
class="heading"

Twitter Bootstrap, Less, and Sass:
Understanding Your Options for Rails 3.1

348 734 35 Hackernews

This entry is part 1 of 3 in the series Twitter Bootstrap and Rails

Twitter Bootstrap and Rails

• Twitter Bootstrap, Less, and Sass: Understanding Your Options for Rails 3.1
• Too good to be true! Twitter Bootstrap meets Formtastic and Tabulous
• How to Customize Twitter Bootstrap’s Design in a Rails app

Twitter Bootstrap is a great way to
quickly build a very polished web site.

By now, we’ve all seen Twitter Bootstrap – it’s a great CSS and Javascript library open sourced by
Twitter that makes it easy to produce a very polished looking site, with fantastic support for layout,
navigation, typography, and much more. Twitter Bootstrap is based on Less.js, the popular dynamic
CSS scripting language written by Alexis Sellier or @cloudhead. Less.js, like Node.js, is implemented
completely with Javascript. While Less is based on Javascript and not Ruby, some great work has been
done just in the last couple of months to make it easy to set up Twitter Bootstrap in your Rails 3.1 app
using a variety of different approaches.

Today I’m going to review the basics of Twitter Bootstrap, and then take a close look at the following
gems and libraries: less-rails-bootstrap, sass-twitter-bootstrap, bootstrap-sass and bootstrap-rails. With
all of these different options available, it’s hard to know exactly how to get started using Twitter
Bootstrap with Rails. Before you dive in and start building the next killer Twitter Bootstrap Rails 3.1
app, be sure to understand how these different gems work under the hood so you can decide which one
is right for you and your app.

Twitter Bootstrap basics
On the surface, Twitter Bootstrap is simply a single CSS file, bootstrap.css, that provides all of the style
and layout support, along with a few Javascript files that implement various dynamic features. This
means the fastest and simplest way to get started using it is just to copy bootstrap.css into your Rails

javascript:window.location=%22http://news.ycombinator.com/submitlink?u=%22+encodeURIComponent(document.location)+%22&t=%22+encodeURIComponent(document.title)
https://github.com/anjlab/bootstrap-rails
https://github.com/thomas-mcdonald/bootstrap-sass
https://github.com/jlong/sass-twitter-bootstrap
https://github.com/metaskills/less-rails-bootstrap
http://nodejs.org/
http://twitter.com/#!/cloudhead
http://lesscss.org/
http://twitter.github.com/bootstrap/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/
http://rubysource.com/series/twitter-bootstrap-and-rails/
http://rubysource.com/series/twitter-bootstrap-and-rails/

3.1 app/assets/stylesheets folder like this:

view source
print ?
1 $ git clone https://github.com/twitter/bootstrap.git
2 $ cp bootstrap/bootstrap.css path/to/app/assets/stylesheets/.
…and you’re off to the races! Use their online demo page as a guide to get started; you can even use
“Inspect Element” or “View Source” right on that page to get a sense of what styles they’re using for
each feature.

However, as I mentioned above, Twitter Bootstrap is based on the Less.js framework, and the
bootstrap.css file is a actually a compiled version of the Less code contained in a series of “.less” code
files:

Twitter Bootstrap files

Looking in the Twitter Bootstrap github repo, the Less code files are contained in the lib folder, while
the compiled bootstrap.css file is right in the root folder.

If you’re not familiar with Less, it’s very similar to Sass: it provides an enhanced, more powerful
language for authoring CSS style code. As with Sass, you can use variables, mixins, nesting, etc. Think
of Less as Sass implemented with Javascript instead of Ruby. If you’re interested in learning more
about Less take a look at lesscss.org; there’s also a great article out there by Jeremy Hixon, An
Introduction To LESS, And Comparison To Sass, that compares the two languages.

Therefore, as explained on the Twitter Bootstrap introduction page, the best way to use Twitter
Bootstrap in a Rails site is to use the Less source code written by the Twitter team directly, and not just
the compiled CSS output. This allows you take advantage or override the styles provided by Twitter
Bootstrap in a very straightforward way. But since Less isn’t supported by the Rails 3.1 asset pipeline,
this is a bit of a problem…

http://twitter.github.com/bootstrap/#less
http://coding.smashingmagazine.com/2011/09/09/an-introduction-to-less-and-comparison-to-sass/
http://coding.smashingmagazine.com/2011/09/09/an-introduction-to-less-and-comparison-to-sass/
http://lesscss.org/
https://github.com/twitter/bootstrap
https://github.com/twitter/bootstrap/tree/master/lib
http://twitter.github.com/bootstrap/
https://github.com/twitter/bootstrap.git
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/tb_files/

Less-rails-bootstrap
Fortunately, Ken Collins did some great work during the past few months to solve this problem; he
wrote a new gem called less-rails-bootstrap that adds support for Less into the Rails 3.1 asset pipeline.
You can read his blog post or check out his Github readme page for the details. Another gem called
twitter-bootstrap-rails by Seyhun Akyürek uses the same approach, although at first glance twitter-
bootstrap-rails doesn’t appear to have any tests in it, while Ken’s less-rails-bootstrap does have an
effective MiniTest::Spec test suite.

I’ll repeat the setup steps from Ken’s blog post here; first just add less-rails-bootstrap (or twitter-
bootstrap-rails) to your Gemfile in the :assets group:

view source
print ?
1 group :assets do
2 gem 'less-rails-bootstrap'
3 end
And install it using “bundle install.” Then all you need to do is require the Twitter CSS code from your
app/assets/stylesheets/application.css file like this:

view source
print ?
1 /*
2 *= require twitter/bootstrap
3 */
As Ken explains, now you’re free to override and manipulate the Twitter Bootstrap Less code directly;
for example if you add this code to a new file with a .css.less extension:

view source
print ?
1 @import "twitter/bootstrap";
2 #foo {
3 .border-radius(4px);
4 }
… you now have a cross-browser compatible CSS style that will apply a rounded border with a radius
of 4 pixels. But how does this actually work? Let’s take a closer look:

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://www.seyhunakyurek.com/
https://github.com/seyhunak/twitter-bootstrap-rails
https://github.com/metaskills/less-rails-bootstrap
http://metaskills.net/2011/09/26/less-is-more-using-twitter-bootstrap-in-the-rails-3-1-asset-pipeline/
https://github.com/metaskills/less-rails-bootstrap
http://metaskills.net/

What Gem does what?

In true Rails fashion, it turns out there’s a lot of “magic” going on here behind the scenes. Before using
this approach in your application, it’s important to understand which gems are involved and what all of
these gems are actually doing for you. Taking it from the top and diving down, here’s how less-rails-
bootstrap works:

• less-rails-bootstrap : Ken’s gem actually includes the Twitter Bootstrap Less code files (in the
vendor/assets folder) and provides a Rails engine to make them accessible to your app. More on
this in a minute…

• less-rails : Ken wrote also wrote this gem, based on an earlier version by Karst Hammer, that
helps integrate Less with the Rails 3.1 asset pipeline, providing extensions that Rails developers
would expect. See Ken’s clarification on this in the comments.

• less.rb : This gem, written by Charles Lowell, is a thin wrapper around the Less language
compiler, allowing your Rails app to call it.

• therubyracer : Also written by Charles Lowell, this gem provides Ruby programs, in this case
your Rails 3.1 app, the ability to call the V8 Javascript engine.

• libv8 : This gem makes it easy to install or compile from source the actual V8 Javascript library,
which itself is implemented mostly in C.

https://github.com/fractaloop/libv8
https://github.com/cowboyd/therubyracer
https://github.com/cowboyd/less.rb
https://github.com/metaskills/less-rails
https://github.com/metaskills/less-rails-bootstrap
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/less_gems/

With so much code involved, you might ask: Will less-rails-bootstrap slow my application to a crawl?
The good news here is that you only need the Javascript V8 engine and all of the other code above it to
compile the Less code files into CSS. That is, you’ll only need all of this for development purposes
while you’re writing or modifying the CSS styles. Before you deploy to production you’ll precompile
your .css.less asset files, the same way you already do with your other CSS or Javascript files – and
none of these gems will actually be used on your production web server.

