Oct 26 / 4:41pm

Massive CouchDB Brain Dump

by Matthew Woodward

The following is a semi-unorganized brain dump of everything of interest I've come across while
learning the incredibly cool CouchDB document-oriented database system. In this brain dump I pull
things from many different resources including my own head, so there may be literal quotes from some
of these resources without inline attributions. For that I apologize, but rest assured I'm not trying to
plaigarize anyone or take credit where it's not due; I was just merely taking notes as I perused a lot of
different resources and organized them in a way that made sense to me. I do have a complete list of all
of the resources I used at the end to let you explore on your own. Again, my apologies to the creators of
the resources from which I pull for not attributing inline.

I'll be presenting CouchDB to the ColdFusion Meetup on December 17 (Charlie did a great job of
booking a full schedule through the end of the year) so don't miss it!

CouchDB: General Concepts

* document-oriented
* schemaless
« NOT RELATIONAL
* JSON-based
* REST-based
* MapReduce
* http://labs.google.com/papers/mapreduce.html
* Dbasically throw out everything you know about databases and you'll pick this up a lot faster
 (alls are made to the database via HTTP
* Yes, that means via a browser, curl, cthttp ... anything that talks HTTP
* Responses come back as JSON
* Lock-free design--reads don't have to wait for writes or other reads
* Why are these good things?
* More like how data works in the real world
* e.g. business cards--if one has a fax and another doesn't, in an RDBMS you have
to have a fax field that's going to be null for anyone who doesn't have a fax
» with CouchDB, you can have one record with a fax field, and another with no fax
field, but they're both considered business cards since every document in
CouchDB is 100% self-contained
* Simple
* some of this stuff is so simple you'll be amazed there isn't more to it
* Fast
* Push/Pull of JSON data over HTTP
* No messy, time-consuming joins between tables--a document contains all its data
* Scalable
* Takes the object-relational mismatch out of the picture to a certain extent
* [t works like the web does
* History of CouchDB

http://blog.mattwoodward.com/massive-couchdb-brain-dump
http://labs.google.com/papers/mapreduce.html
http://coldfusionmeetup.com/
http://couchdb.apache.org/
http://posterous.com/people/4aAU6kNGWD3r
http://blog.mattwoodward.com/massive-couchdb-brain-dump

* development started in 2004
 originally written in C++, now in Erlang
* Damien Katz quit his job and self-funded development full-time for 2 years
* was formerly with IBM working on Lotus Notes, also a brief stint at MySQL
* Damien Katz is now a full-time employee at IBM and gets paid to work on CouchDB
full time
* CouchDB is a top-level Apache project and is released under the Apache 2.0 license
* CouchDB's motto: RELAX.
* we shouldn't have to worry about data so much

Why Use CouchDB?

» throws out the relational model and looks at what matters with data in the majority of
applications
» vastly simplifies data modeling and interaction with data
» extremely flexible since there are no preset schemas
* inrelational databases, data does get to a point where it's unwieldy and slow to access
 relational model is hard to scale, and doesn't do so very naturally or quickly
* CouchDB offers ...
* robust, dead simple replication to any number of servers
* Dbi-directional conflict detection and resolution
» fantastic performance on huge databases
* number of records in a database has very little impact on performance
 fantastic scalability
* Erlang was designed for real-time telcom apps in the 1980s, so it's ideal for high
scalability and highly concurrent apps like database servers
* early testing with CouchDB shows it can handle 20,000 concurrent connections
with no problems, and they haven't even done and performance profiling yet
* lead developer said in an interview that using conventional threading in
C++ you'd be lucky to handle 500 concurrent connections
* Erlang also can help with multi-machine scalability, failover, etc. but CouchDB
1s not taking advantage of any of this yet
* CouchDB speaks the language of the web
* REST, HTTP, and JSON are how CouchDB works natively
* already gaining a huge amount of traction and becoming very popular
* libraries for CouchDB already exist for: (see full, current list at
http://wiki.apache.org/couchdb/Basics)
* Amazon EC2 (this is a nice way to play around with CouchDB without installing
anything; just costs a few cents an hour)

* JavaScript

http://wiki.apache.org/couchdb/Getting_started_with_JavaScript
http://wiki.apache.org/couchdb/Getting_started_with_Java
http://wiki.apache.org/couchdb/Getting_started_with_Haskell
http://wiki.apache.org/couchdb/Getting_started_with_ExtJS
http://wiki.apache.org/couchdb/Getting_started_with_Erlang
http://wiki.apache.org/couchdb/Getting_started_with_C%23
http://wiki.apache.org/couchdb/Getting_started_with_C
http://wiki.apache.org/couchdb/Getting_started_with_Amazon_EC2
http://wiki.apache.org/couchdb/Basics

* Lisp
* LotusScript
* Objective-C
¢ Perl
* PHP

* Python
* Ruby
* Smalltalk
* VMWare (another great way to play around with it without installing anything;
might be a very old version though)
* what about CFML?
» one CFC wrapper project on RIAForge -- http://couchdb.riaforge.org/
* seems to provide basic "friendly messages" for what CouchDB spits back

Is the Relational Model Dead?

