
Michael Fogus

Chris Houser

FOREWORD BY STEVE YEGGE

M A N N I N G

Dottie
Text Box
SAMPLE CHAPTER

The Joy of Clojure
by Michael Fogus and Chris Houser

Chapter 1

Copyright 2011 Manning Publications

brief contents

PART 1 FOUNDATIONS ..1

1 ■ Clojure philosophy 3

2 ■ Drinking from the Clojure firehose 20

3 ■ Dipping our toes in the pool 43

PART 2 DATA TYPES ..59

4 ■ On scalars 61

5 ■ Composite data types 76

PART 3 FUNCTIONAL PROGRAMMING... 105

6 ■ Being lazy and set in your ways 107

7 ■ Functional programming 125

PART 4 LARGE-SCALE DESIGN .. 155

8 ■ Macros 157

9 ■ Combining data and code 177

10 ■ Java.next 207

11 ■ Mutation 234

PART 5 TANGENTIAL CONSIDERATIONS.. 275

12 ■ Performance 277

13 ■ Clojure changes the way you think 292

vii

Clojure philosophy

This chapter covers
 The Clojure way

 Why a(nother) Lisp?

 Functional programming

 Why Clojure isn’t especially object-oriented

Learning a new language generally requires significant investment of thought and
effort, and it is only fair that programmers expect each language they consider
learning to justify that investment. Clojure was born out of creator Rich Hickey’s
desire to avoid many of the complications, both inherent and incidental, of manag­
ing state using traditional object-oriented techniques. Thanks to a thoughtful
design based in rigorous programming language research, coupled with a fervent
look toward practicality, Clojure has blossomed into an important programming
language playing an undeniably important role in the current state of the art in lan­
guage design. On one side of the equation, Clojure utilizes Software Transactional
Memory (STM), agents, a clear distinction between identity and value types, arbi­
trary polymorphism, and functional programming to provide an environment con­
ducive to making sense of state in general, and especially in the face of
concurrency. On the other side, Clojure shares a symbiotic relationship with the

3

4 CHAPTER 1 Clojure philosophy

Java Virtual Machine, thus allowing prospective developers to avoid the costs of main­
taining yet another infrastructure while leveraging existing libraries.

 In the grand timeline of programming language history, Clojure is an infant; but
its colloquialisms (loosely translated as “best practices” or idioms) are rooted1 in 50
years of Lisp, as well as 15 years of Java history. Additionally, the enthusiastic commu­
nity that has exploded since its introduction has cultivated its own set of unique idi­
oms. As mentioned in the preface, the idioms of a language help to define succinct
representations of more complicated expressions. Although we will certainly cover idi­
omatic Clojure code, we will also expand into deeper discussions of the “why” of the
language itself.

 In this chapter, we’ll discuss the weaknesses in existing languages that Clojure was
designed to address, how it provides strength in those areas, and many of the design
decisions Clojure embodies. We’ll also look at some of the ways existing languages
have influenced Clojure, and define terms that will be used throughout the book.

1.1 The Clojure way
We’ll start slowly.

Clojure is an opinionated language—it doesn’t try to cover all paradigms or pro­
vide every checklist bullet-point feature. Instead it provides the features needed to
solve all kinds of real-world problems the Clojure way. To reap the most benefit from
Clojure, you’ll want to write your code with the same vision as the language itself. As
we walk through the language features in the rest of the book, we’ll mention not just
what a feature does, but why it’s there and how best to take advantage of it.

 But before we get to that, we’ll first take a high-level view of some of Clojure’s most
important philosophical underpinnings. Figure 1.1 lists some broad goals that Rich
Hickey had in mind while designing Clojure and some of the more specific decisions
that are built into the language to support
these goals.

 As the figure illustrates, Clojure’s

broad goals are formed from a confluence

of supporting goals and functionality,

which we will touch on in the following

subsections.

1.1.1 Simplicity

It’s hard to write simple solutions to com­

plex problems. But every experienced

programmer has also stumbled on areas

Figure 1.1 Broad goals of Clojure: this figure
where we’ve made things more complex shows some of the concepts that underlie the
than necessary, what you might call Clojure philosophy, and how they intersect.

1	 While drawing on the traditions of Lisps (in general) and Java, Clojure in many ways stands as a direct chal­
lenge to them for change.

simplicity

freedom
to focus empowerment

expressive practical

clarity
consistent

separation
of

concerns

pure
functions

concise

direct
interop

The Clojure way 5

incidental complexity as opposed to complexity that’s essential to the task at hand (Mose-
ley 2006). Clojure strives to let you tackle complex problems involving a wide variety
of data requirements, multiple concurrent threads, independently developed librar­
ies, and so on without adding incidental complexity. It also provides tools reducing
what at first glance may seem like essential complexity. The resulting set of features
may not always seem simple, especially when they’re still unfamiliar, but as you read
through this book we think you’ll come to see how much complexity Clojure helps
strip away.

