
Journey to Ramaze
Michael Fellinger
<m.fellinger@gmail.com>
version 0.2, May 2009 

Table of Contents

JavaScript must be enabled in your browser to display the table of contents.

1. Journey to Ramaze
2. Preface  

1. 1. Ruby  
1. 1.1. Features  

2. 2. Short history of web development  
3. 3. About the "Journey to Ramaze"  
4. 4. Relevant links  
5. 5. About the author  

3. Tutorial introduction to Ramaze  
1. 1. Installation  

1. 1.1. Checking for and Installing Ruby  
2. 1.2. Installing Ramaze  

2. 2. Hello, World!  
3. 3. The ramaze command  

1. 3.1. Create  
2. 3.2. Start  
3. 3.3. Stop  
4. 3.4. Restart  
5. 3.5. Console  

4. Middleware  
1. 1. Building middleware  
2. 2. Ramaze modes  

1. 2.1. The :dev and :live modes  
2. 2.2. Your own modes  

3. 3. Rack middleware  
1. 3.1. Rack::Lint  
2. 3.2. Rack::CommonLogger  

5. Configuration  
1. 1. Basic options  

6. Sessions  
1. 1. What are sessions  
2. 2. Usage example  
3. 3. Access  
4. 4. Cookies  

1. 4.1. History  
2. 4.2. Structure  
3. 4.3. Usage  
4. 4.4. Limitations  

mailto:m.fellinger@gmail.com
http://book.ramaze.net/#_limitations
http://book.ramaze.net/#_usage
http://book.ramaze.net/#_structure
http://book.ramaze.net/#_history
http://book.ramaze.net/#_cookies
http://book.ramaze.net/#_access
http://book.ramaze.net/#_usage_example
http://book.ramaze.net/#_what_are_sessions
http://book.ramaze.net/#_sessions
http://book.ramaze.net/#_basic_options
http://book.ramaze.net/#_configuration
http://book.ramaze.net/#_rack_commonlogger
http://book.ramaze.net/#_rack_lint
http://book.ramaze.net/#_rack_middleware
http://book.ramaze.net/#_your_own_modes
http://book.ramaze.net/#_the_dev_and_live_modes
http://book.ramaze.net/#_ramaze_modes
http://book.ramaze.net/#_building_middleware
http://book.ramaze.net/#_middleware
http://book.ramaze.net/#_console
http://book.ramaze.net/#_restart
http://book.ramaze.net/#_stop
http://book.ramaze.net/#_start
http://book.ramaze.net/#_create
http://book.ramaze.net/#_the_ramaze_command
http://book.ramaze.net/#_hello_world
http://book.ramaze.net/#_installing_ramaze
http://book.ramaze.net/#_checking_for_and_installing_ruby
http://book.ramaze.net/#_installation
http://book.ramaze.net/#_tutorial_introduction_to_ramaze
http://book.ramaze.net/#_about_the_author
http://book.ramaze.net/#_relevant_links
http://book.ramaze.net/#_about_the_journey_to_ramaze
http://book.ramaze.net/#_short_history_of_web_development
http://book.ramaze.net/#_features
http://book.ramaze.net/#_ruby
http://book.ramaze.net/#_preface
http://book.ramaze.net/#toc_0


5. 5. Configuration of session cookies  
1. 5.1. Expiration  

6. 6. Concurrency  
7. 7. Flash  

1. 7.1. Implementation  
7. Helpers  

1. 1. Usage  
2. 2. Making your own  
3. 3. Naming  
4. 4. Helper file lookup  
5. 5. Methods during action creation  
6. 6. Default helpers  
7. 7. Aspect helper  

1. 7.1. Using before_all  
8. 8. CGI helper  

1. 8.1. Encoding text for use in URIs with url_encode  
2. 8.2. Decoding text from URIs with url_decode  

9. 9. Flash helper  
10.10. Link helper  
11.11. Redirect helper  
12.12. Render helper  

8. Testing  
1. 1. About testing  
2. 2. Ramaze and testing  
3. 3. Testing your application  
4. 4. Bacon  

1. 4.1. Usage  
2. 4.2. Shared contexts  

5. 5. Innate::Mock  
6. 6. Rack::Test  
7. 7. Hpricot  
8. 8. Webrat  
9. 9. Mechanize  
10.10. Examples  

1. 10.1. GET  
2. 10.2. POST  
3. 10.3. Multipart POST  
4. 10.4. Working with models  

9. Actions  
1. 1. History  
2. 2. Structure  
3. 3. Creating actions  

1. 3.1. The hard way  
2. 3.2. The easy way  

10.Views  
1. 1. History  
2. 2. Structure  

1. 2.1. The index template  
2. 2.2. Faking depth  

http://book.ramaze.net/#_faking_depth
http://book.ramaze.net/#_the_index_template
http://book.ramaze.net/#_structure_3
http://book.ramaze.net/#_history_3
http://book.ramaze.net/#_views
http://book.ramaze.net/#_the_easy_way
http://book.ramaze.net/#_the_hard_way
http://book.ramaze.net/#_creating_actions
http://book.ramaze.net/#_structure_2
http://book.ramaze.net/#_history_2
http://book.ramaze.net/#_actions
http://book.ramaze.net/#_working_with_models
http://book.ramaze.net/#_multipart_post
http://book.ramaze.net/#_post
http://book.ramaze.net/#_get
http://book.ramaze.net/#_examples
http://book.ramaze.net/#_mechanize
http://book.ramaze.net/#_webrat
http://book.ramaze.net/#_hpricot
http://book.ramaze.net/#_rack_test
http://book.ramaze.net/#_innate_mock
http://book.ramaze.net/#_shared_contexts
http://book.ramaze.net/#_usage_3
http://book.ramaze.net/#_bacon
http://book.ramaze.net/#_testing_your_application
http://book.ramaze.net/#_ramaze_and_testing
http://book.ramaze.net/#_about_testing
http://book.ramaze.net/#_testing
http://book.ramaze.net/#_render_helper
http://book.ramaze.net/#_redirect_helper
http://book.ramaze.net/#_link_helper
http://book.ramaze.net/#_flash_helper
http://book.ramaze.net/#_decoding_text_from_uris_with_url_decode
http://book.ramaze.net/#_encoding_text_for_use_in_uris_with_url_encode
http://book.ramaze.net/#_cgi_helper
http://book.ramaze.net/#_using_before_all
http://book.ramaze.net/#_aspect_helper
http://book.ramaze.net/#_default_helpers
http://book.ramaze.net/#_methods_during_action_creation
http://book.ramaze.net/#_helper_file_lookup
http://book.ramaze.net/#_naming
http://book.ramaze.net/#_making_your_own
http://book.ramaze.net/#_usage_2
http://book.ramaze.net/#_helpers
http://book.ramaze.net/#_implementation
http://book.ramaze.net/#_flash
http://book.ramaze.net/#_concurrency
http://book.ramaze.net/#_expiration
http://book.ramaze.net/#_configuration_of_session_cookies


3. 2.3. Inline templates  
3. 3. Path lookup  
4. 4. Configuration  

1. 4.1. Global configuration  
2. 4.2. Controller configuration  

5. 5. Content representations  
11.Layouts  

1. 1. History  
2. 2. Usage  

1. 2.1. Layout from template  
2. 2.2. Layout from method  
3. 2.3. Layout directories per controller  

3. 3. Structure  
4. 4. Path lookup  

1. 4.1. Inline templates  
5. 5. Configuration  
6. 6. Content representations  
7. 7. Implementation  

12.Rack spec  
1. 1. Rack applications  

1. 1.1. The Environment  
1. 1.1.1. The Input Stream  
2. 1.1.2. The Error Stream  

2. 1.2. The Response  
1. 1.2.1. The Status  
2. 1.2.2. The Headers  
3. 1.2.3. The Content-Type  
4. 1.2.4. The Content-Length  
5. 1.2.5. The Body  

3. 1.3. Thanks  
13.Glossary  

Preface
Ramaze is a simple but powerful web application development framework. This book is an in-depth 
walk-through of Ramaze’s features and behavior.

Ramaze is a modular web application framework. It provides you with just about everything you need 
to make your daily web development simple and fun. Making programming fun is a concept 
popularized by the Ruby programming language.

Ramaze is written in Ruby. This book assumes at least basic knowledge about Ruby. If you do not 
know what Ruby is yet, visit the official Ruby programming language website and find out; but 
beware, it may change your life. It changed mine for sure.

Ramaze features a readable open source codebase licensed under the Ruby license (optionally GPL 
version 2).

The strength of Ramaze, as described by its users, is a free style of development, affording all the 

http://ruby-lang.org/
http://book.ramaze.net/#_glossary
http://book.ramaze.net/#_thanks
http://book.ramaze.net/#_the_body
http://book.ramaze.net/#_the_content_length
http://book.ramaze.net/#_the_content_type
http://book.ramaze.net/#_the_headers
http://book.ramaze.net/#_the_status
http://book.ramaze.net/#_the_response
http://book.ramaze.net/#_the_error_stream
http://book.ramaze.net/#_the_input_stream
http://book.ramaze.net/#_the_environment
http://book.ramaze.net/#_rack_applications
http://book.ramaze.net/#_rack_spec
http://book.ramaze.net/#_implementation_2
http://book.ramaze.net/#_content_representations_2
http://book.ramaze.net/#_configuration_3
http://book.ramaze.net/#_inline_templates_2
http://book.ramaze.net/#_path_lookup_2
http://book.ramaze.net/#_structure_4
http://book.ramaze.net/#_layout_directories_per_controller
http://book.ramaze.net/#_layout_from_method
http://book.ramaze.net/#_layout_from_template
http://book.ramaze.net/#_usage_4
http://book.ramaze.net/#_history_4
http://book.ramaze.net/#_layouts
http://book.ramaze.net/#_content_representations
http://book.ramaze.net/#_controller_configuration
http://book.ramaze.net/#_global_configuration
http://book.ramaze.net/#_configuration_2
http://book.ramaze.net/#_path_lookup
http://book.ramaze.net/#_inline_templates


benefits of the underlying Ruby programming language. It gets out of your way as you do things, 
helping you along as you require it.

1. Ruby
It makes sense to write a little about Ruby first before starting our journey to Ramaze.

Ruby was created in 1995 by the Japanese developer Yukihiro Matsumoto. It wasn’t until 2000, when 
the first Programming Ruby was published, that Ruby gained any kind of popularity outside of Japan.

1.1. Features

The manpage of Ruby lists the features of the language as follows:

Interpretive 

Ruby is an interpreted language, so you don’t have to recompile programs written in Ruby to 
execute them. 

Variables have no type (dynamic typing) 

Variables in Ruby can contain data of any type. You don’t have to worry about variable typing. 
Consequently, it has a weaker compile time check. 

No declaration needed 

You can use variables in your Ruby programs without any declarations. Variable names denote 
their scope, local, global, instance, etc. 

