rb"), to_unicode=True)]

>>> moby_dick_recs = [r for r in pymarc.MARCReader(open("moby-dick.mrc",
"rb"), to_unicode=True)]

>>> len(pride_and_prejudice_recs)

30

>>> len(moby_dick_recs)

22

Next we will import the Redis Python client, create a Redis instance, and then load
our add_get_triple Lua script that we tested earlier:

>>> import redis

>>> bayes_datastore = redis.StrictRedis()

>>> bayes_datastore.dbsize()

0

>>> with open("linked-data-fragments/redis_lib/add_get_triple.lua") as
lua_file:

 raw_lua = lua_file.read()

>>> add_get_triple_digest = bayes_datastore.script_load(raw_lua)

>>> add_get_triple_digest

b'6ac0387e16f9408cece6502a279a4d4c8971bf97'

Before continuing, we'll need to import the standard Python socket module along
with the rdflib third-party module:

>>> import rdflib, socket

www.ebook3000.com

https://github.com/lcnetdev/marc2bibframe
http://www.ebook3000.org

Chapter 10

[317]

We now pass the MARC XML files to a socket server that we connect through an
xquery_socket function and get back the RDF BIBFRAME graphs for the MARC
record that we'll store in a second Python list, all_graphs:

>>> for recs in [pride_and_prejudice_recs, moby_dick_recs]:

 for marc_record in recs:

 all_graphs.append(xquery_socket(pymarc.record_to_xml(marc_record,
namespace=True)))

>>> len(all_graphs)

52

To assist with ingesting these graphs into our Linked Data Fragments server, we will
create a process_graph function that calls the add_get_triple Lua script with each
graph's subject, predicate, and object:

def process_graph(graph):
 for s,p,o in graph:
 bayes_datastore.evalsha(
 add_get_triple_digest,
 3,
 str(s),
 str(p),
 str(o))

Now with the BIBFRAME graphs, we will process individual graphs in the list by
calling the process_graph function on each graph in the all_graphs list. At the end
we check to see how large our Redis datastore is with the ingested RDF graphs:

>>> for graph in all_graphs:

 process_graph(graph)

>>> bayes_datastore.dbsize()

10433

We can retrieve and save all of the subject-predicates for BIBFRAME Work IRI
http://bibframe.org/vocab/Work – in this case all of the predicates should all be
the SHA1 hash digest 3c197cb1f6842dc41aa48dc8b9032284bcf39a27 for the RDF
type IRI of http://www.w3.org/1999/02/22-rdf-syntax-ns#type – by executing
a SMEMBERS command on the 5d1377f4476a1cbfb3caea106dc6b0a7d086410a:su
bj-pred keys and then retrieving the subjects with the Python string split method:

>>> bayes_datastore.scard(

'5d1377f4476a1cbfb3caea106dc6b0a7d086410a:subj-pred')

114

http://bibframe.org/vocab/Work
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

Measuring and Managing Information Streams

[318]

>>> work_digests = []

>>> for row in bayes_datastore.smembers(

'5d1377f4476a1cbfb3caea106dc6b0a7d086410a:subj-pred'):

 work_digests.append(row.decode().split(":")[0])

>>> len(work_digests)

114

With our 114 Work subject digests, we can now randomly divide the subjects into
two Redis sets, bf-training and bf-testing, which we will store in the datastore:

>>> for subject in work_digests:

 if random.random() >= .5:

 bayes_datastore.sadd("bf-training", subject)

 else:

 bayes_datastore.sadd("bf-testing", subject)

Our bf-training and bf-testing sets are close in size and are what we would
expect in a near 50/50 random sorting:

>>> bayes_datastore.scard("bf-training")

59

>>> bayes_datastore.scard("bf-testing")

55

Now that we have testing and training data sets, we will begin our exploration of
using Naïve Bayes for BIBFRAME Work identification by using the open source
Python module called redisbayes available on GitHub at https://github.com/
jart/redisbayes. This redisbayes module requires a string of words, called
tokens, that is extracted from the object we are interested in classifying as either
a part of a Work or not.

Extracting word Tokens from BIBFRAME Works
As these records were converted using the BIBFRAME 1.0 converter, we could
simplify our example by just using the authorizedAccessPoint for each
work. Before depending on the Work's authorizedAccessPoint as the data
point to test, we double-check with our Python shell for those Works in the
datastore have an authorizedAccessPoint – using the SHA1 hash digest of
a548a25005963f85daa1215ad90f7f1a97fbe749 – available for testing or for
training our Bayes application:

>>> total_missing_auth_pts = 0

>>> for i,digest in enumerate(work_digests):

www.ebook3000.com

https://github.com/jart/redisbayes
https://github.com/jart/redisbayes
http://www.ebook3000.org

Chapter 10

[319]

 result = bayes_datastore.sscan("{}:pred-obj".format(digest),

 match="a548a25005963f85daa1215ad90f7f1a97fbe749:*")

 if len(result[1]) < 1:

 total_missing_auth_pts +=1

>>> total_missing_auth_pts

21

Based on this result of 21 missing authorizedAccessPoint, the marc2bibframe
conversion program does not generate this property for all BIBFRAME Works in its
conversion process. Instead, we'll check to confirm that all of the works have at least
one of the following:

•	 BIBFRAME title: http://bibframe.org/vocab/title with a SHA1 hash
digest of e366a989e4becead9409ca4d44ddf307afc126b3.

•	 BIBFRAME workTitle: http://bibframe.org/vocab/workTitle with a
SHA1 hash digest of f610f749c5c2eaf6718eb2bc24bf74559d14637d. This
typically is an IRI that resolves to another resource that is an instance of the
Title BIBFRAME class.

