
Adjacency list vs. nested sets: PostgreSQL
This series of articles is inspired by numerous questions asked on the site and on Stack Overflow.

What is better to store hierarchical data: nested sets model or adjacency list (parent-child)
model?

First, let’s explain what all this means.

Adjacency list

Hierarchical relations (not to be confused with hierarchical data model) are 0-1:0-N transitive
relations between entities of same domain.

For instance, ancestor-descendant relation is:

• Transitive:
• If A is an ancestor of B and B is an ancestor of C, then A is an ancestor of C

• Irreflexive:
• If A is an ancestor of B, then B is never an ancestor of A

• 0-1:0-N
• A can have zero, one or many children. A can have zero or one parents.

These relations can be represented by an ordered directed tree.

Tree is a simple directed graph (that with at most one directed edge between two different vertices) and
relational model has means to represent simple graphs.

Two vertices are considered related (and therefore their primary keys forming a row in the table) if and
only if they are connected with an edge.

This table along with the table defining the vertices identifies a graph completely by defining pairs of
vertices connected by the edges. Each record in the table defines a pair of adjacent vertices, that’s why
this representation is called adjacency list.

Adjacency lists can represent any simple directed graphs, not ony hierarchy trees. But due to the fact
that this structure is most commonly used to define the parent-child relationships, the terms parent-
child model and adjacency list model have almost become synonymous. However, they are not:
adjacency list model is much wider and parent-child model is one of its implementations.

Now, since we have a tree here which implies 0-1:0-N relationship between the vertices, we can
define the relation as a self-relation: the table defines both the entity and the relationship. Parent is just
a one attribute among other attributes with a FOREIGN KEY reference to the table itself.

Since multple items can have no parents (and therefore be the roots of their trees), it’s sometimes useful
to convert this tree into an arborescence: make a single fake root that considered a parent of all entries
that have no actual parent.

This is a nice and elegant model, but until recently it had one drawback: it could not be used with SQL.

SQL, as we all know, deals with relational tables which can be transformed by the means of relational
algebra.

It provides a way to do number of operations including relational multiplication, projection, sum etc.

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/
http://en.wikipedia.org/wiki/Arborescence_%5C(graph_theory%5C)
http://en.wikipedia.org/wiki/Tree_%5C(graph_theory%5C)
http://explainextended.com/2009/08/23/what-is-a-relational-database/
http://stackoverflow.com/

However, earlier versions or SQL lacked recursion which is required to do certain operations
efficiently. Namely, recursion is required to operate upon the adjacency list structure.

The most common operations are:

• Find all descendants of a given node
• Find all ancestors of a given node
• Find all descendants of a given node up to a certain depth

The first two operations require recursion.

The third one does too if the depth level should serve as a parameter.

To work around this, the nested sets model was proposed by Michael Kamfonas and popularized by Joe
Celko.

Nested sets

The idea of nested sets is quite simple and can be illustrated using one of the most popular ways to
store hierarchical data, the XML.

How would we store the hierarchies in XML?

We would just use one tag to describe every item and nest it accordingly, like this:

view source print ?
01.<item id="0">
02. <item id="1">
03. <item id="2"/>
04. <item id="3">
05. <item id="4"/>
06. </item>
07. <item id="5">
08. <item id="6">
09. <item id="7"/>
10. </item>
11. </item>
12. </item>
13. <item id="8"/>
14.</item>
This is fine, but how to use this structure in a relational table?

As you can see, opening and closing tags of each node are contained on their own lines here. The
opening and closing tags may (or may not) be the same for the nodes containing no children (this is not
important).

We see that the node ranges never intersect: given two node ranges, their intersection always makes the
range of either of the nodes or an empty set.

In other words, a node open within another node should also close within it.

If and only if this holds for each and every node, the nodes make a valid XML file and a valid
hierarchy.

Now, the nested set model can be described in one sentence:

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://en.wikipedia.org/wiki/Joe_Celko
http://en.wikipedia.org/wiki/Joe_Celko
http://www.kamfonas.com/id3.html
http://en.wikipedia.org/wiki/Nested_set_model

To store a hierarchy in a nested set model, we just store the line numbers of the opening and closing
tags of each node as if it were an XML file.