Another important piece of magic that Ken has implemented is the way he packaged up Twitter’s Less
code file using a Rails engine. Here’s how that works:

less-rails-bootstrap gem

If you’re not familiar with Rails engines, take a few minutes to watch Ryan Bates explain how they’re
implemented in Rails 3.1. Less-rails-bootstrap implements the simplest kind of Rails engine, providing
your Rails 3.1 app access to the Twitter code as additional, static asset files. When an HTTP request
comes in from the user – in this case you, since you only use this code during development – it’s
forwarded on by Rails to the engine in the less-rails-bootstrap gem. In practice, you don’t really need to
worry about how this works, but it is good to know where the Twitter Less code files are located, in
case you need to find a specific style definition or search for something else:

view source
print ?
01 $ cd `bundle show less-rails-bootstrap`
02 $ find vendor

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://railscasts.com/episodes/277-mountable-engines?view=comments
http://railscasts.com/episodes/277-mountable-engines?view=comments
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/less_rails_engine/

03 vendor
04 vendor/assets
05 vendor/assets/javascripts
06 vendor/assets/javascripts/twitter
07 vendor/assets/javascripts/twitter/bootstrap
08 vendor/assets/javascripts/twitter/bootstrap/alerts.js
09 vendor/assets/javascripts/twitter/bootstrap/buttons.js
10 vendor/assets/javascripts/twitter/bootstrap/dropdown.js
11 vendor/assets/javascripts/twitter/bootstrap/modal.js
12 vendor/assets/javascripts/twitter/bootstrap/popover.js
13 vendor/assets/javascripts/twitter/bootstrap/scrollspy.js
14 vendor/assets/javascripts/twitter/bootstrap/tabs.js
15 vendor/assets/javascripts/twitter/bootstrap/twipsy.js
16 vendor/assets/javascripts/twitter/bootstrap.js
17 vendor/assets/stylesheets
18 vendor/assets/stylesheets/twitter
19 vendor/assets/stylesheets/twitter/bootstrap.css.less
20 vendor/frameworks
21 vendor/frameworks/twitter
22 vendor/frameworks/twitter/bootstrap
23 vendor/frameworks/twitter/bootstrap/bootstrap.less
24 vendor/frameworks/twitter/bootstrap/forms.less
25 vendor/frameworks/twitter/bootstrap/mixins.less
26 vendor/frameworks/twitter/bootstrap/patterns.less
27 vendor/frameworks/twitter/bootstrap/reset.less
28 vendor/frameworks/twitter/bootstrap/scaffolding.less
29 vendor/frameworks/twitter/bootstrap/tables.less
30 vendor/frameworks/twitter/bootstrap/type.less
31 vendor/frameworks/twitter/bootstrap/variables.less
32 vendor/frameworks/twitter/bootstrap.less

Sass-twitter-bootstrap
While Ken’s done a great job with less-rails-bootstrap, you may prefer to use Sass instead of Less,
because it’s already supported by Rails 3.1 out of the box, or because your application already contains
a large amount of Sass code, or possibly just because you’re more familiar with it. At first glance, this
seems to be a serious problem for Twitter Bootstrap: it’s not appropriate for a large portion of the Rails
community that prefers Sass, since it was implemented with the Javascript-centric Less.js technology.

Don’t worry – some other great developers (John Long, Jeremy Hinegardner and others) ran into this
dilemma already and came up with a solution: they translated Twitter Bootstrap’s Less code into Sass,
and released that as a separate library on Github, called Sass-twitter-bootstrap.

https://github.com/jlong/sass-twitter-bootstrap

Sass-twitter-bootstrap is not a gem, but instead is just a github repo containing Twitter’s translated
code. To use it in your Rails 3.1 app, just clone the repo and copy the bootstrap css file into your app,
like this:

view source
print ?
1 $ git clone https://github.com/jlong/sass-twitter-bootstrap.git

2 $ cp sass-twitter-bootstrap/bootstrap.css
path/to/app/assets/stylesheets/.

Of course, this isn’t really any different than copying the bootstrap.css file directly from the Twitter
Bootstrap repo; instead what you should do is copy the Sass source files right into your application like
this:

view source
print ?
1 $ rm path/to/app/assets/stylesheets/bootstrap.css
2 $ cp -r sass-twitter-bootstrap/lib path/to/app/assets/stylesheets/twitter
And now since the Rails 3.1 asset pipeline supports Sass out of the box, we’re good to go… almost! If
you run your app now, you’ll see an error:

view source
print ?
1 ActionView::Template::Error (Undefined variable: "$baseline".
2 (in /path/to/app/assets/stylesheets/twitter/forms.scss))
Thanks to Brent Collier, there’s a simple solution for this problem: the code in application.css by
default uses “require_tree” to include all of the code under app/assets/stylesheets:

view source
print ?
1 /*

2 * This is a manifest file that'll automatically include all the
stylesheets available in this directory

3 * and any sub-directories. You're free to add application-wide styles to
this file and they'll appear at

4 * the top of the compiled file, but it's generally better to create a
new file per style scope.

5 *= require_self
6 *= require_tree .
7 */
As Brent explains, the problem with this is that Twitter Bootstrap’s Less code (and the translated Sass
version) was designed to be included once using the bootstrap.scss file, which in turns includes all of
the other files. Brent’s solution works perfectly: just remove “require_tree” and require bootstrap.scss
directly:

view source
print ?
1 /*
2 * This is a manifest file that'll automatically include all the

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://www.brentmc79.com/posts/sassd-bootstrap-with-rails-31
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
https://github.com/jlong/sass-twitter-bootstrap.git
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource

stylesheets available in this directory

3 * and any sub-directories. You're free to add application-wide styles to
this file and they'll appear at

4 * the top of the compiled file, but it's generally better to create a
new file per style scope.

5 *= require_self
6 *= require twitter/bootstrap
7 */
Conceptually, here’s what this setup looks like:

Copying sass files

The benefit here is that now you have Sass code implementing Twitter Bootstrap directly inside your
Rails 3.1 app! This means you can go ahead and use, override or modify the Sass to your heart’s
content.

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/sass-twitter-bootstrap/

The obvious drawback here is the manual copy process involved. You’ll need to copy the Sass code
files once into your Rails app to get started, but then you’ll have to repeat the copy each time Twitter
releases a newer, better version of Twitter Bootstrap. While this won’t happen every day, why set
yourself up for an ongoing maintenance problem?

Another drawback is that you’re using a second-hand, translated version of Twitter’s code, and you’ll
have to trust the people who maintain sass-twitter-bootstrap to accurately translate the Less into Sass.

Bootstrap-sass and bootstrap-rails
Like everything in the Rails world, there are always other good solutions out there you can take a look
at, in this case the bootstrap-sass gem by Thomas McDonald and the bootstrap-rails gem by AnjlLab.
Both of these gems combine the Sass translation approach with a Rails engine to avoid the manual
copy maintenance headache.

Using bootstrap-sass (or bootstrap-rails) is a simple as adding it to your Gemfile:

view source
print ?
1 group :assets do
2 gem 'bootstrap-sass'
3 end
Run “bundle install” and then add a require statement to app/assets/stylesheets/application.css:

view source
print ?
1 /*
2 *= require bootstrap
3 */
Similar to less-rails-bootstrap, this works by having Rails 3.1 load the Sass code from a Rails engine
inside the gem:

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#about
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#printSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#viewSource
http://anjlab.com/
https://github.com/anjlab/bootstrap-rails
https://github.com/thomas-mcdonald/bootstrap-sass

Bootstrap sass and rails

So there’s no need to download and copy either the Twitter Bootstrap Less code, or its translated Sass
version. As new versions of Twitter Bootstrap are released, presumably Thomas McDonald will re-
translate the Less code into Sass, and re-release his gem. Then you’ll be able to just run “bundle
update” to get the new Twitter code into your application!

Other options
Amazingly, there are even more options out there for integrating Rails 3.1 and Twitter Bootstrap that I
don’t have time to cover today:

• compass-twitter-bootstrap is similar to bootstrap-sass and bootstrap-rails, using a Rails engine
to provide a translated version of the Twitter Bootstrap code, but is geared instead to the
Compass CSS framework.

