
Prepared exclusively for WG Custom Motorcycles

Of the new crop of languages appearing on the Java Virtual Machine,

Clojure might be the most compelling. Because of its time-honored

roots in Lisp, compelling new features, and clever ways of mixing

these features with existing Java libraries, it will expand the way you

think about writing code. Stu has written a masterwork, making both

new and old concepts blend together into an accessible and thought-

provoking tour of this elegant language. Read the first chapter, and

you will be hooked.

David Bock

Principal, CodeSherpas, Inc.

Stuart has charted the smoothest path yet to Clojure fluency with this

well-organized and easy-to-read book. He has a knack for creating

simple and effective examples that demonstrate the language’s unique

features and how they fit together.

Chris Houser

A primary Clojure contributor and clojure-contrib lib author

Not only a great reference for an exciting new language, this book

establishes Clojure as a serious tool for working programmers.

Stuart Sierra

Author of several clojure-contrib libraries, including the test-is

testing framework

Stu is passionate about finding better ways to develop software, and

Programming Clojure shows it. This book shows rather than tells how

and why Clojure can help you and, because of its tight integration

with the Java platform, how you can leverage your investment in

existing infrastructure and numerous Java APIs. I found the book

extremely easy to read, with some of the most unique and interesting

code examples in any technical book I’ve read.

Scott Leberknight

Chief architect, Near Infinity Corp.

Prepared exclusively for WG Custom Motorcycles

As someone following Clojure’s development closely before Program

ming Clojure was available, I was very impressed with how much I

learned by reading it. Stuart’s organized approach, excellent flow from

introductory to more in-depth treatments, fine examples, and light

spicing with humor conspire to make it both very informative and a

real pleasure to read.

Stephen C. Gilardi

Principal author of clojure.core/[require,use] and clojure.main

Clojure is a surprisingly mature and polished language, given its

youth, and Stuart’s book is a surprisingly mature and polished guide

to such new and not yet widely charted territory. Any new language

seeking to build adoption would be lucky to have such a resource so

early.

Jerry Kuch

Software architect, Purple Iguana, Inc.

Stu’s approach restores the balance of programmer over language by

providing both the blade to free us from Java’s syntactic straitjacket

and the Lisp-based chains to make the JVM do our bidding. Whether

your favorite part is Stu’s coverage of multimethods, his careful devel

opment of the Lancet build tool, or his alchemy-free discussion of

macros, you will find that Programming Clojure has earned its place

on the “close shelf” alongside Dybvig’s The Scheme Programming Lan

guage and Seibel’s Practical Common Lisp.

Jeremy J. Sydik

Director of Research Technology Development, University of

Nebraska-Lincoln Center for Instructional Innovation

In the land of multicore, functional programming, concepts are vital,

and concurrent languages like Clojure are increasingly important.

If you’ve avoided Lisp languages because of confusing syntax, take

heart; Stu clearly and effectively explains this variant. Don’t worry,

parentheses don’t bite!

Nathaniel T. Schutta

Author, speaker, teacher

Prepared exclusively for WG Custom Motorcycles

Prepared exclusively for WG Custom Motorcycles

Programming Clojure

Stuart Halloway

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for WG Custom Motorcycles

Many of the designations used by manufacturers and sellers to distinguish their prod

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Stuart Halloway.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-33-6

ISBN-13: 978-1-934356-33-3

Printed on acid-free paper.

P1.0 printing, May 2009

Version: 2009-5-27

Prepared exclusively for WG Custom Motorcycles

http://www.pragprog.com

Contents

Foreword 10

Acknowledgments 12

Preface 14

Who This Book Is For . 15

What Is in This Book . 15

How to Read This Book . 16

Notation Conventions . 18

Web Resources and Feedback 19

Downloading Sample Code . 20

1 Getting Started 21

1.1 Why Clojure? . 21

1.2 Clojure Coding Quick Start 30

1.3 Exploring Clojure Libraries 37

1.4 Introducing Lancet . 42

1.5 Wrapping Up . 44

2 Exploring Clojure 45

2.1 Forms . 45

2.2 Reader Macros . 55

2.3 Functions . 56

2.4 Vars, Bindings, and Namespaces 60

2.5 Flow Control . 67

2.6 Where’s My for Loop? . 70

2.7 Metadata . 74

2.8 Wrapping Up . 77

Prepared exclusively for WG Custom Motorcycles

8 CONTENTS

3 Working with Java 79

3.1 Calling Java . 80

3.2 Optimizing for Performance 88

3.3 Creating and Compiling Java Classes in Clojure 94

3.4 Exception Handling . 101

3.5 Adding Ant Projects and Tasks to Lancet 105

3.6 Wrapping Up . 110

4 Unifying Data with Sequences 111

4.1 Everything Is a Sequence 112

4.2 Using the Sequence Library 117

4.3 Lazy and Infinite Sequences 125

4.4 Clojure Makes Java Seq-able 127

4.5 Calling Structure-Specific Functions 133

4.6 Adding Properties to Lancet Tasks 141

4.7 Wrapping Up . 146

5 Functional Programming 147

5.1 Functional Programming Concepts 148

5.2 How to Be Lazy . 152

5.3 Lazier Than Lazy . 160

5.4 Recursion Revisited . 167

5.5 Wrapping Up . 176

6 Concurrency 177

6.1 The Problem with Locks 178

6.2 Refs and Software Transactional Memory 179

6.3 Use Atoms for Uncoordinated, Synchronous Updates . 186

6.4 Use Agents for Asynchronous Updates 187

6.5 Managing Per-Thread State with Vars 192

6.6 A Clojure Snake . 196

6.7 Making Lancet Targets Run Only Once 207

6.8 Wrapping Up . 210

7 Macros 211

7.1 When to Use Macros . 211

7.2 Writing a Control Flow Macro 212

7.3 Making Macros Simpler 218

7.4 Taxonomy of Macros . 224

7.5 Making a Lancet DSL . 233

7.6 Wrapping Up . 243

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=8

9 CONTENTS

8 Multimethods 244

8.1 Living Without Multimethods 245

8.2 Defining Multimethods 247

8.3 Moving Beyond Simple Dispatch 249

8.4 Creating Ad Hoc Taxonomies 251

8.5 When Should I Use Multimethods? 255

8.6 Adding Type Coercions to Lancet 259

8.7 Wrapping Up . 264

9 Clojure in the Wild 265

9.1 Automating Tests . 266

9.2 Data Access . 270

9.3 Web Development . 275

9.4 Farewell . 283

A Editor Support 284

B Bibliography 285

Index 286

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=9

Foreword

We are drowning in complexity. Much of it is incidental—arising from

the way we are solving problems, instead of the problems themselves.

Object-oriented programming seems easy, but the programs it yields

can often be complex webs of interconnected mutable objects. A single

method call on a single object can cause a cascade of change through

out the object graph. Understanding what is going to happen when, how

things got into the state they did, and how to get them back into that

state in order to try to fix a bug are all very complex. Add concurrency

to the mix, and it can quickly become unmanageable. We throw mock

objects and test suites at our programs but too often fail to question

our tools and programming models.

Functional programming offers an alternative. By emphasizing pure

functions that take and return immutable values, it makes side effects

the exception rather than the norm. This is only going to become more

important as we face increasing concurrency in multicore architec

tures. Clojure is designed to make functional programming approach

able and practical for commercial software developers. It recognizes the

need for running on trusted infrastructure like the JVM and support

ing existing investments made by customers in Java frameworks and

libraries, as well as the immense practicality of doing so.

What is so thrilling about Stuart’s book is the extent to which he “gets”

Clojure, because the language is targeted to professional developers

just like himself. He clearly has enough experience of the pain points

Clojure addresses, as well as an appreciation of its pragmatic approach.

This book is an enthusiastic tour of the key features of Clojure, well

grounded in practical applications, with gentle introductions to what

might be new concepts. I hope it inspires you to write software in Clo

jure that you can look back at and say, “Not only does this do the job,

but it does so in a robust and simple way, and writing it was fun too!”

—Rich Hickey

Creator of Clojure

Prepared exclusively for WG Custom Motorcycles

11 FOREWORD

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=11

Acknowledgments

Many people have contributed to what is good in this book. The prob

lems and errors that remain are mine alone.

Thanks to my co-workers at Relevance for creating an atmosphere in

which good ideas can grow and thrive. Clojure helps answer questions

that working at Relevance has taught me to ask.

Thanks to Jay Zimmerman and all the speakers and attendees on

the No Fluff, Just Stuff conference tour. I have sharpened my ideas

about Clojure in conversations with you all over the United States—

sometimes in the formal sessions but equally often in the hotel bar.

Thanks to the kind folks on the Clojure mailing list1 for all their help

and encouragement. Tom Ayerst, Meikel Brandmeyer, Bill Clementson,

Brian Doyle, Mark Engelberg, Graham Fawcett, Steve Gilardi,

Christophe Grand, Christian Vest Hansen, Rich Hickey, Mark Hoem

men, Shawn Hoover, Chris Houser, Parth Malwankar, J. McConnell,

Achim Passen, Timothy Pratley, Randall Schulz, Stuart Sierra, Paul

Stadig, Mark Volkmann, and many others helped with specific ques

tions I had along the way.

Thanks to everyone at the Pragmatic Bookshelf. Thanks especially to

my editor, Susannah Pfalzer, for good advice delivered on a very aggres

sive schedule. Thanks to Dave Thomas and Andy Hunt for creating a

fun platform for writing technical books and for betting on the passions

of their authors.

Thanks to all the people who posted suggestions on the book’s errata

page.2 Special thanks to David Sletten for dozens of detailed, wide-

ranging suggestions.

1. http://groups.google.com/group/clojure

2. http://www.pragprog.com/titles/shcloj/errata

Prepared exclusively for WG Custom Motorcycles

http://groups.google.com/group/clojure
http://www.pragprog.com/titles/shcloj/errata

13 ACKNOWLEDGMENTS

Thanks to my many technical reviewers for all your comments. Craig

Andera, Paul Barry, Aaron Bedra, Ola Bini, David Bock, Aaron Brooks,

Tim Ewald, Andrey Fedorov, Steve Gilardi, Rich Hickey, Tom Hicks,

Chris Houser, Scott Jaderholm, Scott Leberknight, Tim Riddell, Eric

Rochester, Nate Schutta, Stuart Sierra, Brian Sletten, Paul Stadig,

Travis Swicegood, Jeremy Sydik, and Joe Winter contributed numer

ous helpful suggestions.

Thanks to Rich Hickey for creating the excellent Clojure language and

fostering a community around it.

Finally, thanks to my wife, Joey, and my daughters, Hattie, Harper, and

Mabel Faire. You all make the sun rise.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=13

Preface

Clojure is a dynamic programming language for the Java Virtual Ma

chine (JVM), with a compelling combination of features:

•	 Clojure is elegant. Clojure’s clean, careful design lets you write

programs that get right to the essence of a problem, without a lot

of clutter and ceremony.

•	 Clojure is Lisp reloaded. Clojure has the power inherent in Lisp

but is not constrained by the history of Lisp.

•	 Clojure is a functional language. Data structures are immutable,

and most functions are free from side effects. This makes it easier

to write correct programs and to compose large programs from

smaller ones.

•	 Clojure simplifies concurrent programming. Many languages build

a concurrency model around locking, which is difficult to use cor

rectly. Clojure provides several alternatives to locking: software

transactional memory, agents, atoms, and dynamic variables.

•	 Clojure embraces Java. Calling from Clojure to Java is direct and

fast, with no translation layer.

•	 Unlike many popular dynamic languages, Clojure is fast. Clojure is

written to take advantage of the optimizations possible on modern

JVMs.

Many other languages cover some of the features described in the pre

vious list. My personal quest for a better JVM language included signif

icant time spent with Ruby, Python, and JavaScript, plus less intensive

exploration of Scala, Groovy, and Fan. These are all good languages,

and they all simplify writing code on the Java platform.

But for me, Clojure stands out. The individual features listed earlier are

powerful and interesting. Their clean synergy in Clojure is compelling.

Prepared exclusively for WG Custom Motorcycles

15 WHO THIS BOOK IS FOR

We will cover all these features and more in Chapter 1, Getting Started,

on page 21.

Who This Book Is For

Clojure is a powerful, general-purpose programming language. As such,

this book is for experienced programmers looking for power and ele

gance. This book will be useful for anyone with experience in a modern

programming language such as C#, Java, Python, or Ruby.

Clojure is built on top of the Java Virtual Machine, and it is fast. This

book will be of particular interest to Java programmers who want the

expressiveness of a dynamic language without compromising on per

formance.

Clojure is helping to redefine what features belong in a general-purpose

language. If you program in Lisp, use a functional language such as

Haskell, or write explicitly concurrent programs, you will enjoy Clo

jure. Clojure combines ideas from Lisp, functional programming, and

concurrent programming and makes them more approachable to pro

grammers seeing these ideas for the first time.

Clojure is part of a larger phenomenon. Languages such as Erlang, F#,

Haskell, and Scala have garnered attention recently for their support of

functional programming and/or their concurrency model. Enthusiasts

of these languages will find much common ground with Clojure.

What Is in This Book

Chapter 1, Getting Started, on page 21, demonstrates Clojure’s elegance

as a general-purpose language, plus the functional style and concur

rency model that make Clojure unique. It also walks you through instal

ling Clojure and developing code interactively at the REPL.

Chapter 2, Exploring Clojure, on page 45, is a breadth-first overview of

all of Clojure’s core constructs. After this chapter, you will be able to

read most day-to-day Clojure code.

Chapter 3, Working with Java, on page 79, shows you how to call Java

from Clojure and call Clojure from Java. You will see how to take Clo

jure straight to the metal and get Java-level performance.

The next two chapters cover functional programming. Chapter 4, Uni

fying Data with Sequences, on page 111, shows how all data can be

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=15

16 HOW TO READ THIS BOOK

unified under the powerful sequence metaphor. Chapter 5, Functional

Programming, on page 147, shows you how to write functional code in

the same style used by the sequence library.

Chapter 6, Concurrency, on page 177, delves into Clojure’s concurrency

model. Clojure provides four powerful models for dealing with concur

rency, plus all of the goodness of Java’s concurrency libraries.

Chapter 7, Macros, on page 211, shows off Lisp’s signature feature.

Macros take advantage of the fact that Clojure code is data to provide

metaprogramming abilities that are difficult or impossible in anything

but a Lisp.

Chapter 8, Multimethods, on page 244, covers Clojure’s answer to poly

morphism. Polymorphism usually means “take the class of the first

argument and dispatch a method based on that.” Clojure’s multimeth

ods let you choose any function of all the arguments and dispatch based

on that.

There is already a thriving Clojure community. Chapter 9, Clojure in

the Wild, on page 265, introduces third-party libraries for automated

testing, data access, and web development. You will see how to use

these libraries to build Snippet, a database-backed web application for

posting and reading code snippets.

At the end of most chapters there is an extended example demonstrat

ing the ideas from that chapter in the context of a larger application:

Lancet. Lancet3 is a Clojure-based build system that works with Apache

Ant. Starting from scratch, you will build a usable subset of Lancet by

the end of the book.

Appendix A, on page 284, lists editor support options for Clojure, with

links to setup instructions for each.

How to Read This Book

All readers should begin by reading the first two chapters in order. Pay

particular attention to Section 1.1, Why Clojure?, on page 21, which

provides an overview of Clojure’s advantages.

3. http://github.com/stuarthalloway/lancet

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://github.com/stuarthalloway/lancet
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=16

17 HOW TO READ THIS BOOK

Experiment continuously. Clojure provides an interactive environment

where you can get immediate feedback; see Section 1.2, Using the REPL,

on page 32 for more information.

After you read the first two chapters, skip around as you like. But read

Chapter 4, Unifying Data with Sequences, on page 111 before you read

Chapter 6, Concurrency, on page 177. These chapters lead you from

Clojure’s immutable data structures to a powerful model for writing

correct concurrency programs.

As you make the move to longer code examples in the later chapters,

make sure that you use an editor that does Clojure indentation for you.

Appendix A, on page 284, will point you to common editor options.

For Functional Programmers

•	 Clojure’s approach to FP strikes a balance between academic puri

ty and the realities of execution on the current generation of JVMs.

Read Chapter 5, Functional Programming, on page 147 carefully

to understand how Clojure idioms differ from languages such as

Haskell.

•	 The concurrency model of Clojure (Chapter 6, Concurrency, on

page 177) provides several explicit ways to deal with side effects

and state and will make FP appealing to a broader audience.

For Java/C# Programmers

•	 Read Chapter 2, Exploring Clojure, on page 45 carefully. Clojure

has very little syntax (compared to Java), and we cover the ground

rules fairly quickly.

•	 Pay close attention to macros in Chapter 7, Macros, on page 211.

These are the most alien part of Clojure, when viewed from a Java

or C# perspective.

For Lisp Programmers

•	 Some of Chapter 2, Exploring Clojure, on page 45 will be review,

but read it anyway. Clojure preserves the key features of Lisp, but

it breaks with Lisp tradition in several places, and they are covered

here.

•	 Pay close attention to the lazy sequences in Chapter 5, Functional

Programming, on page 147.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=17

18 NOTATION CONVENTIONS

•	 Get an Emacs mode for Clojure that makes you happy before

working through the code examples in later chapters.

For Perl/Python/Ruby Programmers

•	 Read Chapter 6, Concurrency, on page 177 carefully. Intraprocess

concurrency is very important in Clojure.

•	 Embrace macros (Chapter 7, Macros, on page 211). But do not

expect to easily translate metaprogramming idioms from your lan

guage into macros. Remember always that macros execute at read

time, not runtime.

Notation Conventions

The following notation conventions are used throughout the book.

Literal code examples use the following font:

(+ 2 2)

The result of executing a code example is preceded by a ->:

(+ 2 2)

⇒ 4

Where console output cannot easily be distinguished from code and

results, it is preceded by a pipe character (|):

(println "hello")

| hello

⇒ nil

When introducing a Clojure form for the first time, I will show the gram

mar for the form like this:

(example-fn required-arg)

(example-fn optional-arg?)

(example-fn zero-or-more-arg*)

(example-fn one-or-more-arg+)

(example-fn & collection-of-variable-args)

The grammar is informal, using ?, *, +, and & to document different

argument-passing styles, as shown previously.

Clojure code is organized into libs (libraries). Where examples in the

book depend on a library that is not part of the Clojure core, I document

that dependency with a use form:

(use '[lib-name :only (var-names+)])

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=18

19 WEB RESOURCES AND FEEDBACK

This form of use brings in only the names in var-names, making each

function’s origin clear. For example, a commonly used function is str

join, from the clojure.contrib.str-utils library:

(use '[clojure.contrib.str-utils :only (str-join)])

(str-join "-" ["hello", "clojure"])

⇒ "hello-clojure"

Clojure returns nil from a successful call to use. For brevity, this is

omitted from the example listings.

While reading the book, you will enter code in an interactive environ

ment called the REPL. The REPL prompt looks like this:

user=>

The user before the prompt tells the namespace you are currently work

ing in. For most of the book’s examples, the current namespace is irrel

evant. Where the namespace is irrelevant, I will use the following syntax

for interaction with the REPL:

(+ 2 2) ; input line without namespace prompt

⇒ 4 ; return value

In those few instances where the current namespace is important, I will

use this:

user=> (+ 2 2) ; input line with namespace prompt

⇒ 4 ; return value

Web Resources and Feedback

Programming Clojure’s official home on the Web is the Programming Clo

jure home page4 at the Pragmatic Bookshelf website. From there you

can order electronic or paper copies of the book and download sam

ple code. You can also offer feedback by submitting errata entries5 or

posting in the forum6 for the book.

In addition to the book, I have written a number of articles about Clo

jure. These are all available under the “clojure” tag at the Relevance

blog.7

4. http://www.pragprog.com/titles/shcloj/programming-clojure

5. http://www.pragprog.com/titles/shcloj/errata

6. http://forums.pragprog.com/forums/91

7. http://blog.thinkrelevance.com/tags/clojure

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://www.pragprog.com/titles/shcloj/programming-clojure
http://www.pragprog.com/titles/shcloj/errata
http://forums.pragprog.com/forums/91
http://blog.thinkrelevance.com/tags/clojure
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=19

20 DOWNLOADING SAMPLE CODE

Downloading Sample Code

The sample code for the book is available from one of two locations:

•	 The Programming Clojure home page8 links to the official copy of

the source code and is updated to match each release of the book.

•	 The Programming Clojure git repository9 is updated in real time.

This is the latest, greatest code and may sometimes be ahead of

the prose in the book.

Individual examples are in the examples directory, unless otherwise

noted. The Lancet examples have their own separate lancet directory.

Throughout the book, listings begin with their filename, set apart from

the actual code by a gray background. For example, the following listing

comes from examples/preface.clj:

Download examples/preface.clj

(println "hello")

If you are reading the book in PDF form, you can click the little gray

box preceding a code listing and download that listing directly.

With the sample code in hand, you are ready to get started. We will

begin by meeting the combination of features that make Clojure unique.

8. http://www.pragprog.com/titles/shcloj

9. http://github.com/stuarthalloway/programming-clojure

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/preface.clj
http://www.pragprog.com/titles/shcloj
http://github.com/stuarthalloway/programming-clojure
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=20

Chapter 1

Getting Started
We will begin this chapter by briefly exploring the features that make

Clojure compelling:

• Elegant, expressive code

• Lisp’s powerful notion that code is data

• Easy, fast Java interoperability

• A sequence library that unifies all kinds of data

• Functional programming to encourage reusable, correct code

• Concurrency without the pain of manual lock management

This list of features acts as a road map for the rest of the book, so don’t

worry if you don’t follow every little detail here. Each feature gets an

entire chapter later.

Next, you’ll dive in and build a small application. You’ll also learn how

to load and execute the larger examples we will use later in the book.

Finally, you will meet the Lancet sample application, a dependency-

based build system that we will incrementally create over the course of

the book.

1.1 Why Clojure?

Clojure feels like a general-purpose language beamed back from the

near future. Its support for functional programming and software trans

actional memory is well beyond current practice and is well suited for

multicore hardware.

Prepared exclusively for WG Custom Motorcycles

22 WHY CLOJURE?

At the same time, Clojure is well grounded in the past and the present.

It brings together Lisp and the Java Virtual Machine. Lisp brings wis

dom spanning most of the history of programming, and Java brings the

robustness, extensive libraries, and tooling of the dominant platform

available today.

Let’s explore this powerful combination.

Clojure Is Elegant

Clojure is high signal, low noise. As a result, Clojure programs are short

programs. Short programs are cheaper to build, cheaper to deploy, and

cheaper to maintain.1 This is particularly true when the programs are

concise rather than merely terse. As an example, consider the following

Java code, from the Apache Commons:

Download snippets/isBlank.java

public class StringUtils {

public static boolean isBlank(String str) {

int strLen;

if (str == null || (strLen = str.length()) == 0) {

return true;

}

for (int i = 0; i < strLen; i++) {

if ((Character.isWhitespace(str.charAt(i)) == false)) {

return false;

}

}

return true;

}

}

The isBlank() method checks to see whether a string is blank: either

empty or consisting of only whitespace. Here is a similar implementa

tion in Clojure:

Download examples/introduction.clj

(defn blank? [s] (every? #(Character/isWhitespace %) s))

The Clojure version is shorter. More important, it is simpler: it has no

variables, no mutable state, and no branches. This is possible thanks to

higher-order functions. A higher-order function is a function that takes

functions as arguments and/or returns functions as results. The every?

1. Software Estimation: Demystifying the Black Art [McC06] is a great read and makes

the case that smaller is cheaper.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/snippets/isBlank.java
http://media.pragprog.com/titles/shcloj/code/examples/introduction.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=22

23 WHY CLOJURE?

function takes a function and a collection as its arguments and returns

true if that function returns true for every item in the collection.

Because the Clojure version has no branches, it is easier to read and

test. These benefits are magnified in larger programs. Also, while the

code is concise, it is still readable. In fact, the Clojure program reads

like a definition of blank: a string is blank if every character in it is

whitespace. This is much better than the Commons method, which

hides the definition of blank behind the implementation detail of loops

and if statements.

As another example, consider defining a trivial Person class in Java:

Download snippets/Person.java

public class Person {

private String firstName;

private String lastName;

public Person(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

}

In Clojure, you would define person with a single line:

(defstruct person :first-name :last-name)

defstruct and related functions are covered in Section 2.1, Maps, Key

words, and Structs, on page 52.

Other than being an order of magnitude shorter, the Clojure approach

differs in that a Clojure person is immutable. Immutable data struc

tures are naturally thread safe, and update capabilities can be lay

ered in using Clojure’s references, agents, and atoms, which are cov

ered below in Chapter 6, Concurrency, on page 177. Because structures

are immutable, Clojure also provides correct implementations of hash-

Code() and equals() automatically.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/snippets/Person.java
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=23

24 WHY CLOJURE?

Clojure has a lot of elegance baked in, but if you find something miss

ing, you can add it yourself, thanks to the power of Lisp.

Clojure Is Lisp Reloaded

Clojure is a Lisp. For decades, Lisp advocates have pointed out the

advantages that Lisp has over, well, everything else. At the same time,

Lisp’s world domination plan seems to be proceeding slowly.

Like any other Lisp, Clojure faces two challenges:

•	 Clojure must succeed as a Lisp by persuading Lisp programmers

that Clojure embraces the critical parts of Lisp.

•	 At the same time, Clojure needs to succeed where past Lisps have

failed by winning support from the broader community of

programmers.

Clojure meets these challenges by providing the metaprogramming

capabilities of Lisp and at the same time embracing a set of syntax

enhancements that make Clojure friendlier to non-Lisp programmers.

Why Lisp?

Lisps have a tiny language core, almost no syntax, and a powerful

macro facility. With these features, you can bend Lisp to meet your

design, instead of the other way around. By contrast, consider the fol

lowing snippet of Java code:

public class Person {

private String firstName;

public String getFirstName() {

// continues

In this code, getFirstName() is a method. Methods are polymorphic and

can bend to meet your needs. But the interpretation of every other word

in the example is fixed by the language. Sometimes you really need

to change what these words mean. So for example, you might do the

following:

•	 Redefine private to mean “private for production code but public

for serialization and unit tests.”

•	 Redefine class to automatically generate getters and setters for pri

vate fields, unless otherwise directed.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=24

25 WHY CLOJURE?

•	 Create a subclass of class that provides callback hooks for lifecycle

events. For example, a lifecycle-aware class could fire an event

whenever an instance of the class is created.

I have seen programs that needed all these features. Without them, pro

grammers resort to repetitive, error-prone workarounds. Literally mil

lions of lines of code have been written to work around missing features

in programming languages.

In most languages, you would have to petition the language imple

menter to add the kinds of features mentioned earlier. In Clojure, you

can add your own language features with macros (Chapter 7, Macros,

on page 211). Clojure itself is built out of macros such as defstruct:

(defstruct person :first-name :last-name)

If you need different semantics, write your own macro. If you want a

variant of structs with strong typing and configurable null-checking for

all fields, you can create your own defrecord macro, to be used like this:

(defrecord

person [String :first-name String :last-name]

:allow-nulls false)

This ability to reprogram the language from within the language is the

unique advantage of Lisp. You will see facets of this idea described in

various ways:

•	 Lisp is homoiconic;2 that is, Lisp code is just Lisp data. This makes

it easy for programs to write other programs.

•	 The whole language is there, all the time. Paul Graham’s essay

“Revenge of the Nerds”3 explains why this is so powerful.

Lisp syntax also eliminates rules for operator precedence and associa

tivity. You will not find a table documenting operator precedence or

associativity anywhere in this book. With fully parenthesized expres

sions, there is no possible ambiguity.

The downside of Lisp’s simple, regular syntax, at least for beginners,

is Lisp’s fixation on parentheses and on lists as the core data type.

Clojure offers an interesting combination of features that makes Lisp

more approachable for non-Lispers.

2. http://en.wikipedia.org/wiki/Homoiconicity

3. http://www.paulgraham.com/icad.html

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://en.wikipedia.org/wiki/Homoiconicity
http://www.paulgraham.com/icad.html
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=25

26 WHY CLOJURE?

Lisp, with Fewer Parentheses

Clojure offers significant advantages for programmers coming to it from

other Lisps:

•	 Clojure generalizes Lisp’s physical list into an abstraction called a

sequence. This preserves the power of lists, while extending that

power to a variety of other data structures.

•	 Clojure’s reliance on the JVM provides a standard library and a

deployment platform with great reach.

•	 Clojure’s approach to symbol resolution and syntax quoting

makes it easier to write many common macros.

But many Clojure programmers will be new to Lisp, and they have prob

ably heard bad things about all those parentheses. Clojure keeps the

parentheses (and the power of Lisp!), but it improves on traditional Lisp

syntax in several ways:

•	 Clojure provides a convenient literal syntax for a wide variety of

data structures besides just lists: regular expressions, maps, sets,

vectors, and metadata. These features make Clojure code less

“listy” than most Lisps. For example, function parameters are

specified in a vector: [] instead of a list: ().

Download examples/introduction.clj

(defn hello-world [username]

(println (format "Hello, %s" username)))

The vector makes the argument list jump out visually and makes

Clojure function definitions easy to read.

•	 In Clojure, unlike most Lisps, commas are whitespace. Adding

commas can make some data structures more readable. Consider

vectors:

; make vectors look like arrays in other languages

[1, 2, 3, 4]

-> [1 2 3 4]

•	 Idiomatic Clojure does not nest parentheses more than necessary.

Consider the cond macro, present in both Common Lisp and Clo

jure. cond evaluates a set of test/result pairs, returning the first

result for which a test form yields true. Each test/result pair is

grouped with parentheses, like so:

; Common Lisp cond

(cond	 ((< x 10) "less")

((> x 10) "more"))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/introduction.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=26

27 WHY CLOJURE?

Clojure avoids the extra parentheses:

; Clojure cond

(cond	 (< x 10) "less"

(> x 10) "more")

This is an aesthetic decision, and both approaches have their sup

porters. The important thing is that Clojure takes the opportunity

to be less Lispy when it can do so without compromising Lisp’s

power.

Clojure is an excellent Lisp, both for Lisp experts and Lisp beginners.

Clojure Is a Functional Language

Clojure is a functional language, but not a pure functional language

like Haskell. Functional languages have the following properties:

•	 Functions are first-class objects. That is, functions can be created

at runtime, passed around, returned, and in general used like any

other data type.

•	 Data is immutable.

•	 Functions are pure; that is, they have no side effects.

For many tasks, functional programs are easier to understand, less

error-prone, and much easier to reuse. For example, the following short

program searches a database of compositions for every composer who

has written a composition named “Requiem”:

(for [c compositions :when (= "Requiem" (:name c))] (:composer c))

⇒ ("W. A. Mozart" "Giuseppe Verdi")

The name for does not introduce a loop but a list comprehension. Read

the earlier code as “For each c in compositions, where the name of c is

"Requiem", yield the composer of c.” List comprehension is covered more

fully in Section 4.2, Transforming Sequences, on page 122.

This example has four desirable properties:

•	 It is simple; it has no loops, variables, or mutable state.

•	 It is thread safe; no locking is needed.

•	 It is parallelizable; you could farm individual steps out to multiple

threads without changing the code for each step.

•	 It is generic; compositions could be a plain set or XML or a database

result set.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=27

28 WHY CLOJURE?

Contrast functional programs with imperative programs, where explicit

statements alter program state. Most object-oriented programs are writ

ten in an imperative style and have none of the advantages listed earlier;

they are unnecessarily complex, not thread safe, not parallelizable, and

difficult to generalize. (For a head-to-head comparison of functional and

imperative styles, skip forward to Section 2.6, Where’s My for Loop?, on

page 70.)

People have known about the advantages of functional languages for

a while now. And yet, pure functional languages like Haskell have not

taken over the world, because developers find that not everything fits

easily into the pure functional view.

There are four reasons that Clojure can attract more interest now than

functional languages have in the past:

•	 Functional programming is more urgent today than ever before.

Massively multicore hardware is right around the corner, and

functional languages provide a clear approach for taking advan

tage of it. Functional programming is covered in Chapter 5, Func

tional Programming, on page 147.

•	 Purely functional languages can make it awkward to model state

that really needs to change. Clojure provides a structured mecha

nism for working with changeable state via software transactional

memory and refs (Section 6.2, Refs and Software Transactional

Memory, on page 179), agents (Section 6.4, Use Agents for Asyn

chronous Updates, on page 187), atoms (Section 6.3, Use Atoms for

Uncoordinated, Synchronous Updates, on page 186), and dynamic

binding (Section 6.5, Managing Per-Thread State with Vars, on

page 192).

•	 Many functional languages are statically typed. Clojure’s dynamic

typing makes it more accessible for programmers learning func

tional programming.

•	 Clojure’s Java invocation approach is not functional. When you

call Java, you enter the familiar, mutable world. This offers a com

fortable haven for beginners learning functional programming and

a pragmatic alternative to functional style when you need it. Java

invocation is covered in Chapter 3, Working with Java, on page 79.

Clojure’s approach to changing state enables concurrency without ex

plicit locking and complements Clojure’s functional core.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=28

29 WHY CLOJURE?

Clojure Simplifies Concurrent Programming

Clojure’s support for functional programming makes it easy to write

thread-safe code. Since immutable data structures cannot ever change,

there is no danger of data corruption based on another thread’s activity.

However, Clojure’s support for concurrency goes beyond just functional

programming. When you need references to mutable data, Clojure pro

tects them via software transactional memory (STM). STM is a higher

level approach to thread safety than the locking mechanisms that Java

provides. Rather than creating fragile, error-prone locking strategies,

you can protect shared state with transactions. This is much more

productive, because many programmers have a good understanding of

transactions based on experience with databases.

For example, the following code creates a working, thread-safe, in-

memory database of accounts:

(def accounts (ref #{}))

(defstruct account :id :balance)

The ref function creates a transactionally protected reference to the cur

rent state of the database. Updating is trivial. The following code adds

a new account to the database:

(dosync (alter accounts conj (struct account "CLJ" 1000.00)))

The dosync causes the update to accounts to execute inside a transac

tion. This guarantees thread safety, and it is easier to use than locking.

With transactions, you never have to worry about which objects to lock

or in what order. The transactional approach will also perform better

under some common usage scenarios, because (for example) readers

will never block.

Although the example here is trivial, the technique is general, and it

works on real-world-sized problems. See Chapter 6, Concurrency, on

page 177 for more on concurrency and STM in Clojure.

Clojure Embraces the Java Virtual Machine

Clojure gives you clean, simple, direct access to Java. You can call any

Java API directly:

(System/getProperties)

-> {java.runtime.name=Java(TM) SE Runtime Environment

... many more ...

Clojure adds a lot of syntactic sugar for calling Java. I won’t get into

the details here (see Section 3.1, Calling Java, on page 80), but notice

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=29

30 CLOJURE CODING QUICK START

that in the following code the Clojure version has both fewer dots and

fewer parentheses than the Java version:

// Java

"hello".getClass().getProtectionDomain().getCodeSource()

; Clojure

(.. "hello" getClass getProtectionDomain getCodeSource)

Clojure provides simple functions for implementing Java interfaces and

subclassing Java classes. Also, Clojure functions all implement Callable

and Runnable. This makes it trivial to pass the following anonymous

function to the constructor for a Java Thread.

(.start (new Thread (fn [] (println "Hello" (Thread/currentThread)))))

| Hello #<Thread Thread[Thread-0,5,main]>

The #<...> is Clojure’s way of printing a Java instance. Thread is the

class name of the instance, and Thread[Thread-0,5,main] is the instance’s

toString representation.

(Note that in the preceding example the new thread will run to comple

tion, but its output may interleave in some strange way with the REPL

prompt. This is not a problem with Clojure but simply the result of

having more than one thread writing to an output stream.)

Because the Java invocation syntax in Clojure is clean and simple, it

is idiomatic to use Java directly, rather than to hide Java behind Lispy

wrappers.

Now that you have seen a few of the reasons to use Clojure, it is time

to start writing some code.

1.2 Clojure Coding Quick Start

To run Clojure, you need two things:

•	 A Java runtime. Download4 and install Java version 5 or greater.

Java version 6 has significant performance improvements and

better exception reporting, so prefer this if possible.

•	 Clojure itself. The book’s sample code includes a version of Clojure

that has been tested to work with all of the book’s examples. While

4. http://java.sun.com/javase/downloads/index.jsp

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://java.sun.com/javase/downloads/index.jsp
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=30

31 CLOJURE CODING QUICK START

you are working through the book, use the version of Clojure bun

dled with the book’s sample code at lib/clojure.jar. After you read

the book, you can follow the instructions in the sidebar on the

next page to build an up-to-the-minute version of Clojure.

Instructions for downloading the sample code are on page 20. Once you

have downloaded the sample code, you can test your install by navigat

ing to the directory where you placed the sample code and running

a Clojure read-eval-print loop (REPL). The sample code includes REPL

launch scripts that load Clojure, plus several other libraries that we

will need later in the book.

On *nix/Mac the script is repl.sh:

cd /wherever/you/put/the/samples

bin/repl.sh

On Windows it is repl.bat:

cd \wherever\you\put\the\samples

bin\repl.bat

Another alternative for Windows users is to install Cygwin5 and then

follow the *nix instructions throughout the book.

When you run the appropriate REPL launch script, the REPL should

prompt you with user=>:

Clojure

user=>

All scripts in the book should be launched from a console in the root

directory of the sample code. Do not navigate into the bin directory, and

do not click the scripts from a Windows environment.

In addition to Clojure, many of the samples in the book depend on the

clojure-contrib library.6 A few examples also require various Java JAR

files. You do not have to worry about any of this, because the sample

code includes all these files and the REPL launch scripts place them on

the classpath.

Now you are ready for “Hello World.”

5. http://www.cygwin.com

6. http://code.google.com/p/clojure-contrib

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://www.cygwin.com
http://code.google.com/p/clojure-contrib
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=31

32 CLOJURE CODING QUICK START

Building Clojure Yourself

Because the sample code for the book includes clojure.jar, you
do not need to download anything else to get started. How
ever, you may want to build Clojure or clojure-contrib from
source to get access to newer features and bug fixes. Here’s
how:

For Clojure:

svn co http://clojure.googlecode.com/svn/trunk/ clojure
cd clojure
ant

For clojure-contrib:

svn co http://clojure-contrib.googlecode.com/svn/trunk /
clojure-contrib

cd clojure-contrib
ant

The sample code is regularly updated to match the current
development head of Clojure and clojure-contrib. Check the
README file in the sample code to see the revision numbers that
the samples were most recently tested with.

Warning: The SourceForge projects for Clojure and clojure
contrib are deprecated and should be ignored.

Using the REPL

To see how to use the REPL, let’s create a few variants of “Hello World.”

First, type (println "hello world") at the REPL prompt:

user=> (println "hello world")

| hello world

-> nil

The second line, hello world, is the console output you requested. This

third line, nil, is the return value of the call to println.

Next, encapsulate your “Hello World” into a function that can address

a person by name:

user=> (defn hello [name] (str "Hello, " name))

⇒ #'user/hello

Let’s break this down:

• defn defines a function.

• hello is the function name.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=32

33 CLOJURE CODING QUICK START

•	 hello takes one argument, name.

•	 str is a function call that concatenates an arbitrary list of argu

ments into a string.

•	 defn, hello, name, and str are all symbols, which are names that

refer to things. Legal symbols are defined in Section 2.1, Symbols,

on page 49.

Look at the return value, #’user/hello. The prefix #’ indicates that the

function was stored in a Clojure var, and user is the namespace of the

function. (The user namespace is the REPL default, like the default pack

age in Java.) You do not need to worry about vars and namespaces yet;

they are covered in Section 2.4, Vars, Bindings, and Namespaces, on

page 60.

Now you can call hello, passing in your name:

user=> (hello "Stu")

⇒ Hello, Stu

If you get your REPL into a state that confuses you, the simplest fix is

to kill the REPL with Ctrl + C on Windows or Ctrl + D on *nix and then

start another one.

Special Variables

The REPL includes several useful special variables. When you are work

ing in the REPL, the results of evaluating the three most recent expres

sions are stored in the special variables *1, *2, and *3, respectively. This

makes it easy to work iteratively. Say hello to a few different names:

user=> (hello "Stu")

⇒ "Hello, Stu"

user=> (hello "Clojure")

⇒ "Hello, Clojure"

Now, you can use the special variables to combine the results of your

recent work:

(str *1 " and " *2)

⇒ "Hello, Clojure and Hello, Stu"

If you make a mistake in the REPL, you will see a Java exception. The

details are often omitted for brevity. For example, dividing by zero is a

no-no:

user=> (/ 1 0)

⇒ java.lang.ArithmeticException: Divide by zero

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=33

34 CLOJURE CODING QUICK START

Here the problem is obvious, but sometimes the problem is more subtle

and you want the detailed stack trace. The *e special variable holds the

last exception. Because Clojure exceptions are Java exceptions, you

can call Java methods such as printStackTrace():

user=> (.printStackTrace *e)

⇒	 java.lang.ArithmeticException: Divide by zero

| at clojure.lang.Compiler.eval(Compiler.java:4094)

| at clojure.lang.Repl.main(Repl.java:87)

| Caused by: java.lang.ArithmeticException: Divide by zero

| at clojure.lang.Numbers.divide(Numbers.java:142)

| at user.eval__2677.invoke(Unknown Source)

| at clojure.lang.Compiler.eval(Compiler.java:4083)

| ... 1 more

Java interop is covered in Chapter 3, Working with Java, on page 79.

If you have a block of code that is too large to conveniently type at the

REPL, save the code into a file, and then load that file from the REPL.

You can use an absolute path or a path relative to where you launched

the REPL:

; save some work in temp.clj, and then ...

user=> (load-file "temp.clj")

The REPL is a terrific environment for trying ideas and getting imme

diate feedback. For best results, keep a REPL open at all times while

reading this book.

Adding Shared State

The hello function of the previous section is pure; that is, it has no side

effects. Pure functions are easy to develop, test, and understand, and

you should prefer them for many tasks.

That said, most programs have some shared state and will use impure

functions to manage that shared state. Let’s extend hello to keep track

of past visitors and offer a different greeting to people it has met before.

First, you will need something to track the visitors. A set will do the

trick:

#{}

⇒ #{}

The #{} is a literal for an empty set. Next, you will need conj:

(conj coll item)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=34

35 CLOJURE CODING QUICK START

conj is short for conjoin, and it builds a new collection with an item

added. conj an element onto a set to see that a new set is created:

(conj #{} "Stu")

⇒ #{"Stu"}

Now that you can build new sets, you need some way to keep track

of the current set of visitors. Clojure provides references (refs) for this

purpose:

(ref initial-state)

To name your reference, you can use def:

(def symbol initial-value?)

def is like defn but more general. A def can define functions or data.

Use ref to create a reference, and use def to bind this reference to the

name visitors:

(def visitors (ref #{}))

⇒ #'user/visitors

In order to update a reference, you must use a function such as alter:

(alter r update-fn & args)

alter applies an update-fn to reference r, with optional args if necessary.

Try to alter a visitor into visitors, using conj as the update function:

(alter visitors conj "Stu")

⇒ java.lang.IllegalStateException: No transaction running

As you can see, Clojure protects references. References must be up

dated in a transaction so that Clojure can do the hard work of dealing

with multiple concurrent users of visitors:

To create a transaction, use dosync:

(dosync & exprs)

Use dosync to add a visitor within a transaction:

(dosync (alter visitors conj "Stu"))

⇒ #{"Stu"}

alter is one of several functions that can update a ref. Choosing the right

update function requires care and is discussed in Section 6.2, Refs and

Software Transactional Memory, on page 179.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=35

36 CLOJURE CODING QUICK START

At any time, you can peek inside the ref with deref or with the shorter

@:

(deref visitors)

⇒ #{"Stu"}

@visitors

⇒ #{"Stu"}

Now you are ready to build the new, more elaborate version of hello:

Download examples/introduction.clj

Line 1 (defn hello
- "Writes hello message to *out*. Calls you by username.
- Knows if you have been here before."
- [username]
5 (dosync
- (let [past-visitor (@visitors username)]
- (if past-visitor
- (str "Welcome back, " username)
- (do

10 (alter visitors conj username)

- (str "Hello, " username))))))

On line 6, @visitors returns the current value of the visitors reference.

Sets are functions of their members, so (@visitors username) checks to

see whether username is a member of the current value of visitors. The let

then binds the result of this check to the name past-visitor.

On line 10, alter updates the visitors to include the name username.

Lines 8 and 11 return different strings based on whether the user was

a visitor in the past.

You can verify that new visitors get one message the first time around:

(hello "Rich")

⇒ "Hello, Rich"

...and that they get a different message when they return again later:

(hello "Rich")

⇒ "Welcome back, Rich"

The use of references and transactions in the previous example offers a

great benefit: the hello function is safe for multiple threads and proces

sors. And although they may be retried, calls to dosync will not dead

lock. Clojure transactions are described in more detail in Chapter 6,

Concurrency, on page 177.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/introduction.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=36

37 EXPLORING CLOJURE LIBRARIES

At this point, you should feel comfortable entering small bits of code at

the REPL. Larger units of code aren’t that different; you can load and

run Clojure libraries from the REPL as well. Let’s explore that next.

1.3 Exploring Clojure Libraries

Clojure code is packaged in libraries. Each Clojure library belongs to

a namespace, which is analogous to a Java package. You can load a

Clojure library with require:

(require quoted-namespace-symbol)

When you require a library named clojure.contrib.str-utils, Clojure looks for

a file named clojure/contrib/str-utils.clj on the CLASSPATH. Try it:

user=> (require 'clojure.contrib.str-utils)

⇒ nil

The leading single quote (’) is required, and it quotes the library name

(quoting is covered in Section 2.2, Reader Macros, on page 55). The nil

return indicates success and that you have the clojure-contrib library

on your classpath. While you are at it, test that you can load the sample

code for this chapter, examples.introduction:

user=> (require 'examples.introduction)

⇒ nil

The examples.introduction library includes an implementation of the

Fibonacci numbers, which is the traditional “Hello World” program for

functional languages. We will explore the Fibonacci numbers in more

detail in Section 5.2, How to Be Lazy, on page 152. For now, just make

sure that you can execute the sample function fibs. Enter the following

line of code at the REPL to take the first ten Fibonacci numbers:

user=> (take 10 examples.introduction/fibs)

⇒ (0 1 1 2 3 5 8 13 21 34)

If you see the first ten Fibonacci numbers as listed here, you have suc

cessfully installed the book samples.

The book samples are all unit tested, with tests located in the exam

ples/test and lancet/test directories. (Testing is covered in Section 9.1,

Automating Tests, on page 266.) The tests for the samples themselves

are not explicitly covered in the book, but you may find them useful

for reference. You can run the unit tests yourself with bin/runtests.sh or

bin\runtests.bat.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=37

38 EXPLORING CLOJURE LIBRARIES

Don’t Just Require, Use!

When you require a Clojure library, you must refer to items in the library

with a namespace-qualified name. Instead of fibs, you must say exam

ples.introduction.fibs. Make sure to launch a new REPL,7 and then try it:

(require 'examples.introduction)

⇒ nil

(take 10 examples.introduction/fibs)

⇒ (0 1 1 2 3 5 8 13 21 34)

Fully qualified names get old quickly. You can refer a namespace, cre

ating mappings for all its names in your current namespace:

(refer quoted-namespace-symbol)

Call refer on examples.introduction, and verify that you can then call fibs

directly:

(refer 'examples.introduction)

⇒ nil

(take 10 fibs)

⇒ (0 1 1 2 3 5 8 13 21 34)

For convenience, the use function will require and refer a library in a

single step:

(use quoted-namespace-symbol)

From a new REPL you should be able to do the following:

(use 'examples.introduction)

⇒ nil

(take 10 fibs)

⇒ (0 1 1 2 3 5 8 13 21 34)

As you are working through the book samples, you can call require or

use with a :reload-all flag to force a library to reload:

(use :reload-all 'examples.introduction)

⇒ nil

The :reload-all flag is useful if you are making changes and want to see

results without restarting the REPL.

7. Creating a new REPL will prevent name collisions between your previous work and the

sample code functions of the same name. This is not a problem in real-world development,

as you will see in Section 2.4, Namespaces, on page 64.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=38

39 EXPLORING CLOJURE LIBRARIES

Finding Documentation

Often you can find the documentation you need right at the REPL. The

most basic helper function is doc:

(doc name)

Use doc to print the documentation for str:

user=> (doc str)

clojure.core/str

([] [x] [x & ys])

With no args, returns the empty string. With one arg x, returns

x.toString(). (str nil) returns the empty string. With more than

one arg, returns the concatenation of the str values of the args.

The first line of doc’s output contains the fully qualified name of the

function. The next line contains the possible argument lists, gener

ated directly from the code. (Some common argument names and their

uses are explained in the sidebar on the following page.) Finally, the

remaining lines contain the function’s doc-string, if the function defini

tion included one.

You can add a doc-string to your own functions by placing it immedi

ately after the function name:

Download examples/introduction.clj

(defn hello

"Writes hello message to *out*. Calls you by username"

[username]

(println (str "Hello, " username)))

Sometimes you will not know the exact name you want documentation

for. The find-doc function will search for anything whose doc output

matches a regular expression or string you pass in:

(find-doc s)

Use find-doc to explore how Clojure does reduce:

user=> (find-doc "reduce")

clojure/areduce

([a idx ret init expr])

Macro

... details elided ...

clojure/reduce

([f coll] [f val coll])

... details elided ...

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/introduction.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=39

40 EXPLORING CLOJURE LIBRARIES

Conventions for Parameter Names

The documentation strings for reduce and areduce show several
terse parameter names. Here are some parameter names and
how they are normally used:

Parameter Usage
a A Java array
agt An agent
coll A collection
expr An expression
f A function
idx Index
r A ref
v A vector
val A value

These names may seem a little terse, but there is a good reason
for them: the “good names” are often taken by Clojure func
tions! Naming a parameter that collides with a function name
is legal but considered bad style: the parameter will shadow
the function, which will be unavailable while the parameter is
in scope. So, don’t call your refs ref, your agents agent, or your
counts count. Those names refer to functions.

reduce reduces Clojure collections and is covered in Section 4.2, Trans

forming Sequences, on page 122. areduce is for interoperation with Java

arrays and is covered in Section 3.1, Using Java Collections, on page 83.

Much of Clojure is written in Clojure, and it is often instructive to read

the source code. Using Chris Houser’s repl-utils library, you can view the

source of a Clojure function:

(clojure.contrib.repl-utils/source a-symbol)

Try viewing the source of the simple identity function:

(use 'clojure.contrib.repl-utils)

(source identity)

(defn identity

"Returns its argument."

[x] x)

Under the covers, Clojure is Java. You can use show to enumerate all

the Java members (fields and methods) of any Java object:

(clojure.contrib.repl-utils/show obj)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=40

41 EXPLORING CLOJURE LIBRARIES

Try showing the members of a java.util.HashMap:

(show java.util.HashMap)

=== public java.util.HashMap ===

[0] <init> ()

[1] <init> (Map)

[2] <init> (int)

[3] <init> (int,float)

[4] clear : void ()

[5] clone : Object ()

[6] containsKey : boolean (Object)

[7] containsValue : boolean (Object)

[8] entrySet : Set ()

... elided for brevity ...

Because Clojure objects are Java objects, you can also show any Clojure

form to see its underlying Java API. Try showing a Clojure set:

(show #{})

=== public clojure.lang.PersistentHashSet ===

[0] static EMPTY : PersistentHashSet

[1] static applyToHelper : Object (IFn,ISeq)

[2] static create : PersistentHashSet (ISeq)

[3] static create : PersistentHashSet (List)

[4] static create : PersistentHashSet (Object[])

[5] add : boolean (Object)

[6] addAll : boolean (Collection)

[7] applyTo : Object (ISeq)

[8] call : Object ()

... elided for brevity ...

Of course, you can also use Java’s Reflection API. You can use methods

such as class, ancestors, and instance? to reflect against the underlying

Java object model. You can tell, for example, that Clojure’s collections

are also Java collections:

(ancestors (class [1 2 3]))

⇒	 #{java.util.List clojure.lang.IPersistentVector

java.lang.Object java.util.Comparator

java.io.Serializable java.lang.Iterable

java.util.Collection clojure.lang.APersistentVector

java.util.RandomAccess clojure.lang.IObj clojure.lang.AFn

java.lang.Comparable clojure.lang.Obj clojure.lang.IFn}

Clojure’s complete API is documented online at http://clojure.org/api. The

right sidebar links to all functions and macros by name, and the left

sidebar links to a set of overview articles on various Clojure features.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://clojure.org/api
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=41

42 INTRODUCING LANCET

You can download a PDF version of the online documentation from the

Clojure Google Group’s file archive;8 the filename is manual.pdf.

Now you have written a bit of Clojure code and can load and explore

Clojure libraries. It is time to introduce the main sample application for

the book: Lancet.

1.4 Introducing Lancet

Lancet is a more involved project that we will build together throughout

the book. Lancet is a dependency-based build system. In a dependency

based system, you describe the dependencies between various targets

(objectives). Then you can request performance of a particular target,

and the system will determine what other targets also need to run, and

in what order. Popular dependency-based build systems include Make,9

Ant,10 SCons,11 and Rake.12

Lancet can function stand-alone, or it can invoke tasks from Ant. In

fact, Lancet was inspired by a review of Ant’s build syntax. Here is a

simple Ant build script:

Download lancet/step_0/build.xml

<project name="example" default="compile">

<property name="src" location="src"/>

<property name="build" location="classes"/>

<target	 name="init">

<tstamp/>

<mkdir dir="${build}"/>

</target>

<target	 name="compile" depends="init"

description="Compile Java sources.">

<javac srcdir="${src}"

destdir="${build}"/>

</target>

</project>

8. http://groups.google.com/group/clojure/files

9. http://en.wikipedia.org/wiki/Make_(software)

10. http://ant.apache.org

11. http://www.scons.org

12. http://rake.rubyforge.org/

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_0/build.xml
http://groups.google.com/group/clojure/files
http://en.wikipedia.org/wiki/Make_(software)
http://ant.apache.org
http://www.scons.org
http://rake.rubyforge.org/
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=42

43 INTRODUCING LANCET

Ant’s design can be summarized as follows:

•	 A build is composed of one or more distinct targets, such as init

and compile.

•	 Targets are related by dependencies. In the previous sample, com

pile depends on init.

•	 By tracking dependency relationships, Ant can run only the tar

gets that are needed and run each target only once per build.

•	 You can provide and override configuration settings by setting

arbitrary properties, such as src and build in the example.

•	 The actual work of targets is performed by tasks, such as tstamp,

mkdir, and javac.

•	 Ant build scripts are usually written in XML, as shown earlier, but

the underlying implementation is typically Java.

At first glance, Lancet syntax looks like Ant syntax but Lispy instead of

XMLish:

Download lancet/step_0/build.clj

(use 'lancet)

(use 'lancet.ant)

(def src "src")

(def build "classes")

(deftarget init

(tstamp)

(mkdir {:dir build}))

(deftarget compile

"Compile Java sources"

(init)

(javac {:srcdir src :destdir build}))

The surface similarity belies some important differences:

•	 Lancet is pure Clojure code. Lancet uses no XML and does not

have to convert between XML and Java.

•	 Because Lancet is Clojure code, the need for properties disap

pears. You can simply use Clojure vars such as src and build.

•	 Likewise, there is no need for tasks. Tasks are just functions.

•	 Targets such as init and compile are also just functions, with the

special property that they run only once. deftarget defines a func

tion with run-once semantics.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_0/build.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=43

44 WRAPPING UP

•	 Explicit dependencies are unnecessary. They fall out naturally

when one target calls another, because compile calls init in the ear

lier example.

Lancet also provides direct access to Ant’s most important feature: its

large, tested library of tasks. Lancet can call Ant tasks such as tstamp,

mkdir, and javac directly as Clojure functions.

Most of the abstractions in Ant exist not to build projects but to man

age the impedance mismatch between XML and Java. Lancet avoids all

that ceremony and distills the essence of a dependency-based system:

functions that run only once, when needed.

At the end of most chapters, you will build a little bit of Lancet. By the

end of the book, you will have a usable Clojure build system.

1.5 Wrapping Up

You have just gotten the whirlwind tour of Clojure. You have seen Clo

jure’s expressive syntax, learned about Clojure’s approach to Lisp, and

seen how easy it is to call Java code from Clojure.

You have Clojure running in your own environment, and you have writ

ten short programs at the REPL to demonstrate functional program

ming and software transactional memory. You have seen what Lancet

will look like, once you know how to build it. Now it is time to explore

the entire language.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=44

Chapter 2

Exploring Clojure
Clojure offers great power through functional style, concurrency sup

port, and clean Java interop. But before you can appreciate all these

features, you have to start with the language basics. In this chapter, you

will take a quick tour of the Clojure language, including the following:

• Forms

• Reader macros

• Functions

• Bindings and namespaces

• Flow control

• Metadata

If your background is primarily in imperative languages, this tour may

seem to be missing key language constructs, such as variables and for

loops. Section 2.6, Where’s My for Loop?, on page 70 will show you how

you can live better without for loops and variables.