In the bayes_works.py Python code file that accompanies this chapter, the
generate_work_tokens function takes a Subject digest and the Linked Data
Fragments Server Redis instance (defaulting to http://localhost:6379), and
creates a tokens list a Work predicate-object Redis key called work_pred_objs, and
retrieves and stores the size of the work_pred_objs with a Redis SCARD command
into a total_triples variable:

def generate_work_tokens(
 work_digest,
 datastore=redis.StrictRedis()):
 tokens = []
 work_pred_objs = "{}:pred-obj".format(work_digest)
 total_triples = datastore.scard(work_pred_obj)

Given that every Work should have either a title or workTitle, the code next
attempts to retrieve the BIBFRAME title with the value by using the glob-pattern
matching with the SSCAN Redis command and explicitly setting the count to the
total_triples variable. Finally, the internal function extend_tokens is called
with the result:

 bf_title_result = datastore.sscan(work_pred_objs,
 match="e366a989e4becead9409ca4d44ddf307afc126b3:*",

http://bibframe.org/vocab/workTitle

Measuring and Managing Information Streams

[320]

 count=total_triples)
 if len(bf_title_result[1]) > 0:
 extend_tokens(bf_title_result[1])

The extends_tokens function that takes the BIBFRAME title's value is retrieved
from the datastore and split into word tokens that are lowercased before being
appended to the tokens list:

 def extend_tokens(result):
 for row in result:
 first_key, second_key = row.decode().split(":")
 value = datastore.get(second_key)
 tokens.extend([word.lower() for word in value.split()])

If the bf_title_result is an empty list, the code then tries to retrieve the SHA1 for
the workTitle and if there is a result, retrieves the SHA1 of the Title class and then
retrieves the BIBFRAME titleValue and calls the extend_tokens with the result:

 else:
 bf_work_title_result = datastore.sscan(work_pred_objs,
 match="f610f749c5c2eaf6718eb2bc24bf74559d14637d:*",
 count=total_triples)
 if len(bf_work_title_result[1]) > 0:
 for row in bf_work_title_result[1]:
 rdf_title_key = row.decode().split(":")[1]
 rdf_title_value_result = datastore.sscan(
 "{}:pred-obj".format(rdf_title_key),
 "0859add153c1fcda5e32853e22ccfe8514702b2e:*")
 if len(rdf_title_value_result[1]) > 0:
 extend_tokens(bf_work_title_result[1])

The last section in the generate_work_tokens function attempts to retrieve all of the
name information from all of the BIBFRAME creators (http://bibframe.org/vocab/
creator with a SHA1 hash digest of 0f08c96e756a4fa720257bf3090efdf76b5d3acc)
and BIBFRAME contributors (http://bibframe.org/vocab/contributor with
a SHA1 hash digest of a20301af19937f3787275c059dae953eaff2cb5f), before
returning the complete tokens list for each creator's or contributor's label using the
SHA1 hash for the BIBFRAME label:

 for key_digest in ["0f08c96e756a4fa720257bf3090efdf76b5d3acc",
 "a20301af19937f3787275c059dae953eaff2cb5f"]:
 bf_result = datastore.sscan(
 work_pred_objs,
 match="{}:*".format(key_digest),
 count=total_triples)

www.ebook3000.com

http://bibframe.org/vocab/creator
http://bibframe.org/vocab/creator
http://bibframe.org/vocab/contributor
http://www.ebook3000.org

Chapter 10

[321]

 if len(bf_result[1]) > 0:
 for row in bf_result[1]:
 agent_key = row.decode().split(":")[1]
 agent_scan_result = datastore.sscan(
 "{}:pred-obj".format(agent_key),
 match="56375fdb9714268c237e4eb7e74f6f0544098935:*"
 count=100)
 if len(agent_scan_result[1]) > 0:
 extend_tokens(agent_scan_result[1])
 return tokens

Applying Naïve Bayes
Now that we have a function to generate word tokens, we turn to our training set,
bf-training; to test the Naïve Bayes formula. So, for example, the Bayes' theorem
equation for Pride and Prejudice would be as follows:

•	 p(c|x,y) is the probability that a BIBFRAME Work is Pride and Prejudice, given
a title of Pride and Prejudice and the author, Jane Austen

•	 p(x,y|c)p(c)/p(x,y) is the probability that title is Pride and Prejudice and author
is Jane Austen given that the Work is Pride and Prejudice multiplied by the
probability of a BIBFRAME Work all divided by the probability that Work is
Pride and Prejudice

To simplify the calculations of these probabilities, the assumption of feature
independence is a given. Under the feature independence assumption, each term
in the title and author are statistically independent from each other. While this
Naïve assumption is most likely not true (that is, the likelihood that the term Pride is
likely higher in the presence of Prejudice in the Work's title than by chance alone), in
practice this assumption works well for classification tasks.

Now, going back to the bayes_works.py module, the train function takes our
training set of Works, generates word token strings for each Work, and then prompts
the user to manually assign each of the Works as either pp if the Work is Pride and
Prejudice, md if the Work is Moby Dick, or uk if the Work is unknown. To illustrate,
we will start a Python 2.7 shell (the redisbayes module currently runs under
Python 2.7), import the required modules, and we'll start a second Redis instance
running on port 6380 for use by the redisbayes module, create a redisbayes object
with this Redis instance, and check the size of both Redis instances:

>>> import redis, redisbayes

>>> ldfs = redis.StrictRedis()

>>> bayes_datastore = redis.StrictRedis(port=6380)

Measuring and Managing Information Streams

[322]

>>> rb = redisbayes.RedisBayes(redis=bayes_datastore)

>>> print(ldfs.dbsize(), bayes_datastore.dbsize())

(10435L, 0L)

We'll import our bayes_works.py module into our Python shell and create a list of
all the Work digest keys in the bf-training Redis set:

>>> import bayes_works

>>> training_works = list(ldfs.smembers('bf-training'))

>>> len(training_works)

59

For each BIBFRAME Work digest in the training_works list, the generate_work_
tokens function will be called and the string of words will be classified and stored
with a call to the rb.train method (a selection of these Works being classified is
presented here instead of including all 59 Works in our training set):

>>> for digest in training_works:

... tokens = bayes_works.generate_work_tokens(digest)

... print(tokens)

... classify = input("Classify pp, md, uk> ")

... rb.train(classify, ' '.join(tokens))

['mansfield', 'park', 'austen,', 'jane,', '1775-1817.', 'wiltshire,',
'john.']

