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Clojure philosophy 

This chapter covers 
 The Clojure way 

 Why a(nother) Lisp? 

 Functional programming 

 Why Clojure isn’t especially object-oriented 

Learning a new language generally requires significant investment of thought and 
effort, and it is only fair that programmers expect each language they consider 
learning to justify that investment. Clojure was born out of creator Rich Hickey’s 
desire to avoid many of the complications, both inherent and incidental, of manag­
ing state using traditional object-oriented techniques. Thanks to a thoughtful 
design based in rigorous programming language research, coupled with a fervent 
look toward practicality, Clojure has blossomed into an important programming 
language playing an undeniably important role in the current state of the art in lan­
guage design. On one side of the equation, Clojure utilizes Software Transactional 
Memory (STM), agents, a clear distinction between identity and value types, arbi­
trary polymorphism, and functional programming to provide an environment con­
ducive to making sense of state in general, and especially in the face of 
concurrency. On the other side, Clojure shares a symbiotic relationship with the 

3 



4 CHAPTER 1 Clojure philosophy 

Java Virtual Machine, thus allowing prospective developers to avoid the costs of main­
taining yet another infrastructure while leveraging existing libraries.

 In the grand timeline of programming language history, Clojure is an infant; but 
its colloquialisms (loosely translated as “best practices” or idioms) are rooted1 in 50 
years of Lisp, as well as 15 years of Java history. Additionally, the enthusiastic commu­
nity that has exploded since its introduction has cultivated its own set of unique idi­
oms. As mentioned in the preface, the idioms of a language help to define succinct 
representations of more complicated expressions. Although we will certainly cover idi­
omatic Clojure code, we will also expand into deeper discussions of the “why” of the 
language itself.

 In this chapter, we’ll discuss the weaknesses in existing languages that Clojure was 
designed to address, how it provides strength in those areas, and many of the design 
decisions Clojure embodies. We’ll also look at some of the ways existing languages 
have influenced Clojure, and define terms that will be used throughout the book. 

1.1 The Clojure way 
We’ll start slowly. 

Clojure is an opinionated language—it doesn’t try to cover all paradigms or pro­
vide every checklist bullet-point feature. Instead it provides the features needed to 
solve all kinds of real-world problems the Clojure way. To reap the most benefit from 
Clojure, you’ll want to write your code with the same vision as the language itself. As 
we walk through the language features in the rest of the book, we’ll mention not just 
what a feature does, but why it’s there and how best to take advantage of it.

 But before we get to that, we’ll first take a high-level view of some of Clojure’s most 
important philosophical underpinnings. Figure 1.1 lists some broad goals that Rich 
Hickey had in mind while designing Clojure and some of the more specific decisions 
that are built into the language to support 
these goals.

 As the figure illustrates, Clojure’s

broad goals are formed from a confluence

of supporting goals and functionality,

which we will touch on in the following 

subsections.


1.1.1 Simplicity 

It’s hard to write simple solutions to com­

plex problems. But every experienced 

programmer has also stumbled on areas


Figure 1.1 Broad goals of Clojure: this figure 
where we’ve made things more complex shows some of the concepts that underlie the 
than necessary, what you might call Clojure philosophy, and how they intersect. 

1	 While drawing on the traditions of Lisps (in general) and Java, Clojure in many ways stands as a direct chal­
lenge to them for change. 
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The Clojure way 5 

incidental complexity as opposed to complexity that’s essential to the task at hand (Mose-
ley 2006). Clojure strives to let you tackle complex problems involving a wide variety 
of data requirements, multiple concurrent threads, independently developed librar­
ies, and so on without adding incidental complexity. It also provides tools reducing 
what at first glance may seem like essential complexity. The resulting set of features 
may not always seem simple, especially when they’re still unfamiliar, but as you read 
through this book we think you’ll come to see how much complexity Clojure helps 
strip away. 

One example of incidental complexity is the tendency of modern object-oriented 
languages to require that every piece of runnable code be packaged in layers of class 
definitions, inheritance, and type declarations. Clojure cuts through all this by cham­
pioning the pure function, which takes a few arguments and produces a return value 
based solely on those arguments. An enormous amount of Clojure is built from such 
functions, and most applications can be too, which means that there’s less to think 
about when trying to solve the problem at hand. 

1.1.2 Freedom to focus 

Writing code is often a constant struggle against distraction, and every time a language 
requires you to think about syntax, operator precedence, or inheritance hierarchies, it 
exacerbates the problem. Clojure tries to stay out of your way by keeping things as sim­
ple as possible, not requiring you to go through a compile-and-run cycle to explore an 
idea, not requiring type declarations, and so on. It also gives you tools to mold the lan­
guage itself so that the vocabulary and grammar available to you fit as well as possible 
to your problem domain—Clojure is expressive. It packs a punch, allowing you to per­
form highly complicated tasks succinctly without sacrificing comprehensibility.