Simple syntax 

Ruby has a simple syntax influenced slightly from Eiffel. 

No user-level memory management 

Ruby has automatic memory management. Objects no longer referenced from anywhere are 
automatically collected by the garbage collector built into the interpreter. 

Everything is an object 

Ruby is a purely object-oriented language, and was so since its creation. Even such basic data as 
integers are seen as objects. 

Class, inheritance, and methods 

Of course, as an object-oriented language, Ruby has such basic features like classes, inheritance, 
and methods. 

Singleton methods 

http://www.rubycentral.com/book/


Ruby has the ability to define methods for certain objects. For example, you can define a press-
button action for certain widget by defining a singleton method for the button. Or, you can make 
up your own prototype based object system using singleton methods, if you want to. 

Mix-in by modules 

Ruby intentionally does not have multiple inheritance as it is a source of confusion. Instead, Ruby 
has the ability to share implementations across the inheritance tree. This is often called Mix-in. 

Iterators 

Ruby has iterators for loop abstraction. 

Closures 

In Ruby, you can objectify the procedure. 

Text processing and regular expressions 

Ruby has a bunch of text processing features like in Perl. 

Bignums 

With built-in bignums, you can for example calculate factorial(400). 

Exception handling 

As in Java™. 

Direct access to the OS 

Ruby can use most UNIX system calls, often used in system programming. 

Dynamic loading 

On most UNIX systems, you can load object files into the Ruby interpreter on-the-fly. 

2. Short history of web development
Well until 2005 Ruby didn’t get much mainstream use. That changed when Ruby on Rails started 
attracting web developers that were increasingly annoyed by Java and PHP.

Although Ruby on Rails has achieved widespread popularity even outside of the realms of web 
programming, it was by no means the first web framework to be written in Ruby.

One of the surviving frameworks from the time before Rails is IOWA, which is focused on discrete 
reusable components rather than MVC. Although it hasn’t seen many changes since 2007, it’s still one 
of the most solid implementations of a web framework and used in various contexts.



Another one is Nitro, which was first released in 2004. Nitro had a large impact on the Ramaze project. 
It was the first web framework that tried to enable people to write their applications in a multi-
paradigm style, utilizing whatever is best suited for the task at hand. It gained some popularity among 
the Ruby community but eventually died a slow death.

3. About the "Journey to Ramaze"
This book is the result of a long time spent researching, specifying, and describing the exact behaviours 
of Ramaze.

There are no profits expected from the final version of this work, and you may reuse and modify all of 
the content within in the ways specified by the Creative Commons Attribution-Share Alike 2.1 Japan 
License.

This book is available as HTML and PDF, the asciidoc source can be found in ramaze-book on Github.

4. Relevant links
Naturally, since Ramaze is an open source web framework, most help can be found on the web. Here 
are some links which provide more information on all the topics covered in this book.

• The offical homepage for the ramaze project: ramaze.net. 

• The ramaze googlegroup mailing list   where most developers using Ramaze are subscribed and 
share help and information. 

• Ramaze on Github   provides immediate access to the source and commit-history of the project. 

• A wiki to exchange information and sketch out documentation can be found at wiki.ramaze.net 

• The automatically generated API documentation for the latest release is at doc.ramaze.net 

• The place to report all issues, proposals, and bugs is bugs.ramaze.net 

5. About the author
Michael Fellinger (a.k.a. manveru) is the creator and a core developer of the Ramaze project.

He started programming in middle-school using QBASIC. Since then he learned various programming 
languages, among them Smalltalk, Dylan, Neko, Forth, NASM, PHP, and works on his own languages 
for fun.

His programming language of choice is, as you might have guessed already, Ruby, having worked with 
it since 2005.

Around 1999, Michael started creating websites, and was using PHP for several years. He was attracted 
to Ruby by the Ruby on Rails web framework, but was disappointed by the lack of freedom given to 
developers.

After some searching, he finally began working with the Nitro web framework, and was offered a job 
in Japan soon after finishing school. He spent an extensive amount of time studying and using Ruby 
and Nitro until the Nitro project was discontinued. He then applied his knowledge of Ruby and started 
the Ramaze project in the spirit of Nitro, which tried to be a tool that may be utilized in any way a 
developer wishes, not commanding any one true way.

http://bugs.ramaze.net/
http://doc.ramaze.net/
http://wiki.ramaze.net/
http://github.com/manveru/ramaze
http://ramaze.googlegroups.com/
http://ramaze.net/
http://github.com/manveru/ramaze-book/
http://book.ramaze.net/pdf/journey_to_ramaze.pdf
http://book.ramaze.net/
http://creativecommons.org/licenses/by-sa/2.1/jp/
http://creativecommons.org/licenses/by-sa/2.1/jp/


Michael has been living in Tokyo, Japan since 2006, but is of Austrian nationality, speaking German, 
English and currently learning Japanese.

You can reach him by mailing to <m.fellinger@gmail.com>

Tutorial introduction to Ramaze

1. Installation
The easiest way to get to know Ramaze is by example, so we will start out with that, covering 
installation and a few simple applications so you can get a feel for it.

In order to use Ramaze, you will have to install it on your system. This is usually fairly straightforward.

1.1. Checking for and Installing Ruby

Before we install Ramaze, we need to ensure your system has Ruby, since Ramaze is written in the 
Ruby programming language. Ruby doesn’t ship by default with most systems, so you will likely have 
to install it first.

Check your system for Ruby with this command:

$ ruby --version

If you see output similar to this, you are good to go:

ruby 1.9.1p0 (2009-01-30 revision 21907) [i686-linux]

If you see a "command not found" error, or you see a version less than 1.8.5, you’ll need to install or 
upgrade Ruby.

For this book we assume an installation of Ruby 1.9.x, which ships with RubyGems, the package 
manager for Ruby libraries and applications.

The reasoning behind using 1.9.x is that this book might take some time to get finished, and by then I 
hope that all major development in Ruby will happen on the basis of the 1.9 spec.

For some reason people have the impression that Ramaze will only work on 1.9, we still keep it 
backwards-compatible to 1.8.6 for some time.

Linux users can generally use their package manager to install Ruby. Otherwise, you can obtain Ruby 
from the official Ruby programming language website, where you will find instructions for installation 
on most systems.

1.2. Installing Ramaze

Once Ruby is installed correctly, you can install Ramaze simply by:

$ gem install ramaze

This will take care of installing all dependencies as well. There are a lot of libraries that we will install 
in the course of this book, but installing them is usually just a command away, so we defer it to when 
we actually need them.

http://ruby-lang.org/
mailto:m.fellinger@gmail.com


Ramaze is a project that is developed in an open manner by the community. In order to work together 
we utilize git for revision control. You can obtain your own copy of the repository if you are interested 
in helping the development or simply would like to browse through the project history. We will cover 
this subject in developing Ramaze.

2. Hello, World!
A short introductory example is always "Hello world". In Ramaze this looks like following.

require 'rubygems'
require 'ramaze'

class Hello < Ramaze::Controller
  def index
    "Hello, World"
  end
end

Ramaze.start

First we require RubyGems, the package managing wrapper that allows us to require the ramaze library 
and framework. Next we define a Controller and method that will greet us when accessing 
http://localhost:7000/, 7000 being the default port of Ramaze.

To start this application we can now simply:

$ ruby start.rb

That will start an instance of Ruby and start the WEBrick HTTP server that ships with Ruby.

This will output something along the lines of:

delta ~/tmp/tutorial % ruby start.rb
W [2009-04-01 15:35:24 $17562]  WARN | : No explicit root folder found, assuming 
it is .
D [2009-04-01 15:35:24 $17562] DEBUG | : Using webrick
I [2009-04-01 15:35:24 $17562]  INFO | : WEBrick 1.3.1
I [2009-04-01 15:35:24 $17562]  INFO | : ruby 1.9.2 (2009-03-02) [i686-linux]
D [2009-04-01 15:35:24 $17562] DEBUG | : TCPServer.new(0.0.0.0, 7000)
D [2009-04-01 15:35:24 $17562] DEBUG | : Rack::Handler::WEBrick is mounted on /.
I [2009-04-01 15:35:24 $17562]  INFO | : WEBrick::HTTPServer#start: pid=17562 
port=7000

Now you can open your browser, and go to http://localhost:7000/.

Sometimes you will get an error when starting Ramaze that looks like:

delta ~/tmp/tutorial % ruby start.rb
/usr/lib/ruby19/1.9.1/webrick/utils.rb:73:in `initialize': Address already in use 
- bind(2) (Errno::EADDRINUSE)
  from /usr/lib/ruby19/1.9.1/webrick/utils.rb:73:in `new'
  from /usr/lib/ruby19/1.9.1/webrick/utils.rb:73:in `block in create_listeners'
  from /usr/lib/ruby19/1.9.1/webrick/utils.rb:70:in `each'
  from /usr/lib/ruby19/1.9.1/webrick/utils.rb:70:in `create_listeners'
  from /usr/lib/ruby19/1.9.1/webrick/server.rb:74:in `listen'
  from /usr/lib/ruby19/1.9.1/webrick/server.rb:62:in `initialize'
  from /usr/lib/ruby19/1.9.1/webrick/httpserver.rb:24:in `initialize'

http://localhost:7000/
http://book.ramaze.net/#X400


  from /home/manveru/c/rack/lib/rack/handler/webrick.rb:9:in `new'
  from /home/manveru/c/rack/lib/rack/handler/webrick.rb:9:in `run'
  from /home/manveru/c/innate/lib/innate/adapter.rb:66:in `start_webrick'
  from /home/manveru/c/innate/lib/innate/adapter.rb:40:in `start'
  from /home/manveru/c/innate/lib/innate.rb:139:in `start!'
  from /home/manveru/c/innate/lib/innate.rb:135:in `start'
  from start.rb:10:in `<main>'
zsh: exit 1     ruby start.rb

This means that you already have a server running on this port, and you will have to use another port to 
run your application or shutdown the application occupying the port.

If you don’t know what is running on this port, you can find out by using the netstat command.

The invocation of netstat differs on Windows an Linux, we’ll show Linux first.

delta ~ % netstat -lntp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address           Foreign Address         State 
PID/Program name
tcp        0      0 0.0.0.0:7000            0.0.0.0:*               LISTEN 
11910/ruby

With this information you know the Process ID, and can, for example kill 11910 (send TERM 
signal to the process) or pkill ruby (send TERM signal to all ruby processes) on Linux.

On Windows, netstat has to be called like this:

C:\> netstat -a -b -o -p TCP
Active Connections
 Proto  Local Address          Foreign Address        State           PID
 TCP    localhost:7000         localhost:0            LISTENING       17806 
[ruby.exe]

Now you can use taskkill /PID 17806 or taskkill /IM <process_name> to get rid of 
this process.

3. The ramaze command
Ramaze ships with an executable called ramaze. This little tool helps you creating, controlling, and 
debugging your applications.

