
Apache HBase Book

Copyright © 2011 Apache Software Foundation

Revision History
Revision 0.93-SNAPSHOT 2012-01-16T21:15
Abstract
This is the official book of Apache HBase, a distributed, versioned, column-oriented database built
on top of Apache Hadoop and Apache ZooKeeper.

Table of Contents
Preface
1. Getting Started

1.1. Introduction
1.2. Quick Start

2. Configuration
2.1. Java
2.2. Operating System
2.3. Hadoop
2.4. HBase run modes: Standalone and Distributed
2.5. ZooKeeper
2.6. Configuration Files
2.7. Example Configurations
2.8. The Important Configurations
2.9. Bloom Filter Configuration

3. Upgrading
3.1. Upgrading to HBase 0.90.x from 0.20.x or 0.89.x

4. The HBase Shell
4.1. Scripting
4.2. Shell Tricks

5. Data Model
5.1. Conceptual View
5.2. Physical View
5.3. Table
5.4. Row
5.5. Column Family
5.6. Cells
5.7. Data Model Operations
5.8. Versions

6. HBase and Schema Design
6.1. Schema Creation
6.2. On the number of column families
6.3. Rowkey Design
6.4. Number of Versions

http://www.hbase.org/
http://hbase.apache.org/book.html#schema.versions
http://hbase.apache.org/book.html#rowkey.design
http://hbase.apache.org/book.html#number.of.cfs
http://hbase.apache.org/book.html#schema.creation
http://hbase.apache.org/book.html#schema
http://hbase.apache.org/book.html#versions
http://hbase.apache.org/book.html#data_model_operations
http://hbase.apache.org/book.html#cells
http://hbase.apache.org/book.html#columnfamily
http://hbase.apache.org/book.html#row
http://hbase.apache.org/book.html#table
http://hbase.apache.org/book.html#physical.view
http://hbase.apache.org/book.html#conceptual.view
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/book.html#shell_tricks
http://hbase.apache.org/book.html#scripting
http://hbase.apache.org/book.html#shell
http://hbase.apache.org/book.html#upgrade0.90
http://hbase.apache.org/book.html#upgrading
http://hbase.apache.org/book.html#config.bloom
http://hbase.apache.org/book.html#important_configurations
http://hbase.apache.org/book.html#example_config
http://hbase.apache.org/book.html#config.files
http://hbase.apache.org/book.html#zookeeper
http://hbase.apache.org/book.html#standalone_dist
http://hbase.apache.org/book.html#hadoop
http://hbase.apache.org/book.html#os
http://hbase.apache.org/book.html#java
http://hbase.apache.org/book.html#configuration
http://hbase.apache.org/book.html#quickstart
http://hbase.apache.org/book.html#d1556e77
http://hbase.apache.org/book.html#getting_started
http://hbase.apache.org/book.html#preface
http://zookeeper.apache.org/
http://hadoop.apache.org/
http://www.hbase.org/
http://www.hbase.org/

6.5. Supported Datatypes
6.6. Time To Live (TTL)
6.7. Keeping Deleted Cells
6.8. Secondary Indexes and Alternate Query Paths
6.9. Schema Design Smackdown
6.10. Operational and Performance Configuration Options
6.11. Constraints

7. HBase and MapReduce
7.1. Map-Task Spitting
7.2. HBase MapReduce Examples
7.3. Accessing Other HBase Tables in a MapReduce Job
7.4. Speculative Execution

8. Architecture
8.1. Overview
8.2. Catalog Tables
8.3. Client
8.4. Client Request Filters
8.5. Master
8.6. RegionServer
8.7. Regions
8.8. HDFS

9. External APIs
9.1. Non-Java Languages Talking to the JVM
9.2. REST
9.3. Thrift

10. Performance Tuning
10.1. Operating System
10.2. Network
10.3. Java
10.4. HBase Configurations
10.5. Schema Design
10.6. Writing to HBase
10.7. Reading from HBase
10.8. Deleting from HBase
10.9. HDFS
10.10. Amazon EC2

11. Troubleshooting and Debugging HBase
11.1. General Guidelines
11.2. Logs
11.3. Resources
11.4. Tools
11.5. Client
11.6. MapReduce
11.7. NameNode
11.8. Network
11.9. RegionServer
11.10. Master
11.11. ZooKeeper
11.12. Amazon EC2
11.13. HBase and Hadoop version issues

12. HBase Operational Management
12.1. HBase Tools and Utilities

http://hbase.apache.org/book.html#tools
http://hbase.apache.org/book.html#ops_mgt
http://hbase.apache.org/book.html#trouble.versions
http://hbase.apache.org/book.html#trouble.ec2
http://hbase.apache.org/book.html#trouble.zookeeper
http://hbase.apache.org/book.html#trouble.master
http://hbase.apache.org/book.html#trouble.rs
http://hbase.apache.org/book.html#trouble.network
http://hbase.apache.org/book.html#trouble.namenode
http://hbase.apache.org/book.html#trouble.mapreduce
http://hbase.apache.org/book.html#trouble.client
http://hbase.apache.org/book.html#trouble.tools
http://hbase.apache.org/book.html#trouble.resources
http://hbase.apache.org/book.html#trouble.log
http://hbase.apache.org/book.html#trouble.general
http://hbase.apache.org/book.html#trouble
http://hbase.apache.org/book.html#perf.ec2
http://hbase.apache.org/book.html#perf.hdfs
http://hbase.apache.org/book.html#perf.deleting
http://hbase.apache.org/book.html#perf.reading
http://hbase.apache.org/book.html#perf.writing
http://hbase.apache.org/book.html#perf.schema
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#jvm
http://hbase.apache.org/book.html#perf.network
http://hbase.apache.org/book.html#perf.os
http://hbase.apache.org/book.html#performance
http://hbase.apache.org/book.html#thrift
http://hbase.apache.org/book.html#rest
http://hbase.apache.org/book.html#nonjava.jvm
http://hbase.apache.org/book.html#external_apis
http://hbase.apache.org/book.html#arch.hdfs
http://hbase.apache.org/book.html#regions.arch
http://hbase.apache.org/book.html#regionserver.arch
http://hbase.apache.org/book.html#master
http://hbase.apache.org/book.html#client.filter
http://hbase.apache.org/book.html#client
http://hbase.apache.org/book.html#arch.catalog
http://hbase.apache.org/book.html#arch.overview
http://hbase.apache.org/book.html#architecture
http://hbase.apache.org/book.html#mapreduce.specex
http://hbase.apache.org/book.html#mapreduce.htable.access
http://hbase.apache.org/book.html#mapreduce.example
http://hbase.apache.org/book.html#splitter
http://hbase.apache.org/book.html#mapreduce
http://hbase.apache.org/book.html#constraints
http://hbase.apache.org/book.html#schema.ops
http://hbase.apache.org/book.html#schema.smackdown
http://hbase.apache.org/book.html#secondary.indexes
http://hbase.apache.org/book.html#cf.keep.deleted
http://hbase.apache.org/book.html#ttl
http://hbase.apache.org/book.html#supported.datatypes

12.2. Region Management
12.3. Node Management
12.4. Metrics
12.5. HBase Monitoring
12.6. Cluster Replication
12.7. HBase Backup
12.8. Capacity Planning

13. Building and Developing HBase
13.1. HBase Repositories
13.2. IDEs
13.3. Building HBase
13.4. Tests
13.5. Maven Build Commands
13.6. Getting Involved
13.7. Developing
13.8. Submitting Patches

A. FAQ
B. Compression In HBase

B.1. CompressionTest Tool
B.2. hbase.regionserver.codecs
B.3. LZO
B.4. GZIP
B.5. SNAPPY

C. YCSB: The Yahoo! Cloud Serving Benchmark and HBase
D. HFile format version 2

D.1. Motivation
D.2. HFile format version 1 overview
D.3. HBase file format with inline blocks (version 2)

E. Other Information About HBase
E.1. HBase Videos
E.2. HBase Presentations (Slides)
E.3. HBase Papers
E.4. HBase Sites
E.5. HBase Books
E.6. Hadoop Books

F. HBase and the Apache Software Foundation
F.1. ASF Development Process
F.2. ASF Board Reporting

Index

List of Tables
5.1. Table webtable
5.2. ColumnFamily anchor
5.3. ColumnFamily contents

Preface
This book aims to be the official guide for the HBase version it ships with. This document describes
HBase version 0.93-SNAPSHOT. Herein you will find either the definitive documentation on an
HBase topic as of its standing when the referenced HBase version shipped, or this book will point to
the location in javadoc, JIRA or wiki where the pertinent information can be found.

http://wiki.apache.org/hadoop/Hbase
https://issues.apache.org/jira/browse/HBASE
http://hbase.apache.org/docs/current/api/index.html
http://hbase.apache.org/
http://hbase.apache.org/book.html#d1556e3088
http://hbase.apache.org/book.html#d1556e3049
http://hbase.apache.org/book.html#d1556e2965
http://hbase.apache.org/book.html#book_index
http://hbase.apache.org/book.html#asf.reporting
http://hbase.apache.org/book.html#asf.devprocess
http://hbase.apache.org/book.html#asf
http://hbase.apache.org/book.html#other.info.books.hadoop
http://hbase.apache.org/book.html#other.info.books
http://hbase.apache.org/book.html#other.info.sites
http://hbase.apache.org/book.html#other.info.papers
http://hbase.apache.org/book.html#other.info.pres
http://hbase.apache.org/book.html#other.info.videos
http://hbase.apache.org/book.html#other.info
http://hbase.apache.org/book.html#d1556e8840
http://hbase.apache.org/book.html#d1556e8794
http://hbase.apache.org/book.html#d1556e8781
http://hbase.apache.org/book.html#hfilev2
http://hbase.apache.org/book.html#d1556e8764
http://hbase.apache.org/book.html#snappy.compression
http://hbase.apache.org/book.html#gzip.compression
http://hbase.apache.org/book.html#lzo.compression
http://hbase.apache.org/book.html#hbase.regionserver.codecs
http://hbase.apache.org/book.html#compression.test
http://hbase.apache.org/book.html#compression
http://hbase.apache.org/book.html#faq
http://hbase.apache.org/book.html#submitting.patches
http://hbase.apache.org/book.html#developing
http://hbase.apache.org/book.html#getting.involved
http://hbase.apache.org/book.html#maven.build.commands
http://hbase.apache.org/book.html#hbase.tests
http://hbase.apache.org/book.html#build
http://hbase.apache.org/book.html#ides
http://hbase.apache.org/book.html#repos
http://hbase.apache.org/book.html#developer
http://hbase.apache.org/book.html#ops.capacity
http://hbase.apache.org/book.html#ops.backup
http://hbase.apache.org/book.html#cluster_replication
http://hbase.apache.org/book.html#ops.monitoring
http://hbase.apache.org/book.html#hbase_metrics
http://hbase.apache.org/book.html#node.management
http://hbase.apache.org/book.html#ops.regionmgt

This book is a work in progress. Feel free to add to this book by adding a patch to an issue up in the
HBase JIRA.

Heads-up
If this is your first foray into the wonderful world of Distributed Computing, then
you are in for some interesting times. First off, distributed systems are hard; making
a distributed system hum requires a disparate skillset that needs span systems
(hardware and software) and networking. Your cluster' operation can hiccup because
of any of a myriad set of reasons from bugs in HBase itself through
misconfigurations -- misconfiguration of HBase but also operating system
misconfigurations -- through to hardware problems whether it be a bug in your
network card drivers or an underprovisioned RAM bus (to mention two recent
examples of hardware issues that manifested as "HBase is slow"). You will also need
to do a recalibration if up to this your computing has been bound to a single box.
Here is one good starting point: Fallacies of Distributed Computing.

Chapter 1. Getting Started
Table of Contents
1.1. Introduction
1.2. Quick Start

1.2.1. Download and unpack the latest stable release.
1.2.2. Start HBase
1.2.3. Shell Exercises
1.2.4. Stopping HBase
1.2.5. Where to go next

1.1. Introduction
Section 1.2, “Quick Start” will get you up and running on a single-node instance of HBase using the
local filesystem. Chapter 2, Configuration describes setup of HBase in distributed mode running on
top of HDFS.

1.2. Quick Start
This guide describes setup of a standalone HBase instance that uses the local filesystem. It leads
you through creating a table, inserting rows via the HBase shell, and then cleaning up and shutting
down your standalone HBase instance. The below exercise should take no more than ten minutes
(not including download time).

1.2.1. Download and unpack the latest stable release.
Choose a download site from this list of Apache Download Mirrors. Click on suggested top link.
This will take you to a mirror of HBase Releases. Click on the folder named stable and then
download the file that ends in .tar.gz to your local filesystem; e.g. hbase-0.93-
SNAPSHOT.tar.gz.

Decompress and untar your download and then change into the unpacked directory.
$ tar xfz hbase-0.93-SNAPSHOT.tar.gz
$ cd hbase-0.93-SNAPSHOT

http://www.apache.org/dyn/closer.cgi/hbase/
http://hbase.apache.org/book.html#configuration
http://hbase.apache.org/book.html#quickstart
http://hbase.apache.org/book.html#d1556e250
http://hbase.apache.org/book.html#stopping
http://hbase.apache.org/book.html#shell_exercises
http://hbase.apache.org/book.html#start_hbase
http://hbase.apache.org/book.html#d1556e93
http://hbase.apache.org/book.html#quickstart
http://hbase.apache.org/book.html#d1556e77
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
https://issues.apache.org/jira/browse/HBASE

At this point, you are ready to start HBase. But before starting it, you might want to edit
conf/hbase-site.xml and set the directory you want HBase to write to, hbase.rootdir.
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>hbase.rootdir</name>
 <value>file:///DIRECTORY/hbase</value>
 </property>
</configuration>

Replace DIRECTORY in the above with a path to a directory where you want HBase to store its
data. By default, hbase.rootdir is set to /tmp/hbase-${user.name} which means you'll
lose all your data whenever your server reboots (Most operating systems clear /tmp on restart).

1.2.2. Start HBase
Now start HBase:
$./bin/start-hbase.sh
starting Master, logging to logs/hbase-user-master-example.org.out

You should now have a running standalone HBase instance. In standalone mode, HBase runs all
daemons in the the one JVM; i.e. both the HBase and ZooKeeper daemons. HBase logs can be
found in the logs subdirectory. Check them out especially if HBase had trouble starting.

Is java installed?
All of the above presumes a 1.6 version of Oracle java is installed on your machine
and available on your path; i.e. when you type java, you see output that describes the
options the java program takes (HBase requires java 6). If this is not the case, HBase
will not start. Install java, edit conf/hbase-env.sh, uncommenting the
JAVA_HOME line pointing it to your java install. Then, retry the steps above.

1.2.3. Shell Exercises
Connect to your running HBase via the shell.
$./bin/hbase shell
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version: 0.90.0, r1001068, Fri Sep 24 13:55:42 PDT 2010

hbase(main):001:0>

Type help and then <RETURN> to see a listing of shell commands and options. Browse at least the
paragraphs at the end of the help emission for the gist of how variables and command arguments are
entered into the HBase shell; in particular note how table names, rows, and columns, etc., must be
quoted.

Create a table named test with a single column family named cf. Verify its creation by listing all
tables and then insert some values.
hbase(main):003:0> create 'test', 'cf'
0 row(s) in 1.2200 seconds
hbase(main):003:0> list 'test'

..
1 row(s) in 0.0550 seconds
hbase(main):004:0> put 'test', 'row1', 'cf:a', 'value1'
0 row(s) in 0.0560 seconds
hbase(main):005:0> put 'test', 'row2', 'cf:b', 'value2'
0 row(s) in 0.0370 seconds
hbase(main):006:0> put 'test', 'row3', 'cf:c', 'value3'
0 row(s) in 0.0450 seconds

Above we inserted 3 values, one at a time. The first insert is at row1, column cf:a with a value of
value1. Columns in HBase are comprised of a column family prefix -- cf in this example --
followed by a colon and then a column qualifier suffix (a in this case).

Verify the data insert.

Run a scan of the table by doing the following
hbase(main):007:0> scan 'test'
ROW COLUMN+CELL
row1 column=cf:a, timestamp=1288380727188, value=value1
row2 column=cf:b, timestamp=1288380738440, value=value2
row3 column=cf:c, timestamp=1288380747365, value=value3
3 row(s) in 0.0590 seconds

Get a single row as follows
hbase(main):008:0> get 'test', 'row1'
COLUMN CELL
cf:a timestamp=1288380727188, value=value1
1 row(s) in 0.0400 seconds

Now, disable and drop your table. This will clean up all done above.
hbase(main):012:0> disable 'test'
0 row(s) in 1.0930 seconds
hbase(main):013:0> drop 'test'
0 row(s) in 0.0770 seconds

Exit the shell by typing exit.
hbase(main):014:0> exit

1.2.4. Stopping HBase
Stop your hbase instance by running the stop script.
$./bin/stop-hbase.sh
stopping hbase...............

1.2.5. Where to go next
The above described standalone setup is good for testing and experiments only. Next move on to
Chapter 2, Configuration where we'll go into depth on the different HBase run modes, requirements
and critical configurations needed setting up a distributed HBase deploy.

Chapter 2. Configuration
Table of Contents
2.1. Java

http://hbase.apache.org/book.html#java
http://hbase.apache.org/book.html#configuration

2.2. Operating System
2.2.1. ssh
2.2.2. DNS
2.2.3. Loopback IP
2.2.4. NTP
2.2.5. ulimit and nproc
2.2.6. Windows

2.3. Hadoop
2.3.1. Hadoop Security
2.3.2. dfs.datanode.max.xcievers

2.4. HBase run modes: Standalone and Distributed
2.4.1. Standalone HBase
2.4.2. Distributed
2.4.3. Running and Confirming Your Installation

2.5. ZooKeeper
2.5.1. Using existing ZooKeeper ensemble
2.5.2. SASL Authentication with ZooKeeper

2.6. Configuration Files
2.6.1. hbase-site.xml and hbase-default.xml
2.6.2. hbase-env.sh
2.6.3. log4j.properties
2.6.4. Client configuration and dependencies connecting to an HBase cluster

2.7. Example Configurations
2.7.1. Basic Distributed HBase Install

2.8. The Important Configurations
2.8.1. Required Configurations
2.8.2. Recommended Configurations
2.8.3. Other Configurations

2.9. Bloom Filter Configuration
2.9.1. io.hfile.bloom.enabled global kill switch
2.9.2. io.hfile.bloom.error.rate
2.9.3. io.hfile.bloom.max.fold

This chapter is the Not-So-Quick start guide to HBase configuration.