 One key to delivering this freedom is a commitment to dynamic systems. Almost 
everything defined in a Clojure program can be redefined, even while the program is 
running: functions, multimethods, types, type hierarchies, and even Java method 
implementations. Though redefining things on the fly might be scary on a production 
system, it opens a world of amazing possibilities in how you think about writing pro­
grams. It allows for more experimentation and exploration of unfamiliar APIs, and it 
adds an element of fun that can sometimes be impeded by more static languages and 
long compilation cycles.

 But Clojure’s not just about having fun. The fun is a by-product of giving program­
mers the power to be more productive than they ever thought imaginable. 

1.1.3 Empowerment 

Some programming languages have been created primarily to demonstrate some nug­
get of academia or to explore certain theories of computation. Clojure is not one of 
these. Rich Hickey has said on numerous occasions that Clojure has value to the 
degree that it lets you build interesting and useful applications. 
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 To serve this goal, Clojure strives to be practical—a tool for getting the job done. If 
a decision about some design point in Clojure had to weigh the trade-offs between the 
practical solution and a clever, fancy, or theoretically pure solution, usually the practi­
cal solution won out. Clojure could try to shield you from Java by inserting a compre­
hensive API between the programmer and the libraries, but this could make the use of 
third-party Java libraries more clumsy. So Clojure went the other way: direct, wrapper-
free, compiles-to-the-same-bytecode access to Java classes and methods. Clojure strings 
are Java strings; Clojure function calls are Java method calls—it’s simple, direct, and 
practical.

 The decision to use the Java Virtual Machine (JVM) itself is a clear example of this 
practicality. The JVM has some technical weaknesses such as startup time, memory 
usage, and lack of tail-call optimization2 (TCO). But it’s also an amazingly practical plat­
form—it’s mature, fast, and widely deployed. It supports a variety of hardware and 
operating systems and has a staggering number of libraries and support tools avail­
able, all of which Clojure can take advantage of because of this supremely practical 
decision.

 With direct method calls, proxy, gen-class, gen-interface (see chapter 10), 
reify, definterface, deftype, and defrecord (see section 9.3), Clojure works hard 
to provide a bevy of interoperability options, all in the name of helping you get your 
job done. Practicality is important to Clojure, but many other languages are practical 
as well. You’ll start to see some ways that Clojure really sets itself apart by looking at 
how it avoids muddles. 

1.1.4 Clarity 

When beetles battle beetles in a puddle paddle battle and the beetle battle puddle is a 
puddle in a bottle they call this a tweetle beetle bottle puddle paddle battle muddle. 

—Dr. Seuss 

Consider what might be described as a simple snippet of code in a language like 
Python: 

x = [5]

process(x)

x[0] = x[0] + 1


After executing this code, what’s the value of x? If you assume process doesn’t change 
the contents of x at all, it should be [6], right? But how can you make that assump­
tion? Without knowing exactly what process does, and whatever function it calls does, 
and so on, you can’t be sure at all.

 Even if you’re sure process doesn’t change the contents of x, add multithreading 
and now you have another whole set of concerns. What if some other thread changes 

2	 Don’t worry if you don't know what tail-call optimization is. Also don’t worry if you do know what TCO is and 
think the JVM’s lack of it is a critical flaw for a Lisp or functional language such as Clojure. All your concerns 
will be addressed in section 7.3. Until then, just relax. 
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x between the first and third lines? Worse yet, what if something is setting x at the 
moment the third line is doing its assignment—are you sure your platform guarantees 
an atomic write to that variable, or is it possible that the value will be a corrupted mix 
of multiple writes? We could continue this thought exercise in hopes of gaining some 
clarity, but the end result would be the same—what you have ends up not being clear 
at all, but the opposite: a muddle.

 Clojure strives for code clarity by providing tools to ward off several different kinds 
of muddles. For the one just described, it provides immutable locals and persistent 
collections, which together eliminate most of the single- and multithreaded issues all 
at once.

 You can find yourself in several other kinds of muddles when the language you’re 
using merges unrelated behavior into a single construct. Clojure fights this by being 
vigilant about separation of concerns. When things start off separated, it clarifies your 
thinking and allows you to recombine them only when and to the extent that doing so 
is useful for a particular problem. Table 1.1 contrasts common approaches that merge 
concepts together in some other languages with separations of similar concepts in 
Clojure that will be explained in greater detail throughout this book. 

