Filename: WhitePaper.doc 1

The new dynamic language extensibility model for
ASP.NET

By David Ebbo

Microsoft Corporation

Introduction

Ever since its original 1.0 version, ASP.NET has supported language extensibility. This
means that a third-party compiler vendor can add support for using a new
programming language for ASP.NET pages. This model has worked quite well, and has
allowed many languages to be used with ASP.NET—Ilanguages from Microsoft (C#,
Visual Basic, J#, and JScript) and from external vendors, such as implementations of
Eiffel and COBOL.

However, the downside of the current extensibility model is that it primarily targets
statically compiled languages like C#, and is not well adapted to dynamic languages like
Python.

We are therefore introducing a new model for language extensibility. The new model
aims to fill the lack of support for dynamic languages, and it enables dynamic
languages to fit much more naturally into ASP.NET. Our initial implementation is
focused on the IronPython language, but in the near future we will extend the model to
work with any dynamic language.

Why Support Dynamic Languages?

I'll begin by explaining the reason behind wanting to support dynamic languages in
ASP.NET. The last thing I want to do is start a debate about the pros and cons of static
typing versus dynamic languages. Instead, I'll summarize the reason for doing this in a
single word: choice. There are many good static languages like C#, and many good
dynamic languages like IronPython, and in the end the choice of what to use comes
down to personal preference and to the nature of the project you’re working on.

Giving ASP.NET users the choice of languages was part of the design since our first
version, and this is just another step in that direction. Unlike a number of other Web
platforms that support only a single language, the ASP.NET team wants to enable users
to choose the language that fits them best.



Filename: WhitePaper.doc

The CodeDOM Model

Before getting into the new dynamic model, let’s start with a discussion of the existing
ASP.NET language extensibility model: how it works, what makes it good, and what
makes it inappropriate for dynamic languages.

The Basic Steps of Page Compilation

The ASP.NET compilation model is based on a powerful .NET Framework technology
named the Code Document Object Model, or the CodeDOM for short. This model
enables code to be written in a language-independent way. The basic steps for
processing ASP.NET pages using the CodeDOM are these:

1.

Parsing. ASP.NET first parses the contents of the page (that is, of an .aspx file),
keeping track of all the constructs created in declarative markup, including server
controls, code snippets, and static HTML.

CodeDOM tree construction. ASP.NET then creates a language-independent
CodeDOM tree. The tree represents a class that will be derived from
System.Web.UI.Page. At this point, there are no language-specific assumptions in
the class representation (other than the user-written code snippets, which ASP.NET
does not understand). You can think of this CodeDOM tree as a sort of pseudo-code
representation of the class.

Code generation. ASP.NET then instantiates a specific CodeDOM provider, based
on the language attribute found in the .aspx file (such as the attribute
language="C#" in the @ Page directive.). ASP.NET asks this provider to generate
the source code for the derived class from the CodeDOM tree using the target
language. (For example, it might generate the source code in C#.) This generated
source code contains the actual implementation of a type derived from Page.

Compilation. ASP.NET then asks the CodeDOM provider to compile the source code
into a .NET Framework assembly (a DLL). In most cases, the provider performs this
step by launching a command line compiler, such as csc.exe for C# source code.

Execution. Finally, ASP.NET loads the generated assembly, instantiates the
generated class, and uses it to execute the HTTP request.

Note that steps 1 through 4 happen only once, as long as the page doesn’t change.
Step 5 occurs for every request. An almost identical sequence occurs with user controls
(.ascx files) and master pages (.master files).

Note With the code-behind model in ASP.NET 2.0, there is also a user-written
partial class that comes into the picture. However, this does not substantially
change the structure of the generated class.



Filename: WhitePaper.doc 3

What happens to all the server controls, the HTML markup, and the code snippets in
your .aspx file? They're all handled by code generated inside the derived class. ASP.NET
generates code that builds the control tree, code that renders markup, and code for
additional tasks like data binding. The code generation process is relatively complex;
the important thing to understand is that page execution is driven by code.