Please read this chapter carefully and ensure that all requirements have been satisfied. Failure to do
so will cause you (and us) grief debugging strange errors and/or data loss.

HBase uses the same configuration system as Hadoop. To configure a deploy, edit a file of
environment variables in conf/hbase-env.sh -- this configuration is used mostly by the
launcher shell scripts getting the cluster off the ground -- and then add configuration to an XML file
to do things like override HBase defaults, tell HBase what Filesystem to use, and the location of the
ZooKeeper ensemble [1] .

When running in distributed mode, after you make an edit to an HBase configuration, make sure
you copy the content of the conf directory to all nodes of the cluster. HBase will not do this for
you. Use rsync.

2.1. Java
Just like Hadoop, HBase requires java 6 from Oracle. Usually you'll want to use the latest version
available except the problematic u18 (u24 is the latest version as of this writing).

http://www.java.com/download/
http://hbase.apache.org/book.html#ftn.d1556e270
http://hbase.apache.org/book.html#d1556e2731
http://hbase.apache.org/book.html#d1556e2723
http://hbase.apache.org/book.html#d1556e2708
http://hbase.apache.org/book.html#config.bloom
http://hbase.apache.org/book.html#other_configuration
http://hbase.apache.org/book.html#recommended_configurations
http://hbase.apache.org/book.html#required_configuration
http://hbase.apache.org/book.html#important_configurations
http://hbase.apache.org/book.html#d1556e2451
http://hbase.apache.org/book.html#example_config
http://hbase.apache.org/book.html#client_dependencies
http://hbase.apache.org/book.html#log4j
http://hbase.apache.org/book.html#hbase.env.sh
http://hbase.apache.org/book.html#hbase.site
http://hbase.apache.org/book.html#config.files
http://hbase.apache.org/book.html#zk.sasl.auth
http://hbase.apache.org/book.html#d1556e946
http://hbase.apache.org/book.html#zookeeper
http://hbase.apache.org/book.html#confirm
http://hbase.apache.org/book.html#distributed
http://hbase.apache.org/book.html#standalone
http://hbase.apache.org/book.html#standalone_dist
http://hbase.apache.org/book.html#dfs.datanode.max.xcievers
http://hbase.apache.org/book.html#hadoop.security
http://hbase.apache.org/book.html#hadoop
http://hbase.apache.org/book.html#windows
http://hbase.apache.org/book.html#ulimit
http://hbase.apache.org/book.html#ntp
http://hbase.apache.org/book.html#loopback.ip
http://hbase.apache.org/book.html#dns
http://hbase.apache.org/book.html#ssh
http://hbase.apache.org/book.html#os

2.2. Operating System

2.2.1. ssh
ssh must be installed and sshd must be running to use Hadoop's scripts to manage remote Hadoop
and HBase daemons. You must be able to ssh to all nodes, including your local node, using
passwordless login (Google "ssh passwordless login").

2.2.2. DNS
HBase uses the local hostname to self-report it's IP address. Both forward and reverse DNS
resolving should work.

If your machine has multiple interfaces, HBase will use the interface that the primary hostname
resolves to.

If this is insufficient, you can set hbase.regionserver.dns.interface to indicate the
primary interface. This only works if your cluster configuration is consistent and every host has the
same network interface configuration.

Another alternative is setting hbase.regionserver.dns.nameserver to choose a different
nameserver than the system wide default.

2.2.3. Loopback IP
HBase expects the loopback IP address to be 127.0.0.1. Ubuntu and some other distributions, for
example, will default to 127.0.1.1 and this will cause problems for you.

2.2.4. NTP
The clocks on cluster members should be in basic alignments. Some skew is tolerable but wild skew
could generate odd behaviors. Run NTP on your cluster, or an equivalent.

If you are having problems querying data, or "weird" cluster operations, check system time!

2.2.5. ulimit and nproc
HBase is a database. It uses a lot of files all at the same time. The default ulimit -n -- i.e. user file
limit -- of 1024 on most *nix systems is insufficient (On mac os x its 256). Any significant amount
of loading will lead you to Section 11.9.2.2, “java.io.IOException...(Too many open files)” . You
may also notice errors such as...
 2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Exception
increateBlockOutputStream java.io.EOFException
 2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Abandoning
block blk_-6935524980745310745_1391901

Do yourself a favor and change the upper bound on the number of file descriptors. Set it to north of
10k. The math runs roughly as follows: per ColumnFamily there is at least one StoreFile and
possibly up to 5 or 6 if the region is under load. Multiply the average number of StoreFiles per
ColumnFamily times the number of regions per RegionServer. For example, assuming that a
schema had 3 ColumnFamilies per region with an average of 3 StoreFiles per ColumnFamily, and
there are 100 regions per RegionServer, the JVM will open 3 * 3 * 100 = 900 file descriptors (not
counting open jar files, config files, etc.)

http://hbase.apache.org/book.html#trouble.rs.runtime.filehandles
http://en.wikipedia.org/wiki/Network_Time_Protocol

You should also up the hbase users' nproc setting; under load, a low-nproc setting could manifest
as OutOfMemoryError [2] [3].

To be clear, upping the file descriptors and nproc for the user who is running the HBase process is
an operating system configuration, not an HBase configuration. Also, a common mistake is that
administrators will up the file descriptors for a particular user but for whatever reason, HBase will
be running as some one else. HBase prints in its logs as the first line the ulimit its seeing. Ensure its
correct. [4]

2.2.5.1. ulimit on Ubuntu

If you are on Ubuntu you will need to make the following changes:

In the file /etc/security/limits.conf add a line like:
hadoop - nofile 32768

Replace hadoop with whatever user is running Hadoop and HBase. If you have separate users, you
will need 2 entries, one for each user. In the same file set nproc hard and soft limits. For example:
hadoop soft/hard nproc 32000

.

In the file /etc/pam.d/common-session add as the last line in the file:
session required pam_limits.so

Otherwise the changes in /etc/security/limits.conf won't be applied.

Don't forget to log out and back in again for the changes to take effect!

2.2.6. Windows
HBase has been little tested running on Windows. Running a production install of HBase on top of
Windows is not recommended.

If you are running HBase on Windows, you must install Cygwin to have a *nix-like environment
for the shell scripts. The full details are explained in the Windows Installation guide. Also search
our user mailing list to pick up latest fixes figured by Windows users.

2.3. Hadoop

Please read all of this section
Please read this section to the end. Up front we wade through the weeds of Hadoop
versions. Later we talk of what you must do in HBase to make it work w/ a particular
Hadoop version.

HBase will lose data unless it is running on an HDFS that has a durable sync implementation.
Hadoop 0.20.2, Hadoop 0.20.203.0, and Hadoop 0.20.204.0 DO NOT have this attribute. Currently
only Hadoop versions 0.20.205.x or any release in excess of this version -- this includes hadoop
1.0.0 -- have a working, durable sync [5]. Sync has to be explicitly enabled by setting
dfs.support.append equal to true on both the client side -- in hbase-site.xml -- and on
the serverside in hdfs-site.xml (The sync facility HBase needs is a subset of the append code
path).

http://hbase.apache.org/book.html#ftn.d1556e460
http://hadoop.apache.org/
http://search-hadoop.com/?q=hbase+windows&fc_project=HBase&fc_type=mail+_hash_+dev
http://search-hadoop.com/?q=hbase+windows&fc_project=HBase&fc_type=mail+_hash_+dev
http://hbase.apache.org/cygwin.html
http://cygwin.com/
http://hbase.apache.org/book.html#ftn.d1556e387
http://hbase.apache.org/book.html#ftn.d1556e375
http://hbase.apache.org/book.html#ftn.d1556e368

 <property>
 <name>dfs.support.append</name>
 <value>true</value>
 </property>

You will have to restart your cluster after making this edit. Ignore the chicken-little comment you'll
find in the hdfs-default.xml in the description for the dfs.support.append
configuration; it says it is not enabled because there are “... bugs in the 'append code' and is not
supported in any production cluster.”. This comment is stale, from another era, and while I'm sure
there are bugs, the sync/append code has been running in production at large scale deploys and is on
by default in the offerings of hadoop by commercial vendors [6] [7][8].

Or use the Cloudera or MapR distributions. Cloudera' CDH3 is Apache Hadoop 0.20.x plus patches
including all of the branch-0.20-append additions needed to add a durable sync. Use the released,
most recent version of CDH3.

MapR includes a commercial, reimplementation of HDFS. It has a durable sync as well as some
other interesting features that are not yet in Apache Hadoop. Their M3 product is free to use and
unlimited.

Because HBase depends on Hadoop, it bundles an instance of the Hadoop jar under its lib
directory. The bundled jar is ONLY for use in standalone mode. In distributed mode, it is critical
that the version of Hadoop that is out on your cluster match what is under HBase. Replace the
hadoop jar found in the HBase lib directory with the hadoop jar you are running on your cluster to
avoid version mismatch issues. Make sure you replace the jar in HBase everywhere on your cluster.
Hadoop version mismatch issues have various manifestations but often all looks like its hung up.

2.3.1. Hadoop Security
HBase will run on any Hadoop 0.20.x that incorporates Hadoop security features -- e.g. Y! 0.20S or
CDH3B3 -- as long as you do as suggested above and replace the Hadoop jar that ships with HBase
with the secure version.

2.3.2. dfs.datanode.max.xcievers
An Hadoop HDFS datanode has an upper bound on the number of files that it will serve at any one
time. The upper bound parameter is called xcievers (yes, this is misspelled). Again, before doing
any loading, make sure you have configured Hadoop's conf/hdfs-site.xml setting the
xceivers value to at least the following:
 <property>
 <name>dfs.datanode.max.xcievers</name>
 <value>4096</value>
 </property>

Be sure to restart your HDFS after making the above configuration.

Not having this configuration in place makes for strange looking failures. Eventually you'll see a
complain in the datanode logs complaining about the xcievers exceeded, but on the run up to this
one manifestation is complaint about missing blocks. For example: 10/12/08 20:10:31
INFO hdfs.DFSClient: Could not obtain block
blk_XXXXXXXXXXXXXXXXXXXXXX_YYYYYYYY from any node:
java.io.IOException: No live nodes contain current block. Will get
new block locations from namenode and retry... [9]

http://hbase.apache.org/book.html#ftn.d1556e577
http://www.mapr.com/products/mapr-editions/m3-edition
http://www.mapr.com/
http://svn.apache.org/viewvc/hadoop/common/branches/branch-0.20-append/
http://archive.cloudera.com/docs/
http://www.mapr.com/
http://www.cloudera.com/
http://hbase.apache.org/book.html#ftn.d1556e506
http://hbase.apache.org/book.html#ftn.d1556e500
http://hbase.apache.org/book.html#ftn.d1556e490

2.4. HBase run modes: Standalone and Distributed
HBase has two run modes: Section 2.4.1, “Standalone HBase” and Section 2.4.2, “Distributed” . Out
of the box, HBase runs in standalone mode. To set up a distributed deploy, you will need to
configure HBase by editing files in the HBase conf directory.

Whatever your mode, you will need to edit conf/hbase-env.sh to tell HBase which java to
use. In this file you set HBase environment variables such as the heapsize and other options for the
JVM, the preferred location for log files, etc. Set JAVA_HOME to point at the root of your java
install.

2.4.1. Standalone HBase
This is the default mode. Standalone mode is what is described in the Section 1.2, “Quick Start”
section. In standalone mode, HBase does not use HDFS -- it uses the local filesystem instead -- and
it runs all HBase daemons and a local ZooKeeper all up in the same JVM. Zookeeper binds to a
well known port so clients may talk to HBase.

2.4.2. Distributed
Distributed mode can be subdivided into distributed but all daemons run on a single node -- a.k.a
pseudo-distributed-- and fully-distributed where the daemons are spread across all nodes in the
cluster [10].

Distributed modes require an instance of the Hadoop Distributed File System (HDFS). See the
Hadoop requirements and instructions for how to set up a HDFS. Before proceeding, ensure you
have an appropriate, working HDFS.

Below we describe the different distributed setups. Starting, verification and exploration of your
install, whether a pseudo-distributed or fully-distributed configuration is described in a section that
follows, Section 2.4.3, “Running and Confirming Your Installation” . The same verification script
applies to both deploy types.

2.4.2.1. Pseudo-distributed
A pseudo-distributed mode is simply a distributed mode run on a single host. Use this configuration
testing and prototyping on HBase. Do not use this configuration for production nor for evaluating
HBase performance.

Once you have confirmed your HDFS setup, edit conf/hbase-site.xml. This is the file into
which you add local customizations and overrides for <xreg></xreg> and Section 2.4.2.2.3, “HDFS
Client Configuration”. Point HBase at the running Hadoop HDFS instance by setting the
hbase.rootdir property. This property points HBase at the Hadoop filesystem instance to use.
For example, adding the properties below to your hbase-site.xml says that HBase should use
the /hbase directory in the HDFS whose namenode is at port 8020 on your local machine, and
that it should run with one replica only (recommended for pseudo-distributed mode):
<configuration>
 ...
 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://localhost:8020/hbase</value>
 <description>The directory shared by RegionServers.
 </description>
 </property>
 <property>
 <name>dfs.replication</name>

http://hbase.apache.org/book.html#hdfs_client_conf
http://hbase.apache.org/book.html#hdfs_client_conf
http://hbase.apache.org/book.html#confirm
http://hadoop.apache.org/common/docs/current/api/overview-summary.html#overview_description
http://hbase.apache.org/book.html#ftn.d1556e631
http://hbase.apache.org/book.html#quickstart
http://hbase.apache.org/book.html#distributed
http://hbase.apache.org/book.html#standalone

 <value>1</value>
 <description>The replication count for HLog and HFile storage. Should not be
greater than HDFS datanode count.
 </description>
 </property>
 ...
</configuration>

Note
Let HBase create the hbase.rootdir directory. If you don't, you'll get warning
saying HBase needs a migration run because the directory is missing files expected
by HBase (it'll create them if you let it).

Note
Above we bind to localhost. This means that a remote client cannot connect.
Amend accordingly, if you want to connect from a remote location.

Now skip to Section 2.4.3, “Running and Confirming Your Installation” for how to start and verify
your pseudo-distributed install. [11]

2.4.2.2. Fully-distributed
For running a fully-distributed operation on more than one host, make the following configurations.
In hbase-site.xml, add the property hbase.cluster.distributed and set it to true
and point the HBase hbase.rootdir at the appropriate HDFS NameNode and location in HDFS
where you would like HBase to write data. For example, if you namenode were running at
namenode.example.org on port 8020 and you wanted to home your HBase in HDFS at /hbase,
make the following configuration.
<configuration>
 ...
 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://namenode.example.org:8020/hbase</value>
 <description>The directory shared by RegionServers.
 </description>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 <description>The mode the cluster will be in. Possible values are
 false: standalone and pseudo-distributed setups with managed Zookeeper
 true: fully-distributed with unmanaged Zookeeper Quorum (see hbase-env.sh)
 </description>
 </property>
 ...
</configuration>

2.4.2.2.1. regionservers
In addition, a fully-distributed mode requires that you modify conf/regionservers. The
Section 2.7.1.2, “ regionservers ” file lists all hosts that you would have running
HRegionServers, one host per line (This file in HBase is like the Hadoop slaves file). All servers
listed in this file will be started and stopped when HBase cluster start or stop is run.

http://hbase.apache.org/book.html#regionservers
http://hbase.apache.org/book.html#ftn.d1556e694
http://hbase.apache.org/book.html#confirm

2.4.2.2.2. ZooKeeper and HBase

See section Section 2.5, “ZooKeeper” for ZooKeeper setup for HBase.

2.4.2.2.3. HDFS Client Configuration

Of note, if you have made HDFS client configuration on your Hadoop cluster -- i.e. configuration
you want HDFS clients to use as opposed to server-side configurations -- HBase will not see this
configuration unless you do one of the following:

 Add a pointer to your HADOOP_CONF_DIR to the HBASE_CLASSPATH environment
variable in hbase-env.sh.

 Add a copy of hdfs-site.xml (or hadoop-site.xml) or, better, symlinks, under $
{HBASE_HOME}/conf, or

 if only a small set of HDFS client configurations, add them to hbase-site.xml.

An example of such an HDFS client configuration is dfs.replication. If for example, you
want to run with a replication factor of 5, hbase will create files with the default of 3 unless you do
the above to make the configuration available to HBase.

2.4.3. Running and Confirming Your Installation
Make sure HDFS is running first. Start and stop the Hadoop HDFS daemons by running
bin/start-hdfs.sh over in the HADOOP_HOME directory. You can ensure it started properly
by testing the put and get of files into the Hadoop filesystem. HBase does not normally use the
mapreduce daemons. These do not need to be started.

If you are managing your own ZooKeeper, start it and confirm its running else, HBase will start up
ZooKeeper for you as part of its start process.

Start HBase with the following command:
bin/start-hbase.sh

Run the above from the HBASE_HOME directory.

You should now have a running HBase instance. HBase logs can be found in the logs
subdirectory. Check them out especially if HBase had trouble starting.

HBase also puts up a UI listing vital attributes. By default its deployed on the Master host at port
60010 (HBase RegionServers listen on port 60020 by default and put up an informational http
server at 60030). If the Master were running on a host named master.example.org on the
default port, to see the Master's homepage you'd point your browser at
http://master.example.org:60010.

Once HBase has started, see the Section 1.2.3, “Shell Exercises” for how to create tables, add data,
scan your insertions, and finally disable and drop your tables.

To stop HBase after exiting the HBase shell enter
$./bin/stop-hbase.sh
stopping hbase...............

Shutdown can take a moment to complete. It can take longer if your cluster is comprised of many
machines. If you are running a distributed operation, be sure to wait until HBase has shut down
completely before stopping the Hadoop daemons.

http://hbase.apache.org/book.html#shell_exercises
http://hbase.apache.org/book.html#zookeeper

2.5. ZooKeeper
A distributed HBase depends on a running ZooKeeper cluster. All participating nodes and clients
need to be able to access the running ZooKeeper ensemble. HBase by default manages a ZooKeeper
"cluster" for you. It will start and stop the ZooKeeper ensemble as part of the HBase start/stop
process. You can also manage the ZooKeeper ensemble independent of HBase and just point HBase
at the cluster it should use. To toggle HBase management of ZooKeeper, use the
HBASE_MANAGES_ZK variable in conf/hbase-env.sh. This variable, which defaults to
true, tells HBase whether to start/stop the ZooKeeper ensemble servers as part of HBase
start/stop.