Clojure is very expressive, and this chapter covers many concepts quite

quickly. Don’t worry if you don’t understand every detail; we will revisit

these topics in more detail in later chapters. If possible, bring up a

REPL, and follow along with the examples as you read.

2.1 Forms

Clojure is homoiconic, which is to say that Clojure code is composed

of Clojure data. When you run a Clojure program, a part of Clojure

called the reader reads the text of the program in chunks called forms

and translates them into Clojure data structures. Clojure then compiles

and executes the data structures.

Prepared exclusively for WG Custom Motorcycles

FORMS 46

Form Example(s) Primary Coverage

Boolean true, false Section 2.1, Booleans and Nil, on page 51

Character \a Section 2.1, Strings and Characters, on page 49

Keyword :tag, :doc Section 2.1, Maps, Keywords, and Structs, on page 52

List (1 2 3), (println "foo") Chapter 4, Unifying Data with Sequences, on page 111

Map {:name "Bill", :age 42} Section 2.1, Maps, Keywords, and Structs, on page 52

Nil nil Section 2.1, Booleans and Nil, on page 51

Number 1, 4.2 Section 2.1, Using Numeric Types

Set #{:snap :crackle :pop} Chapter 4, Unifying Data with Sequences, on page 111

String "hello" Section 2.1, Strings and Characters, on page 49

Symbol user/foo, java.lang.String Section 2.1, Symbols, on page 49

Vector [1 2 3] Chapter 4, Unifying Data with Sequences, on page 111

Figure 2.1: Clojure forms

The Clojure forms covered in this book are summarized in Figure 2.1.

To see forms in action, let’s start with some simple forms supporting

numeric types.

Using Numeric Types

Numeric literals are forms. Numbers simply evaluate to themselves. If

you enter a number, the REPL will give it back to you:

42

⇒ 42

A vector of numbers is another kind of form. Create a vector of the

numbers 1, 2, and 3:

[1 2 3]

⇒ [1 2 3]

A list is also a kind of form. A list is “just data,” but it is also used to

call functions. Create a list whose first item names a Clojure function,

like the symbol +:

(+ 1 2)

⇒ 3

As you can see, Clojure evaluates the list as a function call. The style

of placing the function first is called prefix notation,1 as opposed to

1. More specifically, it’s called Cambridge Polish notation.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=46

FORMS 47

the more familiar infix notation 1 + 2 = 3. Of course, prefix notation is

perfectly familiar for functions whose names are words. For example,

most programmers would correctly expect concat to come first in this

expression:

(concat [1 2] [3 4])

⇒ (1 2 3 4)

Clojure is simply being consistent in treating mathematical operators

like all other functions and placing them first.

A practical advantage of prefix notation is that you can easily extend it

for arbitrary numbers of arguments:

(+ 1 2 3)

⇒ 6

Even the degenerate case of no arguments works as you would expect,

returning zero. This helps to eliminate fragile, special-case logic for

boundary conditions:

(+)

⇒ 0

Many mathematical and comparison operators have the names and

semantics that you would expect from other programming languages.

Addition, subtraction, multiplication, comparison, and equality all work

as you would expect:

(- 10 5)

⇒ 5

(* 3 10 10)

⇒ 300

(> 5 2)

⇒ true

(>= 5 5)

⇒ true

(< 5 2)

⇒ false

(= 5 2)

⇒ false

Division may surprise you:

(/ 22 7)

⇒ 22/7

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=47

FORMS 48

As you can see, Clojure has a built-in Ratio type:

(class (/ 22 7))

⇒ clojure.lang.Ratio

If you actually want decimal division, use a floating-point literal for the

dividend:

(/ 22.0 7)

⇒ 3.142857142857143

If you want to stick to integers, you can get the integer quotient and

remainder with quot and rem:

(quot 22 7)

⇒ 3

(rem 22 7)

⇒ 1

If you are doing arbitrary-precision math, append M to a number to

create a BigDecimal literal:

(+ 1 (/ 0.00001 1000000000000000000))

⇒ 1.0

(+ 1 (/ 0.00001M 1000000000000000000))

⇒ 1.00000000000000000000001M

Clojure relies on Java’s BigDecimal class for arbitrary-precision decimal

numbers. See the online documentation2 for details. BigDecimals pro

vide arbitrary precision but at a price: BigDecimal math is significantly

slower than Java’s floating-point primitives.

Clojure’s approach to arbitrary-sized integers is simple: just don’t worry

about it. Clojure will upgrade to BigInteger when you need it. Try creat

ing some small and large integers, and then inspect their class:

(class (* 1000 1000 1000))

⇒ java.lang.Integer

(class (* 1000 1000 1000 1000 1000 1000 1000 1000))

⇒ java.math.BigInteger

Clojure relies on Java’s BigInteger class for arbitrary-precision integers.

See the online documentation at http://tinyurl.com/big-integer for more on

BigInteger.

2. http://tinyurl.com/big-decimal

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://tinyurl.com/big-integer
http://tinyurl.com/big-decimal
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=48

FORMS 49

Symbols

Forms such as +, concat, and java.lang.String are called symbols and

are used to name things. For example, + names the function that adds

things together. Symbols name all sorts of things in Clojure:

• Functions like str and concat

• “Operators” like + and -, which are, after all, just functions

• Java classes like java.lang.String and java.util.Random

• Namespaces like clojure.core and Java packages like java.lang

• Data structures and references

Symbols cannot start with a number and can consist of alphanumeric

characters, plus +, -, *, /, !, ?, ., and _. The list of legal symbol characters

is a minimum set that Clojure promises to support. You should stick

to these characters in your own code, but do not assume the list is

exhaustive. Clojure may use other, undocumented characters in sym

bols that it employs internally and may add more legal symbol charac

ters in the future. See Clojure’s online documentation3 for updates to

the list of legal symbol characters.

Clojure treats / and . specially in order to support namespaces; see

Section 2.4, Namespaces, on page 64 for details.

Strings and Characters

Strings are another kind of reader form. Clojure strings are Java

strings. They are delimited by double quotes ("), and they can span

multiple lines:

"This is a\nmultiline string"

⇒ "This is a\nmultiline string"

"This is also

a multiline String"

⇒ "This is also\na multiline String"

As you can see, the REPL always shows string literals with escaped

newlines. If you actually print a multiline string, it will print on multiple

lines:

(println "another\nmultiline\nstring")

| another

| multiline

| string

⇒ nil

3. http://clojure.org/reader

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://clojure.org/reader
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=49

FORMS 50

Clojure does not wrap most of Java’s string functions. Instead, you can

call them directly using Clojure’s Java interop forms:

(.toUpperCase "hello")

⇒ "HELLO"

The dot before toUpperCase tells Clojure to treat it as the name of a Java

method instead of a Clojure function.

One string function that Clojure does wrap is toString. You do not need to

call toString directly. Instead of calling toString, use Clojure’s str function:

(str & args)

str differs from toString in two ways. It smashes together multiple argu

ments, and it skips nil without error:

(str 1 2 nil 3)

⇒ "123"

Clojure characters are Java characters. Their literal syntax is \{letter},

where letter can be a letter or the name of a character: backspace, form-

feed, newline, return, space, or tab:

(str \h \e \y \space \y \o \u)

⇒ "hey you"

As is the case with strings, Clojure does not wrap Java’s character

functions. Instead, you can use a Java interop form such as Charac

ter/toUpperCase:

(Character/toUpperCase \s)

⇒ \S

The Java interop forms are covered in Section 3.1, Calling Java, on

page 80. For more on Java’s Character class, see the API documentation

at http://tinyurl.com/java-character.

Strings are sequences of characters. When you call Clojure sequence

functions on a string, you get a sequence of characters back. Imagine

that you wanted to conceal a secret message by interleaving it with a

second, innocuous message. You could use interleave to combine the

two messages:

(interleave "Attack at midnight" "The purple elephant chortled")

⇒	 (\A \T \t \h \t \e \a \space \c \p \k \u \space \r

\a \p \t \l \space \e \m \space \i \e \d \l \n \e

\i \p \g \h \h \a \t \n)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://tinyurl.com/java-character
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=50

FORMS 51

That works, but you probably want the resulting sequence as a string

for transmission. It is tempting to use str to pack the characters back

into a string, but that doesn’t quite work:

(str (interleave "Attack at midnight" "The purple elephant chortled"))

⇒ "clojure.core$concat__3174$cat__3188$fn__3189@d4ea9f36"

The problem is that str works with a variable number of arguments, and

you are passing it a single argument that contains the argument list.

The solution is apply:

(apply f args* argseq)

apply takes a function f, some optional args, and a sequence of args

argseq. It then calls f, unrolling args and argseq into an argument list.

Use (apply str ...) to build a string from a sequence of characters:

(apply str (interleave	 "Attack at midnight"

"The purple elephant chortled"))

⇒ "ATthtea cpku raptl em iedlneipghhatn"

You can use (apply str ...) again to reveal the message:

(apply str (take-nth 2 "ATthtea cpku raptl em iedlneipghhatn"))

⇒ "Attack at midnight"

The call to (take-nth 2 ...) takes every second element of the sequence,

extracting the obfuscated message.

Booleans and Nil

Clojure’s rules for booleans are easy to understand:

•	 true is true, and false is false.

•	 In addition to false, nil also evaluates to false when used in a boole

an context.

•	 Other than false and nil, everything else evaluates to true in a boo

lean context.

Lisp programmers be warned: the empty list is not false in Clojure:

; (if part) (else part)

(if () "We are in Clojure!" "We are in Common Lisp!")

⇒ "We are in Clojure!"

C programmers be warned: zero is not false in Clojure, either:

; (if part)	 (else part)

(if 0 "Zero is true" "Zero is false")

⇒ "Zero is true"

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=51

FORMS 52

A predicate is a function that returns either true or false. In Clojure, it is

idiomatic to name predicates with a trailing question mark, for example

true?, false?, nil?, and zero?:

(true? expr)

(false? expr)

(nil? expr)

(zero? expr)

true? tests whether a value is actually true, not whether the value eval

uates to true in a boolean context. The only thing that is true? is true

itself:

(true? true)

⇒ true

(true? "foo")

⇒ false

nil? and false? work the same way. Only nil is nil?, and only false is false?.

zero? works with any numeric type, returning true if it is zero:

(zero? 0.0)

⇒ true

(zero? (/ 22 7))

⇒ false

There are many more predicates in Clojure. To review them, enter (find

doc #"\?$") at the REPL.

Maps, Keywords, and Structs

A Clojure map is a collection of key/value pairs. Maps have a literal

form surrounded by curly braces. You can use a map literal to create a

lookup table for the inventors of programming languages:

(def inventors {"Lisp" "McCarthy" "Clojure" "Hickey"})

⇒ #'user/inventors

The value "McCarthy" is associated with the key "Lisp", and the value

"Hickey" is associated with the key "Clojure".

If you find it easier to read, then you can use commas to delimit each

key/value pair. Clojure doesn’t care. It treats commas as whitespace:

(def inventors {"Lisp" "McCarthy", "Clojure" "Hickey"})

⇒ #'user/inventors

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=52

FORMS 53

Maps are functions. If you pass a key to a map, it will return that key’s

value, or it will return nil if the key is not found:

(inventors "Lisp")

⇒ "McCarthy"

(inventors "Foo")

⇒ nil

You can also use the more verbose get function:

(get a-map key not-found-val?)

get allows you to specify a different return value for missing keys:

(get inventors "Lisp" "I dunno!")

⇒ "McCarthy"

(get inventors "Foo" "I dunno!")

⇒ "I dunno!"

Because Clojure data structures are immutable and implement hash-

Code correctly, any Clojure data structure can be a key in a map. That

said, a very common key type is the Clojure keyword.

A keyword is like a symbol, except that keywords begin with a colon (:).

Keywords resolve to themselves:

:foo

⇒ :foo

This is different from symbols, which want to refer to something:

foo

⇒ java.lang.Exception: Unable to resolve symbol: foo in this context

The fact that keywords resolve to themselves makes keywords useful

as keys. You could redefine the inventors map using keywords as keys:

(def inventors {:Lisp "McCarthy" :Clojure "Hickey"})

⇒ #'user/inventors

Keywords are also functions. They take a map argument and look them

selves up in the map. Having switched to keyword keys for the inventors,

you can look up an inventor by calling the map or by calling a key:

(inventors :Clojure)

⇒ "Hickey"

(:Clojure inventors)

⇒ "Hickey"

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=53

FORMS 54

This flexibility in ordering comes in handy when calling higher-order

functions, such as the reference and agent APIs in Chapter 6, Concur

rency, on page 177.

If several maps have keys in common, you can document (and enforce)

this fact by creating a struct with defstruct:

(defstruct name & keys)

The keys are called the basis of the struct. Use defstruct to create a book

struct:

(defstruct book :title :author)

⇒ #'user/book

Then, you can instantiate a struct with struct:

(struct name & vals)

Once you instantiate a struct, it behaves almost like any other map:

(def b (struct book "Anathem" "Neal Stephenson"))

⇒ #'user/b

b

⇒ {:title "Anathem", :author "Neal Stephenson"}

(:title b)

⇒ "Anathem"

The basis keys of a structure set an expectation, not a requirement.

When you create a struct, you can omit values for some of the basis

keys and even add values for keys not in the basis using the struct-map

function:

(struct-map name & inits)

The inits are alternating keys and values. Try creating a book with addi

tional values that are not part of the structure basis:

(struct-map book :copyright 2008 :title "Anathem")

⇒ {:title "Anathem", :author nil, :copyright 2008}

Stylistically, the advantage of a struct is that it documents the keys you

expect. Internally, the struct stores its values in indexed slots, which

results in more efficient key storage.

So far, you have seen numeric literals, lists, vectors, symbols, strings,

characters, booleans, and nil. The remaining forms are covered later

in the book, as they are needed. For your reference, Figure 2.1, on

page 46, lists all the forms used in the book, a brief example of each,

and a pointer to more complete coverage.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=54

55 READER MACROS

2.2 Reader Macros

Clojure forms are read by the reader, which converts text into Clojure

data structures. In addition to the basic forms, the Clojure reader also

recognizes a set of reader macros.4 Reader macros are special reader

behaviors triggered by prefix macro characters.

The most familiar reader macro is the comment. The macro character

that triggers a comment is the semicolon (;), and the special reader

behavior is “ignore everything else up to the end of this line.”

Reader macros are abbreviations of longer list forms and are used to

reduce clutter. You have already seen one of these. The quote character

(’) prevents evaluation:

'(1 2)

⇒ (1 2)

’(1 2) is equivalent to the longer (quote (1 2)):

(quote (1 2))

⇒ (1 2)

The other reader macros are covered later in the book. In the following

table, you’ll find a quick syntax overview and references to where each

reader macro is covered.

Reader Macro Example(s) Primary Coverage

Anonymous function #(.toUpperCase %) Section 2.3, Functions, on the next page

Comment ; single-line comment Section 2.2, Reader Macros

Deref @form => (deref form) Chapter 6, Concurrency, on page 177

Meta ∧form => (meta form) Section 2.7, Metadata, on page 74

Metadata #∧metadata form Section 2.7, Metadata, on page 74

Quote ’form => (quote form) Section 2.1, Forms, on page 45

Regex pattern #"foo" => a java.util.regex.Pattern Section 4.4, Seq-ing Regular Expressions, on page 128

Syntax-quote ‘x Section 7.3, Making Macros Simpler, on page 218

Unquote ~ Section 7.3, Making Macros Simpler, on page 218

Unquote-splicing ~@ Section 7.3, Making Macros Simpler, on page 218

Var-quote #’x => (var x) Chapter 6, Concurrency, on page 177

Clojure does not allow programs to define new reader macros. The ratio

nale for this has been explained (and debated) on the Clojure mailing

list.5 If you come from a Lisp background, this may be frustrating. I

feel your pain. But this compromise in flexibility gives Clojure a more

stable core. Custom reader macros could make Clojure programs more

difficult to read and less interoperable.

4. Reader macros are totally different from macros, which are discussed in Chapter 7,

Macros, on page 211.

5. http://tinyurl.com/clojure-reader-macros

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://tinyurl.com/clojure-reader-macros
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=55

56 FUNCTIONS

2.3 Functions

In Clojure, a function call is simply a list whose first element resolves

to a function. For example, this call to str concatenates its arguments to

create a string:

(str "hello" " " "world")

⇒ "hello world"

Function names are typically hyphenated, as in clear-agent-errors. If a

function is a predicate, then by convention its name should end with a

question mark. As an example, the following predicates test the type of

their argument, and all end with a question mark:

(string? "hello")

⇒ true

(keyword? :hello)

⇒ true

(symbol? 'hello)

⇒ true

To define your own functions, use defn:

(defn name doc-string? attr-map? [params*] body)

The attr-map associates metadata with the function’s var and is covered

separately in Section 2.7, Metadata, on page 74. To demonstrate the

other components of a function definition, create a greeting function

that takes a name and returns a greeting preceded by “Hello”:

Download examples/exploring.clj

(defn greeting

"Returns a greeting of the form

[username]

(str "Hello, " username))

'Hello, username.'"

You can call greeting:

⇒

(greeting "world")

"Hello, world"

You can also consult the documentation for greeting:

user=> (doc greeting)

exploring/greeting

([username])

Returns a greeting of the form 'Hello, username.'

What does greeting do if the caller omits username?

Prepared exclusively for WG Custom Motorcycles
Report erratum

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=56

57 FUNCTIONS

(greeting)

⇒	 java.lang.IllegalArgumentException: \

Wrong number of args passed to: greeting (NO_SOURCE_FILE:0)

Clojure functions enforce their arity, that is, their expected number of

arguments. If you call a function with an incorrect number of argu

ments, Clojure will throw an IllegalArgumentException. If you want to

make greeting issue a generic greeting when the caller omits name, you

can use this alternate form of defn, which takes multiple argument lists

and method bodies:

(defn name doc-string? attr-map?

([params*] body)+)

Different arities of the same function can call one another, so you

can easily create a zero-argument greeting that delegates to the one-

argument greeting, passing in a default username:

Download examples/exploring.clj

(defn greeting

"Returns a greeting of the form 'Hello, username.'

Default username is 'world'."

([] (greeting "world"))

([username] (str "Hello, " username)))

You can verify that the new greeting works as expected:

(greeting)

⇒	 "Hello, world"

You can create a function with variable arity by including an ampersand

in the parameter list. Clojure will bind the name after the ampersand

to a sequence of all the remaining parameters.

The following function allows two people to go on a date with a variable

number of chaperones:

Download examples/exploring.clj

(defn date [person-1 person-2 & chaperones]

(println person-1 "and" person-2

"went out with" (count chaperones) "chaperones."))

(date "Romeo" "Juliet" "Friar Lawrence" "Nurse")

| Romeo and Juliet went out with 2 chaperones.

Variable arity is very useful in recursive definitions. See Chapter 5,

Functional Programming, on page 147 for examples.

Writing method implementations that differ by arity is useful. But if you

come from an object-oriented background, you will want polymorphism,

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=57

58 FUNCTIONS

that is, different implementations that are selected by type. Clojure can

do this and a whole lot more. See Chapter 8, Multimethods, on page 244

for details.

defn is intended for defining functions at the top level. If you want

to create a function from within another function, you should use an

anonymous function form instead.

Anonymous Functions

In addition to named functions with defn, you can also create anony

mous functions with fn. There are at least three reasons to create an

anonymous function:

•	 The function is so brief and self-explanatory that giving it a name

makes the code harder to read, not easier.

•	 The function is being used only from inside another function and

needs a local name, not a top-level binding.

•	 The function is created inside another function for the purpose of

closing over some data.

Filter functions are often brief and self-explanatory. For example, imag

ine that you want to create an index for a sequence of words, and you

do not care about words shorter than three characters. You can write

an indexable-word? function like this:

Download examples/exploring.clj

(defn indexable-word? [word]

(> (count word) 2))

Then, you can use indexable-word? to extract the indexable words from

a sentence:

(use '[clojure.contrib.str-utils :only (re-split)])

(filter indexable-word? (re-split #"\W+" "A fine day it is"))

-> ("fine" "day")

The call to re-split breaks the sentence into words, and then filter calls

indexable-word? once for each word, returning those words for which

indexable-word? returns true.

Anonymous functions let you do the same thing in a single line. The

simplest anonymous fn form is the following:

(fn [params*] body)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=58

59 FUNCTIONS

With this form, you can plug the implementation of indexable-word?

directly into the call to filter:

(filter (fn [w] (> (count w) 2)) (re-split #"\W+" "A fine day"))

⇒ ("fine" "day")

There is an even shorter syntax for anonymous functions, using implicit

parameter names. The parameters are named %1, %2, and so on. You

can also use % for the first parameter. This syntax looks like this:

(#body)

You can rewrite the call to filter with the shorter anonymous form:

(filter #(> (count %) 2) (re-split #"\W+" "A fine day it is"))

⇒ ("fine" "day")

A second motivation for anonymous functions is wanting a named func

tion, but only inside the scope of another function. Continuing with the

indexable-word? example, you could write this:

Download examples/exploring.clj

(defn indexable-words [text]

(let [indexable-word? (fn [w] (> (count w) 2))]

(filter indexable-word? (re-split #"\W+" text))))

The let binds the name indexable-word? to the same anonymous function

you wrote earlier, this time inside the (lexical) scope of indexable-words.

(let is covered in more detail under Section 2.4, Vars, Bindings, and

Namespaces, on the next page.)

You can verify that indexable-words works as expected:

(indexable-words "a fine day it is")

⇒ ("fine" "day")

The combination of let and an anonymous function says the follow

ing to readers of your code: “The function indexable-word? is interesting

enough to have a name but is relevant only inside indexable-words.”

A third reason to use anonymous functions is when you create a func

tion dynamically at runtime. Earlier, you implemented a simple greeting

function. Extending this idea, you can create a make-greeter function

that creates greeting functions. make-greeter will take a greeting-prefix

and return a new function that composes greetings from the greeting-

prefix and a name.

Download examples/exploring.clj

(defn make-greeter [greeting-prefix]

(fn [username] (str greeting-prefix ", " username)))

Prepared exclusively for WG Custom Motorcycles
Report erratum

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=59

60 VARS, BINDINGS, AND NAMESPACES

It makes no sense to name the fn, because it is creating a different

function each time make-greeter is called. However, you may want to

name the results of specific calls to make-greeter. You can use def to

name functions created by make-greeter:

(def hello-greeting (make-greeter "Hello"))

⇒ #'user/hello-greeting

(def aloha-greeting (make-greeter "Aloha"))

⇒ #'user/aloha-greeting

Now, you can call these functions, just like any other functions:

(hello-greeting "world")

⇒ "Hello, world"

(aloha-greeting "world")

⇒ "Aloha, world"

Moreover, there is no need to give each greeter a name. You can simply

create a greeter and place it in the first (function) slot of a form:

((make-greeter "Howdy") "pardner")

⇒ "Howdy, pardner"

As you can see, the different greeter functions remember the value of

greeting-prefix at the time they were created. More formally, the greeter

functions are closures over the value of greeting-prefix.

When to Use Anonymous Functions

Anonymous functions have a terse syntax that is not always appropri

ate. You may actually prefer to be explicit and create named functions

such as indexable-word?.

That is perfectly fine and will certainly be the right choice if indexable

word? needs to be called from more than one place.

Anonymous functions are an option, not a requirement. Use the anony

mous forms only when you find that they make your code more read

able. They take a little getting used to, so don’t be surprised if you

gradually use them more and more.

2.4 Vars, Bindings, and Namespaces

When you define an object with def or defn, that object is stored in a

Clojure var. For example, the following def creates a var named user/foo:

(def foo 10)

⇒ #'user/foo

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=60

61 VARS, BINDINGS, AND NAMESPACES

The symbol user/foo refers to a var that is bound to the value 10. If you

ask Clojure to evaluate the symbol foo, it will return the value of the

associated var:

foo

⇒ 10

The initial value of a var is called its root binding. Sometimes it is useful

to have thread-local bindings for a var; this is covered in Section 6.5,

Managing Per-Thread State with Vars, on page 192.

You can refer to a var directly. The var special form returns a var itself,

not the var’s value:

(var a-symbol)

You can use var to return the var bound to user/foo:

(var foo)

⇒ #'user/foo

You will almost never see the var form directly in Clojure code. Instead,

you will see the equivalent reader macro #’, which also returns the var

for a symbol:

#'foo

⇒ #'user/foo

Why would you want to refer to a var directly? Most of the time, you

won’t, and you can often simply ignore the distinction between symbols

and vars.

But keep in the back of your mind that vars have many abilities other

than just storing a value:

•	 The same var can be aliased into more than one namespace (Sec

tion 2.4, Namespaces, on page 64). This allows you to use conve

nient short names.

•	 Vars can have metadata (Section 2.7, Metadata, on page 74). Var

metadata includes documentation (Section 1.3, Finding Documen

tation, on page 39), type hints for optimization (Section 3.2, Adding

Type Hints, on page 92), and unit tests (Section 9.1, Test with :test,

on page 266).

•	 Vars can be dynamically rebound on a per-thread basis (Sec

tion 6.5, Managing Per-Thread State with Vars, on page 192).

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=61

62 VARS, BINDINGS, AND NAMESPACES

Bindings

Vars are bound to names, but there are other kinds of bindings as well.

For example, in a function call, argument values bind to parameter

names. In the following call, 10 binds to the name number inside the

triple function:

(defn triple [number] (* 3 number))

⇒ #'user/triple

(triple 10)

⇒ 30

A function’s parameter bindings have a lexical scope: they are visible

only inside the text of the function body. Functions are not the only

way to create a lexical binding. The special form let does nothing other

than create a set of lexical bindings:

(let [bindings*] exprs*)

The bindings are then in effect for exprs, and the value of the let is the

value of the last expression in exprs.

Imagine that you want coordinates for the four corners of a square,

given the bottom, left, and size. You can let the top and right coordinates,

based on the values given:

Download examples/exploring.clj

(defn square-corners [bottom left size]

(let [top (+ bottom size)

right (+ left size)]

[[bottom left] [top left] [top right] [bottom right]]))

The let binds top and right. This saves you the trouble of calculating

top and right more than once. (Both are needed twice to generate the

return value.) The let then returns its last form, which in this example

becomes the return value of square-corners.

Destructuring

In many programming languages, you bind a variable to an entire col

lection when you need to access only part of the collection.

Imagine that you are working with a database of book authors. You

track both first and last names, but some functions need to use only

the first name:

Download examples/exploring.clj

(defn greet-author-1 [author]

(println "Hello," (:first-name author)))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=62

63 VARS, BINDINGS, AND NAMESPACES

The greet-author-1 function works fine:

(greet-author-1 {:last-name "Vinge" :first-name "Vernor"})

| Hello, Vernor

Having to bind author is unsatisfying. You don’t need the author; all you

need is the first-name. Clojure solves this with destructuring. Any place

that you bind names, you can nest a vector or a map in the binding

to reach into a collection and bind only the part you want. Here is a

variant of greet-author that binds only the first name:

Download examples/exploring.clj

(defn greet-author-2 [{fname :first-name}]

(println "Hello," fname))

The binding form {fname :first-name} tells Clojure to bind fname to the

:first-name of the function argument. greet-author-2 behaves just like

greet-author-1:

(greet-author-2 {:last-name "Vinge" :first-name "Vernor"})

| Hello, Vernor

Just as you can use a map to destructure any associative collection,

you can use a vector to destructure any sequential collection. For exam

ple, you could bind only the first two coordinates in a three-dimensional

coordinate space:

(let [[x y] [1 2 3]]

[x y])

⇒ [1 2]

The expression [x y] destructures the vector [1 2 3], binding x to 1 and y

to 2. Since no symbol lines up with the final element 3, it is not bound

to anything.

Sometimes you want to skip elements at the start of a collection. Here’s

how you could bind only the z coordinate:

(let [[_ _ z] [1 2 3]]

z)

⇒ 3

The underscore (_) is a legal symbol and is used idiomatically to indicate

“I don’t care about this binding.” Binding proceeds from left to right, so

the _ is actually bound twice:

; *not* idiomatic!

(let [[_ _ z] [1 2 3]]

_)

⇒ 2

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=63

64 VARS, BINDINGS, AND NAMESPACES

It is also possible to simultaneously bind both a collection and elements

within the collection. Inside a destructuring expression, an :as clause

gives you a binding for the entire enclosing structure. For example,

you could capture the x and y coordinates individually, plus the entire

collection as coords, in order to report the total number of dimensions:

(let [[x y :as coords] [1 2 3 4 5 6]]

(str "x: " x ", y: " y ", total dimensions " (count coords)))

⇒ "x: 1, y: 2, total dimensions 6"

Try using destructuring to create an ellipsize function. ellipsize should

take a string and return the first three words followed by

Download examples/exploring.clj

(use '[clojure.contrib.str-utils :only (re-split str-join)])

(defn ellipsize [words]

(let [[w1 w2 w3] (re-split #"\s+" words)]

(str-join " " [w1 w2 w3 "..."])))

(ellipsize "The quick brown fox jumps over the lazy dog.")

⇒ "The quick brown ..."

re-split splits the string around whitespace, and then the destructuring

form [w1 w2 w3] grabs the first three words. The destructuring ignores

any extra items, which is exactly what we want. Finally, str-join reassem

bles the three words, adding the ellipsis at the end.

Destructuring has several other features not shown here and is a mini-

language in itself. The Snake game in Section 6.6, A Clojure Snake,

on page 196 makes heavy use of destructuring. For a complete list of

destructuring options, see the online documentation for let.6

Namespaces

Root bindings live in a namespace. You can see evidence of this when

you start the Clojure REPL and create a binding:

user=> (def foo 10)

⇒ #'user/foo

The user=> prompt tells you that you are currently working in the user

namespace.7 You should treat user as a scratch namespace for explora

tory development.

6. http://clojure.org/special_forms

7. Most of the REPL session listings in the book omit the REPL prompt for brevity. In this

section, the REPL prompt will be included whenever the current namespace is important.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://clojure.org/special_forms
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=64

65 VARS, BINDINGS, AND NAMESPACES

When Clojure resolves the name foo, it namespace-qualifies foo in the

current namespace user. You can verify this by calling resolve:

(resolve sym)

resolve returns the var or class that a symbol will resolve to in the cur

rent namespace. Use resolve to explicitly resolve the symbol foo:

(resolve 'foo)

⇒ #'user/foo

You can switch namespaces, creating a new one if needed, with in-ns:

(in-ns name)

Try creating a myapp namespace:

user=> (in-ns 'myapp)

⇒	 #<Namespace myapp>

myapp=>

Now you are in the myapp namespace, and anything you def or defn will

belong to myapp.

When you create a new namespace with in-ns, the java.lang package is

automatically available to you:

myapp=> String

⇒ java.lang.String

While you are learning Clojure, you should use the clojure.core names-

pace whenever you move to a new namespace, making Clojure’s core

functions available in the new namespace as well:

(clojure.core/use 'clojure.core)

⇒ nil

By default, class names outside java.lang must be fully qualified. You

cannot just say File:

myapp=> File/separator

⇒ java.lang.Exception: No such namespace: File

Instead, you must specify the fully qualified java.io.File. Note that your

file separator character may be different from that shown here:

myapp=> java.io.File/separator

⇒ "/"

If you do not want to use a fully qualified class name, you can map one

or more class names from a Java package into the current namespace

using import:

(import '(package Class+))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=65

66 VARS, BINDINGS, AND NAMESPACES

Once you import a class, you can use its short name:

(import '(java.io InputStream File))

⇒	 nil

myapp=> File/separator

⇒	 "/"

import is only for Java classes. If you want to use a Clojure var from

another namespace, you must use its fully qualified name or map the

name into the current namespace. For example, round lives in Mark

Engelberg’s clojure.contrib.math:

(require 'clojure.contrib.math)

(clojure.contrib.math/round 1.7)

⇒	 2

(round	 1.7)

⇒	 java.lang.Exception:

Unable to resolve symbol: round in this context

In order to map round into the current namespace, call use on round’s

namespace:

(use 'clojure.contrib.math)

⇒	 nil

The simple form of use shown earlier causes the current namespace

to refer to all public vars in clojure.contrib.math. This can be confusing,

because it does not make explicit which names are being referred to.

Be nice to future readers of your code, and pass the :only option to use,

listing only the vars you need:

(use '[clojure.contrib.math :only (round)])

⇒	 nil

Now you can call round without having to qualify its name:

(round	 1.2)

⇒	 2

If you make changes to library code in a file and want to make those

changes available to a running program, add the :reload option to use:

(use :reload '[clojure.contrib.math :only (round)])

⇒	 nil

I regularly :reload while working on code samples for this book. This

chapter’s examples are in the examples.exploring namespace. You can

reload the examples at any time:

(use :reload 'examples.exploring)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=66

67 FLOW CONTROL

If you want to also reload any namespaces that examples.exploring refers

to, you can pass :reload-all:

(use :reload-all 'examples.exploring)

It is idiomatic to import Java classes and use namespaces at the top of

a source file, using the ns macro:

(ns name & references)

The ns macro sets the current namespace (available as *ns*) to name,

creating the namespace if necessary. The references can include :import,

:require, and :use, which work like the similarly named functions to set

up the namespace mappings in a single form at the top of a source file.

For example, this call to ns appears at the top of the sample code for

this chapter:

Download examples/exploring.clj

(ns examples.exploring

(:use examples.utils clojure.contrib.str-utils)

(:import (java.io File)))

Clojure’s namespace functions can do quite a bit more than I have

shown here.

You can reflectively traverse namespaces and add or remove mappings

at any time. To find out more, issue this command at the REPL:

(find-doc "ns-")

Alternately, browse the documentation at http://clojure.org/namespaces.

2.5 Flow Control

Clojure has very few flow control forms. In this section, you will meet if,

do, and loop/recur. As it turns out, this is almost all you will ever need.

Branch with if

Clojure’s if evaluates its first argument. If the argument is logically true,

it returns the result of evaluating its second argument:

Download examples/exploring.clj

(defn is-small? [number]

(if (< number 100) "yes"))

(is-small? 50)

⇒ "yes"

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://clojure.org/namespaces
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=67

68 FLOW CONTROL

If the first argument to if is logically false, it returns nil:

(is-small? 50000)

⇒ nil

If you want to define a result for the “else” part of if, add it as a third

argument:

Download examples/exploring.clj

(defn is-small? [number]

(if (< number 100) "yes" "no"))

(is-small? 50000)

⇒ "no"

The when and when-not control flow macros are built on top of if and are

described in Section 7.2, when and when-not, on page 217.

Introduce Side Effects with do

Clojure’s if allows only one form for each branch. What if you want to

do more than one thing on a branch? For example, you might want to

log that a certain branch was chosen. do takes any number of forms,

evaluates them all, and returns the last.

You can use a do to print a logging statement from within an if:

Download examples/exploring.clj

(defn is-small? [number]

(if (< number 100)

"yes"

(do

(println "Saw a big number" number)

"no")))

(is-small? 200)

| Saw a big number 200

⇒ "no"

This is an example of a side effect. The println doesn’t contribute to the

return value of is-small? at all. Instead, it reaches out into the world

outside the function and actually does something.

Many programming languages mix pure functions and side effects in

completely ad hoc fashion. Not Clojure. In Clojure, side effects are

explicit and unusual. do is one way to say “side effects to follow.” Since

do ignores the return values of all its forms save the last, those forms

must have side effects to be of any use at all.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=68

69 FLOW CONTROL

Recur with loop/recur

The Swiss Army knife of flow control in Clojure is loop:

(loop [bindings *] exprs*)

The loop special form works like let, establishing bindings and then eval

uating exprs. The difference is that loop sets a recursion point, which can

then be targeted by the recur special form:

(recur exprs*)

recur binds new values for loop’s bindings and returns control to the top

of the loop. For example, the following loop/recur returns a countdown:

Download examples/exploring.clj

(loop [result [] x 5]

(if (zero? x)

result

(recur (conj result x) (dec x))))

⇒ [5 4 3 2 1]

The first time through, loop binds result to an empty vector and binds x

to 5. Since x is not zero, recur then rebinds the names x and result:

• result binds to the previous result conjoined with the previous x.

• x binds to the decrement of the previous x.

Control then returns to the top of the loop. Since x is again not zero, the

loop continues, accumulating the result and decrementing x. Eventually,

x reaches zero, and the if terminates the recurrence, returning result.

Instead of using a loop, you can use recur back to the top of a function.

This makes it simple to write a function whose entire body acts as an

implicit loop:

Download examples/exploring.clj

(defn countdown [result x]

(if (zero? x)

result

(recur (conj result x) (dec x))))

(countdown [] 5)

⇒ [5 4 3 2 1]

recur is a powerful building block. But you may not use it very often,

because many common recursions are provided by Clojure’s sequence

library.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=69

70 WHERE’S MY FOR LOOP?

For example, countdown could also be expressed as any of these:

(into [] (take 5 (iterate dec 5)))

⇒ [5 4 3 2 1]

(into [] (drop-last (reverse (range 6))))

⇒ [5 4 3 2 1]

(vec (reverse (rest (range 6))))

⇒ [5 4 3 2 1]

Do not expect these forms to make sense yet—just be aware that there

are often alternatives to using recur directly. The sequence library

functions used here are described in Section 4.2, Using the Sequence

Library, on page 117. Clojure will not perform automatic tail-call opti

mization (TCO). However, it will optimize calls to recur. Chapter 5, Func

tional Programming, on page 147 defines TCO and explores recursion

and TCO in detail.

At this point, you have seen quite a few language features but still no

variables. Some things really do vary, and Chapter 6, Concurrency, on

page 177 will show you how Clojure deals with changeable references.

But most variables in traditional languages are unnecessary and down

right dangerous. Let’s see how Clojure gets rid of them.

2.6 Where’s My for Loop?

Clojure has no for loop and no direct mutable variables.8 So, how do

you write all that code you are accustomed to writing with for loops?

Rather than create a hypothetical example, I decided to grab a piece

of open source Java code (sort of) randomly, find a method with some

for loops and variables, and port it to Clojure. I opened the Apache

Commons project, which is very widely used. I selected the StringUtils

class in Commons Lang, assuming that such a class would require

little domain knowledge to understand. I then browsed for a method

that had multiple for loops and local variables and found indexOfAny:

Download snippets/StringUtils.java

// From Apache Commons Lang, http://commons.apache.org/lang/

public static int indexOfAny(String str, char[] searchChars) {

if (isEmpty(str) || ArrayUtils.isEmpty(searchChars)) {

return -1;

}

8. Clojure provides indirect mutable references, but these must be explicitly called out

in your code. See Chapter 6, Concurrency, on page 177 for details.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/snippets/StringUtils.java
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=70
http://commons.apache.org/lang/

71 WHERE’S MY FOR LOOP?

for (int i = 0; i < str.length(); i++) {

char ch = str.charAt(i);

for (int j = 0; j < searchChars.length; j++) {

if (searchChars[j] == ch) {

return i;

}

}

}

return -1;

}

indexOfAny walks str and reports the index of the first char that matches

any char in searchChars, returning -1 if no match is found. Here are

some example results from the documentation for indexOfAny:

StringUtils.indexOfAny(null, *) = -1

StringUtils.indexOfAny("", *) = -1

StringUtils.indexOfAny(*, null) = -1

StringUtils.indexOfAny(*, []) = -1

StringUtils.indexOfAny("zzabyycdxx",['z','a']) = 0

StringUtils.indexOfAny("zzabyycdxx",['b','y']) = 3

StringUtils.indexOfAny("aba", ['z']) = -1

There are two ifs, two fors, three possible points of return, and three

mutable local variables in indexOfAny, and the method is fourteen lines

long, as counted by David A. Wheeler’s SLOCCount.9

Now let’s build a Clojure index-of-any, step by step. If we just wanted

to find the matches, we could use a Clojure filter. But we want to find

the index of a match. So, we create indexed,10 a function that takes a

collection and returns an indexed collection:

Download examples/exploring.clj

(defn indexed [coll] (map vector (iterate inc 0) coll))

indexed returns a sequence of pairs of the form [idx elt]. The expression

(iterate inc 0) produces the indexes, and the coll argument provides the

elements. Try indexing a string:

(indexed "abcde")

⇒ ([0 \a] [1 \b] [2 \c] [3 \d] [4 \e])

Next, we want to find the indices of all the characters in the string that

match the search set.

9. http://www.dwheeler.com/sloccount/

10. The indexed function already exists as part of clojure-contrib, but I am reimplementing

it here for fairness of comparison.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://www.dwheeler.com/sloccount/
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=71

72 WHERE’S MY FOR LOOP?

Create an index-filter function that is similar to Clojure’s filter but that

returns the indices instead of the matches themselves:

Download examples/exploring.clj

(defn index-filter [pred coll]

(when pred

(for [[idx elt] (indexed coll) :when (pred elt)] idx)))

Clojure’s for is not a loop but a sequence comprehension (see Sec

tion 4.2, Transforming Sequences, on page 122). The index/element

pairs of (indexed coll) are bound to the names idx and elt but only when

(pred elt) is true. Finally, the comprehension yields the value of idx for

each matching pair.

Clojure sets are functions that test membership in the set. So, you can

pass a set of characters and a string to index-filter and get back the

indices of all characters in the string that belong to the set. Try it with

a few different strings and character sets:

(index-filter #{\a \b} "abcdbbb")

⇒ (0 1 4 5 6)

(index-filter #{\a \b} "xyz")

⇒ nil

At this point, we have accomplished more than the stated objective.

index-filter returns the indices of all the matches, and we need only the

first index. So, index-of-any simply takes the first result from index-filter:

Download examples/exploring.clj

(defn index-of-any [pred coll]

(first (index-filter pred coll)))

Test that index-of-any works correctly with a few different inputs:

(index-of-any #{\z \a} "zzabyycdxx")

⇒ 0

(index-of-any #{\b \y} "zzabyycdxx")

⇒ 3

The Clojure version is simpler than the imperative version by every

metric (see Figure 2.2, on the following page). What accounts for the

difference?

•	 The imperative indexOfAny must deal with several special cases:

null or empty strings, a null or empty set of search characters,

and the absence of a match. These special cases add branches

and exits to the method. With a functional approach, most of these

kinds of special cases just work without any explicit code.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=72

73 WHERE’S MY FOR LOOP?

Metric LOC Branches Exits/Method Variables

Imperative Version 14 4 3 3

Functional Version 6 1 1 0

Figure 2.2: Relative complexity of imperative and functional indexOfAny

•	 The imperative indexOfAny introduces local variables to traverse

collections (both the string and the character set). By using

higher-order functions such as map and sequence comprehen

sions such as for, the functional index-of-any avoids all need for

variables.

Unnecessary complexity tends to snowball. For example, the special

case branches in the imperative indexOfAny use the magic number

-1 to indicate a nonmatch. Should the magic number be a symbolic

constant? Whatever you think the right answer is, the question itself

disappears in the functional version. While shorter and simpler, the

functional index-of-any is also vastly more general:

•	 indexOfAny searches a string, while index-of-any can search any

sequence.

•	 indexOfAny matches against a set of characters, while index-of-any

can match against any predicate.

•	 indexOfAny returns the first match, while index-filter returns all the

matches and can be further composed with other filters.

As an example of how much more general the functional index-of-any is,

you could use code we just wrote to find the third occurrence of “heads”

in a series of coin flips:

(nth (index-filter #{:h} [:t :t :h :t :h :t :t :t :h :h])

2)

⇒ 8

So, it turns out that writing index-of-any in a functional style, without

loops or variables, is simpler, less error prone, and more general than

the imperative indexOfAny.11 On larger units of code, these advantages

become even more telling.

11. It is worth mentioning that you could write a functional indexForAny in plain Java,

although it would not be idiomatic. It may become more idiomatic when closures are

added to the language. See http://functionaljava.org/ for more information.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://functionaljava.org/
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=73

74 METADATA

2.7 Metadata

The Wikipedia entry on metadata12 begins by saying that metadata is

“data about data.” That is true but not usably specific. In Clojure, meta

data is data that is orthogonal to the logical value of an object. For exam

ple, a person’s first and last names are plain old data. The fact that a

person object can be serialized to XML has nothing to do with the per

son and is metadata. Likewise, the fact that a person object is dirty and

needs to be flushed to the database is metadata.

You can add metadata to a collection or a symbol using the with-meta

function:

(with-meta object metadata)

Create a simple data structure, then use with-meta to create another

object with the same data but its own metadata:

(def stu {:name "Stu" :email "stu@thinkrelevance.com"})

(def serializable-stu (with-meta stu {:serializable true}))

Metadata makes no difference for operations that depend on an object’s

value, so stu and serializable-stu are equal:

(= stu serializable-stu)

⇒ true

The = tests for value equality, like Java’s equals. To test reference equal

ity, use identical?:

(identical? obj1 obj2)

You can prove that stu and serializable-stu are different objects by calling

identical?:

(identical? stu serializable-stu)

⇒ false

identical? is equivalent to == in Java.

You can access metadata with the meta macro, verifying that serializable

stu has metadata and stu does not:

(meta stu)

⇒ nil

(meta serializable-stu)

⇒ {:serializable true}

12. http://en.wikipedia.org/wiki/Metadata

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://en.wikipedia.org/wiki/Metadata
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=74

75 METADATA

For convenience, you do not even have to spell out the meta function.

You can use the reader macro ∧ instead:

^stu

⇒ nil

^serializable-stu

⇒ {:serializable true}

When you create a new object based on an existing object, the existing

object’s metadata flows to the new object. For example, you could add

some more information to serializable-stu. The assoc function returns a

new map with additional key/value pairs added:

(assoc map k v & more-kvs)

Use assoc to create a new collection based on serializable-stu, but with a

:state value added:

(def stu-with-address (assoc serializable-stu :state "NC"))

⇒ {:name "Stu", :email "stu@thinkrelevance.com", :state "NC"}

stu-with-address has the new key/value pair, and it also takes on the

metadata from serializable-stu:

^stu-with-address

⇒ {:serializable true}

In addition to adding metadata to your own data structures, you can

also pass metadata to the Clojure compiler using the reader metadata

macro.

Reader Metadata

The Clojure language itself uses metadata in several places. For exam

ple, vars have a metadata map containing documentation, type infor

mation, and source information. Here is the metadata for the str var:

(meta #'str)

⇒	 {:ns #<Namespace clojure.core>,

:name str,

:file "core.clj",

:line 313,

:arglists ([] [x] [x & ys]),

:tag java.lang.String,

:doc "With no args, ... etc."}

Some common metadata keys and their uses are shown in Figure 2.3,

on page 77.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=75

76 METADATA

Much of the metadata on a var is added automatically by the Clojure

compiler. To add your own key/value pairs to a var, use the metadata

reader macro:

#^metadata form

For example, you could create a simple shout function that upcases a

string and then document that shout both expects and returns a string,

using the :tag key:

; see also shorter form below

(defn #^{:tag String} shout [#^{:tag String} s] (.toUpperCase s))

⇒	 #'user/shout

You can inspect shout’s metadata to see that Clojure added the :tag:

^#'shout

{:ns #<Namespace user>,

:name shout,

:file "NO_SOURCE_FILE",

:line 57,

:arglists ([s]),

:tag java.lang.String}

You provided the :tag, and Clojure provided the other keys. The :file

value NO_SOURCE_FILE indicates that the code was entered at the REPL.

You can also pass a nonstring to shout and see that Clojure enforces the

:tag by attempting to cast the argument to a string:

(shout	 1)

⇒	 java.lang.ClassCastException: \

java.lang.Integer cannot be cast to java.lang.String

Because :tag metadata is so common, you can also use the short-form

#∧Classname, which expands to #∧{:tag Classname}. Using the shorter

form, you can rewrite shout as follows:

(defn #^String shout [#^String s] (.toUpperCase s))

⇒	 #'user/shout

If you find the metadata disruptive when you are reading the definition

of a function, you can place the metadata last. Use a variant of defn that

wraps one or more body forms in parentheses, followed by a metadata

map:

(defn shout

([s] (.toUpperCase s))

{:tag String})

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=76

77 WRAPPING UP

Metadata Key Used For

:arglists Parameter info used by doc

:doc Documentation used by doc

:file Source file

:line Source line number

:macro True for macros

:name Local name

:ns Namespace

:tag Expected argument or return type

Figure 2.3: Common metadata keys

It is important to note that the metadata reader macro is not the same

as with-meta. The metadata reader macro adds metadata for the com

piler, and with-meta adds metadata for your own data:

(def #^{:testdata true} foo (with-meta [1 2 3] {:order :ascending}))

⇒ #'user/foo

When Clojure reads the previous form, the compiler adds :testdata to

the metadata for the var foo:

(meta #'foo)

{:ns #<Namespace user>, :name foo, :file "NO_SOURCE_FILE",

:line 6, :testdata true}

The with-meta adds :order to the value [1 2 3], which is then bound to foo:

(meta foo)

⇒ {:order :ascending}

As a general rule, use the metadata reader macro to add metadata to

vars and parameters. Use with-meta to add metadata to data.13

2.8 Wrapping Up

This has been a long chapter. But think how much ground you have

covered: you can instantiate basic literal types, define and call func

tions, manage namespaces, and read and write metadata. You can write

purely functional code, and yet you can easily introduce side effects

13. As with any good rule, there are exceptions. Inside a macro definition you may need to

use with-meta to add metadata to vars. See Section 7.5, Making a Lancet DSL, on page 233

for an example.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=77

78 WRAPPING UP

when you need to do so. You have also met Lisp concepts including

reader macros, special forms, and destructuring.

The material here would take hundreds of pages to cover in most other

languages. Is the Clojure way really that much simpler? Yes, in part.

Half the credit for this chapter belongs to Clojure. Clojure’s elegant

design and abstraction choices make the language much easier to learn

than most.

That said, the language may not seem so easy to learn right now. That’s

because we are taking advantage of Clojure’s power to move much

faster than most programming language books.

So, the other half of the credit for this chapter belongs to you, the

reader. Clojure will give back what you put in, and then some. Take the

time you need to feel comfortable with the chapter’s examples and with

using the REPL.

In the next chapter, we will see how Clojure interoperates seamlessly

with Java libraries.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=78

Chapter 3

Working with Java
Clojure’s Java support is both powerful and lean. It’s powerful, in that

it brings the expressiveness of Lisp syntax, plus some syntactic sugar

tailored to Java. It’s lean, in that it can get right to the metal. Clojure

code compiles to bytecode and does not have to go through any special

translation layer on the way to Java.

Clojure embraces Java and its libraries. Idiomatic Clojure code calls

Java libraries directly and does not try to wrap everything under the

sun to look like Lisp. This surprises many new Clojure developers but

is very pragmatic. Where Java isn’t broken, Clojure doesn’t fix it.

In this chapter, you will see how Clojure access to Java is convenient,

elegant, and fast:

•	 Calling Java is simple and direct. Clojure provides syntax exten

sions for accessing anything you could reach from Java code:

classes, instances, constructors, methods, and fields. Although

you will typically call Java code directly, you can also wrap Java

APIs and use them in a more functional style.

•	 Clojure is fast, unlike many other dynamic languages on the JVM.

You can use custom support for primitives and arrays, plus type

hints, to cause Clojure’s compiler to generate the same code that

a Java compiler would generate.

•	 Java code can call Clojure code, too. Clojure can generate Java

classes on the fly. On a one-off basis, you can use proxy, or you

can generate and save classes with gen-and-save-class.

Prepared exclusively for WG Custom Motorcycles

80 CALLING JAVA

•	 Clojure’s exception handling is easy to use. Better yet, explicit

exception handling is rarely necessary. Clojure’s exception prim

itives are the same as Java’s. However, Clojure does not require

you to deal with checked exceptions and makes it easy to clean up

resources using the with-open idiom.

At the end of the chapter, you will use Clojure’s Java invocation features

to integrate Lancet with Ant projects and tasks.

3.1 Calling Java

Clojure provides simple, direct syntax for calling Java code: creating

objects, invoking methods, and accessing static methods and fields. In

addition, Clojure provides syntactic sugar that makes calling Java from

Clojure more concise than calling Java from Java!

Not all types in Java are created equal: the primitives and arrays work

differently. Where Java has special cases, Clojure gives you direct ac

cess to these as well. Finally, Clojure provides a set of convenience

functions for common tasks that would be unwieldy in Java.

Accessing Constructors, Methods, and Fields

The first step in many Java interop scenarios is creating a Java object.

Clojure provides the new special form for this purpose:

(new classname)

Try creating a new Random:

(new java.util.Random)

⇒ java.util.Random@4f1ada

The REPL simply prints out the new Random instance by calling its

toString() method. To use a Random, you will need to save it away some

where. For now, simply use def to save the Random into a Clojure Var:

(def rnd (new java.util.Random))

⇒ #'user/rnd

Now you can call methods on rnd using Clojure’s dot (.) special form:

(. class-or-instance member-symbol & args)

(. class-or-instance (member-symbol & args))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=80

81 CALLING JAVA

The . can call methods. For example, the following code calls the no-

argument version of nextInt():

(. rnd nextInt)

⇒ -791474443

Random also has a nextInt() that takes an argument. You can call that

version by simply adding the argument to the list:

(. rnd nextInt 10)

⇒ 8

In the previous call, the . form is being used to access an instance

method. But . works with all kinds of class members: fields as well as

methods, and statics as well as instances. Here you can see the . used

to get the value of pi:

(. Math	 PI)

⇒ 3.141592653589793

Notice that Math is not fully qualified. It doesn’t have to be, because

Clojure imports java.lang automatically. To avoid typing java.util.Random

everywhere, you could explicitly import it:

(import [& import-lists])

; import-list => (package-symbol & class-name-symbols)

import takes a variable number of lists, with the first part of each list

being a package name and the rest being names to import from that

package. The following import allows unqualified access to Random,

Locale, and MessageFormat:

(import	 '(java.util Random Locale)

'(java.text MessageFormat))

⇒ nil

Random

⇒ java.util.Random

Locale

⇒ java.util.Locale

MessageFormat

⇒ java.text.MessageFormat

At this point, you have almost everything you need to call Java from

Clojure. You can do the following:

• Import class names

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=81

82 CALLING JAVA

• Create instances

• Access fields

• Invoke methods

However, there isn’t anything particularly exciting about the syntax. It

is just “Java with different parentheses.” In the next section, you will

see how Clojure provides syntactic sugar to ease Java interop.

Syntactic Sugar

Most of the Java forms shown in the previous section have a shorter

form. Instead of new, you can use the Classname. form. (Note the dot

after Classname.) The following are equivalent:

(new Random)

(Random.)

For static fields, the short form is Classname/membername. The follow

ing are equivalent:

(. Math PI)

Math/PI

For static methods, you can use (Classname/membername):

(System/currentTimeMillis)

⇒ 1226260030788

Another short form is .methodOrFieldName, and it comes first in the

form. The following calls are equivalent:

(. rnd nextInt)

(.nextInt rnd)

The Java APIs often introduce several layers of indirection between you

and where you want to be. For example, to find out the URL for the

source code of a particular object, you need to chain through the fol

lowing objects: the class, the protection domain, the code source, and

finally the location. The prefix-dot notation gets ugly fast:

(.getLocation

(.getCodeSource (.getProtectionDomain (.getClass '(1 2)))))

⇒ #<URL file:/Users/stuart/repos/clojure/clojure.jar>

Clojure’s .. macro cleans this up:

(.. class-or-instance form & forms)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=82
file:/Users/stuart/repos/clojure/clojure.jar>

83 CALLING JAVA

The .. chains together multiple member accesses by making each result

the this object for the next member access in the chain. Looking up an

object’s code URL becomes the following:

(.. '(1 2) getClass getProtectionDomain getCodeSource getLocation)

⇒ #<URL file:/Users/stuart/repos/clojure/clojure.jar>

The .. reads left to right, like Java, not inside out, like Lisp. For longer

expressions, it is shorter than the pure-Java equivalent in both char

acters and number of parentheses.

The .. macro is great if the result of each operation is an input to the

next. Sometimes you don’t care about the results of method calls and

simply want to make several calls on the same object. The doto macro

makes it easy to make several calls on the same object:

(doto class-or-inst & member-access-forms)

As the “do” in doto suggests, you can use doto to cause side effects in

the mutable Java world. For example, use doto to set multiple system

properties:

(doto (System/getProperties)

(.setProperty "name" "Stuart")

(.setProperty "favoriteColor" "blue"))

Clojure’s syntactic sugar makes code that calls Java shorter and easier

to read. In idiomatic Clojure, prefer the sugared versions shown here:

Java Clojure Sugared

new Widget("red") (new Widget "red") (Widget. "red")

Math.PI (. Math PI) Math/PI

System.currentTimeMillis() (. System currentTimeMillis) (System/currentTimeMillis)

rnd.nextInt() (. rnd nextInt) (.nextInt rnd)

person.getAddress().getZipCode() (. (. person getAddress) getZipCode) (.. person getAddress getZipCode)

Using Java Collections

Clojure’s collections supplant the Java collections for most purposes.