Let’s take a simple case where you have a TextBox control on your page, which might
look like this:

<asp:textbox runat="server" id="MyTextBox" text="Hello" />

Somewhere in the generated code, and assuming that the page language is C#, there
will be code that looks like the following, which builds and initializes the control:

TextBox MyTextBox = new TextBox () ;
MyTextBox.ID = "MyTextBox";

MyTextBox.Text = "Hello";

If you are interested in finding out more about the derived Page class generated by
ASP.NET, I encourage you to take a closer look at it. Although it might not all make
sense, you'll still recognize code that relates to many elements in your .aspx page, and
you might find the code enlightening.

The simplest way to look at the generated code is to set debug="true" in the @ Page
directive of the .aspx page. Then purposely introduce a syntax error in a server script
block (a <script> element with the attribute runat="server"—for example, just
create a line that says SYNTAX ERROR!. When you request the page, you will see an
error message that includes a Show Complete Compilation Source link. Click the link
and you will see all the generated code. Look for the IDs of some of your server
controls, and you will see how the controls are built and added to the tree.

What Makes the CodeDOM Powerful

The CodeDOM provides a powerful layer of abstraction between ASP.NET and the
programming languages used to create page logic. This abstraction enables ASP.NET to
support an arbitrary set of languages without having any knowledge about them. And it
goes the other way as well—the implementer of a CodeDOM provider does not need to
know anything about ASP.NET. In fact, a CodeDOM implementation is useful in many
scenarios that have nothing to do with ASP.NET.

This is @a much better model than one where ASP.NET would be hard-coded to work with
a small set of Microsoft languages, and users would need to wait for a new version of
the .NET Framework to get expanded language support.



Filename: WhitePaper.doc 4

The CodeDOM and Dynamic Languages

If the CodeDOM is so great, why are we coming up with a new one?

The answer is that even though it is language independent, the CodeDOM does make a
number of assumptions about the capabilities of supported languages. In particular, it
assumes that any language used for ASP.NET has the ability to produce true classes in
the .NET Framework sense—that is, classes that are in on-disk assemblies and that can
be loaded using standard APIs like Type.GetType. Those classes must be able to
inherit from other classes like System.Web.UI.Page, override base class methods,
and declare methods with very specific signatures.

Unfortunately, for most dynamic languages, these seemingly simple requirements are
essentially out of reach. Even though dynamic languages might have some form of
class construct (as in Python), this capability does not easily map to the .NET
Framework-style classes that we need, mostly because of the lack of strong typing. For
example, in C# you can write a method that takes a string and returns an integer; in
IronPython, you have no way of specifying such a typed signature. In addition,
inheriting from existing classes and overriding specific methods in IronPython is more
difficult.

Because ASP.NET is designed to inherit from classes like System.Web.UI.Page and to
override a number of methods, we were faced with an interesting challenge when we
decided to add IronPython support to ASP.NET.

In fact, we initially experimented with using the CodeDOM approach. We wrote a
prototype CodeDOM provider for IronPython, and we had some success getting it to
work with ASP.NET in constrained scenarios. But we eventually realized that making the
CodeDOM work fully with IronPython would require extending the language (for
example, to add ways to specify typing). We felt that this was not the right direction.
Also, writing a CodeDOM provider is a non-trivial task, so requiring each dynamic
language to provide one would make it harder for many languages to adopt the model
and support ASP.NET.

At this point where we went back to the drawing board and decided to design a new
extensibility model that makes more sense for dynamic languages in ASP.NET.

"No-Compile” Pages

A short detour: need to explain a little-known feature that is already part of ASP.NET
2.0: so-called no-compile pages. This is important because the new model is based on
this feature, and then extends it to support dynamic languages.

This feature is triggered by the CompilationMode attribute in the page directive,
which might look like the following:

<%@ Page CompilationMode="Never" %>

The no-compile option is also used if you set the CompilationMode attribute to "Auto"
in a page that has no code.