* there is an increasing indication that the relational model will begin being seen as a solution, not
the solution
* Map/Reduce is simply a better model for dealing with large datasets and taking advantage of
parallel processing
* http://labs.google.com/papers/mapreduce.html
* "Map/Reduce will kill every traditional data warehousing vendor in the market. Those who
adapt to it as a design/deployment pattern will survive, the rest won't."
* Might think this came from a non-relational database vendor, but it's actually from Brian
Aker, one of the original authors of MySQL and currently working on the Drizzle
(http://drizzle.org/wiki/Main_Page) fork of MySQL
* document-based databases like CouchDB scale far better and easier than relational databases do

* both Amazon and Google came up with their own database solutions for their cloud
computing platforms as opposed to using a traditional RDBMS--this should tell you
something

* Better and more natural fit for applications

More on "Better Fit for Applications"

* self-contained documents
* no more taking a real world construct and deconstructing it into a relatonal model
 flexible schemas
* two documents can be of the same type and not contain the same fields--don't have to
have a bunch of nulls involved, worry about foreign keys, etc. etc. since every document
is self-contained

* if you need a change in your schema, it's dead simple to do--just start using the new
schema

* if you don't care that the old documents don't have the new field, you don't have
to worry about them
» speaks our language as application developers
* REST and JSON--doesn't get much simpler than that
* since it's all web based you take advantage of the following at the database level

http://drizzle.org/wiki/Main_Page
http://labs.google.com/papers/mapreduce.html
http://couchdb.riaforge.org/
http://wiki.apache.org/couchdb/Getting_started_with_VMware
http://wiki.apache.org/couchdb/Getting_started_with_Smalltalk
http://wiki.apache.org/couchdb/Getting_started_with_Ruby
http://wiki.apache.org/couchdb/Getting_started_with_Python
http://wiki.apache.org/couchdb/Getting_started_with_PHP
http://wiki.apache.org/couchdb/Getting_started_with_Perl
http://wiki.apache.org/couchdb/Getting_started_with_Objective-C
http://wiki.apache.org/couchdb/Getting_started_with_LotusScript
http://wiki.apache.org/couchdb/Getting_started_with_LISP

* can handle more traffic since connections aren't left open

* clustering, proxying, caching, security, etc. behaves just as it would with an HTML
document

* Creator of CouchDB said one of the goals was to have users feel like "you could touch your
data ... like it was right there in your hands"

* eliminating all the layers between your application and your data

Relational Model vs. Document-Based aka '"Key/Value Store'" Databases

* relational diagram

T
JLUE |

2 2 1 3 2005 i Gng e

3 S i 4l 1005 B Blue

1 Pathfindee o
1 3 H_'HE'}H'd 1 Midman
? 1 Civie 2 2ol

Example of a Twpical Refational Data Moacel

Download this gallery (ZIP, undefined KB)
Download full size (37 KB)

* key/value diagram

http://blog.mattwoodward.com/massive-couchdb-brain-dump#

1 ‘Viake: Nissan
Model: Pathlinder
Color: Grecn
Year: 2003

F Make: Nissan
Model: Palhlinder
Color: Blue
Colar Greecn
Year 2005
Transmission: Auto

Fxample nf a Typical Key™alue Domain

* CouchDB pros

* ideally suited for cloud computing

* more natural fit with the code we write -- no ORM mismatch nonsense to worry about
* CouchDB cons

» relational databases enforce integrity at the database level

* schemaless nature of CouchDB means your data integrity is that the APPLICATION

level
* bugs in application code using RDBMS don't lead to data integrity issues

* bugs in application code using CouchDB CAN lead to data integrity issues
* really this just puts this concern in a different place, but it's something to be
aware of
* no shared standards between key/value database vendors
* much easier to move from SQL Server to MySQL than it would be to move from
CouchDB to Amazon or Google

* other concerns with cloud databases ...
* limtations on analytics -- e.g. Amazon queries cannot take longer than 5 seconds to run

* limitations on data returned -- e.g. Google queries cannot return more than 1000 rows
» from an application development standpoint, in my experience thus far this does bring your data
repository a bit more into the realm of your application
* again, this isn't SQL, so your code isn't running queries and dealing with query objects;
instead it's making HTTP calls and dealing with JSON
* less friction between your app and your data, but be aware that it's a bit of a whole new
world when you're working with CouchDB

Should You Consider CouchDB?

