
Lineland
Everything's a dot.

Monday, October 12, 2009

HBase Architecture 101 - Storage

One of the more hidden aspects of HBase is how data is actually stored. While the majority of users
may never have to bother about it you may have to get up to speed when you want to learn what the
various advanced configuration options you have at your disposal mean. "How can I tune HBase to my
needs?", and other similar questions are certainly interesting once you get over the (at times steep)
learning curve of setting up a basic system. Another reason wanting to know more is if for whatever
reason disaster strikes and you have to recover a HBase installation.

In my own efforts getting to know the respective classes that handle the various files I started to sketch
a picture in my head illustrating the storage architecture of HBase. But while the ingenious and blessed
committers of HBase easily navigate back and forth through that maze I find it much more difficult to
keep a coherent image. So I decided to put that sketch to paper. Here it is.

Please note that this is not a UML or
call graph but a merged picture of
classes and the files they handle and
by no means complete though focuses
on the topic of this post. I will discuss
the details below and also look at the
configuration options and how they
affect the low-level storage files.

The Big Picture

So what does my sketch of the HBase
innards really say? You can see that HBase handles basically two kinds of file types. One is used for the
write-ahead log and the other for the actual data storage. The files are primarily handled by the
HRegionServer's. But in certain scenarios even the HMaster will have to perform low-level file
operations. You may also notice that the actual files are in fact divided up into smaller blocks when
stored within the Hadoop Distributed Filesystem (HDFS). This is also one of the areas where you can
configure the system to handle larger or smaller data better. More on that later.

http://www.larsgeorge.com/
http://hadoop.apache.org/hbase/
http://1.bp.blogspot.com/_Cib_A77V54U/StorLZRjHSI/AAAAAAAAAEI/4IznGhslNxw/s1600-h/hbase-files.png

The general flow is that a new client contacts the Zookeeper quorum (a separate cluster of Zookeeper
nodes) first to find a particular row key. It does so by retrieving the server name (i.e. host name) that
hosts the -ROOT- region from Zookeeper. With that information it can query that server to get the
server that hosts the .META. table. Both of these two details are cached and only looked up once.
Lastly it can query the .META. server and retrieve the server that has the row the client is looking for.

Once it has been told where the row resides, i.e. in what region, it caches this information as well and
contacts the HRegionServer hosting that region directly. So over time the client has a pretty complete
picture of where to get rows from without needing to query the .META. server again.

Note: The HMaster is responsible to assign the regions to each HRegionServer when you start
HBase. This also includes the "special" -ROOT- and .META. tables.

Next the HRegionServer opens the region it creates a corresponding HRegion object. When the
HRegion is "opened" it sets up a Store instance for each HColumnFamily for every table as defined
by the user beforehand. Each of the Store instances can in turn have one or more StoreFile
instances, which are lightweight wrappers around the actual storage file called HFile. A HRegion also
has a MemStore and a HLog instance. We will now have a look at how they work together but also
where there are exceptions to the rule.

Stay Put

So how is data written to the actual storage? The client issues a HTable.put(Put) request to the
HRegionServer which hands the details to the matching HRegion instance. The first step is now to
decide if the data should be first written to the "Write-Ahead-Log" (WAL) represented by the HLog
class. The decision is based on the flag set by the client using Put.writeToWAL(boolean) method.
The WAL is a standard Hadoop SequenceFile (although it is currently discussed if that should not be
changed to a more HBase suitable file format) and it stores HLogKey's. These keys contain a sequential
number as well as the actual data and are used to replay not yet persisted data after a server crash.

Once the data is written (or not) to the WAL it is placed in the MemStore. At the same time it is
checked if the MemStore is full and in that case a flush to disk is requested. When the request is served
by a separate thread in the HRegionServer it writes the data to an HFile located in the HDFS. It also
saves the last written sequence number so the system knows what was persisted so far. Let"s have a
look at the files now.

Files

HBase has a configurable root directory in the HDFS but the default is /hbase. You can simply use the
DFS tool of the Hadoop command line tool to look at the various files HBase stores.