It tightly integrates with both Ramaze and the Rack executable rackup, so you will be able to take 
advantage of both.

From now on we will call the ramaze executable bin/ramaze, that’s what it is commonly called in the 
Ramaze community as well.

Many commands of bin/ramaze rely on a so-called pidfile, which is a tiny file that only contains the 
process-ID of a currently running Ramaze application. The name of this file defaults to the name of the 
directory your application is in, suffixed with .pid. So if you made an application called blog in a blog 
directory, the pidfile will be called blog.pid. If you see such a file, it usually means that the application 
is already running in the background. You can see whether that is the case:

delta ~ramaze/blog % ps `cat blog.pid`
  PID TTY      STAT   TIME COMMAND
32578 ?        SNl    0:00 /usr/bin/ruby /home/manveru/bin/rackup config.ru -P 



blog.pid -D

Future versions of bin/ramaze might provide a ramaze status command, that will show you 
similar information.

3.1. Create

To create a new application with a basic set of files and directories that get you started in no time, we 
just have to issue a single command.

ramaze create PROJECT creates a new prototype Ramaze application in a directory named 
PROJECT in the current directory. ramaze create foo would make ./foo containing an 
application prototype. Rack options are meaningless here.

$ ramaze create blog

What it does is simply copying a bunch of files from lib/proto in the ramaze library to the argument 
given. So you will end up with a new directory called blog which contains a bunch of files.

The contents of this directory are:

blog
|-- config.ru
|-- controller
|   |-- init.rb
|   `-- main.rb
|-- layout
|   `-- default.xhtml
|-- model
|   `-- init.rb
|-- public
|   |-- css
|   |   `-- screen.css
|   |-- dispatch.fcgi
|   |-- favicon.ico
|   |-- js
|   |   `-- jquery.js
|   `-- ramaze.png
|-- spec
|   `-- main.rb
|-- start.rb
`-- view
    `-- index.xhtml

We will take a look at these files and their purpose soon, but first we’ll cover other commands of 
bin/ramaze.

3.2. Start

Start an instance of your application with ramaze start. Supply a pidfile name if you do not want 
it to use the default (PROJECT.pid).

$ ramaze start

To start your application in the background you should daemonize it with the -D argument. This will 



put the PID of the instance into the pidfile. Please note that this is not available on Windows, because 
of limitations of the platform.

$ ramaze start -D

3.3. Stop

Stop a running instance of this application with ramaze stop. Supply a pidfile name if you started it 
with a pidfile other than the default (PROJECT.pid).

3.4. Restart

Stop a running instance of this application, then starts it back up with ramaze restart. Pidfile (if 
supplied) is used for both stop and start.

$ ramaze restart -D

3.5. Console

Starts an irb console with app.rb (and irb completion) loaded. This command ignores rack options. At 
the moment, you will have to call Ramaze.setup_dependencies after starting the session to get 
full functionality, as it will not actually start your application, this should be fixed in the future. We 
might add support for hooking into an already running application (as that would be vastly superior for 
live debugging).

$ ramaze console

An example session:

MainController.instance_methods(false)
self
# main
Ramaze.setup_dependencies
# [Innate::Cache, Innate::Node, Ramaze::Controller, Ramaze::Plugin]
MainController.instance_methods(false)
Ramaze::Mock.get('/notemplate').headers
# {"Content-Type"=>"text/html", "Content-Length"=>"994"}
Ramaze::Mock.get('/notemplate').status
# 200

Middleware
Ramaze relies to great extend on so-called middleware, that are small pieces of code chained together 
with a simple interface to handle requests and serve responses. The concept of middlewares was 
introduced by WSGI, and consequently also used in the design of Rack. There are already lots of 
middlewares available for different purposes, from serving static files to handling authentication.

1. Building middleware
An example for a middleware would be:



class Smile
  def initialize(app)
    @app = app
  end

  def call(env)
    status, header, body = @app.call(env)
    header['Content-Type'] = 'text/plain'
    header['Content-Length'] = '2'
    return status, header, [':)']
  end
end

This discards any response body it receives and replaces it with a smiley. Of course that’s a rather silly 
example, but it shows you the basic structure. A middleware has to respond to #call, just like a Proc. 
That’s the reason why a small functional application you can run on Rack may even look like 
following:

app = lambda{|env|                                            # <1>
  [200,                                                       # <2>
    {'Content-Type' => 'text/plain, 'Content-Length' => '2'}, # <3>
    [':)']] }                                                 # <4>

Rack::Handler::WEBrick.run(app, :Port => 7000)                # <5>

In this case we don’t even bother with an inner application, so this is not a middleware but an endpoint. 
Using the curry functionality of Ruby 1.9, we can even make a middleware out of a normal Proc.

hello = lambda{|env| [200, {}, ['Hello', 'World', '!']] }

reverse_middleware = lambda{|app, env|
  status, header, body = app.call(env)
  new_body = []
  body.each{|a| new_body << a.to_s.reverse }
  new_body.reverse!
  [status, header, new_body]
}

app = reverse_middleware.curry[hello]

Rack::Handler::WEBrick.run(app, :Port => 7000)

This would return a body containing !dlroWolleH, it’s almost equivalent with the Smile middleware 
we built above, but works completely without creating a class.

Note
Yukihiro Matsumoto sees the Proc#curry method as a curiosity at best. I don’t think I can agree 
with that.

2. Ramaze modes
As said above, Ramaze uses a lot of middleware to provide flexible functionality that can be 
maintained, improved, or replaced independently without even touching the Ramaze codebase.

The simplest way to do this is to change the so-called mode Ramaze runs in. A mode describes a set of 
middlewares and gives it a unique name.



At the moment there are only two modes builtin: :live and :dev, the :dev mode is the default and 
should be changed upon (or before) deployment as it has a huge impact on the overall performance of 
Ramaze.

This option can be changed via Ramaze.options.mode, changing it will trigger an internal rebuild 
of the Dispatcher, so you can switch between modes during runtime, although this might be used only 
rarely it can be useful for example to adapt your application to peak-load by changing to a more 
aggressive caching strategy.

It is recommended that you maintain your own set of middlewares for larger applications so you can 
influence the behaviour better. We will show later how to do this in just a few lines of code.

The harder part of using your own set of middlewares is in figuring out which functionality you need 
and in which order it should be applied, something we will try to help you with as well.

2.1. The :dev and :live modes

In :dev mode, short for development mode, Ramaze will try to make your developing as effortless as 
possible. It automatically reloads your source code in the background on requests, and validates your 
application’s behaviour against the Rack specification using Rack::Lint.

This may not sound like much, but Rack::Lint alone usually causes a major impact in performance 
(your application might run around 2-3x slower). Once your application is developed, you can disable 
this functionality safely.

In case you do some really crazy things with Ramaze, you should implement this while using the Lint 
to ensure conformance to the spec and avoid trouble during deployment. Once you are ready to deploy, 
Lint will have made sure that you can do safely and won’t hit any problems.

Although the source-code reloaders are built to perform as well as possible, they still have a noticeable 
impact and increase the amount of disk I/O significantly. You certainly don’t want to have your 
hardware die earlier on you than necessary, so we recommend to avoid source-reloading when you 
don’t use it.

The middlewares used during :dev mode are:

• m.use Rack::Lint 

• m.use Rack::CommonLogger, Ramaze::Log 

• m.use Rack::ShowExceptions 

• m.use Rack::ShowStatus 

• m.use Rack::RouteExceptions 

• m.use Rack::ConditionalGet 

• m.use Rack::ETag 

• m.use Rack::Head 

• m.use Ramaze::Reloader 

• m.run Ramaze::AppMap 

The middlewares used during :live mode are:



• m.use Rack::CommonLogger, Ramaze::Log 

• m.use Rack::RouteExceptions 

• m.use Rack::ShowStatus 

• m.use Rack::ConditionalGet 

• m.use Rack::ETag 

• m.use Rack::Head 

• m.run Ramaze::AppMap 

2.2. Your own modes

As mentioned above, add your own modes is a piece of cake once you know how it’s being done. Let 
me illustrate that with a little example of an anonymous mode.

Ramaze.start do |mode|
  mode.use Rack::CommonLogger
  mode.use Rack::ShowStatus
  mode.use Rack::RouteExceptions
  mode.use Rack::Head
  mode.use Rack::ETag
  mode.use Rack::ConditionalGet
  mode.use Rack::ContentLength
  mode.run Ramaze::AppMap
end

This is an exact replica of the :live mode, but now you can shuffle middlewares around, insert other 
ones you like or need, or remove some you won’t need.

If you want to keep a couple of middlewares handy for fast switching you can give them names, that’s 
just as easy, I’ll skip the actual mode of the block, it’s identical to the above example using 
Ramaze::start:

Ramaze.middleware :moon do |mode|
  # ...
end

Ramaze.middleware :earth do |mode|
  # ...
end

Ramaze.middleware :mars do |mode|
  # ...
end

Ramaze.options.mode = :earth

Now that we have multiple modes in place we can freely switch between them and tweak each as we 
need.



3. Rack middleware
The two main repositories with middlewares ready to use are the rack on Rubyforge and rack-contrib 
on Github projects. Obviously, all the middlewares in Rack are available to you out of the box, as 
Ramaze depends on it, but many more are in rack-contrib, and you can simply install the rack-contrib 
gem and require 'rack/contrib' in your application.

As the number of middlewares is constantly growing, I’ll just present you with some that are 
commonly used, and leave it up to you to discover more.

3.1. Rack::Lint

Lint validates your application and the requests and responses according to the Rack spec. The current 
Rack spec can always be found on the Rack homepage or may be generated by issuing rake SPEC in 
the Rack source.

The spec covers aspects like valid response body, correct response status, proper response headers, etc. 
The full spec with some annotations can be found in the Rack chapter.

3.2. Rack::CommonLogger

The CommonLogger middleware forwards every request to the given app, and logs a line in the Apache 
common log format to the given logger, or rack.logger by default.

In Ramaze we pass Ramaze::Log, an instance of Ramaze::LogHub, so we integrate cleanly with 
any middleware that is not aware of Ramaze logging.

An example of the log output would be:

127.0.0.1 - - [29/Apr/2009 18:57:40] "GET /admin/edit/proto%2Fwelcome HTTP/1.1" 
500 230231 0.6686
127.0.0.1 - - [29/Apr/2009 18:57:42] "GET / HTTP/1.1" 200 1301 0.0831
127.0.0.1 - - [29/Apr/2009 18:57:44] "GET /favicon.ico HTTP/1.1" 304 - 0.0070
127.0.0.1 - - [29/Apr/2009 18:57:47] "GET /test HTTP/1.1" 200 1301 0.1751
127.0.0.1 - - [29/Apr/2009 18:58:46] "GET / HTTP/1.1" 200 1301 0.0531
127.0.0.1 - - [29/Apr/2009 18:58:46] "GET / HTTP/1.1" 200 1301 0.0710

Configuration
Configuration is a big aspect of Ramaze, although it tries to offer your sane defaults out of the box, it 
still gives you many ways to influence just about every behaviour.