* yesifyou..

* have tables with lots of columns of which you typically only use/display a few
* have lots of joins in your queries
 are serializing JSON or XML data into single columns in your relational database
* have data that is more heirarchical or flat than it is relational
* have systems that require frequent schema changes
 are reaching the performance capacity of a single database server and need to scale out
* have an amount of data that is difficult for a single server to hold
* have background processes running on your database that impact performance of the
database as a whole
* the nice thing about CouchDB is that it's highly and easily scalable by its very nature
* but if you don't need scalability now, you don't have to worry about it; you just get it
when you need it practically for free
* Why not just dump JSON data into a relational database?
* because RDBMSes don't know anything about JSON, so you don't get any of the huge
efficiency and functionality advantages you get with CouchDB

Other Document-Based Databases

* Amazon SimpleDB
http://aws.amazon.com/simpledb/

* Google BigTable
http://labs.google.com/papers/bigtable.html

* Voldemort
http://project-voldemort.com/

* (assandra
http://incubator.apache.org/cassandra/

* Dynomite
http://github.com/cliffmoon/dynomite/tree/master

* HBase
http://hadoop.apache.org/hbase/

* Hypertable
http://hypertable.org/

* VPork
http://wiki.github.com/trav/vpork/vpork

* MongoDB
http://www.mongodb.org/

* ThruDB
http://code.google.com/p/thrudb/

* Jackrabbit

http://jackrabbit.apache.org/

Building/Installing CouchDB

* basic requirements: Erlang, SpiderMonkey (JavaScript engine), other miscellany
* on Linux you'll need to install some prerequisites/dependencies if you don't have them; here's
the list for Ubuntu ...
* sudo apt-get install subversion

http://www.mozilla.org/js/spidermonkey
http://erlang.org/
http://jackrabbit.apache.org/
http://code.google.com/p/thrudb/
http://www.mongodb.org/
http://wiki.github.com/trav/vpork/vpork
http://hypertable.org/
http://hadoop.apache.org/hbase/
http://github.com/cliffmoon/dynomite/tree/master
http://incubator.apache.org/cassandra/
http://project-voldemort.com/
http://labs.google.com/papers/bigtable.html
http://aws.amazon.com/simpledb/

* sudo apt-get install libtool

* sudo apt-get install automake

* sudo apt-get install libmozjs-dev

* sudo apt-get install libicu-dev

* sudo apt-get install curl

* sudo apt-get install libcurl4-gnutls-dev

* sudo apt-get install erlang-dev

* sudo apt-get install erlang-nox

* sudo apt-get install openssl

* sudo apt-get install libssl-dev

* double-check you have openssl and libssl installed; otherwise you may not get an
error until you first try to run CouchDB
* alternatively you can try ...

* sudo apt-get build-dep couchdb

* you can also check http://wiki.apache.org/couchdb/Installing_on_Ubuntu for the latest
info

* then grab the code and build it (do this from your home directory or wherever you like)

* svn co http://svn.apache.org/repos/asf/couchdb/trunk couchdb

* cd couchdb

* sudo ./bootstrap

* You should see "You have bootstrapped Apache CouchDB, time to relax." If not,
fix any dependency issues it lists (the error messages are very explicit).

* sudo ./configure

* You should see "You have configured Apache CouchDB, time to relax."
* sudo make
* sudo make install
* if you don't get any errors with make or make install you should be able to launch
CouchDB!
* Check http://wiki.apache.org/couchdb/Installing on_Windows for information about installing
on Windows. Haven't tried this myself, likely won't, so best of luck.

* You'll want/need to install cygwin (a bash shell for Windows) to get this all rolling --
http:/www.cygwin.com/

* As ofversion 0.10 support for Windows is part of the standard build process, so at least
you have that going for you.

* There are some binaries available at
http://wiki.apache.org/couchdb/Windows_binary_installer but as usual with binaries
they're a few versions behind, which for a fast-moving project like CouchDB is less than
ideal. I'm sure as the project progresses the Windows binaries for the latest versions will
be more immediately available.