Filename: WhitePaper.doc 5

As the name indicates, a no-compile page is not compiled. In contrast with compiled
pages, which are code driven, no-compile pages are entirely data driven, and require no
compilation at all. As a result of not being compiled, they are faster to process and
more scalable (more on this later).

So what'’s the catch? Well, it's a big one: those pages cannot contain any user code!
Instead, they're limited to static HTML and server controls. Obviously, this is a big
limitation, which explains why no-compile pages are not widely used. But as you'll see
later, our new model removes this restriction and enables dynamic code in no-compile
pages. Let’s spend a little more time discussing how no-compile pages work by
comparing the behavior of compiled and no-compilation pages. Again, I can use .aspx
pages to illustrate the concept, but things work the same way with user controls and
master pages.

How No-Compile Pages Work

All I've said so far is that no-compile pages are data driven instead of code driven, but
what exactly does that mean? If you recall the basic steps I described for the compiled
CodeDOM, it starts with parsing the page. The parsing step also happens for no-compile
pages, but that's the only step they have in common; everything else happens very
differently. Let’s look at those steps in more detail:

1. Parsing. ASP.NET first parses the contents of the page and keeps track of all the
constructs such as server controls, code snippets, and static HTML.

2. Control builder tree construction. From the parse information, ASP.NET creates
a special data structure that keeps track of everything that it needs to know in order
to create pages. Let’s use the same <asp:textbox> example we looked at earlier.
Instead of a resulting in a piece of generated code, the text box becomes a node
(called a control builder) that knows how to create this TextBox control and
initialize it with all the attributes that you set.

3. Execution. When the page needs to be instantiated for execution, ASP.NET asks
the control builder tree to instantiate it, along with all its controls.

In the no-compile scenario, steps 1 and 2 only happen once (as long as the page
doesn’t change), while step 3 happens on every request.

In this model, no class is ever derived from the base Page class. Instead, the
System.Web.UI.Page class (or optionally a custom base page if there is an inherits
attribute) is instantiated directly.

What Good Are No-Compile Pages?

In spite of their no-code limitation, no-compile pages are far from useless. If you have
a set of controls that encapsulate their own functionality (such as a weather widget),
you can put together useful pages without any code. In fact, the next major version of
SharePoint relies heavily on this feature, for at least two good reasons:

e The SharePoint team doesn't want user code in certain pages, for security reasons.

¢ No-compile pages give SharePoint better scalability because there is no compilation.



Filename: WhitePaper.doc 6

But I would certainly agree that for the general ASP.NET developer, no-compile pages
are of limited use. The new model that we are creating for dynamic languages will likely
change this, because it allows no-compile pages to have code.

You now have enough background information that we can start looking at this new
model.

The New ASP.NET Model for Dynamic
Languages

Disclaimer: We are still at a very early stage in this project, so details are subject to
change. In addition, we have not yet reached the point where we have a generic
pluggable model, because at this time we are supporting only the IronPython language.
As a result, the discussion that follows is limited to a high-level description of how the
model works, and does not explain how you could integrate new languages into this
model. But the time for this will come soon!

Up to this point, I've looked at two models for ASP.NET pages—one that allows code but
requires static compilation, and one that does not require any compilation but doesn't
allow any code. To reach our goal of integrating dynamic languages into ASP.NET, we
need a hybrid model that doesn't cause static compilation but still allows the page to
contain code.

I'm not saying that no compilation at all should ever occur in the new model. In fact,
dynamic languages have a lot to gain from compilation in terms of performance. But
what we wanted to avoid was the requirement of static compilation, by which we mean
the generation of an on-disk assembly implementing standard .NET Framework types.

How the New Model Integrates into ASP.NET

For the most part, the new model builds on top of ASP.NET 2.0. However, we needed to
make a small change to the ASP.NET parser. This section describes the change, as well
as the various ASP.NET extensibility features that the new model uses to integrate into
ASP.NET.

As I've discussed, the new model is based on the ASP.NET no-compile feature, and as a
result it works very similarly to what I described above. However, the problem with no-
compile pages is that normally the parser fails instantly when it finds any code in the
page. Obviously, this is a problem for us if we are going to support dynamic code!