Most commonly, you won’t have to configure that much, Ramaze follows the "convention over 
configuration" principle to some extent, but never forces a particular way of doing things on you.

The center of all configuration is in Ramaze.options, an instance of Ramaze::Options. The 
configuration is self-documenting, by requiring a bit of description when you first define an option. 
You may use this also to add custom options to your own application, common usage of this would be 
credentials for an administrator, SMTP options for a mailer, or things like a page title or number of 
items displayed on the front-page.

I will first introduce you to some options that are most used in Ramaze, changing the web-server and 
port, changing your caching backend, and cookie expiration times.

http://github.com/rack/rack-contrib
http://github.com/rack/rack-contrib
http://rack.rubyforge.org/


There is much more that we don’t cover here, I invite you to a short IRB session that shows you how to 
find out more.

Ramaze.options.each_option{|key, value| puts("%-20s: %s" % [key, value[:doc]]) }
response            :
setup               : Will send ::setup to each element during Innate::start
cache               : Innate::Cache::Memory
session             :
log_hub             :
roots               : The directories this application resides in
helpers_helper      :
trap                : Trap this signal to issue shutdown, nil/false to disable 
trap
adapter             :
views               : Directories containing the view templates
middleware_compiler : The compiler for middleware
app                 :
prefix              : Prefix used to create relative links
started             : Innate::start will not start an adapter if true
layouts             : Directories containing the layout templates
mode                : Indicates which default middleware to use, (:dev|:live)
publics             : The directories containing static files to be served

Quite the information overload to get started, so we’ll pick a few options for further inspection.

1. Basic options
Something you will notice is that some options don’t have a documentation, this is because they were 
automatically inserted and are actually their own instance of Ramaze::Option living on another 
class. So the :session lives in Ramaze::Session::options, :adapter is on 
Ramaze::Adapter::options, and so on.

adapter = Ramaze.options.adapter

adapter.port # => 7000
adapter.get(:port) # => {:value=>7000, :doc=>"Port for the server"}

adapter.handler # => :webrick
adapter.get(:handler) # => {:value=>:webrick, :doc=>"Web server to run on"}

Now, that was not so bad. How about inspecting some of the options directly on Ramaze::options 
now.

options = Ramaze.options

options.get(:cache) # => {:names=>{:value=>[:session, :view], :doc=>"Assign a 
cache to each of these names on Innate::Cache::setup"}}
options.get(:layouts) # => {:value=>["layout"], :doc=>"Directories containing the 
layout templates"}
options.get(:middleware_compiler) # => {:value=>Ramaze::MiddlewareCompiler, 
:doc=>"The compiler for middleware"}
options.get(:prefix) # => {:value=>"/", :doc=>"Prefix used to create relative 
links"}
options.get(:publics) # => {:value=>["public"], :doc=>"The directories containing 
static files to be served"}
options.get(:roots) # => {:value=>["."], :doc=>"The directories this application 



resides in"}
options.get(:started) # => {:value=>false, :doc=>"Innate::start will not start an 
adapter if true"}
options.get(:trap) # => {:value=>"SIGINT", :doc=>"Trap this signal to issue 
shutdown, nil/false to disable trap"}
options.get(:views) # => {:value=>["view"], :doc=>"Directories containing the view 
templates"}

setup = options.get(:setup)
setup[:doc] # => "Will send ::setup to each element during Innate::start"
setup[:value] # => [Innate::Cache, Innate::Node, Ramaze::Controller, 
Ramaze::Plugin]

mode = options.get(:mode)
mode[:doc] # => "Indicates which default middleware to use, (:dev|:live)"
mode[:value] # => :dev

OK, enough of that, let’s see how we can change some of these options:

Ramaze.options.adapter.port # => 7000
Ramaze.options.adapter.port = 8080
Ramaze.options.adapter.port # => 8080

Ramaze.options.mode # => :dev
Ramaze.options.mode = :live
Ramaze.options.mode # => :live

Not so hard as well.

As you can see, options are laid out in a tree structure, where options can be nested within options. 
Ramaze uses this functionality to keep the configuration for specific parts of the source close to the 
source itself, instead of defining everything in one place and then sending you around hunting for the 
places where that option might be used (that was the way we did it before 2009.04).

Sessions

1. What are sessions
The term session is used for data associated with a specific client (browser). The most common way is 
to send a cookie to the browser, which sends it back on every request. This enables us to keep client 
state between requests.

Sessions are an essential part of most dynamic web applications, so Ramaze tries to make it as 
comfortable as possible to use them to their full potential.

In this chapter we will see how and when sessions are initialized, and how you can use them in your 
Controllers, Views, and Models. We will also go into some of the lower-level parts in Rack, which will 
show you how you can manage cookies yourself, which might make sense in very lightweight 
applications.

As usual, we start with a small example before we dive deeper.



2. Usage example
In this example we show you how to use sessions within the Controller, this is the most common usage 
and essential for further understanding.

The example consists of a very simple counter, every time someone visits your site for the first time, it 
goes up, but it will not increase on subsequent visits. This is usually called a counter for unique page 
views.

require 'ramaze'

class Counter < Ramaze::Controller
  map '/'
  @@counter = 0

  def index
    "You are visitor number #{@@counter}"
  end

  private

  def count_visit
    return if session[:counted]
    @@counter += 1
    session[:counted] = true
  end

  before_all{ count_visit }
end

Ramaze.start

So, before every action, we call count_visit, which checks whether a specific value is set in the 
session associated with the client making the request. If you are using a normal browser, with cookies 
enabled, you will always get You are visitor number 1. However, if you disable cookies, or delete the 
cookie associated with localhost, or make a request with another browser (or curl), the counter will 
increase further.

So to cheat and increase your counter you can simply write a script that just doesn’t send a cookie back 
to the client like following.

require 'open-uri'

100_000.times do
  open('http://localhost:7000/')
end

There are some ways to close this loophole, but for now I’ll leave that as an exercise for the reader.

3. Access
You may access the session for the currently active request from anywhere in your application, either 
via Trinity or by calling Ramaze::Current.session.

This will come in handy, for example if you need to obtain the currently active language for a user, or 



to determine whether the user has certain privileges in your Model.

As for all things related to Trinity, be aware that you will not be able to have access to the session if 
you are in another thread as Ramaze uses threads to contain state about the request/response cycle.

If you want to carry over state into a background job you have to use Ramaze.defer like following:

class Register < Ramaze::Controller
  def register
    # assume we register a new user here

    session[:email] = user.email
    session[:username] = user.name

    Ramaze.defer{
      mail(session[:email], session[:username], 'Welcome')
    }
  end
end

This will spawn a new Thread, and copy all thread variables over, so Ramaze will know which 
request/response cycle spawned the Thread and can access all of the state.

4. Cookies
Before we dive deeper into sessions we will have to understand cookies.

HTTP cookies are small text files containing data used by websites, and are stored on the user’s 
computer.

Cookies are set when the server sends a Set-Cookie header in a response. Afterwards, the exact data the 
server sent is transmitted back to the server as the value of the HTTP_COOKIE in every request the 
client makes.

4.1. History

HTTP cookies have a long history back to the beginnings of the WWW, they were used in other 
contexts for applications before, but only after adoption in Netscape and Internet Explorer they opened 
a vast potential for web-applications as we know them today where state plays a major role.

The term "HTTP cookie" derives from "magic cookie", a packet of data a program receives but only 
uses for sending it again, possibly to its origin, unchanged. Magic cookies were already used in 
computing when Lou Montulli had the idea of using them in Web communications in June 1994. At the 
time, he was an employee of Netscape Communications, which was developing an e-commerce 
application for a customer. Cookies provided a solution to the problem of reliably implementing a 
virtual shopping cart.

Together with John Giannandrea, Montulli wrote the initial Netscape cookie specification the same 
year. Version 0.9beta of Mosaic Netscape, released on October 13, 1994, supported cookies. The first 
actual use of cookies (out of the labs) was made for checking whether visitors to the Netscape Web site 
had already visited the site. Montulli applied for a patent for the cookie technology in 1995; it was 
granted in 1998. Support for cookies was integrated in Internet Explorer in version 2, released in 
October 1995.

The introduction of cookies was not widely known to the public, at the time. In particular, cookies were 



accepted by default, and users were not notified of the presence of cookies. Some people were of the 
existence of cookies as early as the first quarter of 1995, but the general public learned about them after 
the Financial Times published an article about them on February 12, 1996. In the same year, cookies 
received a lot of media attention, especially because of potential privacy implications. Cookies were 
discussed in two U.S. Federal Trade Commission hearings in 1996 and 1997.

The development of the formal cookie specifications was already ongoing. In particular, the first 
discussions about a formal specification started in April 1995 on the www-talk mailing list. A special 
working group within the IETF was formed. Two alternative proposals for introducing state in HTTP 
transactions had been proposed by Brian Kristol himself, soon decided to use the Netscape 
specifications as a starting point. On February 1996, the working group identified third-party cookies as 
a considerable privacy threat. The specification produced by the group was eventually published as 
RFC 2109 in February 1997. It specifies that third-party cookies were either not allowed at all, or at 
least not enabled by default.

At this time, advertising companies were already using third-party cookies. The recommendation about 
third-party cookies of RFC 2109 was not followed by Netscape and Internet Explorer. RFC 2019 was 
followed by RFC 2965 in October 2000.

HTTP_cookie
— Wikipedia 

4.2. Structure

Let’s inspect the headers sent back when we try to access the index action from the example above.

delta ~ % curl -I localhost:7000/
HTTP/1.1 200 OK
Content-Length: 24
Content-Type: text/html
Server: WEBrick/1.3.1 (Ruby/1.9.2/2009-03-02)
Date: Thu, 02 Apr 2009 11:17:15 GMT
Connection: Keep-Alive
Set-Cookie: 
innate.sid=d686bd7b9a4b4b8ccc2cf5b1d4f6a47d315ef375acb91a73caa34a825cf19f1b; 
path=/; expires=Tue, 19-Jan-2038 03:14:07 GMT

You see that Ramaze sends the Set-Cookie header automatically because we try to store data in the 
session in our Controller.

The value of the Set-Cookie header consists of key=value pairs, where value usually contains 
following elements:

domain Domain that set the cookie

path Relative path below which the cookie is used

expires Point in time when the cookie expires. If no 
time is given then the cookie will be deleted 
once the browser closes.

secure TODO



HttpOnly TODO

4.3. Usage

Now that we have a better knowledge of what cookies are and what they are supposed to do, let’s see 
how to use them within Ramaze.

require 'ramaze'

class CookieCounter < Ramaze::Controller
  map '/'

  def index
    "This is your visit number #{@count}"
  end

  private

  def count_visit
    counter = request.cookies['counter'].to_i
    @count = counter + 1
    response.set_cookie('counter', @count)
  end

  before_all{ count_visit }
end

Ramaze.start

In this example we don’t count unique page views, but rather keep track of the number of visits a single 
browser has made so far.