01.$ hadoop dfs -lsr /hbase/docs
02....
03.drwxr-xr-x - hadoop supergroup 0 2009-09-28 14:22
/hbase/.logs
04.drwxr-xr-x - hadoop supergroup 0 2009-10-15 14:33
/hbase/.logs/srv1.foo.bar,60020,1254172960891
05.-rw-r--r-- 3 hadoop supergroup 14980 2009-10-14 01:32
/hbase/.logs/srv1.foo.bar,60020,1254172960891/hlog.dat.1255509179458

06.-rw-r--r-- 3 hadoop supergroup 1773 2009-10-14 02:33
/hbase/.logs/srv1.foo.bar,60020,1254172960891/hlog.dat.1255512781014
07.-rw-r--r-- 3 hadoop supergroup 37902 2009-10-14 03:33
/hbase/.logs/srv1.foo.bar,60020,1254172960891/hlog.dat.1255516382506
08....
09.-rw-r--r-- 3 hadoop supergroup 137648437 2009-09-28 14:20
/hbase/docs/1905740638/oldlogfile.log
10....
11.drwxr-xr-x - hadoop supergroup 0 2009-09-27 18:03
/hbase/docs/999041123
12.-rw-r--r-- 3 hadoop supergroup 2323 2009-09-01 23:16
/hbase/docs/999041123/.regioninfo
13.drwxr-xr-x - hadoop supergroup 0 2009-10-13 01:36
/hbase/docs/999041123/cache
14.-rw-r--r-- 3 hadoop supergroup 91540404 2009-10-13 01:36
/hbase/docs/999041123/cache/5151973105100598304
15.drwxr-xr-x - hadoop supergroup 0 2009-09-27 18:03
/hbase/docs/999041123/contents
16.-rw-r--r-- 3 hadoop supergroup 333470401 2009-09-27 18:02
/hbase/docs/999041123/contents/4397485149704042145
17.drwxr-xr-x - hadoop supergroup 0 2009-09-04 01:16
/hbase/docs/999041123/language
18.-rw-r--r-- 3 hadoop supergroup 39499 2009-09-04 01:16
/hbase/docs/999041123/language/8466543386566168248
19.drwxr-xr-x - hadoop supergroup 0 2009-09-04 01:16
/hbase/docs/999041123/mimetype
20.-rw-r--r-- 3 hadoop supergroup 134729 2009-09-04 01:16
/hbase/docs/999041123/mimetype/786163868456226374
21.drwxr-xr-x - hadoop supergroup 0 2009-10-08 22:45
/hbase/docs/999882558
22.-rw-r--r-- 3 hadoop supergroup 2867 2009-10-08 22:45
/hbase/docs/999882558/.regioninfo
23.drwxr-xr-x - hadoop supergroup 0 2009-10-09 23:01
/hbase/docs/999882558/cache
24.-rw-r--r-- 3 hadoop supergroup 45473255 2009-10-09 23:01
/hbase/docs/999882558/cache/974303626218211126
25.drwxr-xr-x - hadoop supergroup 0 2009-10-12 00:37
/hbase/docs/999882558/contents
26.-rw-r--r-- 3 hadoop supergroup 467410053 2009-10-12 00:36
/hbase/docs/999882558/contents/2507607731379043001
27.drwxr-xr-x - hadoop supergroup 0 2009-10-09 23:02
/hbase/docs/999882558/language
28.-rw-r--r-- 3 hadoop supergroup 541 2009-10-09 23:02
/hbase/docs/999882558/language/5662037059920609304
29.drwxr-xr-x - hadoop supergroup 0 2009-10-09 23:02
/hbase/docs/999882558/mimetype
30.-rw-r--r-- 3 hadoop supergroup 84447 2009-10-09 23:02
/hbase/docs/999882558/mimetype/2642281535820134018

31.drwxr-xr-x - hadoop supergroup 0 2009-10-14 10:58
/hbase/docs/compaction.dir

The first set of files are the log files handled by the HLog instances and which are created in a directory
called .logs underneath the HBase root directory. Then there is another subdirectory for each
HRegionServer and then a log for each HRegion.

Next there is a file called oldlogfile.log which you may not even see on your cluster. They are
created by one of the exceptions I mentioned earlier as far as file access is concerned. They are a result
of so called "log splits". When the HMaster starts and finds that there is a log file that is not handled
by a HRegionServer anymore it splits the log copying the HLogKey's to the new regions they should
be in. It places them directly in the region's directory in a file named oldlogfile.log. Now when
the respective HRegion is instantiated it reads these files and inserts the contained data into its local
MemStore and starts a flush to persist the data right away and delete the file.