When HBase manages the ZooKeeper ensemble, you can specify ZooKeeper configuration using its
native zoo.cfg file, or, the easier option is to just specify ZooKeeper options directly in
conf/hbase-site.xml. A ZooKeeper configuration option can be set as a property in the
HBase hbase-site.xml XML configuration file by prefacing the ZooKeeper option name with
hbase.zookeeper.property. For example, the clientPort setting in ZooKeeper can be
changed by setting the hbase.zookeeper.property.clientPort property. For all default
values used by HBase, including ZooKeeper configuration, see Section 2.6.1.1, “HBase Default
Configuration”. Look for the hbase.zookeeper.property prefix [12]

You must at least list the ensemble servers in hbase-site.xml using the
hbase.zookeeper.quorum property. This property defaults to a single ensemble member at
localhost which is not suitable for a fully distributed HBase. (It binds to the local machine only
and remote clients will not be able to connect).

How many ZooKeepers should I run?
You can run a ZooKeeper ensemble that comprises 1 node only but in production it
is recommended that you run a ZooKeeper ensemble of 3, 5 or 7 machines; the more
members an ensemble has, the more tolerant the ensemble is of host failures. Also,
run an odd number of machines. There can be no quorum if the number of members
is an even number. Give each ZooKeeper server around 1GB of RAM, and if
possible, its own dedicated disk (A dedicated disk is the best thing you can do to
ensure a performant ZooKeeper ensemble). For very heavily loaded clusters, run
ZooKeeper servers on separate machines from RegionServers (DataNodes and
TaskTrackers).

For example, to have HBase manage a ZooKeeper quorum on nodes rs{1,2,3,4,5}.example.com,
bound to port 2222 (the default is 2181) ensure HBASE_MANAGE_ZK is commented out or set to
true in conf/hbase-env.sh and then edit conf/hbase-site.xml and set
hbase.zookeeper.property.clientPort and hbase.zookeeper.quorum. You
should also set hbase.zookeeper.property.dataDir to other than the default as the
default has ZooKeeper persist data under /tmp which is often cleared on system restart. In the
example below we have ZooKeeper persist to /user/local/zookeeper.
 <configuration>
 ...
 <property>
 <name>hbase.zookeeper.property.clientPort</name>
 <value>2222</value>
 <description>Property from ZooKeeper's config zoo.cfg.
 The port at which the clients will connect.
 </description>
 </property>
 <property>

http://hbase.apache.org/book.html#ftn.d1556e884
http://hbase.apache.org/book.html#hbase_default_configurations
http://hbase.apache.org/book.html#hbase_default_configurations

 <name>hbase.zookeeper.quorum</name>
 <value>rs1.example.com,rs2.example.com,rs3.example.com,rs4.example.com,rs5
.example.com</value>
 <description>Comma separated list of servers in the ZooKeeper Quorum.
 For example, "host1.mydomain.com,host2.mydomain.com,host3.mydomain.com".
 By default this is set to localhost for local and pseudo-distributed modes
 of operation. For a fully-distributed setup, this should be set to a full
 list of ZooKeeper quorum servers. If HBASE_MANAGES_ZK is set in hbase-
env.sh
 this is the list of servers which we will start/stop ZooKeeper on.
 </description>
 </property>
 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/usr/local/zookeeper</value>
 <description>Property from ZooKeeper's config zoo.cfg.
 The directory where the snapshot is stored.
 </description>
 </property>
 ...
 </configuration>

2.5.1. Using existing ZooKeeper ensemble
To point HBase at an existing ZooKeeper cluster, one that is not managed by HBase, set
HBASE_MANAGES_ZK in conf/hbase-env.sh to false
 ...
 # Tell HBase whether it should manage it's own instance of Zookeeper or not.
 export HBASE_MANAGES_ZK=false

Next set ensemble locations and client port, if non-standard, in hbase-site.xml, or add a
suitably configured zoo.cfg to HBase's CLASSPATH. HBase will prefer the configuration found
in zoo.cfg over any settings in hbase-site.xml.

When HBase manages ZooKeeper, it will start/stop the ZooKeeper servers as a part of the regular
start/stop scripts. If you would like to run ZooKeeper yourself, independent of HBase start/stop, you
would do the following
${HBASE_HOME}/bin/hbase-daemons.sh {start,stop} zookeeper

Note that you can use HBase in this manner to spin up a ZooKeeper cluster, unrelated to HBase.
Just make sure to set HBASE_MANAGES_ZK to false if you want it to stay up across HBase
restarts so that when HBase shuts down, it doesn't take ZooKeeper down with it.

For more information about running a distinct ZooKeeper cluster, see the ZooKeeper Getting
Started Guide. Additionally, see the ZooKeeper Wiki or the ZooKeeper documentation for more
information on ZooKeeper sizing.

2.5.2. SASL Authentication with ZooKeeper
Newer releases of HBase (>= 0.92) will support connecting to a ZooKeeper Quorum that supports
SASL authentication (which is available in Zookeeper versions 3.4.0 or later).

This describes how to set up HBase to mutually authenticate with a ZooKeeper Quorum.
ZooKeeper/HBase mutual authentication (HBASE-2418) is required as part of a complete secure
HBase configuration (HBASE-3025). For simplicity of explication, this section ignores additional
configuration required (Secure HDFS and Coprocessor configuration). It's recommended to begin
with an HBase-managed Zookeeper configuration (as opposed to a standalone Zookeeper quorum)

https://issues.apache.org/jira/browse/HBASE-3025
https://issues.apache.org/jira/browse/HBASE-2418
http://zookeeper.apache.org/doc/r3.3.3/zookeeperAdmin.html#sc_zkMulitServerSetup
http://wiki.apache.org/hadoop/ZooKeeper/FAQ#A7
http://hadoop.apache.org/zookeeper/docs/current/zookeeperStarted.html
http://hadoop.apache.org/zookeeper/docs/current/zookeeperStarted.html

for ease of learning.

2.5.2.1. Operating System Prerequisites
You need to have a working Kerberos KDC setup. For each $HOST that will run a ZooKeeper
server, you should have a principle zookeeper/$HOST. For each such host, add a service key
(using the kadmin or kadmin.local tool's ktadd command) for zookeeper/$HOST and
copy this file to $HOST, and make it readable only to the user that will run zookeeper on $HOST.
Note the location of this file, which we will use below as $PATH_TO_ZOOKEEPER_KEYTAB.

Similarly, for each $HOST that will run an HBase server (master or regionserver), you should have
a principle: hbase/$HOST. For each host, add a keytab file called hbase.keytab containing a
service key for hbase/$HOST, copy this file to $HOST, and make it readable only to the user that
will run an HBase service on $HOST. Note the location of this file, which we will use below as
$PATH_TO_HBASE_KEYTAB.

Each user who will be an HBase client should also be given a Kerberos principal. This principal
should usually have a password assigned to it (as opposed to, as with the HBase servers, a keytab
file) which only this user knows. The client's principal's maxrenewlife should be set so that it
can be renewed enough so that the user can complete their HBase client processes. For example, if a
user runs a long-running HBase client process that takes at most 3 days, we might create this user's
principal within kadmin with: addprinc -maxrenewlife 3days. The Zookeeper client
and server libraries manage their own ticket refreshment by running threads that wake up
periodically to do the refreshment.

On each host that will run an HBase client (e.g. hbase shell), add the following file to the
HBase home directory's conf directory:
 Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true;
 };

We'll refer to this JAAS configuration file as $CLIENT_CONF below.

2.5.2.2. HBase-managed Zookeeper Configuration
On each node that will run a zookeeper, a master, or a regionserver, create a JAAS configuration file
in the conf directory of the node's HBASE_HOME directory that looks like the following:
 Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="$PATH_TO_ZOOKEEPER_KEYTAB"
 storeKey=true
 useTicketCache=false
 principal="zookeeper/$HOST";
 };
 Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="$PATH_TO_HBASE_KEYTAB"
 principal="hbase/$HOST";
 };

http://docs.oracle.com/javase/1.4.2/docs/guide/security/jgss/tutorials/LoginConfigFile.html

where the $PATH_TO_HBASE_KEYTAB and $PATH_TO_ZOOKEEPER_KEYTAB files are what
you created above, and $HOST is the hostname for that node.

The Server section will be used by the Zookeeper quorum server, while the Client section will
be used by the HBase master and regionservers. The path to this file should be substituted for the
text $HBASE_SERVER_CONF in the hbase-env.sh listing below.

The path to this file should be substituted for the text $CLIENT_CONF in the hbase-env.sh
listing below.

Modify your hbase-env.sh to include the following:
 export HBASE_OPTS="-
Djava.security.auth.login.config=$CLIENT_CONF"
 export HBASE_MANAGES_ZK=true
 export HBASE_ZOOKEEPER_OPTS="-
Djava.security.auth.login.config=$HBASE_SERVER_CONF"
 export HBASE_MASTER_OPTS="-
Djava.security.auth.login.config=$HBASE_SERVER_CONF"
 export HBASE_REGIONSERVER_OPTS="-
Djava.security.auth.login.config=$HBASE_SERVER_CONF"

where $HBASE_SERVER_CONF and $CLIENT_CONF are the full paths to the JAAS
configuration files created above.

Modify your hbase-site.xml on each node that will run zookeeper, master or regionserver to
contain:
 <configuration>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>$ZK_NODES</value>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 </property>
 <property>
 <name>hbase.zookeeper.property.authProvider.1</name>
 <value>org.apache.zookeeper.server.auth.SASLAuthentication
Provider</value>
 </property>
 <property>
 <name>hbase.zookeeper.property.kerberos.removeHostFromPrin
cipal</name>
 <value>true</value>
 </property>
 <property>
 <name>hbase.zookeeper.property.kerberos.removeRealmFromPri
ncipal</name>
 <value>true</value>
 </property>
 </configuration>

where $ZK_NODES is the comma-separated list of hostnames of the Zookeeper Quorum hosts.

Start your hbase cluster by running one or more of the following set of commands on the
appropriate hosts:
 bin/hbase zookeeper start
 bin/hbase master start

 bin/hbase regionserver start

2.5.2.3. External Zookeeper Configuration
Add a JAAS configuration file that looks like:
 Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="$PATH_TO_HBASE_KEYTAB"
 principal="hbase/$HOST";
 };

where the $PATH_TO_HBASE_KEYTAB is the keytab created above for HBase services to run on
this host, and $HOST is the hostname for that node. Put this in the HBase home's configuration
directory. We'll refer to this file's full pathname as $HBASE_SERVER_CONF below.

Modify your hbase-env.sh to include the following:
 export HBASE_OPTS="-
Djava.security.auth.login.config=$CLIENT_CONF"
 export HBASE_MANAGES_ZK=false
 export HBASE_MASTER_OPTS="-
Djava.security.auth.login.config=$HBASE_SERVER_CONF"
 export HBASE_REGIONSERVER_OPTS="-
Djava.security.auth.login.config=$HBASE_SERVER_CONF"

Modify your hbase-site.xml on each node that will run a master or regionserver to contain:
 <configuration>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>$ZK_NODES</value>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 </property>
 </configuration>

where $ZK_NODES is the comma-separated list of hostnames of the Zookeeper Quorum hosts.

Add a zoo.cfg for each Zookeeper Quorum host containing:
 authProvider.1=org.apache.zookeeper.server.auth.SASLAuthen
ticationProvider
 kerberos.removeHostFromPrincipal=true
 kerberos.removeRealmFromPrincipal=true

Also on each of these hosts, create a JAAS configuration file containing:
 Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="$PATH_TO_ZOOKEEPER_KEYTAB"

 storeKey=true
 useTicketCache=false
 principal="zookeeper/$HOST";
 };

where $HOST is the hostname of each Quorum host. We will refer to the full pathname of this file
as $ZK_SERVER_CONF below.

Start your Zookeepers on each Zookeeper Quorum host with:
 SERVER_JVMFLAGS="-
Djava.security.auth.login.config=$ZK_SERVER_CONF" bin/zkServer start

Start your HBase cluster by running one or more of the following set of commands on the
appropriate nodes:
 bin/hbase master start
 bin/hbase regionserver start

2.5.2.4. Zookeeper Server Authentication Log Output
If the configuration above is successful, you should see something similar to the following in your
Zookeeper server logs:
11/12/05 22:43:39 INFO zookeeper.Login: successfully logged in.
11/12/05 22:43:39 INFO server.NIOServerCnxnFactory: binding to port
0.0.0.0/0.0.0.0:2181
11/12/05 22:43:39 INFO zookeeper.Login: TGT refresh thread started.
11/12/05 22:43:39 INFO zookeeper.Login: TGT valid starting at: Mon Dec 05
22:43:39 UTC 2011
11/12/05 22:43:39 INFO zookeeper.Login: TGT expires: Tue Dec 06
22:43:39 UTC 2011
11/12/05 22:43:39 INFO zookeeper.Login: TGT refresh sleeping until: Tue Dec 06
18:36:42 UTC 2011
..
11/12/05 22:43:59 INFO auth.SaslServerCallbackHandler:
 Successfully authenticated client: authenticationID=hbase/ip-10-166-175-
249.us-west-1.compute.internal@HADOOP.LOCALDOMAIN;
 authorizationID=hbase/ip-10-166-175-249.us-west-
1.compute.internal@HADOOP.LOCALDOMAIN.
11/12/05 22:43:59 INFO auth.SaslServerCallbackHandler: Setting authorizedID:
hbase
11/12/05 22:43:59 INFO server.ZooKeeperServer: adding SASL authorization for
authorizationID: hbase

2.5.2.5. Zookeeper Client Authentication Log Output
On the Zookeeper client side (HBase master or regionserver), you should see something similar to
the following:
11/12/05 22:43:59 INFO zookeeper.ZooKeeper: Initiating client connection,
connectString=ip-10-166-175-249.us-west-1.compute.internal:2181
sessionTimeout=180000 watcher=master:60000
11/12/05 22:43:59 INFO zookeeper.ClientCnxn: Opening socket connection to server
/10.166.175.249:2181
11/12/05 22:43:59 INFO zookeeper.RecoverableZooKeeper: The identifier of this
process is 14851@ip-10-166-175-249

11/12/05 22:43:59 INFO zookeeper.Login: successfully logged in.
11/12/05 22:43:59 INFO client.ZooKeeperSaslClient: Client will use GSSAPI as
SASL mechanism.
11/12/05 22:43:59 INFO zookeeper.Login: TGT refresh thread started.
11/12/05 22:43:59 INFO zookeeper.ClientCnxn: Socket connection established to
ip-10-166-175-249.us-west-1.compute.internal/10.166.175.249:2181, initiating
session
11/12/05 22:43:59 INFO zookeeper.Login: TGT valid starting at: Mon Dec 05
22:43:59 UTC 2011
11/12/05 22:43:59 INFO zookeeper.Login: TGT expires: Tue Dec 06
22:43:59 UTC 2011
11/12/05 22:43:59 INFO zookeeper.Login: TGT refresh sleeping until: Tue Dec 06
18:30:37 UTC 2011
11/12/05 22:43:59 INFO zookeeper.ClientCnxn: Session establishment complete on
server ip-10-166-175-249.us-west-1.compute.internal/10.166.175.249:2181,
sessionid = 0x134106594320000, negotiated timeout = 180000

2.5.2.6. Configuration from Scratch
This has been tested on the current standard Amazon Linux AMI. First setup KDC and principals as
described above. Next checkout code and run a sanity check.
 git clone git://git.apache.org/hbase.git
 cd hbase
 mvn -Psecurity,localTests clean test -Dtest=TestZooKeeperACL

Then configure HBase as described above. Manually edit target/cached_classpath.txt (see below)..
 bin/hbase zookeeper &
 bin/hbase master &
 bin/hbase regionserver &

2.5.2.7. Future improvements

2.5.2.7.1. Fix target/cached_classpath.txt

You must override the standard hadoop-core jar file from the
target/cached_classpath.txt file with the version containing the HADOOP-7070 fix.
You can use the following script to do this:
 echo `find ~/.m2 -name "*hadoop-core*7070*SNAPSHOT.jar"` ':'
`cat target/cached_classpath.txt` | sed 's/ //g' > target/tmp.txt
 mv target/tmp.txt target/cached_classpath.txt

2.5.2.7.2. Set JAAS configuration programmatically

This would avoid the need for a separate Hadoop jar that fixes HADOOP-7070.

https://issues.apache.org/jira/browse/HADOOP-7070

2.5.2.7.3. Elimination of kerberos.removeHostFromPrincipal and
kerberos.removeRealmFromPrincipal

2.6. Configuration Files

2.6.1. hbase-site.xml and hbase-default.xml
Just as in Hadoop where you add site-specific HDFS configuration to the hdfs-site.xml file,
for HBase, site specific customizations go into the file conf/hbase-site.xml. For the list of
configurable properties, see Section 2.6.1.1, “HBase Default Configuration” below or view the raw
hbase-default.xml source file in the HBase source code at src/main/resources.

Not all configuration options make it out to hbase-default.xml. Configuration that it is
thought rare anyone would change can exist only in code; the only way to turn up such
configurations is via a reading of the source code itself.

Currently, changes here will require a cluster restart for HBase to notice the change.

2.6.1.1. HBase Default Configuration

HBase Default Configuration

The documentation below is generated using the default hbase configuration file, hbase-
default.xml, as source.
hbase.rootdir

The directory shared by region servers and into which HBase persists. The URL should be
'fully-qualified' to include the filesystem scheme. For example, to specify the HDFS directory
'/hbase' where the HDFS instance's namenode is running at namenode.example.org on port
9000, set this value to: hdfs://namenode.example.org:9000/hbase. By default HBase writes
into /tmp. Change this configuration else all data will be lost on machine restart.

Default: file:///tmp/hbase-${user.name}/hbase

hbase.master.port

The port the HBase Master should bind to.

Default: 60000

hbase.cluster.distributed

The mode the cluster will be in. Possible values are false for standalone mode and true for
distributed mode. If false, startup will run all HBase and ZooKeeper daemons together in the
one JVM.