One example of incidental complexity is the tendency of modern object-oriented
languages to require that every piece of runnable code be packaged in layers of class
definitions, inheritance, and type declarations. Clojure cuts through all this by cham­
pioning the pure function, which takes a few arguments and produces a return value
based solely on those arguments. An enormous amount of Clojure is built from such
functions, and most applications can be too, which means that there’s less to think
about when trying to solve the problem at hand.

1.1.2 Freedom to focus

Writing code is often a constant struggle against distraction, and every time a language
requires you to think about syntax, operator precedence, or inheritance hierarchies, it
exacerbates the problem. Clojure tries to stay out of your way by keeping things as sim­
ple as possible, not requiring you to go through a compile-and-run cycle to explore an
idea, not requiring type declarations, and so on. It also gives you tools to mold the lan­
guage itself so that the vocabulary and grammar available to you fit as well as possible
to your problem domain—Clojure is expressive. It packs a punch, allowing you to per­
form highly complicated tasks succinctly without sacrificing comprehensibility.

 One key to delivering this freedom is a commitment to dynamic systems. Almost
everything defined in a Clojure program can be redefined, even while the program is
running: functions, multimethods, types, type hierarchies, and even Java method
implementations. Though redefining things on the fly might be scary on a production
system, it opens a world of amazing possibilities in how you think about writing pro­
grams. It allows for more experimentation and exploration of unfamiliar APIs, and it
adds an element of fun that can sometimes be impeded by more static languages and
long compilation cycles.

 But Clojure’s not just about having fun. The fun is a by-product of giving program­
mers the power to be more productive than they ever thought imaginable.

1.1.3 Empowerment

Some programming languages have been created primarily to demonstrate some nug­
get of academia or to explore certain theories of computation. Clojure is not one of
these. Rich Hickey has said on numerous occasions that Clojure has value to the
degree that it lets you build interesting and useful applications.

6	 CHAPTER 1 Clojure philosophy

 To serve this goal, Clojure strives to be practical—a tool for getting the job done. If
a decision about some design point in Clojure had to weigh the trade-offs between the
practical solution and a clever, fancy, or theoretically pure solution, usually the practi­
cal solution won out. Clojure could try to shield you from Java by inserting a compre­
hensive API between the programmer and the libraries, but this could make the use of
third-party Java libraries more clumsy. So Clojure went the other way: direct, wrapper-
free, compiles-to-the-same-bytecode access to Java classes and methods. Clojure strings
are Java strings; Clojure function calls are Java method calls—it’s simple, direct, and
practical.

 The decision to use the Java Virtual Machine (JVM) itself is a clear example of this
practicality. The JVM has some technical weaknesses such as startup time, memory
usage, and lack of tail-call optimization2 (TCO). But it’s also an amazingly practical plat­
form—it’s mature, fast, and widely deployed. It supports a variety of hardware and
operating systems and has a staggering number of libraries and support tools avail­
able, all of which Clojure can take advantage of because of this supremely practical
decision.

 With direct method calls, proxy, gen-class, gen-interface (see chapter 10),
reify, definterface, deftype, and defrecord (see section 9.3), Clojure works hard
to provide a bevy of interoperability options, all in the name of helping you get your
job done. Practicality is important to Clojure, but many other languages are practical
as well. You’ll start to see some ways that Clojure really sets itself apart by looking at
how it avoids muddles.

1.1.4 Clarity

When beetles battle beetles in a puddle paddle battle and the beetle battle puddle is a
puddle in a bottle they call this a tweetle beetle bottle puddle paddle battle muddle.

—Dr. Seuss

Consider what might be described as a simple snippet of code in a language like
Python:

x = [5]

process(x)

x[0] = x[0] + 1

After executing this code, what’s the value of x? If you assume process doesn’t change
the contents of x at all, it should be [6], right? But how can you make that assump­
tion? Without knowing exactly what process does, and whatever function it calls does,
and so on, you can’t be sure at all.

 Even if you’re sure process doesn’t change the contents of x, add multithreading
and now you have another whole set of concerns. What if some other thread changes

2	 Don’t worry if you don't know what tail-call optimization is. Also don’t worry if you do know what TCO is and
think the JVM’s lack of it is a critical flaw for a Lisp or functional language such as Clojure. All your concerns
will be addressed in section 7.3. Until then, just relax.

7 The Clojure way

x between the first and third lines? Worse yet, what if something is setting x at the
moment the third line is doing its assignment—are you sure your platform guarantees
an atomic write to that variable, or is it possible that the value will be a corrupted mix
of multiple writes? We could continue this thought exercise in hopes of gaining some
clarity, but the end result would be the same—what you have ends up not being clear
at all, but the opposite: a muddle.

 Clojure strives for code clarity by providing tools to ward off several different kinds
of muddles. For the one just described, it provides immutable locals and persistent
collections, which together eliminate most of the single- and multithreaded issues all
at once.

 You can find yourself in several other kinds of muddles when the language you’re
using merges unrelated behavior into a single construct. Clojure fights this by being
vigilant about separation of concerns. When things start off separated, it clarifies your
thinking and allows you to recombine them only when and to the extent that doing so
is useful for a particular problem. Table 1.1 contrasts common approaches that merge
concepts together in some other languages with separations of similar concepts in
Clojure that will be explained in greater detail throughout this book.