Classify pp, md, uk> "uk"

['short', 'stories.', 'selections.', 'hawthorne,', 'nathaniel,', '1804-
1864.']

Classify pp, md, uk> "uk"

['moby', 'dick.', 'melville,', 'herman,', '1819-1891.']

Classify pp, md, uk> "md"

['pride', 'and', 'prejudice', 'austen,', 'jane,', '1775-1817.']

Classify pp, md, uk> "pp"

After going through the training set and classifying all of the Works in one of these
three categories, we'll now open a Redis-cli session to the Redis instance storing the
intermediate data for the Naïve Bayes calculations used by the redisbayes module:

127.0.0.1:6380> dbsize

(integer) 4

127.0.0.1:6380> keys *

1) "bayes:md"

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[323]

2) "bayes:pp"

3) "bayes:uk"

3) "bayes:categories"

The bayes:md, bayes:uk, and bayes:pp are Redis hashes with each word token as a
field, and the field's value is an integer containing the number of times the term was
present during the training session. The bayes:categories is a set containing all of
the different classifications, in this case md, uk, and pp. With the training completed
for the Naïve Bayes implementation, we'll now take three random Work digest keys
from our bf-testing set and see which of three options the redisbayes instance
classifies the random Work from our Python 2.7 shell as:

>>> test_work_1 = ldfs.srandmember("bf-testing")

>>> test_work_1

'bffd57ebcad72b7f5a98a8cc3e7eac178815dbbb'

>>> test_work_2_tokens = bayes_works.generate_work_tokens(test_work_1)

>>> test_work_2_tokens

['pride', 'and', 'prejudice.', 'austen,', 'jane,', '1775-1817.']

>>> rb.classify(' '.join(test_work_2_tokens))

'pp'

>>> test_work_2 = ldfs.srandmember("bf-testing")

>>> test_work_2

'448910eeaa3908bab9213cff291074667872adfa'

>>> test_work_2_tokens = bayes_works.generate_work_tokens(test_work_2)

>>> test_work_2_tokens

['moby', 'dick,', 'or,', 'the', 'whale', 'melville,', 'herman,', '1819-
1891.']

>>> rb.classify(' '.join(test_work_2_tokens))

'md'

The Naïve Bayes classifier performance is as we would expect for this small sample.
Clearly, to expand this approach to all of the Works in even a small library would
require additional modification and expansion of the tokenization and processing
code. Hopefully, this example will help you in the design of your own Redis
application that may need a method for classifying incoming data streams using
a simple Naïve Bayes machine learning approach.

Measuring and Managing Information Streams

[324]

Linear regression with Redis
Linear regression, a fundamental statistical technique in many fields, including
medicine, economics, psychology, and general data analytics, attempts to predict
target values that come from a continuous data source. In general, with linear
regression it is easy to interpret the results (that is, a dependent variable is the
result of adding or subtracting one or more independent variables modified by
regression weights) and is computationally light compared to other machine learning
techniques. The downside to linear regression is poor performance and inaccurate
results when applied to non-linear data.

Crafting and programming a linear regression solution starts with collecting the data
and preparing the data. Linear regression requires numeric values and any discrete,
non-numeric data to be mapped to binary values. For our testing and examples, we
will assume a simple linear relationship between a scalar dependent variable y and
one or more explanatory independent variables. For our regression model, we will
use the ordinary least squares fitting solution which tries to minimize the sum of the
squares of the errors made in the results of all the equations in the linear regression
model. A general outline of the ordinary least squares model is as follows:

Where the data consists of n observations with a scalar response y(i) and where is the
parameters of the model with missing αlpha character being the intercept and the
missing beta character being the slope coefficients.

Simple Linear Regression Model from
https://en.wikipedia.org/wiki/Simple_linear_regression#/media/File:Linear_regression.svg

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[325]

To illustrate using simple linear regression, we will use time-series datasets for
the calendar year 2014 for the weather from three different cities – Denver, Tokyo,
and Cape Town – available from the Weather Underground website at http://
www.wunderground.com/. These datasets are in comma-separated-value format
with columns for date, temperature, dew point, humidity, barometric pressure,
wind speed, precipitation, and cloud cover. Each of these files, denver-2014.csv,
tokyo-2014.csv, and nairobi-2014.csv, can be downloaded from the Mastering
Redis website or the book's GitHub repository. We'll begin our analysis of the
weather by selectively storing certain variables such as date, Mean TemperatureC
(in Celsius), Dew PointC (in Celsius), Mean Humidity, Mean Sea Level Pressure
hPa (Pascal unit), and Precipitation mm (in millimeters).