Note: Sometimes you may see left-over oldlogfile.log.old (yes, there is another .old at the end)
which are caused by the HMaster trying repeatedly to split the log and found there was already another
split log in place. At that point you have to consult with the HRegionServer or HMaster logs to see
what is going on and if you can remove those files. I found at times that they were empty and therefore
could safely be removed.

The next set of files are the actual regions. Each region name is encoded using a Jenkins Hash function
and a directory created for it. The reason to hash the region name is because it may contain characters
that cannot be used in a path name in DFS. The Jenkins Hash always returns legal characters, as simple
as that. So you get the following path structure:

/hbase/<tablename>/<encoded-regionname>/<column-family>/<filename>

In the root of the region directory there is also a .regioninfo holding meta data about the region.
This will be used in the future by an HBase fsck utility (see HBASE-7) to be able to rebuild a broken
.META. table. For a first usage of the region info can be seen in HBASE-1867.

In each column-family directory you can see the actual data files, which I explain in the following
section in detail.

Something that I have not shown above are split regions with their initial daughter reference files.
When a data file within a region grows larger than the configured hbase.hregion.max.filesize
then the region is split in two. This is done initially very quickly because the system simply creates two
reference files in the new regions now supposed to host each half. The name of the reference file is an
ID with the hashed name of the referenced region as a postfix, e.g.
1278437856009925445.3323223323. The reference files only hold little information: the key the
original region was split at and wether it is the top or bottom reference. Of note is that these references
are then used by the HalfHFileReader class (which I also omitted from the big picture above as it is
only used temporarily) to read the original region data files. Only upon a compaction the original files
are rewritten into separate files in the new region directory. This also removes the small reference files
as well as the original data file in the original region.

http://issues.apache.org/jira/browse/HBASE-1867
http://issues.apache.org/jira/browse/HBASE-7

And this also concludes the file dump here, the last thing you see is a compaction.dir directory in
each table directory. They are used when splitting or compacting regions as noted above. They are
usually empty and are used as a scratch area to stage the new data files before swapping them into
place.

HFile

So we are now at a very low level of HBase's architecture. HFile's (kudos to Ryan Rawson) are the
actual storage files, specifically created to serve one purpose: store HBase's data fast and efficiently.
They are apparently based on Hadoop's TFile (see HADOOP-3315) and mimic the SSTable format
used in Googles BigTable architecture. The previous use of Hadoop's MapFile's in HBase proved to
be not good enough performance wise. So how do the files look like?

The files have a variable length, the
only fixed blocks are the FileInfo and
Trailer block. As the picture shows it
is the Trailer that has the pointers to
the other blocks and it is written at
the end of persisting the data to the
file, finalizing the now immutable

data store. The Index blocks record the offsets of the Data and Meta blocks. Both the Data and the Meta
blocks are actually optional. But you most likely you would always find data in a data store file.

How is the block size configured? It is driven solely by the HColumnDescriptor which in turn is
specified at table creation time by the user or defaults to reasonable standard values. Here is an
example as shown in the master web based interface:

{NAME => 'docs', FAMILIES => [{NAME => 'cache', COMPRESSION => 'NONE',
VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536', IN_MEMORY =>
'false', BLOCKCACHE => 'false'}, {NAME => 'contents', COMPRESSION =>
'NONE', VERSIONS => '3', TTL => '2147483647', BLOCKSIZE => '65536',
IN_MEMORY => 'false', BLOCKCACHE => 'false'}, ...

The default is "64KB" (or 65535 bytes). Here is what the HFile JavaDoc explains:

"Minimum block size. We recommend a setting of minimum block size between 8KB to
1MB for general usage. Larger block size is preferred if files are primarily for sequential
access. However, it would lead to inefficient random access (because there are more data to
decompress). Smaller blocks are good for random access, but require more memory to hold
the block index, and may be slower to create (because we must flush the compressor stream
at the conclusion of each data block, which leads to an FS I/O flush). Further, due to the
internal caching in Compression codec, the smallest possible block size would be around
20KB-30KB."