Table 1.1 Separation of concerns in Clojure

Conflated Separated Where

Object with mutable fields

Class acts as namespace for
methods

Inheritance hierarchy made of
classes

Data and methods bound
together lexically

Method implementations embed­
ded throughout class inheritance
chain

Values from identities

Function namespaces from type
namespaces

Hierarchy of names from data and
functions

Data objects from functions

Interface declarations from func­
tion implementations

Chapter 4 and section 5.1

Sections 8.2 and 8.3

Chapter 8

Sections 6.1 and 6.2 and
chapter 8

Sections 8.2 and 8.3

It can be hard at times to tease apart these concepts in our own minds, but accom­
plishing it can bring remarkable clarity and a sense of power and flexibility that’s
worth the effort. With all these different concepts at your disposal, it’s important that
the code and data you work with express this variety in a consistent way.

1.1.5 Consistency

Clojure works to provide consistency in two specific ways: consistency of syntax and of
data structures.

 Consistency of syntax is about the similarity in form between related concepts. One
simple but powerful example of this is the shared syntax of the for and doseq macros.

8 CHAPTER 1 Clojure philosophy

They don’t do the same thing—for returns a lazy seq whereas doseq is for generating
side effects—but both support the same mini-language of nested iteration, destructur­
ing, and :when and :while guards. The similarities stand out when comparing the fol­
lowing examples:

(for [x [:a :b], y (range 5) :when (odd? y)] [x y])

;=> ([:a 1] [:a 3] [:b 1] [:b 3])

(doseq [x [:a :b], y (range 5) :when (odd? y)] (prn x y))

; :a 1

; :a 3

; :b 1

; :b 3

;=> nil

The value of this similarity is having to learn only one basic syntax for both situations,
as well as the ease with which you can convert any particular usage of one form to the
other if that becomes necessary.

Likewise, the consistency of data structures is the deliberate design of all of Clo­
jure’s persistent collection types to provide interfaces as similar to each other as possi­
ble, as well as to make them as broadly useful as possible. This is actually an extension
of the classic Lisp “code is data” philosophy. Clojure data structures aren’t used just
for holding large amounts of application data, but also to hold the expression ele­
ments of the application itself. They’re used to describe destructuring forms and to
provide named options to various built-in functions. Where other object-oriented lan­
guages might encourage applications to define multiple incompatible classes to hold
different kinds of application data, Clojure encourages the use of compatible map-like
objects.

 The benefit of this is that the same set of functions designed to work with Clojure
data structures can be applied to all these contexts: large data stores, application
code, and application data objects. You can use into to build any of these types, seq to
get a lazy seq to walk through them, filter to select elements of any of them that sat­
isfy a particular predicate, and so on. Once you’ve grown accustomed to having the
richness of all these functions available everywhere, dealing with a Java or C++ applica­
tion’s Person or Address class will feel constraining.

 Simplicity, freedom to focus, empowerment, consistency, and clarity.
Nearly every element of the Clojure programming language is designed to pro­

mote these goals. When writing Clojure code, if you keep in mind the desire to maxi­
mize simplicity, empowerment, and the freedom to focus on the real problem at
hand, we think you’ll find Clojure provides you the tools you need to succeed.

1.2 Why a(nother) Lisp?
By relieving the brain of all unnecessary work, a good notation sets it free to concen­
trate on more advanced problems.

—Alfred North Whitehead

Why a(nother) Lisp? 9

Go to any open source project hosting site and perform a search for the term “Lisp
interpreter.” You’ll likely get a cyclopean mountain3 of results from this seemingly
innocuous term. The fact of the matter is that the history of computer science is lit­
tered (Fogus 2009) with the abandoned husks of Lisp implementations. Well-inten­
tioned Lisps have come and gone and been ridiculed along the way, and still
tomorrow the search results will have grown almost without bounds. Bearing in mind
this legacy of brutality, why would anyone want to base their brand-new programming
language on the Lisp model?

1.2.1 Beauty

Lisp has attracted some of the brightest minds in the history of computer science. But
an argument from authority is insufficient, so you shouldn’t judge Lisp on this alone.
The real value in the Lisp family of languages can be directly observed through the
activity of using it to write applications. The Lisp style is one of expressivity and
empowerment, and in many cases outright beauty. Joy awaits the Lisp neophyte. The
original Lisp language as defined by John McCarthy in his earth-shattering essay
“Recursive Functions of Symbolic Expressions and Their Computation by Machine,
Part I” (McCarthy 1960) defined the whole language in terms of only seven functions
and two special forms: atom, car, cdr, cond, cons, eq, quote, lambda, and label.

 Through the composition of those nine forms, McCarthy was able to describe the
whole of computation in a way that takes your breath away. Computer programmers
are perpetually in search of beauty, and more often than not, this beauty presents
itself in the form of simplicity. Seven functions and two special forms. It doesn’t get
more beautiful than that.