To load these fields into our Redis instance, we will create a Python function
extract_load that uses the standard CSV module to read in a CSV file, extracts
the fields we want to store in Redis, creates five hashes for each city, one for each
variable, and then adds the variable as a hash value with the field name being the
date string:

def extract_load(datastore=redis.StrictRedis()):

 for filename in ['cape-town-2014.csv',

 'denver-2014.csv',

 'tokyo-2014.csv']:

 weather_csv = csv.reader(open(os.path.join(

 CURRENT_DIR,

 filename)))

 field_names = next(weather_csv)

 city_date = filename.split(".")[0]

 temp_key = "{}-temp-mean".format(city_date)

 dew_point_key = "{}-dew-point-mean".format(city_date)

 humidity_key = "{}-humidity-mean".format(city_date)

 pressure_key = "{}-pressure-mean".format(city_date)

 precipitation_key = "{}-precipitation".format(city_date)

 for row in weather_csv:

 if len(row) < 8:

 continue

 pipeline = datastore.pipeline(transaction=True)

 date_field = row[0]

 pipeline.hsetnx(temp_key, date_field, row[2])

http://www.wunderground.com/
http://www.wunderground.com/

Measuring and Managing Information Streams

[326]

 pipeline.hsetnx(dew_point_key, date_field, row[4])

 pipeline.hsetnx(humidity_key, date_field, row[8])

 pipeline.hsetnx(pressure_key, date_field, row[11])

 pipeline.hsetnx(precipitation_key, date_field, row[19])

 pipeline.execute()

 print("Finished {}".format(city_date))

After all the 2014 data is loaded into our regression Redis instance, we'll do a quick
sanity check to confirm that the data meets our expectations:

127.0.0.1:6379> HLEN cape-town-2014-temp-mean

(integer) 365

127.0.0.1:6379> HLEN denver-2014-temp-mean

(integer) 365

127.0.0.1:6379> HLEN tokyo-2014-temp-mean

(integer) 365

Because by definition dew point is dependent on temperature, we would expect
a positive relationship, as shown in the following graph:

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[327]

Using a pure Python implementation of a simple linear regression available at
https://code.activestate.com/recipes/578914-simple-linear-regression-
with-pure-python/, that uses the Pearson product-moment correlation coefficient
to calculate the regression, results in the following table for each of the cities:

City (Y-intercept) (Slope)
Cape
Town

3.0738312142044553 0.6096462268894843 0.8380281574300148

Denver -5.110855159000105 0.7013438731440127 0.8441417541071602

Tokyo -5.261920573865529 1.1013535521237958 0.946832088113318

All -4.482081471645017 0.9542228667781014 0.880891021556839

Interpreting the results of a linear regression in our dew point as the dependent y
variable and the independent variable x as the temperature, our regression models
show strong correlation coefficients with the overall simple linear regression model
correlation coefficient of .88.

We will now examine it to see if there is a relationship between the barometric
pressure as a dependent variable and temperature as an independent variable,
by first graphing the two as follows:

Barometric pressure and temperature simple linear regressions

https://code.activestate.com/recipes/578914-simple-linear-regression-with-pure-python/
https://code.activestate.com/recipes/578914-simple-linear-regression-with-pure-python/

Measuring and Managing Information Streams

[328]

The relationship between the barometric pressure and the temperature seems to be
generally negative, with the following table displaying the results of simple linear
regression for each city and all of the cities combined:

City (Y-intercept) (Slope) r
Cape Town 1029.483421 -0.730263 -0.580355

Denver 1018.148958 -0.266547 -0.3866715

Tokyo 1019.549379 -0.410279 -0.450956

All 890.079774 -14.4720573 -0.254273

For average barometric pressure, temperature is loosely correlated for all of the cities
at -0.25, meaning that for our simple linear regression model, temperature is not a
statistically explanatory variable for barometric pressure.

If relative humidity, defined as the ratio of air-water mixture relative to maximum
or highest point that is possible for water vapor at a particular temperature, as the
dependent variable and the temperature as the independent variable; our hypothesis
that a higher relative humidity should mean a greater chance for precipitation is
visually graphed as follows:

2014 Daily average relative humidity versus temperature for Denver, Cape Town, and Tokyo

www.ebook3000.com

http://www.ebook3000.org

Chapter 10

[329]

Like the previous two simple linear regression examples, we will calculate the
regressions for this example in the following table:

City (Y-intercept) (Slope) r
Cape Town 85.525525 -0.954431 -0.453038

Denver 59.200518 -0.663125 -0.433978

Tokyo 46.291846 1.232326 0.578158

All 58.190660 0.303417 0.162543

As seen from the results, the simple linear regression model is a poor explanation
for the relationship between higher temperatures and higher relative humidity, at
least for Cape Town, Denver, and Tokyo in 2014. The correlation coefficient for the
combined dataset of all three cities was a poor 0.162543, with a lot of the variation
in the data being unexplained by a linear model.

Summary
This chapter's focus comes full circle to the reasons for using Redis in the first chapter
of Master Redis. Redis's role as a "glue" technology is well-suited for connecting
various data sources to end targets for many extract-transform-load workloads. We
saw a simple example of loading a DP.LA dataset that contains the metadata for a
collection of images and other content from the University of Illinois. The speed
difference was orders of magnitude faster using the bulk loading options in Redis,
where you create Redis protocol (RESP) directly from the incoming data source (the
extract and transform steps) to finally being loaded with either Netcat or a special
mode in the Redis-cli program. We touched upon minimum security strategies for
protecting your Redis instance. We then finished up this chapter by examining two
common machine learning techniques – Naïve Bayes and simple linear regression –
and showed how Redis can be used for turning raw data streams into information
and knowledge in your enterprise.

Writing Mastering Redis challenged and humbled this academic librarian's technical
skills and knowledge of Redis, but reinforced the impression that Redis's value is in
its scope, speed, and flexibility in solving the everyday problems people encounter
in our technology-heavy society, even in supposedly "low tech" fields like libraries!
Starting from his early forays in developing a website cache, Salvatore Sanfilippo's
real brilliance is his opinionated and passionate leadership and real programming
skill into the sophisticated tool that has become what we know as Redis.