So each block with its prefixed "magic" header contains either plain or compressed data. How that
looks like we will have a look at in the next section.

http://issues.apache.org/jira/browse/HADOOP-3315
http://4.bp.blogspot.com/_Cib_A77V54U/SteEzNS2qPI/AAAAAAAAAD4/z13-DGcA_qs/s1600-h/hfile.png

One thing you may notice is that the default block size for files in DFS is 64MB, which is 1024 times
what the HFile default block size is. So the HBase storage files blocks do not match the Hadoop
blocks. Therefore you have to think about both parameters separately and find the sweet spot in terms
of performance for your particular setup.

One option in the HBase configuration you may see is hfile.min.blocksize.size. It seems to be
only used during migration from earlier versions of HBase (since it had no block file format) and when
directly creating HFile during bulk imports for example.

So far so good, but how can you see if a HFile is OK or what data it contains? There is an App for
that!

The HFile.main() method provides the tools to dump a data file:

01.$ hbase org.apache.hadoop.hbase.io.hfile.HFile
02.usage: HFile [-f <arg>] [-v] [-r <arg>] [-a] [-p] [-m] [-k]
03.-a,--checkfamily Enable family check
04.-f,--file <arg> File to scan. Pass full-path; e.g.

05.hdfs://a:9000/hbase/.META./12/34
06.-k,--checkrow Enable row order check; looks for out-of-order keys
07.-m,--printmeta Print meta data of file
08.-p,--printkv Print key/value pairs
09.-r,--region <arg> Region to scan. Pass region name; e.g. '.META.,,1'
10.-v,--verbose Verbose output; emits file and meta data delimiters
11.</arg></arg></arg></arg>

Here is an example of what the output will look like (shortened here):

01.$ hbase org.apache.hadoop.hbase.io.hfile.HFile -v -p -m -f \
02.hdfs://srv1.foo.bar:9000/hbase/docs/999882558/mimetype/264228153582013
4018

03.
04.Scanning ->
hdfs://srv1.foo.bar:9000/hbase/docs/999882558/mimetype/2642281535820134018
05....
06.K: \x00\x04docA\x08mimetype\x00\x00\x01\x23y\x60\xE7\xB5\x04 V:
text\x2Fxml
07.K: \x00\x04docB\x08mimetype\x00\x00\x01\x23x\x8C\x1C\x5E\x04 V:
text\x2Fxml
08.K: \x00\x04docC\x08mimetype\x00\x00\x01\x23xz\xC08\x04 V: text\x2Fxml
09.K: \x00\x04docD\x08mimetype\x00\x00\x01\x23y\x1EK\x15\x04 V: text\x2Fxml
10.K: \x00\x04docE\x08mimetype\x00\x00\x01\x23x\xF3\x23n\x04 V: text\x2Fxml
11.Scanned kv count -> 1554
12.
13.Block index size as per heapsize: 296
14.reader=hdfs://srv1.foo.bar:9000/hbase/docs/999882558/mimetype/2642281535
820134018, \
15.compression=none, inMemory=false, \

hdfs://srv1.foo.bar
hdfs://srv1.foo.bar
hdfs://srv1.foo.bar
hdfs://a

16.firstKey=US6683275_20040127/mimetype:/1251853756871/Put, \
17.lastKey=US6684814_20040203/mimetype:/1251864683374/Put, \
18.avgKeyLen=37, avgValueLen=8, \
19.entries=1554, length=84447

20.fileinfoOffset=84055, dataIndexOffset=84277, dataIndexCount=2,
metaIndexOffset=0, \
21.metaIndexCount=0, totalBytes=84055, entryCount=1554, version=1

22.Fileinfo:
23.MAJOR_COMPACTION_KEY = \xFF
24.MAX_SEQ_ID_KEY = 32041891
25.hfile.AVG_KEY_LEN = \x00\x00\x00\x25
26.hfile.AVG_VALUE_LEN = \x00\x00\x00\x08
27.hfile.COMPARATOR = org.apache.hadoop.hbase.KeyValue\x24KeyComparator
28.hfile.LASTKEY =
\x00\x12US6684814_20040203\x08mimetype\x00\x00\x01\x23x\xF3\x23n\x04

The first part is the actual data stored as KeyValue pairs, explained in detail in the next section. The
second part dumps the internal HFile.Reader properties as well as the Trailer block details and
finally the FileInfo block values. This is a great way to check if a data file is still healthy.