1.2.2 Extreme flexibility

Why has Lisp persevered for more than 50 years while countless other languages have
come and gone? There are probably complex reasons, but chief among them is likely
the fact that Lisp as a language genotype (Tarver 2008) fosters language flexibility in
the extreme. Newcomers to Lisp are sometimes unnerved by its pervasive use of
parentheses and prefix notation, which is different than non-Lisp programming lan­
guages. The regularity of this behavior not only reduces the number of syntax rules
you have to remember, but also makes the writing of macros trivial. We’ll look at mac­
ros in more detail in chapter 8, but to whet your appetite we’ll take a brief look at one
now. It’s an example that we’ll get working on in a moment:

(defn query [max]

(SELECT [a b c]

(FROM X

(LEFT-JOIN Y :ON (= X.a Y.b)))

(WHERE (AND (< a 5) (< b ~max)))))

3 ...of madness.

10 CHAPTER 1 Clojure philosophy

We hope some of those words look familiar to you, because this isn’t a book on SQL.
Regardless, our point here is that Clojure doesn’t have SQL support built in. The
words SELECT, FROM, and so forth aren’t built-in forms. They’re also not regular func­
tions, because if SELECT were, then the use of a, b, and c would be an error, because
they haven’t been defined yet.

 So what does it take to define a domain-specific language (DSL) like this in Clo­
jure? Well, it’s not production-ready code and doesn’t tie into any real database serv­
ers; but with just one macro and the three functions shown in listing 1.1, the
preceding query returns these handy values:

(query 5)

;=> ["SELECT a, b, c FROM X LEFT JOIN Y ON (X.a = Y.b)

WHERE ((a < 5) AND (b < ?))"

[5]]

Note that some words such as FROM and ON are taken directly from the input expres­
sion, whereas others such as ~max and AND are treated specially. The max that was given
the value 5 when the query was called is extracted from the literal SQL string and pro­
vided in a separate vector, perfect for using in a prepared query in a way that will
guard against SQL-injection attacks. The AND form was converted from the prefix nota­
tion of Clojure to the infix notation required by SQL.

Listing 1.1 A domain-specific language for embedding SQL queries in Clojure

(ns joy.sql

(:use [clojure.string :as str :only []])
 Use core 

string functions (defn expand-expr [expr]

(if (coll? expr)

(if (= (first expr) `unquote)
 Handle unsafe literals
"?"

(let [[op & args] expr]

(str "(" (str/join (str " " op " ")

Convert prefix(map expand-expr args)) ")")))

to infix expr))

(declare expand-clause)
 Support each
kind of clause (def clause-map

{'SELECT (fn [fields & clauses]

(apply str "SELECT " (str/join ", " fields)

(map expand-clause clauses)))

'FROM (fn [table & joins]

(apply str " FROM " table

(map expand-clause joins)))

'LEFT-JOIN (fn [table on expr]

(str " LEFT JOIN " table

" ON " (expand-expr expr)))

'WHERE (fn [expr]

Call (str " WHERE " (expand-expr expr)))})

appropriate
converter(defn expand-clause [[op & args]]

(apply (clause-map op) args))

11 Why a(nother) Lisp?

(defmacro SELECT [& args]
 Provide main
[(expand-clause (cons 'SELECT args))
 entrypoint macro
(vec (for [n (tree-seq coll? seq args)

:when (and (coll? n) (= (first n) `unquote))]

(second n)))])

But the point here isn’t that this is a particularly good SQL DSL—more complete ones
are available.4 Our point is that once you have the skill to easily create a DSL like this,
you’ll recognize opportunities to define your own that solve much narrower,
application-specific problems than SQL does. Whether it’s a query language for an
unusual non-SQL datastore, a way to express functions in some obscure math disci­
pline, or some other application we as authors can’t imagine, having the flexibility to
extend the base language like this, without losing access to any of the language’s own
features, is a game-changer.

 Although we shouldn’t get into too much detail about the implementation, take
a brief look at listing 1.1 and follow along as we discuss important aspects of its
implementation.

 Reading from the bottom up, you’ll notice the main entry point, the SELECT
macro. This returns a vector of two items—the first is generated by calling expand-
clause, which returns the converted query string, whereas the second is another vec­
tor of expressions marked by ~ in the input. The ~ is known as unquote and we discuss
its more common uses in chapter 8. Also note the use of tree-seq here to succinctly
extract items of interest from a tree of values, namely the input expression.

 The expand-clause function takes the first word of a clause, looks it up in the
clause-map, and calls the appropriate function to do the actual conversion from Clo­
jure s-expression to SQL string. The clause-map provides the specific functionality
needed for each part of the SQL expression: inserting commas or other SQL syntax,
and sometimes recursively calling expand-clause when subclauses need to be con­
verted. One of these is the WHERE clause, which handles the general conversion of pre­
fix expressions to the infix form required by SQL by delegating to the expand-expr
function.

 Overall, the flexibility of Clojure demonstrated in this example comes largely from
the fact that macros accept code forms, such as the SQL DSL example we showed, and
can treat them as data—walking trees, converting values, and more. This works not
only because code can be treated as data, but because in a Clojure program, code is
data.