• twitter_bootstrap_form_for implements a custom Form Builder object, the object yielded by
form_for in your view, designed specifically for Twitter Bootstrap.

• css-bootstrap-rails is similar to bootstrap-sass and bootstrap-rails, but uses a Rails engine to
include only bootstrap.css without any Less or Sass files.

https://github.com/arunagw/css-bootstrap-rails
https://github.com/stouset/twitter_bootstrap_form_for
http://compass-style.org/
https://github.com/vwall/compass-twitter-bootstrap
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/bootstrap-sass/

Six of one, half dozen of the other
All of these approaches will work equally well:

• Using the original Less code via a Rails engine (less-rails-bootstrap or twitter-bootstrap-rails)
• Copying in translated Sass code directly into your application (sass-twitter-bootstrap), or
• Using a translated Sass version via a Rails engine (bootstrap-sass or bootstrap-rails).

Less and Sass are very similar, and using one language or the other is really a matter of personal
preference. Similarly, using a Rails engine is a convenient way to include the Twitter Bootstrap code in
your Rails 3.1 app and to manage upgrades smoothly. However, using a Rails engine adds some
additional “magic” to your app and can be somewhat confusing when you need to find, inspect or
search against the Sass code. There’s a simple elegance to the approach of just copying the Sass code
right into your app, and you may not often need to update to a newer version of Twitter Bootstrap.

Which approach to take is up to you!

Series NavigationToo good to be true! Twitter Bootstrap meets Formtastic and Tabulous >>

Tagged with: bootstrap, twitter

Object 1 Object 2

Object 3

Object 4

Object 5

http://rubysource.com/tag/twitter/
http://rubysource.com/tag/bootstrap/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/

Pat Shaughnessy

Pat Shaughnessy is a Ruby developer working at a global management consulting firm. Pat also writes
a weekly blog column about Ruby development at patshaughnessy.net. Pat's tutorials and articles are
geared towards Ruby beginners but contain enough information and detail to be interesting to more
advanced developers also. Pat's articles and presentations have been featured multiple times on the
Ruby Weekly newsletter, the Ruby5 podcast and the Ruby Show.

http://patshaughnessy.net Twitter
← Crafting Rubies: Best Practices While Cutting Gems
Class Variables – A Ruby Gotcha →

15 Comments

1. Décio Ferreira
Great article Pat. A bit of shameless self promotion, but could I just suggest one more option,
my bootstrap-generators gem that provides Twitter Bootstrap generators for Rails 3.1.

The gem is usable but still under development, so feedback or contributions are very welcome.
Reply

• Pat Shaughnessy 17 Nov 11 | 8:33 am
Thanks Décio! I'll definitely check out your gem; using generators is one approach I
hadn't thought of before...
Reply

2. Ken Collins 18 Nov 11 | 5:18 am
Pat, another great article! Some feedback:

First, I have never used RSpec, both the less-rails and less-raills-bootstrap projects use
MiniTest::Spec. I tend to use bare bones testing frameworks for my projects so I can stay away
from complex test systems for the gems I author. I like that MiniTest is the TU replacement and
part of ruby-core.

Also, technically Tilt, when used with Charles' less.rb gem, is enough to render css.less
templates in the asset pipeline. I made the less-rails gem to solve two critical problems (a) a
standard way to augment less.rb's paths to when used with the asset pipeline, critical for gems
like less-rails-bootstrap to hook into and (b) provide extensions to less.rb that rails developers
would expect, like the asset url helpers. My favorite of which is the asset-data-url for base64
encoded images.

Another key reason that I made less-rails-bootstrap was to solve the lack of name-spacing I
witnessed in other packages including the bootstrap file. I predict that as the asset pipeline gains
more adoption, people will learn that there assets need to be namespaced (via directories) just
like we are used to our gems and models. So you are free to happenstantially make your own
variables.less file in your assets path and never worry about it conflicting with
twitter/bootstrap/variables.less. No other gems that I saw are thinking about this potential
problem we will face and eventually gem authors will start to understand the importance of

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-6683
http://metaskills.net/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=6607#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-6607
http://patshaughnessy.net/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=6536#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-6536
http://www.decioferreira.com/
http://rubysource.com/class-variables-a-ruby-gotcha/
http://rubysource.com/crafting-rubies-best-practices-while-cutting-gems/
http://twitter.com/pat_shaughnessy
http://patshaughnessy.net/
http://patshaughnessy.net/
http://rubysource.com/author/pshaughnessy/

namespacing their assets. Because of this the recent less-rails-bootstrap tries to follow a
convention I found in Sass/Compass where the path to the raw source files are in a
vendor/frameworks directory, which I use less-rails to make sure is in the renderable paths for
less.

Again, great article!
Reply

• Pat Shaughnessy 18 Nov 11 | 8:48 am
Thanks for your kind comments, Ken! And thanks so much for the corrections. Yea it's
funny the MiniTest::Spec code resembles RSpec at first glance, actually… I'll have to try
MiniTest myself soon. And sorry to get the purpose of the less.rb gem wrong; thanks for
the thorough clarification. I've updated the article text above for both mistakes.

You make a good point about namespacing - that sounds like a really great idea.

Maybe what I'll do is write a follow up article someday soon about more of the details of
how Less and the Rails asset pipeline work together. I was covering so much ground in
this article I really didn't have time to get into the real details. ...or maybe I should let
you write that one :)

Keep up the great work on less-rails-bootstrap!
Reply

3. oz 19 Nov 11 | 1:48 pm
“Less.js, like Node.js, is implemented completely with Javascript.” Hm nope. Node.js is a good
deal of Javascript, but it wouldn't exist without all the C++ around it. ;)

Nonetheless, thanks for a great article.
Reply

4. Bill Christian
Which option is best for overriding the Bootstrap variables? I get a little lost on how I can
change the base link color (in less or sass versions) without editing the source files.
Reply

• Pat Shaughnessy 22 Nov 11 | 3:50 pm
Hi Bill, If you're using Less and have the less-rails-bootstrap gem installed, then just
create an custom_variables.css.less file anywhere under app/assets/stylesheets and add
this Less code to it, for example:

@import "twitter/bootstrap";
@linkColor: #0F0;

If you're using Sass, then you don't need any gem installed since Rails 3.1 supports it by
default. So you just need to create custom_variables.css.scss file instead, and then use
this Sass code inside it:

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-7007
http://patshaughnessy.net/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=6995#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-6995
http://billchristian.posterous.com/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=6791#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-6791
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=6694#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-6694
http://patshaughnessy.net/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=6683#respond

$linkColor: #F00;

But for Sass it looks like you'll have to modify the bootstrap.css.scss file - either the one
you copied from sass-twitter-bootstrap or else the one inside of bootstrap-sass, for
example - and import your new custom_variables.css.scss file like this:

@import "bootstrap/variables";
@import "custom_variables";
@import "bootstrap/mixins";

This last part seems very ugly to me; I'll look into it some more and write here again if I
find a cleaner way to override Sass variables.
Reply

• Bill Christian
So if I understand correctly, I can override the *existing* LESS variables defined
in the original sources by using the import and the new LESS statement. Do I
need to modify the require statement in the application.css to specify a cascading
order? Also, should i just import the twitter/bootstrap/variables file or do I need
to bring in everything in my override file?

Thanks for your help. If you have a gist or github showing an example, I'll stop
with the questions.
Reply

• Thomas McDonald 02 Dec 11 | 3:47 pm
Indeed it is, and the update to bootstrap-sass I've just pushed means that if you
define the variables you want to change before you @import "bootstrap" then
SASS will not overwrite your previously defined variables with the bootstrap
defaults.
Reply

• Pat Shaughnessy 03 Dec 11 | 7:18 am
Cool! Thanks for letting us know, Thomas. I'll get and try out your
changes very soon...
Reply

5. Pat Shaughnessy 23 Nov 11 | 1:45 pm
Questions are no problem at all! I'm happy to try to help. And sorry for the slow reply - this is
actually a complicated issue.