Clojure’s collections are concurrency-safe, have good performance

characteristics, and implement the appropriate Java collection inter

faces. So, you should generally prefer Clojure’s own collections when

you are working in Clojure and even pass them back into Java when

convenient.

If you do choose to use the Java collections, nothing in Clojure will

stop you. From Clojure’s perspective, the Java collections are classes

like any other, and all the various Java interop forms will work. But the

Java collections are designed for lock-based concurrency. They will not

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=83
file:/Users/stuart/repos/clojure/clojure.jar>

84 CALLING JAVA

provide the concurrency guarantees that Clojure collections do and will

not work well with Clojure’s software transactional memory.

One place where you will need to deal with Java collections is the spe

cial case of Java arrays. In Java, arrays have their own syntax and

their own bytecode instructions. Java arrays do not implement any

Java interface. Clojure collections cannot masquerade as arrays. (Java

collections can’t either!) The Java platform makes arrays a special case

in every way, so Clojure does too.

Clojure provides make-array to create Java arrays:

(make-array class length)

(make-array class dim & more-dims)

make-array takes a class and a variable number of array dimensions.

For a one-dimensional array of strings, you might say this:

(make-array String 5)

⇒ #<String[] [Ljava.lang.String;@45a270b2>

The odd output is courtesy of Java’s implementation of toString() for

arrays: [Ljava.lang.String is the JVM specification’s encoding for “one

dimensional array of strings.” That’s not very useful at the REPL, so

you can use Clojure’s seq to wrap any Java array as a Clojure sequence

so that the REPL can print the individual array entries:

(seq (make-array String 5))

⇒ (nil nil nil nil nil)

Clojure also includes a family of functions with names such as int-array

for creating arrays of Java primitives. You can issue the following com

mand at the REPL to review the documentation for these and other

array functions:

(find-doc "-array")

Clojure provides a set of low-level operations on Java arrays, including

aset, aget, and alength:

(aset java-array index value)

(aset java-array index-dim1 index-dim2 ... value)

(aget java-array index)

(aget java-array index-dim1 index-dim2 ...)

(alength java-array)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=84

85 CALLING JAVA

Use make-array to create an array, and then experiment with using aset,

aget, and alength to work with the array:

(defn painstakingly-create-array []

(let [arr (make-array String 5)]

(aset arr 0 "Painstaking")

(aset arr 1 "to")

(aset arr 2 "fill")

(aset arr 3 "in")

(aset arr 4 "arrays")

arr))

(aget (painstakingly-create-array) 0)

⇒ "Painstaking"

(alength (painstakingly-create-array))

⇒ 5

Most of the time, you will find it simpler to use higher-level functions

such as to-array, which creates an array directly from any collection:

(to-array sequence)

to-array always creates an Object array:

(to-array ["Easier" "array" "creation"])

⇒ #<Object[] [Ljava.lang.Object;@1639f9e3>

to-array is also useful for calling Java methods that take a variable argu

ment list, such as String/format:

; example. prefer clojure.core/format

(String/format "Training Week: %s Mileage: %d"

(to-array [2 26]))

⇒ "Training Week: 2 Mileage: 26"

In fact, String/format is used so frequently that it has a Clojure wrapper,

format, which is described in Section 3.1, Convenience Functions, on the

next page. to-array’s cousin into-array can create an array with a more

specific type than Object.

(into-array type? seq)

You can pass an explicit type as an optional first argument to into-array:

(into-array String ["Easier", "array", "creation"])

⇒ #<String[] [Ljava.lang.String;@391ecf28>

If you omit the type argument, into-array will guess the type based on

the first item in the sequence:

(into-array ["Easier" "array" "creation"])

⇒ #<String[] [Ljava.lang.String;@76bfd849>

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=85

86 CALLING JAVA

As you can see, the array contains Strings, not Objects.

If you want to transform every element of a Java array without convert

ing to a Clojure sequence, you can use amap:

(amap a idx ret expr)

amap will create a clone of the array a, binding that clone to the name

you specify in ret. It will then execute expr once for each element in a,

with idx bound to the index of the element. Finally, amap returns the

cloned array.

You could use amap to uppercase every string in an array of strings:

(def strings (into-array ["some" "strings" "here"]))

⇒ #'user/strings

(seq (amap strings idx _ (.toUpperCase (aget strings idx))))

⇒ ("SOME" "STRINGS" "HERE")

The ret parameter is set to _ to indicate that it is not needed in the map

expression, and the wrapping seq is simply for convenience in printing

the result at the REPL.

Similar to amap is areduce:

(areduce a idx ret init expr)

Where amap produces a new array, areduce produces anything you

want. The ret is initially set to init and later set to the return value of

each subsequent invocation of expr. areduce is normally used to write

functions that “tally up” a collection in some way. For example, the

following call finds the length of the longest string in the strings array:

(areduce strings idx ret 0 (max ret (.length (aget strings idx))))

⇒ 7

amap and areduce are special-purpose macros for interoperating with

Java arrays. Most of the time, you should prefer the more general (and

more convenient) sequence functions map and reduce, covered in Sec

tion 4.2, Transforming Sequences, on page 122.

Convenience Functions

Clojure provides several convenience functions for working with Java

code. For example, consider the mismatch between Clojure functions

and Java methods. In Clojure, you often pass functions as arguments

to other functions. This will not work with Java methods.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=86

87 CALLING JAVA

Try passing .toUpperCase to map in order to upcase a vector of strings:

(map .toUpperCase ["a" "short" "message"])

⇒	 java.lang.Exception:\

Unable to resolve symbol: .toUpperCase in this context

The problem is that toUpperCase() is a Java method, not a Clojure func

tion. This member-as-function idiom is a common one, so Clojure pro

vides the “member function” memfn macro to wrap methods for you:

(map (memfn toUpperCase) ["a" "short" "message"])

⇒	 ("A" "SHORT" "MESSAGE")

As a preferred alternative to memfn,1 you can use an anonymous func

tion to wrap a method call:

(map #(.toUpperCase %) ["a" "short" "message"])

⇒	 ("A" "SHORT" "MESSAGE")

Another common idiom is checking whether an object is an instance of

a certain class. Clojure provides the instance? function for this purpose:

(instance? Integer 10)

⇒	 true

(instance? Comparable 10)

⇒	 true

(instance? String 10)

⇒	 false

Java provides a string format method. Because the message signature

for Java’s format is slightly inconvenient to call in Clojure and because

string formatting is so common, Clojure provides a wrapper:

(format fmt-string & args)

You use format like this:

(format "%s ran %d miles today" "Stu" 8)

⇒	 "Stu ran 8 miles today"

The %s and %d format specifiers shown earlier barely scratch the sur

face. Complete documentation of the format specifiers is located in the

Javadoc for the Formatter class.2

1. memfn predates anonymous function support. Most Clojure programmers now prefer

anonymous functions.
2. http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=87

88 OPTIMIZING FOR PERFORMANCE

If you need to read data from existing JavaBeans, you can convert them

to Clojure maps for convenience. Use Clojure’s bean function to wrap a

JavaBean in an immutable Clojure map:

(bean java-bean)

For example, the following code will return the properties of your JVM’s

default MessageDigest instance for the Secure Hash Algorithm (SHA):

(import	 '(java.security MessageDigest))

⇒ nil

(bean (MessageDigest/getInstance "SHA"))

⇒	 {:provider #<Sun SUN version 1.6>,

:digestLength 20, :algorithm "SHA",

:class java.security.MessageDigest$Delegate}

Once you have converted a JavaBean into a Clojure map, you can use

any of Clojure’s map functions. For example, you can use a keyword as

a function to extract a particular field:

(:digestLength (bean (MessageDigest/getInstance "SHA")))

⇒ 20

Beans have never been easier to use.

3.2 Optimizing for Performance

In Clojure, it is idiomatic to call Java using the techniques described

in Section 3.1, Calling Java, on page 80. The resulting code will be fast

enough for 90 percent of scenarios. When you need to, though, you can

make localized changes to boost performance. These changes will not

change how outside callers invoke your code, so you are free to make

your code work and then make it fast.

Using Primitives for Performance

In the preceding sections, function parameters carry no type informa

tion. Clojure simply does the right thing. Depending on your perspec

tive, this is either a strength or a weakness. It’s a strength, because

your code is clean and simple and can take advantage of duck typ

ing. But it’s also a weakness, because a reader of the code cannot be

certain of data types and because doing the right thing carries some

performance overhead.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=88

89 OPTIMIZING FOR PERFORMANCE

Why Duck Typing?

With duck typing, an object’s type is the sum of what it can
do (methods), rather than the sum of what it is (the inheritance
hierarchy). In other words, it is more important to quack() and
fly() than it is to insist that you implement the Duck interface.

Duck typing has two major benefits:

• Duck-typed code is easier to test. Since the rules of “what
can go here” are relaxed, it is easier to isolate code under
test from irrelevant dependencies.

• Duck-typed code is easier to reuse. Reuse is more granu
lar, at the method level instead of the interface level. So, it
is more likely that new objects can be plugged in directly,
without refactoring or wrapping.

If you think about it, the “easier to test” argument is just a spe
cial case of the “easier to reuse” argument. Using code inside
a test harness is itself a kind of reuse.

Idiomatic Clojure takes advantage of duck typing, but it is not
mandatory. You can add type information for performance or
documentation purposes, as discussed in Section 3.2, Adding
Type Hints, on page 92.

Consider a function that calculates the sum of the numbers from 1 to n:

Download examples/interop.clj

; performance demo only, don't write code like this

(defn sum-to [n]

(loop [i 1 sum 0]

(if (<= i n)

(recur (inc i) (+ i sum))

sum)))

You can verify that this function works with a small input value:

(sum-to 10)

⇒ 55

Let’s see how sum-to performs. To time an operation, you can use the

time function.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=89

90 OPTIMIZING FOR PERFORMANCE

When benchmarking, you’ll tend to want to take several measurements

so that you can eliminate startup overhead plus any outliers; therefore,

you can call time from inside a dotimes macro:

(dotimes bindings & body)

; bindings => name n

dotimes will execute its body repeatedly, with name bound to integers

from zero to n-1. Using dotimes, you can collect five timings of sum-to as

follows:

(dotimes [_ 5] (time (sum-to 10000)))

"Elapsed time: 0.778 msecs"

"Elapsed time: 0.559 msecs"

"Elapsed time: 0.633 msecs"

"Elapsed time: 0.548 msecs"

"Elapsed time: 0.647 msecs"

To speed things up, you can ask Clojure to treat n, i, and sum as ints:

Download examples/interop.clj

(defn integer-sum-to [n]

(let [n (int n)]

(loop [i (int 1) sum (int 0)]

(if (<= i n)

(recur (inc i) (+ i sum))

sum))))

The integer-sum-to is indeed faster:

(dotimes [_ 5] (time (integer-sum-to 10000)))

"Elapsed time: 0.207 msecs"

"Elapsed time: 0.073 msecs"

"Elapsed time: 0.072 msecs"

"Elapsed time: 0.071 msecs"

"Elapsed time: 0.071 msecs"

Clojure’s convenient math operators (+, -, and so on) make sure their

results do not overflow. Maybe you can get an even faster function by

using the unchecked version of +, unchecked-add:

Download examples/interop.clj

(defn unchecked-sum-to [n]

(let [n (int n)]

(loop [i (int 1) sum (int 0)]

(if (<= i n)

(recur (inc i) (unchecked-add i sum))

sum))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=90

91 OPTIMIZING FOR PERFORMANCE

The unchecked-sum-to is faster still:

(dotimes [_ 5] (time (unchecked-sum-to 10000)))

"Elapsed time: 0.081 msecs"

"Elapsed time: 0.036 msecs"

"Elapsed time: 0.035 msecs"

"Elapsed time: 0.034 msecs"

"Elapsed time: 0.035 msecs"

Prefer accuracy first, and then optimize for speed only where necessary.

sum-to is accurate but slow:

(sum-to 100000)

⇒ 5000050000

integer-sum-to will throw an exception on overflow. This is bad, but the

problem is easily detected:

(integer-sum-to 100000)

⇒ java.lang.ArithmeticException: integer overflow

unchecked-sum-to will fail silently on overflow. In a program setting, it

can quietly but catastrophically corrupt data:

(unchecked-sum-to 100000)

⇒ 705082704 ; WRONG!!

Given the competing concerns of correctness and performance, you

should normally prefer simple, undecorated code such as the original

sum-to. If profiling identifies a bottleneck, you can force Clojure to use

a primitive type in just the places that need it.

The sum-to example is deliberately simple in order to demonstrate the

various options for integer math in Clojure. In a real Clojure program, it

would be more expressive to implement sum-to using reduce. Summing

a sequence is the same as summing the first two items, adding that

result to the next item, and so on. That is exactly the loop that (reduce

+ ...) provides. With reduce, you can rewrite sum-to as a one-liner:

(defn better-sum-to [n]

(reduce + (range 1 (inc n))))

The example also demonstrates an even more general point: pick the

right algorithm to begin with. The sum of numbers from 1 to n can be

calculated directly as follows:

(defn best-sum-to [n]

(/ (* n (inc n)) 2))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=91

92 OPTIMIZING FOR PERFORMANCE

Even without performance hints, this is faster than implementations

based on repeated addition:

(dotimes [_ 5] (time (best-sum-to 10000)))

"Elapsed time: 0.037 msecs"

"Elapsed time: 0.018 msecs"

"Elapsed time: 0.0050 msecs"

"Elapsed time: 0.0040 msecs"

"Elapsed time: 0.0050 msecs"

Performance is a tricky subject. Don’t write ugly code in search of

speed. Start by choosing appropriate algorithms and getting your code

to simply work correctly. If you have performance issues, profile to iden

tify the problems. Then, introduce only as much complexity as you need

to solve those problems.

Adding Type Hints

Clojure supports adding type hints to function parameters, let bind

ings, variable names, and expressions. These type hints serve three

purposes:

• Optimizing critical performance paths

• Documenting the required type

• Enforcing the required type at runtime

For example, consider the following function, which returns informa

tion about a Java class:

Download examples/interop.clj

(defn describe-class [c]

{:name (.getName c)

:final (java.lang.reflect.Modifier/isFinal (.getModifiers c))})

You can ask Clojure how much type information it can infer, by setting

the special variable *warn-on-reflection* to true:

(set! *warn-on-reflection* true)

⇒ true

The exclamation point on the end of set! is an idiomatic indication that

set! changes mutable state. set! is described in detail in Section 6.5,

Working with Java Callback APIs, on page 195.

With *warn-on-reflection* set to true, compiling describe-class will produce

the following warnings:

Reflection warning, line: 87

- reference to field getName can't be resolved.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=92

93 OPTIMIZING FOR PERFORMANCE

Reflection warning, line: 88

- reference to field getModifiers can't be resolved.

These warnings indicate that Clojure has no way to know the type of

c. You can provide a type hint to fix this, using the metadata syntax

#∧Class:

Download examples/interop.clj

(defn describe-class [#^Class c]

{:name (.getName c)

:final (java.lang.reflect.Modifier/isFinal (.getModifiers c))})

With the type hint in place, the reflection warnings will disappear. The

compiled Clojure code will be exactly the same as compiled Java code.

Further, attempts to call describe-class with something other than a Class

will fail with a ClassCastException:

(describe-class StringBuffer)

⇒	 {:name "java.lang.StringBuffer", :final true}

(describe-class "foo")

⇒	 java.lang.ClassCastException: \

java.lang.String cannot be cast to java.lang.Class

If your ClassCastException provides a less helpful error message, it is

because you are using a version of Java prior to Java 6. Improved error

reporting is one of many good reasons to run your Clojure code on Java

6 or later.

When you provide a type hint, Clojure will insert an appropriate class

cast in order to avoid making slow, reflective calls to Java methods. But

if your function does not actually call any Java methods on a hinted

object, then Clojure will not insert a cast. Consider this wants-a-string

function:

(defn wants-a-string [#^String s] (println s))

⇒	 #'user/wants-a-string

You might expect that wants-a-string would complain about nonstring

arguments. In fact, it will be perfectly happy:

(wants-a-string "foo")

| foo

(wants-a-string 0)

| 0

Clojure can tell that wants-a-string never actually uses its argument as

a string (println will happily try to print any kind of argument). Since no

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=93

94 CREATING AND COMPILING JAVA CLASSES IN CLOJURE

string methods need to be called, Clojure does not attempt to cast s to

a string.

When you need speed, type hints will let Clojure code compile down to

the same code Java will produce. But you won’t need type hints that

often. Make your code right first, and then worry about making it fast.

3.3 Creating and Compiling Java Classes in Clojure

Clojure’s objects all implement reasonable Java interfaces:

•	 Clojure’s data structures implement interfaces from the Java Col

lections API.

•	 Clojure’s functions implement Runnable and Callable.

In addition to these generic interfaces, you will occasionally need

domain-specific interfaces. Often this comes in the form of callback

handlers for event-driven APIs such as Swing or some XML parsers.

Clojure can easily generate one-off proxies or classes on disk when

needed, using a fraction of the lines of code necessary in Java.

Creating Java Proxies

To interoperate with Java, you will often need to implement Java inter

faces. A good example is parsing XML with a Simple API for XML (SAX)

parser. To get ready for this example, go ahead and import the following

classes. We’ll need them all before we are done:

(import '(org.xml.sax InputSource)

'(org.xml.sax.helpers DefaultHandler)

'(java.io StringReader)

'(javax.xml.parsers SAXParserFactory))

To use a SAX parser, you need to implement a callback mechanism.

The easiest way is often to extend the DefaultHandler class. In Clojure,

you can extend a class with the proxy function:

(proxy class-and-interfaces super-cons-args & fns)

As a simple example, use proxy to create a DefaultHandler that prints the

details of all calls to startElement:

Download examples/interop.clj

(def print-element-handler

(proxy [DefaultHandler] []

(startElement

[uri local qname atts]

(println (format "Saw element: %s" qname)))))

Prepared exclusively for WG Custom Motorcycles
Report erratum

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=94

95 CREATING AND COMPILING JAVA CLASSES IN CLOJURE

proxy generates an instance of a proxy class. The first argument to proxy

is [DefaultHandler], a vector of the superclass and superinterfaces. The

second argument, [], is a vector of arguments to the base class con

structor. In this case, no arguments are needed.

After the proxy setup comes the implementation code for zero or more

proxy methods. The proxy shown earlier has one method. Its name is

startElement, and it takes four arguments and prints the name of the

qname arg.

Now all you need is a parser to pass the handler to. This requires plow

ing through a pile of Java factory methods and constructors. For a

simple exploration at the REPL, you can create a function that parses

XML in a string:

(defn demo-sax-parse [source handler]

(.. SAXParserFactory newInstance newSAXParser

(parse (InputSource. (StringReader. source))

handler)))

Now the parse is easy:

(demo-sax-parse "<foo>

<bar>Body of bar</bar>

</foo>" print-element-handler)

| Saw element: foo

| Saw element: bar

The previous example demonstrates the mechanics of creating a Clo

jure proxy to deal with Java’s XML interfaces. You can take a similar

approach to implementing your own custom Java interfaces. But if all

you are doing is XML processing, clojure-contrib already has terrific

XML support and can work with any SAX-compatible Java parser. See

the clojure.contrib.lazy-xml library for details.

The proxy mechanism is completely general and can be used to generate

any kind of Java object you want, on the fly. Sometimes the objects are

so simple you can fit the entire object in a single line. The following

code creates a new thread and then creates a new dynamic subclass of

Runnable to run on the new thread:

(.start (Thread.

(proxy [Runnable] [] (run [] (println "I ran!")))))

In Java, you must provide an implementation of every method on every

interface you implement. In Clojure, you can leave them out:

(proxy [Callable] []) ; proxy with no methods (??)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=95

96 CREATING AND COMPILING JAVA CLASSES IN CLOJURE

If you omit a method implementation, Clojure provides a default imple

mentation that throws an UnsupportedOperationException:

(.call (proxy [Callable] []))

⇒ java.lang.UnsupportedOperationException: call

The default implementation does not make much sense for interfaces

with only one method, such as Runnable and Callable, but it can be

handy when you are implementing larger interfaces and don’t care

about some of the methods.

So far in this section, you have seen how to use proxy to create imple

mentations of Java interfaces. This is very powerful when you need it,

but often Clojure is already there on your behalf. For example, func

tions automatically implement Runnable and Callable:

; normal usage: call an anonymous function

(#(println "foo"))

⇒ foo

; call through Runnable's run

(.run #(println "foo"))

⇒ foo

; call through Callable's call

(.call #(println "foo"))

⇒ foo

This makes it very easy to pass Clojure functions to other threads:

Download examples/interop.clj

(dotimes [i 5]

(.start

(Thread.

(fn []

(Thread/sleep (rand 500))

(println (format "Finished %d on %s" i (Thread/currentThread)))))))

For one-off tasks such as XML and thread callbacks, Clojure’s proxies

are quick and easy to use. If you need a longer-lived class, you can

generate new named classes from Clojure as well.

Compiling to Disk

The clojure proxy method is very powerful, but sometimes you want

actual class files that you can save to disk. For example, you might

want a Java main class that you can launch or an applet or a class to

be deployed into a Java container.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=96

97 CREATING AND COMPILING JAVA CLASSES IN CLOJURE

In this section, we will build a stand-alone Java application in Clojure.

The application will be named tasklist, and it will implement a simplified

version of the ant -p command. tasklist will load an Ant build script and

extract the names of all the tasks defined in the file.

The sample code for the book includes a prebuilt tasklist and an exam

ple Ant build script for testing at snippets/example-build.xml. To see how

the completed tasklist should work, call the prebuilt version from the

command line as follows:

On Windows:

bin\tasklist.bat snippets\example-build.xml

[init compile-java compile-clojure clojure jar all clean]

On *nix:

bin/tasklist.sh snippets/example-build.xml

[init compile-java compile-clojure clojure jar all clean]

The example build file is Clojure’s own build file, and the tasks listed

are tasks you can call when building Clojure from source.

Now, let’s build our own implementation of tasklist, starting with the code

in reader/tasklist.clj:

Download reader/tasklist.clj

Line 1 (ns reader.tasklist
2 (:gen-class
3 :extends org.xml.sax.helpers.DefaultHandler
4 :state state
5 :init init)
6 (:use [clojure.contrib.duck-streams :only (reader)])
7 (:import [java.io File]
8 [org.xml.sax InputSource]
9 [org.xml.sax.helpers DefaultHandler]

10 [javax.xml.parsers SAXParserFactory]))

The :use and :import clauses are nothing new; they simply bring in the

libraries and classes we will need. The interesting part is the :gen-class

form beginning on line 2. This will cause Clojure to generate a Java

class named reader.tasklist.

The :extends clause on line 3 specifies that the generated class will

extend DefaultHandler. We do not need to implement any interfaces, but

if you did, you could do this with an :implements clause.

Clojure-generated Java classes isolate their state in a single state struc

ture. The :state clause on line 4 specifies that the state structure will be

named state.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/reader/tasklist.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=97

98 CREATING AND COMPILING JAVA CLASSES IN CLOJURE

The :init clause on line 5 specifies the class’s initialization function. The

initialization function returns the base-class constructor arguments

required by Java, plus the initial state structure used by Clojure.

When Clojure generates the reader.tasklist class, it will create the meth

ods for you. These methods will then delegate to functions that you

provide. Each method delegates to a function of the same name, pre

fixed with a hyphen (-). Add a -main function to reader.tasklist that prints

the task list for each command-line argument.

Download examples/tasklist.clj

(defn -main [& args]

(doseq [arg args]

(println (task-list arg))))

Next, create the task-list function called by -main. (Place task-list before

-main in your source file so that the definition of -main can see task-list.)

task-list should create handler, an instance of your class, and then use

the handler to parse the file. Finally, task-list should return the state of

the handler.

Download examples/tasklist.clj

Line 1 (defn task-list [arg]
2 (let [handler (new examples.tasklist)]
3 (.. SAXParserFactory newInstance newSAXParser
4 (parse (InputSource. (reader (File. arg)))
5 handler))
6 @(.state handler)))

Line 2 shows the name of the prebuilt examples.tasklist. For your imple

mentation, rename this to reader.tasklist instead. The body of the func

tion is boilerplate code to launch a Java SAX parser with the handler as

a callback.

Finally, on line 6, the task-list function returns the handler’s accumulated

state. The state field is named state because that is what we requested

in :gen-class. As you will see in a moment, you will store the state in a

Clojure atom. (You do not need to worry about the details of atoms now;

we will cover them in detail in Section 6.3, Use Atoms for Uncoordinated,

Synchronous Updates, on page 186.) The reader macro @ dereferences

the atom, returning the atom’s contents.

Next, implement a handler for the init method. Do not forget the prefix

hyphen. The init method should return a vector of two items: the con

structor arguments needed by the Java base class constructor and the

initial state of the object.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/tasklist.clj
http://media.pragprog.com/titles/shcloj/code/examples/tasklist.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=98
mailto:@(.state

99

Download examples/tasklist.clj

CREATING AND COMPILING JAVA CLASSES IN CLOJURE

(defn -init []

[[] (atom [])])

Since DefaultHandler has a no-argument constructor, the first part of

init’s return value is simply an empty vector. The second part creates an

atom to store the handler’s state.

Finally, implement a handler for startElement. You want to extract the

names of targets from the build file. The XML will look like this:

Download snippets/example-build.xml

<target	 name="compile-java" depends="init"

description="Compile Java sources.">

So, you will want to look for elements whose name is target and then

extract those elements’ name attributes.

Back in Section 3.3, Creating Java Proxies, on page 94, you imple

mented a proxy startElement that took four arguments. Generating a

class is a little different from generating a proxy. In addition to the nor

mal method arguments, you will add an explicit this argument to the

beginning of the argument list. this is the Java identity of the object,

and you can use it to access the object’s state. The startElement handler

should look like this:

Download examples/tasklist.clj

Line 1 (defn -startElement
2 [this uri local qname atts]
3 (when (= qname "target")
4 (swap! (.state this) conj (.getValue atts "name"))))

When the qname is target, -startElement updates the state of this object by

conjoining the name value to the end of the vector.

Now you are ready to compile your class. Clojure provides a compile

function:

(compile lib)

Like any compiler, compile is finicky about the environment it runs in:

•	 The library you want to compile must be reachable from the class

path. For the reader.tasklist library, that means the file reader/

tasklist.clj must be on the classpath.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/tasklist.clj
http://media.pragprog.com/titles/shcloj/code/snippets/example-build.xml
http://media.pragprog.com/titles/shcloj/code/examples/tasklist.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=99

CREATING AND COMPILING JAVA CLASSES IN CLOJURE 100

•	 Classes will compile to the *compile-path* directory, which must

also be on the classpath. By default, *compile-path* is set to the

classes directory relative to where you launched Clojure.

The sample code for the book is organized with everything in the right

place. If you launched the book REPL from the sample root directory

by typing bin/repl.sh or bin\repl.bat, you should be able to compile your

library with the following:

(compile 'reader.tasklist)

If you are having trouble, compare your code to the solution in exam

ples/tasklist.clj.

After you compile your class, you can run it as a stand-alone Java appli

cation. You will need to have your classes on the classpath, plus clo

jure.jar and clojure-contrib.jar. The sample code includes scripts bin/reader

tasklist.sh and bin\reader-tasklist.bat that have everything in the proper

place. So, for example, on Windows:

bin\reader-tasklist.bat snippets\example-build.xml

[init compile-java compile-clojure clojure jar all clean]

The tasklist class that you just created is a plain old Java class, con

sisting of constructors, fields, and methods. But the process of writing

the class is quite different in Clojure. Aside from the syntax, Clojure’s

approach of a single state object encourages you to pay special atten

tion to state and minimize its use.

A second difference, not visible in the source code, is the highly dy

namic nature of the classes generated by Clojure. If you look in the

classes/reader directory, you might expect to find a single tasklist.class. In

fact, you will find six classes:

: ls -1

tasklist$_init__433.class

tasklist$_main__439.class

tasklist$_startElement__436.class

tasklist$task_list__430.class

tasklist.class

tasklist__init.class

There is one classfile for the class itself, plus one class file for each

function or method in the class. In addition, the classfile with __init in

its name is special. It executes any top-level code from the library the

first time the class is loaded.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=100

EXCEPTION HANDLING 101

This modularity allows you to replace individual functions within a

class at runtime. This is much more granular than reloading the entire

class and may be useful in some situations. On the other hand, the

extra level of indirection imposes a slight performance penalty on meth

od invocation.

Where interop is concerned, these differences pale in comparison to

the similarities with “normal” Java classes. The Java classfile format is

the lingua franca for interop on the JVM. Clojure’s generated classfiles

are plain old Java classes. They can go anywhere Java classes can go

and can live in any Java system. They can even be used by other JVM

languages such as JRuby and Scala.

Clojure class generation has a number of features not shown here:

•	 There is a command-line compiler for use from build tools. See the

build files for Clojure and clojure-contrib for examples of its use.

•	 Almost everything is configurable. You can change the generated

class name or the prefix used when mapping from class method

names to Clojure function names.

•	 There is a gen-interface that parallels gen-class.

For more information on these features, see the Compilation section of

the Clojure website.3

Next, we will look at how Clojure programs deal with exceptions.

3.4 Exception Handling

In Java code, exception handling crops up for three reasons:

•	 Wrapping checked exceptions (see the sidebar on the following

page if you are unfamiliar with checked exceptions)

•	 Using a finally block to clean up nonmemory resources such as file

and network handles

•	 Responding to the problem: ignoring the exception, retrying the

operation, converting the exception to a nonexceptional result,

and so on

In Clojure, things are similar but simpler. The try and throw special

forms give you all the capabilities of Java’s try, catch, finally, and throw.

3. http://clojure.org/compilation

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://clojure.org/compilation
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=101

EXCEPTION HANDLING 102

Checked Exceptions

Java’s checked exceptions must be explicitly caught or
rethrown from every method where they can occur. This
seemed like a good idea at first: checked exceptions could
use the type system to rigorously document error handling, with
compiler enforcement. Most Java programmers now consider
checked exceptions a failed experiment, because their costs in
code bloat and maintainability outweigh their advantages. For
more on the history of checked exceptions, see Rod Waldhoff’s
article∗ and the accompanying links.

∗. http://tinyurl.com/checked-exceptions-mistake

But you should not have to use them very often, because of the follow

ing reasons:

•	 You do not have to deal with checked exceptions in Clojure.

•	 You can use macros such as with-open to encapsulate resource

cleanup.

Let’s see what this looks like in practice.

Keeping Exception Handling Simple

Java programs often wrap checked exceptions at abstraction bound

aries. A good example is Apache Ant, which tends to wrap low-level

exceptions (such as I/O exceptions) with an Ant-level build exception:

// Ant-like code (simplified for clarity)

try {

newManifest = new Manifest(r);

} catch (IOException e) {

throw new BuildException(...);

}

In Clojure, you are not forced to deal with checked exceptions. You do

not have to catch them or declare that you throw them. So, the previous

code would translate to the following:

(Manifest. r)

The absence of exception wrappers makes idiomatic Clojure code eas

ier to read, write, and maintain than idiomatic Java. That said, nothing

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://tinyurl.com/checked-exceptions-mistake
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=102
http:throwthem.So

EXCEPTION HANDLING 103

prevents you from explicitly catching, wrapping, and rethrowing excep

tions in Clojure. It simply is not required. You should catch exceptions

when you plan to respond to them in a meaningful way.

Cleaning Up Resources

Garbage collection will clean up resources in memory. If you use re

sources that live outside of garbage-collected memory, such as file han

dles, you need to make sure that you clean them up, even in the event

of an exception. In Java, this is normally handled in a finally block.

If the resource you need to free follows the convention of having a close

method, you can use Clojure’s with-open macro:

(with-open [name init-form] & body)

Internally, with-open creates a try block, sets name to the result of init

form, and then runs the forms in body. Most important, with-open always

closes the object bound to name in a finally block.

A good example of with-open is the spit function in clojure-contrib:

(clojure.contrib.duck-streams/spit file content)

spit simply writes a string to file. Try it:

(use '[clojure.contrib.duck-streams :only (spit)])

(spit "hello.out" "hello, world")

⇒ nil

You should now find a file at hello.out with contents hello, world.

The implementation of spit is simple:

; from clojure-contrib

(defn spit [f content]

(with-open [#^PrintWriter w (writer f)]

(.print w content)))

spit creates a PrintWriter on f, which can be just about anything that

is writable: a file, a URL, a URI, or any of Java’s various writers or

output streams. It then prints content to the writer. Finally, with-open

guarantees that the writer is closed at the end of spit.

If you need to do something other than close in a finally block, the Clojure

try form looks like this:

(try expr* catch-clause* finally-clause?)

; catch-clause -> (catch classname name expr*)

; finally-clause -> (finally expr*)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=103

EXCEPTION HANDLING 104

It can be used thusly:

(try

(throw (Exception. "something failed"))

(finally

(println "we get to clean up")))

| we get to clean up

⇒ java.lang.Exception: something failed

The previous fragment also demonstrates Clojure’s throw form, which

simply throws whatever exception is passed to it.

Responding to an Exception

The most interesting case is when an exception handler attempts to

respond to the problem in a catch block. As a simple example, con

sider writing a function to test whether a particular class is available at

runtime:

Download examples/interop.clj

; not caller-friendly

(defn class-available? [class-name]

(Class/forName class-name))

This approach is not very caller-friendly. The caller simply wants a

yes/no answer but instead gets an exception:

(class-available? "borg.util.Assimilate")

⇒ java.lang.ClassNotFoundException: borg.util.Assimilate

A friendlier approach uses a catch block to return false:

Download examples/interop.clj

(defn class-available? [class-name]

(try

(Class/forName class-name) true

(catch ClassNotFoundException _ false)))

The caller experience is much better now:

(class-available? "borg.util.Assimilate")

⇒ false

(class-available? "java.lang.String")

⇒ true

Clojure gives you everything you need to throw and catch exceptions

and to cleanly release resources. At the same time, Clojure keeps excep

tions in their place. They are important but not so important that your

mainline code is dominated by the exceptional.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://media.pragprog.com/titles/shcloj/code/examples/interop.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=104

ADDING ANT PROJECTS AND TASKS TO LANCET 105

You have seen how easy it is to access Java from Clojure. Now let’s put

that to a real test by adding Ant support to Lancet.

3.5 Adding Ant Projects and Tasks to Lancet

Ant ships with dozens of built-in tasks, plus there are hundreds of

third-party tasks. There is no need to reinvent this wheel, so Lancet

will call Ant tasks directly.

Lancet requires two Ant JAR files: ant.jar and ant-launcher.jar. The sample

code for the book includes these files in the lib directory, and they are

added to the classpath automatically when you launch the REPL with

bin/repl.sh or bin\repl.bat.

To test that Ant is on your classpath, make sure you can instantiate an

Ant Mkdir task. Assign it to a var named mkdir-task:

(def mkdir-task (org.apache.tools.ant.taskdefs.Mkdir.))

⇒ #'user/mkdir-task

If the variable assigns correctly, Ant is on your classpath.

If instantiating a task is that easy, maybe you are almost done. Reflect

against Mkdir’s method names to see whether you can spot the one that

runs the task. You can use Java reflection to go from an instance to a

class to methods to method names, like so:

(map #(.getName %) (.getMethods (class mkdir-task)))

⇒ ...lots of names here...

One of the method names is execute. That sounds pretty good, so let’s

try it:

(.execute mkdir-task)

| dir attribute is required

That doesn’t seem to have worked, but the error message is a good

pointer. Ant attributes, aka Java properties, are usually set with meth

ods named like setXXX(), so try calling setDir to set the dir attribute of

mkdir-task:

(.setDir mkdir-task "sample-dir")

⇒ java.lang.ClassCastException

It appears that the dir attribute is not a string.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=105

ADDING ANT PROJECTS AND TASKS TO LANCET 106

To see what type dir expects, reflect against the methods again, this

time filtering down to just methods whose name is setDir:

(filter #(= "setDir" (.getName %))

(.getMethods (class mkdir-task)))

⇒ (#<Method public void ... Mkdir.setDir(java.io.File)>)

As you can see from setDir’s signature, it expects a File, so give it one:

(.setDir mkdir-task (java.io.File. "sample-dir"))

⇒ nil

Now, you should be able to execute the mkdir-task and create a directory:

(.execute mkdir-task)

| Created dir: /lancet/examples/sample-dir

Invoking tasks successfully is a good start. However, Lancet needs a few

more things from Ant. By reading the Ant source code and experiment

ing with various tasks, I discovered that Lancet would also need to use

Ant’s Project class. Lancet does not need Ant’s project metaphor, but it

does need various APIs that Ant hangs on a Project instance, including

the logger.

Create a Project object at the REPL, and bind it to project:

(def project (org.apache.tools.ant.Project.))

⇒ #'user/project

The project object will want a logger. Ant’s NoBannerLogger is a good

choice, because it omits unnecessary information about empty targets.

Create a NoBannerLogger bound to logger:

(def logger (org.apache.tools.ant.NoBannerLogger.))

⇒ #'user/logger

There are several steps to configure these objects and connect them.

The logger needs a log level, output stream, and error stream. The

project needs to initialize and add the logger as a build listener. You

could call all of these methods one at a time, like this:

(.setOutputPrintStream logger System/out)

⇒ nil

(.setErrorPrintStream logger System/err)

⇒ nil

; etc.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=106

ADDING ANT PROJECTS AND TASKS TO LANCET 107

A more readable approach is to use doto to group the configuration

calls for each object. Use the following code to create an Ant project:

Download lancet/step_1_repl.clj

Line 1 (def
- #^{:doc "Dummy ant project to keep Ant tasks happy"}

- ant-project

- (let [proj (org.apache.tools.ant.Project.)

5 logger (org.apache.tools.ant.NoBannerLogger.)]

- (doto logger

- (.setMessageOutputLevel org.apache.tools.ant.Project/MSG_INFO)

- (.setOutputPrintStream System/out)

- (.setErrorPrintStream System/err))

10 (doto proj

- (.init)

- (.addBuildListener logger))))

•	 Line 2 creates a documentation string. Since ant-project is a var,

you create the documentation string directly in metadata. (Most

documentation strings are attached to functions, where defn pro

vides a layer of abstraction above the metadata.)

•	 Line 3 names the var. ant-project will be shared through an entire

Lancet process, unless some need arises for a specific project

instance.

•	 Line 4 binds new Project and NoBannerLogger instances to proj and

logger.

•	 Starting on line 6, a doto form configures the logger.

•	 Starting on line 10, a doto form initializes the proj and sets its

logger.

•	 The proj on line 10 becomes the return value of the doto and the

let and binds to ant-project.

If the definition of ant-project executes correctly, you will then have an

instance of Project that you can access at the REPL:

ant-project

⇒ #<org.apache.tools.ant.Project@637550b3>

As you can see, the REPL representation of a Project does not tell you

much. When you are interactively testing a Java object such as an Ant

Project from Clojure, the bean function provides a quick way to peek

inside the object:

(bean ant-project)

⇒ ... 100s of lines follow! ...

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_1_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=107

ADDING ANT PROJECTS AND TASKS TO LANCET 108

Unfortunately, the insides of an Ant project are pretty big. You can use

keys to get the ant-project’s property names:

(keys (bean ant-project))

⇒	 (:userProperties :references :class :filters :defaultInputStream\

:name :description :properties :taskDefinitions :buildListeners\

:dataTypeDefinitions :inputHandler :coreLoader :baseDir\

:globalFilterSet :keepGoingMode :defaultTarget :targets :executor)

Once you know the keys, you can use them to poke around further

inside the bean. Your project should have a logger as a build listener,

so use the :buildListeners key to verify that the listener was installed cor

rectly:

(:buildListeners (bean ant-project))

⇒	 #=(java.util.Vector.[#<org.NoBannerLogger@3583a303>])

There is the logger, right where you put it. Clojure’s easy, reflective

access to Java makes it a good language for exploring existing Java

code.

Now that you have an Ant project handy at the REPL, let’s revisit how

Lancet should create Ant tasks. Earlier you created a mkdir-task directly:

(def mkdir-task (org.apache.tools.ant.taskdefs.Mkdir.))

⇒	 #'user/mkdir-task

Project provides a better way to create tasks, with the createTask method.

One advantage of this approach is that you do not need to know the

class name of a task; you need to know only its short name as it would

appear in an Ant build script. Use your ant-project to create an echo-

task:

(def echo-task (.createTask ant-project "echo"))

⇒	 #'user/echo-task

The Ant echo task takes a message attribute. Call setMessage to set a

message, and execute the task to verify its behavior:

(.setMessage echo-task "hello ant")

⇒	 nil

(.execute echo-task)

[echo] hello ant

Well-behaved tasks need a few more things. All tasks have an init meth

od that Ant calls internally. You have been lucky so far, because mkdir

and echo do not use init. But Lancet will need to call init on all tasks.

Also, tasks maintain a reference to their projects.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=108

ADDING ANT PROJECTS AND TASKS TO LANCET 109

Create an instantiate-task function that correctly performs all these steps:

Download lancet/step_1_repl.clj

(defn instantiate-task [project name]

(let [task (.createTask project name)]

(doto task

(.init)

(.setProject project))))

Create and execute a task to make sure that instantiate-task works as

you expect:

(def echo-task (instantiate-task ant-project "echo"))

⇒ #'user/echo-task

(.setMessage echo-task "echo from instantiate-task")

⇒ nil

(.execute echo-task)

[echo] echo from instantiate-task

There is one slight problem with instantiate-task. If you try to create a task

using a name that doesn’t exist, ant-project does not throw an exception.

It just returns nil, which leads to a confusing error message:

(instantiate-task ant-project "sisyphus")

⇒ java.lang.NullPointerException

Create a safe-instantiate-task that adds a nil check, throwing an IllegalArgu

mentException if a task name does not exist:

Download lancet/step_1_repl.clj

(use '[clojure.contrib.except :only (throw-if)])

(defn safe-instantiate-task [project name]

(let [task (.createTask project name)]

(throw-if (nil? task)

IllegalArgumentException (str "No task named " name))

(doto task

(.init)

(.setProject project))))

Now the error message is much better:

(safe-instantiate-task ant-project "sisyphus")

⇒ java.lang.IllegalArgumentException: No task named sisyphus

The completed code for this section is listed in Section 3.5, Lancet Step

1: Ant Projects and Tasks, on the next page. In this section, you have

given Lancet the ability to call Ant tasks. You have plumbed in an Ant

project object, and you have wrapped correct initialization of tasks and

projects in helper functions.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_1_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_1_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=109

WRAPPING UP 110

In later chapters you will make these functions so much easier to use

that Lancet crosses the boundary from an API to a domain-specific

language.

Lancet Step 1: Ant Projects and Tasks

Download lancet/step_1_complete.clj

(ns lancet.step-1-complete

(:use clojure.contrib.except))

(def

#^{:doc "Dummy ant project to keep Ant tasks happy"}

ant-project

(let [proj (org.apache.tools.ant.Project.)

logger (org.apache.tools.ant.NoBannerLogger.)]

(doto logger

(.setMessageOutputLevel org.apache.tools.ant.Project/MSG_INFO)

(.setOutputPrintStream System/out)

(.setErrorPrintStream System/err))

(doto proj

(.init)

(.addBuildListener logger))))

(defn instantiate-task [project name]

(let [task (.createTask project name)]

(throw-if (nil? task)

IllegalArgumentException (str "No task named " name))

(doto task

(.init)

(.setProject project))))

3.6 Wrapping Up

Clojure code can call directly into Java and can implement Java classes

and interfaces where necessary. Do not be afraid to drop to Java when

you need it. Clojure is pragmatic and does not aspire to wrap or replace

Java code that already works.

One part of Java that you will use rarely is the Collections API. Clojure

provides a powerful, functional, thread-safe alternative to Java collec

tions: the sequence library. In the next chapter, you will meet Clojure’s

ubiquitous sequences.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_1_complete.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=110

Chapter 4

Unifying Data with Sequences
Programs manipulate data. At the lowest level, programs work with

structures such as strings, lists, vectors, maps, sets, and trees. At a

higher level, these same data structure abstractions crop up again and

again. For example:

• XML data is a tree.

• Database result sets can be viewed as lists or vectors.

• Directory hierarchies are trees.

• Files are often viewed as one big string or as a vector of lines.

In Clojure, all these data structures can be accessed through a single

abstraction: the sequence (or seq). A seq (pronounced “seek”) is a logical

list. It’s logical because Clojure does not tie sequences to implementa

tion details of a list such as a Lisp cons cell (see the sidebar on page 113

for the history of cons). Instead, the seq is an abstraction that can be

used everywhere.

Collections that can be viewed as seqs are called seq-able (pronounced

“SEEK-a-bull”). In this chapter, you will meet a variety of seq-able col

lections:

• All Clojure collections

• All Java collections

• Java arrays and strings

• Regular expression matches

• Directory structures

• I/O streams

• XML trees

Prepared exclusively for WG Custom Motorcycles

EVERYTHING IS A SEQUENCE 112

You will also meet the sequence library, a set of functions that can

work with any seq-able. Because so many things are sequences, the

sequence library is much more powerful and general than the collec

tion APIs in most languages. The sequence library includes functions

to create, filter, and transform data. These functions act as the Collec

tions API for Clojure, and they also replace many of the loops you would

write in an imperative language.

In this chapter, you will become a power user of Clojure sequences.

You will see how to use a common set of very expressive functions

with an incredibly wide range of data types. Then, in the next chapter

(Chapter 5, Functional Programming, on page 147), you will learn the

functional style in which the sequence library is written.

Finally, you will use the sequence API to traverse Java’s property reflec

tion and create a property-setting mechanism for Lancet to use when

creating Ant tasks.

4.1 Everything Is a Sequence

Every aggregate data structure in Clojure can be viewed as a sequence.

A sequence has three core capabilities:

•	 You can get the first item in a sequence:

(first aseq)

first returns nil if its argument is empty or nil.

•	 You can get everything after the first item, in other words, the rest

of a sequence:

(rest aseq)

rest returns an empty seq (not nil) if there are no more items.

•	 You can construct a new sequence by adding an item to the front

of an existing sequence. This is called consing:

(cons elem aseq)

Under the hood, these three capabilities are declared in a Java inter

face clojure.lang.ISeq. (Keep this in mind when reading about Clojure,

because the name ISeq is often used interchangeably with seq.)

The seq function will return a seq on any seq-able collection:

(seq coll)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=112

EVERYTHING IS A SEQUENCE 113

The Origin of Cons

Clojure’s sequence is an abstraction based on Lisp’s concrete
lists. In the original implementation of Lisp, the three fundamen
tal list operations were named car, cdr, and cons. car and cdr

are acronyms that refer to implementation details of Lisp on the
original IBM 704 platform. Many Lisps, including Clojure, replace
these esoteric names with the more meaningful names first and
rest.

The third function, cons, is short for construct. Lisp programmers
use cons as a noun, verb, and adjective. You use cons to create
a data structure called a cons cell, or just a cons for short.

Most Lisps, including Clojure, retain the original cons name,
since “construct” is a pretty good mnemonic for what cons

does. It also helps remind you that sequences are immutable.
For convenience, you might say that cons adds an element to
a sequence, but it is more accurate to say that cons constructs
a new sequence, which is like the original sequence but with
one element added.

seq will return nil if its coll is empty or nil. The next function will return

the seq of items after the first:

(next aseq)

(next aseq) is equivalent to (seq (rest aseq)).

If you have a Lisp background, you expect to find that the seq functions

work for lists:

(first '(1 2 3))

⇒ 1

(rest '(1 2 3))

⇒ (2 3)

(cons 0 '(1 2 3))

⇒ (0 1 2 3)

In Clojure, the same functions will work for other data structures as

well. You can treat vectors as seqs:

(first [1 2 3])

⇒ 1

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=113

EVERYTHING IS A SEQUENCE 114

(rest [1 2 3])

⇒ (2 3)

(cons 0 [1 2 3])

⇒ (0 1 2 3)

When you apply rest or cons to a vector, the result is a seq, not a vector.

In the REPL, seqs print just like lists, as you can see in the earlier

output. You can check the actual returned type by taking its class:

(class (rest [1 2 3]))

⇒ clojure.lang.APersistentVector$Seq

The $Seq at the end of the class name is Java’s way of mangling nested

class names. Seqs that you produce from a specific collection type are

often implemented as a Seq class nested inside the original collection

class (APersistentVector in this example).

The generality of seqs is very powerful, but sometimes you want to

produce a specific implementation type. This is covered in Section 4.5,

Calling Structure-Specific Functions, on page 133.

You can treat maps as seqs, if you think of a key/value pair as an item

in the sequence:

(first {:fname "Stu" :lname "Halloway"})

⇒ [:fname "Stu"]

(rest {:fname "Stu" :lname "Halloway"})

⇒ ([:lname "Halloway"])

(cons [:mname "Dabbs"] {:fname "Stu" :lname "Halloway"})

⇒ ([:mname "Dabbs"] [:lname "Halloway"] [:fname "Stu"])

You can also treat sets as seqs:

(first #{:the :quick :brown :fox})

⇒ :brown

(rest #{:the :quick :brown :fox})

⇒ (:the :fox :quick)

(cons :jumped #{:the :quick :brown :fox})

⇒ (:jumped :brown :the :fox :quick)

Maps and sets have a stable traversal order, but that order depends on

implementation details, and you should not rely on it. Elements of a set

will not necessarily come back in the order that you put them in:

#{:the :quick :brown :fox}

⇒ #{:fox :the :brown :quick}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=114

EVERYTHING IS A SEQUENCE 115

If you want a reliable order, you can use this:

(sorted-set & elements)

sorted-set will sort the values by their natural sort order:

(sorted-set :the :quick :brown :fox)

⇒ #{:brown :fox :quick :the}

Likewise, key/value pairs in maps won’t necessarily come back in the

order you put them in:

{:a 1 :b 2 :c 3}

⇒ {:a 1, :c 3, :b 2}

You can create a sorted map with sorted-map:

(sorted-map & elements)

sorted-maps won’t come back in the order you put them in either, but

they will come back sorted by key:

(sorted-map :c 3 :b 2 :a 1)

⇒ {:a 1, :b 2, :c 3}

In addition to the core capabilities of seq, two other capabilities are

worth meeting immediately: conj and into.

(conj coll element & elements)

(into to-coll from-coll)

conj adds one or more elements to a collection, and into adds all the

items in one collection to another. Both conj and into add items at an

efficient insertion spot for the underlying data structure. For lists, conj

and into add to the front:

(conj '(1 2 3) :a)

⇒ (:a 1 2 3)

(into '(1 2 3) '(:a :b :c))

⇒ (:c :b :a 1 2 3)

For vectors, conj and into add elements to the back:

(conj [1 2 3] :a)

⇒ [1 2 3 :a]

(into [1 2 3] [:a :b :c])

⇒ [1 2 3 :a :b :c]

Because conj (and related functions) do the efficient thing for the under

lying data structure, you can often write code that is both efficient and

completely decoupled from a specific underlying implementation.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=115

EVERYTHING IS A SEQUENCE 116

Joe Asks. . .

Why Do Functions on Vectors Return Lists?

When you try examples at the REPL, the results of rest and cons

appear to be lists, even when the inputs are vectors, maps, or
sets. Does this mean that Clojure is converting everything to a
list internally? No! The sequence functions always return a seq,
regardless of their inputs. You can verify this by checking the
Java type of the returned objects:

(class '(1 2 3))
⇒ clojure.lang.PersistentList

(class (rest [1 2 3]))
⇒ clojure.lang.APersistentVector$Seq

As you can see, the result of (rest [1 2 3]) is some kind of Seq, not
a List. So, why does the result appear to be a list?

The answer lies in the REPL. When you ask the REPL to display
a sequence, all it knows is that it has a sequence. It does not
know what kind of collection the sequence was built from. So,
the REPL prints all sequences the same way: it walks the entire
sequence, printing it as a list.

The Clojure sequence library is particularly suited for large (or even

infinite) sequences. Most Clojure sequences are lazy: they generate ele

ments only when they are actually needed. Thus, Clojure’s sequence

functions can process sequences too large to fit in memory.

Clojure sequences are immutable: they never change. This makes it

easier to reason about programs and means that Clojure sequences

are safe for concurrent access. It does, however, create a small problem

for human language. English-language descriptions flow much more

smoothly when describing mutable things. Consider the following two

descriptions for a hypothetical sequence function triple.

•	 triple triples each element of a sequence.

•	 triple takes a sequence and returns a new sequence with each ele

ment of the original sequence tripled.

The latter version is specific and accurate. The former is much easier to

read, but it might lead to the mistaken impression that a sequence is

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=116

USING THE SEQUENCE LIBRARY 117

actually changing. Don’t be fooled: sequences never change. If you see

the phrase “foo changes x,” mentally substitute “foo returns a changed

copy of x.”

4.2 Using the Sequence Library

The Clojure sequence library provides a rich set of functionality that

can work with any sequence. If you come from an object-oriented back

ground where nouns rule, the sequence library is truly “Revenge of the

Verbs.”1 The functions provide a rich backbone of functionality that can

take advantage of any data structure that obeys the basic first/rest/cons

contract.

The following functions are grouped into four broad categories:

• Functions that create sequences

• Functions that filter sequences

• Sequence predicates

• Functions that transform sequences

These divisions are somewhat arbitrary. Since sequences are im

mutable, most of the sequence functions create new sequences. Some

of the sequence functions both filter and transform. Nevertheless, these

divisions provide a rough road map through a large library.

Creating Sequences

In addition to the sequence literals, Clojure provides a number of func

tions that create sequences. range produces a sequence from a start to

an end, incrementing by step each time.

(range start? end step?)

Ranges include their start, but not their end. If you do not specify them,

start defaults to zero, and step defaults to 1. Try creating some ranges

at the REPL:

(range 10)

⇒ (0 1 2 3 4 5 6 7 8 9)

(range 10 20)

⇒ (10 11 12 13 14 15 16 17 18 19)

1. Steve Yegge’s “Execution in the Kingdom of Nouns” (http://tinyurl.com/the-kingdom-of-nouns)

argues that object-oriented programming has pushed nouns into an unrealistically dom

inant position and that it is time for a change.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://tinyurl.com/the-kingdom-of-nouns
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=117

USING THE SEQUENCE LIBRARY 118

(range 1 25 2)

⇒ (1 3 5 7 9 11 13 15 17 19 21 23)

The repeat function repeats an element x n times:

(repeat n x)

Try to repeat some items from the REPL:

(repeat 5 1)

⇒ (1 1 1 1 1)

(repeat 10 "x")

⇒ ("x" "x" "x" "x" "x" "x" "x" "x" "x" "x")

Both range and repeat represent ideas that can be extended infinitely.

You can think of iterate as the infinite extension of range:

(iterate f x)

iterate begins with a value x and continues forever, applying a function

f to each value to calculate the next.

If you begin with 1 and iterate with inc, you can generate the whole

numbers:

(take 10 (iterate inc 1))

⇒ (1 2 3 4 5 6 7 8 9 10)

Since the sequence is infinite, you need another new function to help

you view the sequence from the REPL.

(take n sequence)

take returns a lazy sequence of the first n items from a collection and

provides one way to create a finite view onto an infinite collection.

The whole numbers are a pretty useful sequence to have around, so

let’s defn them for future use:

(defn whole-numbers [] (iterate inc 1))

⇒ #'user/whole-numbers

When called with a single argument, repeat returns a lazy, infinite

sequence:

(repeat x)

Try repeating some elements at the REPL. Don’t forget to wrap the result

in a take:

(take 20 (repeat 1))

⇒ (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=118

USING THE SEQUENCE LIBRARY 119

The cycle function takes a collection and cycles it infinitely:

(cycle coll)

Try cycling some collections at the REPL:

(take 10 (cycle (range 3)))

⇒ (0 1 2 0 1 2 0 1 2 0)

The interleave function takes multiple collections and produces a new

collection that interleaves values from each collection until one of the

collections is exhausted.