1.2.3 Code is data

The notion of “code is data” is difficult to grasp at first. Implementing a programming
language where code shares the same footing as its comprising data structures presup­
poses a fundamental malleability of the language itself. When your language is repre­
sented as the inherent data structures, the language itself can manipulate its own

4 One of note is ClojureQL at http://gitorious.org/clojureql.

http://gitorious.org/clojureql

12	 CHAPTER 1 Clojure philosophy

structure and behavior (Graham 1995). You may have visions of Ouroboros after read­
ing the previous sentence, and that wouldn’t be inappropriate, because Lisp can be
likened to a self-licking lollypop—more formally defined as homoiconicity. Lisp’s
homoiconicity takes a great conceptual leap in order to fully grasp, but we’ll lead you
toward that understanding throughout this book in hopes that you too will come to
realize the inherent power.

 There’s a joy in learning Lisp for the first time, and if that’s your experience com­
ing into this book then we welcome you—and envy you.

1.3 Functional programming
Quick, what does functional programming mean? Wrong answer.

Don’t be too discouraged, however—we don’t really know the answer either. Func­
tional programming is one of those computing terms5 that has a nebulous definition.
If you ask 100 programmers for their definition, you’ll likely receive 100 different
answers. Sure, some definitions will be similar, but like snowflakes, no two will be
exactly the same. To further muddy the waters, the cognoscenti of computer science
will often contradict one another in their own independent definitions. Likewise, the
basic structure of any definition of functional programming will be different depend­
ing on whether your answer comes from someone who favors writing their programs
in Haskell, ML, Factor, Unlambda, Ruby, or Qi. How can any person, book, or lan­
guage claim authority for functional programming? As it turns out, just as the multi­
tudes of unique snowflakes are all made mostly of water, the core of functional
programming across all meanings has its core tenets.

1.3.1 A workable definition of functional programming

Whether your own definition of functional programming hinges on the lambda calcu­
lus, monadic I/O, delegates, or java.lang.Runnable, your basic unit of currency is
likely to be some form of procedure, function, or method—herein lies the root. Func­
tional programming concerns and facilitates the application and composition of func­
tions. Further, for a language to be considered functional, its notion of function must
be first-class. The functions of a language must be able to be stored, passed, and
returned just like any other piece of data within that language. It’s beyond this core
concept that the definitions branch toward infinity, but thankfully, it’s enough to start.
Of course, we’ll also present a further definition of Clojure’s style of functional pro­
gramming that includes such topics as purity, immutability, recursion, laziness, and
referential transparency, but those will come later in chapter 7.

1.3.2 The implications of functional programming

Object-oriented programmers and functional programmers will often see and solve a
problem in different ways. Whereas an object-oriented mindset will foster the

5	 Quick, what’s the definition of combinator? How about cloud computing? Enterprise? SOA? Web 2.0? Real-
world? Hacker? Often it seems that the only term with a definitive meaning is “yak shaving.”

Why Clojure isn’t especially object-oriented 13

approach of defining an application domain as a set of nouns (classes), the functional
mind will see the solution as the composition or verbs (functions). Though both pro­
grammers may in all likelihood generate equivalent results, the functional solution
will be more succinct, understandable, and reusable. Grand claims indeed! We hope
that by the end of this book you’ll agree that functional programming fosters ele­
gance in programming. It takes a shift in mindset to start from thinking in nouns to
arrive at thinking in verbs, but the journey will be worthwhile. In any case, we think
there’s much that you can take from Clojure to apply to your chosen language—if
only you approach the subject with an open mind.

1.4 Why Clojure isn’t especially object-oriented
Elegance and familiarity are orthogonal.

—Rich Hickey

Clojure was born out of frustration provoked in large part by the complexities of con­
current programming, complicated by the weaknesses of object-oriented program­
ming in facilitating it. This section explores these weaknesses and lays the groundwork
for why Clojure is functional and not object-oriented.

1.4.1 Defining terms

Before we begin, it’s useful to define terms.6

 The first important term to define is time. Simply put, time refers to the relative
moments when events occur. Over time, the properties associated with an entity—
both static and changing, singular or composite—will form a concrescence (White­
head 1929) and be logically deemed its identity. It follows from this that at any given
time, a snapshot can be taken of an entity’s properties defining its state. This notion of
state is an immutable one because it’s not defined as a mutation in the entity itself, but
only as a manifestation of its properties at a given moment in time. Imagine a child’s
flip book, as seen in figure 1.2, to understand the terms fully.

 It’s important to note that in the canon of object-oriented programming, there’s
no clear distinction between state and identity. In other words, these two ideas are

Figure 1.2 The Runner: a child’s flip book serves to
illustrate Clojure’s notions of state, time, and identity. The
book itself represents the identity. Whenever you wish to
show a change in the illustration, you draw another picture
and add it to the end of your flip book. The act of flipping the
pages therefore represents the states over time of the image
within. Stopping at any given page and observing the
particular picture represents the state of the Runner at that
moment in time.

These terms are also defined and elaborated on in Rich Hickey’s presentation, “Are We There Yet?” (Hickey
2009).