So after some more research, I now think the best way to override Twitter Bootstrap variables is
to:

1. Remove application.css and instead use application.css.less or application.css.scss, and:
2. Import (not require) each of the TB files individually, including your override values after

http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-7073
http://patshaughnessy.net/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=7865#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-7865
http://patshaughnessy.net/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=7804#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-7804
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=7022#respond
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/#comment-7022
http://billchristian.posterous.com/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/?replytocom=7007#respond

including the TB variables file.

Application.css.less example (using less-rails-bootstrap): https://gist.github.com/1389826

Application.css.scss example (using bootstrap-sass for example):
https://gist.github.com/1389831

Both Less and Sass seem to have the same issue, and work equally well.

Notes:

- If you instead used @import on the entire TB tree, like I show above in the article, then all the
TB css code might be included more than once in your generated css file!

- In either case you should not use require_tree, but just require_self.

See: http://stackoverflow.com/questions/6420460/in-rails-3-1-is-it-really-impossible-to-avoid-
including-duplicate-copies-of-sty and http://railscasts.com/episodes/268-sass-basics for more
details on this.

Sorry for the long comment - I should have covered this in the article :)

class="heading"

Too good to be true! Twitter Bootstrap meets
Formtastic and Tabulous

413 451 1 Hackernews

This entry is part 2 of 3 in the series Twitter Bootstrap and Rails

Twitter Bootstrap and Rails

• Twitter Bootstrap, Less, and Sass: Understanding Your Options for Rails 3.1
• Too good to be true! Twitter Bootstrap meets Formtastic and Tabulous
• How to Customize Twitter Bootstrap’s Design in a Rails app

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/
http://rubysource.com/series/twitter-bootstrap-and-rails/
http://rubysource.com/series/twitter-bootstrap-and-rails/
javascript:window.location=%22http://news.ycombinator.com/submitlink?u=%22+encodeURIComponent(document.location)+%22&t=%22+encodeURIComponent(document.title)

This simple 5 step tutorial will create a workingRails 3.1 app using Twitter Bootstrap

Last month I discussed all of the different gems that are available for integrating Twitter Bootstrap with
a Rails 3.1 app. These gems make the Twitter Bootstrap CSS styles available in your Rails 3.1 asset
pipeline as Less or Sass code. However, getting the Twitter CSS code is just the first step – you also
need to know how to use it in a Rails app.

Today I’ll take the next step. This article is a detailed, step by step tutorial that will take you through
the process of writing a new Rails 3.1 app that uses Twitter Bootstrap with Formtastic and Tabulous,
two great gems that make it easier to implement web forms and tab based navigation in Rails – two
major features of Twitter Bootstrap. We’ll also use a third gem called Formtastic-Bootstrap that
modifies the HTML produced by Formtastic to play nicely with the Twitter Bootstrap files.

Read on to learn more… in just five easy steps we’ll have a simple web site up and running that
illustrates how to implement Twitter Bootstrap forms and tab navigation using Rails 3.1!

Step 1: Create a new Rails app
Let’s get started by creating a brand new Rails 3.1.3 app, the latest version of Rails available as I write
this:

view source
print ?
1 $ rails -v
2 Rails 3.1.3
3 $ rails new origami_hub
4 $ cd origami_hub
5 $ rm public/index.html
6 $ rails generate controller welcome index
You can see we’re going to create a web site to keep track of Origami artwork! You can also see I
deleted the default, static home page, public/index.html. And the last command generates a controller
called “Welcome” that will handle displaying the web site’s home page.

The next step is to edit the config/routes.rb file. Go ahead and paste this into the routes file:

view source

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
https://github.com/mjbellantoni/formtastic-bootstrap
https://github.com/techiferous/tabulous
https://github.com/justinfrench/formtastic
http://twitter.github.com/bootstrap/index.html
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/

print ?
1 OrigamiHub::Application.routes.draw do
2 root :to => 'welcome#index'
3 end
Finally, let’s start up our Rails server (type “rails server”) and open http://localhost:3000:

Default page created by rails controller generator

You should see this text in the site’s new home page; if you don’t then double check the commands
above carefully.

Step 2: Add Bootstrap-Sass
Today I’ll use the Bootstrap-Sass gem by Thomas McDonald to import the Twitter Bootstrap code. To
learn more about Bootstrap-Sass and how it works, check out my post from November. Adding it to our
new Rails app is simple; first edit your Gemfile and add it to the “assets” group:

view source
print ?
1 # Gems used only for assets and not required
2 # in production environments by default.
3 group :assets do
4 gem 'bootstrap-sass'
5 etc...
Then you need to install it with Bundler:

view source
print ?
1 $ bundle install
Next, we need to create a new Sass code file to hold our CSS style code. Create a file called
“origami_hub.css.scss” in the app/assets/stylesheets folder with this one line of code in it. This imports
the Twitter Bootstrap CSS styles into our app:

view source
print ?
1 @import 'bootstrap';
Now if you stop, re-run your Rails server and refresh the page you should see the same thing, but with
subtle changes in the font and layout:

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1
https://github.com/thomas-mcdonald
https://github.com/thomas-mcdonald/bootstrap-sass
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource

Default page with Twitter Bootstrap styles

This may not look much different, but actually there are subtle changes in the fonts, and also the text is
flush against the top left corner now. These changes mean we have successfully loaded Twitter
Bootstrap into our Rails app! If you ran View –> Source in your browser and inspected the code
returned by the origami_hub.css request, you’d see all of the Twitter styles.

Step 3: Add Scaffolding
So far, so good; now we have our site’s navigation bar appearing correctly. As a next step, let’s create
an Origami model along with pages for displaying and editing them – Rails scaffolding will be perfect.
For today, I’ll just use two string attributes; the name of the origami artwork and the name of the artist.
Here are the commands:

view source
print ?
1 $ rails generate scaffold origami name:string artist:string
2 $ rake db:migrate
3 $ rm app/assets/stylesheets/scaffolds.css.scss
4 $ rm app/assets/stylesheets/origamis.css.scss
Notice that I deleted two generated files called “scaffolds.css.scss” and “origamis.css.scss” which
interfere with Twitter Bootstrap’s styles. Now if you open the origami index page,
http://localhost:3000/origamis, you’ll see this:

Index page from Rails scaffold generatorwith Twitter Bootstrap styles

This should look familiar if you’ve ever used Rails scaffolding before, but here we also see the Twitter
Bootstrap table styling.

Step 4: Add Formtastic using Formtastic-Bootstrap
Our next step today will be to introduce Formtastic, written by Justin French, into our sample app. If

http://www.justinfrench.com/
https://github.com/justinfrench/formtastic
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource

you’re not familiar with it yet, Formtastic produces cleaner HTML than the standard Rails “form_for”
and related methods, making it easier to create a nice looking form. It’s also easier to use while writing
Rails view code. Finally, Formtastic’s HTML is also easier to work with while writing Javascript code
or Cucumber tests, since there are CSS styles added to make finding specific form elements easier.

Unfortunately, Formtastic and Twitter Bootstrap don’t play well together: Twitter’s styles don’t refer to
the HTML tags produced by Formtastic. But we can get these two components to work together by
using a great new gem called Formtastic-Bootstrap, by Matthew Bellantoni – a Boston Rubyist like me.
Take a look at the github readme page for more details on how Formtastic-Bootstrap actually works.

To put it into our application, I need to first add it to my Gemfile:

view source
Object 6

print ?
1 gem 'formtastic-bootstrap'
And now as Matthew explains on his readme page, I also need to create a new file called
config/initializers/formtastic.rb, which should contain this one line of code:

view source
Object 7

print ?

1 Formtastic::Helpers::FormHelper.builder =
FormtasticBootstrap::FormBuilder

This instructs Formtastic to use Matthew’s new form builder object, instead of Formtastic’s standard
form builder. Matthew’s form builder is what generates the HTML Twitter expects.

