
Guides.rubyonrails.org
Skip navigation.

• Home
• Guides Index

Start Here
Getting Started with Rails

Models
Rails Database Migrations
Active Record Validations and Callbacks
Active Record Associations
Active Record Query Interface

Views
Layouts and Rendering in Rails
Action View Form Helpers

Controllers
Action Controller Overview
Rails Routing from the Outside In

Digging Deeper
Active Support Core Extensions
Rails Internationalization API
Action Mailer Basics
Testing Rails Applications
Securing Rails Applications
Debugging Rails Applications
Performance Testing Rails Applications
Configuring Rails Applications
Rails Command Line Tools and Rake Tasks
Caching with Rails
Asset Pipeline

Extending Rails
The Basics of Creating Rails Plugins
Rails on Rack
Creating and Customizing Rails Generators

Contributing to Ruby on Rails
Contributing to Ruby on Rails
API Documentation Guidelines
Ruby on Rails Guides Guidelines

Release Notes
Ruby on Rails 3.1 Release Notes
Ruby on Rails 3.0 Release Notes
Ruby on Rails 2.3 Release Notes
Ruby on Rails 2.2 Release Notes

• Contribute
• Credits

http://guides.rubyonrails.org/index.html
http://guides.rubyonrails.org/credits.html
http://guides.rubyonrails.org/contribute.html
http://guides.rubyonrails.org/2_2_release_notes.html
http://guides.rubyonrails.org/2_3_release_notes.html
http://guides.rubyonrails.org/3_0_release_notes.html
http://guides.rubyonrails.org/3_1_release_notes.html
http://guides.rubyonrails.org/ruby_on_rails_guides_guidelines.html
http://guides.rubyonrails.org/api_documentation_guidelines.html
http://guides.rubyonrails.org/contributing_to_ruby_on_rails.html
http://guides.rubyonrails.org/generators.html
http://guides.rubyonrails.org/rails_on_rack.html
http://guides.rubyonrails.org/plugins.html
http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/caching_with_rails.html
http://guides.rubyonrails.org/command_line.html
http://guides.rubyonrails.org/configuring.html
http://guides.rubyonrails.org/performance_testing.html
http://guides.rubyonrails.org/debugging_rails_applications.html
http://guides.rubyonrails.org/security.html
http://guides.rubyonrails.org/testing.html
http://guides.rubyonrails.org/action_mailer_basics.html
http://guides.rubyonrails.org/i18n.html
http://guides.rubyonrails.org/active_support_core_extensions.html
http://guides.rubyonrails.org/routing.html
http://guides.rubyonrails.org/action_controller_overview.html
http://guides.rubyonrails.org/form_helpers.html
http://guides.rubyonrails.org/layouts_and_rendering.html
http://guides.rubyonrails.org/active_record_querying.html
http://guides.rubyonrails.org/association_basics.html
http://guides.rubyonrails.org/active_record_validations_callbacks.html
http://guides.rubyonrails.org/migrations.html
http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/index.html
http://guides.rubyonrails.org/index.html
http://guides.rubyonrails.org/asset_pipeline.html#mainCol

Asset Pipeline
This guide covers the asset pipeline introduced in Rails 3.1. By referring to this guide you will be able
to:

• Understand what the asset pipeline is and what it does
• Properly organize your application assets
• Understand the benefits of the asset pipeline
• Adding a pre-processor to the pipeline
• Package assets with a gem

Chapters

1. What is the Asset Pipeline ?
• Main Features
• What is Fingerprinting and Why Should I Care?

2. How to Use the Asset Pipeline
• Asset Organization
• Coding Links to Assets
• Manifest Files and Directives
• Preprocessing

3. In Development
• Turning Debugging off

4. In Production
• Precompiling Assets
• Live Compilation

5. Customizing the Pipeline
• CSS Compression
• JavaScript Compression
• Using Your Own Compressor
• Changing the assets Path
• X-Sendfile Headers