Each set of nodes having a common ancestor is nested within the node of this ancestor. That’s why this
model is called nested sets.

Historically, these line numbers are stored in columns named lft and rgt (since LEFT and RIGHT
are reserved words in most SQL dialects).

That’s how this hierarchy would look in a nested sets model:

ID LFT RGT
0 1 14
1 2 12
2 3 3
3 4 6
4 5 5
5 7 11
6 8 10
7 9 9
8 13 13
This model is more SQL friendly, since the tasks described above can be performed in SQL without
using recursion.

To find out all ancestors of a given node, we just select all nodes that contain its LFT boundary (which
in a properly built hierarchy implies containing the RGT boundary too):

view source print ?
1.SELECT hp.*
2.FROM t_hierarchy hc
3.JOIN t_hierarchy hp
4.ON hc.lft BETWEEN hp.lft AND hp.rgt
5.WHERE hc.id = ?
And to find the descendants, we shoud just reverse the condition, i. e. find all nodes that are contained
between the current node’s boundaries:

view source print ?
1.SELECT hc.*
2.FROM t_hierarchy hp
3.JOIN t_hierarchy hc
4.ON hc.lft BETWEEN hp.lft AND hp.rgt
5.WHERE hp.id = ?
Ironically, selecting all descendants up to a given depth (which is the least problem for the adjacency
list as long as the depth is known in design time) is the hardest task for the nested set model. Even
obtaning the list of immediate parents and immediate children is not so simple.

However, this is solvable. This is the query to get all descendants up to the third generation (that is
node itself, all children and grandchildren):

view source print ?
01.SELECT hc.*

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource

02.FROM t_hierarchy hp
03.JOIN t_hierarchy hc
04.ON hc.lft BETWEEN hp.lft AND hp.rgt
05.WHERE hp.id = ?

06. AND
07. (
08. SELECT COUNT(*)
09. FROM t_hierarchy hn
10. WHERE hc.lft BETWEEN hn.lft AND hn.rgt

11. AND hn.lft BETWEEN hp.lft AND hp.rgt
12.) <= 3

Unlike adjacency list model, the depth level can be parametrized in this query which makes it possible
to use a single query for all depth level.

Nested set model can be relatively easily queried for, but it’s extremely hard to manage.

To insert a new child into a node or make an existing mode a child in adjacency list, everything we
need is provide the new value of its parent column. With a single update we can move a whole branch.

To add a new node into a nested set model we should do exactly the same as if we were adding a new
node into an XML file: all subsequent nodes are moved several lines further. Since the boundaries in
SQL table represent the line numbers, we should do the same: calculate the offset and make a batch
update to all nodes to the right of the updated or inserted one. Very hard to implement and very
inefficient.

Now good news.

Three of four major systems (that is SQL Server, Oracle and PostgreSQL 8.4) now support recursion
natively.

The fourth one (MySQL) does not support it, but it can be emulated to the extent required to run
queries against the hierarchical data modelled according to adjacency list model:

• Hierarchical queries in MySQL

In this series of articles, we will compare efficiency of the adjacency list model to that of the nested
sets model.

PostgreSQL 8.4 is the system we begin with.

Analysis

PostgreSQL 8.4 supports recursive queries by means of such called hierarchical CTE’s.

A hierarchical CTE is an analog of this query:

view source print ?
01.SELECT *
02.FROM t_hierarchy h1
03.WHERE …
04.
05.UNION ALL
06.
07.SELECT *
08.FROM t_hierarchy h1

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/03/17/hierarchical-queries-in-mysql/

09.JOIN t_hierarchy h2
10.ON …
11.WHERE …
12.
13.UNION ALL
14.
15.SELECT *
16.FROM t_hierarchy h1
17.JOIN t_hierarchy h2
18.ON …
19.JOIN t_hierarchy h3
20.ON …
21.WHERE …
22.
23.…
with the theoretically unlimited number of UNION ALL’s built at runtime and the results of each query
cached and called recursively.