KeyValue's

In essence each KeyValue in the HFile is simply a low-level byte array that allows for "zero-copy"
access to the data, even with lazy or custom parsing if necessary. How are the instances arranged?

The structure starts with two fixed
length numbers indicating the size of
the key and the value part. With that
info you can offset into the array to

for example get direct access to the value, ignoring the key - if you know what you are doing.
Otherwise you can get the required information from the key part. Once parsed into a KeyValue object
you have getters to access the details.

Note: One thing to watch out for is the difference between KeyValue.getKey() and
KeyValue.getRow(). I think for me the confusion arose from referring to "row keys" as the primary
key to get a row out of HBase. That would be the latter of the two methods, i.e. KeyValue.getRow().
The former simply returns the complete byte array part representing the raw "key" as colored and
labeled in the diagram.

This concludes my analysis of the HBase storage architecture. I hope it provides a starting point for
your own efforts to dig into the grimy details. Have fun!

Update: Slightly updated with more links to JIRA issues. Also added Zookeeper to be more precise
about the current mechanisms to look up a region.

Update 2: Added details about region references.

Update 3: Added more details about region lookup as requested.

http://2.bp.blogspot.com/_Cib_A77V54U/StZMrzaKufI/AAAAAAAAADo/ZhK7bGoJdMQ/s1600-h/KeyValue.png

Posted by Lars George at 2:35 PM
Labels: hadoop, hbase

22 comments:

Hyunsik Choi said...

This article is very informative to me. Thank you :)

October 17, 2009 12:24 AM

stack said...

Excellent article Lars.

October 17, 2009 3:26 PM

Tim Robertson said...

Thanks Lars for taking the time - excellent article

October 18, 2009 5:50 AM

Ken said...

Thanks you Lars. Very helpful. I previously thought that the client goes to the ZK quorum to find
the master which is then used to find the region containing the row key. Can you elaborate on
how ZK is used to find the region?

October 18, 2009 2:49 PM

Lars George said...

Hi Ken, sure can do! Will add to the "The Big Picture" section above.

October 19, 2009 8:03 AM

Igor Katkov said...

Very informative!
Would you care to explain how HBase garbage collector and major compaction works?

October 27, 2009 2:02 PM

http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1256677369047#c4432635367495496941
http://www.katkovonline.com/
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1255964588327#c5989561097978709144
http://www.blogger.com/profile/18168538475015227467
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1255902577100#c831408053856941086
http://www.blogger.com/profile/12369783173503766970
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1255870242317#c640013029379049242
http://www.blogger.com/profile/07889700598656669041
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1255818372689#c3389417903227436198
http://www.blogger.com/profile/05950246190713417811
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1255764254777#c3447493990936871822
http://www.blogger.com/profile/13066050448176267276
http://www.larsgeorge.com/search/label/hbase
http://www.larsgeorge.com/search/label/hadoop
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://www.blogger.com/profile/13066050448176267276
http://www.blogger.com/profile/05950246190713417811
http://www.blogger.com/profile/07889700598656669041
http://www.blogger.com/profile/12369783173503766970
http://www.blogger.com/profile/18168538475015227467
http://www.katkovonline.com/

Lars George said...

Ken, I added the info as suggested.

Igor, could you have a look at http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture#hregion
and let me know if that is what you were after? And what do you think is missing or needs more
details? I just want to avoid going off in the wrong direction :)

November 6, 2009 2:14 AM

Igor Katkov said...

I'm not clear on when HBase deletes/garbage collects outdated values and extra versions of the
same family-key-column.

Suppose we have
columnDescriptor.setMaxVersions(10);
and then keep writing and re-writing some key.
Eventually we get load of data that is stale.
There will be lots of MapFiles and only few most recent would contain valid data.

November 9, 2009 1:21 PM

tsuna said...

What's the "key type" in the key?

January 29, 2010 10:43 PM

Lars George said...

@tsuna, please see the new post of mine, about the write-ahead-log (i.e. WAL). It addresses that
field of the KeyValue in the right context, which was missing here hence me skipping over it at
the time.

February 1, 2010 1:18 AM

danny said...

Excellent article, thanks.