We are using methods provided by Rack, you can find them in Rack::Request and 
Rack::Response. Ramaze uses the same methods to set cookies for sessions.

Rack::Respone#set_cookie also allows a Hash as argument for the additional key/value pairs 
that we showed above.

set_cookie('counter',
           :domain => nil,
           :path => '/',
           :secure => true,
           :expires => (Time.now + 60 * 60),
           :httponly => false,
           :value => 1)

Note
The only required argument is :value, all the others are optional and the cookie is valid 
without them.

Usually you won’t need to care about cookies at all, and excessive usage of them is considered bad 
practice.



4.4. Limitations

There are several limitations imposed on cookies.

According to the HTTP cookie specifications, browsers should be able to store a minimal amount of 
cookies. In particular, an internet browser is expected to be able to store at least 300 cookies of four 
kilobytes each, and at least 20 cookies per server or domain.

Since around 2007, all major browsers store around 30-50 cookies per domain. But the size of each 
cookie still has severe limitations, Internet Explorer for example will limit the total size of all cookies 
for one domain to 4 kilobytes.

So it makes sense to utilize Sessions instead of a large amount of cookies if you want to store arbitrary 
amounts of data without worrying about it, all that is stored on the client is an UUID that associates 
their cookie with data stored on the server.

5. Configuration of session cookies
Now that we have a better understanding about cookies, let’s investigate the way Ramaze utilizes 
cookies for the session, in particular how to change the default behaviour through configuration.

The configuration for sessions is kept at Ramaze::Session.options, which is also reachable 
through Ramaze.options.session.

The defaults are:

Key for the session cookie :key innate.sid

Domain the cookie relates to :domain false

Path the cookie relates to :path /

Use secure cookie :secure false

Time of cookie expiration :expires Tue Jan 19 12:14:07 +0900 
2038

Please note that there is no way (yet) to disable sessions. If you do not want to have them, don’t use 
them.

This contrasts with earlier releases of Ramaze, where sessions were always created as soon as a request 
was made unless you explicitly disabled sessions.

Ramaze since version 2009.04 initializes sessions in a lazy manner, only setting a session cookie the 
first time you explicitly store a value in the session. You can still try to read a value from an 
uninitialized session, which simply returns nil and won’t initialize a session cookie either.

5.1. Expiration

The most important option here might be the time of expiration.

By default Ramaze uses the highest allowed value for a Time instance on 32bit systems, which is some 



time in the year 2038.

The expiration time also decides the time-to-live of the server-side value of the session, which is 
expired once the cookie is set to expire.

So in order to keep your server from taking up too much memory when you expect a lot of unique 
visitors it is recommended to set this to a more reasonable value depending on your application.

6. Concurrency
A common problem when it comes to utilizing sessions is concurrency. If you have more than one 
instance of your application running to handle requests via a load-balancer it gets quite hard to predict 
which instance will handle requests for which client, and browsers may end up having multiple active 
sessions within the same application.

By default, sessions are stored in a conventional Hash that is kept in memory, this is the fastest way and 
allows for arbitrary data to be kept in the session value, such as instances of Proc or objects with a 
custom meta-classes.

However, this flexibility has major drawbacks when it comes to scaling your application, so you should 
avoid storing anything that cannot be fully serialized from the get-go to avoid problems down the road.

Ramaze provides multiple ways to persist your session beyond the boundaries of your application’s 
memory. You may use the Marshal, YAML, DRb, Memcached, or Sequel caches that ship with 
Ramaze or you may even create your own Cache, which is covered in detail in the chapter about 
caches.

The default method of caching is in-memory, in a conventional Hash. To change this, you have to 
modify the options at Ramaze::Cache.options, also available at Ramaze.options.cache.

For example, to persist sessions to the different caches (useful if you want to share them between 
multiple instances), you can do following:

# Using Marshal serialization to the file-system
Ramaze.options.cache.session = Ramaze::Cache::Marshal

# Using YAML serialization to the file-system
Ramaze.options.cache.session = Ramaze::Cache::YAML

# Using DRb serialization to a shared object
Ramaze.options.cache.session = Ramaze::Cache::DRb

# Using Memcached serialization to a cloud of shared servers
Ramaze.options.cache.session = Ramaze::Cache::Memcached

# Using Sequel serialization to the file-system
Ramaze.options.cache.session = Ramaze::Cache::Sequel

Each of these cache back-ends has unique strengths and weaknesses, please read more about them in 
the chapter about caches.

7. Flash
The session flash has nothing to do with Adobe Flash ®.



It is best described as a special-purpose Hash that expires parts of it’s contents after every 
request/response cycle.

The purpose of this functionality might be best explained as a way to display the results of some action 
a user invokes in the action coming after it.

So let’s say an user tries to access a restricted area, and you simply want to redirect the user elsewhere, 
displaying a message that the access was denied.

class RestrictedArea < Ramaze::Controller
  def index
    do_some_important_stuff
  end

  before_all do
    unless user_is_privileged?
      session[:error_message] = "Access denied"
      redirect_referer
    end
  end
end

class NormalArea < Ramaze::Controller
  def index
    %q(
<?r if error_message = session.delete(:error_message) ?>
  <div class="error">#{h error_message}</div>
<?r end ?>
#{a('restricted area', RestrictedArea.r)}
    )
  end
end

Given that the user clicks the link in NormalArea and tries to access RestrictedArea, an error 
message will be displayed after the redirect, and the message is deleted from the session so it will not 
show up on the next request.

Flash basically automates the deletion, and acts as a short-term memory, so you never have to 
remember to delete the contents.

Using the default helper, Helper::Flash, our example would look like this:

class RestrictedArea < Ramaze::Controller
  def index
    do_some_important_stuff
  end

  before_all do
    unless user_is_privileged?
      flash[:error] = "Access denied"
      redirect_referer
    end
  end
end

class NormalArea < Ramaze::Controller
  def index
    %q(



#{flashbox}
#{a('restricted area', RestrictedArea.r)}
    )
  end
end

It might not be shorter in this case, but over a larger application this simplicity comes in handy.

Ramaze also ships with a Helper::Flash#flashbox, which automates the display of flash 
messages as they are used in this example.

The output of flashbox looks like this:

<div class="flash" id="flash_error">Access denied</div>

Also, this default representation can be changed easily, but more about this in the section about the 
flash helper.

7.1. Implementation

The implementation of flash functionality is quite simple, when you are accessing Session#flash, 
a Hash will be stored in session[:FLASH]. This is the location where all key/value pairs you 
assign to Session#flash will be stored.

After every request that used a session, Session::Flash#rotate! will be called and will move 
session[:FLASH] to session[:FLASH_PREVIOUS]. When you inspect the flash, it will show 
a merged Hash consisting of :FLASH and :FLASH_PREVIOUS, with :FLASH taking precedence.

This way, after two requests, values disappear forever unless reassigned.

Helpers
Helpers are modules for inclusion into, and extension of controllers or other classes.

The distinguishing feature of helper modules is that they are expected to be in the Ramaze::Helper 
name-space. There is also a naming-convention of helper modules and the files they reside in to allow 
automatic requiring. These constrains allow you to use any helper without prior configuration.

1. Usage
To tell Ramaze that you want to use a certain helper in your Controller, you can simply use the 
helper method. This method takes one or more arguments, every argument has to be the snake-cased 
name of a Helper module.

class MainController < Ramaze::Controller
  helper :formatting

  def index
    number_format(rand)
  end
end

In this case we include the Ramaze::Helper::Formatting module into MainController. 



Ramaze will first require a file named ramaze/helper/formatting.rb, then search the 
Ramaze::Helper name-space for the module called Formatting, and eventually include it.

Equivalent behaviour can be achieved with:

require 'ramaze/helper/formatting'

class MainController < Ramaze::Controller
  include Ramaze::Helper::Formatting

  def index
    number_format(rand)
  end
end

But once you start using multiple helpers this becomes very verbose. So using the helper method is 
recommended.

2. Making your own
Creating helpers is simple.

module Ramaze
  module Helper
    module SmileyHelper
      FACES = {
        ':)' => '/smilies/smile.gif'
        ';)' => '/smilies/twink.gif'
      }
      REGEX = Regexp.union(*FACES.keys)

      def smile(string)
        string.gsub(REGEX){ FACES[$1] }
      end
    end
  end
end

Just put this into a file in the root of your application, named helper/smiley_helper.rb, and you can use 
it in your Controller with helper :smiley_helper.

3. Naming
Helpers have to follow a specific naming convention for the respective file they are defined in. Ramaze 
will not require all helpers available on startup, since some of them may have external dependencies 
that are not relevant to your application, this also helps keeping the used memory lower.

In Ruby, a module is assigned to a constant, which should be named using camel-case. However, the 
common convention to name files after the class they contain, is to write the same name in snake-case. 
Ramaze follows these conventions, module-names are camel-case, while their filenames are snake-
case.

Ramaze will search the Ramaze::Helper module for module-names in a case-insensitive manner 
and simply chooses the first it can find. This means that, if you have a helper called AB and another one 
named Ab, it’s usually down to luck which one you will get. The reasoning behind this behaviour is 



that helpers like CGI would be impossible to find. We simply rely on the fact that, if you ask for the 
cgi helper, only the first cgi.rb will be required, and so only one Helper matching /^cgi$/i 
exists.

4. Helper file lookup
Ramaze will search a few paths to find your helper. We well call this the Helper PATH. By default, 
there are three directories (and in this order) searched: ./helper/, lib/innate/helper/, and 
lib/ramaze/helper/.

Note
The paths to Innate and Ramaze helpers are in fact absolute, but since I don’t know where they 
are on your machine, I simply show the known part.

You can modify the Helper PATH via the paths option on Innate::HelpersHelper. The final 
/helper part of the path is appended on requiring, the PATH itself only specifies the directory the 
/helper directory is in.

hh = Innate::HelpersHelper
hh.options.paths[0] # => "/home/manveru/c/ramaze-book"
hh.options.paths[1] # => "/home/manveru/c/innate/lib/innate"
hh.options.paths[2] # => "/home/manveru/c/ramaze/lib/ramaze"

5. Methods during action creation
There is a clear distinction between normal modules and helper modules in the way Ramaze treats 
helper modules during action creation.

Methods of helpers are not considered for actions unless they are public and the module was added to 
the Ramaze::Helper::LOOKUP Set.

By default, this Set is empty, and you will not have to care about this too much in your application, as 
the helpers that provide real actions add themselves as needed.

Conflicts of method names in Helper and Controller will prefer the Controller, following the same rules 
as Ruby inheritance.

module Ramaze
  module Helper
    module Locale
      LOOKUP << self

      def locale(name)
        session[:LOCALE] = name
      end
    end
  end
end

In this example we expose the public method Locale#locale (Ruby methods are public by default). So 
in your application your can just use the helper and when the client visits the /locale/en route the 
session will reflect this choice.