Even though we were really hoping to implement the new model without changing
System.Web.dIl (the main ASP.NET assembly) we found that we needed some small
changes to the parser to enable it to accept code in no-compile pages. For that reason,
when you install the dynamic language support, you get a new version of
System.Web.dlIl.

The change to ASP.NET is in the PageParserFilter API, which gives external code a
hook into the parser. This PageParserFilter API already existed in ASP.NET 2.0; it was
simply expanded to accommodate the new model.



Filename: WhitePaper.doc 7

In the new model, we register a PageParserFilter class in order to customize the
parsing behavior and allow code in no-compile pages. A Web.config file for a dynamic
language application will include this element:

<pages
pageParserFilterType="Microsoft.Web.IronPython.UI.NoCompileCodePageParserF
ilter"

/>
The PageParserFilter class does the following:

e If a page uses a dynamic language (currently, only IronPython is supported), it
makes sure that the page inherits from the proper base class. (More on this base
class later.)

e If the parser encounters a code snippet (<% ... %>, <%= ... %>, 0r<s# ... %>),it
replaces the snippet with a special control that holds the code. From the point of
view of ASP.NET, there is no code; the snipper just becomes a control that happens
to have a string property with the code. This is how we get around the restriction
that no-compile pages can’t have code.

e If the parser finds an event hookup attribute (such as onClick="MethodName"), it
replaces the attribute with a special control, much as with code snippets.

e If the parser finds a <script runat="server"> element, it handles the element as
a page-level property, which later is passed as a string to the custom base class.

In the new model, we also implemented a custom HTTP module (that is, a class that
implements System.Web.IHttpModule). You can see this registration in the
Web.config for an IronPython application:

<httpModules>

<add name="PythonModule"
type="Microsoft.Web.IronPython.DynamicLanguageHttpModule"/>

</httpModules>

The HTTP module is used to hook early into the application domain cycle and register
various components with the dynamic-language environment. (The application domain
is an area within the process where all the code from one Web application is executed.)
The module is also used to implement an equivalent to the Global.asax file for dynamic
languages, which will be discussed later.



Filename: WhitePaper.doc 8

In order to implement its behavior, the new model relies on having all pages that use
dynamic language extend a special base class named ScriptPage, which in turn
extends System.Web.UI.Page. Similarly, we have special base classes for user
controls (ScriptUserControl) and master pages (ScriptMaster). Having these base
classes gives dynamic language pages a way to participate in the page life cycle and
make everything fit together.

ASP.NET Features Supported in the New
model

Let's pause here and look at the features that the new model supports.

Dynamic language pages don't look much different from regular ASP.NET pages, and
can essentially use all standard ASP.NET features, including the following:

e Pages (.aspx), user controls (.ascx), and master pages (.master) are all supported.

e Pages can contain server controls—that is, elements with the runat="server"
attribute.

e Pages can use the in-line code model or the code-behind model. As you will see, this
works a bit differently than standard compiled pages, but it accomplishes the same
thing.

e Pages support code snippets (<% ... %>, <%= ... %>, and <%# ... %>). Again,
they work a little differently, but not all that much.

If you've used standard ASP.NET pages, there should be a very short learning curve for
using dynamic-language pages.

The new model supports a file similar to the Global.asax file, but it works a bit
differently. Instead of Global.asax, the file is named Global.ext, where ext is the
language-specific extension (for example, for IronPython the file name is Global.py).

One important difference is that this file contains only code, unlike Global.asax, which
contains a directive (<%@ %> element) and a script block with a runat="server"
attribute. For example, a simple Global.py might contain the following:

def Application BeginRequest (app) :

app.Response.Write ("Hello application!");



Filename: WhitePaper.doc 9

A dynamic language application contains an App_Script folder that is similar to the
App_Code directory, except that it contains dynamic-language script files instead of
static language code files. But the general idea is the same: files in this directory
contain classes that are usable by code anywhere in the application.