* Other Windows links:

* http://www.brunomlopes.com/software/couch-db-binaries (general info; binaries
for 0.8.1)

* http://people.virginia.edu/~lmb7s/couch/ (binary for 0.9.1)

Running CouchDB

http://people.virginia.edu/~lmb7s/couch/
http://www.brunomlopes.com/software/couch-db-binaries
http://wiki.apache.org/couchdb/Windows_binary_installer
http://www.cygwin.com/
http://wiki.apache.org/couchdb/Installing_on_Windows
http://wiki.apache.org/couchdb/Installing_on_Ubuntu

* on Linux the install process puts the couchdb script in your path, so you can open a terminal and
type sudo couchdb

you should see:

Apache CouchDB has started. Time to relax.

[info] [<version_number>] Apache CouchDB has started on http://127.0.0.1:5984/

If you see an error along the lines of {"init terminating in do_boot", {undef,[{crypto,start,
[1} ... that means you don't have erlang-nox and/or libssl-dev installed, so you'll have to
go back through the steps above once you have those dependencies resolved.

If you have other errors when trying to start CouchDB check
http://wiki.apache.org/couchdb/Error_messages

Interacting with CouchDB with CURL

* some basic examples

curl -X GET http://localhost:5984/
* returns basic server info
curl -X GET http://localhost:5984/ all dbs
* returns list of all databases on the server
curl -X PUT http://localhost:5984/contacts
» creates a new database called contacts
curl -X PUT
http://localhost: 5984 /contacts/6e€1295ed6c29495e54cc05947f18c8af
-d '{"firstName":"Matt", "lastName":"Woodward",
"email":"matt@mattwoodward.com"}'
» creates a new document in the contacts database; the string
after the database name is a UUID
curl -vX PUT
http://localhost:5984/contacts/6e1295ed6c29495e54cc05947f18c8af/
headshot.jpg?rev=2-2739352689 -d@headshot.jpg -H "Content-Type:
image/jpg"
+ attaches a headshot jpeg to the document with the ID provided
curl -X GET http://localhost:5984/_uuids
* CouchDB returns a new UUID; can add ?count=N to get back N
UUIDs if you need more than one
curl -X GET
http://localhost:5984/contacts/6e1295ed6c29495e54cc05947f18c8af
* returns the document with the UUID provided
curl -X DELETE
http://localhost:5984/contacts/6e1295ed6c29495e54cc05947f18c8af
rev=2-212344
» deletes the document with the ID provided; note that you must
provide the latest revision number for the document in order for
the delete to succeed
curl -X DELETE http://localhost:5984/contacts
» deletes the contacts database
curl -X POST http://localhost:5984/_replicate -d

mailto:-d@headshot.jpg
mailto:matt@mattwoodward.com
http://wiki.apache.org/couchdb/Error_messages

'{"source":"contacts","target":"contacts-replica"}'
* replicates the contacts database to the contacts-replica
database

* of course since this is just HTTP, you can use CURL's -v flag to get a verbose listing of
everything CouchDB is doing on each request
» performing updates is a bit different
* ifyoudo a PUT of a document with the same ID but don't include a revision number, the
update will fail
* you have to include the latest revision number in CouchDB in updates for them to work
* what this means in practice is that you'll pull the document you want to update back,
update the JSON (or update the data in your application code), and then do a put of the

updated document with the new data since this will contain the most recent revision in
CouchDB

* the updated document gets a new revision number, and the original document is retained
in CouchDB as a previous revision

Versioning of Documents

* CouchDB uses a multi-version concurrency control (MVCC) system
* each document in CouchDB gets a revision number
* previous versions of documents are saved in CouchDB

* BUT ... unlike a version control system, there is no guarantee how long the previous
versions will be retained

* you can tell CouchDB you want to retain the previous versions of a document if you
need to

¢ remember that all communication with CouchDB is done over HTTP

» HTTP is stateless--you open a connection to CouchDB, make a request, then the
connection is terminated

* this is good because it means CouchDB can handle a lot of traffic since
connections are short-lived

* Ifyou're familiar with Etags in the HTTP world, CouchDB uses its revision numbers as Etags in
HTTP responses

» [Etags are very useful for caching

 since all documents in CouchDB are really just resources in the HTTP/REST sense, your
data behaves like any other HTML resource

Futon: CouchDB's Web-Based Interface

* browse to http://localhost:5984/ utils for the web-based interface to CouchDB
* handy way of perusing your documents, managing datbases, etc.
* definitely handy for creating design documents and views

* mini editor for creating temporary and permanent views--can execute temporary views
from within the editor
* can kick off replication and a ton of other stuff from Futon