Table 1.1 Separation of concerns in Clojure 

Conflated Separated Where 

Object with mutable fields 

Class acts as namespace for 
methods 

Inheritance hierarchy made of 
classes 

Data and methods bound 
together lexically 

Method implementations embed­
ded throughout class inheritance 
chain 

Values from identities 

Function namespaces from type 
namespaces 

Hierarchy of names from data and 
functions 

Data objects from functions 

Interface declarations from func­
tion implementations 

Chapter 4 and section 5.1 

Sections 8.2 and 8.3 

Chapter 8 

Sections 6.1 and 6.2 and 
chapter 8 

Sections 8.2 and 8.3 

It can be hard at times to tease apart these concepts in our own minds, but accom­
plishing it can bring remarkable clarity and a sense of power and flexibility that’s 
worth the effort. With all these different concepts at your disposal, it’s important that 
the code and data you work with express this variety in a consistent way. 

1.1.5 Consistency 

Clojure works to provide consistency in two specific ways: consistency of syntax and of 
data structures.

 Consistency of syntax is about the similarity in form between related concepts. One 
simple but powerful example of this is the shared syntax of the for and doseq macros. 
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They don’t do the same thing—for returns a lazy seq whereas doseq is for generating 
side effects—but both support the same mini-language of nested iteration, destructur­
ing, and :when and :while guards. The similarities stand out when comparing the fol­
lowing examples: 

(for [x [:a :b], y (range 5) :when (odd? y)] [x y])

;=> ([:a 1] [:a 3] [:b 1] [:b 3])


(doseq [x [:a :b], y (range 5) :when (odd? y)] (prn x y))

; :a 1

; :a 3

; :b 1

; :b 3

;=> nil


The value of this similarity is having to learn only one basic syntax for both situations, 
as well as the ease with which you can convert any particular usage of one form to the 
other if that becomes necessary. 

Likewise, the consistency of data structures is the deliberate design of all of Clo­
jure’s persistent collection types to provide interfaces as similar to each other as possi­
ble, as well as to make them as broadly useful as possible. This is actually an extension 
of the classic Lisp “code is data” philosophy. Clojure data structures aren’t used just 
for holding large amounts of application data, but also to hold the expression ele­
ments of the application itself. They’re used to describe destructuring forms and to 
provide named options to various built-in functions. Where other object-oriented lan­
guages might encourage applications to define multiple incompatible classes to hold 
different kinds of application data, Clojure encourages the use of compatible map-like 
objects.

 The benefit of this is that the same set of functions designed to work with Clojure 
data structures can be applied to all these contexts: large data stores, application 
code, and application data objects. You can use into to build any of these types, seq to 
get a lazy seq to walk through them, filter to select elements of any of them that sat­
isfy a particular predicate, and so on. Once you’ve grown accustomed to having the 
richness of all these functions available everywhere, dealing with a Java or C++ applica­
tion’s Person or Address class will feel constraining.

 Simplicity, freedom to focus, empowerment, consistency, and clarity. 
Nearly every element of the Clojure programming language is designed to pro­

mote these goals. When writing Clojure code, if you keep in mind the desire to maxi­
mize simplicity, empowerment, and the freedom to focus on the real problem at 
hand, we think you’ll find Clojure provides you the tools you need to succeed. 

1.2 Why a(nother) Lisp? 
By relieving the brain of all unnecessary work, a good notation sets it free to concen­
trate on more advanced problems. 

—Alfred North Whitehead 
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Go to any open source project hosting site and perform a search for the term “Lisp 
interpreter.” You’ll likely get a cyclopean mountain3 of results from this seemingly 
innocuous term. The fact of the matter is that the history of computer science is lit­
tered (Fogus 2009) with the abandoned husks of Lisp implementations. Well-inten­
tioned Lisps have come and gone and been ridiculed along the way, and still 
tomorrow the search results will have grown almost without bounds. Bearing in mind 
this legacy of brutality, why would anyone want to base their brand-new programming 
language on the Lisp model? 

1.2.1 Beauty 

Lisp has attracted some of the brightest minds in the history of computer science. But 
an argument from authority is insufficient, so you shouldn’t judge Lisp on this alone. 
The real value in the Lisp family of languages can be directly observed through the 
activity of using it to write applications. The Lisp style is one of expressivity and 
empowerment, and in many cases outright beauty. Joy awaits the Lisp neophyte. The 
original Lisp language as defined by John McCarthy in his earth-shattering essay 
“Recursive Functions of Symbolic Expressions and Their Computation by Machine, 
Part I” (McCarthy 1960) defined the whole language in terms of only seven functions 
and two special forms: atom, car, cdr, cond, cons, eq, quote, lambda, and label.

 Through the composition of those nine forms, McCarthy was able to describe the 
whole of computation in a way that takes your breath away. Computer programmers 
are perpetually in search of beauty, and more often than not, this beauty presents 
itself in the form of simplicity. Seven functions and two special forms. It doesn’t get 
more beautiful than that. 