Measuring and Managing Information Streams

[330]

Because of Sanfilippo's vision and active development of Redis, new functionality
and bug fixes are constant, with an active code base which, if you want to maintain
your new Redis mastery, requires continual monitoring and learning as Redis
evolves and changes over time. Even with the high delta of Redis, most of the
existing features and commands have not significantly changed once they are
incorporated into the main Redis branches for production use. In most fields of
endeavor, a "Master" never stops learning, so my hope is that you now have not
only a broader and deeper knowledge of Redis, but that you also have new skills for
continuing learning and experimenting on your journey to mastering a fast – in all
meanings of the word – technology as rich in possibilities as Redis.

www.ebook3000.com

http://www.ebook3000.org

[331]

Sources

Chapter 1: Why Redis?
1.	 How to take advantage of Redis just adding it to your stack, from antirez weblog

by Salvatore Sanfilippo at http://oldblog.antirez.com/post/take-
advantage-of-redis-adding-it-to-your-stack.html.

Chapter 2: Advanced Key Management
and Data Structures

1.	 An introduction to Redis data types and abstractions, retrieved from http://
redis.io/topics/data-types-intro.

2.	 Christopher Stover, "Big-O Notation". From Mathworld--A Wolfram Web
Resource, created by Eric W. Weisstein at http://mathworld.wolfram.com/
Big-ONotation.html.

3.	 ,What are the differences between memcached and redis? by Animesh Dash from
Quora https://www.quora.com/What-are-the-differences-between-
memcached-and-redis/answer/Animesh-Dash?srid=Kgp.

4.	 Redis Bitmaps – Fast, Easy, Realtime Metrics retrieved from http://blog.
getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-
bitmaps/.

http://oldblog.antirez.com/post/take-advantage-of-redis-adding-it-to-your-stack.html
http://oldblog.antirez.com/post/take-advantage-of-redis-adding-it-to-your-stack.html
http://redis.io/topics/data-types-intro
http://redis.io/topics/data-types-intro
http://mathworld.wolfram.com/Big-ONotation.html
http://mathworld.wolfram.com/Big-ONotation.html
https://www.quora.com/What-are-the-differences-between-memcached-and-redis/answer/Animesh-Dash?srid=Kgp
https://www.quora.com/What-are-the-differences-between-memcached-and-redis/answer/Animesh-Dash?srid=Kgp
http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/
http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/
http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps/

Sources

[332]

Chapter 3: Managing RAM – Tips
and Techniques for Redis Memory
Management

1.	 Using Redis as an LRU cache by Salvatore Sanfilippo retrieved from http://
redis.io/topics/lru-cache.

2.	 Redis source code file, redis-cli.c, retrieved from http://download.
redis.io/redis-stable/src/redis-cli.c.

3.	 Using hashes to abstract a very memory efficient plain key-value store on top of Redis
by Salvatore Sanfilippo retrieved from http://redis.io/topics/memory-
optimization.

4.	 Raspberry Pi and Redis, blog posting by Stefan Parvu retrieved from http://
kronometrix.blogspot.com/2014/10/raspberry-pi-and-redis.html.

5.	 Redis Android NDK port, blog posting by Riccardo Cecolin retrieved from
http://rikiji.it/2012/08/21/Redis-Android-NDK-port.html.

Chapter 6: Scaling with Redis Cluster
and Sentinel

1.	 Redis Presharding by Salvatore Sanfilippo from antirez weblog. http://
oldblog.antirez.com/post/redis-presharding.html.

2.	 Redis data sharding – part 2 – hash-based keys from blog by Marius Przydatek
at http://mariuszprzydatek.com/2013/08/23/redis-data-sharding-
part-2-hash-based-keys/.

3.	 Redis Cluster tutorial retrieved from http://redis.io/topics/cluster-
tutorial.

4.	 Twemproxy, a Redis proxy from Twitter by Salvatore Sanfilippo from http://
antirez.com/news/44.

5.	 List-serv archive retrieved from https://groups.google.com/
forum/#!msg/redis-db/eTtCNAosiiU/h7ifK2K3FA0J.

www.ebook3000.com

http://redis.io/topics/lru-cache
http://redis.io/topics/lru-cache
http://download.redis.io/redis-stable/src/redis.c
http://download.redis.io/redis-stable/src/redis.c
http://redis.io/topics/memory-optimization
http://redis.io/topics/memory-optimization
http://kronometrix.blogspot.com/2014/10/raspberry-pi-and-redis.html
http://kronometrix.blogspot.com/2014/10/raspberry-pi-and-redis.html
http://rikiji.it/2012/08/21/Redis-Android-NDK-port.html
http://oldblog.antirez.com/post/redis-presharding.html
http://oldblog.antirez.com/post/redis-presharding.html
http://mariuszprzydatek.com/2013/08/23/redis-data-sharding-part-2-hash-based-keys/
http://mariuszprzydatek.com/2013/08/23/redis-data-sharding-part-2-hash-based-keys/
http://redis.io/topics/cluster-tutorial
http://redis.io/topics/cluster-tutorial
http://antirez.com/news/44
http://antirez.com/news/44
https://groups.google.com/forum/#!msg/redis-db/eTtCNAosiiU/h7ifK2K3FA0J
https://groups.google.com/forum/#!msg/redis-db/eTtCNAosiiU/h7ifK2K3FA0J
http://www.ebook3000.org

Appendix

[333]

Chapter 7: Redis and Complementary
NoSQL Technologies

1.	 DB-Engines Ranking retrieved from http://db-engines.com/en/ranking.
2.	 The Beautiful Marriage of MongoDB and Redis blog posting by Cody Powell

retrieved from https://dzone.com/articles/beautiful-marriage-
mongodb-and.