Default: false

hbase.tmp.dir

Temporary directory on the local filesystem. Change this setting to point to a location more
permanent than '/tmp' (The '/tmp' directory is often cleared on machine restart).

http://hbase.apache.org/book.html#hbase_default_configurations

Default: /tmp/hbase-${user.name}

hbase.master.info.port

The port for the HBase Master web UI. Set to -1 if you do not want a UI instance run.

Default: 60010

hbase.master.info.bindAddress

The bind address for the HBase Master web UI

Default: 0.0.0.0

hbase.client.write.buffer

Default size of the HTable clien write buffer in bytes. A bigger buffer takes more memory --
on both the client and server side since server instantiates the passed write buffer to process it
-- but a larger buffer size reduces the number of RPCs made. For an estimate of server-side
memory-used, evaluate hbase.client.write.buffer * hbase.regionserver.handler.count

Default: 2097152

hbase.regionserver.port

The port the HBase RegionServer binds to.

Default: 60020

hbase.regionserver.info.port

The port for the HBase RegionServer web UI Set to -1 if you do not want the RegionServer
UI to run.

Default: 60030

hbase.regionserver.info.port.auto

Whether or not the Master or RegionServer UI should search for a port to bind to. Enables
automatic port search if hbase.regionserver.info.port is already in use. Useful for testing,
turned off by default.

Default: false

hbase.regionserver.info.bindAddress

The address for the HBase RegionServer web UI

Default: 0.0.0.0

hbase.regionserver.class

The RegionServer interface to use. Used by the client opening proxy to remote region server.

Default: org.apache.hadoop.hbase.ipc.HRegionInterface

hbase.client.pause

General client pause value. Used mostly as value to wait before running a retry of a failed get,
region lookup, etc.

Default: 1000

hbase.client.retries.number

Maximum retries. Used as maximum for all retryable operations such as fetching of the root
region from root region server, getting a cell's value, starting a row update, etc. Default: 10.

Default: 10

hbase.bulkload.retries.number

Maximum retries. This is maximum number of iterations to atomic bulk loads are attempted
in the face of splitting operations 0 means never give up. Default: 0.

Default: 0

hbase.client.scanner.caching

Number of rows that will be fetched when calling next on a scanner if it is not served from
(local, client) memory. Higher caching values will enable faster scanners but will eat up more
memory and some calls of next may take longer and longer times when the cache is empty.
Do not set this value such that the time between invocations is greater than the scanner
timeout; i.e. hbase.regionserver.lease.period

Default: 1

hbase.client.keyvalue.maxsize

Specifies the combined maximum allowed size of a KeyValue instance. This is to set an upper
boundary for a single entry saved in a storage file. Since they cannot be split it helps avoiding
that a region cannot be split any further because the data is too large. It seems wise to set this
to a fraction of the maximum region size. Setting it to zero or less disables the check.

Default: 10485760

hbase.regionserver.lease.period

HRegion server lease period in milliseconds. Default is 60 seconds. Clients must report in
within this period else they are considered dead.

Default: 60000

hbase.regionserver.handler.count

Count of RPC Listener instances spun up on RegionServers. Same property is used by the
Master for count of master handlers. Default is 10.

Default: 10

hbase.regionserver.msginterval

Interval between messages from the RegionServer to Master in milliseconds.

Default: 3000

hbase.regionserver.optionallogflushinterval

Sync the HLog to the HDFS after this interval if it has not accumulated enough entries to
trigger a sync. Default 1 second. Units: milliseconds.

Default: 1000

hbase.regionserver.regionSplitLimit

Limit for the number of regions after which no more region splitting should take place. This is
not a hard limit for the number of regions but acts as a guideline for the regionserver to stop
splitting after a certain limit. Default is set to MAX_INT; i.e. do not block splitting.

Default: 2147483647

hbase.regionserver.logroll.period

Period at which we will roll the commit log regardless of how many edits it has.

Default: 3600000

hbase.regionserver.logroll.errors.tolerated

The number of consecutive WAL close errors we will allow before triggering a server abort. A
setting of 0 will cause the region server to abort if closing the current WAL writer fails during
log rolling. Even a small value (2 or 3) will allow a region server to ride over transient HDFS
errors.

Default: 2

hbase.regionserver.hlog.reader.impl

The HLog file reader implementation.

Default:
org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogReader

hbase.regionserver.hlog.writer.impl

The HLog file writer implementation.

Default:
org.apache.hadoop.hbase.regionserver.wal.SequenceFileLogWriter

hbase.regionserver.nbreservationblocks

The number of resevoir blocks of memory release on OOME so we can cleanup properly
before server shutdown.

Default: 4

hbase.zookeeper.dns.interface

The name of the Network Interface from which a ZooKeeper server should report its IP
address.

Default: default

hbase.zookeeper.dns.nameserver

The host name or IP address of the name server (DNS) which a ZooKeeper server should use
to determine the host name used by the master for communication and display purposes.

Default: default

hbase.regionserver.dns.interface

The name of the Network Interface from which a region server should report its IP address.

Default: default

hbase.regionserver.dns.nameserver

The host name or IP address of the name server (DNS) which a region server should use to
determine the host name used by the master for communication and display purposes.

Default: default

hbase.master.dns.interface

The name of the Network Interface from which a master should report its IP address.

Default: default

hbase.master.dns.nameserver

The host name or IP address of the name server (DNS) which a master should use to
determine the host name used for communication and display purposes.

Default: default

hbase.balancer.period

Period at which the region balancer runs in the Master.

Default: 300000

hbase.regions.slop

Rebalance if any regionserver has average + (average * slop) regions. Default is 20% slop.

Default: 0.2

hbase.master.logcleaner.ttl

Maximum time a HLog can stay in the .oldlogdir directory, after which it will be cleaned by a
Master thread.

Default: 600000

hbase.master.logcleaner.plugins

A comma-separated list of LogCleanerDelegate invoked by the LogsCleaner service. These
WAL/HLog cleaners are called in order, so put the HLog cleaner that prunes the most HLog
files in front. To implement your own LogCleanerDelegate, just put it in HBase's classpath
and add the fully qualified class name here. Always add the above default log cleaners in the
list.

Default: org.apache.hadoop.hbase.master.TimeToLiveLogCleaner

hbase.regionserver.global.memstore.upperLimit

Maximum size of all memstores in a region server before new updates are blocked and flushes
are forced. Defaults to 40% of heap

Default: 0.4

hbase.regionserver.global.memstore.lowerLimit

When memstores are being forced to flush to make room in memory, keep flushing until we
hit this mark. Defaults to 35% of heap. This value equal to
hbase.regionserver.global.memstore.upperLimit causes the minimum possible flushing to
occur when updates are blocked due to memstore limiting.

Default: 0.35

hbase.server.thread.wakefrequency

Time to sleep in between searches for work (in milliseconds). Used as sleep interval by
service threads such as log roller.

Default: 10000

hbase.hregion.memstore.flush.size

Memstore will be flushed to disk if size of the memstore exceeds this number of bytes. Value
is checked by a thread that runs every hbase.server.thread.wakefrequency.

Default: 134217728

hbase.hregion.preclose.flush.size

If the memstores in a region are this size or larger when we go to close, run a "pre-flush" to
clear out memstores before we put up the region closed flag and take the region offline. On
close, a flush is run under the close flag to empty memory. During this time the region is
offline and we are not taking on any writes. If the memstore content is large, this flush could
take a long time to complete. The preflush is meant to clean out the bulk of the memstore
before putting up the close flag and taking the region offline so the flush that runs under the
close flag has little to do.

Default: 5242880

hbase.hregion.memstore.block.multiplier

Block updates if memstore has hbase.hregion.block.memstore time hbase.hregion.flush.size
bytes. Useful preventing runaway memstore during spikes in update traffic. Without an upper-
bound, memstore fills such that when it flushes the resultant flush files take a long time to
compact or split, or worse, we OOME.

Default: 2

hbase.hregion.memstore.mslab.enabled

Enables the MemStore-Local Allocation Buffer, a feature which works to prevent heap
fragmentation under heavy write loads. This can reduce the frequency of stop-the-world GC
pauses on large heaps.

Default: true

hbase.hregion.max.filesize

Maximum HStoreFile size. If any one of a column families' HStoreFiles has grown to exceed
this value, the hosting HRegion is split in two. Default: 1G.

Default: 1073741824

hbase.hstore.compactionThreshold

If more than this number of HStoreFiles in any one HStore (one HStoreFile is written per
flush of memstore) then a compaction is run to rewrite all HStoreFiles files as one. Larger
numbers put off compaction but when it runs, it takes longer to complete.

Default: 3

hbase.hstore.blockingStoreFiles

If more than this number of StoreFiles in any one Store (one StoreFile is written per flush of
MemStore) then updates are blocked for this HRegion until a compaction is completed, or
until hbase.hstore.blockingWaitTime has been exceeded.

Default: 7

hbase.hstore.blockingWaitTime

The time an HRegion will block updates for after hitting the StoreFile limit defined by
hbase.hstore.blockingStoreFiles. After this time has elapsed, the HRegion will stop blocking
updates even if a compaction has not been completed. Default: 90 seconds.

Default: 90000

hbase.hstore.compaction.max

Max number of HStoreFiles to compact per 'minor' compaction.

Default: 10

hbase.hregion.majorcompaction

The time (in miliseconds) between 'major' compactions of all HStoreFiles in a region. Default:
1 day. Set to 0 to disable automated major compactions.

Default: 86400000

hbase.mapreduce.hfileoutputformat.blocksize

The mapreduce HFileOutputFormat writes storefiles/hfiles. This is the minimum hfile
blocksize to emit. Usually in hbase, writing hfiles, the blocksize is gotten from the table
schema (HColumnDescriptor) but in the mapreduce outputformat context, we don't have
access to the schema so get blocksize from Configuration. The smaller you make the
blocksize, the bigger your index and the less you fetch on a random-access. Set the blocksize
down if you have small cells and want faster random-access of individual cells.

Default: 65536

hfile.block.cache.size

Percentage of maximum heap (-Xmx setting) to allocate to block cache used by
HFile/StoreFile. Default of 0.25 means allocate 25%. Set to 0 to disable but it's not
recommended.

Default: 0.25

hbase.hash.type

The hashing algorithm for use in HashFunction. Two values are supported now: murmur
(MurmurHash) and jenkins (JenkinsHash). Used by bloom filters.

Default: murmur

hfile.block.index.cacheonwrite

This allows to put non-root multi-level index blocks into the block cache at the time the index
is being written.

Default: false

hfile.index.block.max.size

When the size of a leaf-level, intermediate-level, or root-level index block in a multi-level
block index grows to this size, the block is written out and a new block is started.

Default: 131072

hfile.format.version

The HFile format version to use for new files. Set this to 1 to test backwards-compatibility.
The default value of this option should be consistent with FixedFileTrailer.MAX_VERSION.

Default: 2

io.storefile.bloom.block.size

The size in bytes of a single block ("chunk") of a compound Bloom filter. This size is
approximate, because Bloom blocks can only be inserted at data block boundaries, and the
number of keys per data block varies.

Default: 131072

io.storefile.bloom.cacheonwrite

Enables cache-on-write for inline blocks of a compound Bloom filter.

Default: false

hbase.rs.cacheblocksonwrite

Whether an HFile block should be added to the block cache when the block is finished.

Default: false

hbase.rpc.engine

Implementation of org.apache.hadoop.hbase.ipc.RpcEngine to be used for client / server RPC
call marshalling.

Default: org.apache.hadoop.hbase.ipc.WritableRpcEngine

hbase.master.keytab.file

Full path to the kerberos keytab file to use for logging in the configured HMaster server
principal.

Default:

hbase.master.kerberos.principal

Ex. "hbase/_HOST@EXAMPLE.COM". The kerberos principal name that should be used to
run the HMaster process. The principal name should be in the form:
user/hostname@DOMAIN. If "_HOST" is used as the hostname portion, it will be replaced
with the actual hostname of the running instance.

Default:

hbase.regionserver.keytab.file

Full path to the kerberos keytab file to use for logging in the configured HRegionServer
server principal.

Default:

hbase.regionserver.kerberos.principal

Ex. "hbase/_HOST@EXAMPLE.COM". The kerberos principal name that should be used to
run the HRegionServer process. The principal name should be in the form:
user/hostname@DOMAIN. If "_HOST" is used as the hostname portion, it will be replaced
with the actual hostname of the running instance. An entry for this principal must exist in the
file specified in hbase.regionserver.keytab.file

Default:

hadoop.policy.file

The policy configuration file used by RPC servers to make authorization decisions on client
requests. Only used when HBase security is enabled.

Default: hbase-policy.xml

hbase.superuser

List of users or groups (comma-separated), who are allowed full privileges, regardless of
stored ACLs, across the cluster. Only used when HBase security is enabled.

Default:

hbase.auth.key.update.interval

The update interval for master key for authentication tokens in servers in milliseconds. Only
used when HBase security is enabled.

Default: 86400000

hbase.auth.token.max.lifetime

The maximum lifetime in milliseconds after which an authentication token expires. Only used
when HBase security is enabled.

Default: 604800000

zookeeper.session.timeout

ZooKeeper session timeout. HBase passes this to the zk quorum as suggested maximum time
for a session (This setting becomes zookeeper's 'maxSessionTimeout'). See
http://hadoop.apache.org/zookeeper/docs/current/zookeeperProgrammers.html#ch_zkSessions
"The client sends a requested timeout, the server responds with the timeout that it can give the
client. " In milliseconds.

Default: 180000

zookeeper.znode.parent

Root ZNode for HBase in ZooKeeper. All of HBase's ZooKeeper files that are configured
with a relative path will go under this node. By default, all of HBase's ZooKeeper file path are
configured with a relative path, so they will all go under this directory unless changed.

Default: /hbase

zookeeper.znode.rootserver

Path to ZNode holding root region location. This is written by the master and read by clients
and region servers. If a relative path is given, the parent folder will be $
{zookeeper.znode.parent}. By default, this means the root location is stored at /hbase/root-
region-server.

Default: root-region-server

zookeeper.znode.acl.parent

Root ZNode for access control lists.

Default: acl

hbase.coprocessor.region.classes

A comma-separated list of Coprocessors that are loaded by default on all tables. For any
override coprocessor method, these classes will be called in order. After implementing your
own Coprocessor, just put it in HBase's classpath and add the fully qualified class name here.
A coprocessor can also be loaded on demand by setting HTableDescriptor.

Default:

hbase.coprocessor.master.classes

A comma-separated list of org.apache.hadoop.hbase.coprocessor.MasterObserver

coprocessors that are loaded by default on the active HMaster process. For any implemented
coprocessor methods, the listed classes will be called in order. After implementing your own
MasterObserver, just put it in HBase's classpath and add the fully qualified class name here.

Default:

hbase.zookeeper.quorum

Comma separated list of servers in the ZooKeeper Quorum. For example,
"host1.mydomain.com,host2.mydomain.com,host3.mydomain.com". By default this is set to
localhost for local and pseudo-distributed modes of operation. For a fully-distributed setup,
this should be set to a full list of ZooKeeper quorum servers. If HBASE_MANAGES_ZK is
set in hbase-env.sh this is the list of servers which we will start/stop ZooKeeper on.

Default: localhost

hbase.zookeeper.peerport

Port used by ZooKeeper peers to talk to each other. See
http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicate
dZooKeeper for more information.

Default: 2888

hbase.zookeeper.leaderport

Port used by ZooKeeper for leader election. See
http://hadoop.apache.org/zookeeper/docs/r3.1.1/zookeeperStarted.html#sc_RunningReplicate
dZooKeeper for more information.

Default: 3888

hbase.zookeeper.property.initLimit

Property from ZooKeeper's config zoo.cfg. The number of ticks that the initial
synchronization phase can take.

Default: 10

hbase.zookeeper.property.syncLimit

Property from ZooKeeper's config zoo.cfg. The number of ticks that can pass between
sending a request and getting an acknowledgment.

Default: 5

hbase.zookeeper.property.dataDir

Property from ZooKeeper's config zoo.cfg. The directory where the snapshot is stored.

Default: ${hbase.tmp.dir}/zookeeper

hbase.zookeeper.property.clientPort

Property from ZooKeeper's config zoo.cfg. The port at which the clients will connect.

Default: 2181

hbase.zookeeper.property.maxClientCnxns

Property from ZooKeeper's config zoo.cfg. Limit on number of concurrent connections (at the
socket level) that a single client, identified by IP address, may make to a single member of the
ZooKeeper ensemble. Set high to avoid zk connection issues running standalone and pseudo-
distributed.

Default: 300

hbase.rest.port

The port for the HBase REST server.

Default: 8080

hbase.rest.readonly

Defines the mode the REST server will be started in. Possible values are: false: All HTTP
methods are permitted - GET/PUT/POST/DELETE. true: Only the GET method is permitted.

Default: false

hbase.defaults.for.version.skip

Set to true to skip the 'hbase.defaults.for.version' check. Setting this to true can be useful in
contexts other than the other side of a maven generation; i.e. running in an ide. You'll want to
set this boolean to true to avoid seeing the RuntimException complaint: "hbase-default.xml
file seems to be for and old version of HBase (@@@VERSION@@@), this version is
X.X.X-SNAPSHOT"

Default: false

hbase.coprocessor.abortonerror

Set to true to cause the hosting server (master or regionserver) to abort if a coprocessor throws
a Throwable object that is not IOException or a subclass of IOException. Setting it to true
might be useful in development environments where one wants to terminate the server as soon
as possible to simplify coprocessor failure analysis.

Default: false

hbase.instant.schema.alter.enabled

Whether or not to handle alter schema changes instantly or not. If enabled, all schema change
alter operations will be instant, as the master will not explicitly unassign/assign the impacted

regions and instead will rely on Region servers to refresh their schema changes. If enabled,
the schema alter requests will survive master or RS failures.

Default: false

hbase.instant.schema.janitor.period

The Schema Janitor process wakes up every millis and sweeps all expired/failed schema
change requests.

Default: 120000

hbase.instant.schema.alter.timeout

Timeout in millis after which any pending schema alter request will be considered as failed.

Default: 60000

hbase.online.schema.update.enable

Set true to enable online schema changes. This is an experimental feature. There are known
issues modifying table schemas at the same time a region split is happening so your table
needs to be quiescent or else you have to be running with splits disabled.

Default: false

dfs.support.append

Does HDFS allow appends to files? This is an hdfs config. set in here so the hdfs client will
do append support. You must ensure that this config. is true serverside too when running
hbase (You will have to restart your cluster after setting it).