6. How Caching Works
7. Adding Assets to Your Gems
8. Making Your Library or Gem a Pre-Processor
9. Upgrading from Old Versions of Rails

1 What is the Asset Pipeline?

The asset pipeline provides a framework to concatenate and minify or compress JavaScript and CSS
assets. It also adds the ability to write these assets in other languages such as CoffeeScript, Sass and
ERB.

http://guides.rubyonrails.org/asset_pipeline.html#upgrading-from-old-versions-of-rails
http://guides.rubyonrails.org/asset_pipeline.html#making-your-library-or-gem-a-pre-processor
http://guides.rubyonrails.org/asset_pipeline.html#adding-assets-to-your-gems
http://guides.rubyonrails.org/asset_pipeline.html#how-caching-works
http://guides.rubyonrails.org/asset_pipeline.html#x-sendfile-headers
http://guides.rubyonrails.org/asset_pipeline.html#changing-the-_assets_-path
http://guides.rubyonrails.org/asset_pipeline.html#using-your-own-compressor
http://guides.rubyonrails.org/asset_pipeline.html#javascript-compression
http://guides.rubyonrails.org/asset_pipeline.html#css-compression
http://guides.rubyonrails.org/asset_pipeline.html#customizing-the-pipeline
http://guides.rubyonrails.org/asset_pipeline.html#live-compilation
http://guides.rubyonrails.org/asset_pipeline.html#precompiling-assets
http://guides.rubyonrails.org/asset_pipeline.html#in-production
http://guides.rubyonrails.org/asset_pipeline.html#turning-debugging-off
http://guides.rubyonrails.org/asset_pipeline.html#in-development
http://guides.rubyonrails.org/asset_pipeline.html#preprocessing
http://guides.rubyonrails.org/asset_pipeline.html#manifest-files-and-directives
http://guides.rubyonrails.org/asset_pipeline.html#coding-links-to-assets
http://guides.rubyonrails.org/asset_pipeline.html#asset-organization
http://guides.rubyonrails.org/asset_pipeline.html#how-to-use-the-asset-pipeline
http://guides.rubyonrails.org/asset_pipeline.html#what-is-fingerprinting-and-why-should-i-care
http://guides.rubyonrails.org/asset_pipeline.html#main-features
http://guides.rubyonrails.org/asset_pipeline.html#what-is-the-asset-pipeline

Prior to Rails 3.1 these features were added through third-party Ruby libraries such as Jammit and
Sprockets. Rails 3.1 is integrated with Sprockets through ActionPack which depends on the
sprockets gem, by default.

By having this as a core feature of Rails, all developers can benefit from the power of having their
assets pre-processed, compressed and minified by one central library, Sprockets. This is part of Rails’
“Fast by default” strategy as outlined by DHH in his 2011 keynote at Railsconf.

In new Rails 3.1 application the asset pipeline is enabled by default. It can be disabled in
application.rb by putting this line inside the Application class definition:

config.assets.enabled = false

It is recommended that you use the defaults for all new apps.

1.1 Main Features

The first feature of the pipeline is to concatenate assets. This is important in a production environment,
as it reduces the number of requests that a browser must make to render a web page. While Rails
already has a feature to concatenate these types of assets — by placing :cache => true at the end of
tags such as javascript_include_tag and stylesheet_link_tag — many people do not use
it.

The default behavior in Rails 3.1 and onward is to concatenate all files into one master file each for JS
and CSS. However, you can separate files or groups of files if required (see below). In production, an
MD5 fingerprint is inserted into each filename so that the file is cached by the web browser but can be
invalidated if the fingerprint is altered.

The second feature is to minify or compress assets. For CSS, this usually involves removing
whitespace and comments. For JavaScript, more complex processes can be applied. You can choose
from a set of built in options or specify your own.

The third feature is the ability to code these assets using another language, or language extension.
These include Sass for CSS, CoffeeScript for JavaScript, and ERB for both.