Next, I need to rewrite the form produced by the Rails scaffold generator to use Formtastic’s
semantic_form_for function – paste this code into app/views/origamis/_form.html.erb, overwriting
what was there before:

view source
print ?
01 <%= semantic_form_for @origami do |f| %>
02 <%= f.semantic_errors %>
03 <%= f.inputs do %>
04 <%= f.input :name, :hint => "Enter the origami artwork's name" %>
05 <%= f.input :artist, :hint => "Enter the origami artist's name" %>
06 <% end %>
07 <%= f.buttons do %>
08 <%= f.commit_button :button_html => {:class => "primary"} %>
09 <% end %>
10 <% end %>
A couple of details to note here:

• I’ve passed in the Formtastic “hint” option for each of my fields to add some help text on the
screen, and

• I’ve passed in the “button_html” option to use the Twitter Bootstrap blue button style

We need to run bundle install again to install Matthew’s gem; bundler will also install Formtastic

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://matthewbellantoni.com/
https://github.com/mjbellantoni/formtastic-bootstrap

itself since it’s a dependency for Formtastic-Bootstrap:

view source
Object 8

print ?
1 $ bundle install
After restarting the server and clicking on the “New Origami” link I get a nice looking form that uses
the Twitter Bootstrap styles:

Form rendered by FormtasticBootstrap::FormBuilder

Step 5: Adding tab navigation with Tabulous
Another one of the great features of Twitter Bootstrap is the nice looking black navigation bar along the
top of the page. How can we get that into our sample app? We could just copy/paste the HTML code in
from one of the Twitter examples pages, but instead I’ll show you how to use a great new gem called
Tabulous. Wyatt Greene, another fellow Boston Rubyist, wrote Tabulous earlier this year and it’s
tremendously easy to use. We’re lucky to have such a creative Ruby community here: two of the four
gems I’m using today with Twitter Bootstrap were written in Boston! For more information on
Tabulous, be sure to read two great articles Wyatt wrote when he introduced the gem in March:
Introducing Tabulous: Tabs in Rails and Tutorial for Adding Tabs to Rails Using Tabulous.

Once again, let’s first add the gem to our app by editing the Gemfile:

view source
Object 9

print ?
1 gem 'tabulous'
…and running bundle install:

view source
Object 10

print ?
1 $ bundle install

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://techiferous.com/2011/03/tutorial-for-adding-tabs-to-rails-using-tabulous/
http://techiferous.com/2011/03/introducing-tabulous-tabs-in-rails/
http://techiferous.com/
https://github.com/techiferous/tabulous
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource

Now as Wyatt explains in his tutorial, we need to run this command:

view source
print ?
1 $ rails generate tabs
This will create a new file called app/tabs/tabulous.rb, where we declare all of the tabs we want to
display in our site. I won’t explain all of the syntax here; again refer to Wyatt’s tutorial for more
information on exactly what’s in tabulous.rb.

For our sample app, we’ll just need to make a minor edit to the tabs table:

view source
print ?
1 config.tabs do
2 [
3 [:welcome_tab, 'Welcome', root_path, true, true],
4 [:origamis_tab, 'Origamis', origamis_path, true, true],
5]
6 end
It’s amazing how Wyatt’s generator already did most of the work for us! All I did here was reorder the
two lines. For the sake of readability and to save space I removed some comments that normally appear
in the tabulous.rb file explaining the purpose of each column in the table; you’ll see those if you open
the tabulous.rb file on your machine.

And we’re almost done! The last thing I need to do is add the HTML for displaying the Twitter
Bootstrap navigation bar. To do that, I’ll just copy/paste some HTML from their “fluid.html” example
page – you can find this HTML in the Twitter Bootstrap github repo. The HTML should go into the
app/views/layouts/application.html.erb file, between the <body> tag and the call to yield:

view source
print ?
01 <body>
02 <div class="topbar">
03 <div class="topbar-inner">
04 <div class="container-fluid">
05 OrigamiHub
06 <%= tabs %>
07 </div>
08 </div>
09 </div>
10 <%= yield %>
Notice I replaced the … HTML from Twitter’s example with a single call to <%= tabs %>.
This will display the tabs that I’ve declared in the tab table above!

Now restarting my server again – remember I ran bundle install earlier – let’s refresh the page:

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
https://github.com/twitter/bootstrap/blob/master/examples/fluid.html
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://techiferous.com/2011/03/tutorial-for-adding-tabs-to-rails-using-tabulous/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource

Twitter Bootstrap navigation bar displayedwith Tabulous scaffold styles

Almost there… but this is still not quite right. By default, Tabulous will include some scaffolding tab
CSS code to help you get started. However, since we’re using Twitter Bootstrap we don’t need any of
that. To remove it, all we need to do is change the “scaffolding” setting to false in
app/tabs/tabulous.rb:

view source
Object 11

print ?
1 config.css.scaffolding = false
We also need to change the “active_tab_clickable” setting to be true – this will tell Tabulous to always
generate an <a> tag for each tab, which is what Twitter Bootstrap expects:

view source
Object 12

print ?
1 config.active_tab_clickable = true
Now let’s refresh our page once more:

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource

Tabulous tabs in Twitter Bootstrap navigation barbut missing body padding style

And it works! Now we see the tabs appear properly, and not only that, they actually work too! You can
click on “Welcome” to see the Welcome index placeholder page from above, and on “Origamis” to get
the Origami index page, since we entered those paths into the tab table in app/tabs/tabulous.rb.

There’s one other CSS bug here you may not have noticed: the “New Origami” text at the top of the
form was obscured by the navigation bar – this is because the way Twitter’s CSS code works is that it
assumes the HTML body will have padding on it. To fix this, we just need to manually add the 60px
padding on the body style in our origami_hub.css.scss file like this – be sure to put the padding style
after the import or it won’t work:

view source
print ?
1 @import 'bootstrap';
2 body {
3 padding-top: 60px;
4 }
And refreshing the page once again we get:

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#about
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#printSource
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#viewSource

Tabulous tabs in Twitter Bootstrap navigation barwith proper body padding

Wyatt’s Tabulous gem will also automatically display the currently active tab properly, since Tabulous
and Twitter Bootstrap both use the “active” CSS style to indicate that. It all just works! Now as I add
more pages to my app, I just need to add entries in the tabs table, and I’m also free to re-order them.

Conclusion
Twitter Bootstrap is a fantastic way to build a nice looking web site very quickly; however, having a
sophisticated CSS library will only take you so far. You still need to build a web application of some
kind to bring the Twitter design elements to life. Using Rails on the back end can be a perfect
complement to Twitter Bootstrap, but, as we’ve seen today, using Rails can also be a challenge since
the two frameworks weren’t designed to work together perfectly. Before you dive into building your
next Rails 3.1 application with Twitter Bootstrap, be sure to do your homework – there are a lot of gem
authors actively working in this area and as Twitter Bootstrap becomes more and more popular expect
to see even more new gems and changes to existing gems.

Series Navigation<< Twitter Bootstrap, Less, and Sass: Understanding Your Options for Rails 3.1 How
to Customize Twitter Bootstrap’s Design in a Rails app >>

Tagged with: twitter bootstrap

Object 13 Object 14

http://rubysource.com/tag/twitter-bootstrap/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/
http://rubysource.com/?attachment_id=2672

Object 15

Object 16

Object 17

Pat Shaughnessy

Pat Shaughnessy is a Ruby developer working at a global management consulting firm. Pat also writes
a weekly blog column about Ruby development at patshaughnessy.net. Pat's tutorials and articles are
geared towards Ruby beginners but contain enough information and detail to be interesting to more
advanced developers also. Pat's articles and presentations have been featured multiple times on the
Ruby Weekly newsletter, the Ruby5 podcast and the Ruby Show.

http://patshaughnessy.net Twitter
← NET to Ruby: Learning How to Write Tests, Part II
Loccasions: Giving Events a Backbone →

18 Comments

1. Gady
Excellent work!
Can't wait for the next twitter bootstrap articles !
Reply

2. Alex 14 Dec 11 | 5:23 pm
and if you are a simple_form fan then you can use:
https://github.com/rafaelfranca/simple_form-bootstrap
Reply

• Pat Shaughnessy 14 Dec 11 | 6:07 pm
Thanks for the link, Alex! I'll have to try that one out...