To define such a construct, one uses WITH RECURSIVE clause.

To compare both methods, we will create a sample table which combines both data models. Each node
will have both parent and the boundaries (lft and rgt) defined. Then we will run the three most
important queries, which, again, are:

• Find all descendants of a given node
• Find all ancestors of a given node
• Find all descendants of a given node up to a certain depth

Here’s the script to create a sample table:

Table creation details

view source print ?
01.CREATE TABLE t_hierarchy (

02. id INT NOT NULL,
03. parent INT NOT NULL,
04. lft INT NOT NULL,
05. rgt INT NOT NULL,
06. data VARCHAR(100) NOT NULL,
07. stuffing VARCHAR(100) NOT NULL

08.);
09.
10.INSERT
11.INTO t_hierarchy
12.WITH RECURSIVE

13. ini AS
14. (
15. SELECT 8 AS level, 5 AS children
16.),
17. range AS

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#

18. (
19. SELECT level, children,

20. (
21. SELECT SUM(POW(children, n)::INTEGER *
((n < level)::INTEGER + 1))
22. FROM generate_series(level, 0, -1) n
23.) width

24. FROM ini
25.),
26. q AS
27. (
28. SELECT s AS id, 0 AS parent, level, children,

29. 1 + width * (s - 1) AS lft,
30. 1 + width * s - 1 AS rgt,
31. width / children AS width

32. FROM (
33. SELECT r.*, generate_series(1,
children) s
34. FROM range r
35.) q2

36. UNION ALL
37. SELECT id * children + position, id, level - 1,
children,

38. 1 + lft + width * (position - 1),
39. 1 + lft + width * position - 1,
40. width / children

41. FROM (
42. SELECT generate_series(1, children) AS
position, q.*
43. FROM q
44.) q2

45. WHERE level > 0
46.)

47.SELECT id, parent, lft, rgt, 'Value ' || id, RPAD('', 100, '*')
48.FROM q;
49.
50.ALTER TABLE t_hierarchy ADD CONSTRAINT pk_hierarchy_id PRIMARY KEY
(id);
51.CREATE INDEX ix_hierarchy_lft ON t_hierarchy (lft);
52.CREATE INDEX ix_hierarchy_rgt ON t_hierarchy (rgt);
53.CREATE INDEX ix_hierarchy_parent ON t_hierarchy (parent);
54.
55.ANALYZE t_hierarchy;
The table contains 8 levels of hierarchy with each node having 5 immediate children. This makes the
table 2,441,405 records long.

Each record has a 100-byte long field stuffing which emulates the payload in actual tables.

The fields parent, lft and rgt are indexed.

All descendants

There are lots of descendants, that’s why we will select and aggregate the lengths of their stuffing
fields. Since that field is not indexed, it will emulate selection of all values from an actual table rather
well.

Nested sets

view source print ?
1.SELECT SUM(LENGTH(hc.stuffing))
2.FROM t_hierarchy hp
3.JOIN t_hierarchy hc
4.ON hc.lft BETWEEN hp.lft AND hp.rgt
5.WHERE hp.id = 42
View query details

sum
1953100
1 row fetched in 0.0001s (0.0559s)
Aggregate (cost=63042.65..63042.66 rows=1 width=101)
 -> Nested Loop (cost=5761.08..62364.46 rows=271274 width=101)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hp (cost=0.00..8.54
rows=1 width=8)
 Index Cond: (id = 42)
 -> Bitmap Heap Scan on t_hierarchy hc (cost=5761.08..58286.82
rows=271274 width=105)
 Recheck Cond: ((hc.lft >= hp.lft) AND (hc.lft <= hp.rgt))
 -> Bitmap Index Scan on ix_hierarchy_lft (cost=0.00..5693.26
rows=271274 width=0)
 Index Cond: ((hc.lft >= hp.lft) AND (hc.lft <= hp.rgt))

Nested sets is particularly good for this kind of query, since it requires a single range scan on the index
on lft.

This query runs for 50 ms.