Note
Usually you will want to add a call to redirect_referrer in this method, but we keep it 
simple here, the actual functionality doesn’t matter.



6. Default helpers
Ramaze comes with a small selection of default helpers deemed essential for any application, they are 
kept in the Innate source. The major difference to non-default helpers is that you will not have to 
explicitly state their usage, they will included in your Controller automatically.

The helpers available by default are:

• Aspect 

• CGI 

• Flash 

• Link 

• Redirect 

• Render 

• SendFile 

We will cover each of them in more detail below.

At the time of writing, there are also around 30 non-default helpers in the Ramaze source. Let us take a 
look at the most popular ones.

Some of the helpers in Ramaze add functionality to the default helpers of Innate, I will simply cover 
the combined behaviour in these cases, as you are most likely using the ones in Ramaze.

7. Aspect helper
The Aspect helper provides you with functionality known from AOP (Aspect Oriented Programming). 
Sometimes you just want to execute some code around the execution of an Action without the Action 
being aware of it. Examples for this include authentication, logging, persistence, and routing.

The helper provides you with four methods, symmetrical in functionality.

7.1. Using before_all

So you have a Controller that requires a user to be administrator in order to be allowed to do anything.

This might look like:

require 'ramaze'

class AdminController < Ramaze::Controller
  def create_user(name)
    # ...
  end

  def delete_user(name)
    # ...
  end

  before_all{ redirect_referrer unless user_is_root? }

  private



  def user_is_root?
    session[:user_is_root]
  end
end

Ramaze.start

8. CGI helper
The CGI helper provides shortcuts to methods commonly used to deal with escaping and unescaping 
text for different contexts.

The name originated from the CGI module it utilized to provide it’s functionality. Today there is only 
one method that isn’t commonly used, left that calls the CGI module.

There are four symmetric methods to deal with escaping and unescaping HTML and URIs, and one 
method to escape text for usage in templates.

In common applications, the most prevalent method might be h, an alias for 
html_and_code_escape.

All methods of the CGI Helper may be accessed directly as module-functions as well.

8.1. Encoding text for use in URIs with url_encode

The set of allowed ASCII characters in an URI is very limited. When you want to create an URI, you 
have to take special care to avoid using characters that have special meaning and encode them properly.

For example, let’s see how we can put Innate & Ramaze into a query parameter in the following IRB 
session:

name = Ramaze::Helper::CGI.url_encode('Innate & Ramaze')
name # => "Innate+%26+Ramaze"
uri = URI("http://google.com/search?q=#{name}")
uri # => #<URI::HTTP:0xf77f9980 URL:http://google.com/search?q=Innate+%26+Ramaze>
uri.to_s # => "http://google.com/search?q=Innate+%26+Ramaze"

8.2. Decoding text from URIs with url_decode

This is simply the reverse operation of url_encode, so we will use the output of the previous 
example as input.

encoded = Ramaze::Helper::CGI.url_encode('Innate & Ramaze')
encoded # => "Innate+%26+Ramaze"

decoded = Ramaze::Helper::CGI.url_decode(encoded)
decoded # => "Innate & Ramaze"

9. Flash helper
The naming of this helper might be confusing at first, it doesn’t have anything to do with Adobe Flash 
®.



It provides two methods, flash and flashbox.

The flash method is a shortcut to Ramaze::Current.session.flash, you can find more in-
depth information in the chapter about Ramaze::Session.

10. Link helper
Linking and obtaining routes

11. Redirect helper
Redirect or respond immediately

12. Render helper
Render other actions

Testing

1. About testing
There is a large movement in the Ruby community that advocates testing applications and libraries. 
This chapter tries to cover most of the aspects of testing your Ramaze applications. We will see things 
like the history of testing with Ramaze, browser automation, XPATH assertion, and why you should 
care.

I need to clarify my terms for this chapter, with tests and specs I basically mean the same thing, 
asserting some kind of functionality or behaviour. The advocates for specs will usually try to make the 
distinction seem larger than it really is, all it comes down to is some changes in terminology and 
syntax.

The larger difference is between testing after the fact and so-called BDD, short for Behaviour Driven  
Development. For the prior one you simply write your code first and assert that it works later, in the 
latter case you formulate your expectations first, and then go on to write the least amount of code 
possible to make the expectation go green.

For the rest of this chapter, I will be using specs for an expectation in the BDD sense of writing a test 
before the code it tests is actually implemented, and tests for everything else.

My personal take on whether to use BDD is flexible, depending on the project. If you know the kind of 
output you can expect when your code is finished, e.g. if it’s not something experimental, take the BDD 
approach, jot down the basics and then just make your specs pass. However, sometimes what you are 
doing will just be novel to you, and when you start out you will have no idea where you will end up. In 
this case it’s probably better to start with writing small examples that are easy to change and don’t have 
any fixed expectations. But make sure to actually write tests afterwards to avoid regressions.

I think the biggest value of testing is exactly this: avoiding regressions. It is very easy to go on a bug-
hunt for a couple of hours, fix a bug and then skip the write-a-test part, and while this might work for 
smaller projects, you will be hating yourself once it grows or should be integrated into a larger system.



Take care of your future self, it doesn’t have as many nerves as you, and it might have a time-machine.

2. Ramaze and testing
Since soon after Ramaze was created, most of it’s functionality was tested regularly.

Initially, since I had limited experience with the whole concept of testing, it was not something I did for 
every feature and change, more like a guideline and help to avoid regression of functionality.

For the first year, I used the RSpec framework to write and run tests, mostly because it wasn’t hard on 
my eyes like the Test::Unit library that ships with Ruby.

I found several problematic things with RSpec, it was very slow due to it’s size, if you look at it today 
it has around five thousand lines of code, most of which will have to be parsed and executed for every 
single spec, in the early days it also had a very instable API, which made my specs break, even though 
my code didn’t change at all.

Eventually I grew tired of fixing my code just to adapt it to their fancy new ways of doing things, back 
then the whole spec movement was really new and most of what they did had never been done before, 
so I understand their decision to keep moving forward, and today they still play a major role in the 
Ruby community. I just was not interested in features I was not going to use and minor changes in 
terminology and syntax. What I had worked and looked nice already.

At this point I would like to thank the people behind RSpec, without them Ramaze wouldn’t be what it 
is today.

Late in 2007, Christian Neukirchen started work on a tiny RSpec clone called Bacon, which I found 
appealing immediately and which eventually replaced the role RSpec had within the Ramaze project.

We will cover more about Bacon later on.

3. Testing your application
This chapter should cover

• specs vs. tests 

4. Bacon
Bacon is a small RSpec clone weighing less than 350 lines of code but nevertheless providing all 
essential features.

Truth will sooner come out from error than from confusion

— Francis Bacon 

It had a small core of functionality, just enough to make specs look appealing and readable. The syntax 
was resembling RSpec closely, but it left out things that I didn’t care about anyway. Thanks to that 
similarity it was a breeze to port my existing specs over to Bacon.

Since it was very small, and no release had been made at that point, I simply put it into our Ramaze 
repository and shipped it until around April of 2009.

Bacon has long since reached version 1.0 and remained as small as ever, Ramaze doesn’t ship it 
anymore, but relies on it as a development-dependency.



4.1. Usage

Using Bacon on it’s own is very simple, let’s write a little spec for a method we want to implement.

require 'bacon'

Bacon.summary_on_exit

def sum(*args)
end

describe 'sum' do
  it 'sums arguments' do
    sum(1, 2, 3, 4).should == (1 + 2 + 3 + 4)
  end
end

require 'bacon'

Bacon.summary_on_exit

def sum(*args)
  args.inject(:+)
end

describe 'sum' do
  it 'sums arguments' do
    sum(1, 2, 3, 4).should == (1 + 2 + 3 + 4)
  end
end

require 'bacon'

Bacon.summary_on_exit

def sum(*args)
  args.inject(:+)
end

def average(*args)
end

describe 'sum' do
  it 'sums arguments' do
    sum(1, 2, 3, 4).should == (1 + 2 + 3 + 4)
  end
end

describe 'average' do
  it 'calculates average of arguments' do
    average(1, 2, 3, 4).should == (1 + 2 + 3 + 4) / 4.0
  end
end

require 'bacon'

Bacon.summary_on_exit



def sum(*args)
  args.inject(:+)
end

def average(*args)
  args.inject(:+) / args.size.to_f
end

describe 'sum' do
  it 'sums arguments' do
    sum(1, 2, 3, 4).should == (1 + 2 + 3 + 4)
  end
end

describe 'average' do
  it 'calculates average of arguments' do
    average(1, 2, 3, 4).should == (1 + 2 + 3 + 4) / 4.0
  end
end

4.2. Shared contexts

…

5. Innate::Mock
…

6. Rack::Test
…

7. Hpricot
…

8. Webrat
…

9. Mechanize
…

10. Examples
…



10.1. GET

…

10.2. POST

…

10.3. Multipart POST

…

10.4. Working with models

…

Actions
In this chapter we will see what role Actions play within Ramaze, as usual we will see a bit of history 
first, then go on to look at the structure of the Action Struct, eventually creating our own Actions.

1. History
Actions were first introduced around Summer 2007, the intention behind this change was to bundle a 
template, a method, and the parameters to the method into one Object that could be easily passed 
around and modified.

Over time, this brought with it a change of the role of the Controller, which did everything from routing 
to rendering and grew quite large.

Eventually, the rendering part was ripped out of Controller, and put into the Action class, and further 
changes made the Action pass itself to the template rendering.

The role of the Controller became to build the Action depending on the state of the Controller. The 
Controller would still do most of the routing, but how that changed is probably better explained in the 
chapter about controllers.

Today, Action still resembles the original Action from 2007, but has been expanded as there were 
additions like aspects and layouts.

2. Structure
The Action class is an instance of the Struct class, with following members:

engine The templating engine called during rendering

instance Lazily created instance of the node

layout Array consisting of the type and name of the layout



method Name of the instance-method called on instance during rendering

node Class that the instance will be instantiated from

options Hash with options and meta-information for the engine

params Array of parameters for the instance-method used for the call

method_value The return value of the instance-method, set during rendering

variables Hash of instance-variables usable in the method and templates

view String with the full path to a file used as view-template

view_value Contents of the view-template file

wish Indicates the requested content-representation

Most of these members are not of interest for the average user, but they become increasingly interesting 
if you try doing partial rendering of actions.

3. Creating actions
If you try to learn more about the internals of Ramaze, you will need to understand Actions, if you are 
not interested in this, feel free to skip this section.

3.1. The hard way

The theoretical knowledge from above is of course not very valuable if you don’t have had any 
previous experience with Ramaze, so I’ll give you a quick rundown to creating a simple Action for a 
small example.

class MainController < Ramaze::Controller
  def index
    "Hello, World!"
  end

  def sum(*numbers)
    numbers.inject(0.0){|sum, num| sum + num.to_f }.to_s
  end
end

index = Ramaze::Action.create(
          :node => MainController,
          :method => :index,
          :engine => lambda{|action, value| value })
index.call # => "Hello, World!"