6

14	 CHAPTER 1 Clojure philosophy

Figure 1.3 The Mutable Runner: modeling state change with
mutation requires that you stock up on erasers. Your book
becomes a single page, requiring that in order to model
changes, you must physically erase and redraw the parts of
the picture requiring change. Using this model, you should see
that mutation destroys all notion of time, and state and
identity become one.

conflated into what’s commonly referred to as mutable state. The classical object-
oriented model allows unrestrained mutation of object properties without a willing­
ness to preserve historical states. Clojure’s implementation attempts to draw a clear
separation between an object’s state and identity as they relate to time. To state the dif­
ference to Clojure’s model in terms of the aforementioned flip book, the mutable
state model is different, as seen in figure 1.3.

Immutability lies at the cornerstone of Clojure, and much of the implementation
ensures that immutability is supported efficiently. By focusing on immutability, Clo­
jure eliminates entirely the notion of mutable state (which is an oxymoron) and instead
expounds that most of what’s meant by objects are instead values. Value by definition
refers to an object’s constant representative7 amount, magnitude, or epoch. You
might ask yourself: what are the implications of the value-based programming seman­
tics of Clojure?

 Naturally, by adhering to a strict model of immutability, concurrency suddenly
becomes a simpler (although not simple) problem, meaning if you have no fear that
an object’s state will change, then you can promiscuously share it without fear of con­
current modification. Clojure instead isolates value change to its reference types, as
we’ll show in chapter 11. Clojure’s reference types provide a level of indirection to an
identity that can be used to obtain consistent, if not always current, states.

1.4.2 Imperative “baked in”

Imperative programming is the dominant programming paradigm today. The most
unadulterated definition of an imperative programming language is one where a
sequence of statements mutates program state. During the writing of this book (and
likely for some time beyond), the preferred flavor of imperative programming is the
object-oriented style. This fact isn’t inherently bad, because there are countless suc­
cessful software projects built using object-oriented imperative programming tech­
niques. But from the context of concurrent programming, the object-oriented
imperative model is self-cannibalizing. By allowing (and even promoting) unre­
strained mutation via variables, the imperative model doesn’t directly support concur­
rency. Instead, by allowing a maenadic approach to mutation, there are no guarantees
that any variable contains the expected value. Object-oriented programming takes this
one step further by aggregating state in object internals. Though individual methods
may be thread-safe through locking schemes, there’s no way to ensure a consistent

7	 Some entities have no representative value—Pi is an example. But in the realm of computing, where we’re
ultimately referring to finite things, this is a moot point.

Why Clojure isn’t especially object-oriented 15

object state across multiple method calls without expanding the scope of potentially
complex locking scheme(s). Clojure instead focuses on functional programming,
immutability, and the distinction between state, time, and identity. But object-oriented
programming isn’t a lost cause. In fact, there are many aspects that are conducive to
powerful programming practice.

1.4.3 Most of what OOP gives you, Clojure provides

It should be made clear that we’re not attempting to mark object-oriented program­
mers as pariahs. Instead, it’s important that we identify the shortcomings of object-
oriented programming (OOP) if we’re ever to improve our craft. In the next few sub­
sections we’ll also touch on the powerful aspects of OOP and how they’re adopted,
and in some cases improved, by Clojure.

POLYMORPHISM AND THE EXPRESSION PROBLEM

Polymorphism is the ability of a function or method to have different definitions
depending on the type of the target object. Clojure provides polymorphism via both
multimethods and protocols, and both mechanisms are more open and extensible
than polymorphism in many languages.

Listing 1.2 Clojure’s polymorphic protocols

(defprotocol Concatenatable

(cat [this other]))

(extend-type String

Concatenatable

(cat [this other]

(.concat this other)))

(cat "House" " of Leaves")

;=> "House of Leaves"

What we’ve done in listing 1.2 is to define a protocol named Concatenatable that
groups one or more functions (in this case only one, cat) that define the set of func­
tions provided. That means the function cat will work for any object that fully satisfies
the protocol Concatenatable. We then extend this protocol to the String class and
define the specific implementation—a function body that concatenates the argument
other onto the string this. We can also extend this protocol to another type:

(extend-type java.util.List

Concatenatable

(cat [this other]

(concat this other)))

(cat [1 2 3] [4 5 6])

;=> (1 2 3 4 5 6)

So now the protocol has been extended to two different types, String and
java.util.List, and thus the cat function can be called with either type as its first
argument—the appropriate implementation will be invoked.

16 CHAPTER 1 Clojure philosophy

 Note that String was already defined (in this case by Java itself) before we defined
the protocol, and yet we were still able to successfully extend the new protocol to it.
This isn’t possible in many languages. For example, Java requires that you define all
the method names and their groupings (known as interfaces) before you can define a
class that implements them, a restriction that’s known as the expression problem.