3.	 Redis, MongoDB & the Power of Incremency blog posting by DJ Walker-Morgan
retrieved from https://www.compose.io/articles/redis-mongodb-and-
the-power-of-incremency/.

4.	 Why (and how to) Redis with your MongoDB blog posting by DJ Walker-
Morgan retrieved from https://www.compose.io/articles/why-and-
how-to-redis-with-your-mongodb/.

5.	 Linked Data article by Tim Berners-Lee, retrieved from https://www.
w3.org/DesignIssues/LinkedData.html.

Chapter 10: Measuring and Managing
Information Streams

1.	 Redis Mass Insertion retrieved from http://redis.io/topics/mass-insert.
2.	 DPLA Bulk data downloads retrieved from http://dp.la/info/

developers/download/.
3.	 Kumar, Nitin. "Real time dashboard for redis". Published 8/5/2012.

Retrieved from http://www.nkrode.com/article/real-time-dashboard-for-
redis.

4.	 Efficient computation and storage of basic data statistics using Redis by Sachin
Joglekar published on 3/7/2015, retrieved from https://codesachin.
wordpress.com/2015/07/03/efficient-computation-and-storage-of-
basic-data-statistics-using-redis/.

5.	 The Concept of a Work in WorldCat: An Application of FRBR, published in 2003
by Bennett, Rick. Lavoie, Brain, O'Neill, Edward retrieved from http://www.
oclc.org/content/dam/research/publications/library/2003/lavoie_
frbr.pdf.

http://db-engines.com/en/ranking
https://dzone.com/articles/beautiful-marriage-mongodb-and
https://dzone.com/articles/beautiful-marriage-mongodb-and
https://www.compose.io/articles/redis-mongodb-and-the-power-of-incremency/
https://www.compose.io/articles/redis-mongodb-and-the-power-of-incremency/
https://www.compose.io/articles/why-and-how-to-redis-with-your-mongodb/
https://www.compose.io/articles/why-and-how-to-redis-with-your-mongodb/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
http://redis.io/topics/mass-insert
http://dp.la/info/developers/download/
http://dp.la/info/developers/download/
http://www.nkrode.com/article/real-time-dashboard-for-redis
http://www.nkrode.com/article/real-time-dashboard-for-redis
https://codesachin.wordpress.com/2015/07/03/efficient-computation-and-storage-of-basic-data-statistics-using-redis/
https://codesachin.wordpress.com/2015/07/03/efficient-computation-and-storage-of-basic-data-statistics-using-redis/
https://codesachin.wordpress.com/2015/07/03/efficient-computation-and-storage-of-basic-data-statistics-using-redis/
http://www.oclc.org/content/dam/research/publications/library/2003/lavoie_frbr.pdf
http://www.oclc.org/content/dam/research/publications/library/2003/lavoie_frbr.pdf
http://www.oclc.org/content/dam/research/publications/library/2003/lavoie_frbr.pdf

www.ebook3000.com

http://www.ebook3000.org

[335]

Index
Symbol
32-bit Redis

about 49
INFO memory 50-53

A
administration topics, Redis

Master-Slave replication 144-146
programming 144-149
transactions, with EXEC

command 147-149
transactions, with MULTI

command 147-149
advanced Lua scripting, using with Redis

about 131
interoperability, using JSON-LD 136-139
interoperability, using Lua 136-140
MARC21 ingestion 131-133
Online Storefront Paper Stationary 133-135

Amazon Web Services (AWS) 257
analytics complement

to MongoDB 199-211
application

packaging, with Docker Compose 253-256
ARGV

about 122
using, with Redis 126-130

arrays
PSUBSCRIBE 266
UNSUBSCRIBE 267

B
BIBCAT

ElasticSearch, using 212-217
Redis, using 212-217

BIBFRAME Works
word tokens, extracting from 318-320

Big Data 312
big O notation

about 31, 32
computing, for custom code 33, 34

binary serialized object
notation (BSON) 199

bit operations 43, 44
bitstrings 43

C
cache complement

to Fedora Commons 219, 220
Celery

URL 283
cgroups 228
check-and-set (CAS) 148
composite partitioning 161
consistent hashing 161
Continuous Integration (CI) platform 231
core search technology 211
coroutines

Python, using 108
Redis, using 108
reference link 111

cyclic redundancy check (CRC) 161

[336]

D
data partitioning

about 153, 154
composite partitioning 161
Hash partitioning 160
key hash tags 162
List partitioning 157-159
Range partitioning 154-156

dedicated cloud hosting options 259
DevOps

Redis role 150, 151
DigitalOcean Redis 260
Disque

messaging with 292, 293
reference 292

distribute lock manager
reference 285

Docker
download link 234
issues 252
reference, for installation 234
URL 251

Docker basics
with Redis 234-242

Docker Compose
about 253
application, packaging with 253-257
URL 253

Docker containers 228-234
Docker filesystem backends

about 244-248
images, building with Dockerfile 249, 250

Docker images
Docker filesystem backends 244-248
hosting 251
layers 242, 243
publishing 251
reference 228, 233

Docker Toolkit
URL 251

Domain Specific Language (DSL) 101
Dublin Core Description element

URL 297

E
ElastiCache service

URL 257
Elastic Compute Cloud (EC2) 258
ElasticSearch

about 211, 217
using, in BIBCAT 212

entity-relationship (ER) 6
Europeana Data Model (EDM) 302
extract, transform, and load (ETL) 295-301

F
Fedora Commons

about 219
smart cache component 219-224

Fowler-Noll-Vo (FNV) 163

G
Geographic Information Systems (GIS)

about 13
and RestMQ 287-289

geohash algorithm
reference 287

GETBIT 155
Git repository

reference link 109

H
hardware virtual machine (HVM) 258
hashes 36
Hash partitioning 160
hash slot 161
Hydra