Similarly we can create an Action for the sum Action:

class MainController < Ramaze::Controller
  def index
    "Hello, World!"
  end

  def sum(*numbers)
    numbers.inject(0.0){|sum, num| sum + num.to_f }.to_s
  end
end

sum = Ramaze::Action.create(
          :node => MainController,
          :method => :sum,
          :params => ['32', '8', '2'],
          :engine => lambda{|action, value| value })
sum.call # => "42.0"

I will not go into much detail about these examples, as I think they can speak for themselves. You will 
soon see more information about the methods involved in the rendering of an Action. If you want to see 
the Action automatically created during normal runtime of Ramaze you can use the 
Current.action or simply action methods in your Controller and inspect the returned value. It 
is also possible to change parts of the Action at this stage, allowing you to influence details of the 
rendering process.

3.2. The easy way

It’s quite tedious to do all this work of creating actions manually when Ramaze can simply do it for 
you. It’s just good to gain an understanding, so let’s create the same actions as in the examples above, 
this time using the Node#resolve method which is also available in controllers.

class MainController < Ramaze::Controller
  map '/'

  def index
    "Hello, World!"
  end

  def sum(*numbers)
    numbers.inject(0.0){|sum, num| sum + num.to_f }.to_s
  end
end

index = MainController.resolve('index')
index.call # => "Hello, World!"

And the same can be done for the sum Action.

class MainController < Ramaze::Controller
  map '/'

  def index
    "Hello, World!"
  end



  def sum(*numbers)
    numbers.inject(0.0){|sum, num| sum + num.to_f }.to_s
  end
end

sum = MainController.resolve('sum')
sum.params = %w[32 8 2]
sum.call # => "42.0"

Views
Views in Ramaze are a special category of templates. Every Controller has various paths and rules used 
to find templates for views. Lookup of the View is done when assembling an Action, but usually it is 
not necessary to actually obtain an Action, alternatively an Action method can provide a string template 
that is used for the rendering of the View.

1. History
As a MVC framework, Ramaze used views from the very start, and the concept has changed very little 
since.

Originally, Ramaze didn’t have a concept of layouts, and after layouts were added, things got messy. 
More about this should be said in the chapter about layouts, but in essence layouts are now confined in 
their own lookup paths and are not considered as file templates for views anymore.

At first, view file templates were located below a directory called template in the application’s root 
directory.

This was changed over time to a view directory in a move to streamline terminology around the 
templating engines.

2. Structure
By default, view file templates are located in a directory called view in the application root. Nested 
inside this directory can be further directories, named after Controller mappings, which contain further 
templates for that Controller. The Controller mapped to / owns the files at the top of view/, but using 
special invocations, it may reach inside other folders below that and use templates located there.

The structure for a medium-sized application may look like this:

view
|-- contact.xhtml
|-- financial_report
|   `-- index.xhtml
|-- index.xhtml
|-- new.xhtml
|-- news
|   `-- index.xhtml
|-- portfolio
|   |-- edit.xhtml
|   |-- index.xhtml
|   `-- new.xhtml
`-- view.xhtml



This gives us information about the internal structure of the application already, there may be 
controllers mapped to /, /financial_report, /news, and /portfolio, and all of these files represent a 
possible Action.

2.1. The index template

Ramaze has a convention about the naming of the / Action for every Controller, which is instead called 
index as it is quite hard to create a file called /.xhtml (which would instead turn out to be a hidden file 
called .xhtml).

So, every time you want to have a view file template that is used in requests to, for example, /foobar, 
you create a file at view/foobar/index.xhtml.

2.2. Faking depth

If you want to make an Action for /foobar/foo/bar/baz but want to have the view file template provided 
by the Controller mapped to /, you can create a file at view/foobar__foo__bar__baz.xhtml, every 
double-underscore is translated into slashes. The same applies for names of methods of that Controller.

2.3. Inline templates

You will find that Ramaze will try to utilize the return value of the controller method as template if no 
file template was found. It does this by calling #to_s on the object returned and running the resulting 
String through the specified templating engine.

This kind of template is commonly called inline template, and it’s usually what you start out with when 
you write a small application.

It’s very easy to sketch out ideas this way, and makes it easy to prototype functionality in a single file.

I am sure that there will be some that don’t hesitate writing even large applications with one of the 
builder templating engines and they will be content with writing their templates directly in the 
controller methods.

However, as your application grows, I highly recommended to separate controllers and views to avoid a 
maintenance nightmare.

As a rule of thumb, I start splitting if I need more than one Controller or use more than a handful of 
templates. Don’t take this as a rule set in stone, it’s simply my view of things, and everyone may use 
Ramaze as they see fit.

3. Path lookup
There are a number of factors that play into the lookup of views, I will analyze and explain them.

Ramaze provides powerful ways to change just about anything in your application, so it is only natural 
that the way it looks for view templates is just a convention by pre-configuration. After reading this 
section you should have enough knowledge to make Ramaze serve your purposes.

The path to any template consists of three four parts, which I will call application mapping, application 
view mapping, controller view mapping, and view file template.

The defaults result in a path as follows.

application mapping: './'



application view mapping: 'view'
controller view mapping: '/controller'
view file template: 'foo.xhtml'

./view/controller/foo.xhtml

The directory portions of the path may actually be each an Array of paths, providing alternative lookup 
paths. To illustrate this, take following path definition and the simple brute-force order in which it is 
searched.

application mapping: ['app1', 'app2']
application view mapping: ['view1', 'view2']
controller view mapping: ['controller1', 'controller2']
view file template: 'foo.xhtml'

app1/view1/controller1/foo.xhtml
app1/view1/controller2/foo.xhtml

app1/view2/controller1/foo.xhtml
app1/view2/controller2/foo.xhtml

app2/view1/controller1/foo.xhtml
app2/view1/controller2/foo.xhtml

app2/view2/controller1/foo.xhtml
app2/view2/controller2/foo.xhtml

Although this allows for very smart sharing of templates between controllers or even whole 
applications, it is also a way to shoot yourself in the foot. You should be fully aware of what you are 
doing and consider your choice carefully.

Ramaze ships with a tool called AppGraph, which helps you by visualizing all possible Actions in your 
application. This can be very valuable if you are dealing with complex lookup patterns, especially if 
you are dealing with an application you didn’t write yourself or when aggregating different 
applications.

4. Configuration
The paths for view file template lookup can be easily modified. Every Ramaze App allows you to 
configure it’s own paths as well, without affecting other applications in your site.

The following example should give you a quick overview of the path looked up for a specific 
Controller.

class Example < Ramaze::Controller
end

Ramaze.start(:started => true)

Ramaze.options.roots # => ["."]
Ramaze.options.views # => ["view"]
Example.mapping # => "/example"
Example.view_mappings # => [["view"], ["/example"]]

Example.possible_paths_for(Example.view_mappings) # => ["./view/example/"]



4.1. Global configuration

The default values for the application mapping and application view mapping are:

Ramaze.options.roots # => ["."]
Ramaze.options.views # => ["view"]

They will be inherited into every new Application.

If you change these defaults, it will also affect any application that didn’t specify their own paths, so 
watch out for that.

4.2. Controller configuration

There is one method to manipulate the controller view mapping called map_views.

Please do not use absolute paths, all paths in the controller view mapping are relative to the application 
view mapping, which in turn is relative to the application mapping.

class Example < Ramaze::Controller
  map_views 'foo', 'bar'
end

Ramaze.start(:started => true)

Ramaze.options.roots # => ["."]
Ramaze.options.views # => ["view"]
Example.mapping # => "/example"
Example.view_mappings # => [["view"], ["foo", "bar"]]

Example.possible_paths_for(Example.view_mappings) # => ["./view/foo/", 
"./view/bar/"]

5. Content representations
As if the above wasn’t enough already, Ramaze also offers you ways to present your content in 
different ways for different requests, in Ramaze this functionality is called provides.

Relevant to the lookup of provides is the filename extension of your view file template. We will deal 
with this in more depth in the chapter about content representations, for now you don’t have to care 
about it.

Layouts
Layouts in Ramaze are a special category of templates. Every Controller has paths and rules used to 
find templates for layouts. Lookup of the template is done when assembling an Action, but is in no way 
a necessary element of an Action.

1. History
Layouts were first introduced in mid-2007. At first they were simply a small addition to wrap a 
rendered Action into another Action. This allowed for easier use of alternative templating engines, as at 



the time only the Ezamar templating engine provided equivalent functionality through Elements.

As it became evident that Elements were not as easy to work with, layouts were used increasingly. 
However, the functionality was still rather hard to control and not well integrated into the framework.

This was changed when Ramaze was starting to utilize Innate, and they are now well integrated and 
powerful citizens of Ramaze.

Since this time, layouts also have their own directory to live in.

2. Usage
This is a collection of small examples that try to give you a taste of what’s possible with layouts.

Usually, there will be only one layout per controller, but you can dispatch to different layouts 
depending on the request. The layout method takes a block, which, depending on the argument to the 
method, behaves differently. In the normal case, you will only supply one argument and no block.

layout('default')

This will apply the same default layout to all actions.

layout('default'){|path, wish| !request.xhr? }

This will apply the default layout only to actions that were not requested via AJAX (which sets the 
HTTP_X_REQUESTED_WITH header to XMLHttpRequest). This can be very useful if you want to 
include parts of a page dynamically from JavaScript without using a separate controller.

layout('default'){|path, wish| wish == 'html' }

Now we apply a layout only if the client wished for html (through using no, or the html extension in the 
URI) So a request to /foo or /foo.html will have the default layout, but a request to /foo.json won’t. 
Please see the section about content representations about more information about how Ramaze 
handles these requests.

layout{|path, wish| ['red', 'blue', 'green'].choice }

Now we’re getting even more dynamic, choosing a random layout for every request. Usually you’ll 
want to put some reasonable logic inside the block, but the point of this example is that, if you don’t 
pass an argument, but a block, to the layout method, it will use the return value of the block as the 
name for the layout. This can be useful if you want to let users choose a theme, or have a different 
layout for users that are logged in.

2.1. Layout from template

Layouts are usually read from a file template that resides in the /layout directory. Following example 
will search for a file called /layout/default.xhtml and, if found, wrap the content of the action inside it.

class Box < Ramaze::Controller
  layout :default

  def index
    'Hello, World!'
  end
end



Additionally to this, we will need the file for the layout template to reside in, we’ll use an identical 
layout as further above.

$ cat layout/default.xhtml
{ #{@content} }

That’s just as easy, but enables you to work easier on larger layouts.