A dynamic language application can contain an HTTP handler that is the equivalent of
an .ashx file in a standard ASP.NET application, but again it works a bit differently. As
with the Global.py file, handlers contain only code, unlike .ashx files, which contain a
directive that ASP.NET recognizes. Dynamic language handlers are named using the
pattern Web_name.ext. In IronPython, .ext is .py—for example,
Web_MyHelloHandler.py). The Web__ prefix is significant, because it is registered to
specify that the code file is an HTTP handler.

Dynamic language handlers must contain a ProcessRequest method, which is invoked
to handle the HTTP request. This is very similar to IHttpHandler.ProcessRequest in
.ashx files. For example, a dynamic language handler file might contain the following:

def ProcessRequest (context) :

context.Response.Write ("Hello web handler!")

The new model does not currently support an equivalent of .asmx Web services. The
Web service architecture works only with standard .NET Framework types, which as
noted earlier are difficult to create with dynamic languages. To make things even
trickier, Web service class methods must be decorated with special metadata attributes
(like [WebMethod () 1), and dynamic languages typically have no syntax to do this.

We are hoping to come up with a solution for this limitation.

How Code Is Handled in the New Model

As you have seen, dynamic language pages are based on no-compile pages, but can
nonetheless contain code. In this section I'll show you how this code is actually
handled.

In contrast to the CodeDOM, where all the user code in a page becomes part of a
generated source file, in the new model each piece of user code in a page is treated as
an individual entity. Let’s look at the various types of user code to understand how they
are used.



Filename: WhitePaper.doc 10

In standard ASP.NET pages, user code in <script> elements with a runat="server"
attribute ends up inside the body of the generated class, which is why it can contain
method and property definitions as well as field declarations. But in dynamic language
pages, we don’t generate a new class at all; instead, ASP.NET directly instantiates the
class specified by the inherits attribute (the ScriptPage class). In this respect, the
term "inherits" is inaccurate for dynamic language pages (and for no-compile pages in
general), because there is no inheritance occurring.

What happens to the contents of the <script> element? Instead of becoming part of a
class, the code becomes a kind of companion code for the ScriptPage class; you can
also think of it as a pseudo-partial-class. Nomenclature aside, let me explain how it
works by using a simple IronPython example like this:

<script runat="server">

def Page Load():
Response.Write ("<p>Page Load!</p>")

</script>

Here, the Page_Load method is not part of any class. Instead, members of the page
class (typically of type ScriptPage) are ‘injected’ by ASP.NET in order to be directly
available (hence we're able to use ‘Response’ directly). So for all practical purpose, you
can think of your methods as being part of the page class, even though from a pure
Python perspective they are not part of a class at all.

In IronPython terminology, the code in the script block lives in a module. Generally,
there is one module associated with each page, user control, or master page. (Note
that there is only one module instance per page, not an instance per HTTP request.)

Let’s look at a different example:

<script runat="server">
someVar=5

</script>

Here, it is important to understand what the scope of the somevar variable is. Given
that it is a module level variable (module in the IronPython sense), and that there is
only one module instance per page, it follows that there is only one instance of the
variable. So semantically, it is very similar to having a static field in a reqgular ASP.NET
page.



Filename: WhitePaper.doc 11

The new model supports putting code in a code-behind file, as with the standard
ASP.NET model. However, there are important differences in how this works in the two
models.

In the standard model, the code-behind file contains a partial class declaration, which is
merged by the compiler with the generated class.

In the new model, there is no class declaration in the code-behind file. Instead,
methods appear directly in the file, outside of any containing construct. If this sounds
similar to what I described for in-line code (code in <script runat="server"> blocks)
in the preceding section, it's because there really is no difference. In the new model,
you can take the exact content of a <script runat="server"> element and move it to
a code-behind file (for example, .g. MyPage.aspx.py if the page is MyPage.aspx)
without changes.

Thus, everything I discussed above about the scope of variables applies equally to
code-behind files.