URL 219
HyperLogLogs 45

I
INFO memory

about 50-53
mem_allocator value 50
mem_fragmentation_ratio value 50

www.ebook3000.com

http://www.ebook3000.org

[337]

used_memory_human value 50
used_memory_lua value 50
used_memory_peak_human value 50
used_memory_peak value 50
used_memory_rss value 50
used_memory value 50

Infrastructure as a Service (IaaS) 231
ipairs 127
Islandora

URL 219

J
Java Messaging Service (JMS) 220
JSON

extracting, to transform into RESP 302-308
JSON-LD

reference link 136
JSON Schema

URL 17
JSON-to-RESP script

URL 303

K
kanban channel 272, 273
Key-event notification 279
key expiration

about 53-57
aspects 53

key hash tags 162
KEYS

using, with Redis 127-130
Key-space notification 279

L
latency

about 78-80
client-latency 79
command latency 78
hardware latency 78, 79
network latency 78
round-trip latency 78

layers, in Docker images 242, 243

Less Recently Used (LRU)
about 10, 47
key evictions 58-66

linear regression
with Redis 324-329

linked data fragments
reference link 108

Linux
Redis, running 81

Linux containers 228-233
List partitioning 157-159
lists 37, 38
Logstash 217
Lua

reference link 118, 124
URL 275
uses, in Redis 117-126

LuaRocks
URL 275

LXC
URL 228

M
MAachine-Readable Cataloging (MARC) 4
marc_hash.py module

URL 77
memory efficient Redis data structures

creating 67
memory optimization

about 67
bit 74, 75
bytes 74, 75
hashes, optimizing for

efficient storage 75-78
lists 67-73
Redis strings, using as random

access arrays 74, 75
sets 67
small aggregate hashes 67-73
sorted sets 67-73

messaging
with, Disque 292-294
with, Redis technologies 292

Metadata Application Profile (MAP)
URL 302

[338]

MongoDB
Redis, as analytic complement 199-211

MongoDB binary
URL 202

N
N3

URL 223
Naïve Bayes

and work classification 313-315
applying 321-323
testing datasets, creating 316-318
training datasets, creating 316-318
word Tokens, extracting from BIBFRAME

Works 318-320
namespaces 228
Node.js

used, for updating Todo list
application 113-115

Nohm
URL 25

North American Numbering Plan
Administration (NANPA) 159

NoSQL
proliferation 193-197

O
offer class

URL 27
operating systems

tips 81
operations channel 272
optical character recognition (OCR) 219
order class

URL 27

P
pipelining

reference link 105
Platform as a Service (PaaS) 231
preprocessor complement

to ElasticSearch 211
Python

used, for coroutines 108-112

Q
Quality Assurance 150

R
Range partitioning 154-156
rdb tool

URL 300
RDF-based vocabulary

URL 221
RDF graph

characteristics 299
Really Simple Syndication (RSS) 263
Redis

about 1, 12-15
advanced Lua scripting, using 131
and AWS 257, 258
and ElasticSearch, using

in BIBCAT 212-217
and machine learning 312, 313
ARGV, using 126-130
as analytics complement,

to MongoDB 199-211
as preprocessor complement,

to ElasticSearch 211
benefits 2, 3
clustering, with Twemproxy 163
command, URL 31
configuring 48
development, Git used 96, 97
ElasticSearch 217
experimenting with 4-9
issues 252
keys 16
KEYS, using 126-130
linear regression 324-329
Logstash 217
Lua, uses 117-126
master-slave replication, using 48
own redis command, creating 98-100
protected mode 309, 310
role, in DevOps 150, 151
scripting, reference link 118
security, considerations 308, 309
smart as cache complement, to Fedora

Commons 219-224

www.ebook3000.com

http://www.ebook3000.org

[339]

URL 31
usage patterns 10
used, for coroutines 108-112
used, for updating Todo

list application 113-115
web dashboard, operational

monitoring 311
redisbayes

URL 318
redis.c 90-96
Redis Cluster

background 170, 171
failover 181-184
live reconfiguration 178-181
nodes, replacing 184
nodes, upgrading 184
overview 171-173
resharding 179-181
using 173-178

Redis data structures
time complexity, reviewing 34

Redis Docker image
reference 234

Redis Dump Binary (RDB) 83
Redis Github repository

reference link 96
redis.h 89-96
Redis internals

about 84-89
RDB format 105-108
redis.c 90-96
redis.h 89-96
REdis Serialization Protocol (RESP) 101

Redis keys
about 16
delimiters 18-21
naming conventions 18-21
schema 16-18

Redis keyspace notifications 279-282
Redis Labs

about 259
DigitalOcean Redis 260
URL 259

Redis Labs Enterprise Cluster (RLEC) 259
RedisLive

URL 312

redis-lua client
URL 275

Redis object mapper
deconstructing 24-29
key cautions 30
key expiration time, setting 30

Redis Pub/Sub
first workstation, using Python

Pub/Sub 271-273
implementing 269, 270
overview 263, 264
RESP Array 265
second workstation Node.js

Pub/Sub 274, 275
third workstation Lua Client

Pub/Sub 275-278
with Redis CLI 267-269

redis-py-cluster
reference 177

Redis schema
creating, manually 21-24

Redis Sentinel
about 185
for, Area Code List Partition 188
monitoring 185-187

REdis Serialization Protocol (RESP)
about 84, 101-103
pipelining 104, 105

Redis technologies
messaging with 292

Relational Database Management
Systems (DBMS) 194

REmote DIctionary Server. See Redis
resident set size (rss) 50
RESP

transforming into, by extracting
JSON 302-308

RESP Array
about 265
SUBSCRIBE 265
UNSUBSCRIBE 266

RestMQ
reference 290

Round Trip Time (RTT) 104

[340]