(interleave & colls)

When one of the collections is exhausted, the interleave stops. So, you

can mix finite and infinite collections:

(interleave (whole-numbers) ["A" "B" "C" "D" "E"])

⇒ (1 "A" 2 "B" 3 "C" 4 "D" 5 "E")

Closely related to interleave is interpose, which returns a sequence with

each of the elements of the input collection separated by a separator:

(interpose separator coll)

You can use interpose to build delimited strings:

(interpose "," ["apples" "bananas" "grapes"])

⇒ ("apples" "," "bananas" "," "grapes")

interpose works nicely with (apply str ...) to produce output strings:

(apply str (interpose \, ["apples" "bananas" "grapes"]))

⇒ "apples,bananas,grapes"

The (apply str ...) idiom is common enough that clojure-contrib wraps it

as str-join:

(str-join separator sequence)

Use str-join to comma-delimit a list of words:

(use '[clojure.contrib.str-utils :only (str-join)])

(str-join \, ["apples" "bananas" "grapes"])

⇒ "apples,bananas,grapes"

For each collection type in Clojure, there is a function that takes an

arbitrary number of arguments and creates a collection of that type:

(list & elements)

(vector & elements)

(hash-set & elements)

(hash-map key-1 val-1 ...)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=119

USING THE SEQUENCE LIBRARY 120

hash-set has a cousin set that works a little differently: set expects a

collection as its first argument:

(set [1 2 3])

⇒ #{1 2 3}

hash-set takes a variable list of arguments:

(hash-set 1 2 3)

⇒ #{1 2 3}

vector also has a cousin, vec, that takes a single collection argument

instead of a variable argument list:

(vec (range 3))

⇒ [0 1 2]

Now that you have the basics of creating sequences, you can use other

Clojure functions to filter and transform them.

Filtering Sequences

Clojure provides a number of functions that filter a sequence, returning

a subsequence of the original sequence. The most basic of these is filter:

(filter pred coll)

filter takes a predicate and a collection and returns a sequence of objects

for which the filter returns true (when interpreted in a boolean context).

You can filter the whole-numbers from the previous section to get the odd

numbers or the even numbers:

(take 10 (filter even? (whole-numbers)))

⇒ (2 4 6 8 10 12 14 16 18 20)

(take 10 (filter odd? (whole-numbers)))

⇒ (1 3 5 7 9 11 13 15 17 19)

You can take from a sequence while a predicate remains true with take-

while:

(take-while pred coll)

For example, to take all the characters in a string up to the first vowel,

use this:

(take-while (complement #{\a\e\i\o\u}) "the-quick-brown-fox")

⇒ (\t \h)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=120

USING THE SEQUENCE LIBRARY 121

There are a couple of interesting things happening here:

•	 Sets also act as functions. So, you can read #{\a\e\i\o\u} either

as “the set of vowels” or as “the function that tests to see whether

its argument is vowel.”

•	 complement reverses the behavior of another function. The previ

ous complemented function tests to see whether its argument is

not a vowel.

The opposite of take-while is drop-while:

(drop-while pred coll)

drop-while drops elements from the beginning of a sequence while a

predicate is true and then returns the rest. You could drop-while to drop

all leading nonvowels from a string:

(drop-while (complement #{\a\e\i\o\u}) "the-quick-brown-fox")

⇒ (\e \- \q \u \i \c \k \- \b \r \o \w \n \- \f \o \x)

split-at and split-with will split a collection into two collections:

(split-at index coll)

(split-with pred coll)

split-at takes an index, and split-with takes a predicate:

(split-at 5 (range 10))

⇒ [(0 1 2 3 4) (5 6 7 8 9)]

(split-with #(<= % 10) (range 0 20 2))

⇒ [(0 2 4 6 8 10) (12 14 16 18)]

All the take-, split-, and drop- functions return lazy sequences, of course.

Sequence Predicates

Filter functions take a predicate and return a sequence. Closely related

are the sequence predicates. A sequence predicate asks how some other

predicate applies to every item in a sequence. For example, the every?

predicate asks whether some other predicate is true for every element

of a sequence.

(every? pred coll)

(every? odd? [1 3 5])

⇒ true

(every? odd? [1 3 5 8])

⇒ false

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=121

USING THE SEQUENCE LIBRARY 122

A lower bar is set by some:

(some pred coll)

some returns the first nonfalse value for its predicate or returns nil if no

element matched:

(some even? [1 2 3])

⇒ true

(some even? [1 3 5])

⇒ nil

Notice that some does not end with a question mark. some is not a

predicate, although it is often used like one. some returns the actual

value of the first match instead of true. The distinction is invisible when

you pair some with even?, since even? is itself a predicate. To see a non-

true match, try using some with identity to find the first non-nil value in

a sequence:

(some identity [nil false 1 nil 2])

⇒ 1

The behavior of the other predicates is obvious from their names:

(not-every? pred coll)

(not-any? pred coll)

Not every whole number is even:

(not-every? even? (whole-numbers))

⇒ true

But it would be a lie to claim that not any whole number is even:

(not-any? even? (whole-numbers))

⇒ false

Note that I picked questions to which I already knew the answer. In

general, you have to be careful when applying predicates to infinite

collections. They might run forever.

Transforming Sequences

Transformation functions transform the values in the sequence. The

simplest transformation is map:

(map f coll)

map takes a source collection coll and a function f, and it returns a new

sequence by invoking f on each element in the coll. You could use map

to wrap every element in a collection with an HTML tag.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=122

USING THE SEQUENCE LIBRARY 123

(map #(format "<p>%s</p>" %) ["the" "quick" "brown" "fox"])

⇒ ("<p>the</p>" "<p>quick</p>" "<p>brown</p>" "<p>fox</p>")

map can also take more than one collection argument. f must then be a

function of multiple arguments. map will call f with one argument from

each collection, stopping whenever the smallest collection is exhausted:

(map #(format "<%s>%s</%s>" %1 %2 %1)

["h1" "h2" "h3" "h1"] ["the" "quick" "brown" "fox"])

⇒	 ("<h1>the</h1>" "<h2>quick</h2>" "<h3>brown</h3>"

"<h1>fox</h1>")

Another common transformation is reduce:

(reduce f coll)

f is a function of two arguments. reduce applies f on the first two ele

ments in coll, then applies f to the result and the third element, and

so on. reduce is useful for functions that “total up” a sequence in some

way. You can use reduce to add items:

(reduce	 + (range 1 11))

⇒ 55

or to multiply them:

(reduce (range 1 11))
*

⇒ 3628800

You can sort a collection with sort or sort-by:

(sort comp? coll)

(sort-by a-fn comp? coll)

sort sorts a collection by the natural order of its elements, where sort-by

sorts a sequence by the result of calling a-fn on each element:

(sort [42 1 7 11])

⇒ (1 7 11 42)

(sort-by #(.toString %) [42 1 7 11])

⇒ (1 11 42 7)

If you do not want to sort by natural order, you can specify an optional

comparison function comp for either sort or sort-by:

(sort > [42 1 7 11])

⇒ (42 11 7 1)

(sort-by :grade > [{:grade 83} {:grade 90} {:grade 77}])

⇒ ({:grade 90} {:grade 83} {:grade 77})

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=123

USING THE SEQUENCE LIBRARY 124

The granddaddy of all filters and transformations is the list comprehen

sion. A list comprehension creates a list based on an existing list, using

set notation. In other words, a comprehension states the properties that

the result list must satisfy. In general, a list comprehension will consist

of the following:

•	 Input list(s)

•	 Placeholder variables2 for elements in the input lists

•	 Predicates on the elements

•	 An output form that produces output from the elements of the

input lists that satisfy the predicates

Of course, Clojure generalizes the notion of list comprehension to se

quence comprehension. Clojure comprehensions use the for macro3:

(for [binding-form coll-expr filter-expr? ...] expr)

for takes a vector of binding-form/coll-exprs, plus an optional filter-expr,

and then yields a sequence of exprs.

List comprehension is more general than functions such as map and

filter and can in fact emulate most of the filtering and transformation

functions described earlier. You can rewrite the previous map example

as a list comprehension:

(for [word ["the" "quick" "brown" "fox"]]

(format "<p>%s</p>" word))

⇒ ("<p>the</p>" "<p>quick</p>" "<p>brown</p>" "<p>fox</p>")

This reads almost like English: “For [each] word in [a sequence of words]

format [according to format instructions].”

Comprehensions can emulate filter using a :when clause. You can pass

even? to :when to filter the even numbers:

(take 10 (for [n (whole-numbers) :when (even? n)] n))

⇒ (2 4 6 8 10 12 14 16 18 20)

A :while clause continues the evaluation only while its expression holds

true:

(for [n (whole-numbers) :while (even? n)] n)

⇒ (0)

2. “Variables” in the mathematical sense, not the imperative programming sense. You

won’t be able to vary them. I humbly apologize for this overloading of the English lan

guage.
3. The list comprehension for has nothing to do with the for loop found in imperative

languages.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=124

LAZY AND INFINITE SEQUENCES 125

The real power of for comes when you work with more than one binding

expression. For example, you can express all possible positions on a

chessboard in algebraic notation by binding both rank and file:

(for [file "ABCDEFGH" rank (range 1 9)] (format "%c%d" file rank))

⇒ ("A1" "A2" ... elided ... "H7 ""H8")

Clojure iterates over the rightmost binding expression in a sequence

comprehension first and then works its way left. Because rank is listed

to the right of file in the binding form, rank iterates faster. If you want

files to iterate faster, you can reverse the binding order and list rank

first:

(for [rank (range 1 9) file "ABCDEFGH"] (format "%c%d" file rank))

⇒ ("A1" "B1" ... elided ... "G8" "H8")

In many languages, transformations, filters, and comprehensions do

their work immediately. Do not assume this in Clojure. Most sequence

functions do not traverse elements until you actually try to use them.

4.3 Lazy and Infinite Sequences

Most Clojure sequences are lazy; in other words, elements are not cal

culated until they are needed. Using lazy sequences has many benefits:

•	 You can postpone expensive computations that may not in fact be

needed.

•	 You can work with huge data sets that do not fit into memory.

•	 You can delay I/O until it is absolutely needed.

Consider the following expression:

(use '[clojure.contrib.lazy-seqs :only (primes)])

(def ordinals-and-primes (map vector (iterate inc 1) primes))

⇒ #'user/ordinals-and-primes

ordinals-and-primes includes pairs like [5, 11] (eleven is the fifth prime

number). Both ordinals and primes are infinite, but ordinals-and-primes

fits into memory just fine, because it is lazy. Just take what you need

from it:

(take 5 (drop 1000 ordinals-and-primes))

⇒ ([1001 7927] [1002 7933] [1003 7937] [1004 7949] [1005 7951])

When should you prefer lazy sequences? Most of the time. Most se

quence functions return lazy sequences, so you pay only for what you

use. More important, lazy sequences do not require any special effort

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=125

LAZY AND INFINITE SEQUENCES 126

on your part. In the previous example, iterate, primes, and map return

lazy sequences, so ordinals-and-primes gets laziness “for free.”

Lazy sequences are critical to functional programming in Clojure. Sec

tion 5.2, How to Be Lazy, on page 152 explores creating and using lazy

sequences in much greater detail.

Forcing Sequences

When you are viewing a large sequence from the REPL, you may want

to use take to prevent the REPL from evaluating the entire sequence. In

other contexts, you may have the opposite problem. You have created a

lazy sequence, and you want to force the sequence to evaluate fully.

The problem usually arises when the code generating the sequence has

side effects. Consider the following sequence, which embeds side effects

via println:

(def x (for [i (range 1 3)] (do (println i) i)))

⇒ #'user/x

Newcomers to Clojure are surprised that the previous code prints noth

ing. Since the definition of x does not actually use the elements, Clojure

does not evaluate the comprehension to get them. You can force evalu

ation with doall:

(doall coll)

doall forces Clojure to walk the elements of a sequence and returns the

elements as a result:

(doall x)

| 1

| 2

⇒ (1 2)

You can also use dorun:

(dorun coll)

dorun walks the elements of a sequence without keeping past elements

in memory. As a result, dorun can walk collections too large to fit in

memory.

(def x (for [i (range 1 3)] (do (println i) i)))

⇒ #'user/x

(dorun x)

| 1

| 2

⇒ nil

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=126

CLOJURE MAKES JAVA SEQ-ABLE 127

The nil return value is a telltale reminder that dorun does not hold a

reference to the entire sequence.

The dorun and doall functions help you deal with side effects, while

most of the rest of Clojure discourages side effects. You should use

these functions rarely. (The Clojure core calls each of these functions

only once in about 4,000 lines of code.)

4.4 Clojure Makes Java Seq-able

The seq abstraction of first/rest applies to anything that there can be

more than one of. In the Java world, that includes the following:

• The Collections API

• Regular expressions

• File system traversal

• XML processing

• Relational database results

Clojure wraps these Java APIs, making the sequence library available

for almost everything you do.

Seq-ing Java Collections

If you try to apply the sequence functions to Java collections, you

will find that they behave as sequences. Collections that can act as

sequences are called seq-able. For example, arrays are seq-able:

; String.getBytes returns a byte array

(first (.getBytes "hello"))

⇒ 104

(rest (.getBytes "hello"))

⇒ (101 108 108 111)

(cons (int \h) (.getBytes "ello"))

⇒ (104 101 108 108 111)

Hashtables and Maps are also seq-able:

; System.getProperties returns a Hashtable

(first (System/getProperties))

⇒ java.runtime.name=Java(TM) SE Runtime Environment

(rest (System/getProperties))

⇒ (sun.boot.library.path=/System/Library/... etc. ...

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=127

CLOJURE MAKES JAVA SEQ-ABLE 128

Remember that the sequence wrappers are immutable, even when the

underlying Java collection is mutable. So, you cannot update the sys

tem properties by consing a new item onto (System/getProperties). cons

will return a new sequence; the existing properties are unchanged. (See

Section 3.1, Syntactic Sugar, on page 82 for an example using doto to

update Java system properties.)

Since strings are sequences of characters, they also are seq-able:

(first "Hello")

⇒ \H

(rest "Hello")

⇒ (\e \l \l \o)

(cons \H "ello")

⇒ (\H \e \l \l \o)

Clojure will automatically wrap collections in sequences, but it will not

automatically rewrap them back to their original type. With most collec

tion types this behavior is intuitive, but with strings you will often want

to convert the result to a string. Consider reversing a string. Clojure

provides reverse:

; probably not what you want

(reverse "hello")

⇒ (\o \l \l \e \h)

To convert a sequence back to a string, use (apply str seq):

(apply str (reverse "hello"))

⇒ "olleh"

The Java collections are seq-able, but for most scenarios they do not

offer advantages over Clojure’s built in collections. Prefer the Java col

lections only in interop scenarios where you are working with legacy

Java APIs.

Seq-ing Regular Expressions

Clojure’s regular expressions use the java.util.regex library under the

hood. At the lowest level, this exposes the mutable nature of Java’s

Matcher. You can use re-matcher to create a Matcher for a regular expres

sion and a string and then loop on re-find to iterate over the matches.

(re-matcher regexp string)

Download examples/sequences.clj

; don't do this!

(let [m (re-matcher #"\w+" "the quick brown fox")]

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=128

CLOJURE MAKES JAVA SEQ-ABLE 129

(loop [match (re-find m)]

(when match

(println match)

(recur (re-find m)))))

| the

| quick

| brown

| fox

⇒ nil

Much better is to use the higher-level re-seq.

(re-seq regexp string)

re-seq exposes an immutable seq over the matches. This gives you the

power of all of Clojure’s sequence functions. Try these expressions at

the REPL:

(re-seq #"\w+" "the quick brown fox")

⇒ ("the" "quick" "brown" "fox")

(sort (re-seq #"\w+" "the quick brown fox"))

⇒ ("brown" "fox" "quick" "the")

(drop 2 (re-seq #"\w+" "the quick brown fox"))

⇒ ("brown" "fox")

(map #(.toUpperCase %) (re-seq #"\w+" "the quick brown fox"))

⇒ ("THE" "QUICK" "BROWN" "FOX")

re-seq is a great example of how good abstractions reduce code bloat.

Regular expression matches are not a special kind of thing, requiring

special methods to deal with them. They are sequences, just like every

thing else. Thanks to the large number of sequence functions, you get

more functionality for free than you would likely end up with after a

misguided foray into writing regexp-specific functions.

Seq-ing the File System

You can seq over the file system. For starters, you can call java.io.File

directly:

(import '(java.io File))

(.listFiles (File. "."))

⇒ [Ljava.io.File;@1f70f15e

The [Ljava.io.File... is Java’s toString() representation for an array of Files.

Sequence functions would call seq on this automatically, but the REPL

doesn’t.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=129

CLOJURE MAKES JAVA SEQ-ABLE 130

So, seq it yourself:

(seq (.listFiles (File. ".")))

⇒ (#<./concurrency> #<./sequences> ...)

If the default print format for files does not suit you, you could map

them to a string form with getName:

; overkill

(map #(.getName %) (seq (.listFiles (File. "."))))

⇒ ("concurrency" "sequences" ...)

Once you decide to use a function like map, calling seq is redundant.

Sequence library functions call seq for you, so you don’t have to. The

previous code simplifies to this:

(map #(.getName %) (.listFiles (File. ".")))

⇒ ("concurrency" "sequences" ...)

Often, you want to recursively traverse the entire directory tree. Clojure

provides a depth-first walk via file-seq. If you file-seq from the sample

code directory for this book, you will see a lot of files:

(count (file-seq (File. ".")))

⇒ 104 ; the final number will be larger!

What if you want to see only the files that have been changed recently?

Write a predicate recently-modified? that checks to see whether File was

touched in the last half hour:

Download examples/sequences.clj

(defn minutes-to-millis [mins] (* mins 1000 60))

(defn recently-modified? [file]

(> (.lastModified file)

(- (System/currentTimeMillis) (minutes-to-millis 30))))

Give it a try:

(filter recently-modified? (file-seq (File. ".")))

⇒ (./sequences ./sequences/sequences.clj)

Since I am working on the sequences examples as I write this, only they

show as changed recently. Your results will vary from those shown here.

Seq-ing a Stream

You can seq over the lines of any Java Reader using line-seq. To get a

Reader, you can use clojure-contrib’s duck-streams library. The duck-

streams library provides a reader function that returns a reader on a

stream, file, URL, or URI.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=130

CLOJURE MAKES JAVA SEQ-ABLE 131

(use '[clojure.contrib.duck-streams :only (reader)])

; leaves reader open...

(take 2 (line-seq (reader "examples/utils.clj")))

⇒ ("(ns utils)" "")

Since readers can represent non-memory resources that need to be

closed, you should wrap reader creation in a with-open. Create an ex

pression that uses the sequence function count to count the number of

lines in a file and uses with-open to correctly close the reader:

(with-open [rdr (reader "book/utils.clj")]

(count (line-seq rdr)))

⇒ 25

To make the example a little more useful, add a filter to count only

nonblank lines:

(with-open [rdr (reader "book/utils.clj")]

(count (filter #(re-find #"\S" %) (line-seq rdr))))

⇒ 22

Using seqs on both the file system and on the contents of individual

files, you can quickly create interesting utilities. Create a program that

defines these three predicates:

• non-blank? detects nonblank lines.

• non-svn? detects files that are not Subversion metadata.

• clojure-source? detects Clojure source code files.

Then, create a clojure-loc function that counts the lines of Clojure code

in a directory tree, using a combination of sequence functions along the

way: reduce, for, count, and filter.

Download examples/sequences.clj

(use '[clojure.contrib.duck-streams :only (reader)])

(defn non-blank? [line] (if (re-find #"\S" line) true false))

(defn non-svn? [file] (not (.contains (.toString file) ".svn")))

(defn clojure-source? [file] (.endsWith (.toString file) ".clj"))

(defn clojure-loc [base-file]

(reduce

+

(for [file (file-seq base-file)

:when (and (clojure-source? file) (non-svn? file))]

(with-open [rdr (reader file)]

(count (filter non-blank? (line-seq rdr)))))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=131

CLOJURE MAKES JAVA SEQ-ABLE 132

Now, you can use clojure-loc to find out how much Clojure code is in

Clojure itself:

(clojure-loc (java.io.File. "/Users/stuart/repos/clojure"))

⇒ 5804

Those few thousand lines pack quite a punch, because parts such as

the sequence library can be recombined in so many ways. Your code

can be this powerful, too. The clojure-loc function is very task-specific,

but because it is built out of sequence functions and simple predicates,

you can easily tweak it to very different tasks.

Seq-ing XML

Clojure can seq over XML data. The examples that follow use this XML:

Download examples/sequences/compositions.xml

<compositions>

<composition composer="J. S. Bach">

<name>The Art of the Fugue</name>

</composition>

<composition composer="J. S. Bach">

<name>Musical Offering</name>

</composition>

<composition composer="W. A. Mozart">

<name>Requiem</name>

</composition>

</compositions>

The function clojure.xml.parse parses an XML file/stream/URI, returning

the tree of data as a Clojure map, with nested vectors for descendants:

(use '[clojure.xml :only (parse)])

(parse (java.io.File. "examples/sequences/compositions.xml"))

⇒	 {:tag :compositions,

:attrs nil,

:content [{:tag :composition, ... etc. ...

You can manipulate this map directly, or you can use the xml-seq func

tion to view the tree as a seq:

(xml-seq root)

The following example uses a list comprehension over an xml-seq to

extract just the composers:

Download examples/sequences.clj

(for [x (xml-seq

(parse (java.io.File. "examples/sequences/compositions.xml")))

:when (= :composition (:tag x))]

(:composer (:attrs x)))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences/compositions.xml
http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=132

CALLING STRUCTURE-SPECIFIC FUNCTIONS 133

⇒ ("J. S. Bach" "J. S. Bach" "W. A. Mozart")

The previous code demonstrates the generality of seqs, but it only

scratches the surface of Clojure’s XML support. If you plan to do signifi

cant XML processing with Clojure, check out the lazy-xml and zip-filter/xml

libraries in clojure-contrib.

4.5 Calling Structure-Specific Functions

Clojure’s sequence functions allow you to write very general code.

Sometimes you will want to be more specific and take advantage of the

characteristics of a specific data structure. Clojure includes functions

that specifically target lists, vectors, maps, structs, and sets.

We will take a quick tour of some of these structure-specific functions

next. For a complete list of structure-specific functions in Clojure, see

the Data Structures section of the Clojure website.4

Functions on Lists

Clojure supports the traditional names peek and pop for retrieving the

first element of a list and the remainder, respectively:

(peek coll)

(pop coll)

Give a simple list a peek and pop:

(peek '(1 2 3))

⇒ 1

(pop '(1 2 3))

⇒ (2 3)

peek is the same as first, but pop is not the same as rest. pop will throw

an exception if the sequence is empty:

(rest ())

⇒ ()

(pop ())

⇒ java.lang.IllegalStateException: Can't pop empty list

4. http://clojure.org/data_structures

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://clojure.org/data_structures
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=133

CALLING STRUCTURE-SPECIFIC FUNCTIONS 134

Functions on Vectors

Vectors also support peek and pop, but they deal with the element at

the end of the vector:

(peek [1 2 3])

⇒ 3

(pop [1 2 3])

⇒ [1 2]

get returns the value at an index or returns nil if the index is outside

the vector:

(get [:a :b :c] 1)

⇒ :b

(get [:a :b :c] 5)

⇒ nil

Vectors are themselves functions. They take an index argument and

return a value, or they throw an exception if the index is out of bounds:

([:a :b :c] 1)

⇒ :b

([:a :b :c] 5)

⇒ java.lang.ArrayIndexOutOfBoundsException: 5

assoc associates a new value with a particular index:

(assoc [0 1 2 3 4] 2 :two)

⇒ [0 1 :two 3 4]

subvec returns a subvector of a vector:

(subvec avec start end?)

If end is not specified, it defaults to the end of the vector:

(subvec [1 2 3 4 5] 3)

⇒ [4 5]

(subvec [1 2 3 4 5] 1 3)

⇒ [2 3]

Of course, you could simulate subvec with a combination of drop and

take:

(take 2 (drop 1 [1 2 3 4 5]))

⇒ (2 3)

The difference is that take and drop are general and can work with any

sequence. On the other hand, subvec is much faster for vectors. When-

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=134

CALLING STRUCTURE-SPECIFIC FUNCTIONS 135

ever a structure-specific function like subvec duplicates functionality

already available in the sequence library, it is probably there for per

formance. The documentation string for functions like subvec includes

performance characteristics.

Functions on Maps

Clojure provides several functions for reading the keys and values in a

map. keys returns a sequence of the keys, and vals returns a sequence

of the values:

(keys map)

(vals map)

Try taking keys and values from a simple map:

(keys {:sundance "spaniel", :darwin "beagle"})

⇒ (:sundance :darwin)

(vals {:sundance "spaniel", :darwin "beagle"})

⇒ ("spaniel" "beagle")

get returns the value for a key or returns nil.

(get map key value-if-not-found?)

Use your REPL to test that get behaves as expected for keys both

present and missing:

(get {:sundance "spaniel", :darwin "beagle"} :darwin)

⇒ "beagle"

(get {:sundance "spaniel", :darwin "beagle"} :snoopy)

⇒ nil

There is an approach even simpler than get. Maps are functions of their

keys. So, you can leave out the get entirely, putting the map in function

position at the beginning of a form:

({:sundance "spaniel", :darwin "beagle"} :darwin)

⇒ "beagle"

({:sundance "spaniel", :darwin "beagle"} :snoopy)

⇒ nil

Keywords are also functions. They take a collection as an argument

and look themselves up in the collection. Since :darwin and :sundance

are keywords, the earlier forms can be written with their elements in

reverse order.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=135

CALLING STRUCTURE-SPECIFIC FUNCTIONS 136

(:darwin {:sundance "spaniel", :darwin "beagle"})

⇒ "beagle"

(:snoopy {:sundance "spaniel", :darwin "beagle"})

⇒ nil

If you look up a key in a map and get nil back, you cannot tell whether

the key was missing from the map or present with a value of nil. The

contains? function solves this problem by testing for the mere presence

of a key.

(contains? map key)

Create a map where nil is a legal value:

(def score {:stu nil :joey 100})

:stu is present, but if you see the nil value, you might not think so:

(:stu score)

⇒ nil

If you use contains?, you can verify that :stu is in the game, although

presumably not doing very well:

(contains? score :stu)

⇒ true

Another approach is to call get, passing in an optional third argument

that will be returned if the key is not found:

(get score :stu :score-not-found)

⇒ nil

(get score :aaron :score-not-found)

⇒ :score-not-found

The default return value of :score-not-found makes it possible to distin

guish that :aaron is not in the map, while :stu is present with a value of

nil.

If nil is a legal value in map, use contains? or the three-argument form

of get to test the presence of a key.

Clojure also provides several functions for building new maps:

• assoc returns a map with a key/value pair added.

• dissoc returns a map with a key removed.

• select-keys returns a map, keeping only the keys passed in.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=136

CALLING STRUCTURE-SPECIFIC FUNCTIONS 137

•	 merge combines maps. If multiple maps contain a key, the right-

most map wins.

To test these functions, create some song data:

Download examples/sequences.clj

(def song {:name "Agnus Dei"

:artist "Krzysztof Penderecki"

:album "Polish Requiem"

:genre "Classical"})

Next, create various modified versions of the song collection:

(assoc song :kind "MPEG Audio File")

⇒	 {:name "Agnus Dei", :album "Polish Requiem",

:kind "MPEG Audio File", :genre "Classical",

:artist "Krzysztof Penderecki"}

(dissoc	 song :genre)

⇒	 {:name "Agnus Dei", :album "Polish Requiem",

:artist "Krzysztof Penderecki"}

(select-keys song [:name :artist])

⇒ {:name "Agnus Dei", :artist "Krzysztof Penderecki"}

(merge song {:size 8118166, :time 507245})

⇒	 {:name "Agnus Dei", :album "Polish Requiem",

:genre "Classical", :size 8118166,

:artist "Krzysztof Penderecki", :time 507245}

Remember that song itself never changes. Each of the functions shown

previously returns a new collection.

The most interesting map construction function is merge-with.

(merge-with merge-fn & maps)

merge-with is like merge, except that when two or more maps have the

same key, you can specify your own function for combining the values

under the key. You can use merge-with and concat to build a sequence

of values under each key:

(merge-with

concat

{:rubble ["Barney"], :flintstone ["Fred"]}

{:rubble ["Betty"], :flintstone ["Wilma"]}

{:rubble ["Bam-Bam"], :flintstone ["Pebbles"]})

⇒	 {:rubble ("Barney" "Betty" "Bam-Bam"),

:flintstone ("Fred" "Wilma" "Pebbles")}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=137

CALLING STRUCTURE-SPECIFIC FUNCTIONS 138

Starting with three distinct collections of family members keyed by last

name, the previous code combines them into a single collection keyed

by last name.

Functions on Sets

In addition to the set functions in the clojure namespace, Clojure pro

vides a group of functions in the clojure.set namespace. To use these

functions with unqualified names, call (use ’clojure.set) from the REPL.

For the following examples, you will also need the following vars:

Download examples/sequences.clj

(def languages #{"java" "c" "d" "clojure"})

(def letters #{"a" "b" "c" "d" "e"})

(def beverages #{"java" "chai" "pop"})

The first group of clojure.set functions perform operations from set the

ory:

•	 union returns the set of all elements present in either input set.

•	 intersection returns the set of all elements present in both input

sets.

•	 difference returns the set of all elements present in the first input

set, minus those in the second.

•	 select returns the set of all elements matching a predicate.

Write an expression that finds the union of all languages and beverages:

(union languages beverages)

⇒ #{"java" "c" "d" "clojure" "chai" "pop"}

Next, try the languages that are not also beverages:

(difference languages beverages)

⇒ #{"c" "d" "clojure"}

If you enjoy terrible puns, you will like the fact that some things are

both languages and beverages:

(intersection languages beverages)

⇒ #{"java"}

A surprising number of languages cannot afford a name larger than a

single character:

(select #(= 1 (.length %)) languages)

⇒ #{"c" "d"}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=138

CALLING STRUCTURE-SPECIFIC FUNCTIONS 139

Relational Algebra Database Clojure Type System

Relation Table Anything set-like

Tuple Row Anything map-like

Figure 4.1: Correspondences between relational algebra, databases,

and the clojure type system

Set union and difference are part of set theory, but they are also part of

relational algebra, which is the basis for query languages such as SQL.

The relational algebra consists of six primitive operators: set union

and set difference (described earlier), plus rename, selection, projec

tion, and cross product.

You can understand the relational primitives by following the anal

ogy with relational databases (see Figure 4.1). The following examples

work against an in-memory database of musical compositions. Load the

database before continuing:

Download examples/sequences.clj

(def compositions

#{{:name "The Art of the Fugue" :composer "J. S. Bach"}

{:name "Musical Offering" :composer "J. S. Bach"}

{:name "Requiem" :composer "Giuseppe Verdi"}

{:name "Requiem" :composer "W. A. Mozart"}})

(def composers

#{{:composer "J. S. Bach" :country "Germany"}

{:composer "W. A. Mozart" :country "Austria"}

{:composer "Giuseppe Verdi" :country "Italy"}})

(def nations

#{{:nation "Germany" :language "German"}

{:nation "Austria" :language "German"}

{:nation "Italy" :language "Italian"}})

The rename function renames keys (“database columns”), based on a

map from original names to new names.

(rename relation rename-map)

Rename the compositions to use a title key instead of name:

(rename compositions {:name :title})

⇒	 #{{:title "Requiem", :composer "Giuseppe Verdi"}

{:title "Musical Offering", :composer "J.S. Bach"}

{:title "Requiem", :composer "W. A. Mozart"}

{:title "The Art of the Fugue", :composer "J.S. Bach"}}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/sequences.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=139

CALLING STRUCTURE-SPECIFIC FUNCTIONS 140

The select function returns maps for which a predicate is true and is

analogous to the WHERE portion of a SQL SELECT:

(select	 pred relation)

Write a select expression that finds all the compositions whose title is

"Requiem":

(select	 #(= (:name %) "Requiem") compositions)

⇒	 #{{:name "Requiem", :composer "W. A. Mozart"}

{:name "Requiem", :composer "Giuseppe Verdi"}}

The project function returns only the portions of the maps that match

a set of keys.

(project	 relation keys)

project is similar to a SQL SELECT that specifies a subset of columns.

Write a projection that returns only the name of the compositions:

(project	 compositions [:name])

⇒	 #{{:name "Musical Offering"}

{:name "Requiem"}

{:name "The Art of the Fugue"}}

The final relational primitive, which is a cross product, is the founda

tion for the various kinds of joins in relational databases. The cross

product returns every possible combination of rows in the different

tables. You can do this easily enough in Clojure with a list compre

hension:

(for [m compositions c composers] (concat m c))

⇒ ... 4 x 3 = 12 rows ...

Although the cross product is theoretically interesting, you will typically

want some subset of the full cross product. For example, you might

want to join sets based on shared keys:

(join relation-1 relation-2 keymap?)

You can join the composition names and composers on the shared key

:composer:

(join compositions composers)

⇒	 #{{:name "Requiem", :country "Austria",

:composer "W. A. Mozart"}

{:name "Musical Offering", :country "Germany",

:composer "J. S. Bach"}

{:name "Requiem", :country "Italy",

:composer "Giuseppe Verdi"}

{:name	 "The Art of the Fugue", :country "Germany",

:composer "J. S. Bach"}}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=140

ADDING PROPERTIES TO LANCET TASKS 141

If the key names in the two relations do not match, you can pass a

keymap that maps the key names in relation-1 to their corresponding

keys in relation-2. For example, you can join composers, which use :coun

try, to nations, which use :nation. For example:

(join composers nations {:country :nation})

⇒	 #{{:language "German", :nation "Austria",

:composer "W. A. Mozart", :country "Austria"}

{:language "German", :nation "Germany",

:composer "J. S. Bach", :country "Germany"}

{:language	 "Italian", :nation "Italy",

:composer "Giuseppe Verdi", :country "Italy"}}

You can combine the relational primitives. Perhaps you want to know

the set of all countries that are home to the composer of a requiem. You

can use select to find all the requiems, join them with their composers,

and project to narrow the results to just the country names:

(project

(join

(select #(= (:name %) "Requiem") compositions)

composers)

[:country])

⇒ #{{:country "Italy"} {:country "Austria"}}

The analogy between Clojure’s relational algebra and a relational data

base is instructive. Remember, though, that Clojure’s relational algebra

is a general-purpose tool. You can use it on any kind of set-relational

data. And while you are using it, you also have the entire power of

Clojure and Java at your disposal. Next, let’s use the sequence library

to improve Lancet’s support for properties on Ant tasks.

4.6 Adding Properties to Lancet Tasks

This section continues the example begun in Section 3.5, Adding Ant

Projects and Tasks to Lancet, on page 105. You will need to start with

the completed code from that previous section, which you can get from

Section 3.5, Lancet Step 1: Ant Projects and Tasks, on page 110.

In step 1, you created an instantiate-task function to automate the instan

tiation and setup of Ant tasks. One thing that instantiate-task does not

yet do is set any properties on an Ant task. You have to call setters in a

separate step, such as calling setMessage:

(def echo-task (instantiate-task ant-project "echo"))

⇒ #'user/echo-task

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=141

ADDING PROPERTIES TO LANCET TASKS 142

(.setMessage echo-task "some message")

⇒ nil

In this section, you will improve instantiate-task to take an additional

argument, a map of properties. That way, you can create a new task in

a single form:

; TODO:	 enable this signature

(instantiate-task ant-project "echo" {:message "hello"})

To handle properties in a generic way, you will need to reflect against

the available properties of a Java object. Java provides this informa

tion via a reflective helper class called the Introspector. From the REPL,

import the Introspector, and use it to getBeanInfo on the Echo class:

(import	 '(java.beans Introspector))

(Introspector/getBeanInfo (class echo-task))

⇒ #<java.beans.GenericBeanInfo@d506900>

So far so good. The GenericBeanInfo instance has a getPropertyDescriptors

that will return property information for every available property. Using

the *1 special variable, dig into the previous result, and pull out the

property descriptors:

(.getPropertyDescriptors *1)

⇒ #<[Ljava.beans.PropertyDescriptor;@4c3b55a5>

The [L prefix is the Java toString() form for an array, so now you have

something seq-able to work with. You are going to use this object sev

eral times, so stuff it into a var named prop-descs:

(def prop-descs *1)

⇒ #'user/prop-descs

Now you have all of the sequence library at your disposal to explore the

sequence. Use count to find out how many properties an echo task has:

(count prop-descs)

⇒ 13

Use first and bean to examine the first property descriptor in more detail:

; output reformatted and elided

(bean (first prop-descs))

⇒	 {:class #=java.beans.PropertyDescriptor,

:writeMethod ...,

:name ...,

:displayName ...,

:constrained ...,

:propertyEditorClass ...,

:readMethod ...,

:preferred ...,

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=142

ADDING PROPERTIES TO LANCET TASKS 143

:expert ...,

:hidden ...,

:propertyType ...,

:bound ...,

:shortDescription ...}

Most of the bean properties are rarely used, and in this section Lancet

will need only name (to find a property) and writeMethod (to set it).

Using the Introspector API, plus the sequence library’s filter function, you

can write a property-descriptor function that takes a Java instance and a

property name and returns a property descriptor:

Download lancet/step_2_repl.clj

(import '(java.beans Introspector))

(defn property-descriptor [inst prop-name]

(first

(filter #(= (name prop-name) (.getName %))

(.getPropertyDescriptors

(Introspector/getBeanInfo (class inst))))))

I prefer to use keywords for names, so the call to (name prop-name) con

verts a prop-name keyword to a string, which is what Java will expect.

The filter finds only those property descriptors whose name matches

prop-name. There can be only one such property, since Java objects

cannot have two properties with the same name. Test property-descriptor

against echo’s message property:

(bean (property-descriptor echo-task :message))

⇒	 {:class #=java.beans.PropertyDescriptor,

:writeMethod #<public void Echo.setMessage(java.lang.String)>,

:name "message",

... lots of other properties ...}

With property-descriptor in place, it is easy work to create a set-property!

function that sets a property to a new value:

Download lancet/step_2_repl.clj

Line 1 (use '[clojure.contrib.except :only (throw-if)])
2 (defn set-property! [inst prop value]
3 (let [pd (property-descriptor inst prop)]
4 (throw-if (nil? pd) (str "No such property " prop))
5 (.invoke (.getWriteMethod pd) inst (into-array [value]))))

Line 3 binds pd to a property descriptor, calling the property-descriptor

you wrote previously. Line 4 provides a helpful error message if the

property does not exist.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_2_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_2_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=143

ADDING PROPERTIES TO LANCET TASKS 144

Line 5 invokes the write method for the property. Because Java’s meth

od invoke requires a Java array, not a Clojure sequence, you use into-

array to perform a conversion.

Test that you can actually set echo-task’s message property:

(set-property! echo-task :message "a new message!")

⇒ nil

(.execute echo-task)

| [echo] a new message!

⇒ nil

Now you can build a set-properties! that takes a map of property name/

property value pairs and invokes set-property! once for each pair. But

hold on for just a second. All this talk of invocation sounds very much

like the mutable, imperative world of Java, not the immutable, func

tional world of Clojure. That is because you are interoperating with

Ant, which is a mutable, imperative Java API, full of side effects.

Clojure forms that deal with side effects are often prefixed with do,

and in fact there is a do-family macro made to order for this situation:

doseq:

(doseq bindings & body)

doseq repeatedly executes its body, with the same bindings and filtering

as a list comprehension. Using doseq, implement set-properties! thusly:

Download lancet/step_2_repl.clj

(defn set-properties! [inst prop-map]

(doseq [[k v] prop-map] (set-property! inst k v)))

Notice how destructuring simplifies this function definition by allowing

you to destructure each key/value pair directly into bindings k and v.

Test set-properties!, using your old friend echo-task:

(set-properties! echo-task {:message "yet another message"})

⇒ nil

(.execute echo-task)

| [echo] yet another message

⇒ nil

With set-properties! in place, you are now ready to enhance the instantiate

task function you wrote in Section 3.5, Adding Ant Projects and Tasks to

Lancet, on page 105.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_2_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=144

ADDING PROPERTIES TO LANCET TASKS 145

Create a new version of instantiate-task that takes an additional props

argument and uses it to set the task’s properties:

Download lancet/step_2_repl.clj

(defn instantiate-task [project name props]

(let [task (.createTask project name)]

(throw-if (nil? task) (str "No task named " name))

(doto task

(.init)

(.setProject project)

(set-properties! props))

task))

To test instantiate-task, create a new var echo-with-msg that binds to a

fully configured echo, and verify that it executes correctly:

(def echo-with-msg

(instantiate-task ant-project "echo" {:message "hello"}))

⇒ #'user/echo-with-msg

(.execute echo-with-msg)

| [echo] hello

⇒ nil

The completed code for this section is listed at the very end of the

chapter. Note that many of the functions you built in this section are

not Ant-specific. property-descriptor, set-property!, and set-properties! are

generic and can work with any Java object model. There are plenty of

Java libraries other than Ant suffering from tedious XML configuration.

Using the generic code you have written here, be an open source hero

and give a Java library a Clojure DSL that is easier to use.

Lancet Step 2: Setting Properties

Download lancet/step_2_complete.clj

(ns lancet.step-2-complete

(:use clojure.contrib.except)

(:import (java.beans Introspector)))

(def

#^{:doc "Dummy ant project to keep Ant tasks happy"}

ant-project

(let [proj (org.apache.tools.ant.Project.)

logger (org.apache.tools.ant.NoBannerLogger.)]

(doto logger

(.setMessageOutputLevel org.apache.tools.ant.Project/MSG_INFO)

(.setOutputPrintStream System/out)

(.setErrorPrintStream System/err))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_2_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_2_complete.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=145

WRAPPING UP 146

(doto proj

(.init)

(.addBuildListener logger))))

(defn property-descriptor [inst prop-name]

(first

(filter #(= (name prop-name) (.getName %))

(.getPropertyDescriptors

(Introspector/getBeanInfo (class inst))))))

(defn set-property! [inst prop value]

(let [pd (property-descriptor inst prop)]

(throw-if (nil? pd) (str "No such property " prop))

(.invoke (.getWriteMethod pd) inst (into-array [value]))))

(defn set-properties! [inst prop-map]

(doseq [[k v] prop-map] (set-property! inst k v)))

(defn instantiate-task [project name props]

(let [task (.createTask project name)]

(throw-if (nil? task) (str "No task named " name))

(doto task

(.init)

(.setProject project)

(set-properties! props))

task))

4.7 Wrapping Up

Clojure unifies all kinds of collections under a single abstraction, the

sequence. After more than a decade dominated by object-oriented pro

gramming, Clojure’s sequence library is the “Revenge of the Verbs.”

Clojure’s sequences are implemented using functional programming

techniques: immutable data, recursive definition, and lazy realization.

In the next chapter, you will see how to use these techniques directly,

further expanding the power of Clojure.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=146

Chapter 5

Functional Programming
Functional programming (FP) is a big topic, not to be learned in twenty

one days1 or in a single chapter of a book. Nevertheless, it is possible to

reach a first level of effectiveness using lazy and recursive techniques

in Clojure fairly quickly, and that is the goal of this chapter.

The chapter is organized as follows:

•	 Section 5.1, Functional Programming Concepts, on the next page

begins with a quick overview of FP terms and concepts. This sec

tion also introduces the “Six Rules of Clojure FP” that we will refer

to throughout the chapter.

•	 Section 5.2, How to Be Lazy, on page 152 demonstrates the power

of lazy sequences. You will create several implementations of the

Fibonacci numbers, starting with a terrible approach and improv

ing it to an elegant, lazy solution.

•	 As cool as lazy sequences are, you rarely need to work with them

directly. Section 5.3, Lazier Than Lazy, on page 160 shows how

to rethink problems so that they can be solved directly using

the sequence library described in Chapter 4, Unifying Data with

Sequences, on page 111.

•	 Section 5.4, Recursion Revisited, on page 167 explores advanced

issues. Some programmers will never need the techniques dis

cussed here. If you are new to FP, it is OK to skip this section.

1. http://norvig.com/21-days.html

Prepared exclusively for WG Custom Motorcycles

http://norvig.com/21-days.html

FUNCTIONAL PROGRAMMING CONCEPTS 148

5.1 Functional Programming Concepts

Functional programming leads to code that is easier to write, read, test,

and reuse. Here’s how it works.

Pure Functions

Programs are built out of pure functions. A pure function has no side

effects; that is, it does not depend on anything but its arguments, and

its only influence on the outside world is through its return value.

Mathematical functions are pure functions. Two plus two is four, no

matter where and when you ask. Also, asking doesn’t do anything other

than return the answer.

Program output is decidedly impure. For example, when you println, you

change the outside world by pushing data onto an output stream. Also,

the results of println depend on state outside the function: the standard

output stream might be redirected, closed, or broken.

If you start writing pure functions, you will quickly realize that pure

functions and immutable data go hand in hand. Consider the following

mystery function:

(defn mystery [input]

(if input data-1 data-2))

If mystery is a pure function, then regardless of what it does, data-1 and

data-2 have to be immutable! Otherwise, changes to the data would

cause the function to return different values for the same input.

A single piece of mutable data can ruin the game, rendering an entire

call chain of functions impure. So, once you make a commitment to

writing pure functions, you end up using immutable data in large sec

tions of your application.

Persistent Data Structures

Immutable data is critical to Clojure’s approach to both FP and concur

rency. On the FP side, pure functions cannot have side effects, such

as updating the state of a mutable object. On the concurrency side,

Clojure’s concurrency primitives require immutable data structures to

implement their thread-safety guarantees.

The fly in the ointment is performance. When all data is immutable,

“update” translates into “create a copy of the original data, plus my

changes.” This will use up memory quickly! Imagine that you have an

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=148

FUNCTIONAL PROGRAMMING CONCEPTS 149

address book that takes up 5MB of memory. Then, you make five small

updates. With a mutable address book, you are still consuming about

5MB of memory. But if you have to copy the whole address book for

each update, then an immutable version would balloon to 25MB!

Clojure’s data structures do not take this naive “copy everything” ap

proach. Instead, all Clojure data structures are persistent. In this con

text, persistent means that the data structures preserve old copies of

themselves by efficiently sharing structure between older and newer ver

sions.

Structural sharing is easiest to visualize with a list. Consider list a with

two elements:

(def a '(1 2))

⇒ #'user/a

Then, from a you can create a b with an additional element added:

(def b (cons 0 a))

⇒ #'user/b

b is able to reuse all of a’s structure, rather than having its own private

copy:

b a

0 1 2

All of Clojure’s data structures share structure where possible. For

structures other than simple lists, the mechanics are more complex,

of course. If you are interested in the details, check out the following

articles:

•	 “Ideal Hash Trees”2 by Phil Bagwell

•	 “Understanding Clojure’s PersistentVector Implementation”3 by

Karl Krukow

Laziness and Recursion

Functional programs make heavy use of recursion and laziness. A re

cursion occurs when a function calls itself, either directly or indirectly.

Laziness is when an expression’s evaluation is postponed until it is

2. http://lamp.epfl.ch/papers/idealhashtrees.pdf

3. http://tinyurl.com/clojure-persistent-vector

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://lamp.epfl.ch/papers/idealhashtrees.pdf
http://tinyurl.com/clojure-persistent-vector
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=149

FUNCTIONAL PROGRAMMING CONCEPTS 150

actually needed. Evaluating a lazy expression is called realizing the

expression.

In Clojure, functions and expressions are not lazy. However, sequences

are generally lazy. Because so much Clojure programming is sequence

manipulation, you get many of the benefits of a fully lazy language.

In particular, you can build complex expressions using lazy sequences

and then pay only for the elements you actually need.

Lazy techniques imply pure functions. You never have to worry about

when to call a pure function, since it always returns the same thing.

Impure functions, on the other hand, do not play well with lazy tech

niques. As a programmer you must explicitly control when an impure

function is called, because if you call it at some other time, it may

behave differently!

Referential Transparency

Laziness depends on the ability to replace a function call with its result

at any time. Functions that have this ability are called referentially

transparent, because calls to such functions can be replaced without

affecting the behavior of the program. In addition to laziness, referen

tially transparent functions can also benefit from the following:

•	 Memoization, automatic caching of results

•	 Automatic parallelization, moving function evaluation to another

processor or machine

Pure functions are referentially transparent by definition. Most other

functions are not referentially transparent, and those that are must be

proven safe by code review.

Benefits of FP

Well, that is a lot of terminology, and I promised it would make your

code easier to write, read, test, and compose. Here’s how.

Functional code is easier to write because the relevant information is

right in front of you, in a function’s argument list. You do not have to

worry about global scope, session scope, application scope, or thread

scope. Functional code is easier to read for exactly the same reason.

Code that is easier to read and write is going to be easier to test, but

functional code brings an additional benefit for testing. As projects get

large, it often takes a lot of effort to set up the right environment to

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=150

FUNCTIONAL PROGRAMMING CONCEPTS 151

execute a test. This is much less of a problem with functional code,

because there is no relevant environment beyond the function’s argu

ments.

Functional code improves reuse. In order to reuse code, you must be

able to do the following:

• Find and understand a piece of useful code.

• Compose the reusable code with other code.

The readability of functional code helps you find and understand the

functions you need, but the benefit for composing code is even more

compelling.

Composability is a hard problem. For years programmers have used

encapsulation to try to create composable code. Encapsulation creates

a firewall, providing access to data only through a public API.

Encapsulation helps, but it is nowhere near enough. Even with encap

sulated objects, there are far too many surprising interactions when

you try to compose entire systems. The problem is those darn side

effects. Impure functions violate encapsulation, because they let the out

side world reach in (invisibly!) and change the behavior of your code.

Pure functions, on the other hand, are truly encapsulated and compos

able. Put them anywhere you want in a system, and they will always

behave in the same way.

The Six Rules

Although the benefits of FP are compelling, FP is a wholesale change

from the imperative programming style that dominates much of the

programming world today. Plus, Clojure takes a unique approach to

FP that strikes a balance between academic purity and the reality of

running well on the JVM. That means there is a lot to learn all at once.

But fear not. If you are new to FP, the following “Six Rules of Clojure

FP” will help you on your initial steps toward FP mastery, Clojure style:

1. Avoid direct recursion. The JVM cannot optimize recursive calls,

and Clojure programs that recurse will blow their stack.

2. Use recur when you are producing scalar values or small, fixed

sequences. Clojure will optimize calls that use an explicit recur.

3. When producing large or variable-sized sequences, always be lazy.

(Do not recur.) Then, your callers can consume just the part of the

sequence they actually need.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=151

HOW TO BE LAZY 152

4. Be careful not to realize more of a lazy sequence than you need.

5. Know the sequence library. You can often write code without using

recur or the lazy APIs at all.

6. Subdivide. Divide even simple-seeming problems into smaller

pieces, and you will often find solutions in the sequence library

that lead to more general, reusable code.

Rules 5 and 6 are particularly important. If you are new to FP, you can

translate these two rules to this: “Ignore this chapter and just use the

techniques in Chapter 4, Unifying Data with Sequences, on page 111

until you hit a wall.”

Like most rules, the six rules are guidelines, not absolutes. As you

become comfortable with FP, you will find reasons to break them.

Now, let’s get started writing functional code.

5.2 How to Be Lazy

Functional programs make great use of recursive definitions. A recur

sive definition consists of two parts:

•	 A basis, which explicitly enumerates some members of the

sequence

•	 An induction, which provides rules for combining members of the

sequence to produce additional members

Our challenge in this section is converting a recursive definition into

working code. There are many ways you might do this:

•	 A simple recursion, using a function that calls itself in some way

to implement the induction step.

•	 A tail recursion, using a function only calling itself at the tail end

of its execution. Tail recursion enables an important optimization.

•	 A lazy sequence that eliminates actual recursion and calculates a

value later, when it is needed.

Choosing the right approach is important. Implementing a recursive

definition poorly can lead to code that performs terribly, consumes all

available stack and fails, consumes all available heap and fails, or does

all of these. In Clojure, being lazy is often the right approach.

We will explore all of these approaches by applying them to the Fibonac

ci numbers. Named for the Italian mathematician Leonardo (Fibonacci)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=152

HOW TO BE LAZY 153

of Pisa (c.1170 – c.1250), the Fibonacci numbers were actually known

to Indian mathematicians as far back as 200 BC. The Fibonacci num

bers have many interesting properties, and they crop up again and

again in algorithms, data structures, and even biology.4 The Fibonaccis

have a very simple recursive definition:

•	 Basis: F0, the zeroth Fibonacci number, is zero. F1, the first Fibo

nacci number, is one.

•	 Induction: For n > 1, Fn equals Fn−1+Fn−2.

Using this definition, the first ten Fibonacci numbers are as follows:

(0 1 1 2 3 5 8 13 21 34)

Let’s begin by implementing the Fibonaccis using a simple recursion.

The following Clojure function will return the nth Fibonacci number:

Download examples/functional.clj

Line 1 ; bad idea
2 (defn stack-consuming-fibo [n]
3 (cond
4 (= n 0) 0
5 (= n 1) 1
6 :else (+ (stack-consuming-fibo (- n 1))
7 (stack-consuming-fibo (- n 2)))))

Lines 4 and 5 define the basis, and line 6 defines the induction. The

implementation is recursive because stack-consuming-fibo calls itself on

lines 6 and 7.

Test that stack-consuming-fibo works correctly for small values of n:

(stack-consuming-fibo 9)

⇒ 34

Good so far, but there is a problem calculating larger Fibonacci num

bers such as F1000000:

(stack-consuming-fibo 1000000)

⇒ java.lang.StackOverflowError

Because of the recursion, each call to stack-consuming-fibo for n > 1

begets two more calls to stack-consuming-fibo. At the JVM level, these

calls are translated into method calls, each of which allocates a data

structure called a stack frame.5

4. http://en.wikipedia.org/wiki/Fibonacci_number

5. For more on how the JVM manages its stack, see “Runtime Data Areas” at

http://tinyurl.com/jvm-spec-toc.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://en.wikipedia.org/wiki/Fibonacci_number
http://tinyurl.com/jvm-spec-toc
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=153

HOW TO BE LAZY 154

The stack-consuming-fibo creates a number of stack frames proportional

to n, which quickly exhausts the JVM stack and causes the StackOver

flowError shown earlier.

Clojure function calls are designated as stack-consuming because they

allocate stack frames that use up stack space. In Clojure, you should

almost always avoid stack-consuming recursion as shown in stack-

consuming-fibo.

Tail Recursion

Functional programs can solve the stack-usage problem with tail recur

sion. A tail-recursive function is still defined recursively, but the recur

sion must come at the tail, that is, at an expression that is a return

value of the function. Languages can then perform tail-call optimization

(TCO), converting tail recursions into iterations that do not consume

the stack.

The stack-consuming-fibo definition of Fibonacci is not tail-recursive, be

cause it calls add (+) after both calls to stack-consuming-fibo. To make

fibo tail-recursive, you must create a function whose arguments carry

enough information to move the induction forward, without any extra

“after” work (like an addition) that would push the recursion out of the

tail position. For fibo, such a function needs to know two Fibonacci

numbers, plus an ordinal n that can count down to zero as new Fibo

naccis are calculated. You can write tail-fibo thusly:

Download examples/functional.clj

Line 1

2

3

4

5

6

7

(defn tail-fibo [n]

(letfn [(fib

[current next n]

(if (zero? n)

current

(fib next (+ current next)

(fib 0 1 n)))

(dec n))))]

Line 2 introduces the letfn macro:

(letfn fnspecs & body)

; fnspecs ==> (fname [params*] exprs)+

letfn is like let but is dedicated to letting local functions. Each function

declared in a letfn can call itself, or any other function in the same

letfn block. Line 3 declares that fib has three arguments: the current

Fibonacci, the next Fibonacci, and the number n of steps remaining.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=154

HOW TO BE LAZY 155

Line 5 returns current when there are no steps remaining, and line 6

continues the calculation, decrementing the remaining steps by one.

Finally, line 7 kicks off the recursion with the basis values 0 and 1,

plus the ordinal n of the Fibonacci we are looking for.

tail-fibo works for small values of n:

(tail-fibo 9)

⇒ 34

But even though it is tail-recursive, it still fails for large n:

(tail-fibo 1000000)

⇒ java.lang.StackOverflowErrow

The problem here is the JVM. While functional languages such as Has

kell can perform TCO, the JVM was not designed for functional lan

guages. No language that runs directly on the JVM can perform auto

matic TCO.6

The absence of TCO is unfortunate but not a showstopper for functional

programs. Clojure provides several pragmatic workarounds: explicit

self-recursion with recur, lazy sequences, and explicit mutual recursion

with trampoline.

Self-recursion with recur

One special case of recursion that can be optimized away on the JVM

is a self-recursion. Fortunately, the tail-fibo is an example: it calls itself

directly, not through some series of intermediate functions.

In Clojure, you can convert a function that tail calls itself into an explicit

self-recursion with recur. Using this approach, convert tail-fibo into recur

fibo:

Download examples/functional.clj

Line 1 ; better but not great
2 (defn recur-fibo [n]
3 (letfn [(fib
4 [current next n]
5 (if (zero? n)
6 current
7 (recur next (+ current next) (dec n))))]
8 (fib 0 1 n)))

6. On today’s JVMs, languages can provide automatic TCO for some kinds of recursion

but not for all. Since there is no general solution, Clojure forces you to be explicit. When

and if general TCO becomes widely supported on the JVM, Clojure will support it as well.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=155

HOW TO BE LAZY 156

The critical difference between tail-fibo and recur-fibo is on line 7, where

recur replaces the call to fib.