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-8813
http://patshaughnessy.net/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=8809#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-8809
http://alextambellini.com/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=8774#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-8774
http://rubysource.com/loccasions-giving-events-a-backbone/
http://rubysource.com/net-to-ruby-learning-how-to-write-tests-part-ii/
http://twitter.com/pat_shaughnessy
http://patshaughnessy.net/
http://patshaughnessy.net/
http://rubysource.com/author/pshaughnessy/

Reply

3. Todor Grudev
pretty usefull thank you :)
Reply

4. Antonio
Hey, thanks for the great article.

I had to change the tabs table to root_path instead of welcome_index_path though.

Antonio
Reply

• Pat Shaughnessy 16 Dec 11 | 3:45 am
Yes, you're right welcome_index_path does not work. Earlier I had a different routes.rb
file and forget to update that in the tabs table.

Article corrected now... Thanks a lot, Antonio!
Reply

5. Leandro Facchinetti 16 Dec 11 | 11:32 am
Great article, Pat!

I found myself using bootstrap with rails before, but wasn't aware of all these neat tricks about
integration with other gems that generate html.

I must warn that the last image, the one that shows the final product of the tutorial, is broken!
There's nothing at http://cdn.rubysource.com/files/2011/12/working-tabs-fixed.png.
Reply

• Pat Shaughnessy 16 Dec 11 | 2:28 pm
Thanks Leandro! We've fixed the image; let me know if you still have trouble seeing it.
Reply

6. ouyang 20 Dec 11 | 8:28 pm

Thanks！

gem bootstrap_helper :

https://github.com/xdite/bootstrap_helper
Reply

7. Anand
Pat, I followed your instructions and things worked great, the only thing I am perplexed is why
my form input area height is almost half as that as what you have on the example in this article.

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-13408
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=9706#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-9706
http://www.yangzhiping.com/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=9161#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-9161
http://patshaughnessy.net/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=9143#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-9143
http://leafac.com/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=9097#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-9097
http://patshaughnessy.net/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=9016#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-9016
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=8857#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-8857
http://www.watchmemo.com/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=8813#respond

Not sure how to go about fixing this.

Thank you
Reply

• Anand
My application.html.erb had , as per some other posts changing it to fixed this. Hope this
help somebody.
Reply

• Anand
I changed my application.html.erb from "" to "" and this fixed the form input
height problem.
Reply

8. Antonio
Hey Pat,

This works great in Rails 3.2 too :)
Reply

9. Wyatt Greene 07 Feb 12 | 4:17 pm
I just released version 1.2.0 of the tabulous gem which now supports Twitter Bootstrap version
2. See the gem's README file for details on how to use with Twitter Bootstrap.
Reply

10.Pavel Varela
With rails -v 3.2.1 i all ends up completely messed up :(
Reply

11.Ben Matthews 18 Feb 12 | 2:25 am
For those using Rails 3.2 and Twitter Bootstrap 2.0, Sam Pointer has published a great tutorial
on updating the gems and code to make this example app work:

http://blog.sam-pointer.com/2012/02/12/formtastic-bootstrap-with-rails-3-2-and-twitter-
bootstrap-2
Reply

• Pat Shaughnessy 19 Feb 12 | 8:06 am
I just saw this myself - thanks Sam! Your update will be really helpful for people, since I
wrote my articles at the worst possible time: just before Rails 3.2 and TB 2.0 were
released, lol.
Reply

• Sam Pointer
Hey Pat,

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-16761
http://www.sam-pointer.com/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=16759#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-16759
http://patshaughnessy.net/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=16681#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-16681
http://brightworks.me/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=16655#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-16655
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=16088#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-16088
http://techiferous.com/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=15209#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-15209
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=13703#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-13703
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=13702#respond
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/#comment-13702
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=13408#respond

My pleasure - thanks for a great series. At the pace this stuff moves the window
of "right time" is greatly diminishing. However, this is a very nice problem to
have in some respects!

Thanks Ben for posting the reference to my post; I've extended the comment
period on it.
Reply

class="heading"

How to Customize Twitter Bootstrap’s Design in
a Rails app

1 237 0 Hackernews

This entry is part 3 of 3 in the series Twitter Bootstrap and Rails

Twitter Bootstrap and Rails

• Twitter Bootstrap, Less, and Sass: Understanding Your Options for Rails 3.1
• Too good to be true! Twitter Bootstrap meets Formtastic and Tabulous
• How to Customize Twitter Bootstrap’s Design in a Rails app

Maybe customizing Twitter Bootstrap’s designlike this wasn’t such a good idea!

Back in November I discussed various options for integrating Twitter Bootstrap into a Rails 3.1 app,
including using the less-rails-bootstrap and bootstrap-sass gems. Then last month I wrote a follow up
tutorial showing how to quickly create a working web site using Twitter Bootstrap, Formtastic and
Tabulous. Today I’d like to continue this series by discussing how to customize the Twitter Bootstrap
design itself.

You might ask: Why customize Twitter Bootstrap at all? After all, their design looks great out of the
box – why second guess their design decisions? Well, you might decide you like a certain color or font

http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/
https://github.com/thomas-mcdonald/bootstrap-sass
https://github.com/metaskills/less-rails-bootstrap
http://twitter.github.com/bootstrap/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/
http://rubysource.com/series/twitter-bootstrap-and-rails/
http://rubysource.com/series/twitter-bootstrap-and-rails/
javascript:window.location=%22http://news.ycombinator.com/submitlink?u=%22+encodeURIComponent(document.location)+%22&t=%22+encodeURIComponent(document.title)
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/?replytocom=16761#respond

better, or more likely you want to distinguish your web site from all the other sites that are using
Twitter Bootstrap also. It’s so easy to use that many developers have adopted it, and more and more
web sites are beginning to have that same look and feel.

Or you might ask the opposite question: Why not just discard Twitter Bootstrap and write your own
design that sets your site apart from all the others out there using Twitter Bootstrap? The reason is that
Twitter Bootstrap provides a tremendous amount of useful CSS support that would take a long time to
reimplement. Just look at all of the features on their home page – discarding all of these just to make
your site look a little different would be a mistake.

One interesting option I came across recently is the concept of “Twitter Bootstrap themes,” which will
allow you to pick from a series of different designs, while keeping all of the reset, typography, form,
table and other styling support. While there are no themes right now, the Paris designer and
entrepreneur Sacha Greif is currently working on the first theme to provide an alternative to Twitter’s
design, which he calls “Fuzzy.” You can sign up here to have Sacha send you an email when it’s ready.

However, since Twitter Bootstrap themes are still not available, today I’m going to discuss the
technical mechanics of how to go about customizing Twitter Bootstrap’s Less and/or Sass code yourself
– assuming you are or work with a good designer: Where is the Twitter code? How do I change their
font and color settings? How do I make more substantial changes to their design? Read on to learn
more…

Customizing Twitter Bootstrap variables with Bootstrap-Sass
Last month I showed how to build a simple Rails 3.1 scaffolding site called “OrigamiHub” that ended
up looking like this:

Origami Hub app from last month

To build OrigamiHub I used a Ruby gem called Bootstrap-Sass. I imported the Twitter code into the
site by writing a file called app/assets/stylesheets/origami_hub.css.scss containing this code:

https://github.com/thomas-mcdonald/bootstrap-sass
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/
http://sachagreif.com/bootstrap/
http://sachagreif.com/
http://twitter.github.com/bootstrap/

view source
print ?
1 @import 'bootstrap';
2 body {
3 padding-top: 60px;
4 }
Although I didn’t explain it this way last month, this is already the simplest possible example of how to
customize the Twitter design: the “padding-top” style overrides or adds to the standard body style
Twitter chose. By declaring your styles after the “@import ‘bootstrap’” line, you can override their
CSS style code with your own styles. This is easy enough to understand: the browser processes all of
the CSS code in the order it receives it; the code received towards the end will override the CSS styles
declared earlier. By including your styles second, you can easily override anything Twitter’s CSS code
did.