S
Schema.org

reference link 136
security, considerations

about 308, 309
command obfuscation 311
operational monitoring, with Redis web

dashboard 311, 312
passwords 310
passwords, setting 310
protected mode 309

service-oriented architecture (SOA) 231
sets 38, 39
Software as a Service (SaaS) 231
Software Development 150
sorted sets

about 39-42
advanced operations 42

SPARQL Protocol and the RDF Query
Language 196

strings 35

T
task management

adding, with RestMQ 290-292
with Redis and Celery 283-287

Technology Operations 150
time complexity, Redis data structures

about 34
hashes 36
lists 37, 38
sets 38, 39
strings 35

time to live (TTL) 66
Todo list application

public access 115
replication 115
updating, with Node.js 113-115
updating, with Redis 113-115

Twemproxy
about 163
Redis, clustering with 163
testing, with Linked Data

Fragments server 164-170

U
unit test

URL 21
usage patterns 10-12

W
World Web Consortium (W3C) 220

www.ebook3000.com

http://www.ebook3000.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Why Redis?
	Is Redis right for me?
	Experimenting with Redis
	Popular usage patterns
	Redis isn't right because …try again soon!
	Summary

	Chapter 2: Advanced Key Management and Data Structures
	Redis keys
	Redis key schema
	Key delimiters and naming conventions

	Manually creating a Redis schema
	Deconstructing a Redis object mapper
	Key expiration
	Key cautions

	Big O notation
	Computing big O notation for custom code

	Reviewing the time complexity of Redis data structures
	Strings
	Hashes
	Lists
	Sets

	Sorted sets
	Advanced sorted set operations
	Bitstrings and bit operations
	HyperLogLogs
	Summary

	Chapter 3: Managing RAM – Tips and Techniques for Redis Memory Management
	Configuring Redis
	Master-slave

	32-bit Redis
	About the INFO memory

	Key expiration
	LRU key evictions
	Creating memory efficient Redis data structures
	Small aggregate hashes, lists, sets, and sorted sets
	Bits, bytes, and Redis strings as random access arrays
	Optimizing hashes for efficient storage

	Hardware and network latencies
	Operating system tips
	Summary

	Chapter 4: Programming Redis Part
One – Redis Core, Clients, and Languages
	Redis internals
	Understanding redis.h and redis.c
	Getting ready for Redis development with Git
	Exercise – creating your own redis command

	Redis Serialization Protocol (RESP)
	Pipelining

	Redis RDB format

	Coroutines using Redis and Python
	Todo list application using Node.js and Redis
	Replication and public access

	Summary

	Chapter 5: Programming Redis Part Two – Lua Scripting, Administration, and DevOps
	The use of Lua in Redis
	Using KEYS and ARGV with Redis
	Advanced Lua scripting with Redis
	MARC21 ingestion
	Online Storefront Paper Stationery
	Interoperability using JSON-LD, Lua, and Redis
	Redis Lua Debugger

	Programming Redis administration topics
	Master-Slave replication
	Transactions with MULTI and EXEC

	Redis role in DevOps
	Summary

	Chapter 6: Scaling with Redis Cluster and Sentinel
	Approaches to partitioning data
	Range partitioning
	List partitioning
	Hash partitioning
	Composite partitioning
	Key hash tags

	Clustering Redis with Twemproxy
	Testing Twemproxy with Linked Data Fragments server

	Redis Cluster background
	Overview of running Redis Cluster
	Using Redis Cluster
	Live reconfiguration and resharding Redis cluster
	Failover
	Replacing or upgrading nodes in Redis Cluster

	Monitoring with Redis Sentinel
	Sentinel for Area Code List Partition

	Summary

	Chapter 7: Redis and Complementary NoSQL Technologies
	The proliferation of NoSQL
	Redis as an analytics complement to MongoDB
	Redis as a preprocessor complement to ElasticSearch
	Using Redis and ElasticSearch in BIBCAT
	ElasticSearch, Logstash, and Redis

	Redis as a smart cache complement to Fedora Commons
	Summary

	Chapter 8: Docker Containers and
Cloud Deployments
	Linux containers
	Docker basics with Redis
	Layers in Docker images
	Docker filesystem backends
	Building images with a Dockerfile

	Hosting and publishing Docker images
	Docker and Redis issues
	Packaging your application with Docker Compose
	Redis and AWS
	Dedicated cloud hosting options
	Redis Labs
	DigitalOcean Redis

	Summary

	Chapter 9: Task Management and Messaging Queuing
	Overview of Redis Pub/Sub
	Pub/Sub RESP replies
	SUBSCRIBE and UNSUBSCRIBE RESP Arrays
	PSUBSCRIBE and UNSUBSCRIBE arrays
	Pub/Sub with Redis CLI

	Redis Pub/Sub in action
	First workstation using Python Pub/Sub
	Second workstation Node.js Pub/Sub
	Third workstation Lua Client Pub/Sub

	Redis keyspace notifications
	Task management with Redis and Celery
	GIS and RestMQ
	Adding task management with RestMQ

	Messaging with Redis technologies
	Messaging with Disque

	Summary

	Chapter 10: Measuring and Managing Information Streams
	Extracting, transforming, and loading information with Redis
	Extracting JSON to transform into RESP
	Security considerations when managing Redis
	Redis protected mode
	Command obfuscation
	Operational monitoring with a Redis web dashboard

	Machine learning and Redis
	Naïve Bayes and work classification
	Creating training and testing datasets
	Extracting word Tokens from BIBFRAME Works
	Applying Naïve Bayes

	Linear regression with Redis

	Summary

	Appendix: Sources
	Index