Default: true

hbase.thrift.minWorkerThreads

The "core size" of the thread pool. New threads are created on every connection until this
many threads are created.

Default: 16

hbase.thrift.maxWorkerThreads

The maximum size of the thread pool. When the pending request queue overflows, new
threads are created until their number reaches this number. After that, the server starts
dropping connections.

Default: 1000

hbase.thrift.maxQueuedRequests

The maximum number of pending Thrift connections waiting in the queue. If there are no idle
threads in the pool, the server queues requests. Only when the queue overflows, new threads
are added, up to hbase.thrift.maxQueuedRequests threads.

Default: 1000

2.6.2. hbase-env.sh
Set HBase environment variables in this file. Examples include options to pass the JVM on start of
an HBase daemon such as heap size and garbarge collector configs. You can also set configurations
for HBase configuration, log directories, niceness, ssh options, where to locate process pid files, etc.
Open the file at conf/hbase-env.sh and peruse its content. Each option is fairly well
documented. Add your own environment variables here if you want them read by HBase daemons
on startup.

Changes here will require a cluster restart for HBase to notice the change.

2.6.3. log4j.properties
Edit this file to change rate at which HBase files are rolled and to change the level at which HBase
logs messages.

Changes here will require a cluster restart for HBase to notice the change though log levels can be
changed for particular daemons via the HBase UI.

2.6.4. Client configuration and dependencies connecting to an HBase cluster
Since the HBase Master may move around, clients bootstrap by looking to ZooKeeper for current
critical locations. ZooKeeper is where all these values are kept. Thus clients require the location of
the ZooKeeper ensemble information before they can do anything else. Usually this the ensemble
location is kept out in the hbase-site.xml and is picked up by the client from the
CLASSPATH.

If you are configuring an IDE to run a HBase client, you should include the conf/ directory on
your classpath so hbase-site.xml settings can be found (or add src/test/resources to
pick up the hbase-site.xml used by tests).

Minimally, a client of HBase needs the hbase, hadoop, log4j, commons-logging, commons-lang,
and ZooKeeper jars in its CLASSPATH connecting to a cluster.

An example basic hbase-site.xml for client only might look as follows:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>example1,example2,example3</value>
 <description>The directory shared by region servers.
 </description>
 </property>
</configuration>

2.6.4.1. Java client configuration
The configuration used by a Java client is kept in an HBaseConfiguration instance. The factory

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HBaseConfiguration

method on HBaseConfiguration, HBaseConfiguration.create();, on invocation, will read
in the content of the first hbase-site.xml found on the client's CLASSPATH, if one is present
(Invocation will also factor in any hbase-default.xml found; an hbase-default.xml ships
inside the hbase.X.X.X.jar). It is also possible to specify configuration directly without
having to read from a hbase-site.xml. For example, to set the ZooKeeper ensemble for the
cluster programmatically do as follows:
Configuration config = HBaseConfiguration.create();
config.set("hbase.zookeeper.quorum", "localhost"); // Here we are running
zookeeper locally

If multiple ZooKeeper instances make up your ZooKeeper ensemble, they may be specified in a
comma-separated list (just as in the hbase-site.xml file). This populated Configuration
instance can then be passed to an HTable, and so on.

2.7. Example Configurations

2.7.1. Basic Distributed HBase Install
Here is an example basic configuration for a distributed ten node cluster. The nodes are named
example0, example1, etc., through node example9 in this example. The HBase Master and
the HDFS namenode are running on the node example0. RegionServers run on nodes
example1-example9. A 3-node ZooKeeper ensemble runs on example1, example2, and
example3 on the default ports. ZooKeeper data is persisted to the directory
/export/zookeeper. Below we show what the main configuration files -- hbase-
site.xml, regionservers, and hbase-env.sh -- found in the HBase conf directory
might look like.

2.7.1.1. hbase-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>example1,example2,example3</value>
 <description>The directory shared by RegionServers.
 </description>
 </property>
 <property>
 <name>hbase.zookeeper.property.dataDir</name>
 <value>/export/zookeeper</value>
 <description>Property from ZooKeeper's config zoo.cfg.
 The directory where the snapshot is stored.
 </description>
 </property>
 <property>
 <name>hbase.rootdir</name>
 <value>hdfs://example0:8020/hbase</value>
 <description>The directory shared by RegionServers.
 </description>
 </property>
 <property>
 <name>hbase.cluster.distributed</name>
 <value>true</value>
 <description>The mode the cluster will be in. Possible values are
 false: standalone and pseudo-distributed setups with managed Zookeeper

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html

 true: fully-distributed with unmanaged Zookeeper Quorum (see hbase-env.sh)
 </description>
 </property>
</configuration>

2.7.1.2. regionservers
In this file you list the nodes that will run RegionServers. In our case we run RegionServers on all
but the head node example1 which is carrying the HBase Master and the HDFS namenode
 example1
 example3
 example4
 example5
 example6
 example7
 example8
 example9

2.7.1.3. hbase-env.sh
Below we use a diff to show the differences from default in the hbase-env.sh file. Here we are
setting the HBase heap to be 4G instead of the default 1G.

$ git diff hbase-env.sh
diff --git a/conf/hbase-env.sh b/conf/hbase-env.sh
index e70ebc6..96f8c27 100644
--- a/conf/hbase-env.sh
+++ b/conf/hbase-env.sh
@@ -31,7 +31,7 @@ export JAVA_HOME=/usr/lib//jvm/java-6-sun/
 # export HBASE_CLASSPATH=

 # The maximum amount of heap to use, in MB. Default is 1000.
-# export HBASE_HEAPSIZE=1000
+export HBASE_HEAPSIZE=4096

 # Extra Java runtime options.
 # Below are what we set by default. May only work with SUN JVM.

Use rsync to copy the content of the conf directory to all nodes of the cluster.

2.8. The Important Configurations
Below we list what the important Configurations. We've divided this section into required
configuration and worth-a-look recommended configs.

2.8.1. Required Configurations
Review the Section 2.2, “Operating System” and Section 2.3, “Hadoop” sections.

http://hbase.apache.org/book.html#hadoop
http://hbase.apache.org/book.html#os

2.8.2. Recommended Configurations

2.8.2.1. zookeeper.session.timeout
The default timeout is three minutes (specified in milliseconds). This means that if a server crashes,
it will be three minutes before the Master notices the crash and starts recovery. You might like to
tune the timeout down to a minute or even less so the Master notices failures the sooner. Before
changing this value, be sure you have your JVM garbage collection configuration under control
otherwise, a long garbage collection that lasts beyond the ZooKeeper session timeout will take out
your RegionServer (You might be fine with this -- you probably want recovery to start on the server
if a RegionServer has been in GC for a long period of time).

To change this configuration, edit hbase-site.xml, copy the changed file around the cluster
and restart.

We set this value high to save our having to field noob questions up on the mailing lists asking why
a RegionServer went down during a massive import. The usual cause is that their JVM is untuned
and they are running into long GC pauses. Our thinking is that while users are getting familiar with
HBase, we'd save them having to know all of its intricacies. Later when they've built some
confidence, then they can play with configuration such as this.

2.8.2.2. Number of ZooKeeper Instances
See Section 2.5, “ZooKeeper” .

2.8.2.3. hbase.regionserver.handler.count
This setting defines the number of threads that are kept open to answer incoming requests to user
tables. The default of 10 is rather low in order to prevent users from killing their region servers
when using large write buffers with a high number of concurrent clients. The rule of thumb is to
keep this number low when the payload per request approaches the MB (big puts, scans using a
large cache) and high when the payload is small (gets, small puts, ICVs, deletes).

It is safe to set that number to the maximum number of incoming clients if their payload is small,
the typical example being a cluster that serves a website since puts aren't typically buffered and
most of the operations are gets.

The reason why it is dangerous to keep this setting high is that the aggregate size of all the puts that
are currently happening in a region server may impose too much pressure on its memory, or even
trigger an OutOfMemoryError. A region server running on low memory will trigger its JVM's
garbage collector to run more frequently up to a point where GC pauses become noticeable (the
reason being that all the memory used to keep all the requests' payloads cannot be trashed, no
matter how hard the garbage collector tries). After some time, the overall cluster throughput is
affected since every request that hits that region server will take longer, which exacerbates the
problem even more.

You can get a sense of whether you have too little or too many handlers by Section 11.2.2.1,
“Enabling RPC-level logging” on an individual RegionServer then tailing its logs (Queued requests
consume memory).

2.8.2.4. Configuration for large memory machines
HBase ships with a reasonable, conservative configuration that will work on nearly all machine
types that people might want to test with. If you have larger machines -- HBase has 8G and larger
heap -- you might the following configuration options helpful. TODO.

http://hbase.apache.org/book.html#rpc.logging
http://hbase.apache.org/book.html#rpc.logging
http://hbase.apache.org/book.html#zookeeper

2.8.2.5. Compression
You should consider enabling ColumnFamily compression. There are several options that are near-
frictionless and in most all cases boost performance by reducing the size of StoreFiles and thus
reducing I/O.

See Appendix B, Compression In HBase for more information.

2.8.2.6. Bigger Regions
Consider going to larger regions to cut down on the total number of regions on your cluster.
Generally less Regions to manage makes for a smoother running cluster (You can always later
manually split the big Regions should one prove hot and you want to spread the request load over
the cluster). A lower number of regions is preferred, generally in the range of 20 to low-hundreds
per RegionServer. Adjust the regionsize as appropriate to achieve this number.

For the 0.90.x codebase, the upper-bound of regionsize is about 4Gb, with a default of 256Mb. For
0.92.x codebase, due to the HFile v2 change much larger regionsizes can be supported (e.g., 20Gb).

You may need to experiment with this setting based on your hardware configuration and application
needs.

Adjust hbase.hregion.max.filesize in your hbase-site.xml. RegionSize can also be
set on a per-table basis via HTableDescriptor.

2.8.2.7. Managed Splitting

Rather than let HBase auto-split your Regions, manage the splitting manually [13]. With growing
amounts of data, splits will continually be needed. Since you always know exactly what regions you
have, long-term debugging and profiling is much easier with manual splits. It is hard to trace the
logs to understand region level problems if it keeps splitting and getting renamed. Data offlining
bugs + unknown number of split regions == oh crap! If an HLog or StoreFile was mistakenly
unprocessed by HBase due to a weird bug and you notice it a day or so later, you can be assured
that the regions specified in these files are the same as the current regions and you have less
headaches trying to restore/replay your data. You can finely tune your compaction algorithm. With
roughly uniform data growth, it's easy to cause split / compaction storms as the regions all roughly
hit the same data size at the same time. With manual splits, you can let staggered, time-based major
compactions spread out your network IO load.

How do I turn off automatic splitting? Automatic splitting is determined by the configuration value
hbase.hregion.max.filesize. It is not recommended that you set this to
Long.MAX_VALUE in case you forget about manual splits. A suggested setting is 100GB, which
would result in > 1hr major compactions if reached.

What's the optimal number of pre-split regions to create? Mileage will vary depending upon your
application. You could start low with 10 pre-split regions / server and watch as data grows over
time. It's better to err on the side of too little regions and rolling split later. A more complicated
answer is that this depends upon the largest storefile in your region. With a growing data size, this
will get larger over time. You want the largest region to be just big enough that the Store compact
selection algorithm only compacts it due to a timed major. If you don't, your cluster can be prone to
compaction storms as the algorithm decides to run major compactions on a large series of regions
all at once. Note that compaction storms are due to the uniform data growth, not the manual split
decision.

If you pre-split your regions too thin, you can increase the major compaction interval by
configuring HConstants.MAJOR_COMPACTION_PERIOD. If your data size grows too large,
use the (post-0.90.0 HBase) org.apache.hadoop.hbase.util.RegionSplitter script

http://hbase.apache.org/book.html#ftn.d1556e2631
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html
http://hbase.apache.org/book.html#compression

to perform a network IO safe rolling split of all regions.

2.8.2.8. Managed Compactions
A common administrative technique is to manage major compactions manually, rather than letting
HBase do it. By default, HConstants.MAJOR_COMPACTION_PERIOD is one day and major
compactions may kick in when you least desire it - especially on a busy system. To turn off
automatic major compactions set the value to 0.

It is important to stress that major compactions are absolutely necessary for StoreFile cleanup, the
only variant is when they occur. They can be administered through the HBase shell, or via
HBaseAdmin.

2.8.3. Other Configurations

2.8.3.1. Balancer
The balancer is periodic operation run on the master to redistribute regions on the cluster. It is
configured via hbase.balancer.period and defaults to 300000 (5 minutes).

See Section 8.5.3.1, “LoadBalancer” for more information on the LoadBalancer.

2.8.3.2. Disabling Blockcache
Do not turn off block cache (You'd do it by setting hbase.block.cache.size to zero).
Currently we do not do well if you do this because the regionserver will spend all its time loading
hfile indices over and over again. If your working set it such that block cache does you no good, at
least size the block cache such that hfile indices will stay up in the cache (you can get a rough idea
on the size you need by surveying regionserver UIs; you'll see index block size accounted near the
top of the webpage).

2.9. Bloom Filter Configuration

2.9.1. io.hfile.bloom.enabled global kill switch
io.hfile.bloom.enabled in Configuration serves as the kill switch in case something
goes wrong. Default = true.

2.9.2. io.hfile.bloom.error.rate
io.hfile.bloom.error.rate = average false positive rate. Default = 1%. Decrease rate by
½ (e.g. to .5%) == +1 bit per bloom entry.

2.9.3. io.hfile.bloom.max.fold
io.hfile.bloom.max.fold = guaranteed minimum fold rate. Most people should leave this
alone. Default = 7, or can collapse to at least 1/128th of original size. See the Development Process
section of the document BloomFilters in HBase for more on what this option means.

[1] Be careful editing XML. Make sure you close all elements. Run your file through xmllint or

http://hbase.apache.org/book.html#d1556e270
https://issues.apache.org/jira/secure/attachment/12444007/Bloom_Filters_in_HBase.pdf
http://hbase.apache.org/book.html#master.processes.loadbalancer
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HBaseAdmin.html#majorCompact(java.lang.String)

similar to ensure well-formedness of your document after an edit session.
[2] See Jack Levin's major hdfs issues note up on the user list.
[3] The requirement that a database requires upping of system limits is not peculiar to HBase. See
for example the section Setting Shell Limits for the Oracle User in Short Guide to install Oracle 10
on Linux.
[4] A useful read setting config on you hadoop cluster is Aaron Kimballs' Configuration Parameters:
What can you just ignore?
[5] <title>On Hadoop Versions</title>
[5] The Cloudera blog post An update on Apache Hadoop 1.0 by Charles Zedlweski has a nice
exposition on how all the Hadoop versions relate. Its worth checking out if you are having trouble
making sense of the Hadoop version morass.
[6] Until recently only the branch-0.20-append branch had a working sync but no official release
was ever made from this branch. You had to build it yourself. Michael Noll wrote a detailed blog,
Building an Hadoop 0.20.x version for HBase 0.90.2, on how to build an Hadoop from branch-0.20-
append. Recommended.
[7] Praveen Kumar has written a complimentary article, Building Hadoop and HBase for HBase
Maven application development.
[8] dfs.support.append
[9] See Hadoop HDFS: Deceived by Xciever for an informative rant on xceivering.
[10] The pseudo-distributed vs fully-distributed nomenclature comes from Hadoop.
[11] See Pseudo-distributed mode extras for notes on how to start extra Masters and RegionServers
when running pseudo-distributed.
[12] For the full list of ZooKeeper configurations, see ZooKeeper's zoo.cfg. HBase does not ship
with a zoo.cfg so you will need to browse the conf directory in an appropriate ZooKeeper
download.
[13] What follows is taken from the javadoc at the head of the
org.apache.hadoop.hbase.util.RegionSplitter tool added to HBase post-0.90.0
release.

Chapter 3. Upgrading
Table of Contents
3.1. Upgrading to HBase 0.90.x from 0.20.x or 0.89.x

Review Chapter 2, Configuration , in particular the section on Hadoop version.

3.1. Upgrading to HBase 0.90.x from 0.20.x or 0.89.x
This version of 0.90.x HBase can be started on data written by HBase 0.20.x or HBase 0.89.x.
There is no need of a migration step. HBase 0.89.x and 0.90.x does write out the name of region
directories differently -- it names them with a md5 hash of the region name rather than a jenkins
hash -- so this means that once started, there is no going back to HBase 0.20.x.

Be sure to remove the hbase-default.xml from your conf directory on upgrade. A 0.20.x

http://hbase.apache.org/book.html#configuration
http://hbase.apache.org/book.html#upgrade0.90
http://hbase.apache.org/book.html#d1556e2631
http://hbase.apache.org/book.html#d1556e884
http://hbase.apache.org/pseudo-distributed.html
http://hbase.apache.org/book.html#d1556e694
http://hbase.apache.org/book.html#d1556e631
http://ccgtech.blogspot.com/2010/02/hadoop-hdfs-deceived-by-xciever.html
http://hbase.apache.org/book.html#d1556e577
http://hbase.apache.org/book.html#d1556e506
http://praveen.kumar.in/2011/06/20/building-hadoop-and-hbase-for-hbase-maven-application-development/
http://praveen.kumar.in/2011/06/20/building-hadoop-and-hbase-for-hbase-maven-application-development/
http://hbase.apache.org/book.html#d1556e500
http://www.michael-noll.com/blog/2011/04/14/building-an-hadoop-0-20-x-version-for-hbase-0-90-2/
http://svn.apache.org/viewvc/hadoop/common/branches/branch-0.20-append/
http://hbase.apache.org/book.html#d1556e490
http://www.cloudera.com/blog/2012/01/an-update-on-apache-hadoop-1-0/
http://hbase.apache.org/book.html#d1556e460
http://hbase.apache.org/book.html#d1556e460
http://hbase.apache.org/book.html#d1556e387
http://www.akadia.com/services/ora_linux_install_10g.html
http://www.akadia.com/services/ora_linux_install_10g.html
http://hbase.apache.org/book.html#d1556e375
http://hbase.apache.org/book.html
http://hbase.apache.org/book.html#d1556e368

version of this file will have sub-optimal configurations for 0.90.x HBase. The hbase-
default.xml file is now bundled into the HBase jar and read from there. If you would like to
review the content of this file, see it in the src tree at src/main/resources/hbase-
default.xml or see Section 2.6.1.1, “HBase Default Configuration” .