Adjacency list

view source print ?
01.WITH RECURSIVE

02. q AS
03. (
04. SELECT id, stuffing
05. FROM t_hierarchy h
06. WHERE id = 42
07. UNION ALL
08. SELECT hc.id, hc.stuffing
09. FROM q
10. JOIN t_hierarchy hc
11. ON hc.parent = q.id
12.)

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource

13.SELECT SUM(LENGTH(stuffing))
14.FROM q
View query details

sum
1953100
1 row fetched in 0.0001s (0.0985s)
Aggregate (cost=915.24..915.26 rows=1 width=218)
 CTE q
 -> Recursive Union (cost=0.00..898.34 rows=751 width=105)
 -> Index Scan using pk_hierarchy_id on t_hierarchy h (cost=0.00..8.54
rows=1 width=105)
 Index Cond: (id = 42)
 -> Nested Loop (cost=0.00..87.48 rows=75 width=105)
 -> WorkTable Scan on q (cost=0.00..0.20 rows=10 width=4)
 -> Index Scan using ix_hierarchy_parent on t_hierarchy hc
(cost=0.00..8.64 rows=7 width=109)
 Index Cond: (hc.parent = q.id)
 -> CTE Scan on q (cost=0.00..15.02 rows=751 width=218)

This query is a trifle less efficient since it requires several index scans instead of a single one. However,
the resulting range is of course the same (because the values returned are the same).

This query completes in 98 ms, or less than twice as long as the nested sets one.

All ancestors

Nested sets

view source print ?
1.SELECT hp.id, hp.parent, hp.lft, hp.rgt, hp.data
2.FROM t_hierarchy hc
3.JOIN t_hierarchy hp
4.ON hc.lft BETWEEN hp.lft AND hp.rgt
5.WHERE hc.id = 1000000
6.ORDER BY

7. hp.lft
View query details

id parent lft rgt data
2 0 585938 1171874 Value 2
12 2 703126 820312 Value 12
63 12 750001 773437 Value 63
319 63 764063 768749 Value 319
1599 319 766875 767811 Value 1599
7999 1599 767437 767623 Value 7999
39999 7999 767549 767585 Value 39999
199999 39999 767571 767577 Value 199999
1000000 199999 767576 767576 Value 1000000

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#

9 rows fetched in 0.0006s (1.8281s)
Sort (cost=109888.38..110566.56 rows=271274 width=29)
 Sort Key: hp.lft
 -> Nested Loop (cost=15239.64..85406.72 rows=271274 width=29)
 Join Filter: (hc.lft >= hp.lft)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hc (cost=0.00..8.54
rows=1 width=4)
 Index Cond: (id = 1000000)
 -> Bitmap Heap Scan on t_hierarchy hp (cost=15239.64..73190.86
rows=813822 width=29)
 Recheck Cond: (hc.lft <= hp.rgt)
 -> Bitmap Index Scan on ix_hierarchy_rgt (cost=0.00..15036.18
rows=813822 width=0)
 Index Cond: (hc.lft <= hp.rgt)

This query returns much fewer rows than the previous one (only 9 rows instead of almost 200,000), but
due to its nature it is much more slow and takes almost 2 seconds.

This is because we search the other way round in this case: instead of looking for indexed value within
the range of constants, we need to search the constant against the list of ranges.

Ranges cannot be efficiently indexed using B-Tree indexes, that’s why PostgreSQL uses only part of
the condition (hc.lft <= hp.rgt), builds a bitmap on it, scans the table using this bitmap and
filters the values using the second part of the condition (hc.lft <= hp.rgt).

This is quite a costly operations since it requires an index scan (which PostgreSQL is not very good at)
which returns almost half of all rows.

Adjacency list

view source print ?
01.WITH RECURSIVE

02. q AS
03. (
04. SELECT h.*, 1 AS level
05. FROM t_hierarchy h
06. WHERE id = 1000000
07. UNION ALL
08. SELECT hp.*, level + 1
09. FROM q
10. JOIN t_hierarchy hp
11. ON hp.id = q.parent
12.)