1.2.2 Extreme flexibility 

Why has Lisp persevered for more than 50 years while countless other languages have 
come and gone? There are probably complex reasons, but chief among them is likely 
the fact that Lisp as a language genotype (Tarver 2008) fosters language flexibility in 
the extreme. Newcomers to Lisp are sometimes unnerved by its pervasive use of 
parentheses and prefix notation, which is different than non-Lisp programming lan­
guages. The regularity of this behavior not only reduces the number of syntax rules 
you have to remember, but also makes the writing of macros trivial. We’ll look at mac­
ros in more detail in chapter 8, but to whet your appetite we’ll take a brief look at one 
now. It’s an example that we’ll get working on in a moment: 

(defn query [max]

(SELECT [a b c]


(FROM X

(LEFT-JOIN Y :ON (= X.a Y.b)))


(WHERE (AND (< a 5) (< b ~max)))))


3 ...of madness. 
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We hope some of those words look familiar to you, because this isn’t a book on SQL. 
Regardless, our point here is that Clojure doesn’t have SQL support built in. The 
words SELECT, FROM, and so forth aren’t built-in forms. They’re also not regular func­
tions, because if SELECT were, then the use of a, b, and c would be an error, because 
they haven’t been defined yet.

 So what does it take to define a domain-specific language (DSL) like this in Clo­
jure? Well, it’s not production-ready code and doesn’t tie into any real database serv­
ers; but with just one macro and the three functions shown in listing 1.1, the 
preceding query returns these handy values: 

(query 5)

;=> ["SELECT a, b, c FROM X LEFT JOIN Y ON (X.a = Y.b)


WHERE ((a < 5) AND (b < ?))"

[5]]


Note that some words such as FROM and ON are taken directly from the input expres­
sion, whereas others such as ~max and AND are treated specially. The max that was given 
the value 5 when the query was called is extracted from the literal SQL string and pro­
vided in a separate vector, perfect for using in a prepared query in a way that will 
guard against SQL-injection attacks. The AND form was converted from the prefix nota­
tion of Clojure to the infix notation required by SQL. 

Listing 1.1 A domain-specific language for embedding SQL queries in Clojure 

(ns joy.sql

(:use [clojure.string :as str :only []])
 Use core  

string functions (defn expand-expr [expr]

(if (coll? expr)


(if (= (first expr) `unquote)
 Handle unsafe literals 
"?"

(let [[op & args] expr]


(str "(" (str/join (str " " op " ")

Convert prefix(map expand-expr args)) ")")))

to infix expr))


(declare expand-clause)
 Support each 
kind of clause (def clause-map


{'SELECT (fn [fields & clauses]

(apply str "SELECT " (str/join ", " fields)


(map expand-clause clauses)))

'FROM (fn [table & joins]


(apply str " FROM " table

(map expand-clause joins)))


'LEFT-JOIN (fn [table on expr]

(str " LEFT JOIN " table


" ON " (expand-expr expr)))

'WHERE (fn [expr]


Call (str " WHERE " (expand-expr expr)))})

appropriate 
converter(defn expand-clause [[op & args]]


(apply (clause-map op) args))
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(defmacro SELECT [& args]
 Provide main 
[(expand-clause (cons 'SELECT args))
 entrypoint macro 
(vec (for [n (tree-seq coll? seq args)


:when (and (coll? n) (= (first n) `unquote))]

(second n)))])


But the point here isn’t that this is a particularly good SQL DSL—more complete ones 
are available.4 Our point is that once you have the skill to easily create a DSL like this, 
you’ll recognize opportunities to define your own that solve much narrower,  
application-specific problems than SQL does. Whether it’s a query language for an 
unusual non-SQL datastore, a way to express functions in some obscure math disci­
pline, or some other application we as authors can’t imagine, having the flexibility to 
extend the base language like this, without losing access to any of the language’s own 
features, is a game-changer.

 Although we shouldn’t get into too much detail about the implementation, take 
a brief look at listing 1.1 and follow along as we discuss important aspects of its 
implementation.

 Reading from the bottom up, you’ll notice the main entry point, the SELECT 
macro. This returns a vector of two items—the first is generated by calling expand-
clause, which returns the converted query string, whereas the second is another vec­
tor of expressions marked by ~ in the input. The ~ is known as unquote and we discuss 
its more common uses in chapter 8. Also note the use of tree-seq here to succinctly 
extract items of interest from a tree of values, namely the input expression.

 The expand-clause function takes the first word of a clause, looks it up in the 
clause-map, and calls the appropriate function to do the actual conversion from Clo­
jure s-expression to SQL string. The clause-map provides the specific functionality 
needed for each part of the SQL expression: inserting commas or other SQL syntax, 
and sometimes recursively calling expand-clause when subclauses need to be con­
verted. One of these is the WHERE clause, which handles the general conversion of pre­
fix expressions to the infix form required by SQL by delegating to the expand-expr 
function.