The recur-fibo will not consume stack as it calculates Fibonacci numbers

and can calculate Fn for large n if you have the patience:

(recur-fibo 9)

⇒ 34

(recur-fibo 1000000)

⇒ 195 ... 208,982 other digits ... 875

The complete value of F1000000 is included in the sample code at output/f

1000000.

The recur-fibo calculates one Fibonacci number. But what if you want

several? Calling recur-fibo multiple times would be wasteful, since none

of the work from any call to recur-fibo is ever cached for the next call.

But how many values should be cached? Which ones? These choices

should be made by the caller of the function, not the implementer.

Ideally you would define sequences with an API that makes no reference

to the specific range that a particular client cares about and then let

clients pull the range they want with take and drop. This is exactly what

lazy sequences provide.

Lazy Sequences

Lazy sequences are constructed using the macro lazy-seq:

(lazy-seq & body)

A lazy-seq will invoke its body only when needed, that is, when seq is

called directly or indirectly. lazy-seq will then cache the result for sub

sequent calls. You can use lazy-seq to define a lazy Fibonacci series as

follows:

Download examples/functional.clj

Line 1 (defn lazy-seq-fibo
2 ([]
3 (concat [0 1] (lazy-seq-fibo 0 1)))
4 ([a b]
5 (let [n (+ a b)]
6 (lazy-seq
7 (cons n (lazy-seq-fibo b n))))))

On line 3, the zero-argument body returns the concatenation of the

basis values [0 1] and then calls the two-argument body to calculate the

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=156

HOW TO BE LAZY 157

rest of the values. On line 5, the two-argument body calculates the next

value n in the series, and on line 7 it conses n onto the rest of the values.

The key is line 6, which makes its body lazy. Without this, the recursive

call to lazy-seq-fibo on line 7 would happen immediately, and lazy-seq-fibo

would recurse until it blew the stack. This illustrates the general pat

tern: wrap the recursive part of a function body with lazy-seq to replace

recursion with laziness.

lazy-seq-fibo works for small values:

(take 10 (lazy-seq-fibo))

⇒ (0 1 1 2 3 5 8 13 21 34)

lazy-seq-fibo also works for large values. Use (rem ... 1000) to print only

the last three digits of the one millionth Fibonacci number:

(rem (nth (lazy-seq-fibo) 1000000) 1000)

⇒ 875

The lazy-seq-fibo approach follows rule 3, using laziness to implement an

infinite sequence. But as is often the case, you do not need to explicitly

call lazy-seq yourself. By rule 5, you can reuse existing sequence library

functions that return lazy sequences. Consider this use of iterate:

(take 5 (iterate (fn [[a b]] [b (+ a b)]) [0 1]))

⇒ ([0 1] [1 1] [1 2] [2 3] [3 5])

The iterate begins with the first pair of Fibonacci numbers [0 1]. By work

ing pairwise, it then calculates the Fibonaccis by carrying along just

enough information (two values) to calculate the next value.

The Fibonaccis are simply the first value of each pair. They can be

extracted by calling map first over the entire sequence, leading to the

following definition of fibo suggested by Christophe Grand:

Download examples/functional.clj

(defn fibo []

(map first (iterate (fn [[a b]] [b (+ a b)]) [0 1])))

fibo returns a lazy sequence because it builds on map and iterate, which

themselves return lazy sequences. fibo is also simple. fibo is the short

est implementation we have seen so far. But if you are accustomed

to writing imperative, looping code, correctly choosing fibo over other

approaches may not seem simple at all! Learning to think recursively,

lazily, and within the JVM’s limitations on recursion—all at the same

time—can be intimidating. Let the rules help you. The Fibonacci num

bers are infinite: rule 3 correctly predicts that the right approach in

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=157

HOW TO BE LAZY 158

Clojure will be a lazy sequence, and rule 5 lets the existing sequence

functions do most of the work.

Lazy definitions consume some stack and heap. But they do not con

sume resources proportional to the size of an entire (possibly infinite!)

sequence. Instead, you choose how many resources to consume when

you traverse the sequence. If you want the one millionth Fibonacci

number, you can get it from fibo, without having to consume stack or

heap space for all the previous values.

There is no such thing as a free lunch. But with lazy sequences, you

can have an infinite menu and pay only for the menu items you are

eating at a given moment. When writing Clojure programs, you should

prefer lazy sequences over loop/recur for any sequence that varies in

size and for any large sequence.

Coming to Realization

Lazy sequences consume significant resources only as they are realized,

that is, as a portion of the sequence is actually instantiated in memory.

Clojure works hard to be lazy and avoid realizing sequences until it is

absolutely necessary. For example, take returns a lazy sequence and

does no realization at all. You can see this by creating a var to hold,

say, the first billion Fibonacci numbers:

(def lots-o-fibs (take 1000000000 (fibo)))

⇒ #'user/lots-o-fibs

The creation of lots-o-fibs returns almost immediately, because it does

almost nothing. If you ever call a function that needs to actually use

some values in lots-o-fibs, Clojure will calculate them. Even then, it will

do only what is necessary. For example, the following will return the

100th Fibonacci number from lots-o-fibs, without calculating the millions

of other numbers that lots-o-fibs promises to provide:

(nth lots-o-fibs 100)

⇒ 354224848179261915075

Most sequence functions return lazy sequences. If you are not sure

whether a function returns a lazy sequence, the function’s documenta

tion string typically will tell you the answer:

(doc take)

clojure.core/take

([n coll])

Returns a lazy seq of the first n items in coll, or all items if

there are fewer than n.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=158

HOW TO BE LAZY 159

The REPL, however, is not lazy. The printer used by the REPL will, by

default, print the entirety of a collection. That is why we stuffed the

first billion Fibonaccis into lots-o-fibs, instead of evaluating them at the

REPL. Don’t enter the following at the REPL:

; don't do this

(take 1000000000 (fibo))

If you enter the previous expression, the printer will attempt to print

a billion Fibonacci numbers, realizing the entire collection as it goes.

You will probably get bored and exit the REPL before Clojure runs out

of memory.

As a convenience for working with lazy sequences, you can configure

how many items the printer will print by setting the value of *print

length*:

(set! *print-length* 10)

⇒ 10

For collections with more than ten items, the printer will now print only

the first ten followed by an ellipsis. So, you can safely print a billion

fibos:

(take 1000000000 (fibo))

⇒ (0 1 1 2 3 5 8 13 21 34 ...)

Or even all the fibos:

(fibo)

⇒ (0 1 1 2 3 5 8 13 21 34 ...)

Lazy sequences are wonderful. They do only what is needed, and for

the most part you don’t have to worry about them. If you ever want to

force a sequence to be fully realized, you can use either doall or dorun,

discussed in Section 4.3, Forcing Sequences, on page 126.

Losing Your Head

There is one last thing to consider when working with lazy sequences.

Lazy sequences let you define a large (possibly infinite) sequence and

then work with a small part of that sequence in memory at a given

moment. This clever ploy will fail if you (or some API) unintentionally

hold a reference to the part of the sequence you no longer care about.

The most common way this can happen is if you accidentally hold the

head (first item) of a sequence. In the examples in the previous sec

tions, each variant of the Fibonacci numbers was defined as a function

returning a sequence, not the sequence itself.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=159

LAZIER THAN LAZY 160

You could define the sequence directly as a top-level var:

Download examples/functional.clj

; holds the head (avoid!)

(def head-fibo (lazy-cat [0 1] (map + head-fibo (rest head-fibo))))

This definition uses lazy-cat, which is like concat except that the argu

ments are evaluated only when needed. This is a very pretty definition

in that it defines the recursion by mapping a sum over (each element of

the Fibonaccis) and (each element of the rest of the Fibonaccis).

head-fibo works great for small Fibonacci numbers:

(take 10 head-fibo)

⇒ (0 1 1 2 3 5 8 13 21 34)

but not so well for huge ones:

(nth head-fibo 1000000)

⇒ java.lang.OutOfMemoryError: Java heap space

The problem is that the top-level var head-fibo holds the head of the

collection. This prevents the garbage collector from reclaiming elements

of the sequence after you have moved past those elements. So, any part

of the Fibonacci sequence that you actually use gets cached for the life

of the value referenced by head-fibo, which is likely to be the life of the

program.

Unless you want to cache a sequence as you traverse it, you must be

careful not to keep a reference to the head of the sequence. As the head

fibo example demonstrates, you should normally expose lazy sequences

as a function that returns the sequence, not as a var that contains the

sequence. If a caller of your function wants an explicit cache, the caller

can always create its own var.

With lazy sequences, losing your head is often a good idea.

5.3 Lazier Than Lazy

Clojure’s lazy sequences are a great form of laziness at the language

level. As a programmer, you can be even lazier by finding solutions

that do not require explicit sequence manipulation at all. You can often

combine existing sequence functions to solve a problem, without having

to get your hands dirty at the level of recur or lazy sequences at all.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=160

LAZIER THAN LAZY 161

As an example of this, you will implement several solutions to the fol

lowing problem.7 You are given a sequence of coin toss results, where

heads is :h and tails is :t:

[:h :t :t :h :h :h]

How many times in the sequence does heads come up twice in a row? In

the previous example, the answer is two. Toss 3 and 4 are both heads,

and toss 4 and 5 are both heads.

The sequence of coin tosses might be very large, but it will be finite.

Since you are looking for a scalar answer (a count), by rule 2 it is

acceptable to use recur:

Download examples/functional.clj

Line 1 (defn count-heads-pairs [coll]
2 (loop [cnt 0 coll coll]
3 (if (empty? coll)
4 cnt
5 (recur (if (= :h (first coll) (second coll))
6 (inc cnt)
7 cnt)
8 (rest coll)))))

Since the purpose of the function is to count something, the loop intro

duces a cnt binding, initially zero on line 2. The loop also introduces its

own binding for the coll so that we can shrink the coll each time through

the recur.

Line 3 provides the basis for the recurrence. If a sequence of coins

tosses is empty, it certainly has zero runs of two heads in a row.

Line 5 is the meat of the function, incrementing the cnt by one if the first

and second items of coll are both heads (:h).

Try a few inputs to see that count-heads-pairs works as advertised:

(count-heads-pairs [:h :h :h :t :h])

⇒ 2

(count-heads-pairs [:h :t :h :t :h])

⇒ 0

Although count-heads-pairs works, it fails as code prose. The key notion

of “two in a rowness” is completely obscured by the boilerplate for

7. Hat tip to Jeff Brown, who posed this problem over breakfast at a No Fluff, Just Stuff

symposium.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=161

LAZIER THAN LAZY 162

loop/recur. To fix this, you will need to use rules 5 and 6, subdivid

ing the problem to take advantage of Clojure’s sequence library.

The first problem you will encounter is that almost all the sequence

functions do something to each element in a sequence in turn. This

doesn’t help us at all, since we want to look at each element in the

context of its immediate neighbors. So, let’s transform the sequence.

When you see this:

[:h :t :t :h :h :h]

you should mentally translate that into a sequence of every adjacent

pair:

[[:h :t] [:t :t] [:t :h] [:h :h] [:h :h]]

Write a function named by-pairs that performs this transformation. Be

cause the output of by-pairs varies based on the size of its input, by rule

3 you should build this sequence lazily:

Download examples/functional.clj

Line 1 ; overly complex, better approaches follow...
2 (defn by-pairs [coll]
3 (let [take-pair (fn [c]
4 (when (next c) (take 2 c)))]
5 (lazy-seq
6 (when-let [pair (seq (take-pair coll))]
7 (cons pair (by-pairs (rest coll)))))))

Line 3 defines a function that takes the first pair of elements from the

collection. Line 5 ensures that the recursion is evaluated lazily. Line 6

is a conditional: if the next pair does not actually contain two elements,

we must be (almost) at the end of the list, and we implicitly terminate.

If we did get two elements, then on line 7 we continue building the

sequence by consing our pair onto the pairs to be had from the rest of

the collection.

Check that by-pairs works:

(by-pairs [:h :t :t :h :h :h])

⇒ ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

Now that you can think of the coin tosses as a sequence of pairs of

results, it is easy to describe count-heads-pairs in English:

“Count the pairs of results that are all heads.”

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=162

LAZIER THAN LAZY 163

This English description translates directly into existing sequence libra

ry functions: “Count” is count, of course, and “that are all heads” sug

gests a filter:

Download examples/functional.clj

(defn count-heads-pairs [coll]

(count (filter (fn [pair] (every? #(= :h %) pair))

(by-pairs coll))))

This is much more expressive than the recur-based implementation,

and it makes clear that we are counting all the adjacent pairs of heads.

But we can make things even simpler. Clojure already has a more gen

eral version of by-pairs named partition:

(partition size step? coll)

partition breaks a collection into chunks of size size. So, you could break

a heads/tails vector into a sequence of pairs:

(partition 2 [:h :t :t :h :h :h])

⇒ ((:h :t) (:t :h) (:h :h))

That isn’t quite the same as by-pairs, which yields overlapping pairs.

But partition can do overlaps too. The optional step argument deter

mines how far partition moves down the collection before starting its

next chunk. If not specified, step is the same as size. To make partition

work like by-pairs, set size to 2 and step to 1:

(partition 2 1 [:h :t :t :h :h :h])

⇒ ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

(by-pairs [:h :t :t :h :h :h])

⇒ ((:h :t) (:t :t) (:t :h) (:h :h) (:h :h))

Another possible area of improvement is the count/filter idiom used to

count the pairs that are both heads. This combination comes up often

enough that it is worth encapsulating in a count-if function:

Download examples/functional.clj

(use '[clojure.contrib.def :only (defvar)])

(defvar count-if (comp count filter) "Count items matching a filter")

The definition of count-if introduces two new forms. defvar is a con

venience wrapper around def and is described in the sidebar on the

following page. comp is used to compose two or more functions:

(comp f & fs)

The composed function is a new function that applies the rightmost

function to its arguments, the next-rightmost function to that result,

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=163

LAZIER THAN LAZY 164

Faces of def

Throughout the book you will use various def forms to create
vars, such as defn, defmacro, and defmulti. These forms are all
eventually wrappers around the def special form.

A number of other def variants are less often used but still worth
knowing. defvar provides a convenient way to add a documen
tation string to a var:

(clojure.contrib.def/defvar a-symbol initial-value? docstring?)

defonce ensures that a var exists and sets the root binding for
the var only if it is not already set :

(defonce a-symbol initial-value?)

defhinted will create a var and set its type information based on
the initial value of the var:

(clojure.contrib.def/defhinted a-symbol initial-value?)

defn- works just like defn but yields a private function that is
accessible only in the namespace where it was defined.

(defn name & args-as-for-defn)

Many other def forms also have dash-suffixed variants that are
private.

For more def variants, see the source code for clojure.contrib.def.

and so on. So, count-if will first filter and then count the results of the

filter:

(count-if odd? [1 2 3 4 5])

⇒ 3

Finally, you can use count-if and partition to create a count-runs function

that is more general than count-heads-pairs:

Download examples/functional.clj

(defn

count-runs

"Count runs of length n where pred is true in coll."

[n pred coll]

(count-if #(every? pred %) (partition n 1 coll)))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=164

LAZIER THAN LAZY 165

count-runs is a winning combination: both simpler and more general

than the previous versions of count-heads-pairs. You can use it to count

pairs of heads:

(count-runs 2 #(= % :h) [:h :t :t :h :h :h])

⇒ 2

But you can just as easily use it to count pairs of tails:

(count-runs 2 #(= % :t) [:h :t :t :h :h :h])

⇒ 1

Or, instead of pairs, how about runs of three heads in a row?

(count-runs 3 #(= % :h) [:h :t :t :h :h :h])

⇒ 1

If you still want to have a function named count-heads-pairs, you can

implement it in terms of count-runs:

Download examples/functional.clj

(defvar count-heads-pairs (partial count-runs 2 #(= % :h))

"Count runs of length two that are both heads")

This version of count-heads-pairs builds a new function using partial:

(partial f & partial-args)

partial performs a partial application of a function. You specify a func

tion f and part of the argument list when you perform the partial. You

specify the remainder of the argument list later, when you call the func

tion created by partial. So, the following:

(partial count-runs 1 #(= % :h))

is a more expressive way of saying this:

(fn [coll] (count-runs 1 #(= % :h) coll))

Partial application is similar but not identical to currying.

Currying and Partial Application

When you curry a function, you get a new function that takes one argu

ment and returns the original function with that one argument fixed.

(Curry is named for Haskell Curry, an American logician best known

for his work in combinatory logic.) If Clojure had a curry, it might be

implemented like this:

; almost a curry

(defn faux-curry [& args] (apply partial partial args))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=165

LAZIER THAN LAZY 166

One use of curry is partial application. Here is partial application in

Clojure:

(def add-3 (partial + 3))

(add-3 7)

⇒ 10

And here is partial application using our faux-curry:

(def add-3 ((faux-curry +) 3))

(add-3 7)

⇒ 10

If all you want is partial application, currying is just an intermediate

step. Our faux-curry is not a real curry. A real curry would return a

result, not a function of no arguments, once all the arguments were

fixed. You can see the difference here, using the function true?, which

takes only one argument:

; faux curry

((faux-curry true?) (= 1 1))

⇒ #<... mangled function name ...>

; if the curry were real

((curry true?) (= 1 1))

⇒ true

Since Clojure functions can have variable-length argument lists, Clo

jure cannot know when all the arguments are fixed. But you, the pro

grammer, do know when you are done adding arguments. Once you

have curried as many arguments as you want, just invoke the function.

That amounts to adding an extra set of parentheses around the earlier

expression:

(((faux-curry true?) (= 1 1)))

⇒ true

The absence of curry from Clojure is not a major problem, since partial is

available, and that is what people generally want out of curry anyway.

In fact, many programmers use the terms currying and partial applica

tion interchangeably.

You have seen a lot of new forms in this section. Do not let all the

details obscure the key idea: by combining existing functions from the

sequence library, you were able to create a solution that was both sim

pler and more general than the direct approach. And, you did not have

to worry about laziness or recursion at all. Instead, you worked at a

higher level of abstraction and let Clojure deal with laziness and recur

sion for you.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=166

RECURSION REVISITED 167

5.4 Recursion Revisited

Clojure works very hard to balance the power of functional program

ming with the reality of the Java Virtual Machine. One example of this

is the well-motivated choice of explicit TCO through loop/recur.

But blending the best of two worlds always runs the risk of unpleasant

compromises, and it certainly makes sense to ask the question “Does

Clojure contain hidden design compromises that, while not obvious on

day one, will bite me later?”

This question is never fully answerable for any language, but let’s con

sider by exploring some more complex recursions. First, we will look at

mutual recursion.

A mutual recursion occurs when the recursion bounces between two

or more functions. Instead of A calls A calls A, you have A calls B calls

C calls A again. As a simple example, you could define my-odd? and

my-even? using mutual recursion:

Download examples/functional.clj

(declare my-odd? my-even?)

(defn my-odd? [n]

(if (= n 0)

false

(my-even? (dec n))))

(defn my-even? [n]

(if (= n 0)

true

(my-odd? (dec n))))

Because my-odd? and my-even? each call the other, you need to create

both vars before actually defining the functions. You could do this with

def, but the declare macro lets you create both vars (with no initial

binding) in a single line of code.

Verify that my-odd? and my-even? work for small values:

(map my-even? (range 10))

⇒ (true false true false true false true false true false)

(map my-odd? (range 10))

⇒ (false true false true false true false true false true)

my-odd? and my-even? consume stack frames proportional to the size of

their argument, so they will fail with large numbers.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=167

RECURSION REVISITED 168

(my-even? (* 1000 1000 1000))

⇒ java.lang.StackOverflowError

This is very similar to the problem that motivated the introduction of

recur. But you cannot use recur to fix it, because recur works with self-

recursion, not mutual recursion.

Of course, odd/even can be implemented more efficiently without re

cursion anyway. Clojure’s implementation uses bit-and (bitwise and) to

implement odd? and even?:

; from core.clj

(defn even? [n] (zero? (bit-and n 1)))

(defn odd? [n] (not (even? n)))

I picked odd/even for its simplicity. Other recursive problems are not

so simple and do not have an elegant nonrecursive solution. We will

examine four approaches that you can use to solve such problems:

• Converting to self-recursion

• Trampolining a mutual recursion

• Replacing recursion with laziness

• Shortcutting recursion with memoization

Converting to Self-recursion

Mutual recursion is often a nice way to model separate but related

concepts. For example, oddness and evenness are separate concepts

but clearly related to one another.

You can convert a mutual recursion to a self-recursion by coming up

with a single abstraction that deals with multiple concepts simultane

ously. For example, you can think of oddness and evenness in terms

of a single concept: parity. Define a parity function that uses recur and

returns 0 for even numbers and 1 for odd numbers:

Download examples/functional.clj

(defn parity [n]

(loop [n n par 0]

(if (= n 0)

par

(recur (dec n) (- 1 par)))))

Test that parity works for small values:

(map parity (range 10))

⇒ (0 1 0 1 0 1 0 1 0 1)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=168

RECURSION REVISITED 169

At this point, you can trivially implement my-odd? and my-even? in

terms of parity:

Download examples/functional.clj

(defn my-even? [n] (= 0 (parity n)))

(defn my-odd? [n] (= 1 (parity n)))

Parity is a straightforward concept. Unfortunately, many mutual recur

sions will not simplify down into an elegant self-recursion. If you try

to convert a mutual recursion into a self-recursion and you find the

resulting code to be full of conditional expressions that obfuscate the

definition, then do not use this approach.

Trampolining Mutual Recursion

A trampoline is a technique for optimizing mutual recursion. A trampo

line is like an after-the-fact recur, imposed by the caller of a function

instead of the implementer. Since the caller can call more than one

function inside a trampoline, trampolines can optimize mutual recur

sion.

Clojure’s trampoline function invokes one of your mutually recursive

functions:

(trampoline f & partial-args)

If the return value is not a function, then a trampoline works just

like calling the function directly. Try trampolining a few simple Clojure

functions:

(trampoline list)

⇒ ()

(trampoline + 1 2)

⇒ 3

If the return value is a function, then trampoline assumes you want to

call it recursively and calls it for you. trampoline manages its own recur,

so it will keep calling your function until it stops returning functions.

Back in Section 5.2, Tail Recursion, on page 154, you implemented a

tail-fibo function. You saw how the function consumed stack space and

replaced the tail recursion with a recur. Now you have another option.

You can take the code of tail-fibo and prepare it for trampolining by

wrapping the recursive return case inside a function.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/functional.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=169

RECURSION REVISITED 170

This requires adding only a single character, the #, to introduce an

anonymous function:

Download examples/trampoline.clj

Line 1 ; Example only. Don't write code like this.
- (defn trampoline-fibo [n]
- (let [fib (fn fib [f-2 f-1 current]
- (let [f (+ f-2 f-1)]
5 (if (= n current)
- f
- #(fib f-1 f (inc current)))))]
- (cond
- (= n 0) 0

10 (= n 1) 1
- :else (fib 0 1 2))))

The only difference between this and the original version of tail-fibo is

the initial # on line 7. Try bouncing trampoline-fibo on a trampoline:

(trampoline trampoline-fibo 9)

⇒ 34

Since trampoline does a recur for you, it can handle large inputs just fine,

without throwing a StackOverflowError:

(rem (trampoline trampoline-fibo 1000000) 1000)

⇒ 875

We have ported tail-fibo to use trampoline in order to compare and con

trast trampoline and recur. For self-recursions like trampoline-fibo, trampo

line offers no advantage, and you should prefer recur. But with mutual

recursion, trampoline comes into its own.

Consider the mutually recursive definition of my-odd? and my-even?

which was presented at the beginning of Section 5.4, Recursion Revis

ited, on page 167. You can convert these broken, stack-consuming

implementations to use trampoline using the same approach you used

to convert tail-fibo: simply prepend a # to any recursive tail calls:

Download examples/trampoline.clj

Line 1 (declare my-odd? my-even?)
-

- (defn my-odd? [n]

- (if (= n 0)

5 false
- #(my-even? (dec n))))
-

- (defn my-even? [n]
- (if (= n 0)

10 true
- #(my-odd? (dec n))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/trampoline.clj
http://media.pragprog.com/titles/shcloj/code/examples/trampoline.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=170

RECURSION REVISITED 171

The only difference from the original implementation is the # wrappers

on lines 6 and 11. With this change in place, you can trampoline large

values of n without blowing the stack:

(trampoline my-even? 1000000)

⇒ true

A trampoline is a special-purpose solution to a specific problem. It

requires doctoring your original functions to return a different type to

indicate recursion. If one of the other techniques presented here pro

vides a more elegant implementation for a particular recursion, that is

great. If not, you will be happy to have trampoline in your box of tools.

Replacing Recursion with Laziness

Of all the techniques for eliminating or optimizing recursion discussed

in this chapter, laziness is the one you will probably use most often.

For our example, we will implement the replace function developed by

Eugene Wallingford to demonstrate mutual recursion. (See http://www.

cs.uni.edu/~wallingf/patterns/recursion.html.)

replace works with an s-list data structure, which is a list that can con

tain both symbols and lists of symbols. replace takes an s-list, an oldsym,

and a newsym and replaces all occurrences of oldsym with newsym. For

example, this call to replace replaces all occurrences of b with a:

(replace '((a b) (((b g r) (f r)) c (d e)) b) 'b 'a)

⇒ ((a a) (((a g r) (f r)) c (d e)) a)

The following is a fairly literal translation of the Scheme implementation

from Wallingford’s paper. I have converted from Scheme functions to

Clojure functions, changed the name to replace-symbol to avoid collision

with Clojure’s replace, and shortened names to better fit the printed

page, but I otherwise have preserved the structure of the original:

Download examples/wallingford.clj

; overly-literal port, do not use

(declare replace-symbol replace-symbol-expression)

(defn replace-symbol [coll oldsym newsym]

(if (empty? coll)

()

(cons (replace-symbol-expression

(first coll) oldsym newsym)

(replace-symbol

(rest coll) oldsym newsym))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://www.cs.uni.edu/~wallingf/patterns/recursion.html
http://www.cs.uni.edu/~wallingf/patterns/recursion.html
http://media.pragprog.com/titles/shcloj/code/examples/wallingford.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=171

RECURSION REVISITED 172

(defn replace-symbol-expression [symbol-expr oldsym newsym]

(if (symbol? symbol-expr)

(if (= symbol-expr oldsym)

newsym

symbol-expr)

(replace-symbol symbol-expr oldsym newsym)))

The two functions replace-symbol and replace-symbol-expression are mu

tually recursive, so a deeply nested structure could blow the stack. To

demonstrate the problem, create a deeply-nested function that builds

deeply nested lists containing a single bottom element:

Download examples/replace_symbol.clj

(defn deeply-nested [n]

(loop [n n

result '(bottom)]

(if (= n 0)

result

(recur (dec n) (list result)))))

Try deeply-nested for a few small values of n:

(deeply-nested 5)

⇒ ((((((bottom))))))

(deeply-nested 25)

⇒ (((((((((((((((((((((((((bottom)))))))))))))))))))))))))

Clojure provides a *print-level* that controls how deeply the Clojure

printer will go into a nested data structure. Set the *print-level* to a

modest value so that the printer doesn’t go crazy trying to print a deeply

nested structure. You will see when nesting deeper, the printer simply

prints a # and stops:

(set! *print-level* 25)

⇒ 25

(deeply-nested 5)

⇒ ((((((bottom))))))

(deeply-nested 25)

⇒ (((((((((((((((((((((((((#)))))))))))))))))))))))))

Now, try to use replace-symbol to change bottom to deepest for different

levels of nesting. You will see that large levels blow the stack. Depending

on your particular JVM implementation, you may need a larger value

than the 10000 shown here:

(replace-symbol (deeply-nested 5) 'bottom 'deepest)

⇒ ((((((deepest))))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/replace_symbol.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=172

RECURSION REVISITED 173

(replace-symbol (deeply-nested 10000) 'bottom 'deepest)

⇒ java.lang.StackOverflowError

All of the recursive calls to replace-symbol are inside a cons. To break

the recursion, all you have to do is wrap the recursion with lazy-seq.

It’s really that simple. You can break a sequence-generating recursion

by wrapping it with a lazy-seq. Here’s the improved version. Since the

transition to laziness was so simple, I could not resist the temptation

to make the function more Clojurish in another way as well:

Download examples/replace_symbol.clj

Line 1 (defn- coll-or-scalar [x & _] (if (coll? x) :collection :scalar))
- (defmulti replace-symbol coll-or-scalar)

-

- (defmethod replace-symbol :collection [coll oldsym newsym]

5 (lazy-seq

- (when (seq coll)

- (cons (replace-symbol (first coll) oldsym newsym)

- (replace-symbol (rest coll) oldsym newsym)))))

-

10 (defmethod replace-symbol :scalar [obj oldsym newsym]

- (if (= obj oldsym) newsym obj))

On line 5, the lazy-seq breaks the recursion, preventing stack overflow

on deeply nested structures. The other improvement is on line 2. Rather

than have two different functions to deal with symbols and lists, there

is a single multimethod replace-symbol with one method for lists and

another for symbols. (Multimethods are covered in detail in Chapter 8,

Multimethods, on page 244.) This gets rid of an if form and improves

readability.

Make sure the improved replace-symbol can handle deep nesting:

(replace-symbol (deeply-nested 10000) 'bottom 'deepest)

⇒ (((((((((((((((((((((((((#)))))))))))))))))))))))))

Laziness is a powerful ally. You can often write recursive and even

mutually recursive functions and then break the recursion with lazi

ness.

Shortcutting Recursion with Memoization

To demonstrate a more complex mutual recursion, we will look at the

Hofstadter Female and Male sequences. The first Hofstadter sequences

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/replace_symbol.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=173

RECURSION REVISITED 174

were described in Gödel, Escher, Bach: An Eternal Golden Braid [Hof99].

The Female and Male sequences are defined as follows:8

F(0) = 1; M(0) = 0

F(n) = n - M(F(n-1)), n > 0

M(n) = n - F(M(n-1)), n > 0

This suggests a straightforward definition in Clojure:

Download examples/male_female.clj

; do not use these directly

(declare m f)

(defn m [n]

(if (zero? n)

0

(- n (f (m (dec n))))))

(defn f [n]

(if (zero? n)

1

(- n (m (f (dec n))))))

The Clojure definition is easy to read and closely parallels the math

ematical definition. However, it performs terribly for large values of

n. Each value in the sequence requires calculating two other values

from scratch, which in turn requires calculating two other values from

scratch. On my MacBook Pro9 it takes more than a minute to calculate

(m 250):

(time (m 250))

"Elapsed time: 78482.038 msecs"

⇒ 155

Is it possible to preserve the clean, mutually recursive definition and

have decent performance? Yes, with a little help from memoization.

Memoization trades space for time by caching the results of past calcu

lations. When you call a memoized function, it first checks your input

against a map of previous inputs and their outputs. If it finds the input

in the map, it can return the output immediately, without having to

perform the calculation again.

8. http://en.wikipedia.org/wiki/Hofstadter_sequence

9. 2.4 GHz Intel Core 2 Duo, 4 GB 667 MHz DDR2 SDRAM, OS X 10.5.5

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/male_female.clj
http://en.wikipedia.org/wiki/Hofstadter_sequence
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=174

RECURSION REVISITED 175

Rebind m and f to memoized versions of themselves, using Clojure’s

memoize function:

Download examples/memoized_male_female.clj

(def m (memoize m))

(def f (memoize f))

Now Clojure needs to calculate F and M only once for each n. The

speedup is enormous. Calculating (m 250) is thousands of times faster:

(time (m 250))

"Elapsed time: 18.197 msecs"

⇒ 155

And, of course, once the memoization cache is built, “calculation” of a

cached value is almost instantaneous:

(time (m 250))

"Elapsed time: 0.084 msecs"

⇒ 155

Memoization alone is not enough, however. Memoization shortcuts the

recursion only if the memoization cache is already populated. If you

start with an empty cache and ask for m or f of a large number, you will

blow the stack before the cache can be built:

(m 10000)

⇒ java.lang.StackOverflowError

The final trick is to guarantee that the cache is built from the ground

up by exposing sequences, instead of functions. Create m-seq and f-seq

by mapping m and f over the whole numbers:

Download examples/male_female_seq.clj

(def m-seq (map m (iterate inc 0)))

(def f-seq (map f (iterate inc 0)))

Now callers can get M(n) or F(n) by taking the nth value from a sequence:

(nth m-seq 250)

⇒ 155

The approach is quite fast, even for larger values of n:

(time (nth m-seq 10000))

"Elapsed time: 483.069 msecs"

⇒ 6180

The approach we have used here is as follows:

• Define a mutually recursive function in a natural way.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/memoized_male_female.clj
http://media.pragprog.com/titles/shcloj/code/examples/male_female_seq.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=175

WRAPPING UP 176

•	 Use memoization in order to shortcut recursion for values that

have already been calculated.

•	 Expose a sequence so that dependent values are cached before

they are needed.

This approach is heap-consuming, in that it does cache all previously

seen values. If this is a problem, you can in some situations eliminate

it by selecting a more complex caching policy.

5.5 Wrapping Up

Clojure’s support for FP strikes a well-motivated balance between aca

demic purity and effectiveness on the Java Virtual Machine. Clojure

gives you access to a wide variety of techniques including self-recursion

with recur, mutual recursion with trampoline, lazy sequences, and

memoization.

Better still, for a wide variety of everyday programming tasks, you can

use the sequence library, without ever having to define your own ex

plicit recursions of lazy sequences. Functions like partition create clean,

expressive solutions that are much easier to write.

If Clojure were an exclusively FP language, we would turn our atten

tion next to the challenges of living in a world without mutable state

and perhaps begin discussing the state monad. But Clojure leads us

in a different direction with its most innovative feature: explicit APIs

for managing mutable state. The Clojure concurrency API provides four

different ways to model mutable state and is the subject of the next

chapter.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=176

Chapter 6

Concurrency
Concurrency is a fact of life and, increasingly, a fact of software. There

are several reasons that programs need to do more than one thing at a

time:

•	 Expensive computations may need to execute in parallel on mul

tiple cores (or multiple boxes) in order to complete in a timely

manner.

•	 Tasks that are blocked waiting for a resource should stand down

and let other tasks use available processors.

•	 User interfaces need to remain responsive while performing long-

running tasks.

•	 Operations that are logically independent are easier to implement

if the platform can recognize and take advantage of their

independence.

The challenge of concurrency is not making multiple things happen

at once. It is easy enough to launch a bunch of threads or a bunch

of processes. Rather, the challenge is coordinating multiple activities

happening at the same time.

Clojure provides a powerful concurrency library, consisting of four APIs

that enforce different concurrency models: refs, atoms, agents, and

vars.

•	 Refs manage coordinated, synchronous changes to shared state.

•	 Atoms manage uncoordinated, synchronous changes to shared

state.

•	 Agents manage asynchronous changes to shared state.

•	 Vars manage thread-local state.

Prepared exclusively for WG Custom Motorcycles

THE PROBLEM WITH LOCKS 178

Refs are updated within transactions managed by Clojure’s Software

Transactional Memory (STM) system. Agents also have the option of

interacting with STM.

Each of these APIs is discussed in this chapter. At the end of the chap

ter, we will develop two sample applications:

•	 The Snake game demonstrates how to divide an application model

into immutable and mutable components.

•	 Continuing the Lancet example, we will add a thread-safe runonce

capability to make sure each Lancet target runs only once per

build.

Before we dive in, let’s review the problem these APIs were designed to

solve: the difficulty of using locks.

6.1 The Problem with Locks

A big challenge for concurrent programs is managing mutable state. If

mutable state can be accessed concurrently, then as a programmer you

must be careful to protect that access. In most programming languages

today, development proceeds as follows:

•	 Mutable state is the default, so mutable state is commingled

through all layers of the codebase.

•	 Concurrency is implemented using independent flows of execution

called threads.

•	 If mutable state can be reached by multiple threads, you must

protect that state with locks that allow only one thread to pass at

a time.

Choosing what and where to lock is a difficult task. If you get it wrong,

all sorts of bad things can happen. Race conditions between threads

can corrupt data. Deadlocks can stop an entire program from function

ing at all. Java Concurrency in Practice [Goe06] covers these and other

problems, plus their solutions, in detail. It is a terrific book, but it is

difficult to read it and not be asking yourself “Is there another way?”

Yes, there is. In Clojure, immutable state is the default. Most data is

immutable. The small parts of the codebase that truly benefit from

mutability are distinct and must explicitly select one or more concur

rency APIs. Using these APIs, you can split your models into two layers:

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=178

REFS AND SOFTWARE TRANSACTIONAL MEMORY 179

•	 A functional model that has no mutable state. Most of your code

will normally be in this layer, which is easier to read, easier to test,

and easier to run concurrently.

•	 A mutable model for the parts of the application that you find more

convenient to deal with using mutable state (despite its

disadvantages).

To manage the mutable model, you can use Clojure’s concurrency libra

ry. In addition, you can still use locks and all the low-level APIs for

Java concurrency. If after reviewing Clojure’s options you decide that

Java’s concurrency APIs are a better fit, use Clojure’s Java interop to

call them from your Clojure program. Consult Java Concurrency in Prac

tice [Goe06] for API details.

Now, let’s get started working with mutable state in Clojure, using what

is probably the most important part of the Clojure concurrency library:

refs.

6.2 Refs and Software Transactional Memory

Most objects in Clojure are immutable. When you really want muta

ble data, you must be explicit about it, such as by creating a mutable

reference (ref) to an immutable object. You create a ref with this:

(ref initial-state)

For example, you could create a reference to the current song in your

music playlist:

(def current-track (ref "Mars, the Bringer of War"))

⇒ #'user/current-track

The ref wraps and protects access to its internal state. To read the

contents of the reference, you can call deref:

(deref reference)

The deref function can be shortened to the @ reader macro. Try using

both deref and @ to dereference current-track:

(deref current-track)

⇒ "Mars, the Bringer of War"

@current-track

⇒ "Mars, the Bringer of War"

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=179

REFS AND SOFTWARE TRANSACTIONAL MEMORY 180

Notice how in this example the Clojure model fits the real world. A track

is an immutable entity. It doesn’t change into another track when you

are finished listening to it. But the current track is a reference to an

entity, and it does change.

ref-set

You can change where a reference points with ref-set:

(ref-set reference new-value)

Call ref-set to listen to a different track:

(ref-set current-track "Venus, the Bringer of Peace")

⇒ java.lang.IllegalStateException: No transaction running

Oops. Because refs are mutable, you must protect their updates. In

many languages, you would use a lock for this purpose. In Clojure, you

can use a transaction. Transactions are wrapped in a dosync:

(dosync & exprs)

Wrap your ref-set with a dosync, and all is well:

(dosync (ref-set current-track "Venus, the Bringer of Peace"))

⇒ "Venus, the Bringer of Peace"

The current-track reference now refers to a different track.

Transactional Properties

Like database transactions, STM transactions guarantee some impor

tant properties:

•	 Updates are atomic. If you update more than one ref in a trans

action, the cumulative effect of all the updates will appear as a

single instantaneous event to anyone not inside your transaction.

•	 Updates are consistent. Refs can specify validation functions. If

any of these functions fail, the entire transaction will fail.

•	 Updates are isolated. Running transactions cannot see partially

completed results from other transactions.

Databases provide the additional guarantee that updates are durable.

Because Clojure’s transactions are in-memory transactions, Clojure

does not guarantee that updates are durable. If you want a durable

transaction in Clojure, you should use a database.

Together, the four transactional properties are called ACID. Databases

provide ACID; Clojure’s STM provides ACI.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=180

REFS AND SOFTWARE TRANSACTIONAL MEMORY 181

If you change more than one ref in a single transaction, those changes

are all coordinated to “happen at the same time” from the perspective of

any code outside the transaction. So, you can make sure that updates

to current-track and current-composer are coordinated:

(def current-track (ref "Venus, the Bringer of Peace"))

⇒ #'user/current-track

(def current-composer (ref "Holst"))

⇒ #'user/current-composer

(dosync

(ref-set current-track "Credo")

(ref-set current-composer "Byrd"))

⇒ "Byrd"

Because the updates are in a transaction, no other thread will ever see

an updated track with an out-of-date composer, or vice versa.

alter

The current-track example is deceptively easy, because updates to the ref

are totally independent of any previous state. Let’s build a more com

plex example, where transactions need to update existing information.

A simple chat application fits the bill. First, create a message struct

that has a sender and some text:

Download examples/chat.clj

(defstruct message :sender :text)

Now, you can create messages by calling struct:

(struct message "stu" "test message")

⇒ {:sender "stu", :text "test message"}

Users of the chat application want to see the most recent message first,

so a list is a good data structure. Create a messages reference that

points to an initially empty list:

(def messages (ref ()))

Now you need a function to add a new message to the front of messages.

You could simply deref to get the list of messages, cons the new message,

and then ref-set the updated list back into messages:

; bad idea

(defn naive-add-message [msg]

(dosync (ref-set messages (cons msg @messages))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/chat.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=181

REFS AND SOFTWARE TRANSACTIONAL MEMORY 182

But there is a better option. Why not perform the read and update in a

single step? Clojure’s alter will apply an update function to a referenced

object within a transaction:

(alter ref update-fn & args...)

alter returns the new value of the ref within the transaction. When

a transaction successfully completes, the ref will take on its last in-

transaction value. Using alter instead of ref-set makes the code more

readable:

(defn add-message [msg]

(dosync (alter messages conj msg)))

Notice that the update function is conj (short for “conjoin”), not cons.

This is because conj takes arguments in an order suitable for use with

alter:

(cons item sequence)

(conj sequence item)

The alter function calls its update-fn with the current reference value as

its first argument, as conj expects. If you plan to write your own update

functions, they should follow the same structure as conj:

(your-func thing-that-gets-updated & optional-other-args)

Try adding a few messages to see that the code works as expected:

(add-message (struct message "user 1" "hello"))

⇒ ({:sender "user 1", :text "hello"})

(add-message (struct message "user 2" "howdy"))

⇒	 ({:sender "user 2", :text "howdy"}

{:sender "user 1", :text "hello"})

alter is the workhorse of Clojure’s STM and is the primary means of

updating refs. But if you know a little about how the STM works, you

may be able to optimize your transactions in certain scenarios.

How STM Works: MVCC

Clojure’s STM uses a technique called Multiversion Concurrency Con

trol (MVCC), which is also used in several major databases. Here’s how

MVCC works in Clojure:

Transaction A begins by taking a point, which is simply a number that

acts as a unique timestamp in the STM world. Transaction A has access

to its own effectively private copy of any reference it needs, associated

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=182

REFS AND SOFTWARE TRANSACTIONAL MEMORY 183

with the point. Clojure’s persistent data structures (Section 5.1, Per

sistent Data Structures, on page 148) make it cheap to provide these

effectively private copies.

During Transaction A, operations on a ref work against (and return)

the transaction’s private copy of the ref’s data, called the in-transaction

value.

If at any point the STM detects that another transaction has already

set/altered a ref that Transaction A wants to set/alter, Transaction A

will be forced to retry. If you throw an exception out of the dosync block,

then Transaction A will abort without a retry.

If and when Transaction A commits, its heretofore private writes will

become visible to the world, associated with a single point in the trans

action timeline.

Sometimes the approach implied by alter is too cautious. What if you

don’t care that another transaction altered a reference out from under

you in the middle of your transaction? If in such a situation you would

be willing to commit your changes anyway, you can beat alter’s perfor

mance with commute.

commute

commute is a specialized variant of alter allowing for more concurrency:

(commute ref update-fn & args...)

Of course, there is a trade-off. Commutes are so named because they

must be commutative. That is, updates must be able to occur in any

order. This gives the STM system freedom to reorder commutes.

To use commute, simply replace alter with commute in your implemen

tation of add-message:

(defn add-message-commute [msg]

(dosync (commute messages conj msg)))

commute returns the new value of the ref. However, the last in-trans

action-value you see from a commute will not always match the end-of

transaction value of a ref, because of reordering. If another transaction

sneaks in and alters a ref that you are trying to commute, the STM will

not restart your transaction. Instead, it will simply run your commute

function again, out of order. Your transaction will never even see the

ref value that your commute function finally ran against.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=183

REFS AND SOFTWARE TRANSACTIONAL MEMORY 184

Since Clojure’s STM can reorder commutes behind your back, you can

use them only when you do not care about ordering. Literally speaking,

this is not true for a chat application. The list of messages most cer

tainly has an order, so if two message adds get reversed, the resulting

list will not correctly show the order in which the messages arrived.

Practically speaking, chat message updates are commutative enough.

STM-based reordering of messages will likely happen on time scales of

microseconds or less. For users of a chat application, there are already

reorderings on much larger time scales due to network and human

latency. (Think about times that you have “spoken out of turn” in an

online chat room because another speaker’s message had not reached

you yet.) Since these larger reorderings are unfixable, it is reasonable

for a chat application to ignore the smaller reorderings that might bub

ble up from Clojure’s STM.

Prefer alter

Many updates are not commutative. For example, consider a counter

that returns an increasing sequence of numbers. You might use such

a counter to build unique IDs in a system. The counter can be a simple

reference to a number:

Download examples/concurrency.clj

(def counter (ref 0))

You should not use commute to update the counter. commute returns

the in-transaction value of the counter at the time of the commute, but

reorderings could cause the actual end-of-transaction value to be dif

ferent. This could lead to more than one caller getting the same counter

value. Instead, use alter:

(defn next-counter [] (dosync (alter counter inc)))

Try calling next-counter a few times to verify that the counter works as

expected:

(next-counter)

⇒ 1

(next-counter)

⇒ 2

In general, you should prefer alter over commute. Its semantics are easy

to understand and error-proof. commute, on the other hand, requires

that you think carefully about transactional semantics. If you use alter

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/concurrency.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=184

REFS AND SOFTWARE TRANSACTIONAL MEMORY 185

when commute would suffice, the worst thing that might happen is per

formance degradation. But if you use commute when alter is required,

you will introduce a subtle bug that is difficult to detect with automated

tests.

Adding Validation to Refs

Database transactions maintain consistency through various integrity

checks. You can do something similar with Clojure’s transactional

memory, by specifying a validation function when you create a ref:

(ref initial-state options*)

; options include:

; :validator validate-fn

; :meta metadata-map

The options to ref include an optional validation function that can throw

an exception to prevent a transaction from completing. Note that options

is not a map; it is simply a sequence of key/value pairs spliced into the

function call.

Continuing the chat example, add a validation function to the messages

reference that guarantees that all messages have non-nil values for

:sender and :text:

Download examples/chat.clj

(def validate-message-list

(partial every? #(and (:sender %) (:text %))))

(def messages (ref () :validator validate-message-list))

This validation acts like a key constraint on a table in a database trans

action. If the constraint fails, the entire transaction rolls back. Try

adding an ill-formed message such as a simple string:

(add-message "not a valid message")

⇒ java.lang.IllegalStateException: Invalid reference state

@messages

⇒ ()

Messages that match the constraint are no problem:

(add-message (struct message "stu" "legit message"))

⇒ ({:sender "stu", :text "legit message"})

Refs are great for coordinated access to shared state, but not all tasks

require such coordination. For updating a single piece of isolated data,

prefer an atom.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/chat.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=185

USE ATOMS FOR UNCOORDINATED, SYNCHRONOUS UPDATES 186

6.3 Use Atoms for Uncoordinated, Synchronous Updates

Atoms are a lighter-weight mechanism than refs. Where multiple ref

updates can be coordinated in a transaction, atoms allow updates of a

single value, uncoordinated with anything else.

You create atoms with atom, which has a signature very similar to ref:

(atom initial-state options?)

; options include:

; :validator validate-fn

; :meta metadata-map

Returning to our music player example, you could store the current-track

in an atom instead of a ref:

(def current-track (atom "Venus, the Bringer of Peace"))

⇒ #'user/current-track

You can dereference an atom to get its value, just as you would a ref:

(deref current-track)

⇒ "Venus, the Bringer of Peace"

@current-track

⇒ "Venus, the Bringer of Peace"

Atoms do not participate in transactions and thus do not require a

dosync. To set the value of an atom, simply call reset!

(reset! an-atom newval)

For example, you can set current-track to "Credo":

(reset! current-track "Credo")

⇒ "Credo"

What if you want to coordinate an update of both current-track and

current-composer with an atom? The short answer is “You can’t.” That is

the difference between refs and atoms. If you need coordinated access,

use a ref.

The longer answer is “You can...if you are willing to change the way you

model the problem.” What if you store the track title and composer in a

map and then store the whole map in a single atom?

(def current-track (atom {:title "Credo" :composer "Byrd"}))

⇒ #'user/current-track

Now you can update both values in a single reset!

(reset! current-track {:title "Spem in Alium" :composer "Tallis"})

⇒ {:title "Spem in Alium", :composer "Tallis"}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=186

USE AGENTS FOR ASYNCHRONOUS UPDATES 187

Maybe you like to listen to several tracks in a row by the same com

poser. If so, you want to change the track title but keep the same com

poser. swap! will do the trick:

(swap! an-atom f & args)

swap! updates an-atom by calling function f on the current value of an-

atom, plus any additional args.

To change just the track title, use swap! with assoc to update only the

:title:

(swap! current-track assoc :title "Sancte Deus")

⇒ {:title "Sancte Deus", :composer "Tallis"}

swap! returns the new value. Calls to swap! might be retried, if other

threads are attempting to modify the same atom. So, the function you

pass to swap! should have no side effects.

Both refs and atoms perform synchronous updates. When the update

function returns, the value is already changed. If you do not need this

level of control and can tolerate updates happening asynchronously at

some later time, prefer an agent.

6.4 Use Agents for Asynchronous Updates

Some applications have tasks that can proceed independently with

minimal coordination between tasks. Clojure agents support this style

of task.

Agents have much in common with refs. Like refs, you create an agent

by wrapping some piece of initial state:

(agent initial-state)

Create a counter agent that wraps an initial count of zero:

(def counter (agent 0))

⇒ #'user/counter

Once you have an agent, you can send the agent a function to update

its state. send queues an update-fn to run later, on a thread in a thread

pool:

(send agent update-fn & args)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=187

USE AGENTS FOR ASYNCHRONOUS UPDATES 188

Sending to an agent is very much like commuting a ref. Tell the counter

to inc:

(send counter inc)

⇒ #<clojure.lang.Agent@23451c74: 0>

Notice that the call to send does not return the new value of the agent,

returning instead the agent itself. That is because send does not know

the new value. After send queues the inc to run later, it returns imme

diately.

Although send does not know the new value of an agent, the REPL might

know. Depending on whether the agent thread or the REPL thread runs

first, you might see a 1 or a 0 after the colon in the previous output.

You can check the current value of an agent with deref/@, just as you

would a ref. By the time you get around to checking the counter, the

inc will almost certainly have completed on the thread pool, raising the

value to one:

@counter

⇒ 1

If the race condition between the REPL and the agent thread bothers

you, there is a solution. If you want to be sure that the agent has com

pleted the actions you sent to it, you can call await or await-for:

(await & agents)

(await-for timeout-millis & agents)

These functions will cause the current thread to block until all actions

sent from the current thread or agent have completed. await-for will

return nil if the timeout expires and will return a non-nil value otherwise.

await has no timeout, so be careful: await is willing to wait forever.

Validating Agents and Handling Errors

Agents have other points in common with refs. They also can take a

validation function:

(agent initial-state options*)

; options include:

; :validator validate-fn

; :meta metadata-map

Re-create the counter with a validator that ensures it is a number:

(def counter (agent 0 :validator number?))

⇒ #'user/counter

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=188

USE AGENTS FOR ASYNCHRONOUS UPDATES 189

Try to set the agent to a value that is not a number by passing an

update function that ignores the current value and simply returns a

string:

(send counter (fn [_] "boo"))

⇒ #<clojure.lang.Agent@4de8ce62: 0>

Everything looks fine (so far) because send still returns immediately.

After the agent tries to update itself on a pooled thread, it will enter an

exceptional state. You will discover the error when you try to derefer

ence the agent:

@counter

⇒ java.lang.Exception: Agent has errors

To discover the specific error (or errors), call agent-errors, which will

return a sequence of errors thrown during agent actions:

⇒

(agent-errors counter)

(#<IllegalStateException ...>)

Once an agent has errors, all subsequent attempts to query the agent

will return an error. You make the agent usable again by calling clear-

agent-errors:

(clear-agent-errors agent)

which returns the agent to its pre-error state. Clear the counter’s errors,

and verify that its state is the same as before the error occurred:

(clear-agent-errors counter)

⇒ nil

@counter

⇒ 0

Now that you know the basics of agents, let’s use them in conjunction

with refs and transactions.

Including Agents in Transactions

Transactions should not have side effects, because Clojure may retry

a transaction an arbitrary number of times. However, sometimes you

want a side effect when a transaction succeeds. Agents provide a solu

tion. If you send an action to an agent from within a transaction, that

action will be sent exactly once, if and only if the transaction succeeds.

As an example of where this would be useful, consider an agent that

writes to a file when a transaction succeeds. You could combine such

an agent with the chat example from Section 6.2, commute, on page 183

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=189

USE AGENTS FOR ASYNCHRONOUS UPDATES 190

to automatically back up chat messages. First, create a backup-agent

that stores the filename to write to:

Download examples/concurrency.clj

(def backup-agent (agent "output/messages-backup.clj"))

Then, create a modified version of add-message. The new function add-

message-with-backup should do two additional things:

•	 Grab the return value of commute, which is the current database

of messages, in a let binding.

•	 While still inside a transaction, send an action to the backup agent

that writes the message database to filename. For simplicity, have

the action function return filename so that the agent will use the

same filename for the next backup.

(use '[clojure.contrib.duck-streams :only (spit)])

(defn add-message-with-backup [msg]

(dosync

(let [snapshot (commute messages conj msg)]

(send-off backup-agent (fn [filename]

(spit filename snapshot)

filename))

snapshot)))

The new function has one other critical difference: it calls send-off in

stead of send to communicate with the agent. send-off is a variant of send

for actions that expect to block, as a file write might do. send-off actions

get their own expandable thread pool. Never send a blocking function,

or you may unnecessarily prevent other agents from making progress.

Try adding some messages using add-message-with-backup:

(add-message-with-backup (struct message "john" "message one"))

⇒ ({:sender "john", :text "message one"})

(add-message-with-backup (struct message "jane" "message two"))

⇒	 ({:sender "jane", :text "message two"}

{:sender "john", :text "message one"})

You can check both the in-memory messages as well as the backup file

messages-backup to verify that they contain the same structure.

You could enhance the backup strategy in this example in various ways.

You could provide the option to back up less often than on every update

or back up only information that has changed since the last backup.

Since Clojure’s STM provides the ACI properties of ACID and writing to

file provides the D (Durability), it is tempting to think that STM plus a

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/concurrency.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=190

USE AGENTS FOR ASYNCHRONOUS UPDATES 191

Update Mechanism Ref Function Atom Function Agent Function

Function application alter swap! send-off

Function (commutative) commute N/A N/A

Function (nonblocking) N/A N/A send

Simple setter ref-set reset! N/A

Figure 6.1: Updating state in refs, atoms, and agents

backup agent equals a database. This is not the case. A Clojure trans

action only promises to send(-off) an action to the agent; it does not

actually perform the action under the ACI umbrella. So, for example, a

transaction could complete, and then someone could unplug the power

cord before the agent writes to the database. The moral is simple. If

your problem calls for a real database, use a real database. Section 9.2,

Data Access, on page 270 demonstrates using Clojure to read and write

a database.

The Unified Update Model

As you have seen, refs, atoms, and agents all provide functions for

updating their state by applying a function to their previous state. This

unified model for handling shared state is one of the central concepts

of Clojure. The unified model and various ancillary functions are sum

marized in Figure 6.1.

The unified update model is by far the most important way to update

refs, atoms, and agents. The ancillary functions, on the other hand,

are optimizations and options that stem from the semantics peculiar to

each API:

•	 The opportunity for the commute optimization arises when coordi

nating updates. Since only refs provide coordinated updates, com

mute makes sense only for refs.

•	 Updates to refs and atoms take place on the thread they are called

on, so they provide no scheduling options. Agents update later, on

a thread pool, making blocking/nonblocking a relevant scheduling

option.

Clojure’s final concurrency API, vars, are a different beast entirely. They

do not participate in the unified update model and are instead used to

manage thread-local, private state.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=191

MANAGING PER-THREAD STATE WITH VARS 192

6.5 Managing Per-Thread State with Vars

When you call def or defn, you create a dynamic var, often called just

a var. In all the examples so far in the book, you pass an initial value

to def, which becomes the root binding for the var. For example, the

following code creates a root binding for foo of 10:

(def foo 10)

⇒ #'user/foo

The binding of foo is shared by all threads. You can check the value of

foo on your own thread:

foo

⇒ 10

You can also verify the value of foo from another thread. Create a new

thread, passing it a function that prints foo. Don’t forget to start the

thread:

user=> (.start (Thread. (fn [] (println foo))))

⇒	 nil

| 10

In the previous example, the call to start() returns nil, and then the

value of foo is printed from a new thread.