Finally, if upgrading from 0.20.x, check your .META. schema in the shell. In the past we would
recommend that users run with a 16kb MEMSTORE_FLUSHSIZE. Run hbase> scan '-
ROOT-' in the shell. This will output the current .META. schema. Check
MEMSTORE_FLUSHSIZE size. Is it 16kb (16384)? If so, you will need to change this (The
'normal'/default value is 64MB (67108864)). Run the script
bin/set_meta_memstore_size.rb. This will make the necessary edit to your .META.
schema. Failure to run this change will make for a slow cluster [14] .

[14] See HBASE-3499 Users upgrading to 0.90.0 need to have their .META. table updated with the
right MEMSTORE_SIZE

Chapter 4. The HBase Shell
Table of Contents
4.1. Scripting
4.2. Shell Tricks

4.2.1. irbrc
4.2.2. LOG data to timestamp
4.2.3. Debug

The HBase Shell is (J)Ruby's IRB with some HBase particular commands added. Anything you can
do in IRB, you should be able to do in the HBase Shell.

To run the HBase shell, do as follows:
$./bin/hbase shell

Type help and then <RETURN> to see a listing of shell commands and options. Browse at least the
paragraphs at the end of the help emission for the gist of how variables and command arguments are
entered into the HBase shell; in particular note how table names, rows, and columns, etc., must be
quoted.

See Section 1.2.3, “Shell Exercises” for example basic shell operation.

4.1. Scripting
For examples scripting HBase, look in the HBase bin directory. Look at the files that end in *.rb.
To run one of these files, do as follows:
$./bin/hbase org.jruby.Main PATH_TO_SCRIPT

http://hbase.apache.org/book.html#shell_exercises
http://jruby.org/
http://hbase.apache.org/book.html#d1556e2883
http://hbase.apache.org/book.html#d1556e2865
http://hbase.apache.org/book.html#d1556e2847
http://hbase.apache.org/book.html#shell_tricks
http://hbase.apache.org/book.html#scripting
https://issues.apache.org/jira/browse/HBASE-3499
https://issues.apache.org/jira/browse/HBASE-3499
http://hbase.apache.org/book.html#d1556e2797
http://hbase.apache.org/book.html#ftn.d1556e2797
http://hbase.apache.org/book.html#hbase_default_configurations

4.2. Shell Tricks

4.2.1. irbrc
Create an .irbrc file for yourself in your home directory. Add customizations. A useful one is
command history so commands are save across Shell invocations:
 $ more .irbrc
 require 'irb/ext/save-history'
 IRB.conf[:SAVE_HISTORY] = 100
 IRB.conf[:HISTORY_FILE] = "#{ENV['HOME']}/.irb-save-
history"

See the ruby documentation of .irbrc to learn about other possible confiurations.

4.2.2. LOG data to timestamp
To convert the date '08/08/16 20:56:29' from an hbase log into a timestamp, do:
 hbase(main):021:0> import java.text.SimpleDateFormat
 hbase(main):022:0> import java.text.ParsePosition
 hbase(main):023:0> SimpleDateFormat.new("yy/MM/dd
HH:mm:ss").parse("08/08/16 20:56:29", ParsePosition.new(0)).getTime() =>
1218920189000

To go the other direction:
 hbase(main):021:0> import java.util.Date
 hbase(main):022:0> Date.new(1218920189000).toString() =>
"Sat Aug 16 20:56:29 UTC 2008"

To output in a format that is exactly like that of the HBase log format will take a little messing with
SimpleDateFormat.

4.2.3. Debug

4.2.3.1. Shell debug switch
You can set a debug switch in the shell to see more output -- e.g. more of the stack trace on
exception -- when you run a command:
hbase> debug <RETURN>

4.2.3.2. DEBUG log level
To enable DEBUG level logging in the shell, launch it with the -d option.
$./bin/hbase shell -d

Chapter 5. Data Model
Table of Contents
5.1. Conceptual View
5.2. Physical View
5.3. Table

http://hbase.apache.org/book.html#table
http://hbase.apache.org/book.html#physical.view
http://hbase.apache.org/book.html#conceptual.view
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

5.4. Row
5.5. Column Family
5.6. Cells
5.7. Data Model Operations

5.7.1. Get
5.7.2. Put
5.7.3. Scans
5.7.4. Delete

5.8. Versions
5.8.1. Versions and HBase Operations
5.8.2. Current Limitations

In short, applications store data into an HBase table. Tables are made of rows and columns. All
columns in HBase belong to a particular column family. Table cells -- the intersection of row and
column coordinates -- are versioned. A cell’s content is an uninterpreted array of bytes.

Table row keys are also byte arrays so almost anything can serve as a row key from strings to binary
representations of longs or even serialized data structures. Rows in HBase tables are sorted by row
key. The sort is byte-ordered. All table accesses are via the table row key -- its primary key.

5.1. Conceptual View
The following example is a slightly modified form of the one on page 2 of the BigTable paper.
There is a table called webtable that contains two column families named contents and
anchor. In this example, anchor contains two columns (anchor:cssnsi.com,
anchor:my.look.ca) and contents contains one column (contents:html).

Column Names
By convention, a column name is made of its column family prefix and a qualifier.
For example, the column contents:html is of the column family contents The
colon character (:) delimits the column family from the column family qualifier.

Table 5.1. Table webtable

Row Key Time
Stamp ColumnFamily contents ColumnFamily anchor

"com.cnn.www" t9 anchor:cnnsi.com = "CNN"

"com.cnn.www" t8 anchor:my.look.ca =
"CNN.com"

"com.cnn.www" t6 contents:html =
"<html>..."

"com.cnn.www" t5 contents:html =
"<html>..."

"com.cnn.www" t3 contents:html =
"<html>..."

http://research.google.com/archive/bigtable.html
http://hbase.apache.org/book.html#d1556e3469
http://hbase.apache.org/book.html#versions.ops
http://hbase.apache.org/book.html#versions
http://hbase.apache.org/book.html#delete
http://hbase.apache.org/book.html#scan
http://hbase.apache.org/book.html#put
http://hbase.apache.org/book.html#get
http://hbase.apache.org/book.html#data_model_operations
http://hbase.apache.org/book.html#cells
http://hbase.apache.org/book.html#columnfamily
http://hbase.apache.org/book.html#row

5.2. Physical View
Although at a conceptual level tables may be viewed as a sparse set of rows. Physically they are
stored on a per-column family basis. New columns (i.e., columnfamily:column) can be added
to any column family without pre-announcing them.

Table 5.2. ColumnFamily anchor
Row Key Time Stamp Column Family anchor
"com.cnn.www" t9 anchor:cnnsi.com = "CNN"

"com.cnn.www" t8 anchor:my.look.ca = "CNN.com"

Table 5.3. ColumnFamily contents
Row Key Time Stamp ColumnFamily "contents:"
"com.cnn.www" t6 contents:html = "<html>..."

"com.cnn.www" t5 contents:html = "<html>..."

"com.cnn.www" t3 contents:html = "<html>..."

It is important to note in the diagram above that the empty cells shown in the conceptual view are
not stored since they need not be in a column-oriented storage format. Thus a request for the value
of the contents:html column at time stamp t8 would return no value. Similarly, a request for
an anchor:my.look.ca value at time stamp t9 would return no value. However, if no
timestamp is supplied, the most recent value for a particular column would be returned and would
also be the first one found since timestamps are stored in descending order. Thus a request for the
values of all columns in the row com.cnn.www if no timestamp is specified would be: the value
of contents:html from time stamp t6, the value of anchor:cnnsi.com from time stamp
t9, the value of anchor:my.look.ca from time stamp t8.

5.3. Table
Tables are declared up front at schema definition time.

5.4. Row
Row keys are uninterrpreted bytes. Rows are lexicographically sorted with the lowest order
appearing first in a table. The empty byte array is used to denote both the start and end of a tables'
namespace.

5.5. Column Family
Columns in HBase are grouped into column families. All column members of a column family have
the same prefix. For example, the columns courses:history and courses:math are both members of
the courses column family. The colon character (:) delimits the column family from the . The
column family prefix must be composed of printable characters. The qualifying tail, the column
family qualifier, can be made of any arbitrary bytes. Column families must be declared up front at
schema definition time whereas columns do not need to be defined at schema time but can be
conjured on the fly while the table is up an running.

Physically, all column family members are stored together on the filesystem. Because tunings and
storage specifications are done at the column family level, it is advised that all column family
members have the same general access pattern and size characteristics.

5.6. Cells
A {row, column, version} tuple exactly specifies a cell in HBase. Cell content is uninterrpreted
bytes

5.7. Data Model Operations
The four primary data model operations are Get, Put, Scan, and Delete. Operations are applied via
HTable instances.

5.7.1. Get
Get returns attributes for a specified row. Gets are executed via HTable.get.

5.7.2. Put
Put either adds new rows to a table (if the key is new) or can update existing rows (if the key
already exists). Puts are executed via HTable.put (writeBuffer) or HTable.batch (non-writeBuffer).

5.7.3. Scans
Scan allow iteration over multiple rows for specified attributes.

The following is an example of a on an HTable table instance. Assume that a table is populated with
rows with keys "row1", "row2", "row3", and then another set of rows with the keys "abc1", "abc2",
and "abc3". The following example shows how startRow and stopRow can be applied to a Scan
instance to return the rows beginning with "row".
HTable htable = ... // instantiate HTable

Scan scan = new Scan();
scan.addColumn(Bytes.toBytes("cf"),Bytes.toBytes("attr"));
scan.setStartRow(Bytes.toBytes("row")); // start key is
inclusive
scan.setStopRow(Bytes.toBytes("row" + (char)0)); // stop key is exclusive
ResultScanner rs = htable.getScanner(scan);
try {
 for (Result r = rs.next(); r != null; r = rs.next()) {
 // process result...
} finally {
 rs.close(); // always close the ResultScanner!
}

5.7.4. Delete
Delete removes a row from a table. Deletes are executed via HTable.delete.

HBase does not modify data in place, and so deletes are handled by creating new markers called
tombstones. These tombstones, along with the dead values, are cleaned up on major compactions.

See Section 5.8.1.5, “Delete” for more information on deleting versions of columns.

http://hbase.apache.org/book.html#version.delete
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/HTable.html#delete(org.apache.hadoop.hbase.client.Delete)
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Delete.html
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/HTable.html#batch(java.util.List)
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/HTable.html#put(org.apache.hadoop.hbase.client.Put)
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Put.html
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/HTable.html#get(org.apache.hadoop.hbase.client.Get)
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Get.html
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/HTable.html

5.8. Versions
A {row, column, version} tuple exactly specifies a cell in HBase. Its possible to have an
unbounded number of cells where the row and column are the same but the cell address differs only
in its version dimension.

While rows and column keys are expressed as bytes, the version is specified using a long integer.
Typically this long contains time instances such as those returned by
java.util.Date.getTime() or System.currentTimeMillis(), that is: “the
difference, measured in milliseconds, between the current time and midnight, January 1, 1970
UTC”.

The HBase version dimension is stored in decreasing order, so that when reading from a store file,
the most recent values are found first.

There is a lot of confusion over the semantics of cell versions, in HBase. In particular, a couple
questions that often come up are:

 If multiple writes to a cell have the same version, are all versions maintained or just the last?
[15]

 Is it OK to write cells in a non-increasing version order?[16]

Below we describe how the version dimension in HBase currently works[17].

5.8.1. Versions and HBase Operations
In this section we look at the behavior of the version dimension for each of the core HBase
operations.

5.8.1.1. Get/Scan
Gets are implemented on top of Scans. The below discussion of Get applies equally to Scans.

By default, i.e. if you specify no explicit version, when doing a get, the cell whose version has the
largest value is returned (which may or may not be the latest one written, see later). The default
behavior can be modified in the following ways:

 to return more than one version, see Get.setMaxVersions()

 to return versions other than the latest, see Get.setTimeRange()

To retrieve the latest version that is less than or equal to a given value, thus giving the 'latest'
state of the record at a certain point in time, just use a range from 0 to the desired version
and set the max versions to 1.

5.8.1.2. Default Get Example
The following Get will only retrieve the current version of the row
Get get = new Get(Bytes.toBytes("row1"));
Result r = htable.get(get);
byte[] b = r.getValue(Bytes.toBytes("cf"), Bytes.toBytes("attr")); // returns
current version of value

5.8.1.3. Versioned Get Example
The following Get will return the last 3 versions of the row.

http://hbase.apache.org/book.html???
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Get.html#setMaxVersions()
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/docs/current/api/org/apache/hadoop/hbase/client/Get.html
http://hbase.apache.org/book.html#ftn.d1556e3339
http://hbase.apache.org/book.html#ftn.d1556e3334
http://hbase.apache.org/book.html#ftn.d1556e3328

Get get = new Get(Bytes.toBytes("row1"));
get.setMaxVersions(3); // will return last 3 versions of row
Result r = htable.get(get);
byte[] b = r.getValue(Bytes.toBytes("cf"), Bytes.toBytes("attr")); // returns
current version of value
List<KeyValue> kv = r.getColumn(Bytes.toBytes("cf"), Bytes.toBytes("attr")); //
returns all versions of this column

5.8.1.4. Put
Doing a put always creates a new version of a cell, at a certain timestamp. By default the system
uses the server's currentTimeMillis, but you can specify the version (= the long integer)
yourself, on a per-column level. This means you could assign a time in the past or the future, or use
the long value for non-time purposes.

To overwrite an existing value, do a put at exactly the same row, column, and version as that of the
cell you would overshadow.

5.8.1.4.1. Implicit Version Example

The following Put will be implicitly versioned by HBase with the current time.
Put put = new Put(Bytes.toBytes(row));
put.add(Bytes.toBytes("cf"), Bytes.toBytes("attr1"), Bytes.toBytes(data));
htable.put(put);

5.8.1.4.2. Explicit Version Example

The following Put has the version timestamp explicitly set.
Put put = new Put(Bytes.toBytes(row));
long explicitTimeInMs = 555; // just an example
put.add(Bytes.toBytes("cf"), Bytes.toBytes("attr1"), explicitTimeInMs,
Bytes.toBytes(data));
htable.put(put);

Caution: the version timestamp is internally by HBase for things like time-to-live calculations. It's
usually best to avoid setting this timestamp yourself. Prefer using a separate timestamp attribute of
the row, or have the timestamp a part of the rowkey, or both.

5.8.1.5. Delete
There are three different types of internal delete markers:

 Delete: for a specific version of a column.

 Delete column: for all versions of a column.

 Delete family: for all columns of a particular ColumnFamily

When deleting an entire row, HBase will internally create a tombstone for each ColumnFamily (i.e.,
not each individual column).

Deletes work by creating tombstone markers. For example, let's suppose we want to delete a row.
For this you can specify a version, or else by default the currentTimeMillis is used. What
this means is “delete all cells where the version is less than or equal to this version”. HBase never
modifies data in place, so for example a delete will not immediately delete (or mark as deleted) the
entries in the storage file that correspond to the delete condition. Rather, a so-called tombstone is
written, which will mask the deleted values[18]. If the version you specified when deleting a row is

http://hbase.apache.org/book.html#ftn.d1556e3461

larger than the version of any value in the row, then you can consider the complete row to be
deleted.

Also see Section 8.7.5.4, “KeyValue” for more information on the internal KeyValue format.

5.8.2. Current Limitations
There are still some bugs (or at least 'undecided behavior') with the version dimension that will be
addressed by later HBase releases.

5.8.2.1. Deletes mask Puts

Deletes mask puts, even puts that happened after the delete was entered[19]. Remember that a delete
writes a tombstone, which only disappears after then next major compaction has run. Suppose you
do a delete of everything <= T. After this you do a new put with a timestamp <= T. This put, even if
it happened after the delete, will be masked by the delete tombstone. Performing the put will not
fail, but when you do a get you will notice the put did have no effect. It will start working again
after the major compaction has run. These issues should not be a problem if you use always-
increasing versions for new puts to a row. But they can occur even if you do not care about time:
just do delete and put immediately after each other, and there is some chance they happen within the
same millisecond.

5.8.2.2. Major compactions change query results
“...create three cell versions at t1, t2 and t3, with a maximum-versions setting of 2. So when getting
all versions, only the values at t2 and t3 will be returned. But if you delete the version at t2 or t3, the
one at t1 will appear again. Obviously, once a major compaction has run, such behavior will not be
the case anymore...[20]”

[15] Currently, only the last written is fetchable.
[16] Yes
[17] See HBASE-2406 for discussion of HBase versions. Bending time in HBase makes for a good
read on the version, or time, dimension in HBase. It has more detail on versioning than is provided
here. As of this writing, the limiitation Overwriting values at existing timestamps mentioned in the
article no longer holds in HBase. This section is basically a synopsis of this article by Bruno
Dumon.
[18] When HBase does a major compaction, the tombstones are processed to actually remove the
dead values, together with the tombstones themselves.
[19] HBASE-2256
[20] See Garbage Collection in Bending time in HBase

Chapter 6. HBase and Schema Design
Table of Contents
6.1. Schema Creation

6.1.1. Schema Updates
6.2. On the number of column families

http://hbase.apache.org/book.html#number.of.cfs
http://hbase.apache.org/book.html#schema.updates
http://hbase.apache.org/book.html#schema.creation
http://outerthought.org/blog/417-ot.html
http://hbase.apache.org/book.html#d1556e3490
https://issues.apache.org/jira/browse/HBASE-2256
http://hbase.apache.org/book.html#d1556e3479
http://hbase.apache.org/book.html#d1556e3461
http://outerthought.org/blog/417-ot.html
https://issues.apache.org/jira/browse/HBASE-2406
http://hbase.apache.org/book.html#d1556e3339
http://hbase.apache.org/book.html#d1556e3334
http://hbase.apache.org/book.html#d1556e3328
http://hbase.apache.org/book.html#ftn.d1556e3490
http://hbase.apache.org/book.html#ftn.d1556e3479
http://hbase.apache.org/book.html#keyvalue

6.2.1. Cardinality of ColumnFamilies
6.3. Rowkey Design

6.3.1. Monotonically Increasing Row Keys/Timeseries Data
6.3.2. Try to minimize row and column sizes
6.3.3. Reverse Timestamps
6.3.4. Rowkeys and ColumnFamilies
6.3.5. Immutability of Rowkeys

6.4. Number of Versions
6.4.1. Maximum Number of Versions
6.4.2. Minimum Number of Versions

6.5. Supported Datatypes
6.5.1. Counters

6.6. Time To Live (TTL)
6.7. Keeping Deleted Cells
6.8. Secondary Indexes and Alternate Query Paths

6.8.1. Filter Query
6.8.2. Periodic-Update Secondary Index
6.8.3. Dual-Write Secondary Index
6.8.4. Summary Tables
6.8.5. Coprocessor Secondary Index

6.9. Schema Design Smackdown
6.9.1. Rows vs. Versions
6.9.2. Rows vs. Columns

6.10. Operational and Performance Configuration Options
6.11. Constraints

A good general introduction on the strength and weaknesses modelling on the various non-rdbms
datastores is Ian Varleys' Master thesis, No Relation: The Mixed Blessings of Non-Relational
Databases. Recommended. Also, read Section 8.7.5.4, “KeyValue” for how HBase stores data
internally.