1.2 What is Fingerprinting and Why Should I Care?

Fingerprinting is a technique whereby the filenames of content that is static or infrequently updated is
altered to be unique to the content contained in the file.

When a filename is unique and based on its content, HTTP headers can be set to encourage caches
everywhere (at ISPs, in browsers) to keep their own copy of the content. When the content is updated,
the fingerprint will change and the remote clients will request the new file. This is generally known as
cachebusting.

The most effective technique is to insert a hash of the content into the name, usually at the end. For
example a CSS file global.css is hashed and the filename is updated to incorporate the hash.

global.css => global-908e25f4bf641868d8683022a5b62f54.css

This is the strategy adopted by the Rails asset pipeline.

Rails’ old strategy was to append a query string to every asset linked with a built-in helper. In the
source the generated code looked like this:

/stylesheets/global.css?1309495796

This has several disadvantages:

1. Not all caches will cache content with a query string
Steve Souders recommends, “…avoiding a querystring for cacheable resources”. He found that
in these case 5-20% of requests will not be cached.

2. The file name can change between nodes in multi-server environments.
The query string in Rails is based on the modification time of the files. When assets are
deployed to a cluster, there is no guarantee that the timestamps will be the same, resulting in
different values being used depending on which server handles the request.

The other problem is that when static assets are deployed with each new release of code, the mtime of
all these files changes, forcing all remote clients to fetch them again, even when the content of those
assets has not changed.

Fingerprinting avoids all these problems by ensuring filenames are consistent based on their content.

Fingerprinting is enabled by default for production and disabled for all the others environments. You
can enable or disable it in your configuration through the config.assets.digest option.

More reading:

• Optimize caching
• Revving Filenames: don’t use querystring

2 How to Use the Asset Pipeline

In previous versions of Rails, all assets were located in subdirectories of public such as images,
javascripts and stylesheets. With the asset pipeline, the preferred location for these assets is
now the app/assets directory. Files in this directory are served by the Sprockets middleware
included in the sprockets gem.

This is not to say that assets can (or should) no longer be placed in public; they still can be and will
be served as static files by the application or web server. You would only use app/assets if you wish
your files to undergo some pre-processing before they are served.

In production, the default is to precompile these files to public/assets so that they can be more
efficiently delivered by the webserver.

When a scaffold or controller is generated for the application, Rails also generates a JavaScript file (or
CoffeeScript file if the coffee-rails gem is in the Gemfile) and a Cascading Style Sheet file (or
SCSS file if sass-rails is in the Gemfile) for that controller.

For example, if a ProjectsController is generated, there will be a new file at
app/assets/javascripts/projects.js.coffee and another at
app/assets/stylesheets/projects.css.scss. You should put any JavaScript or CSS unique
to a controller inside their respective asset files, as these files can then be loaded just for these
controllers with lines such as <%= javascript_include_tag params[:controller] %> or <
%= stylesheet_link_tag params[:controller] %>.

You will need a ExecJS – supported runtime in order to use CoffeeScript. If you are using Mac OS X or
Windows you have a JavaScript runtime installed in your operating system. Check ExecJS
documentation to know all supported JavaScript runtimes.

https://github.com/sstephenson/execjs#readme
https://github.com/sstephenson/execjs#readme
http://www.stevesouders.com/blog/2008/08/23/revving-filenames-dont-use-querystring/
http://code.google.com/speed/page-speed/docs/caching.html
http://www.stevesouders.com/blog/2008/08/23/revving-filenames-dont-use-querystring/

2.1 Asset Organization

Assets can be placed inside an application in one of three locations: app/assets, lib/assets or
vendor/assets.

app/assets is for assets that are owned by the application, such as custom images, JavaScript files
or stylesheets.

lib/assets is for your own libraries’ code that doesn’t really fit into the scope of the application or
those libraries which are shared across applications.

vendor/assets is for assets that are owned by outside entities, such as code for JavaScript plugins.

All subdirectories that exist within these three locations are added to the search path for Sprockets
(visible by calling Rails.application.config.assets.paths in a console). When an asset is
requested, these paths are traversed to see if they contain an asset matching the name specified. Once
an asset has been found, it’s processed by Sprockets and served.

You can add additional (fully qualified) paths to the pipeline in application.rb. For example:

config.assets.paths << File.join(Rails.root, 'app', 'assets', 'flash')

2.2 Coding Links to Assets

Sprockets does not add any new methods to access your assets – you still use the familiar
javascript_include_tag and stylesheet_link_tag.

<%= stylesheet_link_tag "application" %>
<%= javascript_include_tag "application" %>

In regular views you can access images in the assets/images directory like this:

<%= image_tag "rails.png" %>

Provided that the pipeline is enabled within your application (and not disabled in the current
environment context), this file is served by Sprockets. If a file exists at public/assets/rails.png
it is served by the webserver.

Alternatively, a request for a file with an MD5 hash such as public/assets/rails-
af27b6a414e6da00003503148be9b409.png is treated the same way. How these hashes are
generated is covered in the Production Assets section later on in this guide.

Sprockets will also look through the paths specified in config.assets.paths which includes the
standard application paths and any path added by Rails engines.

Images can also be organized into subdirectories if required, and they can be accessed by specifying the
directory’s name in the tag:

<%= image_tag "icons/rails.png" %>

2.2.1 CSS and ERB

If you add an erb extension to a CSS asset, making it something such as application.css.erb,
then you can use the asset_path helper in your CSS rules:

.class { background-image: url(<%= asset_path 'image.png' %>) }

http://guides.rubyonrails.org/asset_pipeline.html#production_assets

This writes the path to the particular asset being referenced. In this example, it would make sense to
have an image in one of the asset load paths, such as app/assets/images/image.png, which
would be referenced here. If this image is already available in public/assets as a fingerprinted file,
then that path is referenced.

If you want to use a css data URI — a method of embedding the image data directly into the CSS file
— you can use the asset_data_uri helper.

#logo { background: url(<%= asset_data_uri 'logo.png' %>) }

This inserts a correctly-formatted data URI into the CSS source.

Note that the closing tag cannot be of the style -%>.

2.2.2 CSS and Sass

When using the asset pipeline, paths to assets must be re-written and sass-rails provides _url and
_path helpers for the following asset classes: image, font, video, audio, javascript, stylesheet.

• image-url("rails.png") becomes url(/assets/rails.png)
• image-path("rails.png") becomes "/assets/rails.png".

The more generic form can also be used but the asset path and class must both be specified:

• asset-url("rails.png", image) becomes url(/assets/rails.png)
• asset-path("rails.png", image) becomes "/assets/rails.png"

2.3 Manifest Files and Directives

Sprockets uses manifest files to determine which assets to include and serve. These manifest files
contain directives — instructions that tell Sprockets which files to require in order to build a single CSS
or JavaScript file. With these directives, Sprockets loads the files specified, processes them if
necessary, concatenates them into one single file and then compresses them (if
Rails.application.config.assets.compress is set to true). By serving one file rather than
many, the load time of pages are greatly reduced as there are fewer requests to make.

For example, in the default Rails application there’s a
app/assets/javascripts/application.js file which contains the following lines:

//= require jquery
//= require jquery_ujs
//= require_tree .

In JavaScript files, the directives begin with //=. In this case, the file is using the require and the
require_tree directives. The require directive is used to tell Sprockets the files that you wish to
require. Here, you are requiring the files jquery.js and jquery_ujs.js that are available
somewhere in the search path for Sprockets. You need not supply the extensions explicitly. Sprockets
assumes you are requiring a .js file when done from within a .js file.

In Rails 3.1, the jquery.js and jquery_ujs.js files are located inside the
vendor/assets/javascripts directory contained within the jquery-rails gem.

The require_tree . directive tells Sprockets to include all JavaScript files in this directory into
the output. Only a path relative to the file can be specified. There is also a require_directory
directive which includes all JavaScript files only in the directory specified (no nesting).

http://en.wikipedia.org/wiki/Data_URI_scheme

There’s also a default app/assets/stylesheets/application.css file which contains these
lines:

/* ...
*= require_self
*= require_tree .
*/

The directives that work in the JavaScript files also work in stylesheets, obviously including
stylesheets rather than JavaScript files. The require_tree directive here works the same way as the
JavaScript one, requiring all stylesheets from the current directory.

In this example require_self is used. This puts the CSS contained within the file (if any) at the top
of any other CSS in this file unless require_self is specified after another require directive.

You can have as many manifest files as you need. For example the admin.css and admin.js
manifest could contain the JS and CSS files that are used for the admin section of an application.

For some assets (like CSS) the compiled order is important. You can specify individual files and they
are compiled in the order specified:

/* ...
*= require reset
*= require layout
*= require chrome
*/

2.4 Preprocessing

The file extensions used on an asset determine what preprocessing is applied. When a controller or a
scaffold is generated with the default Rails gemset, a CoffeeScript file and a SCSS file are generated in
place of a regular JavaScript and CSS file. The example used before was a controller called “projects”,
which generated an app/assets/javascripts/projects.js.coffee and a
app/assets/stylesheets/projects.css.scss file.

When these files are requested, they are processed by the processors provided by the coffee-script
and sass-rails gems and then sent back to the browser as JavaScript and CSS respectively.

Additional layers of pre-processing can be requested by adding other extensions, where each extension
is processed in a right-to-left manner. These should be used in the order the processing should be
applied. For example, a stylesheet called app/assets/stylesheets/projects.css.scss.erb
is first processed as ERB, then SCSS and finally served as CSS. The same applies to a JavaScript file
— app/assets/javascripts/projects.js.coffee.erb is processed as ERB, CoffeeScript
and served as JavaScript.

Keep in mind that the order of these pre-processors is important. For example, if you called your
JavaScript file app/assets/javascripts/projects.js.erb.coffee then it is processed with
the CoffeeScript interpreter first, which wouldn’t understand ERB and therefore you would run into
problems.

3 In Development

In development mode assets are served as separate files in the order they are specified in the manifest
file.

This manifest application.js:

//= require core
//= require projects
//= require tickets

would generate this HTML:

<script src='/assets/core.js?body=1'></script>
<script src='/assets/projects.js?body=1'></script>
<script src='/assets/tickets.js?body=1'></script>

The body param is required by Sprockets.

3.1 Turning Debugging off

You can turn off debug mode by updating development.rb to include:

config.assets.debug = false

When debug mode is off Sprockets will concatenate and run the necessary preprocessors on all files,
generating the following HTML:

<script src='/assets/application.js'></script>

Assets are compiled and cached on the first request after the server is started. Sprockets sets a must-
validate Cache-Control HTTP header to reduce request overhead on subsequent requests — on these
the browser gets a 304 (not-modified) response.

If any of the files in the manifest have changed between requests, the server responds with a new
compiled file.

You can put ?debug_assets=true or ?debug_assets=1 at the end of a URL to enable debug
mode on-demand, and this will render individual tags for each file. This is useful for tracking down
exact line numbers when debugging.

Debug can also be set in the Rails helper methods:

<%= stylesheet_link_tag "application", :debug => true %>
<%= javascript_include_tag "application", :debug => true %>

The :debug option is ignored if the debug mode is off.

You could potentially also enable compression in development mode as a sanity check, and disable it
on-demand as required for debugging.

4 In Production

In the production environment Rails uses the fingerprinting scheme outlined above. By default it is
assumed that assets have been precompiled and will be served as static assets by your web server.

During the precompilation phase an MD5 is generated from the contents of the compiled files, and
inserted into the filenames as they are written to disc. These fingerprinted names are used by the Rails
helpers in place of the manifest name.

For example this:

<%= javascript_include_tag "application" %>
<%= stylesheet_link_tag "application" %>

generates something like this:

<script src="/assets/application-908e25f4bf641868d8683022a5b62f54.js"
type="text/javascript"></script>
<link href="/assets/application-4dd5b109ee3439da54f5bdfd78a80473.css" media="screen"
rel="stylesheet" type="text/css" />

The fingerprinting behavior is controlled by the setting of config.assets.digest setting in Rails
(which is true for production, false for everything else).

Under normal circumstances the default option should not be changed. If there are no digests in the
filenames, and far-future headers are set, remote clients will never know to refetch the files when their
content changes.

4.1 Precompiling Assets

Rails comes bundled with a rake task to compile the asset manifests and other files in the pipeline to
disc.

Compiled assets are written to the location specified in config.assets.prefix. The default setting
will use the public/assets directory.

You must use this task either during deployment or locally if you do not have write access to your
production filesystem.

The rake task is:

bundle exec rake assets:precompile

Capistrano (v2.8.0) has a recipe to handle this in deployment. Add the following
line to Capfile+:

load 'deploy/assets'

This links the folder specified in config.assets.prefix to shared/assets. If you already use
this shared folder you’ll need to write your own deployment task.

It is important that this folder is shared between deployments so that remotely cached pages that
reference the old compiled assets still work for the life of the cached page.

The default matcher for compiling files includes application.js, application.css and all files
that do not end in js or css:

[/\w<notextile><tt>\.(?!js|css).</tt></notextile>/, /application.(css|js)$/]

If you have other manifests or individual stylesheets and JavaScript files to include, you can add them
to the precompile array:

config.assets.precompile += ['admin.js', 'admin.css', 'swfObject.js']

The rake task also generates a manifest.yml that contains a list with all your assets and their
respective fingerprints. This is used by the Rails helper methods and avoids handing the mapping
requests back to Sprockets. Manifest file typically look like this:

rails.png: rails-bd9ad5a560b5a3a7be0808c5cd76a798.png
jquery-ui.min.js: jquery-ui-7e33882a28fc84ad0e0e47e46cbf901c.min.js
jquery.min.js: jquery-8a50feed8d29566738ad005e19fe1c2d.min.js
application.js: application-3fdab497b8fb70d20cfc5495239dfc29.js
application.css: application-8af74128f904600e41a6e39241464e03.css

The default location for the manifest is the root of the location specified in config.assets.prefix
(‘/assets’ by default).

This can be changed with the config.assets.manifest option. A fully specified path is required:

config.assets.manifest = '/path/to/some/other/location'

If there are missing precompiled files in production you will get an “AssetNoPrecompiledError”
exception indicating the name of the missing file.

4.1.1 Server Configuration

Precompiled assets exist on the filesystem and are served directly by your webserver. They do not have
far-future headers by default, so to get the benefit of fingerprinting you’ll have to update your server
configuration to add them.

For Apache:

<LocationMatch "^/assets/.*$">
 # Some browsers still send conditional-GET requests if there's a
 # Last-Modified header or an ETag header even if they haven't
 # reached the expiry date sent in the Expires header.
 Header unset Last-Modified
 Header unset ETag
 FileETag None
 # RFC says only cache for 1 year
 ExpiresActive On
 ExpiresDefault "access plus 1 year"
</LocationMatch>

TODO: nginx instructions

When files are precompiled, Sprockets also creates a Gzip (.gz) version of your assets. This avoids the
server having to do this for any requests; it can simply read the compressed files from disc. You must
configure your server to use gzip compression and serve the compressed assets that will be stored in the
public/assets folder. The following configuration options can be used:

For Apache:

<LocationMatch "^/assets/.*$">
 # 2 lines to serve pre-gzipped version
 RewriteCond %{REQUEST_FILENAME}.gz -s
 RewriteRule ^(.+) $1.gz [L]

 # without it, Content-Type will be "application/x-gzip"
 <FilesMatch .*\.css.gz>
 ForceType text/css
 </FilesMatch>

 <FilesMatch .*\.js.gz>

http://en.wikipedia.org/wiki/Gzip

 ForceType text/javascript
 </FilesMatch>
</LocationMatch>

For nginx:

location ~ ^/(assets)/ {
 root /path/to/public;
 gzip_static on; # to serve pre-gzipped version
 expires max;
 add_header Cache-Control public;
}

4.2 Live Compilation

In some circumstances you may wish to use live compilation. In this mode all requests for assets in the
Pipeline are handled by Sprockets directly.

To enable this option set:

config.assets.compile = true

On the first request the assets are compiled and cached as outlined in development above, and the
manifest names used in the helpers are altered to include the MD5 hash.

Sprockets also sets the Cache-Control HTTP header to max-age=31536000. This signals all
caches between your server and the client browser that this content (the file served) can be cached for 1
year. The effect of this is to reduce the number of requests for this asset from your server; the asset has
a good chance of being in the local browser cache or some intermediate cache.

This mode uses more memory and is lower performance than the default. It is not recommended.

5 Customizing the Pipeline

5.1 CSS Compression

There is currently one option for compressing CSS, YUI. This Gem extends the CSS syntax and offers
minification.

The following line enables YUI compression, and requires the yui-compressor gem.

config.assets.css_compressor = :yui

The config.assets.compress must be set to true to enable CSS compression

5.2 JavaScript Compression

Possible options for JavaScript compression are :closure, :uglifier and :yui. These require the
use of the closure-compiler, uglifier or yui-compressor gems respectively.

The default Gemfile includes uglifier. This gem wraps UglifierJS (written for NodeJS) in Ruby. It
compresses your code by removing white space and other magical things like changing your if and
else statements to ternary operators where possible.

The following line invokes uglifier for JavaScript compression.

https://github.com/mishoo/UglifyJS
https://github.com/lautis/uglifier

config.assets.js_compressor = :uglifier

The config.assets.compress must be set to true to enable JavaScript compression

You will need a ExecJS — supported runtime in order to use uglifier. If you are using Mac OS X or
Windows you have installed a JavaScript runtime in your operating system. Check ExecJS
documentation to know all supported JavaScript runtimes.

5.3 Using Your Own Compressor

The compressor config settings for CSS and JavaScript also take any Object. This object must have a
compress method that takes a string as the sole argument and it must return a string.

class Transformer
 def compress(string)
 do_something_returning_a_string(string)
 end
end

To enable this, pass a new Object to the config option in application.rb:

config.assets.css_compressor = Transformer.new

5.4 Changing the assets Path

The public path that Sprockets uses by default is /assets.

This can be changed to something else:

config.assets.prefix = "/some_other_path"

This is a handy option if you have any existing project (pre Rails 3.1) that already uses this path or you
wish to use this path for a new resource.

5.5 X-Sendfile Headers

The X-Sendfile header is a directive to the server to ignore the response from the application, and
instead serve the file specified in the headers. This option is off by default, but can be enabled if your
server supports it. When enabled, this passes responsibility for serving the file to the web server, which
is faster.

Apache and nginx support this option which is enabled in
config/environments/production.rb.

config.action_dispatch.x_sendfile_header = "X-Sendfile" # for apache
config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect' # for nginx

If you are upgrading an existing application and intend to use this option, take care to paste this
configuration option only into production.rb (and not application.rb) and any other
environment you define with production behavior.

6 How Caching Works

Sprockets uses the default rails cache store to cache assets in development and production.

https://github.com/sstephenson/execjs#readme
https://github.com/sstephenson/execjs#readme

TODO: Add more about changing the default store.

7 Adding Assets to Your Gems

Assets can also come from external sources in the form of gems.

A good example of this is the jquery-rails gem which comes with Rails as the standard JavaScript
library gem. This gem contains an engine class which inherits from Rails::Engine. By doing this,
Rails is informed that the directory for this gem may contain assets and the app/assets,
lib/assets and vendor/assets directories of this engine are added to the search path of
Sprockets.

8 Making Your Library or Gem a Pre-Processor

TODO: Registering gems on Tilt enabling Sprockets to find them.

9 Upgrading from Old Versions of Rails

There are two issues when upgrading. The first is moving the files to the new locations. See the section
above for guidance on the correct locations for different file types.

The second is updating the various environment files with the correct default options. The following
changes reflect the defaults in version 3.1.0.

In application.rb:

Enable the asset pipeline
config.assets.enabled = true

Version of your assets, change this if you want to expire all your assets
config.assets.version = '1.0'

Change the path that assets are served from
config.assets.prefix = "/assets"

In development.rb:

Do not compress assets
config.assets.compress = false

Expands the lines which load the assets
config.assets.debug = true

And in production.rb:

Compress JavaScripts and CSS
config.assets.compress = true

Choose the compressors to use
config.assets.js_compressor = :uglifier
config.assets.css_compressor = :yui

Don't fallback to assets pipeline if a precompiled asset is missed
config.assets.compile = false

Generate digests for assets URLs.

https://github.com/rtomayko/tilt

config.assets.digest = true

Defaults to Rails.root.join("public/assets")
config.assets.manifest = YOUR_PATH

Precompile additional assets (application.js, application.css, and all non-JS/CSS are
already added)
config.assets.precompile += %w(search.js)

There are no changes to test.rb. The defaults in the test environment are:
config.assets.compile is true and config.assets.compress, config.assets.debug and
config.assets.digest are false.

The following should also be added to Gemfile:

Gems used only for assets and not required
in production environments by default.
group :assets do
 gem 'sass-rails', " ~> 3.1.0"
 gem 'coffee-rails', "~> 3.1.0"
 gem 'uglifier'
end

Feedback

You're encouraged to help improve the quality of this guide.

If you see any typos or factual errors you are confident to patch, please clone docrails and push the
change yourself. That branch of Rails has public write access. Commits are still reviewed, but that
happens after you've submitted your contribution. docrails is cross-merged with master periodically.

You may also find incomplete content, or stuff that is not up to date. Please do add any missing
documentation for master. Check the Ruby on Rails Guides Guidelines for style and conventions.

And last but not least, any kind of discussion regarding Ruby on Rails documentation is very welcome
in the rubyonrails-docs mailing list.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License

"Rails", "Ruby on Rails", and the Rails logo are trademarks of David Heinemeier Hansson. All rights
reserved.

http://creativecommons.org/licenses/by-sa/3.0/
http://groups.google.com/group/rubyonrails-docs
http://guides.rubyonrails.org/ruby_on_rails_guides_guidelines.html
https://github.com/lifo/docrails
https://github.com/lifo/docrails

	Guides.rubyonrails.org
	Asset Pipeline
	Chapters
	1 What is the Asset Pipeline?
	1.1 Main Features
	1.2 What is Fingerprinting and Why Should I Care?

	2 How to Use the Asset Pipeline
	2.1 Asset Organization
	2.2 Coding Links to Assets
	2.2.1 CSS and ERB
	2.2.2 CSS and Sass

	2.3 Manifest Files and Directives
	2.4 Preprocessing

	3 In Development
	3.1 Turning Debugging off

	4 In Production
	4.1 Precompiling Assets
	4.1.1 Server Configuration

	4.2 Live Compilation

	5 Customizing the Pipeline
	5.1 CSS Compression
	5.2 JavaScript Compression
	5.3 Using Your Own Compressor
	5.4 Changing the assets Path
	5.5 X-Sendfile Headers

	6 How Caching Works
	7 Adding Assets to Your Gems
	8 Making Your Library or Gem a Pre-Processor
	9 Upgrading from Old Versions of Rails
	Feedback