February 25, 2010 5:59 AM

tsegay said...

http://www.blogger.com/profile/08192085795453012576
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1267106348462#c7604356427705650106
http://www.blogger.com/profile/14578786024024748596
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1265015897770#c6833716126995589316
http://www.blogger.com/profile/18168538475015227467
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1264833819921#c4851822805064630894
http://www.blogger.com/profile/06114951663056205324
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1257801679190#c5823808565694698008
http://www.katkovonline.com/
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1257502470159#c7858394925439621942
http://www.blogger.com/profile/18168538475015227467
http://www.blogger.com/profile/18168538475015227467
http://www.katkovonline.com/
http://www.blogger.com/profile/06114951663056205324
http://www.blogger.com/profile/18168538475015227467
http://www.blogger.com/profile/14578786024024748596
http://www.blogger.com/profile/08192085795453012576

Excellent article, This is what i was looking for. Can you give me any idea what i can do if i want
to access from my java program to read and write to tables in the hbase.

March 19, 2010 7:20 AM

Sandeep Kath said...

Well detailed article on HBase Storage. This is something I was looking for..Thanks

March 28, 2010 1:10 AM

André Moraes said...

Congratulation, Very good article.

May 18, 2010 8:08 AM

Francis Pouatcha said...

Great Job! Thanks.

July 3, 2010 5:43 AM

Aswin said...

Very good article, thanks for putting it out. One question I have is regarding the KeyValue
structure, why is column family a part of this. Isn't that the info derivable from the directory the
Hfiles are in. What is the purpose of this duplication of column family for every
value/timestamp?

October 12, 2010 9:49 AM

new Object said...

FYI -- your article was stolen and reposted here:
http://aio4s.com/blog/2010/11/11/technology/performance/hbase-architecture-101-storage.html

February 16, 2011 1:57 PM

Lars George said...

Thanks for letting me know! Interesting, this site has ripped of off other blogs too.

March 14, 2011 5:55 AM

http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1300107333127#c7490055119450290559
http://www.blogger.com/profile/05191379407576369008
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1297893453339#c1438322684939163024
http://www.blogger.com/profile/14405635407771878060
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1286902172990#c4966922159418529126
http://www.blogger.com/profile/00858093814590656812
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1278161000910#c846953447940551877
http://www.blogger.com/profile/06813959432209815465
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1274195323558#c3727158250582091474
http://www.blogger.com/profile/16029778625056272482
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1269763801900#c4619906919178716828
http://www.blogger.com/profile/01617949656491139290
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1269008447770#c2680367384503053991
http://www.blogger.com/profile/01617949656491139290
http://www.blogger.com/profile/16029778625056272482
http://www.blogger.com/profile/06813959432209815465
http://www.blogger.com/profile/00858093814590656812
http://www.blogger.com/profile/14405635407771878060
http://www.blogger.com/profile/05191379407576369008
http://www.blogger.com/profile/05495751131627874757

zshao said...

One correction:
"The first set of files are the log files handled by the HLog instances and which are created in a
directory called .logs underneath the HBase root directory. Then there is another subdirectory for
each HRegionServer and then a log for each HRegion. “

It should be:
"Then there is another subdirectory for each HRegionServer. In that subdirectory, there are
several HLog files (because of log rotation). All regions from that region server share the same
HLog files."

April 2, 2011 3:02 PM

anirudhtodi said...

Thanks for this article! It really helps!

June 11, 2011 8:42 PM

Leon said...

Thanks for information provided! Very useful.

I have some questions:
Where does HBase store the row key? Is it in the memory of each region server? If my row keys
are very large, what will happen?

Thanks!

August 5, 2011 5:24 AM

Itsmyview said...

Hi Larse,
In Hbase , what is the actual location where ROOT and META TABLEs are stored? where can i
see that ROOt and meta data in the disk.

August 16, 2011 1:38 AM

http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1313483921431#c1001230056639685945
http://www.blogger.com/profile/09265209239545977297
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1312547068751#c1223305101971946474
http://www.blogger.com/profile/00727879434623224282
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1307850138446#c8500685553370260952
http://www.blogger.com/profile/17355991738972107826
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html?showComment=1301781776323#c6232074156283424907
http://www.blogger.com/profile/05495751131627874757
http://www.blogger.com/profile/17355991738972107826
http://www.blogger.com/profile/00727879434623224282
http://www.blogger.com/profile/09265209239545977297

	Lineland
	Monday, October 12, 2009
	HBase Architecture 101 - Storage
	22 comments:

