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Graphs and trees are ubiquitous data structures. They do not easily fit into a Relational model; therefore 
querying them requires a little bit more ingenuity than the routine select-project-join. 

Compared to graphs, trees are relatively simple creatures. They are easy to draw. Almost any problem 
involving a tree structure is easy to solve. Algorithms on trees are generally fast. Edges, which are very 
important in graph definition, can be almost completely ignored for a tree. The tree structure could be 
encrypted in the nodes alone, and those tree encodings could be invented almost on a daily basis. 

Most of this chapter will focus on tree encodings. The rest is dedicated to smaller problems such as 
node ordering by ad-hoc criteria. Yet, several problems are postponed until the next chapter, wherein 
hierarchical aggregate queries and tree comparisons will be studied. A reader who is primarily looking 
to develop some intuition with vendor specific hierarchical SQL extensions (be that the connect by, or 
the recursive with operator) is advised to proceed to the next chapter. 

Materialized Path

Tree is a subclass of graph. However, since graphs are more complex entities with their own set of 
problems, they will not be explored in depth in this chapter. 

For all practical purposes a tree can be defined as a set of nodes arranged into a hierarchical structure 
via  tree  encoding.  The  purpose  of  tree  encoding is  to  assign  a  special  label  to  each  node  and to 
manipulate tree nodes  i.e. query and update  by means of those labels. Informally, each node is� �  
equipped with a global positioning device that transmits the node s coordinates. Once each node s� �  
geographical position is known, typical queries such as the following can be answered:

Count all the employees who are located south of the King , in other words, who report directly or� �  
indirectly to him. 

Without a doubt you are already familiar with at least one such encoding: a UNIX directory structure. 
Each file location in the hierarchy is defined by an absolute pathname -- a chain of directories that a 
user has to navigate from root to the leaf of the hierarchy.  For example,  /usr/bin/ls is  an absolute 
pathname.  On  the  top  of  the  directory  structure  there  is  a  directory  called  usr,  which  contains  a 
directory called bin, which contains a file called ls.

This seemingly straightforward idea can be applied to any tree structure. First, discover or cook up 
some unique key, which would distinguish the node s children. Then, list all the ancestor unique keys�  
as the node s encoding. This list can be represented as a string (if so, there must be agreement upon a�  
string delimiter), or as a collection datatype. This encoding will be referred to as materialized path. The 
adjective materialized emphasizes the fact that the path is stored. If the path is built dynamically, then 
the adjective is omitted and thus this dynamically generated encoding is referred to as simply path.

At this moment, there is enough expressive power for basic queries: 

An employee JONES and all his (indirect) subordinates:



select e1.ename from emp e1, emp e2
where e1.path like e2.path || '%'
and e2.ename = 'JONES'

An employee FORD and the chain of his supervisors:
select e1.ename from emp e1, emp e2
where e2.path like e1.path || '%'
and e2.ename = 'FORD'

Usually, query performance is unrelated to the form in which the query is written in SQL. In principle, 
a  query  optimizer  has  powerful  techniques  for  transforming  any  query  into  an  equivalent,  better 
performing expression. Not in this case!

The first  query is fine.  The matching a string prefix is roughly equivalent to a range check where 
chr(255) is the last ASCII code:
select e1.ename from emp e1, emp e2
where e1.path between e2.path and e2.path || chr(255)
and e2.ename = 'JONES'

A  reasonable  execution  strategy  would  be  finding  the  unique  employee  record  e2 matching 
ename='JONES', first. Finding a unique record is typically done via an index lookup, in other words, 
extremely  fast.  The  first  query  execution  step  establishes  the  range  of  paths,  which  the  e1.path 
encoding has to fall into. If this range of paths does not contain too many paths, then the best way to 
find them is to iterate via the index range scan. The more subordinates JONES has, the longer it will 
take to output them. In other words, the speed of this query is determined by the size of the output � 
there is hardly a more efficient way to express this query.

The equivalent range check rewriting is valid for the second query as well:
select e1.ename from emp e1, emp e2
where e2.path between e1.path and e1.path || chr(255)
and e2.ename = 'FORD'

Unlike the previous case, however, now not only is the interval of paths known, but also the path 
e2.path itself, which will be matched against all the intervals of the e1 table. Certainly, there would not 
be that many paths that match with e2.path, because the chain of ancestors in a balanced hierarchy is 
never too long. 

Yet, there is no obvious index that could leverage this idea. The condition of a point belonging to an 
interval  consists  of  the two predicates  e2.path >= e1.path  and  e2.path <= e1.path ||  chr(255).  A 
normal B-Tree index on the  e1.path column could be leveraged while processing the first predicate 
only, and it would have to scan half of the records on average. 

Finding a Set of Intervals Covering a Point

Querying ranges is asymmetric from a performance perspective. It is easy to 
answer if a point falls inside some interval, but it is hard to index a set of intervals 
that contain a given point. Applied to nested sets, there will be difficulty in 
answering queries about the node�s ancestors.

The  critical  observation  is  that  a  chain  of  ancestors  is  encoded  in  the  node s  materialized  path�  
encoding. The database does not have to be accessed in order to tell that the ancestors of nodes 1.5.3.2 
are nodes 1.5.3,  1.5, and 1. A simple function could parse the materialized path.  This function s�  

natural habitat  is the client side. There a dynamic SQL query is built:� �
select ename from emp 
where path in ('1.5.3', '1.5', '1')



On the server side the implementation could be little bit more sophisticated. The list of ancestors can be 
implemented as a temporary table built by a table function. This sketchy idea will be developed in 
greater detail in later sections where more elegant encodings than the materialized path will be studied.

This section concludes with a materialized path tree encoding schema design:
table TreeNodes ( 
   path varchar2(2000),   �
)

This schema leaves the structure of the TreeNodes.path column unspecified.  Ideally, some constraints 
could  be  added,  but  once  again,  a  much  nicer  development  that  does  not  require  string  parsing 
techniques awaits us ahead.