13.SELECT id, parent, lft, rgt, data
14.FROM q
15.ORDER BY

16. level DESC
View query details

id parent lft rgt data
2 0 585938 1171874 Value 2
12 2 703126 820312 Value 12

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource

63 12 750001 773437 Value 63
319 63 764063 768749 Value 319
1599 319 766875 767811 Value 1599
7999 1599 767437 767623 Value 7999
39999 7999 767549 767585 Value 39999
199999 39999 767571 767577 Value 199999
1000000 199999 767576 767576 Value 1000000
9 rows fetched in 0.0006s (0.0044s)
Sort (cost=872.98..873.23 rows=101 width=238)
 Sort Key: q.level
 CTE q
 -> Recursive Union (cost=0.00..867.59 rows=101 width=134)
 -> Index Scan using pk_hierarchy_id on t_hierarchy h (cost=0.00..8.54
rows=1 width=130)
 Index Cond: (id = 1000000)
 -> Nested Loop (cost=0.00..85.70 rows=10 width=134)
 -> WorkTable Scan on q (cost=0.00..0.20 rows=10 width=8)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hp
(cost=0.00..8.54 rows=1 width=130)
 Index Cond: (hp.id = q.parent)
 -> CTE Scan on q (cost=0.00..2.02 rows=101 width=238)

Now this query is literally instant: only 4 ms which is within the time measurement error range.

Recursion does very good job here: since the hierarchy is limited, traversing the tree upwards takes
only 9 index lookups on the PRIMARY KEY and then sorting of 9 values. Both operations are very
simple and complete in no time.

Descendants up to a given level

Nested sets

We will run two queries: one with a node close to the root, the second one with a node far from the
root.

view source print ?
01.SELECT hc.id, hc.parent, hc.lft, hc.rgt, hc.data
02.FROM t_hierarchy hp
03.JOIN t_hierarchy hc
04.ON hc.lft BETWEEN hp.lft AND hp.rgt
05.WHERE hp.id = ?

06. AND
07. (
08. SELECT COUNT(*)
09. FROM t_hierarchy hn
10. WHERE hc.lft BETWEEN hn.lft AND hn.rgt

11. AND hn.lft BETWEEN hp.lft AND hp.rgt
12.) <= 3

View query details for node 42

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource

view source print ?
01.SELECT hc.id, hc.parent, hc.lft, hc.rgt, hc.data
02.FROM t_hierarchy hp
03.JOIN t_hierarchy hc
04.ON hc.lft BETWEEN hp.lft AND hp.rgt
05.WHERE hp.id = 42

06. AND
07. (
08. SELECT COUNT(*)
09. FROM t_hierarchy hn
10. WHERE hc.lft BETWEEN hn.lft AND hn.rgt

11. AND hn.lft BETWEEN hp.lft AND hp.rgt
12.) <= 3

id parent lft rgt data
42 8 257814 281250 Value 42
211 42 257815 262501 Value 211
1056 211 257816 258752 Value 1056
1057 211 258753 259689 Value 1057
1058 211 259690 260626 Value 1058
1059 211 260627 261563 Value 1059
1060 211 261564 262500 Value 1060
212 42 262502 267188 Value 212
1061 212 262503 263439 Value 1061
1062 212 263440 264376 Value 1062
1063 212 264377 265313 Value 1063
1064 212 265314 266250 Value 1064
1065 212 266251 267187 Value 1065
213 42 267189 271875 Value 213
1066 213 267190 268126 Value 1066
1067 213 268127 269063 Value 1067
1068 213 269064 270000 Value 1068
1069 213 270001 270937 Value 1069
1070 213 270938 271874 Value 1070
214 42 271876 276562 Value 214
1071 214 271877 272813 Value 1071
1072 214 272814 273750 Value 1072
1073 214 273751 274687 Value 1073
1074 214 274688 275624 Value 1074
1075 214 275625 276561 Value 1075
215 42 276563 281249 Value 215
1076 215 276564 277500 Value 1076