Creating a Document

new documents have id and rev fields added automatically
documents are versioned much like code is in SVN, so every version of every document in the
db is stored
click "add field" in Futon to add a new field to a document
double-click value (default is null) to edit
values must be JSON valid data
 strings have to have quotes around them, e.g. "hello" not just hello
 valid datatypes are string, number, boolean, list, and key/value dictionaries
you can do a "view source" on a document from Futon to see the JSON version of the document
as you update a document, the version number will change with each revision
 if another process changes the document before you save your changes, a conflict will
arise
CouchDB has no concept of "types"
* e.g. in a blog application we would think of "posts" and "comments" as types
¢ remember that CouchDB is schemaless, so there is no inherent structure to documents
contained within the database itself
* common to use a type field on a document containing a string that defines the type
* makes it easy to write a view that pulls back specific document types
* CouchDB does NOT CARE what field you use to define type--you can call this
anything because again, CouchDB has no concept of document types
* remember also that even if you define a document as a type, it does NOT have to
literally match the structure of other documents with that same type
* e.g. music library--could define "album" as a type, and if one album has a year
field and another doesn't, they're both still "album" types since we defined the
type explicitly
* BUT, if you do want to require a specific structure for a document type, you can
do that with validation functions and, e.g., reject an addition or update of an
album to a music library if it didn't contain a year field
* also handy to infer type based on fields for more flexibility
* e.g.in a blog app we could use if (doc.title && doc.body) and assume if those
fields are present that this is a blog post as opposed to a comment

How Documents Are Not Like Database Records

self-contained--no joins across table to put together a single record
* documents in CouchDB map directly to an object instance in your application

* typically documents will automatically have authors and publish dates associated with them

* very easy to publish documents of any type in the future
* if you create user accounts for CouchDB it automatically keeps track of who created and
modified records

* don't break documents into smaller units than you need to!

* ablog post will have an author--don't have the author be a separate document
JSON document format
* CouchDB documents all have id and _rev fields
* _id can be anything, so long as its unique--UUID, plain old string, whatever
* _rev is the revision number--this changes with each update to a document

* to update a document, you have to provide the most recent value of rev
so CouchDB knows you're working with the latest revision

* ifusers have been configured, documents will have an author field

* Do I really look like a guy with a plan? You know what I am? I’'m a dog chasing cars. I
wouldn’t know what to do with one if I caught it. You know, I just... do things. The mob
has plans, the cops have plans, Gordon’s got plans. You know, they’re schemers.
Schemers trying to control their little worlds. I’'m not a schemer. I try to show the
schemers how pathetic their attempts to control things really are.

— The Joker, The Dark Knight (this quote is used in the forthcoming O'Reilly CouchDB

book)
* NEED INFO ABOUT THINGS LIKE ARRAYS, ETC. HERE

Running Queries

again, forget everything you know
there is no SQL here
instead of running queries in the traditional sense, data is filtered using map and reduce
functions, which are written in javascript
* DEFINE MAPREDUCE HERE
the map and reduce functions combined create a CouchBD view
views are stored as rows sorted by key
» extremely efficient even for millions of records
can create temporary views for testing, but these are rather inefficient, so views that are going to
be used regularly are stored in the database as documents
* once a view is stored in the database as a document, CouchDB indexes behind the scenes
for efficiency
main points:
* map functions allow you to sort your data using any key you choose
* CouchDB is designed to provide extremely fast access to data by key and key range
* you don't really run queries against CouchDB, you query a view
* when you query a view, CouchDB runs the map function against every document in the
database in which the map function is defined

map functions have a single "doc" parameter which is each individual document in your
database
the emit() function is used to spit out matching documents, and you can specify the fields you
want to output
if you're querying every document in the database every time, isn't that inefficient?

* you'd think so, but no

* CouchDB only runs through all the documents the first time the view is queried

* as documents change, CouchDB only has to update what's changed

* everything is stored in a B-Tree, which is very efficient
creating multiple views specific to how you want to access the data helps with efficiency
to execute a view, you just--surprise--hit a URL over HTTP and get JSON back

* e.g. http://localhost:5984/database/ design/designdocname/ view/viewname

* to add a key to this, it's just an argument in the query string of the url, e.g.