THE EXPRESSION PROBLEM The expression problem refers to the desire to
implement an existing set of abstract methods for an existing concrete class
without having to change the code that defines either. Object-oriented lan­
guages allow you to implement an existing abstract method in a concrete class
you control (interface inheritance), but if the concrete class is outside your
control, the options for making it implement new or existing abstract meth­
ods tend to be sparse. Some dynamic languages such as Ruby and JavaScript
provide partial solutions to this problem by allowing you to add methods to
an existing concrete object, a feature sometimes known as monkey-patching.

A Clojure protocol can be extended to any type where it makes sense, even those that
were never anticipated by the original implementor of the type or the original
designer of the protocol. We’ll dive deeper into Clojure’s flavor of polymorphism in
chapter 9, but we hope now you have a basic idea of how it works.

SUBTYPING AND INTERFACE-ORIENTED PROGRAMMING

Clojure provides a form of subtyping by allowing the creation of ad-hoc hierarchies.
We’ll delve into leveraging the ad-hoc hierarchy facility later, in section 9.2. Likewise,
Clojure provides a capability similar to Java’s interfaces via its protocol mechanism. By
defining a logically grouped set of functions, you can begin to define protocols to which
data-type abstractions must adhere. This abstraction-oriented programming model is key
in building large-scale applications, as you’ll discover in section 9.3 and beyond.

ENCAPSULATION

If Clojure isn’t oriented around classes, then how does it provide encapsulation?
Imagine that you need a simple function that, given a representation of a chessboard
and a coordinate, returns a simple representation of the piece at the given square. To
keep the implementation as simple as possible, we’ll use a vector containing a set of
characters corresponding to the colored chess pieces, as shown next.

Listing 1.3 A simple chessboard representation in Clojure

(ns joy.chess)

(defn initial-board []

[\r \n \b \q \k \b \n \r

\p \p \p \p \p \p \p \p

\- \- \- \- \- \- \- \­

\- \- \- \- \- \- \- \­

\- \- \- \- \- \- \- \­

\- \- \- \- \- \- \- \­

\P \P \P \P \P \P \P \P

\R \N \B \Q \K \B \N \R])

Lowercase dark

Uppercase light

Why Clojure isn’t especially object-oriented	 17

There’s no need to complicate matters with the
chessboard representation; chess is hard
enough. This data structure in the code corre­
sponds directly to an actual chessboard in the
starting position, as shown in figure 1.4.

 From the figure, you can gather that the
black pieces are lowercase characters and white
pieces are uppercase. This kind of structure is
likely not optimal, but it’s a good start. You can
ignore the actual implementation details for
now and focus on the client interface to query
the board for square occupations. This is a per­
fect opportunity to enforce encapsulation to
avoid drowning the client in board implementa­
tion details. Fortunately, programming lan­
guages with closures automatically support a form of encapsulation (Crockford 2008)
to group functions with their supporting data.8

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

\r \n \b \q \k \b \n \r8

\p \p \p \p \p \p \p \p

\P \P \P \P \P \P \P \P2

\R \N \B \Q \K \B \N \R

7

6

5

4

3

1

a b c d e f g h

Figure 1.4 
The corresponding chessboard layout

The functions in listing 1.4 are self-evident in their intent9 and are encapsulated at
the level of the namespace joy.chess through the use of the defn- macro that creates
namespace private functions. The command for using the lookup function in this case
would be (joy.chess/lookup (initial-board) "a1").

Listing 1.4 Querying the squares of a chessboard

(def *file-key* \a)

(def *rank-key* \0)

Calculate file(defn- file-component [file]

(horizontal) projection (- (int file) (int *file-key*)))

Calculate rank(defn- rank-component [rank]

(vertical) projection (* 8 (- 8 (- (int rank) (int *rank-key*)))))

(defn- index [file rank]

(+ (file-component file) (rank-component rank)))
 Project 1D layout onto

logical 2D chessboard (defn lookup [board pos]

(let [[file rank] pos]

(board (index file rank))))

Clojure’s namespace encapsulation is the most prevalent form of encapsulation that
you’ll encounter when exploring idiomatic source code. But the use of lexical clo­
sures provides more options for encapsulation: block-level encapsulation, as shown in
listing 1.5, and local encapsulation, both of which effectively aggregate unimportant
details within a smaller scope.

8	 This form of encapsulation is described as the module pattern. But the module pattern as implemented with
JavaScript provides some level of data hiding also, whereas in Clojure—not so much.

9	 And as a nice bonus, these functions can be generalized to project a 2D structure of any size to a 1D represen­
tation—which we leave to you as an exercise.

18 CHAPTER 1 Clojure philosophy

Listing 1.5 Using block-level encapsulation

(letfn [(index [file rank]

(let [f (- (int file) (int \a))

r (* 8 (- 8 (- (int rank) (int \0))))]

(+ f r)))]

(defn lookup [board pos]

(let [[file rank] pos]

(board (index file rank)))))

It's often a good idea to aggregate relevant data, functions, and macros at their most
specific scope. You’d still call lookup as before, but now the ancillary functions aren’t
readily visible to the larger enclosing scope—in this case, the namespace joy.chess.
In the preceding code, we’ve taken the file-component and rank-component func­
tions and the *file-key* and *rank-key* values out of the namespace proper and
rolled them into a block-level index function defined with the body of the letfn
macro. Within this body, we then define the lookup function, thus limiting the client
exposure to the chessboard API and hiding the implementation specific functions and
forms. But we can further limit the scope of the encapsulation, as shown in the next
listing, by shrinking the scope even more to a truly function-local context.