However, the developers behind Twitter Bootstrap anticipated that designers may want to tweak their
color, font or layout selections, and created a code file called “variables” containing commonly used
global values. Since I used Bootstrap-Sass for OrigamiHub, this file will be called variables.css.scss,
and I’ll be able to find it as follows using Bundler:

view source
print ?
01 $ cd `bundle show bootstrap-sass`
02 $ find vendor/assets/stylesheets
03 vendor/assets/stylesheets
04 vendor/assets/stylesheets/bootstrap
05 vendor/assets/stylesheets/bootstrap/forms.css.scss
06 vendor/assets/stylesheets/bootstrap/mixins.css.scss
07 vendor/assets/stylesheets/bootstrap/patterns.css.scss
08 vendor/assets/stylesheets/bootstrap/reset.css.scss
09 vendor/assets/stylesheets/bootstrap/scaffolding.css.scss
10 vendor/assets/stylesheets/bootstrap/tables.css.scss
11 vendor/assets/stylesheets/bootstrap/type.css.scss
12 vendor/assets/stylesheets/bootstrap/variables.css.scss
13 vendor/assets/stylesheets/bootstrap.css.scss
See November’s post for more details. Now let’s take a look at what’s inside variables.css.scss:

view source
print ?
01 /* Variables.less
02 * Variables to customize the look and feel of Bootstrap
03 * --- */
04 // Links
05 $linkColor: #0069d6 !default;
06 $linkColorHover: darken($linkColor, 15) !default;
07 // Grays

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/twitter-bootstrap-less-and-sass-understanding-your-options-for-rails-3-1/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource

08 $black: #000 !default;
09 $grayDark: lighten($black, 25%) !default;
10 $gray: lighten($black, 50%) !default;
11 $grayLight: lighten($black, 75%) !default;
12 ...etc...
It’s not hard to figure out that by changing one of these values we can quickly change the appearance of
the web site. However, it’s not a good idea to edit this code directly since it’s located inside the
Bootstrap-Sass gem. Instead, as Thomas McDonald shows on the Bootstrap-Sass Readme page, you
can change one of these values by specifying the value you want BEFORE you import bootstrap, like
this:

view source
print ?
1 $linkColor: #FF69d6;
2 @import 'bootstrap';
3 body {
4 padding-top: 60px;
5 }
Now reloading the page I get a pink “back” link instead:

Pink Back Link

If this doesn’t work for you, be sure you have the latest version of Bootstrap-Sass, at least v1.4.1 or
later:

view source
Object 18

print ?
1 $ bundle update bootstrap-sass
It turns out there’s a subtle but important detail in the variables.css.scss file above – the odd use of “!
default” at the end of each variable declaration:

view source
Object 19

print ?
1 $linkColor: #0069d6 !default;
Here “!default” is a Sass language feature that means: if there was already a value declared for this

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
https://github.com/thomas-mcdonald/bootstrap-sass

variable (“linkColor” in this example) then leave that unchanged and use it. If not, then use the
specified value by default (“#0069d6” here). Practically speaking this means that you need to be sure to
declare custom variable settings before and not after the “import bootstrap” line. This use of “!default”
was added very recently to Bootstrap-Sass, so be sure to update the gem before trying to change a
setting from variables.css.scss.

Customizing Twitter Bootstrap variables with Less-Rails-
Bootstrap
As I explained back in November, another option for including Twitter Bootstrap into a Rails app is to
use the Less language instead of Sass, using the Less-Rails-Bootstrap gem. While not included in a
Rails app by default like Sass, Less can be a good choice since it’s the language originally used by
Twitter to developer Twitter Bootstrap.

If I had used Less-Rails-Bootstrap to build OrigamiHub, I would have a file called
origami_hub.css.less instead, with very similar code:

view source
print ?
1 @import 'twitter/bootstrap';
2 body {
3 padding-top: 60px;
4 }
The only difference here is that the “import” command contains a different path to the Less code, since
Less-Rails-Bootstrap uses a slightly different directory structure:

view source
print ?
1 $ cd `bundle show less-rails-bootstrap`
2 $ find vendor/assets/stylesheets
3 vendor/assets/stylesheets
4 vendor/assets/stylesheets/twitter
5 vendor/assets/stylesheets/twitter/bootstrap.css.less
You can see only the top-level bootstrap.css.less file is located under vendor/assets/stylesheets. The
other Less code files are here:

view source
print ?
01 $ find vendor/frameworks
02 vendor/frameworks
03 vendor/frameworks/twitter
04 vendor/frameworks/twitter/bootstrap
05 vendor/frameworks/twitter/bootstrap/bootstrap.less
06 vendor/frameworks/twitter/bootstrap/forms.less
07 vendor/frameworks/twitter/bootstrap/mixins.less
08 vendor/frameworks/twitter/bootstrap/patterns.less

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
https://github.com/metaskills/less-rails-bootstrap

09 vendor/frameworks/twitter/bootstrap/reset.less
10 vendor/frameworks/twitter/bootstrap/scaffolding.less
11 vendor/frameworks/twitter/bootstrap/tables.less
12 vendor/frameworks/twitter/bootstrap/type.less
13 vendor/frameworks/twitter/bootstrap/variables.less
14 vendor/frameworks/twitter/bootstrap.less
Here we can see all the same code files, but using the “less” file extension instead. And you’ll find the
same set of variables and values in variables.less that we saw above in variables.css.scss:

view source
print ?
1 // Links
2 @linkColor: #0069d6;
3 @linkColorHover: darken(@linkColor, 15);
4 // Grays
5 @black: #000;
6 @grayDark: lighten(@black, 25%);
7 @gray: lighten(@black, 50%);
8 @grayLight: lighten(@black, 75%);
9 ...etc...
Less uses a slightly different syntax than Sass: “@linkColor” instead of “$linkColor”. Also we don’t
see the “!default” directive we had earlier. Most importantly, changing the value of a variable in Less
works differently than it does in Sass; there’s no concept of a default value and overriding it. In fact, in
Less variables are actually implemented as constants. See lesscss.org for more details. This means once
you define a value for a variable it cannot be changed.

At first glance, this might mean that the only way to change the Twitter Bootstrap settings would be to
edit the Twitter Less code directly, right inside of Less-Rails-Bootstrap. But this would be very ugly:
every time I updated Less-Rails-Bootstrap I would lose my changes. While it might be possible to track
my changes in a branch using git somehow, re-merging every time I got a newer version, this would be
an obvious maintenance problem and an ongoing headache.

Actually, it turns out there’s a simpler way to do it. Because of a bug in the Less compiler, you can
override the “constant” value of a variable by changing it after it is initially declared. That is, the value
of the variable constant will be whatever its last assigned value is. It seems that the Less compiler first
evaluates the values of all constants, and then evaluates the rest of the Less script, substituting the value
for each variable.

What this means for customizing Less-Rails-Bootstrap is that you need to declare your custom variable
values AFTER the import line, not before it like with Bootstrap-Sass. Here’s an example changing the
gray scale colors to use a shade of red:

view source
print ?
1 @import 'twitter/bootstrap';
2 body {
3 padding-top: 60px;

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://lesscss.org/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource

4 }
5 @black: #200;
“#200” refers to a color that is not quite black, but has some red in it; remember “RGB” = “Red-Green-
Blue.” Now my site looks like this:

@black variable changed to be red

Variables aren’t enough!
Sadly, there just aren’t enough customizable settings in the variables.less file – aside from linkColor,
the only other settings there have to do with font size, colors and grid sizes. And as you can see from
the screen shot above, the color settings don’t actually even work properly, since many of the Twitter
Less code files refer to hard coded color values directly: here the navigation bar is still black even
though I’ve changed the value of “black” to be more red. Also, it’s very odd to change the value of the
“black” variable to be a shade of red in the first place… very confusing!

Unfortunately, the only good way to customize the Twitter Bootstrap design is to look closely at the
HTML you are using in your site, find where the styles you are actually using are defined, and then
override the Sass or Less code as needed.