* http://localhost:5984/database/ design/designdocname/ view/viewname?

http://books.couchdb.org/relax/
http://books.couchdb.org/relax/

key=value
* can also retrieve documents by key range

* http://localhost:5984/database/ design/designdocname/ view/viewname?
startkey=startvalue&endkey=endvalue
* default query engine or "view server" in CouchDB is JavaScript, but you can write your own in
any language

* Remember it's all just HTTP and JSON!
* MAP FUNCTIONS take a document as an argument and emit key/value pairs

* Btrees are very efficient--even with lots of documents the tree is "shallow" and it's pre-

indexed so searches are very fast

* REDUCE FUNCTIONS operate on the rows returned by map functions and act as filters on the
documents

Replication

* can replicate local -> local, local -> remote, or remote -> remote from Futon
* as with everything in CouchDB, this is all HTTP/REST based
* initial replication may be time consuming
* subsequent replications are diffs only
* if you trigger replication from Futon, you have to leave the browser window open!
* but since all this is HTTP based, easy to set up cron jobs that use curl to do replication
* a POST to CouchDB containing the source and target of replication is all that's needed to kick
off replication
* CouchDB maintains a session history of replication sessions, again in JSON
 can replicate among local databases or between databases not on the same physical box
* CouchDB has automatic conflict detection and resolution
* remember that documents in the database are versioned, so conflicts are handled quite
gracefully
* documents that are in conflict when a replication occurs get a new _conflict:true
attribute added to them
* one of the two competing documents is given the latest revision number, the
other is given a previous revision number
* these conflicts are also replicated, so all databases will have the same information
* CouchDB takes the approach of "eventual consistency"
* traditional RDBMS systems enforce consistency--put consistency above all in
replication situations
* “Each node in a system should be able to make decisions purely based on local state. If
you need to do something under high load with failures occurring and you need to reach
agreement, you’re lost... If you’re concerned about scalability, any algorithm that forces
you to run agreement will eventually become your bottleneck. Take that as a given.”

— Werner Vogels, Amazon CTO and Vice President

* consistency between nodes is not guaranteed on writes, but the nodes will eventually be
consistent on reads

Design Documents

* documents that contain application code
* IDs must start with _design as the ID, e.g. " design/myapp"
* possible to write entire apps in HTML/JavaScript, store this code as a design document in
CouchDB, and run the entire app from the CouchDB database
* dynamic code (views and validation) written as JSON and stored as a document in
CouchDB
* MapReduce queries stored in the views field
» data output CAN be things other than JSON using the show field, e.g. CouchDB
can output RSS without any middleware
» static HTML pages stored as attachments to the design document

Validation

+ validation functions are used to do things like prevent users who aren't logged into an app from
performing document updates
 validation functions are stored in design documents under the validate doc_update field
* can only have one validation function per design document
* but remember you can have multiple design documents per database
* documents must pass all the validation rules on all design documents in the database in order to
be saved
* the order in which validation functions are executed is arbitrary
* most common example, since CouchDB is schemaless, is to require that certain fields be
included if a document is declared to be of a particular type

* e.g. require "title" and "body" for a document type of post
function (newDoc, oldDoc, userCtx) {
function require(field, message) {
message = message || "Document must have a " + field;
if (!'newDoc[field]) throw({forbidden : message});

}i
if (newDoc.type == "post") {
require ("title");
require ("body") ;

Show Functions

* since everything in CouchDB is JSON, HTTP, and JavaScript, it works well in any
programming environment

* CouchDB doesn't, however, address things like outputting HTML

* easy enough to have CFML call CouchDB over HTTP and output the results in HTML

* CouchDB can, however, generate HTML natively using show functions

* basic show function
function (doc, req) {
return '<hl>' + doc.title + '</hl>"';

* the "return" bit here is sent back to the browser as a HTTP response

» you can even write full HTML templates that embed CouchDB-specific scripting so you don't
have to embed HTML in javascript functions

Attachments

* Documents in CouchDB, which are JSON, can have file attachments

* doing an HTTP PUT with a -d@filename.ext flag tells CouchDB to attach the file to the
document ID provided in the PUT request

* as with other updates to documents, you DO need to provide the current revision number
of the document to attach a file to the document

* unlike other updates you do NOT need to provide the data for the document itself in
order to add an attachment to it
* documents may have mutliple attachments
» attachments are made available as, surprise, HTTP resources
* http://localhost:5984/contacts/6e1295ed6c29495e54cc05947f18c8at/headshot.jpg would
display the headshot.jpg file attached to the document with the ID provided
 if you pull a document back from CouchDB that has an attachment, the attachment file name
and meta information such as type, size, etc. are contained in the JSON with a key of
" attachments"

* adding ?attachments=true returns the attachments in base64 format as part of the JSON