 Overall, the flexibility of Clojure demonstrated in this example comes largely from 
the fact that macros accept code forms, such as the SQL DSL example we showed, and 
can treat them as data—walking trees, converting values, and more. This works not 
only because code can be treated as data, but because in a Clojure program, code is 
data. 

1.2.3 Code is data 

The notion of “code is data” is difficult to grasp at first. Implementing a programming 
language where code shares the same footing as its comprising data structures presup­
poses a fundamental malleability of the language itself. When your language is repre­
sented as the inherent data structures, the language itself can manipulate its own 

4 One of note is ClojureQL at http://gitorious.org/clojureql. 

http://gitorious.org/clojureql
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structure and behavior (Graham 1995). You may have visions of Ouroboros after read­
ing the previous sentence, and that wouldn’t be inappropriate, because Lisp can be 
likened to a self-licking lollypop—more formally defined as homoiconicity. Lisp’s 
homoiconicity takes a great conceptual leap in order to fully grasp, but we’ll lead you 
toward that understanding throughout this book in hopes that you too will come to 
realize the inherent power.

 There’s a joy in learning Lisp for the first time, and if that’s your experience com­
ing into this book then we welcome you—and envy you. 

1.3 Functional programming 
Quick, what does functional programming mean? Wrong answer. 

Don’t be too discouraged, however—we don’t really know the answer either. Func­
tional programming is one of those computing terms5 that has a nebulous definition. 
If you ask 100 programmers for their definition, you’ll likely receive 100 different 
answers. Sure, some definitions will be similar, but like snowflakes, no two will be 
exactly the same. To further muddy the waters, the cognoscenti of computer science 
will often contradict one another in their own independent definitions. Likewise, the 
basic structure of any definition of functional programming will be different depend­
ing on whether your answer comes from someone who favors writing their programs 
in Haskell, ML, Factor, Unlambda, Ruby, or Qi. How can any person, book, or lan­
guage claim authority for functional programming? As it turns out, just as the multi­
tudes of unique snowflakes are all made mostly of water, the core of functional  
programming across all meanings has its core tenets. 

1.3.1 A workable definition of functional programming 

Whether your own definition of functional programming hinges on the lambda calcu­
lus, monadic I/O, delegates, or java.lang.Runnable, your basic unit of currency is 
likely to be some form of procedure, function, or method—herein lies the root. Func­
tional programming concerns and facilitates the application and composition of func­
tions. Further, for a language to be considered functional, its notion of function must 
be first-class. The functions of a language must be able to be stored, passed, and 
returned just like any other piece of data within that language. It’s beyond this core 
concept that the definitions branch toward infinity, but thankfully, it’s enough to start. 
Of course, we’ll also present a further definition of Clojure’s style of functional pro­
gramming that includes such topics as purity, immutability, recursion, laziness, and 
referential transparency, but those will come later in chapter 7. 

1.3.2 The implications of functional programming 

Object-oriented programmers and functional programmers will often see and solve a 
problem in different ways. Whereas an object-oriented mindset will foster the 

5	 Quick, what’s the definition of combinator? How about cloud computing? Enterprise? SOA? Web 2.0? Real-
world? Hacker? Often it seems that the only term with a definitive meaning is “yak shaving.” 
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approach of defining an application domain as a set of nouns (classes), the functional 
mind will see the solution as the composition or verbs (functions). Though both pro­
grammers may in all likelihood generate equivalent results, the functional solution 
will be more succinct, understandable, and reusable. Grand claims indeed! We hope 
that by the end of this book you’ll agree that functional programming fosters ele­
gance in programming. It takes a shift in mindset to start from thinking in nouns to 
arrive at thinking in verbs, but the journey will be worthwhile. In any case, we think 
there’s much that you can take from Clojure to apply to your chosen language—if 
only you approach the subject with an open mind. 

1.4 Why Clojure isn’t especially object-oriented 
Elegance and familiarity are orthogonal. 

—Rich Hickey 

Clojure was born out of frustration provoked in large part by the complexities of con­
current programming, complicated by the weaknesses of object-oriented program­
ming in facilitating it. This section explores these weaknesses and lays the groundwork 
for why Clojure is functional and not object-oriented. 

1.4.1 Defining terms 

Before we begin, it’s useful to define terms.6

 The first important term to define is time. Simply put, time refers to the relative 
moments when events occur. Over time, the properties associated with an entity— 
both static and changing, singular or composite—will form a concrescence (White­
head 1929) and be logically deemed its identity. It follows from this that at any given 
time, a snapshot can be taken of an entity’s properties defining its state. This notion of 
state is an immutable one because it’s not defined as a mutation in the entity itself, but 
only as a manifestation of its properties at a given moment in time. Imagine a child’s 
flip book, as seen in figure 1.2, to understand the terms fully.