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource

1077 215 277501 278437 Value 1077
1078 215 278438 279374 Value 1078
1079 215 279375 280311 Value 1079
1080 215 280312 281248 Value 1080
31 rows fetched in 0.0156s (120.6055s)
Nested Loop (cost=0.00..6875628456.64 rows=90425 width=29)
 Join Filter: ((SubPlan 1) <= 3)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hp (cost=0.00..8.54 rows=1
width=8)
 Index Cond: (id = 42)
 -> Index Scan using ix_hierarchy_lft on t_hierarchy hc (cost=0.00..535180.52
rows=271274 width=29)
 Index Cond: ((hc.lft >= hp.lft) AND (hc.lft <= hp.rgt))
 SubPlan 1
 -> Aggregate (cost=25343.70..25343.71 rows=1 width=0)
 -> Index Scan using ix_hierarchy_lft on t_hierarchy hn
(cost=0.00..25333.52 rows=4069 width=0)
 Index Cond: (($0 >= lft) AND (lft >= $1) AND (lft <= $2))
 Filter: ($0 <= rgt)

View query details for node 31,415

view source print ?
01.SELECT hc.id, hc.parent, hc.lft, hc.rgt, hc.data
02.FROM t_hierarchy hp
03.JOIN t_hierarchy hc
04.ON hc.lft BETWEEN hp.lft AND hp.rgt
05.WHERE hp.id = 31415

06. AND
07. (
08. SELECT COUNT(*)
09. FROM t_hierarchy hn
10. WHERE hc.lft BETWEEN hn.lft AND hn.rgt

11. AND hn.lft BETWEEN hp.lft AND hp.rgt
12.) <= 3

id parent lft rgt data
31415 6282 445651 445687 Value 31415
157076 31415 445652 445658 Value 157076
785381 157076 445653 445653 Value 785381
785382 157076 445654 445654 Value 785382
785383 157076 445655 445655 Value 785383
785384 157076 445656 445656 Value 785384
785385 157076 445657 445657 Value 785385
157077 31415 445659 445665 Value 157077
785386 157077 445660 445660 Value 785386
785387 157077 445661 445661 Value 785387

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#

785388 157077 445662 445662 Value 785388
785389 157077 445663 445663 Value 785389
785390 157077 445664 445664 Value 785390
157078 31415 445666 445672 Value 157078
785391 157078 445667 445667 Value 785391
785392 157078 445668 445668 Value 785392
785393 157078 445669 445669 Value 785393
785394 157078 445670 445670 Value 785394
785395 157078 445671 445671 Value 785395
157079 31415 445673 445679 Value 157079
785396 157079 445674 445674 Value 785396
785397 157079 445675 445675 Value 785397
785398 157079 445676 445676 Value 785398
785399 157079 445677 445677 Value 785399
785400 157079 445678 445678 Value 785400
157080 31415 445680 445686 Value 157080
785401 157080 445681 445681 Value 785401
785402 157080 445682 445682 Value 785402
785403 157080 445683 445683 Value 785403
785404 157080 445684 445684 Value 785404
785405 157080 445685 445685 Value 785405
31 rows fetched in 0.0017s (0.0523s)
Nested Loop (cost=0.00..6875628456.64 rows=90425 width=29)
 Join Filter: ((SubPlan 1) <= 3)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hp (cost=0.00..8.54 rows=1
width=8)
 Index Cond: (id = 31415)
 -> Index Scan using ix_hierarchy_lft on t_hierarchy hc (cost=0.00..535180.52
rows=271274 width=29)
 Index Cond: ((hc.lft >= hp.lft) AND (hc.lft <= hp.rgt))
 SubPlan 1
 -> Aggregate (cost=25343.70..25343.71 rows=1 width=0)
 -> Index Scan using ix_hierarchy_lft on t_hierarchy hn
(cost=0.00..25333.52 rows=4069 width=0)
 Index Cond: (($0 >= lft) AND (lft >= $1) AND (lft <= $2))
 Filter: ($0 <= rgt)

We see that the second query is reasonably fast (completes in 50 ms).

However, the first query (which is in fact more often used) takes 120.6 seconds, or more than 2
minutes!

This is because the query should count all ancestors for all descendants that are within the given node.