Applications

* you can build applications entirely in CouchDB
* if you replicate your databases to another server, you replicate your app as well

* means if you replicate to a local instance of CouchDB, you get offline data mode "for
free"

* applications are stored in CouchDB as design documents
* can use couchapp for developing native CouchDB apps

Security

* can lock down databases by editing a simple config file
* by default it's in /usr/local/etc/couchdb/local.ini
* there's also a default.ini file, but any changes made to default.ini are overwritten when
CouchDB is upgraded
* e.g. adding admin accounts to CouchDB
* uncomment [admins] section and add authorized users as user = pass for each line

* when CouchDB is restarted the passwords are hashed so they aren't stored in the config
file in plain text

* remember--this is all just HTTP so you can apply the same HTTP-based security, proxies,
reverse proxies, etc. as you would to any web resource

* e.g. putting a web server in front of CouchDB and using HTTP authentication would be
trivial

General Tips/Tricks

mailto:-d@filename.ext

In your applications, you'll want to create your own UUIDs for document IDs instead of letting
CouchDB auto-create them
* WHY? stated this in book but didn't elaborate
Since replication and resynching is so dead simple, easy to replicate to a local DB for offline
use, then resynch when back online
For bulk conversions of existing databases to CouchDB, couple of performance tips
* http://www.atypical.net/archive/2009/05/12/couchdb-090-bulk-document-post-
performance
 use the bulk document API instead of looping and doing individual document additions
http://wiki.apache.org/couchdb/HTTP_ Bulk Document API
* don't use CouchDB's auto-assigned IDs--increases db size and has a big performance hit
during conversion

There Are Some Cons ...

it's new--they call it the bleeding edge for a reason
» stuff WILL change between versions that will break your apps!
it's a completely new skillset--there is no sql here
views take a long time to build the first time they're saved, but after that they're incredibly fast
regardless of the number of documents involved
large databases can take up a lot of disk space
* raw data is one consideration, but the views often take up much more disk space than the
data itself
* this is trading disk space for performance, which is a good tradeoff, so you just need to
plan for disk capacity
CouchDB does not deal well with relational data
* that being said, we all likely spend a lot of time dealing with the shortcomings of
relational data, specifically how horrendously bad the relational model is at dealing with
heirarchical data, so I'm not sure this is a straight con as compare with the relational
model
* recurring theme in the CouchDB literature is DON'T GO AGAINST THE GRAIN!
Don't try to force CouchDB to behave like an RDBMS, because it's not.
CouchDB does not support transactions well
* e.g. check to see if a user name is unique, then assign it--no way to isolate this from
another simultaneous request in the same way you can with relational database
transactions
Reads on single documents, and writes in general, are slower than you might be used to with an
RDBMS
¢ but, the CouchDB model scales much better
Have to write all of your "queries" (views) in advance--no on the fly SQL allowed
map-reduce not as flexible as sql--sometimes you'll have to return more data than you want or
need and process on the application side

Common Use Case That Is a Bit Odd in CouchDB: Unique Constraints

e.g. guarantee a unique user name or email address
thread here http://markmail.org/thread/qwgqql74b2gg5hc5

 other than the id field, CouchDB has no way of guaranteeing uniqueness in any other field
* you CAN do a check to see if the record already exists, but remember ...

* This is HTTP. There are no transactions.

* There is no locking in CouchDB
* On the other hand, guaranteed uniqueness doesn't scale
* Some solutions

* you can use anything as your _id, so use one piece of data that has to be unique AS your

id
* use a relational table in an RDBMS to store any unique values and put a unique
constraint on that field in the RDBMS
* you could still have problems, but this would reduce the likelihood from slim
(without doing this) to extremely slim

Resources

* CouchDB web site
http://couchdb.apache.org

* O'Reilly CouchDB Book
http://books.couchdb.org/relax/

* Why CouchDB?
http://books.couchdb.org/relax/intro/why-couchdb

* Manning CouchDB Book (Early Access Edition)
http://www.manning.com/chandler/

* APress CouchDB Book
http://www.apress.com/book/view/9781430272373

* CouchDB in 15 Minutes
http://wiki.apache.org/couchdb/Couchln15Minutes

* Svenson: Java <-> JSON Convertor
http://code.google.com/p/svenson/

* Java 5 CouchDB Driver
http://code.google.com/p/jcouchdb/

* CouchDB4J - another Java library for use with CouchDB
http://github.com/mbreese/couchdb4j/tree/master