 It’s important to note that in the canon of object-oriented programming, there’s 
no clear distinction between state and identity. In other words, these two ideas are 

Figure 1.2 The Runner: a child’s flip book serves to 
illustrate Clojure’s notions of state, time, and identity. The 
book itself represents the identity. Whenever you wish to 
show a change in the illustration, you draw another picture 
and add it to the end of your flip book. The act of flipping the 
pages therefore represents the states over time of the image 
within. Stopping at any given page and observing the 
particular picture represents the state of the Runner at that 
moment in time. 

These terms are also defined and elaborated on in Rich Hickey’s presentation, “Are We There Yet?” (Hickey 
2009). 

6 
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Figure 1.3 The Mutable Runner: modeling state change with 
mutation requires that you stock up on erasers. Your book 
becomes a single page, requiring that in order to model 
changes, you must physically erase and redraw the parts of 
the picture requiring change. Using this model, you should see 
that mutation destroys all notion of time, and state and 
identity become one. 

conflated into what’s commonly referred to as mutable state. The classical object-
oriented model allows unrestrained mutation of object properties without a willing­
ness to preserve historical states. Clojure’s implementation attempts to draw a clear 
separation between an object’s state and identity as they relate to time. To state the dif­
ference to Clojure’s model in terms of the aforementioned flip book, the mutable 
state model is different, as seen in figure 1.3. 

Immutability lies at the cornerstone of Clojure, and much of the implementation 
ensures that immutability is supported efficiently. By focusing on immutability, Clo­
jure eliminates entirely the notion of mutable state (which is an oxymoron) and instead 
expounds that most of what’s meant by objects are instead values. Value by definition 
refers to an object’s constant representative7 amount, magnitude, or epoch. You 
might ask yourself: what are the implications of the value-based programming seman­
tics of Clojure?

 Naturally, by adhering to a strict model of immutability, concurrency suddenly 
becomes a simpler (although not simple) problem, meaning if you have no fear that 
an object’s state will change, then you can promiscuously share it without fear of con­
current modification. Clojure instead isolates value change to its reference types, as 
we’ll show in chapter 11. Clojure’s reference types provide a level of indirection to an 
identity that can be used to obtain consistent, if not always current, states. 

1.4.2 Imperative “baked in” 

Imperative programming is the dominant programming paradigm today. The most 
unadulterated definition of an imperative programming language is one where a 
sequence of statements mutates program state. During the writing of this book (and 
likely for some time beyond), the preferred flavor of imperative programming is the 
object-oriented style. This fact isn’t inherently bad, because there are countless suc­
cessful software projects built using object-oriented imperative programming tech­
niques. But from the context of concurrent programming, the object-oriented 
imperative model is self-cannibalizing. By allowing (and even promoting) unre­
strained mutation via variables, the imperative model doesn’t directly support concur­
rency. Instead, by allowing a maenadic approach to mutation, there are no guarantees 
that any variable contains the expected value. Object-oriented programming takes this 
one step further by aggregating state in object internals. Though individual methods 
may be thread-safe through locking schemes, there’s no way to ensure a consistent 

7	 Some entities have no representative value—Pi is an example. But in the realm of computing, where we’re 
ultimately referring to finite things, this is a moot point. 
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object state across multiple method calls without expanding the scope of potentially 
complex locking scheme(s). Clojure instead focuses on functional programming, 
immutability, and the distinction between state, time, and identity. But object-oriented 
programming isn’t a lost cause. In fact, there are many aspects that are conducive to 
powerful programming practice. 

1.4.3 Most of what OOP gives you, Clojure provides 

It should be made clear that we’re not attempting to mark object-oriented program­
mers as pariahs. Instead, it’s important that we identify the shortcomings of object-
oriented programming (OOP) if we’re ever to improve our craft. In the next few sub­
sections we’ll also touch on the powerful aspects of OOP and how they’re adopted, 
and in some cases improved, by Clojure. 

POLYMORPHISM AND THE EXPRESSION PROBLEM 

Polymorphism is the ability of a function or method to have different definitions 
depending on the type of the target object. Clojure provides polymorphism via both 
multimethods and protocols, and both mechanisms are more open and extensible 
than polymorphism in many languages. 

Listing 1.2 Clojure’s polymorphic protocols 

(defprotocol Concatenatable

(cat [this other]))


(extend-type String

Concatenatable

(cat [this other]


(.concat this other)))


(cat "House" " of Leaves")

;=> "House of Leaves"


What we’ve done in listing 1.2 is to define a protocol named Concatenatable that 
groups one or more functions (in this case only one, cat) that define the set of func­
tions provided. That means the function cat will work for any object that fully satisfies 
the protocol Concatenatable. We then extend this protocol to the String class and 
define the specific implementation—a function body that concatenates the argument 
other onto the string this. We can also extend this protocol to another type: 

(extend-type java.util.List

Concatenatable

(cat [this other]


(concat this other)))


(cat [1 2 3] [4 5 6])

;=> (1 2 3 4 5 6)


So now the protocol has been extended to two different types, String and 
java.util.List, and thus the cat function can be called with either type as its first 
argument—the appropriate implementation will be invoked. 
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 Note that String was already defined (in this case by Java itself) before we defined 
the protocol, and yet we were still able to successfully extend the new protocol to it. 
This isn’t possible in many languages. For example, Java requires that you define all 
the method names and their groupings (known as interfaces) before you can define a 
class that implements them, a restriction that’s known as the expression problem. 