Let’s take an example: suppose my designer or I decided to make the “Create Origami” button a shade
of red, instead of blue. The only effective way to do this would be to first use the Chrome “Inspect
Element” command (or a similar command from your favorite browser) like this:

Chrome Inspect->Element right click menu item

… and then find the element’s CSS style:

Finding a style in the Chrome developer tools window

Here I can see that the button’s blue background color is set by the “btn.primary” class. Searching
through the Less code inside of Less-Rails-Bootstrap for this definition:

view source
print ?
01 $ cd `bundle show less-rails-bootstrap`
02 $ cd vendor/frameworks/twitter/bootstrap
03 $ ack btn
04 patterns.less
05 512:.btn,
06 545:// Base .btn styles
07 546:.btn {
08 619::root .btn {
09 624:button.btn,
10 625:input[type=submit].btn {
11 697: .btn {
12 871: .btn {
… I can see that the button related styles are defined in patterns.less. Looking through the file, I find
the primary button style code:

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/545://
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource

view source
print ?
01 // Base .btn styles
02 .btn {
03 // Button Base
04 cursor: pointer;
05 display: inline-block;
06 ... etc ...
07 // Primary Button Type
08 &.primary {
09 color: @white;
10 .gradientBar(@blue, @blueDark)
11 }
12 ... etc...
13 }
Here you can see how the primary button is defined: using a white font color and a gradient blue
background (“blue” –> “blueDark”). And you can also see the blue value is hard coded into the
patterns.less file – there’s no variable in variables.less called “$primaryButtonColor” or something
similar, although there is a comment indicating this variable might be added soon.

To change the form buttons to be red instead, we need to copy/paste this Less code out into our
application’s Less file (origami_hub.css.less) and make the desired changes:

view source
print ?
01 @import 'twitter/bootstrap';
02 body {
03 padding-top: 60px;
04 }
05 // Custom colors:
06 @black: #200;
07 @redDark: darken(@red, 5);
08 @linkColor: @redDark;
09 @titleColor: lighten(@red, 10);

10 // Copied from vendor/frameworks/twitter/bootstrap/patterns.less in
less-rails-bootstrap

11 .btn {
12 // Primary Button Type
13 &.primary {
14 color: @white;
15 .gradientBar(@red, @redDark)
16 }
17 }

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#about
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#printSource
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#viewSource

18 .topbar {
19 // Hover and active states
20 ul .active > a {
21 color: @titleColor;
22 }
23 a {
24 color: @titleColor;
25 }
26 // Website name
27 .brand {
28 color: @titleColor;
29 }
30 }
Here I’ve defined a couple of new shades of red, and used them to override a few other style definitions
related to the navigation bar text, along with the primary button style, leading to a more red version of
my site:

OrigamiHub with a customized version of the Twitter Bootstrap design

Conclusion
This seems like a lot of work to change something from blue to red! Why bother? Or why not just
discard Twitter Bootstrap entirely and start from scratch?

The reason is obvious: if you browse for a few minutes around the Twitter Bootstrap Less or Sass code
files in one of the gems I’ve mentioned here, you’ll see a tremendous number of useful styles and
features. Here are just a few examples:

• reset.less – contains the reset styles to create a clean, cross-browser foundation to use, based on

Eric Meyer’s work from 2007.
• mixins.less – contains a series of useful functions that can be reused by other styles.
• type.less – useful typography utilities.
• etc…, etc…

And that’s just the beginning; there are a number of Twitter Bootstrap features I haven’t even
mentioned here. Plus a newer version of Twitter Bootstrap, v2.0, is underway and will soon add even
more Less/Sass code files and CSS features to the list.

The way I like to think about Twitter Bootstrap is that it’s a CSS coding platform. The same way that
Rails makes it a lot easier to build a web site by implementing commonly needed functionality that all
web sites need, Twitter Bootstrap, on a much smaller scale, implements many of the style features that
any web site would need. The problem is that to use it effectively you really do need to take the time to
learn how the Less, or translated Sass, code works, since there are many hard coded design details. To
use it with a custom, unique design that you or a designer you are working with has written will require
you to manually copy, paste and customize the portions of Twitter Bootstrap you want to change.
Hopefully this process will become easier in future versions, as they add more variables and other ways
to customize their design!

Series Navigation<< Too good to be true! Twitter Bootstrap meets Formtastic and Tabulous

Tagged with: twitter bootstrap

Object 20 Object 21

Object 22

Object 23

Object 24

http://rubysource.com/tag/twitter-bootstrap/
http://rubysource.com/too-good-to-be-true-twitter-bootstrap-meets-formtastic-and-tabulous/
http://meyerweb.com/eric/thoughts/2007/04/18/reset-reasoning/

Pat Shaughnessy

Pat Shaughnessy is a Ruby developer working at a global management consulting firm. Pat also writes
a weekly blog column about Ruby development at patshaughnessy.net. Pat's tutorials and articles are
geared towards Ruby beginners but contain enough information and detail to be interesting to more
advanced developers also. Pat's articles and presentations have been featured multiple times on the
Ruby Weekly newsletter, the Ruby5 podcast and the Ruby Show.

http://patshaughnessy.net Twitter
← Loccasions: Getting to Occasions
Smelly Cucumbers →

5 Comments

1. Simon Hamp 11 Jan 12 | 1:11 pm
Great tutorial, Pat! Just want to let you and others know that anything they build that uses even
parts of Bootstrap can get a slot on Built With Bootstrap (http://builtwithbootstrap.tumblr.com/),
our little showcase. Just submit a short, descriptive post with a screenshot :)
Reply

• Pat Shaughnessy 11 Jan 12 | 3:26 pm
Cool idea Simon! I already told one of my developer friends to submit his site there :)
Reply

2. Oscar 11 Jan 12 | 7:12 pm
Awesome post pat! Ive been playing a bit with bootstrap and I can see why developers are
loving it. Will have to apply your less tutorial on it. Thanks!
Reply

3. Bob Walsh 26 Jan 12 | 2:56 pm
Fantastic series of well-writtern articles, but now I have to choose:

With Twitter-bootstrap 2.0 out in a week, if you were starting a Rails 3.2 project today, would
you a) less-rails-bootstrap or b) the bootstrap-sass gem by Thomas McDonald?
Reply

• Pat Shaughnessy 27 Jan 12 | 3:24 pm
Hi Bob, Thanks!

First of all, I'm not sure either of those two gems have been updated with TB 2.0 yet -
although I expect both of them would be rapidly once the new version of bootstrap is
released.

If you have a preference for Less vs. Sass, then choose based on that. TB was originally
written in Less, but I also trust that Thomas will translate it to Sass properly.

Finally if you have no other reason to choose one way or the other, I might go with

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#comment-15210
http://patshaughnessy.net/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/?replytocom=15135#respond
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#comment-15135
http://47hats.com/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/?replytocom=12479#respond
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#comment-12479
http://oscarvillareeal.com/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/?replytocom=12439#respond
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#comment-12439
http://patshaughnessy.net/
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/?replytocom=12418#respond
http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/#comment-12418
http://builtwithbootstrap.tumblr.com/
http://rubysource.com/smelly-cucumbers/
http://rubysource.com/loccasions-getting-to-occasions/
http://twitter.com/pat_shaughnessy
http://patshaughnessy.net/
http://patshaughnessy.net/
http://rubysource.com/author/pshaughnessy/

bootstrap-sass just because Rails already supports Sass (.scss files) by default in the asset
pipeline, while it does not support Less. I assume that's still true in Rails 3.2.

But really they are both excellent gems and either will do the job for you.
Reply

Leave a Reply

http://rubysource.com/how-to-customize-twitter-bootstrap%E2%80%99s-design-in-a-rails-app/?replytocom=15210#respond

	Twitter Bootstrap, Less, and Sass: Understanding Your Options for Rails 3.1
	Twitter Bootstrap basics
	Less-rails-bootstrap
	Sass-twitter-bootstrap
	Bootstrap-sass and bootstrap-rails
	Other options
	Six of one, half dozen of the other
	Pat Shaughnessy

	15 Comments

	Too good to be true! Twitter Bootstrap meets Formtastic and Tabulous
	Step 1: Create a new Rails app
	Step 2: Add Bootstrap-Sass
	Step 3: Add Scaffolding
	Step 4: Add Formtastic using Formtastic-Bootstrap
	Step 5: Adding tab navigation with Tabulous
	Conclusion
	Pat Shaughnessy

	18 Comments

	How to Customize Twitter Bootstrap’s Design in a Rails app
	Customizing Twitter Bootstrap variables with Bootstrap-Sass
	Customizing Twitter Bootstrap variables with Less-Rails-Bootstrap
	Variables aren’t enough!
	Conclusion
	Pat Shaughnessy

	5 Comments
	Leave a Reply