Most vars are content to keep their root bindings forever. However, you

can create a thread-local binding for a var with the binding macro:

(binding [bindings] & body)

Bindings have dynamic scope. In other words, a binding is visible any

where a thread’s execution takes it, until the thread exits the scope

where the binding began. A binding is not visible to any other threads.

Structurally, a binding looks a lot like a let. Create a thread-local binding

for foo and check its value:

(binding [foo 42] foo)

⇒ 42

To see the difference between binding and let, create a simple function

that prints the value of foo:

(defn print-foo [] (println foo))

⇒ #'user/print-foo

Now, try calling print-foo from both a let and a binding:

(let [foo "let foo"] (print-foo))

| 10

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=192

MANAGING PER-THREAD STATE WITH VARS 193

(binding [foo "bound foo"] (print-foo))

| bound foo

As you can see, the let has no effect outside its own form, so the first

print-foo prints the root binding 10. The binding, on the other hand, stays

in effect down any chain of calls that begins in the binding form, so the

second print-foo prints bound foo.

Acting at a Distance

Vars intended for dynamic binding are sometimes called special vari

ables. It is good style to name them with leading and trailing asterisks.

For example, Clojure uses dynamic binding for thread-wide options

such as the standard I/O streams *in*, *out*, and *err*. Dynamic bind

ings enable action at a distance. When you change a dynamic binding,

you can change the behavior of distant functions without changing any

function arguments.

One kind of action at a distance is temporarily augmenting the behavior

of a function. In some languages this would be classified as aspect-

oriented programming; in Clojure it is simply a side effect of dynamic

binding.

As an example, imagine that you have a function that performs an

expensive calculation. To simulate this, write a function named slow-

double that sleeps for a tenth of a second and then doubles its input.

(defn slow-double [n]

(Thread/sleep 100)

(* n 2))

Next, write a function named calls-slow-double that calls slow-double for

each item in [1 2 1 2 1 2]:

(defn calls-slow-double []

(map slow-double [1 2 1 2 1 2]))

Time a call to calls-slow-double. With six internal calls to slow-double,

it should take a little over six tenths of a second. Note that you will

have to run through the result with dorun; otherwise, Clojure’s map will

outsmart you by immediately returning a lazy sequence.

(time (dorun (calls-slow-double)))

| "Elapsed time: 601.418 msecs"

⇒ nil

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=193

MANAGING PER-THREAD STATE WITH VARS 194

Reading the code, you can tell that calls-slow-double is slow because it

does the same work over and over again. One times two is two, no

matter how many times you ask.

Calculations such as slow-double are good candidates for memoization.

When you memoize a function, it keeps a cache mapping past inputs to

past outputs. If subsequent calls hit the cache, they will return almost

immediately. Thus, you are trading space (the cache) for time (calculat

ing the function again for the same inputs).

Clojure provides memoize, which takes a function and returns a mem

oization of that function:

(memoize function)

slow-double is a great candidate for memoization, but it isn’t memoized

yet, and clients like calls-slow-double already use the slow, unmemo

ized version. With dynamic binding, this is no problem. Simply create a

binding to a memoized version of slow-double, and call calls-slow-double

from within the binding.

(defn demo-memoize []

(time

(dorun

(binding [slow-double (memoize slow-double)]

(calls-slow-double)))))

With the memoized version of slow-double, calls-slow-double runs three

times faster, completing in about two tenths of a second:

(demo-memoize)

"Elapsed time: 203.115 msecs"

This example demonstrates the power and the danger of action at a

distance. By dynamically rebinding a function such as slow-double, you

change the behavior of other functions such as calls-slow-double without

their knowledge or consent. With lexical binding forms such as let, it is

easy to see the entire range of your changes. Dynamic binding is not

so simple. It can change the behavior of other forms in other files, far

from the point in your source where the binding occurs.

Used occasionally, dynamic binding has great power. But it should not

become your primary mechanism for extension or reuse. Functions that

use dynamic bindings are not pure functions and can quickly lose the

benefits of Clojure’s functional style.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=194

MANAGING PER-THREAD STATE WITH VARS 195

Working with Java Callback APIs

Several Java APIs depend on callback event handlers. GUI frameworks

such as Swing use event handlers to respond to user input. XML

parsers such as SAX depend on the user implementing a callback han

dler interface.

These callback handlers are written with mutable objects in mind. Also,

they tend to be single-threaded. In Clojure, the best way to meet such

APIs halfway is to use dynamic bindings. This will involve mutable

references that feel almost like variables, but because they are used

in a single-threaded setting, they will not present any concurrency

problems.

Clojure provides the set! special form for setting a thread-local dynamic

binding:

(set! var-symbol new-value)

set! should be used rarely. In fact, the only place in the entire Clo

jure core that uses set! is the Clojure implementation of a SAX Con

tentHandler.

A ContentHandler receives callbacks as a parser encounters various bits

of an XML stream. In nontrivial scenarios, the ContentHandler needs to

keep track of where it is in the XML stream: the current stack of open

elements, current character data, and so on.

In Clojure-speak, you can think of a ContentHandler’s current position

as a mutable pointer to a specific spot in an immutable XML stream. It

is unnecessary to use references in a ContentHandler, since everything

will happen on a single thread. Instead, Clojure’s ContentHandler uses

dynamic variables and set!. Here is the relevant detail:

; redacted from Clojure's xml.clj to focus on dynamic variable usage

(startElement

[uri local-name q-name #^Attributes atts]

; details omitted

(set! *stack* (conj *stack* *current*))

(set! *current* e)

(set! *state* :element))

nil)

(endElement

[uri local-name q-name]

; details omitted

(set! *current* (push-content (peek *stack*) *current*))

(set! *stack* (pop *stack*))

(set! *state* :between)

nil)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=195

A CLOJURE SNAKE 196

Model

Refs and STM

Atoms

Agents

Vars

Java locks

Usage

Coordinated, synchronous updates

Uncoordinated, synchronous updates

Uncoordinated, asynchronous updates

Thread-local dynamic scopes

Coordinated, synchronous updates

Functions

Pure

Pure

Any

Any

Any

Figure 6.2: Concurrency models

A SAX parser calls startElement when it encounters an XML start tag.

The callback handler updates three thread-local variables. The *stack*

is a stack of all the elements the current element is nested inside. The

current is the current element, and the *state* keeps track of what kind

of content is inside. (This is important primarily when inside character

data, which is not shown here.)

endElement reverses the work of startElement by popping the *stack* and

placing the top of the *stack* in *current*.

It is worth noting that this style of coding is the industry norm: objects

are mutable, and programs are single-threadedly oblivious to the pos

sibility of concurrency. Clojure permits this style as an explicit special

case, and you should use it for interop purposes only.

The ContentHandler’s use of set! does not leak mutable data out into the

rest of Clojure. Clojure uses the ContentHandler implementation to build

an immutable Clojure structure, which then gets all the benefits of the

Clojure concurrency model.

You have now seen four different models for dealing with concurrency.

And since Clojure is built atop Java, you can also use Java’s lock-based

model. The models, and their use, are summarized in Figure 6.2.

Now let’s put these models to work in designing a small but complete

application.

6.6 A Clojure Snake

The Snake game features a player-controlled snake that moves around

a game grid hunting for an apple. When your snake eats an apple, it

grows longer by a segment, and a new apple appears. If your snake

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=196

A CLOJURE SNAKE 197

reaches a certain length, you win. But if your snake crosses over its

own body, you lose.

Before you start building your own snake, take a minute to try the

completed version. From the book’s REPL, enter the following:

(use 'examples.snake)

(game)

⇒	 [#<Ref clojure.lang.Ref@65694ee6>

#<Ref clojure.lang.Ref@261ae209>

#<Timer javax.swing.Timer@7f0df737>]

Select the Snake window, and use the arrow keys to control your snake.

Our design for the snake is going to take advantage of Clojure’s func

tional nature and its support for explicit mutable state by dividing the

game into three layers:

•	 The functional model will use pure functions to model as much of

the game as possible.

•	 The mutable model will handle the mutable state of the game. The

mutable model will use one or more of the concurrency models

discussed in this chapter. Mutable state is much harder to test,

so we will keep this part small.

•	 The GUI will use Swing to draw the game and to accept input from

the user.

These layers will make the Snake easy to build, test, and maintain.

As you work through this example, add your code to the file reader/

snake.clj in the sample code. When you open the file, you will see that it

already imports/uses the Swing classes and Clojure libraries you will

need:

Download reader/snake.clj

(ns reader.snake

(:import	 (java.awt Color Dimension)

(javax.swing JPanel JFrame Timer JOptionPane)

(java.awt.event ActionListener KeyListener))

(:use clojure.contrib.import-static

[clojure.contrib.seq-utils :only (includes?)]))

(import-static java.awt.event.KeyEvent VK_LEFT VK_RIGHT VK_UP VK_DOWN)

Now you are ready to build the functional model.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/reader/snake.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=197

A CLOJURE SNAKE 198

Other Snake Implementations

There’s more than one way to skin a snake. You may enjoy com
paring the snake presented here with these other snakes:

• David Van Horn’s Snake,∗ written in Typed Scheme, has no
mutable state.

• Jeremy Read wrote a Java Snake† designed to be “just
about as small as you can make it in Java and still be
readable.”

• Abhishek Reddy wrote a tiny (35-line) Snake‡ in Clojure.
The design goal was to be abnormally terse.

• Dale Vaillancourt’s Worm Game.§

• Mark Volkmann wrote a Clojure Snake¶ designed for
readability.

Each of the snake implementations has its own distinctive style.
What would your style look like?

∗. http://planet.plt-scheme.org/package-source/dvanhorn/snake.plt/1/0/main.ss

†. http://www.plt1.com/1069/smaller-snake/

‡. http://www.plt1.com/1070/even-smaller-snake/

§. http://www.ccs.neu.edu/home/cce/acl2/worm.html includes some verifications
using the theorem prover ACL2.
¶. http://www.ociweb.com/mark/programming/ClojureSnake.html

The Functional Model

First, create a set of constants to describe time, space, and motion:

(def width 75)

(def height 50)

(def point-size 10)

(def turn-millis 75)

(def win-length 5)

(def dirs { VK_LEFT [-1 0]

VK_RIGHT [1 0]

VK_UP [0 -1]

VK_DOWN [0 1]})

width and height set the size of the game board, and point-size is used

to convert a game point into screen pixels. turn-millis is the heartbeat of

the game, controlling how many milliseconds pass before each update

of the game board. win-length is how many segments your snake needs

before you win the game. (Five is a boringly small number suitable for

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://planet.plt-scheme.org/package-source/dvanhorn/snake.plt/1/0/main.ss
http://www.plt1.com/1069/smaller-snake/
http://www.plt1.com/1070/even-smaller-snake/
http://www.ccs.neu.edu/home/cce/acl2/worm.html
http://www.ociweb.com/mark/programming/ClojureSnake.html
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=198

A CLOJURE SNAKE 199

testing.) The dirs maps symbolic constants for the four directions to

their vector equivalents. Since Swing already defines the VK_ constants

for different directions, we will reuse them here rather than defining

our own.

Next, create some basic math functions for the game:

(defn add-points [& pts]

(vec (apply map + pts)))

(defn point-to-screen-rect [pt]

(map #(* point-size %)

[(pt 0) (pt 1) 1 1]))

The add-points function adds points together. You can use add-points to

calculate the new position of a moving game object. For example, you

can move an object at [10, 10] left by one:

(add-points [10 10] [-1 0])

⇒ [9 10]

point-to-screen-rect simply converts a point in game space to a rectangle

on the screen:

(point-to-screen-rect [5 10])

⇒ (50 100 10 10)

Next, let’s write a function to create a new apple:

(defn create-apple []

{:location [(rand-int width) (rand-int height)]

:color (Color. 210 50 90)

:type :apple})

Apples occupy a single point, the :location, which is guaranteed to be

on the game board. Snakes are a little bit more complicated:

(defn create-snake []

{:body (list [1 1])

:dir [1 0]

:type :snake

:color (Color. 15 160 70)})

Because a snake can occupy multiple points on the board, it has a

:body, which is a list of points. Also, snakes are always in motion in

some direction expressed by :dir.

Next, create a function to move a snake. This should be a pure function,

returning a new snake. Also, it should take a grow option, allowing the

snake to grow after eating an apple.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=199

A CLOJURE SNAKE 200

(defn move [{:keys [body dir] :as snake} & grow]

(assoc snake :body (cons (add-points (first body) dir)

(if grow body (butlast body)))))

move uses a fairly complex binding expression. The {:keys [body dir]} part

makes the snake’s body and dir available as their own bindings, and

the :as snake part binds snake to the entire snake. The function then

proceeds as follows:

1. add-points creates a new point, which is the head of the original

snake offset by the snake’s direction of motion.

2. cons adds the new point to the front of the snake. If the snake is

growing, the entire original snake is kept. Otherwise, it keeps all

the original snake except the last segment (butlast).

3. assoc returns a new snake, which is a copy of the old snake but

with an updated :body.

Test move by moving and growing a snake:

(move (create-snake))

⇒ {:body ([2 1]), ; etc.

(move (create-snake) :grow)

⇒ {:body ([2 1] [1 1]), ; etc.

Write a win? function to test whether a snake has won the game:

(defn win? [{body :body}]

(>= (count body) win-length))

Test win? against different body sizes. Note that win? binds only the

:body, so you don’t need a “real” snake, just anything with a body:

(win? {:body [[1 1]]})

⇒ false

(win? {:body [[1 1] [1 2] [1 3] [1 4] [1 5]]})

⇒ true

A snake loses if its head ever comes back into contact with the rest of

its body. Write a head-overlaps-body? function to test for this, and use

it to define lose?:

(defn head-overlaps-body? [{[head & body] :body}]

(includes? body head))

(def lose? head-overlaps-body?)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=200

A CLOJURE SNAKE 201

Test lose? against overlapping and nonoverlapping snake bodies:

(lose? {:body [[1 1] [1 2] [1 3]]})

⇒ false

(lose? {:body [[1 1] [1 2] [1 1]]})

⇒ true

A snake eats an apple if its head occupies the apple’s location. Define

an eats? function to test this:

(defn eats? [{[snake-head] :body} {apple :location}]

(= snake-head apple))

Notice how clean the body of the eats? function is. All the work is done in

the bindings: {[snake-head] :body} binds snake-head to the first element

of the snake’s :body, and {apple :location} binds apple to the apple’s

:location. Test eats? from the REPL:

(eats? {:body [[1 1] [1 2]]} {:location [2 2]})

⇒ false

(eats? {:body [[2 2] [1 2]]} {:location [2 2]})

⇒ true

Finally, you need some way to turn the snake, updating its :dir:

(defn turn [snake newdir]

(assoc snake :dir newdir))

turn returns a new snake, with an updated direction:

(turn (create-snake) [0 -1])

⇒ {:body ([1 1]), :dir [0 -1], ; etc.

All of the code you have written so far is part of the functional model of

the Snake game. It is easy to understand in part because it has no local

variables and no mutable state. As you will see in the next section, the

amount of mutable state in the game is quite small.1

Building a Mutable Model with STM

The mutable state of the Snake game can change in only three ways:

•	 A game can be reset to its initial state.

•	 Every turn, the snake updates its position. If it eats an apple, a

new apple is placed.

•	 A snake can turn.

1. It is even possible to implement the Snake with no mutable state, but that is not the

purpose of this demo.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=201

A CLOJURE SNAKE 202

We will implement each of these changes as functions that modify Clo

jure refs inside a transaction. That way, changes to the position of the

snake and the apple will be synchronous and coordinated.

reset-game is trivial:

(defn reset-game [snake apple]

(dosync (ref-set apple (create-apple))

(ref-set snake (create-snake)))

nil)

You can test reset-game by passing in some refs and then checking that

they dereference to a snake and an apple:

(def test-snake (ref nil))

(def test-apple (ref nil))

(reset-game test-snake test-apple)

⇒ nil

@test-snake

⇒ {:body ([1 1]), :dir [1 0], ; etc.

@test-apple

⇒ {:location [52 8], ; etc.

update-direction is even simpler; it’s just a trivial wrapper around the

functional turn:

(defn update-direction [snake newdir]

(when newdir (dosync (alter snake turn newdir))))

Try turning your test-snake to move in the “up” direction:

(update-direction test-snake [0 -1])

⇒ {:body ([1 1]), :dir [0 -1], ; etc.

The most complicated mutating function is update-positions. If the snake

eats the apple, a new apple is created, and the snake grows. Otherwise,

the snake simply moves:

(defn update-positions [snake apple]

(dosync

(if (eats? @snake @apple)

(do (ref-set apple (create-apple))

(alter snake move :grow))

(alter snake move)))

nil)

To test update-positions, reset the game:

(reset-game test-snake test-apple)

⇒ nil

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=202

A CLOJURE SNAKE 203

Then, move the apple into harm’s way, under the snake:

(dosync (alter test-apple assoc :location [1 1]))

⇒ {:location [1 1], ; etc.

Now, after you update-positions, you should have a bigger, two-segment

snake:

(update-positions test-snake test-apple)

⇒ nil

(:body @test-snake)

⇒ ([2 1] [1 1])

And that is all the mutable state of the Snake world: three functions,

about a dozen lines of code.

The Snake GUI

The Snake GUI consists of functions that paint screen objects, respond

to user input, and set up the various Swing components. Since snakes

and apples are drawn from simple points, the painting functions are

simple. The fill-point function fills in a single point:

(defn fill-point [g pt color]

(let [[x y width height] (point-to-screen-rect pt)]

(.setColor g color)

(.fillRect g x y width height)))

The paint multimethod knows how to paint snakes and apples:

Line 1 (defmulti paint (fn [g object & _] (:type object)))
2

3 (defmethod paint :apple [g {:keys [location color]}]

4 (fill-point g location color))

5

6 (defmethod paint :snake [g {:keys [body color]}]

7 (doseq [point body]

8 (fill-point g point color)))

paint takes two required arguments: g is a java.awt.Graphics instance,

and object is the object to be painted. The defmulti includes an optional

rest argument so that future implementations of paint have the option

of taking more arguments. (See Section 8.2, Defining Multimethods, on

page 247 for an in-depth description of defmulti.)

On line 3, the :apple method of paint binds the location and color, of the

apple and uses them to paint a single point on the screen. On line 6,

the :snake method binds the snake’s body and color and then uses doseq

to paint each point in the body.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=203

A CLOJURE SNAKE 204

The meat of the UI is the game-panel function, which creates a Swing

JPanel with handlers for painting the game, updating on each timer tick,

and responding to user input:

Line 1 (defn game-panel [frame snake apple]
- (proxy [JPanel ActionListener KeyListener] []
- (paintComponent [g]
- (proxy-super paintComponent g)
5 (paint g @snake)
- (paint g @apple))
- (actionPerformed [e]
- (update-positions snake apple)
- (when (lose? @snake)

10 (reset-game snake apple)

- (JOptionPane/showMessageDialog frame "You lose!"))

- (when (win? @snake)

- (reset-game snake apple)

- (JOptionPane/showMessageDialog frame "You win!"))

15 (.repaint this))

- (keyPressed [e]

- (update-direction snake (dirs (.getKeyCode e))))

- (getPreferredSize []

- (Dimension. (* (inc width) point-size)

20 (* (inc height) point-size)))

- (keyReleased [e])

- (keyTyped [e])))

game-panel is long but simple. It uses proxy to create a panel with a set

of Swing callback methods.

•	 Swing calls paintComponent (line 3) to draw the panel. paintCom

ponent calls proxy-super to invoke the normal JPanel behavior, and

then it paints the snake and the apple.

•	 Swing will call actionPerformed (line 7) on every timer tick. action-

Performed updates the positions of the snake and the apple. If the

game is over, it displays a dialog and resets the game. Finally, it

triggers a repaint with (.repaint this).

•	 Swing calls keyPressed (line 16) in response to keyboard input. key-

Pressed calls update-direction to change the snake’s direction. (If the

keyboard input was not an arrow key, the dirs function returns nil

and update-direction does nothing.)

•	 The game panel ignores keyReleased and keyTyped.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=204

A CLOJURE SNAKE 205

The game function creates a new game:

Line 1 (defn game []
- (let [snake (ref (create-snake))
- apple (ref (create-apple))
- frame (JFrame. "Snake")
5 panel (game-panel frame snake apple)
- timer (Timer. turn-millis panel)]
- (doto panel
- (.setFocusable true)
- (.addKeyListener panel))

10 (doto frame
- (.add panel)
- (.pack)
- (.setVisible true))
- (.start timer)

15 [snake, apple, timer]))

On line 2, game creates all the necessary game objects: the mutable

model objects snake and apple, and the UI components frame, panel,

and timer. Lines 7 and 10 perform boilerplate initialization of the panel

and frame. Line 14 starts the game by kicking off the timer.

Line 15 returns a vector with the snake, apple, and time. This is for

convenience when testing at the REPL: you can use these objects to

move the snake and apple or to start and stop the game.

Go ahead and play the game again; you have earned it. To start the

game, use the snake library at the REPL, and run game. If you have

entered the code yourself, you can use the library name you picked

(examples.reader in the instructions); otherwise, you can use the com

pleted sample at examples.snake:

(use 'examples.snake)

(game)

⇒	 [#<Ref clojure.lang.Ref@6ea27cbe>

#<Ref clojure.lang.Ref@6dabd6b0>

#<Timer javax.swing.Timer@32f60451>]

The game window may appear behind your REPL window. If this hap

pens, use your local operating-system fu to locate the game window.

There are many possible improvements to the Snake game. If the snake

reaches the edge of the screen, perhaps it should turn to avoid disap

pearing from view. Or (tough love) maybe you just lose the game! Make

the Snake your own by improving it to suit your personal style.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=205

A CLOJURE SNAKE 206

Snakes Without Refs

We chose to implement the snake game’s mutable model using refs so

that we could coordinate the updates to the snake and the apple. Other

approaches are also valid.

For example, you could combine the snake and apple state into a single

game object. With only one object, coordination is no longer required,

and you can use an atom instead.

The file examples/atom-snake.clj demonstrates this approach. Functions

like update-positions become part of the functional model and return a

new game object with updated state:

Download examples/atom_snake.clj

(defn update-positions [{snake :snake, apple :apple, :as game}]

(if (eats? snake apple)

(merge game {:apple (create-apple) :snake (move snake :grow)})

(merge game {:snake (move snake)})))

Notice how destructuring makes it easy to get at the internals of the

game: both snake and apple are bound by the argument list.

The actual mutable updates are now all atom swap!s. I found these to

be simple enough to leave them in the UI function game-panel, as this

excerpt shows:

(actionPerformed [e]

(swap! game update-positions)

(when (lose? (@game :snake))

(swap! game reset-game)

(JOptionPane/showMessageDialog frame "You lose!"))

There are other possibilities as well. Chris Houser’s fork of the book’s

sample code2 demonstrates using an agent that Thread/sleeps instead

of a Swing timer, as well as using a new agent per game turn to update

the game’s state.

Lancet’s runonce system does not lend itself to a wide variety of ap

proaches, like the snake game does. We will need to think carefully

about a build system’s concurrency semantics in order to choose the

right concurrency API.

2. http://github.com/Chouser/programming-clojure

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/atom_snake.clj
http://github.com/Chouser/programming-clojure
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=206

MAKING LANCET TARGETS RUN ONLY ONCE 207

6.7 Making Lancet Targets Run Only Once

So far, you have worked on making Lancet able to invoke existing Ant

tasks. Now it is time to think about how to implement a Lancet target,

that is, a function that runs only once per build. Because we will build

targets on top of functions, any Clojure function can become a target.

Targets are what makes Lancet dependency-based. Calling a target is

the same as saying “I depend on this target.” Each target should execute

only once, no matter how many times it is called. In other words:

1. The first caller of any target should execute the target.

2. All subsequent callers of a target should wait for the first caller to

finish and then move on without calling the target again.

In this chapter, you have seen Clojure’s concurrency library: refs,

atoms, agents, and vars. Another possibility is to dip down into Java

and use the locking or atomic capabilities in Java itself. Let’s now con

sider each of these in turn to find the best approach for implementing

targets.

•	 Refs provide coordinated, synchronous updates. At first glance,

this looks like a good fit for targets. But Clojure transactions must

be side effect free. Build tasks certainly have side effects, and

retrying might be expensive or even incorrect, so rule out refs.

•	 Atoms cannot do the job alone. They provide no coordination and

hence no way to wait for the first caller of a task to finish. We will

use an atom to remember the return value of each target after it

is called.

•	 Agents almost work. Every target could have an agent, and you

could send-off the work of the target. Subsequent callers could

await the completion of any targets they need. However, you can

not await one agent while in another agent. This prevents possible

deadlocks and enforces the idea that agents are not a coordination

mechanism. Rule out agents.

•	 Vars would unnecessarily limit Lancet to running on a single

thread. Rule out vars.

Another possibility is good old-fashioned locking. It is perfectly fine to

use locks in Clojure, if that is what your design calls for. Lancet needs

to make coordinated, synchronous updates to impure functions, and

this is a job for locks.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=207

MAKING LANCET TARGETS RUN ONLY ONCE 208

At the REPL, create a function named create-runonce. This function will

take an ordinary function and return a new function that will run only

once.

Download lancet/step_3_repl.clj

Line 1 (defn create-runonce [function]
2 (let [sentinel (Object.)
3 result (atom sentinel)]
4 (fn [& args]
5 (locking sentinel
6 (if (= @result sentinel)
7 (reset! result (function))
8 @result)))))

create-runonce works as follows:

•	 Line 2 creates a sentinel object. Whenever you see the sentinel

value, you know that the target function has not yet run. The sen

tinel is a simple Java object so that it will never compare as equal

to anything else.

•	 The result atom (line 3) remembers the return value from calling a

target. It is initially set to sentinel, which means that the target has

not run yet.

•	 Line 5 locks the sentinel. This guarantees that only one thread at

a time can execute the code that follows.

•	 If the result is sentinel, then this is the first caller. Line 7 calls the

function and reset!s the result.

•	 If the result is not sentinel, then this is not the first caller, so there

is nothing to do but return the value of result.

Create a function named println-once that runs println only once, using

create-runonce:

(def println-once (create-runonce println))

⇒ #'user/println-once

Now for the moment of truth. Call println-once twice.

> (println-once "there can be only one!")

| there can be only one!

⇒ nil

user=> (println-once "there can be only one!")

⇒ nil

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_3_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=208

MAKING LANCET TARGETS RUN ONLY ONCE 209

Just to be on the safe side, verify that the original println still works, no

matter how many times you call it:

(println "here")

| here

⇒ nil

(println "still here")

| still here

⇒ nil

Now that you have the core code working, let’s make it more usable. It

would be nice to have a simple predicate to see whether a target has

run. For testing, it would also be useful to be able to reset a target

so that it will run again. Create a runonce function that returns three

values:

• A has-run? predicate

• A reset-fn

• The runonce function itself

Download lancet/step_3_complete.clj

Line 1 (defn runonce
- "Create a function that will only run once. All other invocations
- return the first calculated value. The function can have side effects.
- Returns a [has-run-predicate, reset-fn, once-fn]"
5 [function]
- (let [sentinel (Object.)
- result (atom sentinel)
- reset-fn (fn [] (reset! result sentinel) nil)
- has-run? #(not= @result sentinel)]

10 [has-run?

- reset-fn

- (fn [& args]

- (locking sentinel

- (if (= @result sentinel)

15 (reset! result (function))

- @result)))]))

This is the same as the previous create-runonce, with two additions.

reset-fn (line 8) simply sets the result back to sentinel, as if the target had

never run. The has-run? predicate returns true if the result is not sentinel.

Notice that runonce encapsulates its implementation details. The sentinel

and result objects are created in a local let and can never be accessed

directly outside the function. Instead, you access them only through

their “API,” the three functions returned by runonce. This is similar to

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_3_complete.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=209

WRAPPING UP 210

using a private field in an OO language but is more flexible and more

granular.

runonce creates a complete, albeit minimal, dependency system that

can work with any Clojure function. The current feature set includes

the following:

• Run-once semantics for any function

• A predicate to check a runonce function’s status

• A reset function for testing runonces

All that, and the entire codebase is less than two dozen lines.

Lancet Step 3: runonce

Download lancet/step_3.clj

(defn runonce

"Create a function that will only run once. All other invocations

return the first calculated value. The function can have side effects.

Returns a [has-run-predicate, reset-fn, once-fn]"

[function]

(let [sentinel (Object.)

result (atom sentinel)

reset-fn (fn [] (reset! result sentinel))

has-run? #(not= @result sentinel)]

[has-run?

reset-fn

(fn [& args]

(locking sentinel

(if (= @result sentinel)

(reset! result (function))

@result)))]))

6.8 Wrapping Up

Clojure’s concurrency model is the most innovative part of the lan

guage. The combination of software transactional memory, agents,

atoms, and dynamic binding that you have seen in this chapter gives

Clojure powerful abstractions for all sorts of concurrent systems. It also

makes Clojure one of the few languages suited to the coming generation

of multicore computer hardware.

But there’s still more. Clojure’s macro implementation is easy to learn

and use correctly for common tasks and yet powerful enough for the

harder macro-related tasks. In the next chapter, you will see how Clo

jure is bringing macros to mainstream programming.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_3.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=210

Chapter 7

Macros

Macros give Clojure great power. With most programming techniques,

you build features within the language. When you write macros, it is

more accurate to say that you are “adding features to” the language.

This is a powerful and dangerous ability, so you should follow the rules

in Section 7.1, When to Use Macros, at least until you have enough

experience to decide for yourself when to bend the rules. Section 7.2,

Writing a Control Flow Macro, on the next page jump-starts that experi

ence, walking you through adding a new feature to Clojure.

While powerful, macros are not always simple. Clojure works to make

macros as simple as is feasible by including conveniences to solve many

common problems that occur when writing macros. Section 7.3, Making

Macros Simpler, on page 218 explains these problems and shows how

Clojure mitigates them.

Macros are so different from other programming idioms that you may

struggle knowing when to use them. There is no better guide than

the shared experience of the community, so Section 7.4, Taxonomy of

Macros, on page 224 introduces a taxonomy of Clojure macros, based

on the macros in Clojure and clojure-contrib.

Finally, the chapter concludes with Lancet. Using macros, you will turn

Lancet from a clunky API into an elegant DSL.

7.1 When to Use Macros

Macro Club has two rules, plus one exception.

The first rule of Macro Club is Don’t Write Macros. Macros are complex,

and they require you to think carefully about the interplay of macro

Prepared exclusively for WG Custom Motorcycles

WRITING A CONTROL FLOW MACRO 212

expansion time and compile time. If you can write it as a function,

think twice before using a macro.

The second rule of Macro Club is Write Macros If That Is The Only Way

to Encapsulate a Pattern. All programming languages provide some way

to encapsulate patterns, but without macros these mechanisms are

incomplete. In most languages, you sense that incompleteness when

ever you say “My life would be easier if only my language had feature

X.” In Clojure, you just implement feature X using a macro.

The exception to the rule is that you can write any macro that makes life

easier for your callers when compared with an equivalent function. But

to understand this exception, you need some practice writing macros

and comparing them to functions. So, let’s get started with an example.

7.2 Writing a Control Flow Macro

Clojure provides the if special form as part of the language:

(if (= 1 1) (println "yep, math still works today"))

| yep, math still works today

Some languages have an unless, which is (almost) the opposite of if. unless

performs a test and then executes its body only if the test is logically

false.

Clojure doesn’t have unless, but it does have an equivalent macro called

when-not. For the sake of having a simple example to start with, let’s

pretend that when-not doesn’t exist and create an implementation of

unless. To follow the rules of Macro Club, begin by trying to write unless

as a function:

Download examples/macros.clj

; This is doomed to fail...

(defn unless [expr form]

(if expr nil form))

Check that unless correctly evaluates its form when its test expr is false:

(unless false (println "this should print"))

| this should print

Things appear fine so far. But let’s be diligent and test the true case too:

(unless true (println "this should not print"))

| this should not print

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/macros.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=212

WRITING A CONTROL FLOW MACRO 213

Clearly something has gone wrong. The problem is that Clojure evalu

ates all the arguments before passing them to a function, so the println

is called before unless ever sees it. In fact, both calls to unless earlier call

println too soon, before entering the unless function. To see this, add a

println inside unless:

(defn unless [expr form]

(println "About to test...")

(if expr nil form))

Now you can clearly see that function arguments are always evaluated

before passing them to unless:

(unless false (println "this should print"))

| this should print

| About to test...

(unless true (println "this should not print"))

| this should not print

| About to test...

Macros solve this problem, because they do not evaluate their argu

ments immediately. Instead, you get to choose when (and if!) the argu

ments to a macro are evaluated.

When Clojure encounters a macro, it processes it in two steps. First, it

expands (executes) the macro and substitutes the result back into the

program. This is called macro expansion time. Then it continues with

the normal compile time.

To write unless, you need to write Clojure code to perform the following

translation at macro expansion time:

(unless expr form) -> (if expr nil form)

Then, you need to tell Clojure that your code is a macro by using def-

macro, which looks almost like defn:

(defmacro name doc-string? attr-map? [params*] body)

Because Clojure code is just Clojure data, you already have all the tools

you need to write unless. Write the unless macro using list to build the if

expression:

(defmacro unless [expr form]

(list 'if expr nil form))

The body of unless executes at macro expansion time, producing an if

form for compilation. If you enter this expression at the REPL:

(unless false (println "this should print"))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=213

WRITING A CONTROL FLOW MACRO 214

then Clojure will (invisibly to you) expand the unless form into:

(if false nil (println "this should print"))

Then, Clojure compiles and executes the expanded if form. Verify that

unless works correctly for both true and false:

(unless false (println "this should print"))

| this should print

⇒ nil

(unless true (println "this should not print"))

⇒ nil

Congratulations, you have written your first macro. unless may seem

pretty simple, but consider this: what you have just done is impossible

in most languages. In languages without macros, special forms get in

the way.

Special Forms, Design Patterns, and Macros

Clojure has no special syntax for code. Code is composed of data struc

tures. This is true for normal functions but also for special forms and

macros.

Consider a language with more syntactic variety, such as Java.1 In

Java, the most flexible mechanism for writing code is the instance

method. Imagine that you are writing a Java program. If you discover a

recurring pattern in some instance methods, you have the entire Java

language at your disposal to encapsulate that recurring pattern.

Good so far. But Java also has lots of “special forms” (although they are

not normally called by that name). Unlike Clojure special forms, which

are just Clojure data, each Java special form has its own syntax. For

example, if is a special form in Java. If you discover a recurring pat

tern of usage involving if, there is no way to encapsulate that pattern.

You cannot create an unless, so you are stuck simulating unless with an

idiomatic usage of if:

if (!something) ...

This may seem like a relatively minor problem. Java programmers can

certainly learn to mentally make the translation from if (!foo) to unless

1. I am not trying to beat up on Java in particular; it is just easier to talk about a specific

language, and Java is well known.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=214

WRITING A CONTROL FLOW MACRO 215

(foo). But the problem is not just with if: every distinct syntactic form

in the language inhibits your ability to encapsulate recurring patterns

involving that form.

As another example, Java new is a special form. Polymorphism is not

available for new, so you must simulate polymorphism, for example

with idiomatic usage of a class method:

Widget w = WidgetFactory.makeWidget(...)

This idiom is a little bulkier. It introduces a whole new class, WidgetFac

tory. This class is meaningless in the problem domain and exists only

to work around the constructor special form. Unlike the unless idiom,

the “polymorphic instantiation” idiom is complicated enough that there

is more than one way to implement a solution. Thus, the idiom should

more properly be called a design pattern.

The Wikipedia defines a design pattern2 to be a “general reusable solu

tion to a commonly occurring problem in software design.” It goes on to

state that a “design pattern is not a finished design that can be trans

formed directly (emphasis added) into code.”

That is where macros fit in. Macros provide a layer of indirection so that

you can automate the common parts of any recurring pattern. Macros

and code-as-data work together, enabling you to reprogram your lan

guage on the fly to encapsulate patterns.

Of course, this argument does not go entirely in one direction. Many

people would argue that having a bunch of special syntactic forms

makes a programming language easier to learn or read. I do not agree,

but even if I did, I would be willing to trade syntactic variety for a pow

erful macro system. Once you get used to code as data, the ability to

automate design patterns is a huge payoff.

Expanding Macros

When you created the unless macro, you quoted the symbol if:

(defmacro unless [expr form]

(list 'if expr nil form))

2. http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://en.wikipedia.org/wiki/Design_pattern_(computer_science)
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=215

WRITING A CONTROL FLOW MACRO 216

But you did not quote any other symbols. To understand why, you need

to think carefully about what happens at macro expansion time:

•	 By quoting ’if, you prevent Clojure from directly evaluating if at

macro expansion time. Instead, evaluation strips off the quote,

leaving if to be compiled.

•	 You do not want to quote expr and form, because they are macro

arguments. Clojure will substitute them without evaluation at

macro expansion time.

•	 You do not need to quote nil, since nil evaluates to itself.

Thinking about what needs to be quoted can get complicated quickly.

Fortunately, you do not have to do this work in your head. Clojure

includes diagnostic functions so that you can test macro expansions at

the REPL.

The function macroexpand-1 will show you what happens at macro ex

pansion time:

(macroexpand-1 form)

Use macroexpand-1 to prove that unless expands to a sensible if expres

sion:

(macroexpand-1 '(unless false (println "this should print")))

⇒ (if false nil (println "this should print"))

Macros are complicated beasts, and I cannot overstate the importance

of testing them with macroexpand-1. Let’s go back and try some incor

rect versions of unless. Here is one that incorrectly quotes the expr:

(defmacro bad-unless [expr form]

(list 'if 'expr nil form))

When you expand bad-unless, you will see that it generates the symbol

expr, instead of the actual test expression:

(macroexpand-1 '(bad-unless false (println "this should print")))

⇒ (if expr nil (println "this should print"))

If you try to actually use the bad-unless macro, Clojure will complain

that it cannot resolve the symbol expr:

(bad-unless false (println "this should print"))

⇒ java.lang.Exception: Unable to resolve symbol: expr in this context

Sometimes macros expand into other macros. When this happens, Clo

jure will continue to expand all macros, until only normal code remains.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=216

WRITING A CONTROL FLOW MACRO 217

For example, the .. macro expands recursively, producing a dot oper

ator call, wrapped in another .. to handle any arguments that remain.

You can see this with the following macro expansion:

(macroexpand-1 '(.. arm getHand getFinger))

⇒ (clojure.core/.. (. arm getHand) getFinger)

If you want to see .. expanded all the way, use macroexpand:

(macroexpand form)

If you macroexpand a call to .., it will recursively expand until only dot

operators remain:

(macroexpand '(.. arm getHand getFinger))

⇒ (. (. arm getHand) getFinger)

(It is not a problem that arm, getHand, and getFinger do not exist. You

are only expanding them, not attempting to compile and execute them.)

Another recursive macro is and. If you call and with more than two

arguments, it will expand to include another call to and, with one less

argument:

(macroexpand '(and 1 2 3))

⇒	 (let* [and__2863 1]

(if and__2863 (clojure.core/and 2 3) and__2863))

This time, macroexpand does not expand all the way. macroexpand

works only against the top level of the form you give it. Since the expan

sion of and creates a new and nested inside the form, macroexpand does

not expand it.

when and when-not

Your unless macro could be improved slightly to execute multiple forms,

avoiding this error:

(unless	 false (println "this") (println "and also this"))

⇒	 java.lang.IllegalArgumentException: \

Wrong number of args passed to: macros$unless

Think about how you would write the improved unless. You would need

to capture a variable argument list and stick a do in front of it so that

every form executes. Clojure provides exactly this behavior in its when

and when-not macros:

(when test & body)

(when-not test & body)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=217

MAKING MACROS SIMPLER 218

when-not is the improved unless you are looking for:

(when-not false (println "this") (println "and also this"))

| this

| and also this

⇒ nil

Given your practice writing unless, you should now have no trouble read

ing the source for when-not:

; from Clojure core

(defmacro when-not [test & body]

(list 'if test nil (cons ' do body)))

And, of course, you can use macroexpand-1 to see how when-not works:

(macroexpand-1 '(when-not false (print "1") (print "2")))

⇒ (if false nil (do (print "1") (print "2")))

when is the opposite of when-not and executes its forms only when its

test is true. Note that when differs from if in two ways:

•	 if allows an else clause, and when does not. This reflects English

usage, because nobody says “when . . . else.”

•	 Since when does not have to use its second argument as an else

clause, it is free to take a variable argument list and execute all

the arguments inside a do.

You don’t really need an unless macro. Just use Clojure’s when-not.

Always check to see whether somebody else has written the macro you

need.

7.3 Making Macros Simpler

The unless macro is a great simple example, but most macros are more

complex. In this section, we will build a set of increasingly complex

macros, introducing Clojure features as we go. For your reference, the

features introduced in this section are summarized in Figure 7.1, on

page 220.

First, let’s build a replica of Clojure’s .. macro. We’ll call it chain, since

it chains a series of method calls. Here are some sample expansions of

chain:

Macro Call	 Expansion

(chain arm getHand) (. arm getHand)

(chain arm getHand getFinger) (. (. arm getHand) getFinger)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=218

MAKING MACROS SIMPLER 219

Begin by implementing the simple case where the chain calls only one

method. The macro needs only to make a simple list:

Download examples/macros/chain_1.clj

; chain reimplements Clojure's .. macro

(defmacro chain [x form]

(list '. x form))

chain needs to support any number of arguments, so the rest of the

implementation should define a recursion. The list manipulation be

comes more complex, since you need to build two lists and concat them

together:

Download examples/macros/chain_2.clj

(defmacro chain

([x form] (list '. x form))

([x form & more] (concat (list 'chain (list '. x form)) more)))

Test chain using macroexpand to make sure it generates the correct

expansions:

(macroexpand '(chain arm getHand))

⇒ (. arm getHand)

(macroexpand '(chain arm getHand getFinger))

⇒ (. (. arm getHand) getFinger)

The chain macro works fine as written, but it is difficult to read the

expression that handles more than one argument:

(concat (list 'chain (list '. x form)) more)))

The definition of chain oscillates between macro code and the body to

be generated. The intermingling of the two makes the entire thing hard

to read. And this is just a baby of a form, only one line in length. As

macro forms grow more complex, assembly functions such as list and

concat quickly obscure the meaning of the macro.

One solution to this kind of problem is a templating language. If macros

were created from templates, you could take a “fill in the blanks” ap

proach to creating them. The definition of chain might look like this:

; hypothetical templating language

(defmacro chain

([x form] (. ${x} ${form}))

([x form & more] (chain (. ${x} ${form}) ${more})))

In this hypothetical templating language, the ${} lets you substitute

arguments into the macro expansion.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/macros/chain_1.clj
http://media.pragprog.com/titles/shcloj/code/examples/macros/chain_2.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=219

MAKING MACROS SIMPLER 220

Form	 Description

foo#	 Auto-gensym: Inside a syntax quoted sec

tion, create a unique name prefixed with foo.

(gensym prefix?) Create a unique name, with optional prefix.

(macroexpand form) Expand form with macroexpand-1 repeatedly

until the returned form is no longer a macro.

(macroexpand-1 form) Show how Clojure will expand form.

(list-frag? ~@form list-frag?) Splicing unquote: Use inside a syntax-quote

to splice an unquoted list into a template.

‘form	 Syntax quote: Quote form, but allow internal

unquoting so that form acts a template. Sym

bols inside form are resolved to help prevent

inadvertent symbol capture.

~form	 Unquote: Use inside a syntax-quote to sub

stitute an unquoted value.

Figure 7.1: Clojure support for macro writers

Notice how much easier the definition is to read and how it clearly

shows what the expansion will look like.

Syntax Quote, Unquote, and Splicing Unquote

Clojure macros support templating without introducing a separate lan

guage. The syntax quote character, which is a backquote (‘), works

almost like normal quoting. But inside a syntax quoted list, the unquote

character (~, a tilde) turns quoting off again. The overall effect is tem

plates that look like this:

Download examples/macros/chain_3.clj

(defmacro chain [x form]

`(. ~x ~form))

Test that this new version of chain can correctly generate a single meth

od call:

(macroexpand '(chain arm getHand))

⇒ (. arm getHand)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/macros/chain_3.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=220

MAKING MACROS SIMPLER 221

Unfortunately, the syntax quote/unquote approach will not quite work

for the multiple-argument variant of chain:

Download examples/macros/chain_4.clj

; Does not quite work

(defmacro chain

([x form] `(. ~x ~form))

([x form & more] `(chain (. ~x ~form) ~more)))

When you expand this chain, the parentheses aren’t quite right:

(macroexpand '(chain arm getHand getFinger))

⇒ (. (. arm getHand) (getFinger))

The last argument to chain is a list of more arguments. When you drop

more into the macro “template,” it has parentheses because it is a list.

But you don’t want these parentheses; you want more to be spliced into

the list. This comes up often enough that there is a reader macro for it:

splicing unquote (~@). Rewrite chain using splicing unquote to splice in

more:

Download examples/macros/chain_5.clj

(defmacro chain

([x form] `(. ~x ~form))

([x form & more] `(chain (. ~x ~form) ~@more)))

Now, the expansion should be spot on:

(macroexpand '(chain arm getHand getFinger))

⇒ (. (. arm getHand) getFinger)

Many macros follow the pattern of chain, aka Clojure ..:

1. Begin the macro body with a syntax quote (‘) to treat the entire

thing as a template.

2. Insert individual arguments with an unquote (~).

3. Splice in more arguments with splicing unquote (~@).

The macros we have built so far have been simple enough to avoid

creating any bindings with let or binding. Let’s create such a macro next.

Creating Names in a Macro

Clojure has a time macro that times an expression, writing the elapsed

time to the console:

(time (str "a" "b"))

| "Elapsed time: 0.06 msecs"

⇒ "ab"

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/macros/chain_4.clj
http://media.pragprog.com/titles/shcloj/code/examples/macros/chain_5.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=221
mailto:unquote(~@)

MAKING MACROS SIMPLER 222

Let’s build a variant of time called bench, designed to collect data across

many runs. Instead of writing to the console, bench will return a map

that includes both the return value of the original expression and the

elapsed time.

The best way to begin writing a macro is to write its desired expansion

by hand. bench should expand like this:

; (bench (str "a" "b"))

; should expand to

(let [start (System/nanoTime)

result (str "a" "b")]

{:result result :elapsed (- (System/nanoTime) start)})

⇒ {:elapsed 61000, :result "ab"}

The let binds start to the start time and then executes the expression to

be benched, binding it to result. Finally, the form returns a map includ

ing the result and the elapsed time since start.

With the expansion in hand, you can now work backwards and write

the macro to generate the expansion. Using the technique from the pre

vious section, try writing bench using syntax quoting and unquoting:

Download examples/macros/bench_1.clj

; This won't work

(defmacro bench [expr]

`(let [start (System/nanoTime)

result ~expr]

{:result result :elapsed (- (System/nanoTime) start)}))

If you try to call this version of bench, Clojure will complain:

(bench (str "a" "b"))

⇒ java.lang.Exception: Can't let qualified name: examples.macros/start

Clojure is accusing you of trying to let a qualified name, which is illegal.

Calling macroexpand-1 confirms the problem:

(macroexpand-1 '(bench	 (str "a" "b")))

⇒	 (clojure.core/let [examples.macros/start (System/nanoTime)

examples.macros/result (str "a" "b")]

{:elapsed	 (clojure.core/- (System/nanoTime) examples.macros/start)

:result examples.macros/result})

When a syntax-quoted form encounters a symbol, it resolves the symbol

to a fully qualified name. At the moment, this seems like an irritant,

because you want to create local names, specifically start and result. But

Clojure’s approach protects you from a nasty macro bug called symbol

capture.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/macros/bench_1.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=222

MAKING MACROS SIMPLER 223

What would happen if macro expansion did allow the unqualified sym

bols start and result, then bench was later used in a scope where those

names were already bound to something else? The macro would cap

ture the names and bind them to different values, with bizarre results.

If bench captured its symbols, it would appear to work fine most of the

time. Adding one and two would give you three:

(let [a 1 b 2]

(bench (+ a b)))

⇒ {:result 3, :elapsed 39000}

. . . until the unlucky day that you picked a local name like start, which

collided with a name inside bench:

(let [start 1 end 2]

(bench (+ start end)))

⇒ {:result 3, :elapsed 1228277342451783002}}

bench captures the symbol start and binds it to (System/nanoTime). All of

a sudden, one plus two seems to equal 1228277342451783002.

Clojure’s insistence on resolving names in macros helps protect you

from symbol capture, but you still don’t have a working bench. You need

some way to introduce local names, ideally unique ones that cannot

collide with any names used by the caller.

Clojure provides a reader form for creating unique local names. Inside

a syntax-quoted form, you can append an octothorpe (#) to an unqual

ified name, and Clojure will create an autogenerated symbol, or auto

gensym: a symbol based on the name plus an underscore and a unique

ID. Try it at the REPL:

‘foo#

foo__1004

With automatically generated symbols at your disposal, it is easy to

implement bench correctly:

(defmacro bench [expr]

`(let [start# (System/nanoTime)

result# ~expr]

{:result result# :elapsed (- (System/nanoTime) start#)}))

And test it at the REPL:

(bench (str "a" "b"))

⇒ {:elapsed 63000, :result "ab"}

Clojure makes it easy to generate unique names, but if you are deter

mined, you can still force symbol capture. The sample code for the

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=223

TAXONOMY OF MACROS 224

book includes an evil-bench that shows a combination of syntax quot

ing, quoting, and unquoting that leads to symbol capture. Don’t use

symbol capture unless you have a thorough understanding of macros.

7.4 Taxonomy of Macros

Now that you have written several macros, we can restate the Rules of

Macro Club with more supporting detail.

The first rule of Macro Club is Don’t Write Macros. Macros are com

plex. If the preceding sections did not convince you of this, the Lancet

example at the end of the chapter is more complex still, and a few of the

macros in Clojure itself are extremely complex. (If none of the macros

in Clojure seems complex to you, my company is hiring.3)

The second rule of Macro Club is Write Macros If That Is the Only Way

to Encapsulate a Pattern. As you have seen, the patterns that resist

encapsulation tend to arise around special forms, which are irregulari

ties in a language. So, rule 2 can also be called the Special Form Rule.

Special forms have special powers that you, the programmer, do not

have:

•	 Special forms provide the most basic flow control structures, such

as if and recur. All flow control macros must eventually call a spe

cial form.

•	 Special forms provide direct access to Java. Whenever you call

Java from Clojure, you are going through at least one special form,

such as the dot or new.

•	 Names are created and bound through special forms, whether

defining a var with def, creating a lexical binding with let, or cre

ating a dynamic binding with binding.

As powerful as they are, special forms are not functions. They cannot

do some things that functions can do. You cannot apply a special form,

store a special form in a var, or use a special form as a filter with the

sequence library. In short, special forms are not first-class citizens of

the language.

The specialness of special forms could be a major problem and lead

to repetitive, unmaintainable patterns in your code. But macros neatly

3. http://thinkrelevance.com

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://thinkrelevance.com
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=224

TAXONOMY OF MACROS 225

Justification Category	 Examples

Special form Conditional evaluation	 when, when-not, and, or,

comment

Special form Defining vars	 defn, defmacro, defmulti,

defstruct, declare

Special form Java interop	 .., doto, import-static

Caller convenience Postponing evaluation	 lazy-cat, lazy-seq, delay

Caller convenience Wrapping evaluation	 with-open, dosync, with

out-str, time, assert

Caller convenience Avoiding a lambda	 (Same as for “Wrapping

evaluation”)

Figure 7.2: Taxonomy of Clojure Macros

solve the problem, because you can use macros to generate special

forms. In a practical sense, all language features are first-class features

at macro expansion time.

Macros that generate special forms are often the most difficult to write

but also the most rewarding. As if by magic, such macros seem to add

new features to the language.

The exception to the Macro Club rules is caller convenience: you can

write any macro that makes life easier for your callers when compared

with an equivalent function. Because macros do not evaluate their argu

ments, callers can pass raw code to a macro, instead of wrapping the

code in an anonymous function. Or, callers can pass unescaped names,

instead of quoted symbols or strings.

I reviewed the macros in Clojure and clojure-contrib, and almost all of

them follow the rules of Macro Club. Also, they fit into one or more of

the categories shown in Figure 7.2.

Let’s examine each of the categories in turn.

Conditional Evaluation

Because macros do not immediately evaluate their arguments, they can

be used to create custom control structures. You have already seen this

with the unless example on Section 7.2, Writing a Control Flow Macro, on

page 212.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=225
http:anonymousfunction.Or

TAXONOMY OF MACROS 226

Macros that do conditional evaluation tend to be fairly simple to read

and write. They follow a common form: evaluate some argument (the

condition). Then, based on that evaluation, pick which other arguments

to evaluate, if any. A good example is Clojure’s and:

Line 1 (defmacro and
2 ([] true)
3 ([x] x)
4 ([x & rest]
5 `(let [and# ~x]
6 (if and# (and ~@rest) and#))))

and is defined recursively. The zero- and one-argument bodies set up

the base cases:

• For no arguments, return true.

• For one argument, return that argument.

For two or more arguments, and uses the first argument as its condi

tion, evaluating it on line 5. Then, if the condition is true, and proceeds

to evaluate the remaining arguments by recursively anding the rest (line

6).

and must be a macro, in order to short-circuit evaluation after the first

nontrue value is encountered. Unsurprisingly, and has a close cousin

macro, or. Their signatures are the same:

(and & exprs)

(or & exprs)

The difference is that and stops on the first logical false, while or stops

on the first logical true:

(and 1 0 nil false)

⇒ nil

(or 1 0 nil false)

⇒ 1

The all-time short-circuit evaluation champion is the comment macro:

(comment & exprs)

comment never evaluates any of its arguments and is sometimes used

at the end of a source code file to demonstrate usage of an API. For

example, the Clojure inspector library ends with the following comment,

demonstrating the use of the inspector:

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=226

TAXONOMY OF MACROS 227

(comment

(load-file "src/inspector.clj")

(refer 'inspector)

(inspect-tree {:a 1 :b 2 :c [1 2 3 {:d 4 :e 5 :f [6 7 8]}]})

(inspect-table [[1 2 3][4 5 6][7 8 9][10 11 12]])

)

Notice the lack of indentation. This would be nonstandard in most Clo

jure code but is useful in comment, whose purpose is to draw attention

to its body.

Creating Vars

Clojure vars are created by the def special form. Anything else that

creates a var must eventually call def. So, for example, defn, defmacro,

and defmulti are all themselves macros.

To demonstrate writing macros that create vars, we will look at two

macros that are also part of Clojure: defstruct and declare.

Clojure provides a low-level function for creating structs called create

struct:

(create-struct & key-symbols)

Use create-struct to create a person struct:

(def person (create-struct :first-name :last-name))

⇒ #'user/person

create-struct works, but it is visually noisy. Given that you often want

to immediately def a new struct, you will typically call defstruct, which

combines def and create-struct in a single operation:

(defstruct name & key-symbols)

defstruct is a simple macro, and it is already part of Clojure:

(defmacro defstruct

[name & keys]

`(def ~name (create-struct ~@keys)))

This macro looks so simple that you may be tempted to try to write it

as a function. You won’t be able to, because def is a special form. You

must generate def at macro time; you cannot make “dynamic” calls to

def at runtime.

defstruct makes a single line easier to read, but some macros can also

condense many lines down into a single form. Consider the problem

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=227

TAXONOMY OF MACROS 228

of forward declarations. You are writing a program that needs forward

references to vars a, b, c, and d. You can call def with no arguments to

define the var names without an initial binding:

(def a)

(def b)

(def c)

(def d)

But this is tedious and wastes a lot of vertical space. The declare macro

takes a variable list of names and defs each name for you:

(declare & names)

Now you can declare all the names in a single compact form:

(declare a b c d)

⇒ #'user/d

The implementation of declare is built into Clojure:

(defmacro declare

[& names] `(do ~@(map #(list 'def %) names)))

Let’s analyze declare from the inside out. The anonymous function #(list

’def %) is responsible for generating a single def. You can test this form

alone at the REPL:

(#(list 'def %) 'a)

⇒ (def a)

The map invokes the inner function once for each symbol passed in.