THE EXPRESSION PROBLEM The expression problem refers to the desire to 
implement an existing set of abstract methods for an existing concrete class 
without having to change the code that defines either. Object-oriented lan­
guages allow you to implement an existing abstract method in a concrete class 
you control (interface inheritance), but if the concrete class is outside your 
control, the options for making it implement new or existing abstract meth­
ods tend to be sparse. Some dynamic languages such as Ruby and JavaScript 
provide partial solutions to this problem by allowing you to add methods to 
an existing concrete object, a feature sometimes known as monkey-patching. 

A Clojure protocol can be extended to any type where it makes sense, even those that 
were never anticipated by the original implementor of the type or the original 
designer of the protocol. We’ll dive deeper into Clojure’s flavor of polymorphism in 
chapter 9, but we hope now you have a basic idea of how it works. 

SUBTYPING AND INTERFACE-ORIENTED PROGRAMMING 

Clojure provides a form of subtyping by allowing the creation of ad-hoc hierarchies. 
We’ll delve into leveraging the ad-hoc hierarchy facility later, in section 9.2. Likewise, 
Clojure provides a capability similar to Java’s interfaces via its protocol mechanism. By 
defining a logically grouped set of functions, you can begin to define protocols to which 
data-type abstractions must adhere. This abstraction-oriented programming model is key 
in building large-scale applications, as you’ll discover in section 9.3 and beyond. 

ENCAPSULATION 

If Clojure isn’t oriented around classes, then how does it provide encapsulation? 
Imagine that you need a simple function that, given a representation of a chessboard 
and a coordinate, returns a simple representation of the piece at the given square. To 
keep the implementation as simple as possible, we’ll use a vector containing a set of 
characters corresponding to the colored chess pieces, as shown next. 

Listing 1.3 A simple chessboard representation in Clojure 

(ns joy.chess)


(defn initial-board []

[\r \n \b \q \k \b \n \r

\p \p \p \p \p \p \p \p

\- \- \- \- \- \- \- \­

\- \- \- \- \- \- \- \­

\- \- \- \- \- \- \- \­

\- \- \- \- \- \- \- \­

\P \P \P \P \P \P \P \P

\R \N \B \Q \K \B \N \R])


Lowercase dark 

Uppercase light 
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There’s no need to complicate matters with the 
chessboard representation; chess is hard 
enough. This data structure in the code corre­
sponds directly to an actual chessboard in the  
starting position, as shown in figure 1.4.

 From the figure, you can gather that the 
black pieces are lowercase characters and white 
pieces are uppercase. This kind of structure is 
likely not optimal, but it’s a good start. You can 
ignore the actual implementation details for 
now and focus on the client interface to query 
the board for square occupations. This is a per­
fect opportunity to enforce encapsulation to 
avoid drowning the client in board implementa­
tion details. Fortunately, programming lan­
guages with closures automatically support a form of encapsulation (Crockford 2008) 
to group functions with their supporting data.8 

0 1 2 3 4 5 6 7 

8 9  10  11  12  13 14 15 

16 17 18 19 20 21 22 23 

24 25 26 27 28 29 30 31 

32 33 34 35 36 37 38 39 

40 41 42 43 44 45 46 47 

48 49 50 51 52 53 54 55 

56 57 58 59 60 61 62 63 

\r \n \b \q \k \b \n \r8 

\p \p \p \p \p \p \p \p 

\P \P \P \P \P \P \P \P2 

\R \N \B \Q \K \B \N \R 

7 

6 

5 

4 

3 

1 

a b c d e f g h 

Figure 1.4  
The corresponding chessboard layout 

The functions in listing 1.4 are self-evident in their intent9 and are encapsulated at 
the level of the namespace joy.chess through the use of the defn- macro that creates 
namespace private functions. The command for using the lookup function in this case 
would be (joy.chess/lookup (initial-board) "a1"). 