Listing 1.6 Local encapsulation

(defn lookup2 [board pos]

(let [[file rank] (map int pos)

[fc rc] (map int [\a \0])

f (- file fc)

r (* 8 (- 8 (- rank rc)))

index (+ f r)]

(board index)))

Finally, we’ve now pulled all of the implementation-specific details into the body of
the lookup2 function itself. This localizes the scope of the index function and all aux­
iliary values to only the relevant party—lookup2. As a nice bonus, lookup2 is simple
and compact without sacrificing readability. But Clojure eschews the notion of data-
hiding encapsulation featured prominently in most object-oriented languages.

NOT EVERYTHING IS AN OBJECT

Finally, another downside to object-oriented programming is the tight coupling
between function and data. In fact, the Java programming language forces you to
build programs entirely from class hierarchies, restricting all functionality to contain­
ing methods in a highly restrictive “Kingdom of Nouns” (Yegge 2006). This environ­
ment is so restrictive that programmers are often forced to turn a blind eye to
awkward attachments of inappropriately grouped methods and classes. It’s because of
the proliferation of this stringent object-centric viewpoint that Java code tends toward
being verbose and complex (Budd 1995). Clojure functions are data, yet this in no
way restricts the decoupling of data and the functions that work upon them. Many of
what programmers perceive to be classes are data tables that Clojure provides via

Summary 19

maps10 and records. The final strike against viewing everything as an object is that
mathematicians view little (if anything) as objects (Abadi 1996). Instead, mathematics
is built on the relationships between one set of elements and another through the
application of functions.

1.5 Summary
We’ve covered a lot of conceptual ground in this chapter, but it was necessary in order
to define the terms used throughout the remainder of the book. Likewise, it’s impor­
tant to understand Clojure’s underpinnings in order to frame the discussion for the
rest of the book. If you’ve taken in the previous sections and internalized them, then
congratulations: you have a solid basis for proceeding to the rest of the book. But if
you’re still not sure what to make of Clojure, it’s okay—we understand that it may be a
lot to take in all at once. Understanding will come gradually as we piece together Clo­
jure’s story. For those of you coming from a functional programming background,
you’ll likely have recognized much of the discussion in the previous sections, but per­
haps with some surprising twists. Conversely, if your background is more rooted in
object-oriented programming, then you may get the feeling that Clojure is very differ­
ent than you’re accustomed to. Though in many ways this is true, in the coming chap­
ters you’ll see how Clojure elegantly solves many of the problems that you deal with on
a daily basis. Clojure approaches solving software problems from a different angle
than classical object-oriented techniques, but it does so having been motivated by
their fundamental strengths and shortcomings.

 With this conceptual underpinning in place, it’s time to make a quick run through
Clojure’s technical basics and syntax. We’ll be moving fairly quickly, but no faster than
necessary to get to the deeper topics in following chapters. So hang on to your REPL,
here we go...

10 See section 5.6 for more discussion on this idea.

FUNCTIONAL PROGRAMMING

THE Joy OF Clojure
Fogus Houser

I
f you’ve seen how dozens of lines of Java or Ruby can dissolve
into just a few lines of Clojure, you’ll know why the authors
of this book call it a “joyful language.” Clojure is a dialect

of Lisp that runs on the JVM. It combines the nice features of a
scripting language with the powerful features of a production
environment—features like persistent data structures and clean
multithreading that you’ll need for industrial-strength
application development.

The Joy of Clojure goes beyond just syntax to show you how to
write fluent and idiomatic Clojure code. You’ll learn a functional
approach to programming and will master Lisp techniques
that make Clojure so elegant and effi cient. The book gives
you easy access to hard software areas like concurrency,
interoperability, and performance. And it shows you how
great it can be to think about problems the Clojure way.

What’s Inside
Th e what and why of Clojure
How to work with macros
How to do elegant application design
Functional programming idioms

Written for programmers coming to Clojure from another
programming background—no prior experience with
Clojure or Lisp is required.

Michael Fogus is a member of Clojure/core with experience in
distributed simulation, machine vision, and expert systems.
Chris Houser is a key contributor to Clojure who has
implemented several of its features.

For online access to the authors and a free ebook for owners
of this book, go to manning.com/TheJoyofClojure

SEE INSERT

“You’ll learn fast!”
 —From the foreword

 by Steve Yegge, Google

“Simply unputdownable!”
—Baishampayan Ghose (BG)

 Qotd, Inc.

“Discover the why, not just
 the how of Clojure.”

—Federico Tomassetti
 Politecnico di Torino

“What Irma Rombauer
 did for cooking, Fogus
 and Houser have done
 for Clojure.”
 —Phil Hagelberg, Sonian

M A N N I N G $44.99 / Can $51.99 [INCLUDING eBOOK]