* CouchDB Case Study
http://johnpwood.net/2009/06/15/couchdb-a-case-study/

* CouchDB Wiki
http://wiki.apache.org/couchdb

* CouchApp - IDE for building CouchDB applications natively
http://github.com/jchris/couchapp/tree/master

* Sofa - Sample blog app built in CouchDB
http://github.com/jchris/sofa/tree/master

* Building CouchBD on Linux
http://japhr.blogspot.com/2009/03/yak-shaving-is-new-dependency-hell.html

* CouchBD from 10,000 Feet - video presentation from QCon
http://www.infog.com/presentations/couchDB-from-10K-feet

* Interview from RubyFringe with Damien Katz, Creator of CouchDB
http://www.infog.com/interviews/CouchDB-Damien-Katz

http://www.infoq.com/interviews/CouchDB-Damien-Katz
http://www.infoq.com/presentations/couchDB-from-10K-feet
http://japhr.blogspot.com/2009/03/yak-shaving-is-new-dependency-hell.html
http://github.com/jchris/sofa/tree/master
http://github.com/jchris/couchapp/tree/master
http://wiki.apache.org/couchdb
http://johnpwood.net/2009/06/15/couchdb-a-case-study/
http://github.com/mbreese/couchdb4j/tree/master
http://code.google.com/p/jcouchdb/
http://code.google.com/p/svenson/
http://wiki.apache.org/couchdb/CouchIn15Minutes
http://www.apress.com/book/view/9781430272373
http://www.manning.com/chandler/
http://books.couchdb.org/relax/intro/why-couchdb
http://books.couchdb.org/relax/
http://couchdb.apache.org/

* Damien Katz Presentation from RubyFringe (mostly non-technical; talks about why he quit his
job to build CouchDB)
http://www.infoq.com/presentations/katz-couchdb-and-me

* Installing SpiderMonkey
http://wiki.apache.org/couchdb/Installing_SpiderMonkey

* Is the relational database doomed?
http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-database-doomed.php

* Should you go beyond relational databases?
http://carsonified.com/blog/dev/should-you-go-beyond-relational-databases/

* No SQL Meeting announcing the end of RDBMS?
http://www.infoq.com/news/2009/08/NoSQL-and-the-End-of-RDBMS-Era

* Why CouchDB Sucks
http://www.eflorenzano.com/blog/post/why-couchdb-sucks/

* Why CouchDB Rocks (same author as "Why CouchDB Sucks")
aaaa

7 comments

Oct 27, 2009

o

w3 |

Russ said...

Yikes! That is massive. Lots of good info in there though.

Have you tried out CouchDB for Coldfusion (from RIAforge)? Some feedback would be nice!
Oct 27, 2009

dswitzer? said...
Thanks for the great write up on CouchDB. The only thing I would have liked to seen in more info on

ViEWS.
Oct 27, 2009

Matthew Woodward said...
@Russ--thanks! Definitely be looking into your library before my CFMeetup presentation.

@Dan--there are definitely holes in there but I wanted to make this available instead of sitting on it. I'll
fill in the gaps before long.

Oct 27, 2009

Martin Klepsch said...
while scrolling i wondered how huge it is :)

http://posterous.com/people/36zyvZV89fNL
http://posterous.com/people/4aAU6kNGWD3r
http://twitter.com/dswitzer2
http://posterous.com/people/eT5ZWLnzlT
http://www.eflorenzano.com/blog/post/why-couchdb-sucks/
http://www.infoq.com/news/2009/08/NoSQL-and-the-End-of-RDBMS-Era
http://carsonified.com/blog/dev/should-you-go-beyond-relational-databases/
http://www.readwriteweb.com/enterprise/2009/02/is-the-relational-database-doomed.php
http://wiki.apache.org/couchdb/Installing_SpiderMonkey
http://www.infoq.com/presentations/katz-couchdb-and-me
http://posterous.com/people/eT5ZWLnzlT
http://twitter.com/dswitzer2
http://posterous.com/people/4aAU6kNGWD3r
http://posterous.com/people/36zyvZV89fNL

nice compilation and thoughts
Oct 28, 2009

John Allen said...
Awesome.
Apr 08, 2010

johnnygoodman said...
Epic. Thanks for taking the time to make it!

Aug 13,2010

Pedro_Landeiro said...
Excelent! thanks!

http://posterous.com/people/5emiUYrUJfln
http://posterous.com/people/5fiV3uY0MgIV
http://posterous.com/people/4afAI0vMzVWF
http://posterous.com/people/4afAI0vMzVWF
http://posterous.com/people/5fiV3uY0MgIV
http://posterous.com/people/5emiUYrUJfln