As with normal ASP.Net files, whether to put your IronPython code in line or in a code-
behind file is purely a matter of personal preference: do you prefer to see the code
directly in the .aspx file, or would you rather keep it in its own code file? The choice is
yours.

Snippet expressions (<%= ... %>) and statements (<% ... %>) also execute in the
context of the module created for the page’s code. As a result, these snippets have
access to methods and variables defined in with in-line or code-behind code. For
instance, if you define a Multiply method in the <script> block, you can write
<%= Multiply(6,7) %> in your page.

Code snippets also have access the members of the Page class. For example, you could
write <%= Title %> to display the title of the page.

Even though data-binding expressions are a type of code snippet, they deserve being
discussed separately. The reason they are particularly interesting is that in IronPython,
data-binding expressions work more naturally than they do in standard pages.

If you have used ASP.NET data-binding expressions, you are likely familiar with the
Eval method. For instance, you might have a GridView control with a templated
column containing the data-binding expression <%# Eval ("City") %>. Here, the Eval
method is used to get the value the column named City for the current row in the
database (or for whatever data source you are using). This works, but the fact that you
must go through this Eval method is rather awkward.



Filename: WhitePaper.doc 12

In the new model, the equivalent is to simply use the snippet <%# City %>. Here, City
is an actual code expression in the dynamic language, instead of a literal string that
must be interpreted by the Eval method. Hence, you are free to write arbitrary code in
the expression. For example, with IronPython you could write <%# City.lower () %>to
display the city value in lower case. This improved syntax is made possible by the
late-bound evaluation supported in dynamic languages. Even though the meaning of
City is not known at parse time, the dynamic language engine is able to bind it to the
correct object at run time.

Another case that demonstrates the flexibility of dynamic languages over static
languages is the injector mechanism supported by the new model. This is best
demonstrated using an example.

Imagine that you have code in a page that reads a value from the query string. The
page URL might look like this:

http://someserver/somepage.aspx?MyValue=17

In a C# page, you would get the value using the code like the following:
String myValue = Request.QueryString["MyValue"];

But in a dynamic language application you can simply write the following to achieve the
same thing:

myVar = Request.MyValue

What exactly makes this work? In the new model we register a special object known as
an injector, which says something like the following to the dynamic engine: "If you find
an expression SomeObj.SomeName, where SomeObj is an HttpRequest object and
SomeName is not a real property of the HttpRequest object, let me handle it instead of
failing."

The way that the injector handles the expression is by calling
SomeObj.QueryString["SomeName"]. Even though the expression Request .MyValue
looks simpler than Request.QueryString["MyValue"], in the end it is really executing
the same logic.

The same injector mechanism is also useful in other cases. For example, where you
would write SomeControl.FindControl ("SomeChildControl") in C#, you can simply
write SomeControl.SomeChildControl in @ dynamic language application.

Furthermore, the injector mechanism is extensible, so if you have your own type of
collection that is indexed by string, you can write a custom injector for it to simplify the
syntax.

Though they may not be revolutionary, features like this and like the simplified data-
binding expression contribute to making life easier when writing Web applications.



Filename: WhitePaper.doc 13

I have discussed the fact that the new model is using the no-compile feature of
ASP.NET. This may lead you to believe that the code in dynamic language pages is
interpreted, but that is not the case. Though this may appear to contradict the
definition of the no-compile feature, the code in dynamic language applications is
compiled.

The explanation is that the term "no-compile" refers explicitly to CodeDOM-style static
compilation, which is not used in the new model. But this does not prevent dynamic
code from being compiled on the fly by the dynamic language engine, and that is what
we do. As you would expect, the benefit of compiling the code is that it executes much
faster than if it were interpreted.

Conclusion

In this document I have looked at both the existing model and the new model for
integrating programming languages into ASP.NET. It is not my intention to convince our
Web developers to stop using C# and switch to IronPython. Rather, my goal is simply
to explain the differences between the two models, and to keep you aware of what we
are working on. As mentioned, this is still very much work in progress, so you should
expect a revised version of this paper in the future.