Again, you can test this form at the REPL:

(map #(list 'def %) '[a b c d])

⇒ ((def a) (def b) (def c) (def d))

Finally, the leading do makes the entire expansion into a single legal

Clojure form:

‘(do ~@(map #(list 'def %) '[a b c d]))

⇒ (do (def a) (def b) (def c) (def d))

Substituting ’[a b c d] in the previous form is the manual equivalent of

testing the entire macro with macroexpand-1:

(macroexpand-1 '(declare a b c d))

⇒ (do (def a) (def b) (def c) (def d))

Many of the most interesting parts of Clojure are macros that expand

into special forms involving def. We have explored a few here, but you

can read the source of any of them. Most of them live at src/clj/clojure/

core.clj in the Clojure source distribution.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=228

TAXONOMY OF MACROS 229

Java Interop

Clojure programs call into Java via the . (dot), new, and set! special

forms. However, idiomatic Clojure code often uses macros such as ..

(threaded member access) and doto to simplify forms that call Java.

You (or anyone else) can extend how Clojure calls Java by writing a

macro. Consider the following scenario. You are writing code that uses

several of the constants in java.lang.Math:

Math/PI

⇒ 3.141592653589793

(Math/pow 10 3)

⇒ 1000.0

In a longer segment of code, the Math/ prefix would quickly become

distracting, so it would be nice if you could say simply PI and pow.

Clojure doesn’t provide any direct way to do this, but you could define

a bunch of vars by hand:

(def PI Math/PI)

⇒ #'user/PI

(defn pow [b e] (Math/pow b e))

⇒ #'user/pow

Stuart Sierra has automated the boilerplate with the import-static macro:

(clojure.contrib.import-static/import-static class & members)

import-static imports static members of a Java class as names in the local

namespace. Use import-static to import the members you want from

Math.

(use '[clojure.contrib.import-static :only (import-static)])

(import-static java.lang.Math PI pow)

⇒ nil

PI

⇒ 3.141592653589793

(pow 10 3)

⇒ 1000.0

Besides import-static, clojure-contrib includes several other macros that

simplify Java interop tasks:

• javalog/with-logger binds a logger for execution of a set of forms.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=229

TAXONOMY OF MACROS 230

•	 error-kit4 provides a set of macros augmenting Java-style exception

handling with continues, which are like Common Lisp restarts.

Postponing Evaluation

Most sequences in Clojure are lazy. When you are building a lazy se

quence, you often want to combine several forms whose evaluation is

postponed until the sequence is forced. Since evaluation is not imme

diate, a macro is required.

You have already seen such a macro in Section 4.3, Lazy and Infinite

Sequences, on page 125: lazy-seq. Another example is delay:

(delay & exprs)

When you create a delay, it holds on to its exprs and does nothing with

them until it is forced to. Try creating a delay that simulates a long

calculation by sleeping:

(def slow-calc (delay (Thread/sleep 5000) "done!"))

⇒ #'user/slow-calc

To actually execute the delay, you must force it:

(force x)

Try forcing your slow-calc a few times:

(force slow-calc)

⇒ "done!"

(force slow-calc)

⇒ "done!"

The first time you force a delay, it executes its expressions and caches

the result. Subsequent forces simply return the cached value.

The macros that implement lazy and delayed evaluation all call Java

code in clojure.jar. In your own code, you should not call such Java

APIs directly. Treat the lazy/delayed evaluation macros as the public

API, and the Java classes as implementation detail that is subject to

change.

4. error-kit is under active development. See the announcement

http://tinyurl.com/error-kit-announcement for intro documentation.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://tinyurl.com/error-kit-announcement
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=230

TAXONOMY OF MACROS 231

Wrapping Evaluation

Many macros wrap the evaluation of a set of forms, adding some spe

cial semantics before and/or after the forms are evaluated. You have

already seen several examples of this kind of macro:

•	 time starts a timer, evaluates forms, and then reports how long

they took to execute.

•	 let and binding establish bindings, evaluate some forms, and then

tear down the bindings.

•	 with-open takes an open file (or other resource), executes some

forms, and then makes sure the resource is closed in a finally

block.

•	 dosync executes forms within a transaction.

Another example of a wrapper macro is with-out-str:

(with-out-str & exprs)

with-out-str temporarily binds *out* to a new StringWriter, evaluates its

exprs, and then returns the string written to *out*. with-out-str makes

it easy to use print and println to build strings on the fly:

(with-out-str (print "hello, ") (print "world"))

⇒ "hello, world"

The implementation of with-out-str has a simple structure that can act

as a template for writing similar macros:

Line 1 (defmacro with-out-str
2 [& body]
3 `(let [s# (new java.io.StringWriter)]
4 (binding [*out* s#]
5 ~@body
6 (str s#))))

Wrapper macros usually take a variable number of arguments (line 2),

which are the forms to be evaluated. They then proceed in three steps:

1. Setup: Create some special context for evaluation, introducing

bindings with let (line 3) and bindings (line 4) as necessary.

2. Evaluation: Evaluate the forms (line 5). Since there are typically a

variable number of forms, insert them via a splicing unquote ~@.

3. Teardown: Reset the execution context to normal, and return a

value as appropriate (line 6)

When writing a wrapper macro, always ask yourself whether you need

a finally block to implement the teardown step correctly. For with-out-str,

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=231

TAXONOMY OF MACROS 232

the answer is no, because both let and binding take care of their own

cleanup. If, however, you are setting some global or thread-local state

via a Java API, you will need a finally block to reset this state.

This talk of mutable state leads to another observation. Any code whose

behavior changes when executed inside a wrapper macro is obviously

not a pure function. print and println behave differently based on the

value of *out* and so are not pure functions. Macros that set a binding,

such as with-out-str, do so to alter the behavior of an impure function

somewhere.

Not all wrappers change the behavior of the functions they wrap. You

have already seen time, which simply times a function’s execution.

Another example is assert:

(assert expr)

assert tests an expression and raises an exception if it is not logically

true:

(assert (= 1 1))

⇒ nil

(assert (= 1 2))

⇒ java.lang.Exception: Assert failed: (= 1 2)

Macros like assert and time violate the first rule of Macro Club in order

to avoid unnecessary lambdas.

Avoiding Lambdas

For historical reasons, anonymous functions are often called lambdas.

Sometimes a macro can be replaced by a function call, with the argu

ments wrapped in a lambda. For example, the bench macro from Sec

tion 7.3, Syntax Quote, Unquote, and Splicing Unquote, on page 220

does not need to be a macro. You can write it as a function:

(defn bench-fn [f]

(let [start (System/nanoTime)

result (f)]

{:result result :elapsed (- (System/nanoTime) start)}))

However, if you want to call bench-fn, you must pass it a function that

wraps the form you want to execute. The following code shows the dif

ference:

; macro

(bench (+ 1 2))

⇒ {:elapsed 44000, :result 3}

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=232

MAKING A LANCET DSL 233

; function

(bench-fn (fn []> (+ 1 2)))

⇒ {:elapsed 53000, :result 3}

For things like bench, macros and anonymous functions are near sub

stitutes. Both prevent immediate execution of a form. However, the

anonymous function approach requires more work on the part of the

caller, so it is OK to break the first rule and write a macro instead of a

function.

Another reason to prefer a macro for bench is that bench-fn is not a

perfect substitute; it adds the overhead of an anonymous function call

at runtime. Since bench’s purpose is to time things, you should avoid

this overhead.

Now that you have seen how and where macros are used, let’s use them

to convert Lancet into a DSL.

7.5 Making a Lancet DSL

In previous chapters, you have given Lancet the ability to call Ant tasks

and the ability to define targets (functions with run-once semantics).

With these abilities alone, you could use Lancet to write build scripts.

However, calling Lancet is clunky, and using it feels more like calling an

API than writing a build script. In this section, you will convert Lancet

into a DSL that is cleaner and simpler than Ant.

Two macros will make this possible:

• A deftarget macro for defining targets

• A define-ant-task macro that creates easy-to-use Ant tasks

The code in this section depends on lancet.step-2-complete (Section 4.6,

Lancet Step 2: Setting Properties, on page 145) and lancet.step-3-complete

(Section 6.7, Making Lancet Targets Run Only Once, on page 207). You

can use these libraries via the following:

Download lancet/step_4_repl.clj

(use 'lancet.step-2-complete ' lancet.step-3-complete)

Creating Lancet Targets

In Section 6.7, Making Lancet Targets Run Only Once, on page 207, you

created a runonce function:

(runonce f) -> [has-run-fn reset-fn once-fn]

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=233

MAKING A LANCET DSL 234

In this section, you will make runonce easy to use by creating a deftarget

macro that automates creating Lancet targets with runonce:

(deftarget fname docstring & forms)

First, let’s review how runonce works. Given any function f, runonce will

return a vector with the following:

• A has-run-fn predicate that will tell whether once-fn has run

• A reset-fn function that will reset once-fn’s status

• A once-fn that will perform the original function f exactly once

deftarget needs to store the once-fn under the name fname, but where

should it put the helper functions has-run-fn and reset-fn? Since these

helper functions are linked to the function itself, metadata seems a

reasonable place to put them.

As usual, let’s approach the macro backwards by first writing the code

that the macro should expand to. The expanded macro will need to call

runonce, binding the results to some temporary name. Then it should

create a new def, pointing to the once-fn, and with metadata pointing

to the helper functions. Create a function named boo that prints boo!

once:

; (deftarget boo "doc" (println "boo!"))

; should expand to

(let [[has-run-fn reset-fn once-fn] (runonce #(println "boo!"))]

(def #^{:has-run-fn has-run-fn :reset-fn reset-fn :doc "doc"}

boo once-fn))

⇒ #'user/boo

The let uses destructuring to bind runonce’s return vector directly into

the three names has-run-fn, reset-fn, and once-fn. Then the def places

has-run-fn and reset-fn under metadata keys and defs boo to once-fn.

Test that boo was defined correctly. It should print only once:

(boo)

| boo!

⇒ nil

(boo)

⇒ nil

Also, the var boo should have metadata under the keys :has-run-fn and

:reset-fn:

(meta #'boo)

⇒ {:name boo,

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=234

MAKING A LANCET DSL 235

:has-run-fn #<long mangled name>,

:reset-fn #<long mangled name>,

... etc. ...

Callers will not want to poke around in metadata to query or set a

function’s run status. Let’s build some helpers that can call has-run-fn

and reset-fn on a particular function. First, create a has-run? that takes

a var, extracts the has-run-fn from its metadata, and calls it:

Download lancet/step_4_repl.clj

(defn has-run? [v]

((:has-run-fn (meta v))))

Notice the doubled parentheses. The inner parentheses call :has-run-fn

to look up the function, and the outer parentheses call the function

itself. Use has-run? to check that boo has already run:

(has-run? #'boo)

⇒ true

Because has-run? is written as a function, you have to remember to pass

the var #’boo. If you try to pass the symbol boo, has-run? will check the

metadata on the function itself, instead of the var. Since the function

has no metadata, this will lead to a NullPointerException:

(has-run? boo)

⇒ java.lang.NullPointerException

has-run? would be easier to remember and use if callers could just pass

boo. To make this work, you need to prevent Clojure from evaluating

boo before calling has-run?. The solution is another macro. Rewrite has-

run? as a macro:

Download lancet/step_4_repl.clj

(defmacro has-run? [f]

`((:has-run-fn (meta (var ~f)))))

Now you should be able to test has-run? with boo:

(has-run? boo)

⇒ true

has-run? is an example that could be written as a function but is worth

rewriting as a macro for the convenience of the caller. Go ahead and

write reset along similar lines:

Download lancet/step_4_repl.clj

(defmacro reset [f]

`((:reset-fn (meta (var ~f)))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=235

MAKING A LANCET DSL 236

Using reset, you can reset the run status of boo to false:

(reset boo)

⇒ nil

(has-run? boo)

⇒ false

Now that the helper macros are in place, you can return to the main

task: defining deftarget. In a source-code editor, begin with the hand-

coded expansion that a deftarget should generate:

(let [[has-run-fn reset-fn once-fn] (runonce #(println "boo!"))]

(def #^{:has-run-fn has-run-fn :reset-fn reset-fn :doc "doc"}

boo once-fn))

Next, wrap the expansion in the proposed signature for deftarget:

(defmacro deftarget [sym doc & forms]

(let [[has-run-fn reset-fn once-fn]

(runonce #(println "boo!"))]

(def #^{:has-run-fn has-run-fn

:reset-fn reset-fn

:doc "doc"}

boo once-fn)))

You are going to implement this macro as a template, so syntax-quote

the expansion, and plug in the arguments in the appropriate places:

(defmacro deftarget [sym doc & forms]

‘(let [[has-run-fn reset-fn once-fn] (runonce (fn [] ~@forms))]

(def #^{:has-run-fn has-run-fn :reset-fn reset-fn :doc ~doc}

~sym once-fn)))

Notice that when you substituted in ~@forms, you also converted from

the reader macro form #(...) to the more explicit (fn [] ...). You should gen

erally avoid reader macros in macro expansions, since reader macros

are evaluated at read time, before macro expansion begins.

You’ll have a similar problem with the metadata reader macro #∧, which

applies its metadata at read time. That’s too early, since you want the

metadata applied to the def at compile time, after the macro has ex

panded. So, convert the reader macro to an equivalent functional form:

Download lancet/deftarget_1.clj

(defmacro deftarget [sym doc & forms]

`(let [[has-run-fn reset-fn once-fn] (runonce (fn [] ~@forms))]

(def ~(with-meta sym {:has-run-fn has-run-fn

:reset-fn reset-fn

:doc doc})

once-fn)))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/deftarget_1.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=236

MAKING A LANCET DSL 237

Now you have something that you can try to load at the REPL. Your

load command will differ from the following one depending on how you

named the file:

(use :reload 'lancet.deftarget-1)

⇒ java.lang.Exception: Unable to resolve symbol: has-run-fn in this context

This is a problem you have seen before. You need to let unique local

names, so append a # to all the names that you let inside the macro:

(defmacro deftarget [sym doc & forms]

‘(let [[has-run-fn# reset-fn# once-fn#] (runonce (fn [] ~@forms))]

(def ~(with-meta sym {:has-run-fn has-run-fn# :reset-fn reset-fn# :doc doc})

once-fn#)))

Unfortunately, the automatic symbols will not work this time:

(use :reload 'lancet.deftarget-1)

⇒ java.lang.Exception: Unable to resolve symbol: has-run-fn in this context

The problem is the unquoting of the with-meta form. Symbols generated

by appending the # are valid only within a syntax-quoted form. If you

turn quoting back off, you cannot use them. So, now you have to gen

erate some unique symbols yourself. Clojure provides gensym for this

purpose:

(gensym prefix?)

You can call gensym with a prefix or let Clojure use its default prefix

G__:

(gensym)

⇒ G__137

(gensym "has-run-fn__")

⇒ has-run-fn__145

You’ll need to replace has-run-fn and reset-fn with gensyms, since they’re

used outside the syntax quote. once-fn# can continue to use Clojure’s

auto-gensym, since it is not needed outside of the syntax quote. Update

deftarget to let the symbols it needs before expanding the template:

Download lancet/step_4_repl.clj

(defmacro deftarget [sym doc & forms]

(let [has-run-fn (gensym "hr-") reset-fn (gensym "rf-")]

`(let [[~has-run-fn ~reset-fn once-fn#] (runonce (fn [] ~@forms))]

(def ~(with-meta

sym

{:doc doc :has-run-fn has-run-fn :reset-fn reset-fn})

once-fn#))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=237

MAKING A LANCET DSL 238

Now you have a deftarget ready to use. Test it first with macroexpand-1.

You can bind the special variable *print-meta* and call the prn function

to print the macro expansion with metadata included:

(binding [*print-meta* true]

(prn (macroexpand-1

'(deftarget foo "docstr" (println "hello")))))

| (clojure.core/let

| [[hr-506 rf-507 once-fn__143]

| (lancet.step-3-complete/runonce

| (clojure.core/fn [] #^{:line 13} (println "hello")))]

| (def #^{:has-run-fn hr-506, :reset-fn rf-507, :doc "docstr"}

| foo once-fn__143))

Now, try using deftarget to define a runonce function. Make sure that the

function itself and the has-run? and reset functions work as expected.

(deftarget foo "demo function"

(println "There can be only one!"))

⇒ #'user/foo

(foo)

| There can be only one!

⇒ nil

(has-run? foo)

⇒ true

(reset foo)

⇒ nil

(has-run? foo)

⇒ false

Writing deftarget was quite a bit more complex than the other macros

you have written so far. But the benefits are large. The trio of deftarget,

has-run?, and reset feel like part of a Lancet language, not a Clojure API.

You might find it helpful to compare deftarget to an object-oriented

design. Notice that the deftarget design creates no new classes. Instead,

it uses Clojure’s small, powerful set of abstractions: functions, meta

data, agents, and macros. However, deftarget has some of the key ben

efits associated with object-oriented design:

•	 Encapsulation: The agent that tracks whether a function has run

is not exposed directly.

•	 Reuse: You can deftarget any function, and a deftarget function

can be used anywhere a normal function would be used.

We now need one more set of macros to make Lancet complete.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=238

MAKING A LANCET DSL 239

Defining Ant Tasks for Lancet

Using the code in Section 4.6, Lancet Step 2: Setting Properties, on

page 145, you can instantiate and execute Ant tasks as follows:

(def echo

(instantiate-task ant-project "echo" {:message "hello"}))

⇒ #'user/echo

(.execute echo)

| [echo] hello

⇒ nil

In this section, your goal is to simplify that syntax to the bare essen

tials:

(echo {:message "hello"})

| [echo] hello

⇒ nil

To do this, you will create two macros:

•	 define-ant-task will create a function named after an Ant task. The

function will create and execute an Ant task.

•	 define-all-ant-tasks will reflect against the Ant project to get the com

plete list of available tasks and call define-ant-task once for each of

them.

Let’s build define-ant-task first. As always, begin with what you want the

expanded macro to look like. To wrap an Ant task in a function, you

could do something like this:

; (define-ant-task ant-echo echo)

; should expand to

(defn ant-echo [props]

(let [task (instantiate-task ant-project "echo" props)]

(.execute task)

task))

This expansion shows two things that are not strictly necessary but will

be useful later:

1. define-ant-task will take two arguments: the name of the function to

create followed by the name of the Ant task. Ninety percent of the

time these names will be the same, but occasionally the function

name will be different to avoid collision with a name in clojure.core.

2. define-ant-task will return the created task. This is rarely used in

Lancet itself but will be useful in the unit tests.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=239

MAKING A LANCET DSL 240

Writing define-ant-task is fairly simple. The only parts that need to vary

from one call to the next are the names of the function and underlying

Ant task. Create the define-ant-task macro thusly:

Download lancet/step_4_repl.clj

(defmacro define-ant-task [clj-name ant-name]

`(defn ~clj-name [props#]

(let [task# (instantiate-task ant-project ~(name ant-name) props#)]

(.execute task#)

task#)))

Test define-ant-task by creating a mkdir task and then calling mkdir:

(define-ant-task mkdir mkdir)

⇒ #'user/mkdir

(mkdir {:dir (java.io.File. "foo")})

| [mkdir] Created dir: /Book/code/lancet/foo

⇒ #<Mkdir org.apache.tools.ant.taskdefs.Mkdir@26e0696c>

You’re almost there. Now you just need to reflect against your ant-project

to get all available task names. The getTaskDefinitions method returns a

Java Hashtable mapping task names to implementation classes. You

need only the names, so you can call Java’s keySet method on the hash.

Create a helper function called task-names that returns the task names

as a Clojure seq of symbols:

Download lancet/step_4_repl.clj

(defn task-names []

(map symbol (sort (.. ant-project getTaskDefinitions keySet))))

Call task-names, and you should get a long seq of names:

(task-names)

⇒	 (ant antcall antstructure apply apt available

... many more ...)

Now you are ready to write define-ant-tasks. You need to map all the task

names to a call to define-ant-task and splice the entire thing after a do

so that the macro expands into a legal Clojure form.

Since this macro is a one-liner, let’s live dangerously and implement it

directly without writing an expansion first:

Download lancet/step_4_repl.clj

(defmacro define-all-ant-tasks []

`(do ~@(map (fn [n] `(define-ant-task ~n ~n)) (task-names))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=240

MAKING A LANCET DSL 241

Use macroexpand-1 to check that the expansion works correctly:

(macroexpand-1 '(define-all-ant-tasks))

⇒	 (do (user/define-ant-task fail fail)

(user/define-ant-task tar tar)

... many more ...)

Everything is looking fine. But when you try to generate all the tasks in

task-names, you fail:

(define-all-ant-tasks)

⇒	 java.lang.Exception: Name conflict,

can't def import because namespace: user

refers to:#'clojure.core/import

The problem here is unrelated to macros. Some Ant task names, like

import, collide with Clojure names. To work around this, create a safe-

ant-name function that prepends ant- to any name that already exists

in the current namespace:

Download lancet/step_4_repl.clj

(defn safe-ant-name [n]

(if (resolve n) (symbol (str "ant-" n)) n))

safe-ant-name attempts to resolve a name in the current namespace. If

the name resolves, it is a collision and needs to have ant- prepended.

Now, redefine define-ant-tasks to call safe-ant-name on the first argument

to define-ant-task:

Download lancet/step_4_repl.clj

(defmacro define-all-ant-tasks []

`(do ~@(map (fn [n] `(define-ant-task ~(safe-ant-name n) ~n)) (task-names))))

Now you should be able to define all the Ant tasks you have available:

(define-all-ant-tasks)

⇒	 #'user/sleep

The return value of define-all-ant-tasks is the last task defined, which was

sleep on my machine. Go ahead and test sleep for a few seconds:

(sleep {:seconds 5})

... time passes ...

⇒	 #<Sleep org.apache.tools.ant.taskdefs.Sleep@625b057b>

Lancet is now a minimal but complete build language. You can define

dependency relationships by creating runonce functions. These can in

turn call any Ant task or any Clojure function. The Lancet language is

more concise than Ant and more regular. Best of all, you do not have to

jump through any hoops to extend it. You just write Clojure code.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_4_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=241

MAKING A LANCET DSL 242

The completed code for this chapter is in Section 7.5, Lancet Step 4:

DSL. It is fewer than fifty lines, but more than half of those lines are

macros. This is definitely the most complex code in the book, but bear

two things in mind:

1. The macro code is a thin wrapper over the rest of Lancet. Most

of Lancet is quite simple, and the complex parts are cleanly sepa

rated from the rest.

2. The macros justify their complexity by doing a huge amount of

work. Without macros, you might end up writing an XML-based

language, like Ant. Instead of fifty lines of infrastructure code, you

would have thousands of lines, plus an additional tax on every new

task. Or you could define your own custom language grammar and

then write or generate a parser for it. When compared with these

options, a little bit of heavy lifting with macros is a reasonable

alternative.

Lancet Step 4: DSL

Download lancet/step_4_complete.clj

(ns lancet.step-4-complete

(:use [clojure.contrib.except :only (throw-if)]

lancet.step-2-complete lancet.step-3-complete))

(defmacro has-run? [f]

`((:has-run-fn (meta (var ~f)))))

(defmacro reset [f]

`((:reset-fn (meta (var ~f)))))

(defmacro deftarget [sym doc & forms]

(let [has-run-fn (gensym "hr-") reset-fn (gensym "rf-")]

`(let [[~has-run-fn ~reset-fn once-fn#] (runonce (fn [] ~@forms))]

(def ~(with-meta

sym

{:doc doc :has-run-fn has-run-fn :reset-fn reset-fn})

once-fn#))))

(defmacro define-ant-task [clj-name ant-name]

`(defn ~clj-name [props#]

(let [task#

(instantiate-task ant-project ~(name ant-name) props#)]

(.execute task#)

task#)))

(defn task-names []

(map symbol (sort (.. ant-project getTaskDefinitions keySet))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_4_complete.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=242

WRAPPING UP 243

(defn safe-ant-name [n]

(if (resolve n) (symbol (str "ant-" n)) n))

(defmacro define-all-ant-tasks []

`(do ~@(map (fn [n] `(define-ant-task ~(safe-ant-name n) ~n))

(task-names))))

(define-all-ant-tasks)

7.6 Wrapping Up

Clojure macros let you automate patterns in your code. Because they

transform source code at macro expansion time, you can use macros to

abstract away any kind of pattern in your code. You are not limited to

working within Clojure. With macros, you can extend Clojure into your

problem domain.

Internally, Clojure uses macros to implement many of its most powerful

features. One of these features is multimethods, to which we turn next.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=243

Chapter 8

Multimethods

Clojure multimethods provide a flexible way to associate a function with

a set of inputs. This is similar to Java polymorphism but more general.

When you call a Java method, Java selects a specific implementation to

execute by examining the type of a single object. When you call a Clo

jure multimethod, Clojure selects a specific implementation to execute

by examining the result of any function you choose, applied to all the

function’s arguments.

In this chapter, you will develop a thirst for multimethods by first liv

ing without them. Then you will build an increasingly complex series

of multimethod implementations. First, you will use multimethods to

simulate polymorphism. Then, you will use multimethods to implement

various ad hoc taxonomies.

Multimethods in Clojure are used much less often than polymorphism

in object-oriented languages. But where they are used, they are often

the key feature in the code. Section 8.5, When Should I Use Multimeth

ods?, on page 255 explores how multimethods are used in several open

source Clojure projects and offers guidelines for when to use them in

your own programs.

At the end of the chapter, you will use multimethods to add a new

feature to Lancet: customizable type coercions for use when creating

Ant tasks.

If you are reading the book in chapter order, then once you have com

pleted this chapter, you will have seen all the key features of the Clojure

language.

Prepared exclusively for WG Custom Motorcycles

LIVING WITHOUT MULTIMETHODS 245

8.1 Living Without Multimethods

The best way to appreciate multimethods is to spend a few minutes

living without them. So let’s do that. Clojure can already print anything

with print/println. But pretend for a moment that these functions do

not exist and that you need to build a generic print mechanism. To get

started, create a my-print function that can print a string to the standard

output stream *out*:

Download examples/life_without_multi.clj

(defn my-print [ob]

(.write *out* ob))

Next, create a my-println that simply calls my-print and then adds a line

feed:

Download examples/life_without_multi.clj

(defn my-println [ob]

(my-print ob)

(.write *out* "\n"))

The line feed makes my-println’s output easier to read when testing at

the REPL. For the remainder of this section, you will make changes to

my-print and test them by calling my-println. Test that my-println works

with strings:

(my-println "hello")

| hello

⇒ nil

That is nice, but my-println does not work quite so well with nonstrings

such as nil:

(my-println nil)

⇒ java.lang.NullPointerException

That’s not a big deal, though. Just use cond to add special-case han

dling for nil:

Download examples/life_without_multi.clj

(defn my-print [ob]

(cond

(nil? ob) (.write *out* "nil")

(string? ob) (.write *out* ob)))

With the conditional in place, you can print nil with no trouble:

(my-println nil)

| nil

⇒ nil

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/life_without_multi.clj
http://media.pragprog.com/titles/shcloj/code/examples/life_without_multi.clj
http://media.pragprog.com/titles/shcloj/code/examples/life_without_multi.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=245

LIVING WITHOUT MULTIMETHODS 246

Of course, there are still all kinds of types that my-println cannot deal

with. If you try to print a vector, neither of the cond clauses will match,

and the program will print nothing at all:

(my-println [1 2 3])

⇒ nil

By now you know the drill. Just add another cond clause for the vector

case. The implementation here is a little more complex, so you might

want to separate the actual printing into a helper function, such as

my-print-vector:

Download examples/life_without_multi.clj

(use '[clojure.contrib.str-utils :only (str-join)])

(defn my-print-vector [ob]

(.write *out*"[")

(.write *out* (str-join " " ob))

(.write *out* "]"))

(defn my-print [ob]

(cond

(vector? ob) (my-print-vector ob)

(nil? ob) (.write *out* "nil")

(string? ob) (.write *out* ob)))

Make sure that you can now print a vector:

(my-println [1 2 3])

| [1 2 3]

⇒ nil

my-println now supports three types: strings, vectors, and nil. And you

have a road map for new types: just add new clauses to the cond in my

println. But it is a crummy road map, because it conflates two things:

the decision process for selecting an implementation and the specific

implementation detail.

You can improve the situation somewhat by pulling out helper func

tions like my-print-vector. However, then you have to make two separate

changes every time you want to a add new feature to my-println:

•	 Create a new type-specific helper function.

•	 Modify the existing my-println to add a new cond invoking the

feature-specific helper.

What you really want is a way to add new features to the system by

adding new code in a single place, without having to modify any existing

code. The solution, of course, is multimethods.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/life_without_multi.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=246

DEFINING MULTIMETHODS 247

8.2 Defining Multimethods

To define a multimethod, use defmulti:

(defmulti name dispatch-fn)

name is the name of the new multimethod, and Clojure will invoke

dispatch-fn against the method arguments to select one particular meth

od (implementation) of the multimethod.

Consider my-print from the previous section. It takes a single argument,

the thing to be printed, and you want to select a specific implementa

tion based on the type of that argument. So, dispatch-fn needs to be a

function of one argument that returns the type of that argument. Clo

jure has a built-in function matching this description, namely, class.

Use class to create a multimethod called my-print:

Download examples/multimethods.clj

(defmulti my-print class)

At this point, you have provided a description of how the multimethod

will select a specific method but no actual specific methods. Unsurpris

ingly, attempts to call my-print will fail:

(my-println "foo")

⇒	 java.lang.IllegalArgumentException: \

No method for dispatch value

To add a specific method implementation to my-println, use defmethod:

(defmethod name dispatch-val & fn-tail)

name is the name of the multimethod to which an implementation

belongs. Clojure matches the result of defmulti’s dispatch function with

dispatch-val to select a method, and fn-tail contains arguments and body

forms just like a normal function.

Create a my-print implementation that matches on strings:

Download examples/multimethods.clj

⇒

(defmethod my-print String [s]

(.write *out* s))

Now, call my-println with a string argument:

(my-println "stu")

| stu

nil

Prepared exclusively for WG Custom Motorcycles
Report erratum

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=247

DEFINING MULTIMETHODS 248

Next, create a my-print that matches on nil:

Download examples/multimethods.clj

(defmethod my-print nil [s]

(.write *out* "nil"))

Notice that you have solved the problem raised in the previous section.

Instead of being joined in a big cond, each implementation of my-println is

separate. Methods of a multimethod can live anywhere in your source,

and you can add new ones any time, without having to touch the origi

nal code.

Dispatch Is Inheritance-Aware

Multimethod dispatch knows about Java inheritance. To see this, cre

ate a my-print that handles Number by simply printing a number’s toString

representation:

Download examples/multimethods.clj

(defmethod my-print Number [n]

(.write *out* (.toString n)))

Test the Number implementation with an integer:

(my-println 42)

| 42

⇒ nil

42 is an Integer, not a Number. Multimethod dispatch is smart enough

to know that an integer is a number and match anyway. Internally,

dispatch uses the isa? function:

(isa? child parent)

isa? knows about Java inheritance, so it knows that an Integer is a Num

ber:

(isa? Integer Number)

⇒ true

isa? is not limited to inheritance. Its behavior can be extended dynam

ically at runtime, as you will see later in Section 8.4, Creating Ad Hoc

Taxonomies, on page 251.

Multimethod Defaults

It would be nice if my-print could have a fallback representation that you

could use for any type you have not specifically defined. You can use

:default as a dispatch value to handle any methods that do not match

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=248

MOVING BEYOND SIMPLE DISPATCH 249

anything more specific. Using :default, create a my-println that prints the

Java toString value of objects, wrapped in #<>:

Download examples/multimethods.clj

(defmethod my-print :default [s]

(.write *out* "#<")

(.write *out* (.toString s))

(.write *out* ">"))

Now test that my-println can print any old random thing, using the

default method:

(my-println (java.sql.Date. 0))

⇒ #<1969-12-31>

(my-println (java.util.Random.))

⇒ #<java.util.Random@1c398896>

In the unlikely event that :default already has some specific meaning

in your domain, you can create a multimethod using this alternate

signature:

(defmulti name dispatch-fn :default default-value)

The default-value lets you specify your own default. Maybe you would

like to call it :everything-else:

Download examples/multimethods/default.clj

(defmulti my-print class :default :everything-else)

(defmethod my-print String [s]

(.write *out* s))

(defmethod my-print :everything-else [_]

(.write *out* "Not implemented yet..."))

Any dispatch value that does not otherwise match will now match

against :everything-else.

Dispatching a multimethod on the type of the first argument, as you

have done with my-print, is by far the most common kind of dispatch. In

many object-oriented languages, in fact, it is the only kind of dynamic

dispatch, and it goes by the name polymorphism.

Clojure’s dispatch is much more general. Let’s add a few complexities to

my-print and move beyond what is possible with plain ol’ polymorphism.

8.3 Moving Beyond Simple Dispatch

Clojure’s print function prints various “sequencey” things as lists. If you

wanted my-print to do something similar, you could add a method that

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods/default.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=249

MOVING BEYOND SIMPLE DISPATCH 250

dispatched on a collection interface high in the Java inheritance hier

archy, such as Collection:

Download examples/multimethods.clj

(use '[clojure.contrib.str-utils :only (str-join)])

(defmethod my-print java.util.Collection [c]

(.write *out* "(")

(.write *out* (str-join " " c))

(.write *out* ")"))

Now, try various sequences to see that they get a nice print representa

tion:

(my-println (take 6 (cycle [1 2 3])))

| (1 2 3 1 2 3)

⇒	 nil

(my-println [1 2 3])

| (1 2 3)

⇒	 nil

Perfectionist that you are, you cannot stand that vectors print with

rounded braces, unlike their literal square-brace syntax. So, add yet

another my-print method, this time to handle vectors. Vectors all imple

ment a IPersistentVector, so this should work:

Download examples/multimethods.clj

(defmethod my-print clojure.lang.IPersistentVector [c]

(.write *out* "[")

(.write *out* (str-join " " c))

(.write *out* "]"))

But it doesn’t work. Instead, printing vectors now throws an exception:

(my-println [1 2 3])

⇒	 java.lang.IllegalArgumentException: Multiple methods match

dispatch value: class clojure.lang.LazilyPersistentVector ->

interface clojure.lang.IPersistentVector and

interface java.util.Collection,

and neither is preferred

The problem is that two dispatch values now match for vectors: Col

lection and IPersistentVector. Many languages constrain method dispatch

to make sure these conflicts never happen, such as by forbidding mul

tiple inheritance. Clojure takes a different approach. You can create

conflicts, and you can resolve them with prefer-method:

(prefer-method multi-name loved-dispatch dissed-dispatch)

When you call prefer-method for a multimethod, you tell it to prefer the

loved-dispatch value over the dissed-dispatch value whenever there is a

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=250

CREATING AD HOC TAXONOMIES 251

conflict. Since you want the vector version of my-print to trump the col

lection version, tell the multimethod what you want:

Download examples/multimethods.clj

(prefer-method

my-print clojure.lang.IPersistentVector java.util.Collection)

Now, you should be able to route both vectors and other sequences to

the correct method implementation:

(my-println (take 6 (cycle [1 2 3])))

| (1 2 3 1 2 3)

⇒ nil

(my-println [1 2 3])

| [1 2 3]

⇒ nil

Many languages create complex rules, or arbitrary limitations, in order

to resolve ambiguities in their systems for dispatching functions. Clo

jure allows a much simpler approach: Just don’t worry about it! If there

is an ambiguity, use prefer-method to resolve it.

8.4 Creating Ad Hoc Taxonomies

Multimethods let you create ad hoc taxonomies, which can be helpful

when you discover type relationships that are not explicitly declared as

such.

For example, consider a financial application that deals with checking

and savings accounts. Define a Clojure struct for an account, using

a tag to distinguish the two. Place the code in the namespace exam

ples.multimethods.account. To do this, you will need to create a file named

examples/multimethods/account.clj on your classpath1 and then enter the

following code:

Download examples/multimethods/account.clj

(ns examples.multimethods.account)

(defstruct account :id :tag :balance)

Now, you are going to create two different checking accounts, tagged

as ::Checking and ::Savings. The capital names are a Clojure convention

1. Note that the example code for the book includes a completed version of this example,

already on the classpath. To work through the example yourself, simply move or rename

the completed example to get it out of the way.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods/account.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=251

CREATING AD HOC TAXONOMIES 252

to show the keywords are acting as types. The doubled :: causes the

keywords to resolve in the current namespace. To see the namespace

resolution happen, compare entering :Checking and ::Checking at the

REPL:

:Checking

⇒ :Checking

::Checking

⇒ :user/Checking

Placing keywords in a namespace helps prevent name collisions with

other people’s code. When you want to use ::Savings or ::Checking from

another namespace, you will need to fully qualify them:

(struct	 account 1 ::examples.multimethods.account/Savings 100M)

⇒	 {:id 1, :tag :examples.multimethods.account/Savings,

:balance 100M}

Full names get tedious quickly, so you can use alias to specify a shorter

alias for a long namespace name:

(alias short-name-symbol namespace-symbol)

Use alias to create the short name acc:

(alias 'acc 'examples.multimethods.account)

⇒ nil

Now that the acc alias is available, create two top-level test objects, a

savings account and a checking account:

(def test-savings (struct account 1 ::acc/Savings 100M))

⇒ #'user/test-savings

(def test-checking (struct account 2 ::acc/Checking 250M))

⇒ #'user/test-checking

Note that the trailing M creates a BigDecimal literal and does not mean

you have millions of dollars.

The interest rate for checking accounts is 0 and for savings accounts is

5 percent. Create a multimethod interest-rate that dispatches based on

:tag, like so:

Download examples/multimethods/account.clj

(defmulti interest-rate :tag)

(defmethod interest-rate ::acc/Checking [_] 0M)

(defmethod interest-rate ::acc/Savings [_] 0.05M)

Check your test-savings and test-checking to make sure that interest-rate

works as expected.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods/account.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=252

CREATING AD HOC TAXONOMIES 253

(interest-rate test-savings)

⇒ 0.05M

(interest-rate test-checking)

⇒ 0M

Accounts have an annual service charge, with rules as follows:

• Normal checking accounts pay a $25 service charge.

• Normal savings accounts pay a $10 service charge.

• Premium accounts have no fee.

• Checking accounts with a balance of $5,000 or more are premium.

• Savings accounts with a balance of $1,000 or more are premium.

In a realistic example, the rules would be more complex. Premium sta

tus would be driven by average balance over time, and there would

probably be other ways to qualify. But the previous rules are complex

enough to demonstrate the point.

You could implement service-charge with a bunch of conditional logic,

but premium feels like a type, even though there is no explicit premium

tag on an account. Create an account-level multimethod that returns

::Premium or ::Basic:

Download examples/multimethods/account.clj

(defmulti account-level :tag)

(defmethod account-level ::acc/Checking [acct]

(if (>= (:balance acct) 5000) ::acc/Premium ::acc/Basic))

(defmethod account-level ::acc/Savings [acct]

(if (>= (:balance acct) 1000) ::acc/Premium ::acc/Basic))

Test account-level to make sure that checking and savings accounts

require different balance levels to reach ::Premium status:

(account-level (struct account 1 ::acc/Savings 2000M))

⇒ :examples.multimethods.account/Premium

(account-level (struct account 1 ::acc/Checking 2000M))

⇒ :examples.multimethods.account/Basic

Now you might be tempted to implement service-charge using account-

level as a dispatch function:

Download examples/multimethods/service_charge_1.clj

; bad approach

(defmulti service-charge account-level)

(defmethod service-charge ::Basic [acct]

(if (= (:tag acct) ::Checking) 25 10))

(defmethod service-charge ::Premium [_] 0)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods/account.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods/service_charge_1.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=253

CREATING AD HOC TAXONOMIES 254

The conditional logic in service-charge for ::Basic is exactly the kind of

type-driven conditional that multimethods should help us avoid. The

problem here is that you are already dispatching by account-level, and

now you need to be dispatching by :tag as well. No problem—you can

dispatch on both. Write a service-charge whose dispatch function calls

both account-level and :tag, returning the results in a vector:

Download examples/multimethods/service_charge_2.clj

(defmulti service-charge (fn [acct] [(account-level acct) (:tag acct)]))

(defmethod service-charge [::acc/Basic ::acc/Checking] [_] 25)

(defmethod service-charge [::acc/Basic ::acc/Savings] [_] 10)

(defmethod service-charge [::acc/Premium ::acc/Checking] [_] 0)

(defmethod service-charge [::acc/Premium ::acc/Savings] [_] 0)

This version of service-charge dispatches against two different taxon

omies: the :tag intrinsic to an account and the externally defined

account-level. Try a few accounts to verify that service-charge works as

expected:

(service-charge {:tag ::acc/Checking :balance 1000})

⇒ 25

(service-charge {:tag ::acc/Savings :balance 1000})

⇒ 0

Notice that the previous tests did not even bother to create a “real”

account for testing. Structs like account are simply maps that are opti

mized for storing particular fields, but nothing stops you from using a

plain old map if you find it more convenient.

Adding Inheritance to Ad Hoc Types

There is one further improvement you can make to service-charge. Since

all premium accounts have the same service charge, it feels redundant

to have to define two separate service-charge methods for ::Savings and

::Checking accounts. It would be nice to have a parent type ::Account, so

you could define a multimethod that matches ::Premium for any kind of

::Account. Clojure lets you define arbitrary parent/child relationships

with derive:

(derive child parent)

Using derive, you can specify that both ::Savings and ::Checking are kinds

of ::Account:

Download examples/multimethods/service_charge_3.clj

(derive ::acc/Savings ::acc/Account)

(derive ::acc/Checking ::acc/Account)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods/service_charge_2.clj
http://media.pragprog.com/titles/shcloj/code/examples/multimethods/service_charge_3.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=254

WHEN SHOULD I USE MULTIMETHODS? 255

When you start to use derive, isa? comes into its own. In addition to

understanding Java inheritance, isa? knows all about derived relation

ships:

(isa? ::acc/Savings ::acc/Account)

⇒ true

Now that Clojure knows that Savings and Checking are Accounts, you

can define a service-charge using a single method to handle ::Premium:

Download examples/multimethods/service_charge_3.clj

(defmulti service-charge (fn [acct] [(account-level acct) (:tag acct)]))

(defmethod service-charge [::acc/Basic ::acc/Checking] [_] 25)

(defmethod service-charge [::acc/Basic ::acc/Savings] [_] 10)

(defmethod service-charge [::acc/Premium ::acc/Account] [_] 0)

At first glance, you may think that derive and isa? simply duplicate

functionality that is already available to Clojure via Java inheritance.

This is not the case. Java inheritance relationships are forever fixed

at the moment you define a class. derived relationships can be cre

ated when you need them and can be applied to existing objects without

their knowledge or consent. So, when you discover a useful relation

ship between existing objects, you can derive that relationship without

touching the original objects’ source code and without creating tiresome

“wrapper” classes.

If the number of different ways you might define a multimethod has

your head spinning, don’t worry. In practice, most Clojure code uses

multimethods sparingly. Let’s take a look at some open source Clojure

code to get a better idea of how multimethods are used.

8.5 When Should I Use Multimethods?

Multimethods are extremely flexible, and with that flexibility comes

choices. How should you choose when to use multimethods, as opposed

to some other technique? I approached this question from two direc

tions, asking the following:

• Where do Clojure projects use multimethods?

• Where do Clojure projects eschew multimethods?

Let’s begin with the first question, by reviewing multimethod use. The

multimethod use in several open source Clojure projects is summarized

in Figure 8.1, on the following page.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods/service_charge_3.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=255

WHEN SHOULD I USE MULTIMETHODS? 256

Project LoC	 Dispatch Dispatch Total

By Class By Ad Hoc Type

Clojure 5056 4 3 7

Clojure-contrib 3585 2 1 3

Compojure 1255 0 0 0

Webjure 850 0 0 0

Figure 8.1: Multimethod use in Clojure projects

The most striking thing is that multimethods are rare—about one per

1,000 lines of code in the projects sampled. So, don’t worry that you are

missing something important if you build a Clojure application with

few, or no, multimethods. A Clojure program that defines no multi-

methods is not nearly as odd as an object-oriented program with no

polymorphism.

Many multimethods dispatch on class. Dispatch-by-class is the easiest

kind of dispatch to understand and implement. We already covered it

in detail with the my-print example, so I will say no more about it here.

Clojure multimethods that dispatch on something other than class are

so rare that we can discuss them individually. In the projects listed

in the table, only the Clojure inspector and the clojure-contrib test-is

libraries use unusual dispatch functions.

The Inspector

Clojure’s inspector library uses Swing to create simple views of data. You

can use it to get a tree view of your system properties:

(use '[clojure.inspector	 :only (inspect inspect-tree)])

(inspect-tree (System/getProperties))

⇒ #<JFrame ...>

inspect-tree returns (and displays) a JFrame with a tree view of anything

that is treeish. So, you could also pass a nested map to inspect-tree:

(inspect-tree {:clojure {:creator "Rich" :runs-on-jvm true}})

⇒ #<JFrame ...>

Treeish things are made up of nodes that can answer two questions:

• Who are my children?

• Am I a leaf node?

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=256

WHEN SHOULD I USE MULTIMETHODS? 257

The treeish concepts of “tree,” “node,” and “leaf” all sound like can

didates for classes or interfaces in an object-oriented design. But the

inspector does not work this way. Instead, it adds a “treeish” type sys

tem in an ad hoc way to existing types, using a dispatch function named

collection-tag:

; from Clojure's clojure/inspector.clj

(defn collection-tag [x]

(cond

(instance? java.util.Map$Entry x) :entry

(instance? clojure.lang.IPersistentMap x) :map

(instance? java.util.Map x) :map

(instance? clojure.lang.Sequential x) :seq

:else :atom))

collection-tag returns one of the keywords :entry, :map, :seq, or :atom.

These act as the type system for the treeish world. The collection-tag

function is then used to dispatch three different multimethods that

select specific implementations based on the treeish type system.

(defmulti is-leaf collection-tag)

(defmulti get-child

(fn [parent index] (collection-tag parent)))

(defmulti get-child-count collection-tag)

; method implementations elided for brevity

The treeish type system is added around the existing Java type sys

tem. Existing objects do not have to do anything to become treeish; the

inspector library does it for them. Treeish demonstrates a powerful style

of reuse. You can discover new type relationships in existing code and

take advantage of these relationships simply, without having to modify

the original code.

test-is

The test-is library in clojure-contrib lets you write several different kinds

of assertions using the is macro. You can assert that arbitrary functions

are true. For example, 10 is not a string:

(use :reload '[clojure.contrib.test-is :only (is)])

(is (string? 10))

FAIL in (:12)

expected: (string? 10)

actual: (not (string? 10))

⇒ false

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=257

WHEN SHOULD I USE MULTIMETHODS? 258

Although you can use an arbitrary function, is knows about a few spe

cific functions and provides more detailed error messages. For example,

you can check that a string is not an instance? of Collection:

(is (instance? java.util.Collection "foo"))

FAIL in (:15)

expected: (instance? java.util.Collection "foo")

actual: java.lang.String

⇒	 false

is also knows about =. Verify that power does not equal wisdom.

(is (= "power" "wisdom"))

⇒	 java.lang.AssertionError:

"power" is "power" but should be "wisdom"

Internally, is uses a multimethod named assert-expr, which dispatches

not on the type but the actual identity of its first argument:

(defmulti assert-expr (fn [form message] (first form)))

Since the first argument is a symbol representing what function to

check, this amounts to yet another ad hoc type system. This time, there

are three types: =, instance?, and everything else.

The various assert-expr methods add specific error messages associated

with different functions you might call from is. Because multimeth

ods are open ended, you can add your own assert-expr methods with

improved error messages for other functions you frequently pass to is.

Counterexamples

As you saw in Section 8.4, Creating Ad Hoc Taxonomies, on page 251,

you can often use multimethods to hoist branches that are based on

type out of the main flow of your functions. To find counterexamples

where multimethods should not be used, I looked through Clojure’s

core to find type branches that had not been hoisted to multimethods.

A simple example is Clojure’s class, which is a null-safe wrapper for the

underlying Java getClass. Minus comments and metadata, class is as

follows:

(defn class [x]

(if (nil? x) x (. x (getClass))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=258

ADDING TYPE COERCIONS TO LANCET 259

You could write your own version of class as a multimethod by dis

patching on identity:

Download examples/multimethods.clj

(defmulti my-class identity)

(defmethod my-class nil [_] nil)

(defmethod my-class :default [x] (.getClass x))

Any nil-check could be rewritten this way. But I find the original class

function easier to read than the multimethod version. This is a nice

“exception that proves the rule.” Even though class branches on type,

the branching version is easier to read.

Use the following general rules when deciding whether to create a func

tion or a multimethod:

•	 If a function branches based on a type, or multiple types, consider

a multimethod.

•	 Types are whatever you discover them to be. They do not have to

be explicit Java classes or data tags.

•	 You should be able to interpret the dispatch value of a defmethod

without having to refer to the defmulti.

•	 Do not use multimethods merely to handle optional arguments or

recursion.

When in doubt, try writing the function in both styles, and pick the one

that seems more readable.

As luck would have it, the Lancet sample application needs a multi-

method—and not just a boring single dispatch either. Lancet needs an

oddball function that dispatches on the class of two different argu

ments. Let’s go build it.

8.6 Adding Type Coercions to Lancet

In Section 3.5, Adding Ant Projects and Tasks to Lancet, on page 105, I

glossed over an irritant in Lancet’s Ant integration. When you create an

Ant task, you have to know the types of any properties used to configure

the task. For example, the dir property of mkdir is not a String:

(.setDir mkdir-task "sample-dir")

⇒ java.lang.ClassCastException

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/multimethods.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=259

ADDING TYPE COERCIONS TO LANCET 260

Instead, you have to know that the dir property is a File:

(.setDir mkdir-task (java.io.File. "sample-dir"))

⇒ nil

If you spend time trying out various other Ant tasks in Lancet, you will

see that the problem is serious. Furthermore, Ant does not have this

problem, even though Ant task properties usually begin their life as

strings in an XML document. Ant must know how to convert strings

into other types on demand. Lancet will need to do something similar.

Let’s create a generic coercion system for Lancet. To coerce an argu

ment from one type to another, you need to know two things: the type

of the source and the type of the destination. Create a coerce multi-

method that dispatches on a destination class and a source instance:

Download lancet/step_5_repl.clj

(defmulti coerce

(fn [dest-class src-inst] [dest-class (class src-inst)]))

The destination is listed first for consistency with Clojure functions like

cast.

Now, you can write a coerce method that coerces Strings to Files:

Download lancet/step_5_repl.clj

(defmethod coerce [java.io.File String] [_ str]

(java.io.File. str))

This is very clean. With almost no noise, it says to the reader: “in order

to make a File from a String, you must call the File constructor.” Make

sure that it works:

(coerce java.io.File "foo")

⇒ #<File foo>

Not every coercion will be so simple. For example, Ant has its own

notion of truth. The strings "on", "yes", and "true" are all true, regardless

of case. Create a coercion that enforces this:

Download lancet/step_5_repl.clj

(defmethod coerce [Boolean/TYPE String] [_ str]

(contains? #{"on" "yes" "true"} (.toLowerCase str)))

Make sure that it works:

(coerce Boolean/TYPE "no")

⇒ false

(coerce Boolean/TYPE "yes")

⇒ true

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_5_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_5_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_5_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=260

ADDING TYPE COERCIONS TO LANCET 261

(coerce Boolean/TYPE "TRUE")

⇒ true

Even though the last defmethod looks Ant-specific, the mechanism is

general. Different applications can mix and match coercions to suit

their needs. If truth works a little differently in the valley, no problem:

(defmethod coerce [Boolean/TYPE String] [_ str]

(contains? #{"totally" "way"} (.toLowerCase str)))

You are going to want to pass all Ant property setters through the coer

cion mechanism, so as a last step create a default coercion. This coer

cion simply verifies that the type is already compatible with the desti

nation by calling Clojure’s cast:

Download lancet/step_5_repl.clj

(defmethod coerce :default [dest-cls obj] (cast dest-cls obj))

Make sure this works by trying a few sensible and insensible coercions:

(coerce Comparable "hello")

⇒ "hello"

(coerce java.io.File (java.util.Random.))

⇒ java.lang.ClassCastException

Now let’s add coercion support to Lancet’s set-property. You will need to

start with the code from Section 4.6, Lancet Step 2: Setting Properties,

on page 145. In that code, set-properties is defined as follows:

Download lancet/snippets.clj

Line 1 (use '[clojure.contrib.except :only (throw-if)])
2 (defn set-property! [inst prop value]
3 (let [pd (property-descriptor inst prop)]
4 (throw-if (nil? pd) (str "No such property " prop))
5 (.invoke (.getWriteMethod pd) inst (into-array [value]))))

On line 5, you need to coerce the value before invoking the property

write method. coerce expects a destination class, but Lancet currently

provides a property-writing Method. You can get the destination class

from that Method with a little Java reflection:

Download lancet/step_5_repl.clj

(defn get-property-class [write-method]

(first (.getParameterTypes write-method)))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_5_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/snippets.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_5_repl.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=261

ADDING TYPE COERCIONS TO LANCET 262

Next, enhance set-property! to use coerce.

The expression that calls invoke is getting fairly complex, so introduce a

let of write-method and dest-class to make set-property more readable:

Download lancet/step_5_repl.clj

(defn set-property! [inst prop value]

(let [pd (property-descriptor inst prop)]

(throw-if (nil? pd) (str "No such property " prop))

(let [write-method (.getWriteMethod pd)

dest-class (get-property-class write-method)]

(.invoke

write-method inst (into-array [(coerce dest-class value)])))))

You can test the coercions by instantiating Ant tasks and passing in

plain old strings. For example, create a mkdir task, and pass in dir as a

string.

(def mkfoo

(instantiate-task ant-project "mkdir" {:dir "foo"}))

-> #'user/mkfoo

(.execute mkfoo)

[mkdir] Created dir:/lancet-test/foo

The completed code for this section is listed in Section 8.6, Lancet Step

5: Type Coercions. As you explore Ant, you may find other coercions, but

Ant task integration is now almost complete. Lancet’s Ant integration

can now do the following:

• Create any Ant task

• Set arbitrary Java properties

• Define common coercions for property setters

The codebase size for Ant task integration is about fifty lines.

Lancet Step 5: Type Coercions

Download lancet/step_5_complete.clj

(ns lancet.step-5-complete

(:use clojure.contrib.except)

(:import (java.beans Introspector)))

(defmulti coerce

(fn [dest-class src-inst] [dest-class (class src-inst)]))

(defmethod coerce [java.io.File String] [_ str]

(java.io.File. str))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/lancet/step_5_repl.clj
http://media.pragprog.com/titles/shcloj/code/lancet/step_5_complete.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=262

ADDING TYPE COERCIONS TO LANCET 263

(defmethod coerce [Boolean/TYPE String] [_ str]

(contains? #{"on" "yes" "true"} (.toLowerCase str)))

(defmethod coerce :default [dest-cls obj] (cast dest-cls obj))

(def

#^{:doc "Dummy ant project to keep Ant tasks happy"}

ant-project

(let [proj (org.apache.tools.ant.Project.)

logger (org.apache.tools.ant.NoBannerLogger.)]

(doto logger

(.setMessageOutputLevel org.apache.tools.ant.Project/MSG_INFO)

(.setOutputPrintStream System/out)

(.setErrorPrintStream System/err))

(doto proj

(.init)

(.addBuildListener logger))))

(defn property-descriptor [inst prop-name]

(first

(filter #(= (name prop-name) (.getName %))

(.getPropertyDescriptors

(Introspector/getBeanInfo (class inst))))))

(defn get-property-class [write-method]

(first (.getParameterTypes write-method)))

(defn set-property! [inst prop value]

(let [pd (property-descriptor inst prop)]

(throw-if (nil? pd) (str "No such property " prop))

(let [write-method (.getWriteMethod pd)

dest-class (get-property-class write-method)]

(.invoke

write-method inst (into-array [(coerce dest-class value)])))))

(defn set-properties! [inst prop-map]

(doseq [[k v] prop-map] (set-property! inst k v)))

(defn instantiate-task [project name props]

(let [task (.createTask project name)]

(throw-if (nil? task) (str "No task named " name))

(doto task

(.init)

(.setProject project)

(set-properties! props))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=263

WRAPPING UP 264

8.7 Wrapping Up

Multimethods support arbitrary dispatch. Usually multimethods work

based on type relationships. Sometimes these types are formal, as in

Java classes. Other times they are informal and ad hoc and emerge

from the properties of objects in the system.

With multimethods under your belt, you now know the core of Clojure,

and it is time to build some more substantial examples using third-

party libraries.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=264

Chapter 9

Clojure in the Wild
Now that you have learned the basics of the Clojure language, it is time

for you to begin using Clojure in your own projects. But as you run out

the door to start work on your killer Clojure app, you realize that you

do not yet know how to use Clojure for everyday programming tasks:

• How do I write unit tests for my Clojure code?

• How do I access relational data from Clojure?

• How do I build a simple web application in Clojure?