It’s fast for the nodes that are further from the root (since they don’t have lots of descendants), but it
may become a real problem when trying to obtain, say, children and grandchildren of a root node.

And this is the task most online catalogs begin their work with: they need to show first-level categories
and subcategories. 2 minutes is way too much for this.

Adjacency list

view source print ?
01.WITH RECURSIVE

02. q AS
03. (
04. SELECT id, parent, lft, rgt, data, ARRAY[id] AS
level
05. FROM t_hierarchy hc
06. WHERE id = ?
07. UNION ALL
08. SELECT hc.id, hc.parent, hc.lft, hc.rgt, hc.data,
q.level || hc.id
09. FROM q
10. JOIN t_hierarchy hc
11. ON hc.parent = q.id
12. WHERE array_upper(level, 1) < 3
13.)

14.SELECT id, parent, lft, rgt, data
15.FROM q
16.ORDER BY

17. level
Note the ORDER BY and level constructs. They are intended to preserve the tree-like ordering.
Arrays are ordered lexicographically in PostgreSQL and each level contains the breadcrumbs from
the root node to the current node.

Here are the query results:

View query details for node 42

view source print ?
01.WITH RECURSIVE

02. q AS
03. (
04. SELECT id, parent, lft, rgt, data, ARRAY[id] AS
level
05. FROM t_hierarchy hc
06. WHERE id = 42
07. UNION ALL
08. SELECT hc.id, hc.parent, hc.lft, hc.rgt, hc.data,
q.level || hc.id
09. FROM q
10. JOIN t_hierarchy hc
11. ON hc.parent = q.id
12. WHERE array_upper(level, 1) < 3
13.)

14.SELECT id, parent, lft, rgt, data
15.FROM q
16.ORDER BY

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource

17. level
id parent lft rgt data

42 8 257814 281250 Value 42
211 42 257815 262501 Value 211
1056 211 257816 258752 Value 1056
1057 211 258753 259689 Value 1057
1058 211 259690 260626 Value 1058
1059 211 260627 261563 Value 1059
1060 211 261564 262500 Value 1060
212 42 262502 267188 Value 212
1061 212 262503 263439 Value 1061
1062 212 263440 264376 Value 1062
1063 212 264377 265313 Value 1063
1064 212 265314 266250 Value 1064
1065 212 266251 267187 Value 1065
213 42 267189 271875 Value 213
1066 213 267190 268126 Value 1066
1067 213 268127 269063 Value 1067
1068 213 269064 270000 Value 1068
1069 213 270001 270937 Value 1069
1070 213 270938 271874 Value 1070
214 42 271876 276562 Value 214
1071 214 271877 272813 Value 1071
1072 214 272814 273750 Value 1072
1073 214 273751 274687 Value 1073
1074 214 274688 275624 Value 1074
1075 214 275625 276561 Value 1075
215 42 276563 281249 Value 215
1076 215 276564 277500 Value 1076
1077 215 277501 278437 Value 1077
1078 215 278438 279374 Value 1078
1079 215 279375 280311 Value 1079
1080 215 280312 281248 Value 1080
31 rows fetched in 0.0017s (0.0054s)
Sort (cost=290.87..291.42 rows=221 width=266)
 Sort Key: q.level
 CTE q
 -> Recursive Union (cost=0.00..277.84 rows=221 width=61)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hc (cost=0.00..8.54
rows=1 width=29)
 Index Cond: (id = 42)
 -> Nested Loop (cost=0.00..26.49 rows=22 width=61)
 -> WorkTable Scan on q (cost=0.00..0.25 rows=3 width=36)
 Filter: (array_upper(level, 1) < 3)

 -> Index Scan using ix_hierarchy_parent on t_hierarchy hc
(cost=0.00..8.64 rows=7 width=29)
 Index Cond: (hc.parent = q.id)
 -> CTE Scan on q (cost=0.00..4.42 rows=221 width=266)

View query details for node 31,415

view source print ?
01.WITH RECURSIVE

02. q AS
03. (
04. SELECT id, parent, lft, rgt, data, ARRAY[id] AS
level
05. FROM t_hierarchy hc
06. WHERE id = 31415
07. UNION ALL
08. SELECT hc.id, hc.parent, hc.lft, hc.rgt, hc.data,
q.level || hc.id
09. FROM q
10. JOIN t_hierarchy hc
11. ON hc.parent = q.id
12. WHERE array_upper(level, 1) < 3
13.)