Listing 1.4 Querying the squares of a chessboard 

(def *file-key* \a)

(def *rank-key* \0)


Calculate file(defn- file-component [file]

(horizontal) projection (- (int file) (int *file-key*)))


Calculate rank(defn- rank-component [rank]

(vertical) projection (* 8 (- 8 (- (int rank) (int *rank-key*)))))


(defn- index [file rank]

(+ (file-component file) (rank-component rank)))
 Project 1D layout onto 

logical 2D chessboard (defn lookup [board pos]

(let [[file rank] pos]


(board (index file rank))))


Clojure’s namespace encapsulation is the most prevalent form of encapsulation that 
you’ll encounter when exploring idiomatic source code. But the use of lexical clo­
sures provides more options for encapsulation: block-level encapsulation, as shown in 
listing 1.5, and local encapsulation, both of which effectively aggregate unimportant 
details within a smaller scope. 

8	 This form of encapsulation is described as the module pattern. But the module pattern as implemented with 
JavaScript provides some level of data hiding also, whereas in Clojure—not so much. 

9	 And as a nice bonus, these functions can be generalized to project a 2D structure of any size to a 1D represen­
tation—which we leave to you as an exercise. 
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Listing 1.5 Using block-level encapsulation 

(letfn [(index [file rank]

(let [f (- (int file) (int \a))


r (* 8 (- 8 (- (int rank) (int \0))))]

(+ f r)))]


(defn lookup [board pos]

(let [[file rank] pos]


(board (index file rank)))))


It's often a good idea to aggregate relevant data, functions, and macros at their most 
specific scope. You’d still call lookup as before, but now the ancillary functions aren’t 
readily visible to the larger enclosing scope—in this case, the namespace joy.chess. 
In the preceding code, we’ve taken the file-component and rank-component func­
tions and the *file-key* and *rank-key* values out of the namespace proper and 
rolled them into a block-level index function defined with the body of the letfn 
macro. Within this body, we then define the lookup function, thus limiting the client 
exposure to the chessboard API and hiding the implementation specific functions and 
forms. But we can further limit the scope of the encapsulation, as shown in the next 
listing, by shrinking the scope even more to a truly function-local context. 

Listing 1.6 Local encapsulation 

(defn lookup2 [board pos]

(let [[file rank] (map int pos)


[fc rc] (map int [\a \0])

f (- file fc)

r (* 8 (- 8 (- rank rc)))

index (+ f r)]


(board index)))


Finally, we’ve now pulled all of the implementation-specific details into the body of 
the lookup2 function itself. This localizes the scope of the index function and all aux­
iliary values to only the relevant party—lookup2. As a nice bonus, lookup2 is simple 
and compact without sacrificing readability. But Clojure eschews the notion of data-
hiding encapsulation featured prominently in most object-oriented languages. 

NOT EVERYTHING IS AN OBJECT 

Finally, another downside to object-oriented programming is the tight coupling 
between function and data. In fact, the Java programming language forces you to 
build programs entirely from class hierarchies, restricting all functionality to contain­
ing methods in a highly restrictive “Kingdom of Nouns” (Yegge 2006). This environ­
ment is so restrictive that programmers are often forced to turn a blind eye to 
awkward attachments of inappropriately grouped methods and classes. It’s because of 
the proliferation of this stringent object-centric viewpoint that Java code tends toward 
being verbose and complex (Budd 1995). Clojure functions are data, yet this in no 
way restricts the decoupling of data and the functions that work upon them. Many of 
what programmers perceive to be classes are data tables that Clojure provides via 
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maps10 and records. The final strike against viewing everything as an object is that 
mathematicians view little (if anything) as objects (Abadi 1996). Instead, mathematics 
is built on the relationships between one set of elements and another through the 
application of functions. 

1.5 Summary 
We’ve covered a lot of conceptual ground in this chapter, but it was necessary in order 
to define the terms used throughout the remainder of the book. Likewise, it’s impor­
tant to understand Clojure’s underpinnings in order to frame the discussion for the 
rest of the book. If you’ve taken in the previous sections and internalized them, then 
congratulations: you have a solid basis for proceeding to the rest of the book. But if 
you’re still not sure what to make of Clojure, it’s okay—we understand that it may be a 
lot to take in all at once. Understanding will come gradually as we piece together Clo­
jure’s story. For those of you coming from a functional programming background, 
you’ll likely have recognized much of the discussion in the previous sections, but per­
haps with some surprising  twists. Conversely, if your background is more rooted in  
object-oriented programming, then you may get the feeling that Clojure is very differ­
ent than you’re accustomed to. Though in many ways this is true, in the coming chap­
ters you’ll see how Clojure elegantly solves many of the problems that you deal with on 
a daily basis. Clojure approaches solving software problems from a different angle 
than classical object-oriented techniques, but it does so having been motivated by 
their fundamental strengths and shortcomings.

 With this conceptual underpinning in place, it’s time to make a quick run through 
Clojure’s technical basics and syntax. We’ll be moving fairly quickly, but no faster than 
necessary to get to the deeper topics in following chapters. So hang on to your REPL, 
here we go... 

10 See section 5.6 for more discussion on this idea. 
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