These questions do not have a simple answer because there are so

many choices. With Clojure, you have access to the entire world of Java

APIs for data access, XML, GUI development, web development, testing,

graphics, and more. In addition, idiomatic Clojure libraries are begin

ning to appear.

There are so many choices, and innovation is proceeding so swiftly, that

I will not attempt to cover all the possible choices. Instead, I will simply

open Pandora’s box and show you a few possible answers to the earlier

questions. In this chapter, you will learn how to do the following:

• Build unit tests with the test-is library

• Access relational data with JDBC and Clojure’s sql library

• Create web applications with the Compojure framework

These examples demonstrate Clojure’s value in a wide variety of set

tings and should whet your appetite for the exciting world of Clojure

development.

Prepared exclusively for WG Custom Motorcycles

AUTOMATING TESTS 266

9.1 Automating Tests

Clojure makes it easy to test your code in the REPL. But for any nontriv

ial codebase, manual testing at the REPL is not enough. You should also

have a set of self-validating tests. Self-validating tests report success or

failure, so you do not have to interpret results manually by reading off

values at the REPL. This section introduces two testing libraries: the

test function in the Clojure core and clojure.contrib.test-is.

Test with :test

Clojure attaches tests to functions with :test metadata. To see :test in

action, consider the index-of-any function introduced in Section 2.6,

Where’s My for Loop?, on page 70. The Java version includes the fol

lowing examples in the method comment:

StringUtils.indexOfAny(null, *) = -1

StringUtils.indexOfAny("", *) = -1

StringUtils.indexOfAny(*, null) = -1

StringUtils.indexOfAny(*, []) = -1

StringUtils.indexOfAny("zzabyycdxx",['z','a']) = 0

StringUtils.indexOfAny("zzabyycdxx",['b','y']) = 3

StringUtils.indexOfAny("aba", ['z']) = -1

In Clojure, you can add these tests as metadata on the index-of-any

function:

Download examples/index_of_any.clj

(defn index-filter [pred coll]

(when pred (for [[idx elt] (indexed coll) :when (pred elt)] idx)))

(defn

#^{:test (fn []

(assert (nil? (index-of-any #{\a} nil)))

(assert (nil? (index-of-any #{\a} "")))

(assert (nil? (index-of-any nil "foo")))

(assert (nil? (index-of-any #{} "foo")))

(assert (zero? (index-of-any #{\z \a} "zzabyycdxx")))

(assert (= 3 (index-of-any #{\b \y} "zzabyycdxx")))

(assert (nil? (index-of-any #{\z} "aba"))))}

index-of-any

[pred coll]

(first (index-filter pred coll)))

The :test metadata key takes as its value a test function. In the previous

example, the test function exercises index-of-any, using (assert expr) to

test that various exprs are true.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/index_of_any.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=266

AUTOMATING TESTS 267

You can run the tests from the REPL using the test function:

(test a-var)

test looks up the test function in a-var’s :test metadata and runs the test.

Note that test takes a var, not a symbol. Try testing index-of-any:

(test #'index-of-any)

⇒ :ok

To see what happens when a test fails, create a test with an assertion

that is not true:

Download examples/exploring.clj

(defn

#^{:test (fn []

(assert (nil? (busted))))}

busted [] "busted")

(test #'busted)

⇒ java.lang.Exception: Assert failed: (nil? (busted))

:test is simple and easy to use, and it keeps your tests as close as pos

sible to the code they test. However, most developers are accustomed

to frameworks that keep tests separate from code. Clojure-contrib pro

vides this via the test-is library.

Test with test-is

Stuart Sierra’s test-is library lets you write tests with the deftest macro:

(clojure.contrib.test-is/deftest testname & forms)

The test forms make assertions via the is macro:

(clojure.contrib.test-is/is form message?)

form is any predicate, and message is an optional error message. You

could begin testing index-of-any thusly:

Download examples/test/index_of_any.clj

(ns examples.test.index-of-any

(:use examples.index-of-any clojure.contrib.test-is))

(deftest test-index-of-any-with-nil-args

(is (nil? (index-of-any #{\a} nil)))

(is (nil? (index-of-any nil "foo"))))

(deftest test-index-of-any-with-empty-args

(is (nil? (index-of-any #{\a} "")))

(is (nil? (index-of-any #{} "foo"))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/exploring.clj
http://media.pragprog.com/titles/shcloj/code/examples/test/index_of_any.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=267

AUTOMATING TESTS 268

(deftest test-index-of-any-with-match

(is (zero? (index-of-any #{\z \a} "zzabyycdxx")))

(is (= 3 (index-of-any #{\b \y} "zzabyycdxx"))))

(deftest test-index-of-any-without-match

(is (nil? (index-of-any #{\z} "aba"))))

In the previous section’s :test example, the test function contained seven

assertions. Here, those seven assertions are divided into four different

tests. This is a matter of taste. Since deftest gives you the chance to

create more than one test for the same function, it encourages you to

group smaller sets of assertions under meaningful test names.

You can run all tests in a group of namespaces with run-tests:

(clojure.contrib.test-is/run-tests & namespaces)

If you do not specify any namespaces, run-tests will default to the current

namespace. Assuming you entered the index-of-any tests at the REPL,

you could run them with this:

(run-tests)

Testing user

Ran 4 tests 7 assertions.

0 failures, 0 exceptions.

To see a test fail, create a test with a failing assertion:

Download examples/test/fail.clj

(deftest test-that-demonstrates-failure

(is (= 5 (+ 2 2))))

Testing user

FAIL in (test-that-demonstrates-failure) (NO_SOURCE_FILE:5)

expected: (= 5 (+ 2 2))

actual: (not= 5 4)

Ran 1 tests containing 1 assertions.

1 failures, 0 errors.

Unlike assert, is can also take an optional error message. When a test

fails, is appends the optional error message after the generic error

message:

Download examples/test/fail.clj

(deftest test-that-demonstrates-error-message

(is (= 3 Math/PI) "PI is an integer!?"))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/test/fail.clj
http://media.pragprog.com/titles/shcloj/code/examples/test/fail.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=268

AUTOMATING TESTS 269

Testing user

FAIL in (test-that-demonstrates-error-message) (NO_SOURCE_FILE:2)

PI is an integer!?

expected: (= 3 Math/PI)

actual: (not= 3 3.141592653589793)

The is macro can, of course, also be used inside a :test function.

It is particularly important that tests cover less-used paths through

code, such as error handling. To this end, you can use the (is (thrown?))

form to test that an exception occurred:

Download examples/test/exploring.clj

(deftest test-divide-by-zero

(is (thrown? ArithmeticException (/ 5 0))))

thrown? is an example of a custom assert expression. You can add your

own assert expressions to test-is; see the source code for the assert-expr

multimethod for details.

The example code for this book is tested using test-is. The tests demon

strate several features that are not covered here; see the examples/test

and lancet/test directories for more examples using test-is.

Test However You Want

Clojure’s test capabilities are lightweight and easy to use. What if you

want something that integrates with an existing build system and runs

on your continuous integration box?

If you have an existing Java infrastructure, another answer is “Test

with whatever framework you already use.” Clojure code is Java code.

All Clojure sequences implement Java collection interfaces. All Clo

jure functions implement Callable and Runnable. So, you can write your

tests with any Java-compatible test framework: JUnit, TestNG, or even

EasyB or JTestR. Good luck, and please consider open sourcing any

reusable pieces you invent along the way.

Next, let’s take a look at how Clojure can access relational data.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/test/exploring.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=269

DATA ACCESS 270

9.2 Data Access

Stephen C. Gilardi’s clojure.contrib.sql provides convenience wrappers for

accessing a database using Java Database Connectivity (JDBC).1 You

do not need any prior experience with JDBC to work through the exam

ples in this section. However, sql is a thin wrapper, and on a real project

you would need to learn JDBC.

The example in this section is a database of code snippets. To store

the snippets, you will use the HSQLDB database. You will need to

add lib/hsqldb.jar to your classpath when launching Clojure. (The REPL

launch scripts bin/repl.sh and bin\repl.bat include lib/hsqldb.jar for you.)

The entry point for sql is the with-connection macro:

(clojure.contrib.sql/with-connection db-spec & body)

The db-spec contains connection information, which is then passed to

JDBC’s DriverManager. The body is a set of forms. with-connection will

open a JDBC Connection, execute the forms in body, and then close the

connection.

Define a db var to hold the database connection specification, which

you will need throughout this example:

Download examples/snippet.clj

; replace "snippet-db" with a full path!

(def db {:classname "org.hsqldb.jdbcDriver"

:subprotocol "hsqldb"

:subname "file:snippet-db"})

The :subname tells HSQLDB to store the database in filenames based

on snippet-db. Make sure you change the name snippet-db to a valid full

path on your local filesystem so that various examples in this chapter

will all access the same database.

Now you are ready to create the snippets table. The create-table function

creates a table:

(clojure.contrib.sql/create-table name & column-specs)

The name names the table, and a column-spec is an array describing

a column in the table. Create a function named create-snippets that

1. For years, JDBC was officially a trademark, not an acronym. As of this writing, both

Sun and Wikipedia have bowed to common sense and acknowledge that it stands for Java

Database Connectivity.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=270
"file:snippet-db"})

DATA ACCESS 271

creates a snippets table with a primary key id, a string body, and a

datetime created_at:

Download examples/snippet.clj

(use 'clojure.contrib.sql)

(defn create-snippets []

(create-table :snippets

[:id :int "IDENTITY" "PRIMARY KEY"]

[:body :varchar "NOT NULL"]

[:created_at :datetime]))

Try to create the snippets table from the REPL:

(create-snippets)

⇒ java.lang.Exception: no current database connection

This is where with-connection comes into play. In order to create the

table, call create-snippets from within with-connection, specifying db as

your database:

(with-connection db (create-snippets))

⇒ (0)

The return value of (0) indicates success. Failure would cause an excep

tion, which you can see by trying to create the same table again:

(with-connection db (create-snippets))

⇒ java.lang.Exception: transaction rolled back: failed batch

Calling create-snippets a second time fails because the table already

exists.

Now you are ready to add some rows to the snippets table. The insert-

values function adds rows:

(clojure.contrib.sql/insert-values table column-names & values)

column-names is a vector of column names, and each value is a vector of

column values.

Create an insert-snippets function that adds a few sample snippets, spec

ifying a body and setting the created_at to the current time.

Download examples/snippet.clj

(defn now [] (java.sql.Timestamp. (.getTime (java.util.Date.))))

(defn insert-snippets []

(let [timestamp (now)]

(seq

(insert-values :snippets

[:body :created_at]

["(println :boo)" timestamp]

["(defn foo [] 1)" timestamp]))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=271

DATA ACCESS 272

The now function gets the current time in a JDBC-friendly format. The

let calls now only once, guaranteeing that both records have the same

created_at value.

The entire insert-values call is wrapped in a seq to convert the return

value (a Java array of insertion counts) into a REPL-friendly Clojure

sequence. Insert the records:

(with-connection db (insert-snippets))

⇒ (1 1)

The (1 1) indicates that insert-snippets issued two SQL statements, each

of which successfully updated one row.

Now that you have some rows in the table, you are ready to issue a

query. The with-query-results macro issues some sql and then executes

the forms in body with results bound to a sequence of the results:

(with-query-results results sql & body)

Use with-query-results to create a print-snippets function that simply prints

all the snippets:

Download examples/snippet.clj

(defn print-snippets []

*
(with-query-results res ["select from snippets"]

(println res)))

Use print-snippets to print the contents of the snippets table:

(with-connection db (print-snippets))

| ({:id 0, :body (println :boo),

| :created_at #<Timestamp 2009-01-03 11:40:19.985>}

| {:id 1, :body (defn foo [] 1),

| :created_at #<Timestamp 2009-01-03 11:40:19.985>})

What if you wanted to hold on to the snippets, such as to use them as

the model to back some kind of user interface? with-query-results returns

the last form in its body, so you might expect to write select-snippets like

this:

Download examples/snippet.clj

; Broken!

(defn select-snippets []

(with-query-results res ["select from snippets"] res))
*

But it won’t work:

(with-connection db (select-snippets))

⇒ java.sql.SQLException: No data is available

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=272

DATA ACCESS 273

The problem is ordering of execution. select-snippets returns a lazy se

quence over the JDBC ResultSet. But JDBC results can themselves be

lazy. So, neither Clojure nor JDBC realizes the result set inside with-

connection. By the time the REPL tries to print the snippets, both the

connection and the ResultSet are closed.

To get access to the snippets outside of a database connection, realize

them with a doall. This will spin through the results, caching them in

the Clojure sequence. The connection and result set can then safely

close, freeing precious database resources. Everyone is happy:

Download examples/snippet.clj

(defn select-snippets []

(with-connection db

*
(with-query-results res ["select from snippets"] (doall res))))

Verify that the improved select-snippets works:

(with-connection db (select-snippets))

⇒	 ({:id 0, :body (println :boo),

:created_at #<Timestamp 2009-01-03 11:40:19.985>}

{:id 1, :body	 (defn foo [] 1),

:created_at #<Timestamp 2009-01-03 11:40:19.985>})

The idiom of realizing a result set is common enough to deserve its own

function. Create a sql-query function that runs a query and then realizes

its result set with doall:

Download examples/snippet.clj

(defn sql-query [q]

(with-query-results res q (doall res)))

Verify that sql-query works by selecting the body of all snippets:

(with-connection db (sql-query ["select body from snippets"]))

⇒ ({:body "(println :boo)"} {:body "(defn foo [] 1)"})

You now have almost everything you need for the data layer of a simple

code snippet application. The one remaining detail is a function that

can insert a new snippet and return the ID of the new snippet. This

code is HSQLDB-specific, and I will spare you the exploration required.

Implement the last-created-id method as follows:

Download examples/snippet.clj

(defn last-created-id

"Extract the last created id. Must be called in a transaction

that performed an insert. Expects HSQLDB return structure of

the form [{:@p0 id}]."

[]

(first (vals (first (sql-query ["CALL IDENTITY()"])))))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=273

DATA ACCESS 274

To use last-created-id, place it at the end of a transaction that inserts a

snippet. sql provides the transaction macro for this purpose:

(clojure.contrib.sql/transaction & body)

Use transaction, plus your previously defined now and last-created-id

functions, to implement insert-snippet:

Download examples/snippet.clj

(defn insert-snippet [body]

(with-connection db

(transaction

(insert-values :snippets

[:body :created_at]

[body (now)])

(last-created-id))))

If you call insert-snippet multiple times, you will see the returned ID

increase:

(insert-snippet "(+ 1 1)")

⇒ 4

(insert-snippet "(ref true)")

⇒ 5

You now have a minimal library for adding and reviewing snippets.

Other Library Options

If you are accustomed to using a persistence framework such as Hiber

nate,2 iBATIS,3 or ActiveRecord,4 then sql will probably seem very low-

level. That’s because it is. If you want a higher-level tool, you have two

options:

• Use a Java framework such a Hibernate or iBatis from Clojure.

• Use one of the emerging Clojure-specific persistence libraries.

The Java frameworks are well-documented elsewhere. Be careful in

choosing one of these frameworks for a Clojure app. Most of them will

bring a lot of Java flavor with them. In particular, they will tend to use

Java classes to represent database tables, instead of simple maps. They

will also bring in XML and/or Java annotations for configuration. None

of these are idiomatic Clojure.

2. http://www.hibernate.org/

3. http://ibatis.apache.org/

4. http://ar.rubyonrails.com/

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/snippet.clj
http://www.hibernate.org/
http://ibatis.apache.org/
http://ar.rubyonrails.com/
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=274

WEB DEVELOPMENT 275

The pure-Clojure persistence frameworks are in pre-beta development

at the time of this writing. You may want to look some of the following:

clj-record

clj-record5 is John D. Hume’s port of ActiveRecord to Clojure. It cur

rently supports a subset of ActiveRecord’s relationships and valida

tions. Here’s an example from the unit tests:

(ns clj-record.test.model.manufacturer

(:require [clj-record.core :as cljrec])

(cljrec/init-model

(has-many products)

(validates name "empty!" #(not (empty? %)))

(validates name "starts with whitespace!" #(not (re-find #"^\s" %)))

(validates name "ends with whitespace!" #(not (re-find #"\s$" %)))

(validates grade "negative!" #(or (nil? %) (>= % 0))))

clojureql

clojureql6 is Lau B. Jensen and Meikel Brandmeyer’s Clojure DSL for

SQL. This example is from demo.clj:

(execute

(sql

(query [id name] developers.employees

(and (> id 5)

(< id 8)))))

⇒	 {:name Jack D., :id 6}

{:name Mike, :id 7}

Clojure is a very good fit for SQL, providing the expressiveness of SQL

embedded in the full Clojure language.

9.3 Web Development

James Reeves’ Compojure7 is a Clojure web framework inspired by

Ruby’s Sinatra.8 Here we will use Compojure and the Jetty web server

to build a user interface for creating and viewing code snippets.

Compojure has a number of JAR dependencies. The sample code for the

book includes recent versions of these JARs, and the launch scripts

bin/snippet.sh (*nix) and bin/snippet.bat (Windows) will launch Clojure

5. http://github.com/duelinmarkers/clj-record

6. http://github.com/Lau-of-DK/clojureql

7. http://github.com/weavejester/compojure

8. http://sinatra.rubyforge.org/

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://github.com/duelinmarkers/clj-record
http://github.com/Lau-of-DK/clojureql
http://github.com/weavejester/compojure
http://sinatra.rubyforge.org/
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=275

WEB DEVELOPMENT 276

with all the necessary JAR files on the classpath. Try running the

appropriate launch script from the root directory of the sample code:

bin/snippet.sh

TODO: implement reader/snippet_server.clj!

user=>

Notice that the launch script gives you a REPL so that you can try

things interactively. As you work through this section, add your code

to the file reader/snippet_server.clj. For your first change, remove the line

that prints the TODO message. To test your change, reload the file at

the REPL with this:

(use :reload 'reader.snippet-server)

⇒ nil

Your next task is to create some simple routes with defroutes:

(compojure/defroutes name doc & routes)

A route routes HTTP requests to a Clojure form and looks like this:

(HTTP-VERB url-pattern body)

A handler can do something as simple as returning a string:

(GET "/hello" "<h1>Hello!</h1>")

Or a handler can call arbitrary code, possibly passing along information

from the request:

(GET "/:id" (show-snippet (params :id)))

Most servlets will want a catchall handler for invalid requests. Compo

jure provides page-not-found:

(compojure/page-not-found)

By default, page-not-found will set the HTTP status code to 404 and

return a file located at public/404.html.

Using defroutes, add code to reader/snippet_server.clj to create two routes

for the snippet-app. The app should return pong for a GET of /ping and

a 404 for anything else.

Download examples/server/step_1.clj

(use 'compojure)

(defroutes snippet-app

"Create and view snippets."

(GET "/ping" "pong")

(ANY "*"

(page-not-found)))

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_1.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=276

WEB DEVELOPMENT 277

ANY matches all HTTP verbs, and * matches all URLs. Compojure

checks handlers in the order they are declared, so it is important for

the catchall handler to come last.

Now, you can run your snippet-app with run-server:

(compojure/run-server options? & paths-and-servlets)

The options specify things such as the :port number, and the paths-and

servlets is a sequence alternating between paths and the servlets that

serve them. Use run-server to run a server on port 8080, handling all

paths:

Download examples/server/step_1.clj

(run-server {:port 8080}

"/*" (servlet snippet-app))

You should see a console message from Jetty:

| 2009-05-01 INFO: Logging to STDERR ...

| 2009-05-01 INFO: jetty-6.1.14

| 2009-05-01 INFO: Started SocketConnector@0.0.0.0:8080

⇒ nil

While the server is running, its log traffic will be interleaved with your

REPL input and output. I find this convenient, because everything is in

one place. If the server log traffic obscures your REPL prompt, simply

hit Enter , and you will get a new prompt.

Test the server using the browser of your choice. http://localhost:8080/

ping should return pong, and any other name should return Page Not

Found.

Building HTML

Now that you have a simple servlet in place, let’s build an HTML form

for entering a new snippet and some HTML for displaying a snippet.

The text-area function builds an HTML textarea:

(compojure/text-area options? name value?)

Compojure converts the options map into attributes on the textarea tag.

The most important attributes, name and value, have their own ded

icated parameters. Other Compojure HTML functions duplicate this

idiom, exposing the most important attributes as explicit parameters

but always providing the options for less frequently used attributes.

It is trivial to test Compojure’s HTML functions, because they simply

emit a tree of vectors and maps that correspond to the eventual HTML.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_1.clj
http://localhost:8080/ping
http://localhost:8080/ping
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=277
mailto:SocketConnector@0.0.0.0:8080

WEB DEVELOPMENT 278

Try calling text-area from the REPL:

(use 'compojure)

(text-area "body")

⇒ [:textarea {:id "body", :name "body"} nil]

Compojure’s html function will convert this internal representation into

actual HTML:

(compojure/html & trees)

To see the actual HTML of your textarea, simply println its html:

(println (html (text-area "body")))

<textarea id="body" name="body"></textarea>

To create a form for users to input snippets, you will need two more

Compojure helpers: form-to and submit-button:

(compojure/form-to handler & body)

(compojure/submit-button options? & text)

The handler is a vector containing an HTTP verb and a URL, which will

be the target of the form. The body forms build the internals of the

form. submit-button is a trivial helper, with a signature analogous to text-

area’s.

Create a new-snippet function in reader/snippet_server.clj that creates a

new snippet form. Since snippets are the primary purpose of the appli

cation, new-snippet can post back to the root URL of the app:

Download examples/server/step_2.clj

(defn new-snippet []

(html

(form-to [:post "/"]

(text-area {:rows 20 :cols 73} "body")

[:br]

(submit-button "Save"))))

Notice that you can safely mix helper functions like text-area and submit-

button with plain old vectors like [:br]. This is made possible by Compo-

jure’s intermediate tree-of-vectors representation.

Test new-snippet at the REPL:

(use :reload 'reader.snippet-server)

(println (new-snippet))

| <form action="/" method="POST">

| <textarea cols="73" id="body" name="body" rows="20"></textarea>

|

| <input type="submit" value="Save" />

| </form>

⇒ nil

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_2.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=278

WEB DEVELOPMENT 279

Next, create a show-snippet function that shows an existing snippet.

show-snippet should call out to the select-snippet function described in

Section 9.2, Data Access, on page 270 and then show the body and

created-at fields of the snippet, each in their own div. Since the body is

code, also wrap it in a pre/code pair:

Download examples/server/step_2.clj

(defn show-snippet [id]

(let [snippet (select-snippet id)]

(html

[:div [:pre [:code (:body snippet)]]]

[:div (:created_at snippet)])))

You do not need any new helper functions for show-snippet, because the

div, pre, and code tags are just plain old HTML.

Test show-snippet by creating a new snippet and then showing it:

(use :reload 'reader.snippet-server 'examples.snippet)

(insert-snippet "hello")

⇒ 5

(println (show-snippet 5))

| <div>

| <pre>

| <code>hello</code>

| </pre>

| </div>

| <div>

| 2009-01-04 12:47:08.193

| </div>

⇒ nil

As you can see, Compojure’s HTML library is easy to use. Better yet,

it is cleanly separated from the other parts of Compojure and can be

tested at the REPL without going through the entire web stack.

Posts and Redirects

The last helper function you need to write is something that creates

new snippets. create-snippet will be a little different from new-snippet and

show-snippet, because it will not return HTML. Instead, after an HTTP

POST, it will redirect the caller to a different URL. Compojure provides

redirect-to for this purpose:

(compojure/redirect-to location)

Create a function named create-snippet that takes the body of a new

snippet and calls insert-snippet to add it to the database. create-snippet

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_2.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=279

WEB DEVELOPMENT 280

should redirect to the ID of the new snippet if insert-snippet succeeds and

redirect to the top-level URL if insert-snippet fails:

Download examples/server/step_2.clj

(defn create-snippet [body]

(if-let [id (insert-snippet body)]

(redirect-to (str "/" id))

(redirect-to "/")))

Test create-snippet from the REPL:

(create-snippet "this is too easy")

⇒ [302 {"Location" "/6"}]

Instead of returning an HTML string, redirect-to returns a vector with an

HTTP status code, plus a map of data that is used to set the response

header.

Now that you have created the “action functions” for creating and dis

playing snippets, you need to associate them with your servlet. Add the

following handlers to your snippet-servlet definition:

Download examples/server/step_2.clj

(GET "/"

(new-snippet))

(GET "/:id"

(show-snippet (params :id)))

(POST "/"

(create-snippet (:body params)))

Make sure you add these handlers before the catchall ANY handler. On

every request, params is bound to a map of the query parameters, so

(:body params) extracts the body posted by the user. Also, (params :id)

returns the part of the URL that matches the :id in /:id. Restart the

snippet REPL and try creating a few snippets!

Finishing Touches

To put a little polish on the snippet application, let’s add a few nice-to

haves: layout and code highlighting.

Across a web application, pages often share a common layout: Java-

Scripts, style sheets, wrapper divs, and so on. Snippet pages should

have the following common layout elements:

•	 The title should be placed in a title element in the header and in an

h2 in the body.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_2.clj
http://media.pragprog.com/titles/shcloj/code/examples/server/step_2.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=280

WEB DEVELOPMENT 281

•	 The header should include Dan Webb’s code-highlighter.js,9 plus

Clojure-specific highlighting rules in clojure.js.10 These files are in

cluded in the public/javascripts directory of the sample code.

•	 The header should also include code-highlighter.css from the pub

lic/stylesheets directory so that you can see colors for the styles

that code-highlighter.js adds to code.

Compojure’s include-js and include-css functions will create the appropri

ate HTML for including JavaScript and CSS files:

(compojure/include-js & scripts)

(compojure/include-css & scripts)

Create a layout function that takes a title and some body forms and lays

out a page with the common features described earlier:

Download examples/server/step_3.clj

(defn layout [title & body]

(html

[:head

[:title title]

(include-js "/public/javascripts/code-highlighter.js"

"/public/javascripts/clojure.js")

(include-css "/public/stylesheets/code-highlighter.css")]

[:body

[:h2 title]

body]))

Again, Compojure’s design makes it trivial to test layout from the REPL:

(println (layout "Sample Title" "Sample Page"))

| <head>

| <title>Sample Title</title>

| <script src="/public/javascripts/code-highlighter.js"

| type="text/javascript"></script>

| <script src="/public/javascripts/clojure.js"

| type="text/javascript"></script>

| <link href="/public/stylesheets/code-highlighter.css" rel="stylesheet"

| type="text/css" />

| </head>

| <body>

| <h2>Sample Title</h2>

| Sample Page

| </body>

⇒ nil

9. http://svn.danwebb.net/external/CodeHighlighter/

10. I could have sworn I got this file from http://groups.google.com.sg/group/clojure/files, but

it is not there any longer.

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_3.clj
http://svn.danwebb.net/external/CodeHighlighter/
http://groups.google.com.sg/group/clojure/files
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=281

WEB DEVELOPMENT 282

Update new-snippet to use the custom layout instead of the generic html

to build the page:

Download examples/server/step_3.clj

(defn new-snippet []

(layout "Create a Snippet"

(form-to [:post "/"]

(text-area {:rows 20 :cols 73} "body")

[:br]

(submit-button "Save"))))

Update show-snippet in similar fashion. Also, change the :code keyword

to :code.clojure:

Download examples/server/step_3.clj

(defn show-snippet [id]

(layout (str "Snippet " id)

(let [snippet (select-snippet id)]

(html

[:div [:pre [:code.clojure (:body snippet)]]]

[:div (:created_at snippet)]))))

:code.clojure is a bit of syntactic sugar for adding class attributes to an

HTML element. You can test this at the REPL:

(println (html [:code.clojure]))

| <code class="clojure" />

⇒ nil

The highlighter of the snippet application uses the CSS class to select

language-specific highlighting rules.

There is one last change you need to make: actually serving the Java-

Script and CSS files. Compojure provides the serve-file function for serv

ing static files:

(compojure/serve-file root? path)

If root is not specified, then files are served relative to the public direc

tory. Not coincidentally, I placed the JavaScript and CSS files in pub

lic. Add the following handler just before the catchall handler in your

servlet definition:

Download examples/server/step_3.clj

(GET "/public/*"

(or (serve-file (params :*)) :next))

The (params :*) extracts the filename from the URL pattern /public/*.

(Yes, :* is a legal keyword.)

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://media.pragprog.com/titles/shcloj/code/examples/server/step_3.clj
http://media.pragprog.com/titles/shcloj/code/examples/server/step_3.clj
http://media.pragprog.com/titles/shcloj/code/examples/server/step_3.clj
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=282

FAREWELL 283

What happens if a file is not found? serve-file returns nil. The or form

then returns :next, which directs Compojure to continue searching for

a matching handler. The catchall handler will then report that the page

was not found.

Make sure that you have the most recent version of your reader.snippet

server loaded and try creating some snippets. You should now see titles

on every page, and the snippets should have syntax coloring.

The completed code for the snippet server is in the file code/examples/

server/complete.clj.

You can run the completed example with the following commands. On

Windows:

bin\snippet-solution.bat

On *nix:

bin/snippet-solution.sh

Weighing in at less than 50 lines, the snippet server provides the entire

Controller and View layers for the snippet application.

9.4 Farewell

Congratulations. You have come a long way in a short time. You have

learned the many ideas that combine to make Clojure great: Lisp, Java,

functional programming, and explicit concurrency. And in this chapter,

you have seen a brief sample of how the Clojure community is using

Clojure for a variety of tasks: automated testing, data access, and web

development.

We have only scratched the surface of Clojure’s great potential, and

I hope you will take the next step and become an active part of the

Clojure community. Join the mailing list.11 Hang out on IRC.12 The

Clojure community is friendly and welcoming, and we would love to

hear from you.

11. http://groups.google.com/group/clojure

12. #clojure

Report erratum
Prepared exclusively for WG Custom Motorcycles

this copy is (P1.0 printing, May 2009)

http://groups.google.com/group/clojure
http://books.pragprog.com/titles/shcloj/errata/add?pdf_page=283

Appendix A

Editor Support
Editor support for Clojure is evolving rapidly, so some of the infor

mation here may be out-of-date by the time you read this. Check the

archives of the mailing list1 for recent announcements.

Clojure code is concise and expressive. As a result, editor support is

not quite as important as for some other languages. However, you will

want an editor than can at least indent code correctly and can match

parentheses.

While writing the book, I used Emacs plus Jeffrey Chu’s clojure-mode,

available at http://github.com/jochu/clojure-mode. Emacs support for Clo

jure is quite good, but if you are not already an Emacs user, you might

prefer to start with an editor you are familiar with from among these:

Editor Project Name Project URL

Eclipse clojure-dev2 http://code.google.com/p/clojure-dev/

Emacs clojure-mode http://github.com/jochu/clojure-mode

IntelliJ IDEA La Clojure http://plugins.intellij.net/plugin/?id=4050

jEdit jedit modes http://github.com/djspiewak/jedit-modes/tree/master/

NetBeans enclojure http://enclojure.org

TextMate clojure-tmbundle http://github.com/nullstyle/clojure-tmbundle

Vim Gorilla http://kotka.de/projects/clojure/gorilla.html

Vim VimClojure http://kotka.de/projects/clojure/vimclojure.html

Bill Clementson has written a quick overview that includes setting up

Clojure, Emacs support, and debugging with JSwat.3

1. http://groups.google.com/group/clojure

2. http://code.google.com/p/clojure-dev/
3. http://bc.tech.coop/blog/081023.html

Prepared exclusively for WG Custom Motorcycles

http://github.com/jochu/clojure-mode
http://groups.google.com/group/clojure
http://bc.tech.coop/blog/081023.html
http://code.google.com/p/clojure-dev/
http://github.com/jochu/clojure-mode
http://plugins.intellij.net/plugin/?id=4050
http://github.com/djspiewak/jedit-modes/tree/master/
http://enclojure.org
http://github.com/nullstyle/clojure-tmbundle
http://kotka.de/projects/clojure/gorilla.html
http://kotka.de/projects/clojure/vimclojure.html
http://code.google.com/p/clojure-dev/

Appendix B

Bibliography

[Goe06]	 Brian Goetz. Java Concurrency in Practice. Addison-Wesley,

Reading, MA, 2006.

[Hof99]	 Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal

Golden Braid. Basic Books, New York, 20th anniv edition,

1999.

[McC06]	 Steve McConnell. Software Estimation: Demystifying the

Black Art. Microsoft Press, Redmond, WA, 2006.

Prepared exclusively for WG Custom Motorcycles

Symbols
* (URL wildcard in Compojure), 277

+ function, 46, 49

+ operator, 90

- (prefix for Java methods), 98

- function, 49

.. macro, 82, 83, 216, 218

. special form, 80, 81

:: namespaced keyword prefix, 252

: macro character, 53

; macro character, 55

=, 74, 258

@ macro character, 36, 179

#<>, 249

%d format specifier, 87

%s format specifier, 87

% anonymous function argument, 59

_ underscore, 63

~@ unquote, splicing, 221

~ unquote character, 220

" macro character, 49

‘ character, 220

A
ACID mnemonic, 180, 191

ActiveRecord, 275

agent function, 187, 188

agent-errors function, 189

Agents, 191f, 187–191

checking value of, 188

concurrency model and, 196f

defined, 177

STM interaction, 178

targets and, 207

transactions and, 189–191

unified update model for, 191

validating, 188–189

aget function, 84

alias function, 252

Prepared exclusively for WG Custom Motorcycles

Index

alter function, 35, 182, 184

amap macro, 86

and macro, 226

Anonymous functions, 58–60

Ant, 43

attributes, 105

on classpath, 105

names, vs. in Clojure, 241

property names of, 108

tasks, 105–110, 141

tasks, defining for Lancet, 239

apply function, 51

areduce macro, 40, 86

Arity, 57

Arrays, 84, 127

aset function, 84

assert macro, 232, 268

assoc function, 75

Asynchronous updates, 187–191

atom function, 99, 186

Atomic updates, 180

Atoms, 177, 186–187, 191f, 196f, 207

Attributes, Ant, 105

auto-gensym, 223

Automated tests, 266–269

await function, 188

await-for function, 188

B
Bagwell, Phil, 149

Bank account service charge example,

252

Basis, 152

Basis keys, 54

bean function, 88, 107, 142

Beans, 88, 142

bench example, 222, 233

BigDecimal class, 48

binding macro, 192

C

BINDING EXPRESSIONS 287 CONVENTIONS

Binding expressions, 125

Bindings, 62, 63, 192

Booleans, 51–52

Branches, 22, 68

Brandmeyer, Meikel, 275

by-pairs example, 162

Callback handlers, 195

Caller, 169

catch block, 104

Catchall handler, 276

chain example, 218, 219, 221

Characters, 50

Checked exceptions, 102

class function, 48, 247, 259

Classes

compiling, 99

dynamic nature of, 100

features, 101

initialization function, 98

in Java, 94–101

see also Collections

clear-agent-errors function, 189

clj-record, 275

Clojure, 275

API for, 41

benefits of, 21–30

building yourself, 32

concurrency, 29

features of, 14, 21

functional language, 27–28

Hello, World, 32–33

installation, 30–32

Java and, 29–30

Lancet, 16, 42–44

libraries, 37–42

Lisp and, 24–27

notation conventions, 18

printing application, 245

references (refs), 35

REPL prompt, 19

resources for, 19

sample code, 20, 30

syntax, 214

variables, 33–34

clojure-contrib library, 31, 211, 229

def, 164

repl-utils, 40

sql, 270

duck-streams, 130

Prepared exclusively for WG Custom Motorcycles

test-is, 267

test-is lib, 257

clojure-loc example, 132

sql library, 270

clojure.js, 281

clojureql library, 275

Closures, 60

coerce example, 260

collection-tag function, 257

Collections, 41

in Java, 83–86

seq-able, 111

seq-ing, 127

Commas, 52

Comment, 55

comment macro, 226

commute function, 183, 184

comp function, 163

compile function, 44, 99

Compile time, 213

Compojure, 275–283

Concurrency, 177–210

agents, 187–191

challenges of, 177

commute function, 183, 184

Lancet application, 207–210

locks and, 178–179

models for, 196f

noncommutative updates, 184

reasons for, 29, 177

refs and, 179–185

snake game application and,

197–206

STM and, 84

vars and, 192–196

cond macro, 26

conj function, 35, 69, 115, 182

cons function, 113

Consistent updates, 180

contains function, 136

Control flow macro, 212–218

Convenience functions, 86–88

Conventions

function names, 40, 56

functions, creating, 259

keywords as types, naming, 252

macros, 221

multimethods, creating, 259

notation, 18

parameter names, 40

property names, 143

http:clojure.js

COUNT-HEADS-PAIRS FUNCTION 288 FOR LOOPS

count-heads-pairs function, 161

count-if function, 163

count-runs function, 165

create-runonce example, 208

create-snippet example, 279

create-struct function, 227

create-table function, 270

createTask method, 108

CSS files, 282

Currying, 165–166

cycle function, 119

Cygwin, 31

D
Data

accessing in Clojure, 111

manipulation of, 111

Databases

accessing, 270–275

transaction validation, 185

db example, 270

Deadlocks, 178

declare macro, 228

Deeply nested functions, 172

def special form, 35, 60, 65, 80, 164

defhinted macro, 164

define-all-ant-task example, 239

define-all-ant-tasks example, 241

define-ant-task macro, 233, 239, 240

defmacro macro, 213

defmethod, 247

defmulti macro, 247, 249

defn macro, 32, 56, 58, 76, 164

defn special form, 65

defn- function, 164

defonce macro, 164

defrecord macro, 25

defroutes macro, 276

defstruct macro, 23, 54, 227

deftarget example, 43, 233, 234, 236,

238

deftest macro, 267

defvar macro, 164

delay macro, 230

Dependencies, 43

Dependency-based build, 42

deref function, 179

derive function, 254

Design pattern, 215

Destructuring, 62

Dispatch-by-class, multimethods, 256

Prepared exclusively for WG Custom Motorcycles

Division, 47

do special form, 68

doall function, 126

doc function, 39

doc deref, 77

doc-string function, 39

dorun function, 126

doseq macro, 144

dosync function, 35, 180

dotimes macro, 90

doto macro, 83, 107

drop-while function, 121

Duck typing, 89

duck-streams library, 130

Durable updates, 180

Dynamic binding, 194

Dynamic scope, bindings, 192

Dynamic vars, 192

see also Vars

E
ellipsize example, 64

Encapsulation, 151, 238

Engelberg, Mark, 66

Equality, 74

Event handlers, 195

every function, 22, 121

Exception handling, 101–105

checked exceptions, 102

multimethods and, 250

resource cleanup, 103

responding to, 104

Expressions, seq-ing, 128

F
false, 52

faux-curry example, 166

Fibonacci numbers, 37, 153

Fibonacci, Leonardo, 153

File system, seq-ing, 129

file-seq function, 130

Files, serving, 282

filter function, 58, 59, 71, 120

Filter functions, 58

first function, 142

First-class objects, 27

Flow control, 67–70

fn special form, 58, 60

for macro, 27, 72, 124, 125

for loops, 70

FORCE MACRO 289 INDEX-OF-ANY EXAMPLE

force macro, 230

form-to macro, 278

format, 87

Format specifiers, 87

Forms, 46f, 45–54

boolean, 51–52

defined, 45

maps, 52

numeric literals as, 46–48

strings and characters, 49–51

structs, 54

symbols, 49

Functional languages, 27–28

Functional model, 179

Functional Programming (FP), 147–176

benefits of, 150–151

concepts in, 148–152

data structures, 148–149

recursion and laziness, 149

referential transparency, 150

six rules, 151–152

laziness, 152–160

laziness, in programming, 160–166

overview of, 176

pure functions, 148

recursion, 167–176

Functions, 56–60

anonymous, 58–60

arity, 57

caller of, 169

convenience, for Java, 86–88

deeply nested, 172

defining, 32, 56

doc-string and, 39

filter, 58

keywords as, 53, 135

lambdas (anonymous), 232

maps as, 53

math operators as, 47

parameter names, 59

parameter names and, 40

partial applications, 165

pure, 34, 148

reuse and, 238

self-recursive, 155–156

sets as, 72

structure-specific, 133–141

lists, 133

maps, 135–138

sets, 138–141

tail-recursive, 154–155

targets as, 43, 207

tasks as, 43

vector lists, 116

vectors, mixing with, 278

see also Multimethods

G
Garbage collection, 103

get function, 53

Gilardi, Stephen C., 270

Gödel, Escher, Bach: An Eternal Golden

Braid (Hofstadter, Douglas R.),

174

Goetz, Brian, 178

H
Handlers, 276, 280

Handling errors, 188–189

hash-map function, 120

Hashes, 127

head-fibo example, 160

Heads or tails problem, 161

Heap space, 158, 176

Helper functions, 278, 279

Hibernate, 274

Higher-order functions, 22

Hofstadter sequences, 173

Hofstadter, Douglas R., 174

Homoiconic, 45

Horn, David Van, 198

Houser, Chris, 40, 206

html function, 278

HTML form, building, 277–279

Hume, John D., 275

Hyphens, 56, 98

I

“Ideal Hash Trees” (Bagwell), 149

identical, 74

if special form, 67–69, 212, 213

Immutability, 23, 116, 148, 178

Imperative programs, 28

import function, 65, 67, 81

import-static macro, 229

in-ns function, 65

in-transaction-value, 183

include-css function, 281

include-js function, 281

indexOfAny example, 71, 72

index-of-any example, 72, 73, 267

Prepared exclusively for WG Custom Motorcycles

INDUCTION 290 LISP

Induction, 152

Infix notation, 46

method, 43

init method, 98, 108

Initialization function, 98

insert-values function, 271

Inspector library, 256

Installation, 30–32

instantiate-task example, 109, 142, 144

Integers, 48, 90, 248

interleave function, 50, 119

interpose function, 119

into function, 115

into-array function, 85

is macro, 257, 267, 268

isa function, 248, 255

Isolated updates, 180

iterate, 118

J
Java, 79–110

arrays, 84

beans, 88

callback APIs, 195

calling in Clojure, 80–88

characters and Clojure, 50

checked exceptions, 102

classes, 94–101

Clojure support for, 79–80

collections, 83–86

compiling to disk, 96–101

convenience functions for, 86–88

exception handling, 101–105

inheritance and multimethods, 248

new keyword, 215

object creation, 80

performance optimization, 88–94

persistent framework and, 274

proxies, 94–96

seq-ing collections, 127

type hints, 92–94

see also Databases

Java Concurrency in Action (Goetz, et

al), 178, 179

Java Database Connectivity (JDBC),

270, 273

Java interop, 79, 229–230

Java Virtual Machine (JVM), 29–30

JavaScript files, 282

Jensen, Lau B., 275

Jetty, 277

Prepared exclusively for WG Custom Motorcycles

join function, 140

K
Key/value pairs, 52, 75, 114, 135, 144,

185

keys function, 108, 135

Keywords, 53, 135, 143, 252

Krukow, Karl, 149

L
Lambdas, avoiding, 232–233

Lancet, 16

Ant and, 42

Ant tasks, adding, 105–110, 141

Ant tasks, defining, 239

as DSL, 233–242

overview of, 42–44

properties, adding to tasks,

141–145, 233, 239, 261

targets in, running once, 207–210

type coercions, 259–262

Layout elements (snippet application),

280

Laziness, 149, 152–160

holding a reference to, 159–160

realization of, 158–159

recursion and, 171–173

referential transparency, 150

self-recursion, 155–156

without sequence manipulation,

160–166

sequences, 125–127, 156–158, 230

tail recursion, 154–155

lazy-cat macro, 160

lazy-seq macro, 156, 173

lazy-seq-fibo example, 157

Legal symbols, 49, 63

let special form, 62

letfn special form, 154

Lexical scope, 62

Libraries

Clojure-specific persistence, 274

sql, 270

inspector, 256

overview of, 37–42

sequences, 117–125

test-is, 257, 267

Lisp, 24–27

cons in, 113

seq functions, 113

LIST FUNCTION 291 OBJECTS

list function, 119

List comprehension, 124

Lists

forms as, 46

functions as, 56–60

functions on, 133

s-list, 171

seq as, 111

seq functions, 113

sequences, 26

structural sharing, 149

vectors, functions on, 116

Locks, 178–180, 207

see also Concurrency

Loggers, 106

Logical lists, 111

loop special form, 69

M
Macro expansion time, 213, 216, 224,

236

macroexpand-1 function, 216, 241

macroexpand function, 217

Macros, 211–243

argument evaluation, 213

benefits of, 25

control flow, 212–218

creating names in, 221–224

expanding, 215–217

Lancet application, 233–242

parentheses, 26

power of, 211

simplifying, 220f, 218–224

symbol capture (bug), 222

syntax quotes and, 220–221

taxonomy, 225f, 224–233

conditional evaluation, 225–227

creating vars, 227–228

Java interop, 229–230

lambdas, avoiding, 232–233

wrapping evaluation, 231–232

when to use, 211–212

see also Reader macros

make-array function, 84

map function, 122

Maps, 52, 88

building, 136

functions on, 135–138

as seqs, 114

sequences and, 127

sorted, 115

Prepared exclusively for WG Custom Motorcycles

Math operators, 47, 90, 139

Member-as-function idiom, 87

memfn macro, 87

Memoization, 150, 174–176, 194

memoize function, 194

Memory, garbage collection, 103

merge-with function, 137

meta macro, 74

Metadata, 74–77

common keys for, 77f

defined, 74

Methods, Lisp and, 24

mkdir-task example, 106, 108

Multimethods, 244–264

ad hoc taxonomies, 251–255

advanced uses, 250

creating, rules for, 259

defaults, 249

defining, 247–248

inheritance, 248

life without, 245–246

type coercion example, 259–262

type coercions, 262

when to use, 256f, 255–259

Multiversion Concurrency Control

(MVCC), 182

Mutable model, 179

Mutual recursion, 167–168

my-print example, 245

N
Names, resolving in macros, 223

Namespaces, 33, 37, 38, 64–67, 252,

268

Nesting, 254

new keyword (Java), 215

new special form, 80

next-counter example, 184

nil, 52

not-every function, 122

Notation conventions, 18

ns macro, 67

Numeric literals, 46–48

O
Object-oriented design, 238

Objects, 41

creating, 80

duck typing and, 89

first-class, 27

OR MACRO 292 RESET! FUNCTION

vars and, 61

or macro, 226

P
page-not-found function, 276

Parallelization, 150

Parameters, 40

Parent/child relationships, 254

Parentheses, 26, 27, 235

Parity, 168

partial function, 165

Partial application, 165

partition function, 163

peek function, 133

Performance, 88–94

data structures and, 148

laziness and, 158

primitives for, 88–92

type hints, 92–94

Points, in transactions, 182

Polymorphism, 215, 249

pop function, 133

Predicates, 52, 120–122

prefer-method function, 250, 251

Prefix notation, 46

Primitives, 88–92

Printing application, 245

project function, 140, 144

Properties, 43, 108

Proxies, Java, 94–96

proxy function, 94

Pure functions, 34, 148

Q
Question mark, 52

Quoting, 37, 220

R
Race conditions, 178

range function, 117

Ranges, 117

re-matcher function, 128

re-seq function, 129

Read, Jeremy, 198

Read-Eval-Print Loop, see REPL

Reader, 45

Reader macros, 55

see also Macros

Reader metadata, 75

Realization, laziness, 158–159

Prepared exclusively for WG Custom Motorcycles

recur special form, 69

recur-fibo example, 156

Recursion, 149, 167–176

laziness, replacing with, 171–173

memoization and, 174–176

mutual, 167–168

self-, 168

trampolining, 169–171

Recursive definitions, 152

Reddy, Abhishek, 198

redirect-to function, 279

reduce function, 40, 123

Reeves, James, 275

ref function, 29, 35, 179, 185

ref-set function, 180

refer function, 38

References (refs), 35

Referential transparency, 150

Reflection warnings, 93

Refs, 177, 179–185

vs. atoms, 186

concurrrency model and, 196f

functions, validating, 180

reading contents of, 179

ref-set, 180

snake game application, 202

STM interaction, 178

targets and, 207

unified update model for, 191

updating state in, 191f

validation for, 185

Regular expressions, seq-ing, 128

Relational algebra, 139f, 139, 141

rename function, 139

repeat function, 118

REPL

defined, 19, 31

Hello, World, 32–33

kill, 33

laziness and, 159

predicates, 52

ranges, 117

sequences and, 116

sequences, forcing, 126

server, reloading from, 277

snake game window, 205

variables, 33–34

repl-utils library, 40

replace function, 171

require function, 37

reset! function, 186

RESOLVE FUNCTION 293 SYNTAX QUOTES

resolve function, 65

Resources, cleaning up, 103

Reuse, 151, 238

Root bindings, 61, 64, 192

Rules of Macro Club, 211, 224

run-server macro, 277

run-tests function, 268

runonce function, 233, 234

S
S-lists, 171

Sample code, 20, 30

SAX parser example, 94

Secure Hash Algorithm (SHA), 88

select function, 140

Self-recursion, 155–156, 168

Self-validation, tests, 266

send function, 187

Seqs, see Sequences (seqs)

Sequences (seqs), 26, 111–146

arrays and, 127

capabilities of, 112, 115

file system and, 129

first/rest, 127–133

forcing, 126

immutability of, 116

Lancet application, 141–145, 233,

239, 261

laziness and, 156–158, 230

lazy and infinite, 125–127

library for, 117–125

creating, 117–120

filtering, 120–121

predicates, 121–122

transforming, 122–125

list comprehension, 124

overview of, 111–112, 146

REPL and, 116

structure-specific functions,

133–141

serve-file function, 282

service-charge example, 254

set function, 120

Set theory, 138

set! special form, 92, 195

set-property example, 261

Sets, 72

as functions, 121

functions on, 138–141

as seqs, 114

show function, 40

Prepared exclusively for WG Custom Motorcycles

Side effects, 68, 148, 189

Sierra, Stuart, 229, 267

Six rules of Clojure FP, 151–152

SLOCCount, 71

Snake game application, 197–206

description of, 197

functional model, 198–201

GUI, 203–205

layers of, 197

mutable model, 201–203

without refs, 206

Snippet server application, 275–283

Snippets table, 271

Software Transactional Memory (STM),

178–185, 201

alter function, 182

Multiversion Concurrency Control

and, 182

properties of, 180

some function, 122

sorted-set function, 115

source macro, 40

Special forms, 224

Special variables, 193

Speed, see Performance

Splicing unquote, 221

split-at function, 121

split-with function, 121

SQL, 275

sql lib, 270

Stack frame, 153

Stack-consuming recursion, 154

str function, 33, 39, 50, 51, 75

str-join function, 119

Streams, seq-ing, 130

String literals, 49

Strings, 49–51, 276

blank, 23

output, 119

sequences, 128

struct function, 54

Structs, 54

submit-button function, 278

sum-to example, 89, 91

swap! function, 187

Symbol capture, 222, 224

Symbols, 33, 49

Syntax, 214

Syntax quotes, 220

TABLES 294 WRAPPING EVALUATION

T
Tables, 127

Tail recursion, 154

Tail-call optimization (TCO), 70, 155

tail-fibo example, 156

take function, 118

take-while function, 120

Targets, 43

Tasklist application (Java), 96–101

Tasks, 43

Taxonomies, multimethods and,

251–255

:test function, 266–267

test function, 267

test-is library, 257, 267

Testing

automating, 266–269

benefits, in Clojure, 269

chain example, 220

code readability and, 151

duck typing and, 89

failing, 268

macro expansions, 216

self-validation, 266

text-area function, 277

Thread-local binding, 192

Thread-safe code, 27, 29, 178

thrown argument, 269

time macro, 221

to-array function, 85

trampoline function, 169, 170

Trampolining mutual recursion,

169–171

transaction macro, 274

Transactions, 35, 189–191

Treeish concepts, 257

Treeish data, 256

true, 52

try, 103

Type coercion example, 259–262

Type coercions, 262

Type hints, 92–94

U
Underscores, 63

“Understanding Clojure’s

PersistentVector Implementation”

(Krukow), 149

unless example, 212, 213

Unquoted character, 220

Updates, 182

Prepared exclusively for WG Custom Motorcycles

asynchronous, with agents, 187–191

atoms for, 186–187

commutative, 183

noncommutative, 184

properties, 180

unified model for, 191

URLs, redirecting to, 279

use function, 38

V

Vaillancourt, Dale, 198

values function, 135

Van Horn, David, 198

var special form, 61

Variables, 22, 33–34, 45

Vars, 61, 196f

defined, 177

macros and, 227–228

per-thread state, 192–196

targets and, 207

values associated with, 61

vec function, 120

vector function, 119

Vectors

Compojure and, 278

destructuring collections, 62

functions on, 116

helper functions and, 278

of numbers, 46

printing, 250

as seqs, 113

Volkmann, Mark, 198

W
Wallingford, Eugene, 171

Web development, 275–283

Webb, Dan, 281

Wheeler, David A., 71

when macro, 68, 217

when-not macro, 217

Whitespace, 23

with-connection macro, 270

with-meta function, 74, 77

with-open macro, 103

with-out-str macro, 231

with-query-results macro, 272

Wrapper macros, 231

Wrappers, sequences, 128

Wrapping evaluation, 231–232

X

XML 295 ZERO

xml-seq function, 132

XML

parsing, 94

seq-ing, 132–133 Z
support for, 133 zero, 52

Prepared exclusively for WG Custom Motorcycles

More Tools for Java

Stripes
Tired of complicated Java web frameworks that just

get in your way? Stripes is a lightweight, practical

framework that lets you write lean and mean code

without a bunch of XML configuration files. Stripes

is designed to do a lot of the common work for you,

while being flexible enough to adapt to your

requirements. This book will show you how to use

Stripes to its full potential, so that you can easily

develop professional, full-featured web

applications. As a bonus, you’ll also get expert

advice from the creator of Stripes, Tim Fennell.

Stripes: ...And Java Web Development Is Fun

Again

Frederic Daoud

(375 pages) ISBN: 978-1934356-21-0. $36.95

http://pragprog.com/titles/fdstr

The Definitive ANTLR Reference
This book is the essential reference guide to ANTLR

v3, the most powerful, easy-to-use parser generator

built to date. Learn all about its amazing new LL(*)

parsing technology, tree construction facilities,

StringTemplate code generation template engine,

and sophisticated ANTLRWorks GUI development

environment. Learn to use ANTLR directly from its

author!

The Definitive ANTLR Reference: Building

Domain-Specific Languages

Terence Parr

(384 pages) ISBN: 0-9787392-5-6. $36.95

http://pragprog.com/titles/tpantlr

Prepared exclusively for WG Custom Motorcycles

http://pragprog.com/titles/fdstr
http://pragprog.com/titles/tpantlr

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online

Programming Clojure’s Home Page

http://pragprog.com/titles/shcloj

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/shcloj.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

Prepared exclusively for WG Custom Motorcycles

http://pragprog.com/titles/shcloj
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/shcloj
www.pragprog.com/catalog

	Contents
	Foreword
	Acknowledgments
	Preface
	Who This Book Is For
	What Is in This Book
	How to Read This Book
	Notation Conventions
	Web Resources and Feedback
	Downloading Sample Code

	Getting Started
	Why Clojure?
	Clojure Coding Quick Start
	Exploring Clojure Libraries
	Introducing Lancet
	Wrapping Up

	Exploring Clojure
	Forms
	Reader Macros
	Functions
	Vars, Bindings, and Namespaces
	Flow Control
	Where's My for Loop?
	Metadata
	Wrapping Up

	Working with Java
	Calling Java
	Optimizing for Performance
	Creating and Compiling Java Classes in Clojure
	Exception Handling
	Adding Ant Projects and Tasks to Lancet
	Wrapping Up

	Unifying Data with Sequences
	Everything Is a Sequence
	Using the Sequence Library
	Lazy and Infinite Sequences
	Clojure Makes Java Seq-able
	Calling Structure-Specific Functions
	Adding Properties to Lancet Tasks
	Wrapping Up

	Functional Programming
	Functional Programming Concepts
	How to Be Lazy
	Lazier Than Lazy
	Recursion Revisited
	Wrapping Up

	Concurrency
	The Problem with Locks
	Refs and Software Transactional Memory
	Use Atoms for Uncoordinated, Synchronous Updates
	Use Agents for Asynchronous Updates
	Managing Per-Thread State with Vars
	A Clojure Snake
	Making Lancet Targets Run Only Once
	Wrapping Up

	Macros
	When to Use Macros
	Writing a Control Flow Macro
	Making Macros Simpler
	Taxonomy of Macros
	Making a Lancet DSL
	Wrapping Up

	Multimethods
	Living Without Multimethods
	Defining Multimethods
	Moving Beyond Simple Dispatch
	Creating Ad Hoc Taxonomies
	When Should I Use Multimethods?
	Adding Type Coercions to Lancet
	Wrapping Up

	Clojure in the Wild
	Automating Tests
	Data Access
	Web Development
	Farewell

	Editor Support
	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