14.SELECT id, parent, lft, rgt, data
15.FROM q
16.ORDER BY

17. level
id parent lft rgt data

31415 6282 445651 445687 Value 31415
157076 31415 445652 445658 Value 157076
785381 157076 445653 445653 Value 785381
785382 157076 445654 445654 Value 785382
785383 157076 445655 445655 Value 785383
785384 157076 445656 445656 Value 785384
785385 157076 445657 445657 Value 785385
157077 31415 445659 445665 Value 157077
785386 157077 445660 445660 Value 785386
785387 157077 445661 445661 Value 785387
785388 157077 445662 445662 Value 785388
785389 157077 445663 445663 Value 785389
785390 157077 445664 445664 Value 785390
157078 31415 445666 445672 Value 157078
785391 157078 445667 445667 Value 785391
785392 157078 445668 445668 Value 785392

http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#about
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#printSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#viewSource
http://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/#

785393 157078 445669 445669 Value 785393
785394 157078 445670 445670 Value 785394
785395 157078 445671 445671 Value 785395
157079 31415 445673 445679 Value 157079
785396 157079 445674 445674 Value 785396
785397 157079 445675 445675 Value 785397
785398 157079 445676 445676 Value 785398
785399 157079 445677 445677 Value 785399
785400 157079 445678 445678 Value 785400
157080 31415 445680 445686 Value 157080
785401 157080 445681 445681 Value 785401
785402 157080 445682 445682 Value 785402
785403 157080 445683 445683 Value 785403
785404 157080 445684 445684 Value 785404
785405 157080 445685 445685 Value 785405
31 rows fetched in 0.0017s (0.0054s)
Sort (cost=290.87..291.42 rows=221 width=266)
 Sort Key: q.level
 CTE q
 -> Recursive Union (cost=0.00..277.84 rows=221 width=61)
 -> Index Scan using pk_hierarchy_id on t_hierarchy hc (cost=0.00..8.54
rows=1 width=29)
 Index Cond: (id = 31415)
 -> Nested Loop (cost=0.00..26.49 rows=22 width=61)
 -> WorkTable Scan on q (cost=0.00..0.25 rows=3 width=36)
 Filter: (array_upper(level, 1) < 3)
 -> Index Scan using ix_hierarchy_parent on t_hierarchy hc
(cost=0.00..8.64 rows=7 width=29)
 Index Cond: (hc.parent = q.id)
 -> CTE Scan on q (cost=0.00..4.42 rows=221 width=266)

As we can see, both queries complete in a little more than 5 ms (instantly) and this time does not
depend on the proximity to the root node.

Summary

We have compared the three most common queries that are usually issued against the hierarachical
data:

1. Find all descendants of a given node
2. Find all ancestors of a given node
3. Find all descendants of a given node up to a certain depth

The nested set model the fastest for the first query (0.05 s), however, adjacency list shows good
performance and is very fast too (selecting 200,000 rows is a matter of less than 0.1 second).

For the second query, adjacency list is much faster, however, the nested sets are still usable.

Finally, for the third query, nested sets model shows dependency on the node.

For a node that has few descendants, the query is rather fast, however, for a node close to the root (to

say nothing of the root itself) this query is intolerably slow.

Adjacency list shows superb performance on both nodes.

Conclusion

Given the said above and taking into account that the nested sets model is much harder to manage, we
can conclude that adjacency list model should be used to manage hierarchical data in PostgreSQL
8.4.

Nested sets model was a very smart invention to manage hierarchical data in an environment that
allowed no recursion. But now, when recursive queries are finally available, adjacency list model is
just better.

It yields excellent performance on all three types of queries, outperforms nested sets in two of three
most used queries and is extremely simple to manage.

To be continued.