2.2. Layout from method

Following example should illustrate a simple use-case for a layout that uses the return value of a 
method:

class Box < Ramaze::Controller
  layout :default

  def index
    'Hello, World!'
  end

  def default
    '{ #{@content} }'
  end
end

This will wrap every request to /index in curly brackets. Not very useful, but it should illustrate the 
basic working principle.

Note
If you have both a file template and a method for the layout, Ramaze will use the file template 
and will not call the method. In future versions this behavior might change to call the method as 
well.

2.3. Layout directories per controller

Additionally to the /layout directory, sub-directories thereof can be searched for templates. This lookup 
is specific to each Controller. To control the behavior you can use the map_layouts method, which 
takes multiple arguments.

3. Structure
By default, layout file templates are located in a directory called layout in the application root. Nested 
inside this directory can be further directories, if you want a controller to look for layout file templates 
in a deeper directory, you can use the map_layouts method. By default all layout file templates are 
searched at the top.

It is not very common for applications to utilize more than a few layouts, you will find many 
applications with only a single layout, and even a few without any layouts at all.

The layouts of a medium-sized application may organized like this.

layout
|-- default.xhtml
|-- feed
|   |-- default.rss.xhtml
|   `-- default.atom.xhtml



`-- mobile.xhtml

It is a common pattern to name the layout used for most controllers default, but there is nothing 
enforcing it. In fact, to use a layout, you will have to explicitly tell Ramaze which to use.

4. Path lookup
To provide flexibility for large projects (and for use-cases I haven’t imagined yet), I decided to reuse 
the view file template lookup already in use for layouts. This ensures that the behavior of both is 
identical and available through a consistent API.

4.1. Inline templates

If no layout file template can be found for a specified layout, a method may be used instead.

5. Configuration
To get a feeling for the places where Ramaze will search for layouts, you can inspect like in the 
following example.

class Example < Ramaze::Controller
end

Ramaze.start(:started => true)

Ramaze.options.roots # => ["."]
Ramaze.options.layouts # => ["layout"]
Example.mapping # => "/example"
Example.layout_mappings # => [["layout"], ["/"]]

Example.possible_paths_for(Example.layout_mappings) # => ["./layout/"]

There are two options on Ramaze.options that influence the lookup, one is the roots, which is 
set depending on your application, the other the layouts which defaults to ['/layout'].

Ramaze.options.roots # => ["."]
Ramaze.options.layouts # => ["layout"]

6. Content representations
Layouts can also play a role in content representations, and you can add layouts for specific provides. 
As we saw above, we were using files like feed/default.rss.xhtml and feed/default.atom.xhtml, they 
apply to the rss and atom provides respectively.

Let’s show this with another little example so you can learn how to use this functionality effectively.

class Smiley < Ramaze::Controller
  map '/'
  layout :default
  provide :frown, :engine => :Etanni
  provide :smile, :engine => :Etanni

  def index



    'emotions ftw!'
  end
end

So we add two provides named frown and smile, and there is one default provide for html. To take 
advantage of this, we can add three layout files in our layout directory.

$ cat layout/default.xhtml
:| #{@content} |:

$ cat layout/default.frown.xhtml
:( #{@content} ):

$ cat layout/default.smile.xhtml
:) #{@content} (:

Following responses will be served on requests:

/index :| emoticons ftw! |:

/index.frown :( emoticons ftw! ):

/index.smile :) emoticons ftw! (:

7. Implementation
Sometimes the Ramaze default behavior won’t be what you need, so knowing how layouts are 
implemented can help you building custom actions with layouts tailored to your needs.

I will start with an arbitrary existing Action, then explain how it was created and how it will be 
rendered, finally we’ll cover some more possibilities.

On every request, the layout will be determined and set in the Action, which will clone itself.

Rack spec
This specification aims to formalize the Rack protocol. You can (and should) use Rack::Lint to enforce 
it. When you develop middleware, be sure to add a Lint before and after to catch all mistakes.

1. Rack applications
A Rack application is an Ruby object (not a class) that responds to #call. It takes exactly one 
argument, the environment and returns an Array of exactly three values: The status, the headers, and 
the body.

1.1. The Environment

The environment must be an true instance of Hash (no subclassing allowed) that includes CGI-like 
headers.



The application is free to modify the environment.

The environment is required to include these variables (adopted from PEP333), except when they’d be 
empty, but see below.

REQUEST_METHOD 

The HTTP request method, such as "GET" or "POST". This cannot ever be an empty string, and 
so is always required. 

SCRIPT_NAME 

The initial portion of the request URL’s "path" that corresponds to the application object, so that 
the application knows its virtual "location". This may be an empty string, if the application 
corresponds to the "root" of the server. 

PATH_INFO 

The remainder of the request URL’s "path", designating the virtual "location" of the request’s 
target within the application. This may be an empty string, if the request URL targets the 
application root and does not have a trailing slash. This value may be percent-encoded when I 
originating from a URL. 

QUERY_STRING 

The portion of the request URL that follows the ?, if any. May be empty, but is always required! 

SERVER_NAME, SERVER_PORT 

When combined with SCRIPT_NAME and PATH_INFO, these variables can be used to complete 
the URL. Note, however, that HTTP_HOST, if present, should be used in preference to 
SERVER_NAME for reconstructing the request URL. SERVER_NAME and SERVER_PORT can 
never be empty strings, and so are always required. 

HTTP_ Variables 

Variables corresponding to the client-supplied HTTP request headers (i.e., variables whose names 
begin with HTTP_). The presence or absence of these variables should correspond with the 
presence or absence of the appropriate HTTP header in the request. 

In addition to this, the Rack environment must include these Rack-specific variables:

rack.version 

The Array [1,0], representing this version of Rack. 

rack.url_scheme 

http or https, depending on the request URL. 



rack.input 

See below, the input stream. 

rack.errors 

See below, the error stream. 

rack.multithread 

true if the application object may be simultaneously invoked by another thread in the same 
process, false otherwise. 

rack.multiprocess 

true if an equivalent application object may be simultaneously invoked by another process, 
false otherwise. 

rack.run_once 

true if the server expects (but does not guarantee!) that the application will only be invoked this 
one time during the life of its containing process. Normally, this will only be true for a server 
based on CGI (or something similar). 

Additional environment specifications have approved to standardized middleware APIs. None of these 
are required to be implemented by the server.

rack.session 

A hash like interface for storing request session data. The store must implement: #store(key, 
value) (aliased as []=); #fetch(key, default = nil) (aliased as []); 
#delete(key); #clear; 

The server or the application can store their own data in the environment, too. The keys must contain at 
least one dot, and should be prefixed uniquely. The prefix rack. is reserved for use with the Rack core 
distribution and other accepted specifications and must not be used otherwise.

The environment must not contain the keys HTTP_CONTENT_TYPE or HTTP_CONTENT_LENGTH 
(use the versions without HTTP_).

The CGI keys (named without a period) must have String values. There are the following restrictions:

• rack.version must be an array of Integers. 

• rack.url_scheme must either be http or https. 

• There must be a valid input stream in rack.input. 

• There must be a valid error stream in rack.errors. 

• The REQUEST_METHOD must be a valid token. 

• The SCRIPT_NAME, if non-empty, must start with / 



• The PATH_INFO, if non-empty, must start with / 

• The CONTENT_LENGTH, if given, must consist of digits only. 

• One of SCRIPT_NAME or PATH_INFO must be set. PATH_INFO should be / if 
SCRIPT_NAME is empty. SCRIPT_NAME never should be /, but instead be empty. 

1.1.1. The Input Stream

The input stream is an IO-like object which contains the raw HTTP POST data. If it is a file then it 
must be opened in binary mode. The input stream must respond to #gets, #each, #read, and 
#rewind.

#gets 

Must be called without arguments and return a string, or nil on EOF. 

#read 

Behaves like IO#read. Its signature is #read([length, [buffer]]). If given, #length 
must be an non-negative Integer (>= 0) or nil, and #buffer must be a String and may not be 
nil. If #length is given and not nil, then this method reads at most #length bytes from the 
input stream. If #length is not given or nil, then this method reads all data until EOF. When 
EOF is reached, this method returns nil if #length is given and not nil, or "" if #length is not 
given or is nil. If #buffer is given, then the read data will be placed into #buffer instead of a 
newly created String object. 

#each 

Must be called without arguments and only yield Strings. 

#rewind 

Must be called without arguments. It rewinds the input stream back to the beginning. It must not 
raise Errno::ESPIPE: that is, it may not be a pipe or a socket. Therefore, handler developers 
must buffer the input data into some rewindable object if the underlying input stream is not 
rewindable. 

#close 

Must never be called on the input stream. 

1.1.2. The Error Stream

The error stream must respond to #puts, #write, and #flush.

#puts 

Must be called with a single argument that responds to #to_s. 



#write 

Must be called with a single argument that is a String. 

#flush 

Must be called without arguments and must be called in order to make the error appear for sure. 

#close 

Must never be called on the error stream. 

1.2. The Response

1.2.1. The Status

This is an HTTP status. When parsed as integer (#to_i), it must be greater than or equal to 100.

1.2.2. The Headers

The header must respond to #each, and yield values of key and value. The header keys must be 
Strings. The header must not contain a Status key, contain keys with : or newlines in their name, 
contain keys names that end in - or , but only contain keys that consist of letters, digits, or - and start 
with a letter. The values of the header must be Strings, consisting of lines (for multiple header values, 
e.g. multiple Set-Cookie values) seperated by \n. The lines must not contain characters below 037.

1.2.3. The Content-Type

There must be a Content-Type, except when the Status is 1xx, 204 or 304, in which case there must be 
none given.

1.2.4. The Content-Length

There must not be a Content-Length header when the Status is 1xx, 204 or 304.

1.2.5. The Body

The Body must respond to #each and must only yield String values. The Body itself should not be an 
instance of String, as this will break in Ruby 1.9. If the Body responds to #close, it will be called 
after iteration. If the Body responds to #to_path, it must return a String identifying the location of a 
file whose contents are identical to that produced by calling #each; this may be used by the server as 
an alternative, possibly more efficient way to transport the response. The Body commonly is an Array 
of Strings, the application instance itself, or a File-like object.

1.3. Thanks

Some parts of this specification are adopted from PEP333: Python Web Server Gateway Interface v1.0 
(http://www.python.org/dev/peps/pep-0333/). I’d like to thank everyone involved in that effort.

http://www.python.org/dev/peps/pep-0333/


Glossary
Innate 

Provides the core functionality for Ramaze. 

Rack 

A modular Ruby webserver interface that specifies the way Ramaze communicates with web 
servers. 

Ruby 

Interpreted object-oriented programming language, created by Yukihiro Matsumoto. 

MVC 

Short for: Model View Controller. A concept made popular by Smalltalk GUIs and since adopted 
for many other purposes. Ramaze is a web application framework that advocates the MVC 
paradigm. 

View 

yada ydaa 

Model 

yada ydaa 

Controller 

yada ydaa 

provides 

Term used within Ramaze for various means of content representation of resources. 