6.1. Schema Creation
HBase schemas can be created or updated with Chapter 4, The HBase Shell or by using
HBaseAdmin in the Java API.

Tables must be disabled when making ColumnFamily modifications, for example..
Configuration config = HBaseConfiguration.create();
HBaseAdmin admin = new HBaseAdmin(conf);
String table = "myTable";

admin.disableTable(table);

HColumnDescriptor cf1 = ...;
admin.addColumn(table, cf1); // adding new ColumnFamily
HColumnDescriptor cf2 = ...;
admin.modifyColumn(table, cf2); // modifying existing ColumnFamily

admin.enableTable(table);

See Section 2.6.4, “Client configuration and dependencies connecting to an HBase cluster” for more
information about configuring client connections.

Note: online schema changes are supported in the 0.92.x codebase, but the 0.90.x codebase requires

http://hbase.apache.org/book.html#client_dependencies
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HBaseAdmin.html
http://hbase.apache.org/book.html#shell
http://hbase.apache.org/book.html#keyvalue
http://ianvarley.com/UT/MR/Varley_MastersReport_Full_2009-08-07.pdf
http://ianvarley.com/UT/MR/Varley_MastersReport_Full_2009-08-07.pdf
http://hbase.apache.org/book.html#constraints
http://hbase.apache.org/book.html#schema.ops
http://hbase.apache.org/book.html#schema.smackdown.rowscols
http://hbase.apache.org/book.html#schema.smackdown.rowsversions
http://hbase.apache.org/book.html#schema.smackdown
http://hbase.apache.org/book.html#secondary.indexes.coproc
http://hbase.apache.org/book.html#secondary.indexes.summary
http://hbase.apache.org/book.html#secondary.indexes.dualwrite
http://hbase.apache.org/book.html#secondary.indexes.periodic
http://hbase.apache.org/book.html#secondary.indexes.filter
http://hbase.apache.org/book.html#secondary.indexes
http://hbase.apache.org/book.html#cf.keep.deleted
http://hbase.apache.org/book.html#ttl
http://hbase.apache.org/book.html#counters
http://hbase.apache.org/book.html#supported.datatypes
http://hbase.apache.org/book.html#schema.minversions
http://hbase.apache.org/book.html#schema.versions.max
http://hbase.apache.org/book.html#schema.versions
http://hbase.apache.org/book.html#changing.rowkeys
http://hbase.apache.org/book.html#rowkey.scope
http://hbase.apache.org/book.html#reverse.timestamp
http://hbase.apache.org/book.html#keysize
http://hbase.apache.org/book.html#timeseries
http://hbase.apache.org/book.html#rowkey.design
http://hbase.apache.org/book.html#number.of.cfs.card

the table to be disabled.

6.1.1. Schema Updates
When changes are made to either Tables or ColumnFamilies (e.g., region size, block size), these
changes take effect the next time there is a major compaction and the StoreFiles get re-written.

See Section 8.7.5, “Store” for more information on StoreFiles.

6.2. On the number of column families
HBase currently does not do well with anything above two or three column families so keep the
number of column families in your schema low. Currently, flushing and compactions are done on a
per Region basis so if one column family is carrying the bulk of the data bringing on flushes, the
adjacent families will also be flushed though the amount of data they carry is small. Compaction is
currently triggered by the total number of files under a column family. Its not size based. When
many column families the flushing and compaction interaction can make for a bunch of needless i/o
loading (To be addressed by changing flushing and compaction to work on a per column family
basis).

Try to make do with one column family if you can in your schemas. Only introduce a second and
third column family in the case where data access is usually column scoped; i.e. you query one
column family or the other but usually not both at the one time.

6.2.1. Cardinality of ColumnFamilies
Where multiple ColumnFamilies exist in a single table, be aware of the cardinality (i.e., number of
rows). If ColumnFamilyA has 1 million rows and ColumnFamilyB has 1 billion rows,
ColumnFamilyA's data will likely be spread across many, many regions (and RegionServers). This
makes mass scans for ColumnFamilyA less efficient.

6.3. Rowkey Design

6.3.1. Monotonically Increasing Row Keys/Timeseries Data
In the HBase chapter of Tom White's book Hadoop: The Definitive Guide (O'Reilly) there is a an
optimization note on watching out for a phenomenon where an import process walks in lock-step
with all clients in concert pounding one of the table's regions (and thus, a single node), then moving
onto the next region, etc. With monotonically increasing row-keys (i.e., using a timestamp), this will
happen. See this comic by IKai Lan on why monotonically increasing row keys are problematic in
BigTable-like datastores: monotonically increasing values are bad. The pile-up on a single region
brought on by monotonically increasing keys can be mitigated by randomizing the input records to
not be in sorted order, but in general its best to avoid using a timestamp or a sequence (e.g. 1, 2, 3)
as the row-key.

If you do need to upload time series data into HBase, you should study OpenTSDB as a successful
example. It has a page describing the schema it uses in HBase. The key format in OpenTSDB is
effectively [metric_type][event_timestamp], which would appear at first glance to contradict the
previous advice about not using a timestamp as the key. However, the difference is that the
timestamp is not in the lead position of the key, and the design assumption is that there are dozens
or hundreds (or more) of different metric types. Thus, even with a continual stream of input data
with a mix of metric types, the Puts are distributed across various points of regions in the table.

http://opentsdb.net/schema.html
http://opentsdb.net/
http://ikaisays.com/2011/01/25/app-engine-datastore-tip-monotonically-increasing-values-are-bad/
http://hbase.apache.org/book.html#store

6.3.2. Try to minimize row and column sizes

Or why are my StoreFile indices large?
In HBase, values are always freighted with their coordinates; as a cell value passes through the
system, it'll be accompanied by its row, column name, and timestamp - always. If your rows and
column names are large, especially compared to the size of the cell value, then you may run up
against some interesting scenarios. One such is the case described by Marc Limotte at the tail of
HBASE-3551 (recommended!). Therein, the indices that are kept on HBase storefiles
(Section 8.7.5.2, “StoreFile (HFile)”) to facilitate random access may end up occupyng large
chunks of the HBase allotted RAM because the cell value coordinates are large. Mark in the above
cited comment suggests upping the block size so entries in the store file index happen at a larger
interval or modify the table schema so it makes for smaller rows and column names. Compression
will also make for larger indices. See the thread a question storefileIndexSize up on the user mailing
list.

Most of the time small inefficiencies don't matter all that much. Unfortunately, this is a case where
they do. Whatever patterns are selected for ColumnFamilies, attributes, and rowkeys they could be
repeated several billion times in your data.

See Section 8.7.5.4, “KeyValue” for more information on HBase stores data internally.

6.3.2.1. Column Families
Try to keep the ColumnFamily names as small as possible, preferably one character (e.g. "d" for
data/default).

6.3.2.2. Attributes
Although verbose attribute names (e.g., "myVeryImportantAttribute") are easier to read, prefer
shorter attribute names (e.g., "via") to store in HBase.

6.3.2.3. Rowkey Length
Keep them as short as is reasonable such that they can still be useful for required data access (e.g.,
Get vs. Scan). A short key that is useless for data access is not better than a longer key with better
get/scan properties. Expect tradeoffs when designing rowkeys.

6.3.2.4. Byte Patterns
A long is 8 bytes. You can store an unsigned number up to 18,446,744,073,709,551,615 in those
eight bytes. If you stored this number as a String -- presuming a byte per character -- you need
nearly 3x the bytes.

Not convinced? Below is some sample code that you can run on your own.
// long
//
long l = 1234567890L;
byte[] lb = Bytes.toBytes(l);
System.out.println("long bytes length: " + lb.length); // returns 8

String s = "" + l;
byte[] sb = Bytes.toBytes(s);
System.out.println("long as string length: " + sb.length); // returns 10

// hash
//

http://hbase.apache.org/book.html#keyvalue
http://search-hadoop.com/m/hemBv1LiN4Q1/a+question+storefileIndexSize&subj=a+question+storefileIndexSize
http://hbase.apache.org/book.html#hfile

MessageDigest md = MessageDigest.getInstance("MD5");
byte[] digest = md.digest(Bytes.toBytes(s));
System.out.println("md5 digest bytes length: " + digest.length); // returns
16

String sDigest = new String(digest);
byte[] sbDigest = Bytes.toBytes(sDigest);
System.out.println("md5 digest as string length: " + sbDigest.length); //
returns 26

6.3.3. Reverse Timestamps
A common problem in database processing is quickly finding the most recent version of a value. A
technique using reverse timestamps as a part of the key can help greatly with a special case of this
problem. Also found in the HBase chapter of Tom White's book Hadoop: The Definitive Guide
(O'Reilly), the technique involves appending (Long.MAX_VALUE - timestamp) to the end of
any key, e.g., [key][reverse_timestamp].

The most recent value for [key] in a table can be found by performing a Scan for [key] and
obtaining the first record. Since HBase keys are in sorted order, this key sorts before any older row-
keys for [key] and thus is first.

This technique would be used instead of using Section 6.4, “ Number of Versions ” where the intent
is to hold onto all versions "forever" (or a very long time) and at the same time quickly obtain
access to any other version by using the same Scan technique.

6.3.4. Rowkeys and ColumnFamilies
Rowkeys are scoped to ColumnFamilies. Thus, the same rowkey could exist in each ColumnFamily
that exists in a table without collision.

6.3.5. Immutability of Rowkeys
Rowkeys cannot be changed. The only way they can be "changed" in a table is if the row is deleted
and then re-inserted. This is a fairly common question on the HBase dist-list so it pays to get the
rowkeys right the first time (and/or before you've inserted a lot of data).

6.4. Number of Versions

6.4.1. Maximum Number of Versions
The maximum number of row versions to store is configured per column family via
HColumnDescriptor. The default for max versions is 3. This is an important parameter because as
described in Chapter 5, Data Model section HBase does not overwrite row values, but rather stores
different values per row by time (and qualifier). Excess versions are removed during major
compactions. The number of max versions may need to be increased or decreased depending on
application needs.

It is not recommended setting the number of max versions to an exceedingly high level (e.g.,
hundreds or more) unless those old values are very dear to you because this will greatly increase
StoreFile size.

6.4.2. Minimum Number of Versions
Like maximum number of row versions, the minimum number of row versions to keep is

http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
http://hbase.apache.org/book.html#schema.versions

configured per column family via HColumnDescriptor. The default for min versions is 0, which
means the feature is disabled. The minimum number of row versions parameter is used together
with the time-to-live parameter and can be combined with the number of row versions parameter to
allow configurations such as "keep the last T minutes worth of data, at most N versions, but keep at
least M versions around" (where M is the value for minimum number of row versions, M<N). This
parameter should only be set when time-to-live is enabled for a column family and must be less
than the number of row versions.

6.5. Supported Datatypes
HBase supports a "bytes-in/bytes-out" interface via Put and Result, so anything that can be
converted to an array of bytes can be stored as a value. Input could be strings, numbers, complex
objects, or even images as long as they can rendered as bytes.

There are practical limits to the size of values (e.g., storing 10-50MB objects in HBase would
probably be too much to ask); search the mailling list for conversations on this topic. All rows in
HBase conform to the Chapter 5, Data Model , and that includes versioning. Take that into
consideration when making your design, as well as block size for the ColumnFamily.

6.5.1. Counters
One supported datatype that deserves special mention are "counters" (i.e., the ability to do atomic
increments of numbers). See Increment in HTable.

Synchronization on counters are done on the RegionServer, not in the client.

6.6. Time To Live (TTL)
ColumnFamilies can set a TTL length in seconds, and HBase will automatically delete rows once
the expiration time is reached. This applies to all versions of a row - even the current one. The TTL
time encoded in the HBase for the row is specified in UTC.

See HColumnDescriptor for more information.

6.7. Keeping Deleted Cells
ColumnFamilies can optionally keep deleted cells. That means deleted cells can still be retrieved
with Get or Scan operations, as long these operations have a time range specified that ends before
the timestamp of any delete that would affect the cells. This allows for point in time queries even in
the presence of deletes.

Deleted cells are still subject to TTL and there will never be more than "maximum number of
versions" deleted cells. A new "raw" scan options returns all deleted rows and the delete markers.

See HColumnDescriptor for more information.

6.8. Secondary Indexes and Alternate Query Paths
This section could also be titled "what if my table rowkey looks like this but I also want to query
my table like that." A common example on the dist-list is where a row-key is of the format "user-
timestamp" but there are are reporting requirements on activity across users for certain time ranges.
Thus, selecting by user is easy because it is in the lead position of the key, but time is not.

There is no single answer on the best way to handle this because it depends on...

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#increment(org.apache.hadoop.hbase.client.Increment)
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Result.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html

 Number of users
 Data size and data arrival rate
 Flexibility of reporting requirements (e.g., completely ad-hoc date selection vs. pre-

configured ranges)
 Desired execution speed of query (e.g., 90 seconds may be reasonable to some for an ad-hoc

report, whereas it may be too long for others)

... and solutions are also influenced by the size of the cluster and how much processing power you
have to throw at the solution. Common techniques are in sub-sections below. This is a
comprehensive, but not exhaustive, list of approaches.

It should not be a surprise that secondary indexes require additional cluster space and processing.
This is precisely what happens in an RDBMS because the act of creating an alternate index requires
both space and processing cycles to update. RBDMS products are more advanced in this regard to
handle alternative index management out of the box. However, HBase scales better at larger data
volumes, so this is a feature trade-off.

Pay attention to Chapter 10, Performance Tuning when implementing any of these approaches.

Additionally, see the David Butler response in this dist-list thread HBase, mail # user -
Stargate+hbase

6.8.1. Filter Query
Depending on the case, it may be appropriate to use Section 8.4, “Client Request Filters” . In this
case, no secondary index is created. However, don't try a full-scan on a large table like this from an
application (i.e., single-threaded client).

6.8.2. Periodic-Update Secondary Index
A secondary index could be created in an other table which is periodically updated via a
MapReduce job. The job could be executed intra-day, but depending on load-strategy it could still
potentially be out of sync with the main data table.

See Section 7.2.2, “HBase MapReduce Read/Write Example” for more information.

6.8.3. Dual-Write Secondary Index
Another strategy is to build the secondary index while publishing data to the cluster (e.g., write to
data table, write to index table). If this is approach is taken after a data table already exists, then
bootstrapping will be needed for the secondary index with a MapReduce job (see Section 6.8.2, “
Periodic-Update Secondary Index ”).

6.8.4. Summary Tables
Where time-ranges are very wide (e.g., year-long report) and where the data is voluminous,
summary tables are a common approach. These would be generated with MapReduce jobs into
another table.

See Section 7.2.4, “HBase MapReduce Summary to HBase Example” for more information.

6.8.5. Coprocessor Secondary Index
Coprocessors act like RDBMS triggers. These are currently on TRUNK.

http://hbase.apache.org/book.html#mapreduce.example.summary
http://hbase.apache.org/book.html#secondary.indexes.periodic
http://hbase.apache.org/book.html#secondary.indexes.periodic
http://hbase.apache.org/book.html#mapreduce.example.readwrite
http://hbase.apache.org/book.html#client.filter
http://search-hadoop.com/m/nvbiBp2TDP/Stargate%252Bhbase&subj=Stargate+hbase
http://search-hadoop.com/m/nvbiBp2TDP/Stargate%252Bhbase&subj=Stargate+hbase
http://hbase.apache.org/book.html#performance

6.9. Schema Design Smackdown
This section will describe common schema design questions that appear on the dist-list. These are
general guidelines and not laws - each application must consider it's own needs.

6.9.1. Rows vs. Versions
A common question is whether one should prefer rows or HBase's built-in-versioning. The context
is typically where there are "a lot" of versions of a row to be retained (e.g., where it is significantly
above the HBase default of 3 max versions). The rows-approach would require storing a timstamp
in some portion of the rowkey so that they would not overwite with each successive update.

Preference: Rows (generally speaking).

6.9.2. Rows vs. Columns
Another common question is whether one should prefer rows or columns. The context is typically in
extreme cases of wide tables, such as having 1 row with 1 million attributes, or 1 million rows with
1 columns apiece.

Preference: Rows (generally speaking). To be clear, this guideline is in the context is in extremely
wide cases, not in the standard use-case where one needs to store a few dozen or hundred columns.

6.10. Operational and Performance Configuration Options
See the Performance section Section 10.5, “Schema Design” for more information operational and
performance schema design options, such as Bloom Filters, Table-configured regionsizes, and
blocksizes.

6.11. Constraints
HBase currently supports 'constraints' in traditional (SQL) database parlance. The advised usage for
Constraints is in enforcing business rules for attributes in the table (eg. make sure values are in the
range 1-10). Constraints could also be used to enforce referential integrity, but this is strongly
discouraged as it will dramatically decrease the write throughput of the tables where integrity
checking is enabled. Extensive documentation on using Constraints can be found at: Constraint
since version 0.94.

Chapter 7. HBase and MapReduce
Table of Contents
7.1. Map-Task Spitting

7.1.1. The Default HBase MapReduce Splitter
7.1.2. Custom Splitters

7.2. HBase MapReduce Examples
7.2.1. HBase MapReduce Read Example
7.2.2. HBase MapReduce Read/Write Example
7.2.3. HBase MapReduce Read/Write Example With Multi-Table Output
7.2.4. HBase MapReduce Summary to HBase Example
7.2.5. HBase MapReduce Summary to File Example
7.2.6. HBase MapReduce Summary to HBase Without Reducer
7.2.7. HBase MapReduce Summary to RDBMS

7.3. Accessing Other HBase Tables in a MapReduce Job

http://hbase.apache.org/book.html#mapreduce.htable.access
http://hbase.apache.org/book.html#mapreduce.example.summary.rdbms
http://hbase.apache.org/book.html#mapreduce.example.summary.noreducer
http://hbase.apache.org/book.html#mapreduce.example.summary.file
http://hbase.apache.org/book.html#mapreduce.example.summary
http://hbase.apache.org/book.html#mapreduce.example.readwrite.multi
http://hbase.apache.org/book.html#mapreduce.example.readwrite
http://hbase.apache.org/book.html#mapreduce.example.read
http://hbase.apache.org/book.html#mapreduce.example
http://hbase.apache.org/book.html#splitter.custom
http://hbase.apache.org/book.html#splitter.default
http://hbase.apache.org/book.html#splitter
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/constraint
http://hbase.apache.org/book.html#perf.schema

7.4. Speculative Execution

See HBase and MapReduce up in javadocs. Start there. Below is some additional help.

For more information about MapReduce (i.e., the framework in general), see the Hadoop
MapReduce Tutorial.

7.1. Map-Task Spitting

7.1.1. The Default HBase MapReduce Splitter
When TableInputFormat is used to source an HBase table in a MapReduce job, its splitter will make
a map task for each region of the table. Thus, if there are 100 regions in the table, there will be 100
map-tasks for the job - regardless of how many column families are selected in the Scan.

7.1.2. Custom Splitters
For those interested in implementing custom splitters, see the method getSplits in
TableInputFormatBase. That is where the logic for map-task assignment resides.

7.2. HBase MapReduce Examples

7.2.1. HBase MapReduce Read Example
The following is an example of using HBase as a MapReduce source in read-only manner.
Specifically, there is a Mapper instance but no Reducer, and nothing is being emitted from the
Mapper. There job would be defined as follows...
Configuration config = HBaseConfiguration.create();
Job job = new Job(config, "ExampleRead");
job.setJarByClass(MyReadJob.class); // class that contains mapper

Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for
MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs
...

TableMapReduceUtil.initTableMapperJob(
 tableName, // input HBase table name
 scan, // Scan instance to control CF and attribute selection
 MyMapper.class, // mapper
 null, // mapper output key
 null, // mapper output value
 job);
job.setOutputFormatClass(NullOutputFormat.class); // because we aren't
emitting anything from mapper

boolean b = job.waitForCompletion(true);
if (!b) {
 throw new IOException("error with job!");
}

...and the mapper instance would extend TableMapper...

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableMapper.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormatBase.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://hbase.org/apidocs/org/apache/hadoop/hbase/mapreduce/package-summary.html#package_description
http://hbase.apache.org/book.html#mapreduce.specex

public static class MyMapper extends TableMapper<Text, Text> {

 public void map(ImmutableBytesWritable row, Result value, Context context)
throws InterruptedException, IOException {
 // process data for the row from the Result instance.
 }
}

7.2.2. HBase MapReduce Read/Write Example
The following is an example of using HBase both as a source and as a sink with MapReduce. This
example will simply copy data from one table to another.
Configuration config = HBaseConfiguration.create();
Job job = new Job(config,"ExampleReadWrite");
job.setJarByClass(MyReadWriteJob.class); // class that contains mapper

Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for
MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs

TableMapReduceUtil.initTableMapperJob(
 sourceTable, // input table
 scan, // Scan instance to control CF and attribute selection
 MyMapper.class, // mapper class
 null, // mapper output key
 null, // mapper output value
 job);
TableMapReduceUtil.initTableReducerJob(
 targetTable, // output table
 null, // reducer class
 job);
job.setNumReduceTasks(0);

boolean b = job.waitForCompletion(true);
if (!b) {
 throw new IOException("error with job!");
}

An explanation is required of what TableMapReduceUtil is doing, especially with the reducer.
TableOutputFormat is being used as the outputFormat class, and several parameters are being set on
the config (e.g., TableOutputFormat.OUTPUT_TABLE), as well as setting the reducer output key to
ImmutableBytesWritable and reducer value to Writable. These could be set by the
programmer on the job and conf, but TableMapReduceUtil tries to make things easier.

The following is the example mapper, which will create a Put and matching the input Result and
emit it. Note: this is what the CopyTable utility does.
public static class MyMapper extends TableMapper<ImmutableBytesWritable, Put> {

 public void map(ImmutableBytesWritable row, Result value, Context
context) throws IOException, InterruptedException {
 // this example is just copying the data from the source
table...
 context.write(row, resultToPut(row,value));
 }

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableOutputFormat.html

 private static Put resultToPut(ImmutableBytesWritable key, Result
result) throws IOException {
 Put put = new Put(key.get());
 for (KeyValue kv : result.raw()) {
 put.add(kv);
 }
 return put;
 }
}

There isn't actually a reducer step, so TableOutputFormat takes care of sending the Put to the
target table.

This is just an example, developers could choose not to use TableOutputFormat and connect
to the target table themselves.

7.2.3. HBase MapReduce Read/Write Example With Multi-Table Output
TODO: example for MultiTableOutputFormat.

7.2.4. HBase MapReduce Summary to HBase Example
The following example uses HBase as a MapReduce source and sink with a summarization step.
This example will count the number of distinct instances of a value in a table and write those
summarized counts in another table.
Configuration config = HBaseConfiguration.create();
Job job = new Job(config,"ExampleSummary");
job.setJarByClass(MySummaryJob.class); // class that contains mapper and
reducer

Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for
MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs

TableMapReduceUtil.initTableMapperJob(
 sourceTable, // input table
 scan, // Scan instance to control CF and attribute
selection
 MyMapper.class, // mapper class
 Text.class, // mapper output key
 IntWritable.class, // mapper output value
 job);
TableMapReduceUtil.initTableReducerJob(
 targetTable, // output table
 MyTableReducer.class, // reducer class
 job);
job.setNumReduceTasks(1); // at least one, adjust as required

boolean b = job.waitForCompletion(true);
if (!b) {
 throw new IOException("error with job!");
}

In this example mapper a column with a String-value is chosen as the value to summarize upon.
This value is used as the key to emit from the mapper, and an IntWritable represents an

instance counter.
public static class MyMapper extends TableMapper<Text, IntWritable> {

 private final IntWritable ONE = new IntWritable(1);
 private Text text = new Text();

 public void map(ImmutableBytesWritable row, Result value, Context
context) throws IOException, InterruptedException {
 String val = new String(value.getValue(Bytes.toBytes("cf"),
Bytes.toBytes("attr1")));
 text.set(val); // we can only emit Writables...

 context.write(text, ONE);
 }
}

In the reducer, the "ones" are counted (just like any other MR example that does this), and then
emits a Put.
public static class MyTableReducer extends TableReducer<Text, IntWritable,
ImmutableBytesWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {
 int i = 0;
 for (IntWritable val : values) {
 i += val.get();
 }
 Put put = new Put(Bytes.toBytes(key.toString()));
 put.add(Bytes.toBytes("cf"), Bytes.toBytes("count"),
Bytes.toBytes(i));

 context.write(null, put);
 }
}

7.2.5. HBase MapReduce Summary to File Example
This very similar to the summary example above, with exception that this is using HBase as a
MapReduce source but HDFS as the sink. The differences are in the job setup and in the reducer.
The mapper remains the same.
Configuration config = HBaseConfiguration.create();
Job job = new Job(config,"ExampleSummaryToFile");
job.setJarByClass(MySummaryFileJob.class); // class that contains mapper and
reducer

Scan scan = new Scan();
scan.setCaching(500); // 1 is the default in Scan, which will be bad for
MapReduce jobs
scan.setCacheBlocks(false); // don't set to true for MR jobs
// set other scan attrs

TableMapReduceUtil.initTableMapperJob(
 sourceTable, // input table
 scan, // Scan instance to control CF and attribute
selection
 MyMapper.class, // mapper class
 Text.class, // mapper output key

 IntWritable.class, // mapper output value
 job);
job.setReducerClass(MyReducer.class); // reducer class
job.setNumReduceTasks(1); // at least one, adjust as required
FileOutputFormat.setOutputPath(job, new Path("/tmp/mr/mySummaryFile")); //
adjust directories as required

boolean b = job.waitForCompletion(true);
if (!b) {
 throw new IOException("error with job!");
}

As stated above, the previous Mapper can run unchanged with this example. As for the Reducer, it
is a "generic" Reducer instead of extending TableMapper and emitting Puts.
 public static class MyReducer extends Reducer<Text, IntWritable, Text,
IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {
 int i = 0;
 for (IntWritable val : values) {
 i += val.get();
 }
 context.write(key, new IntWritable(i));
 }
}

7.2.6. HBase MapReduce Summary to HBase Without Reducer
It is also possible to perform summaries without a reducer - if you use HBase as the reducer.

An HBase target table would need to exist for the job summary. The HTable method
incrementColumnValue would be used to atomically increment values. From a performance
perspective, it might make sense to keep a Map of values with their values to be incremeneted for
each map-task, and make one update per key at during the cleanup method of the mapper.
However, your milage may vary depending on the number of rows to be processed and unique keys.

In the end, the summary results are in HBase.

7.2.7. HBase MapReduce Summary to RDBMS
Sometimes it is more appropriate to generate summaries to an RDBMS. For these cases, it is
possible to generate summaries directly to an RDBMS via a custom reducer. The setup method
can connect to an RDBMS (the connection information can be passed via custom parameters in the
context) and the cleanup method can close the connection.

It is critical to understand that number of reducers for the job affects the summarization
implementation, and you'll have to design this into your reducer. Specifically, whether it is designed
to run as a singleton (one reducer) or multiple reducers. Neither is right or wrong, it depends on
your use-case. Recognize that the more reducers that are assigned to the job, the more simultaneous
connections to the RDBMS will be created - this will scale, but only to a point.
 public static class MyRdbmsReducer extends Reducer<Text, IntWritable, Text,
IntWritable> {

 private Connection c = null;

 public void setup(Context context) {
 // create DB connection...
 }

 public void reduce(Text key, Iterable<IntWritable> values, Context
context) throws IOException, InterruptedException {
 // do summarization
 // in this example the keys are Text, but this is just an
example
 }

 public void cleanup(Context context) {
 // close db connection
 }

}

In the end, the summary results are written to your RDBMS table/s.

7.3. Accessing Other HBase Tables in a MapReduce Job
Although the framework currently allows one HBase table as input to a MapReduce job, other
HBase tables can be accessed as lookup tables, etc., in a MapReduce job via creating an HTable
instance in the setup method of the Mapper.
public class MyMapper extends TableMapper<Text, LongWritable> {
 private HTable myOtherTable;

 public void setup(Context context) {
 myOtherTable = new HTable("myOtherTable");
 }

 public void map(ImmutableBytesWritable row, Result value, Context context)
throws IOException, InterruptedException {
 // process Result...
 // use 'myOtherTable' for lookups
 }

7.4. Speculative Execution
It is generally advisable to turn off speculative execution for MapReduce jobs that use HBase as a
source. This can either be done on a per-Job basis through properties, on on the entire cluster.
Especially for longer running jobs, speculative execution will create duplicate map-tasks which will
double-write your data to HBase; this is probably not what you want.

Chapter 8. Architecture
Table of Contents
8.1. Overview

8.1.1. NoSQL?
8.1.2. When Should I Use HBase?
8.1.3. What Is The Difference Between HBase and Hadoop/HDFS?

8.2. Catalog Tables
8.2.1. ROOT

http://hbase.apache.org/book.html#arch.catalog.root
http://hbase.apache.org/book.html#arch.catalog
http://hbase.apache.org/book.html#arch.overview.hbasehdfs
http://hbase.apache.org/book.html#arch.overview.when
http://hbase.apache.org/book.html#arch.overview.nosql
http://hbase.apache.org/book.html#arch.overview

8.2.2. META
8.2.3. Startup Sequencing

8.3. Client
8.3.1. Connections
8.3.2. WriteBuffer and Batch Methods
8.3.3. External Clients

8.4. Client Request Filters
8.4.1. Structural
8.4.2. Column Value
8.4.3. Column Value Comparators
8.4.4. KeyValue Metadata
8.4.5. RowKey
8.4.6. Utility

8.5. Master
8.5.1. Startup Behavior
8.5.2. Interface
8.5.3. Processes

8.6. RegionServer
8.6.1. Interface
8.6.2. Processes
8.6.3. Block Cache
8.6.4. Write Ahead Log (WAL)

8.7. Regions
8.7.1. Region Size
8.7.2. Region-RegionServer Assignment
8.7.3. Region-RegionServer Locality
8.7.4. Region Splits
8.7.5. Store
8.7.6. Bloom Filters

8.8. HDFS
8.8.1. NameNode
8.8.2. DataNode

8.1. Overview

8.1.1. NoSQL?
HBase is a type of "NoSQL" database. "NoSQL" is a general term meaning that the database isn't
an RDBMS which supports SQL as it's primary access language, but there are many types of
NoSQL databases: BerkeleyDB is an example of a local NoSQL database, whereas HBase is very
much a distributed database. Technically speaking, HBase is really more a "Data Store" than "Data
Base" because it lacks many of the features you find in an RDBMS, such as typed columns,
secondary indexes, triggers, and advanced query languages, etc.

However, HBase has many features which supports both linear and modular scaling. HBase clusters
expand by adding RegionServers that are hosted on commodity class servers. If a cluster expands
from 10 to 20 RegionServers, for example, it doubles both in terms of storage and as well as
processing capacity. RDBMS can scale well, but only up to a point - specifically, the size of a single
database server - and for the best performance requires specialized hardware and storage devices.
HBase features of note are:

 Strongly consistent reads/writes: HBase is not an "eventually consistent" DataStore. This

http://hbase.apache.org/book.html#arch.hdfs.dn
http://hbase.apache.org/book.html#arch.hdfs.nn
http://hbase.apache.org/book.html#arch.hdfs
http://hbase.apache.org/book.html#blooms
http://hbase.apache.org/book.html#store
http://hbase.apache.org/book.html#d1556e4796
http://hbase.apache.org/book.html#regions.arch.locality
http://hbase.apache.org/book.html#regions.arch.assignment
http://hbase.apache.org/book.html#arch.regions.size
http://hbase.apache.org/book.html#regions.arch
http://hbase.apache.org/book.html#wal
http://hbase.apache.org/book.html#block.cache
http://hbase.apache.org/book.html#regionserver.arch.processes
http://hbase.apache.org/book.html#regionserver.arch.api
http://hbase.apache.org/book.html#regionserver.arch
http://hbase.apache.org/book.html#master.processes
http://hbase.apache.org/book.html#master.api
http://hbase.apache.org/book.html#master.startup
http://hbase.apache.org/book.html#master
http://hbase.apache.org/book.html#client.filter.utility
http://hbase.apache.org/book.html#client.filter.row
http://hbase.apache.org/book.html#client.filter.kvm
http://hbase.apache.org/book.html#client.filter.cvp
http://hbase.apache.org/book.html#client.filter.cv
http://hbase.apache.org/book.html#client.filter.structural
http://hbase.apache.org/book.html#client.filter
http://hbase.apache.org/book.html#client.external
http://hbase.apache.org/book.html#client.writebuffer
http://hbase.apache.org/book.html#client.connections
http://hbase.apache.org/book.html#client
http://hbase.apache.org/book.html#arch.catalog.startup
http://hbase.apache.org/book.html#arch.catalog.meta

makes it very suitable for tasks such as high-speed counter aggregation.
 Automatic sharding: HBase tables are distributed on the cluster via regions, and regions are

automatically split and re-distributed as your data grows.
 Automatic RegionServer failover
 Hadoop/HDFS Integration: HBase supports HDFS out of the box as it's distributed file

system.
 MapReduce: HBase supports massively parallelized processing via MapReduce for using

HBase as both source and sink.
 Java Client API: HBase supports an easy to use Java API for programmatic access.
 Thrift/REST API: HBase also supports Thrift and REST for non-Java front-ends.
 Block Cache and Bloom Filters: HBase supports a Block Cache and Bloom Filters for high

volume query optimization.
 Operational Management: HBase provides build-in web-pages for operational insight as well

as JMX metrics.

8.1.2. When Should I Use HBase?
First, make sure you have enough data. HBase isn't suitable for every problem. If you have
hundreds of millions or billions of rows, then HBase is a good candidate. If you only have a few
thousand/million rows, then using a traditional RDBMS might be a better choice due to the fact that
all of your data might wind up on a single node (or two) and the rest of the cluster may be sitting
idle.

Second, make sure you have enough hardware. Even HDFS doesn't do well with anything less than
5 DataNodes (due to things such as HDFS block replication which has a default of 3), plus a
NameNode.

HBase can run quite well stand-alone on a laptop - but this should be considered a development
configuration only.

8.1.3. What Is The Difference Between HBase and Hadoop/HDFS?
HDFS is a distributed file system that is well suited for the storage of large files. It's documentation
states that it is not, however, a general purpose file system, and does not provide fast individual
record lookups in files. HBase, on the other hand, is built on top of HDFS and provides fast record
lookups (and updates) for large tables. This can sometimes be a point of conceptual confusion.
HBase internally puts your data in indexed "StoreFiles" that exist on HDFS for high-speed lookups.
See the Chapter 5, Data Model and the rest of this chapter for more information on how HBase
achieves its goals.

8.2. Catalog Tables
The catalog tables -ROOT- and .META. exist as HBase tables. They are are filtered out of the
HBase shell's list command, but they are in fact tables just like any other.

8.2.1. ROOT
-ROOT- keeps track of where the .META. table is. The -ROOT- table structure is as follows:

Key:

 .META. region key (.META.,,1)

Values:

http://hbase.apache.org/book.html#datamodel
http://hadoop.apache.org/hdfs/

 info:regioninfo (serialized HRegionInfo instance of .META.)
 info:server (server:port of the RegionServer holding .META.)
 info:serverstartcode (start-time of the RegionServer process holding .META.)

8.2.2. META
The .META. table keeps a list of all regions in the system. The .META. table structure is as follows:

Key:

 Region key of the format ([table],[region start key],[region id])

Values:

 info:regioninfo (serialized HRegionInfo instance for this region)
 info:server (server:port of the RegionServer containing this region)
 info:serverstartcode (start-time of the RegionServer process containing this

region)

When a table is in the process of splitting two other columns will be created, info:splitA and
info:splitB which represent the two daughter regions. The values for these columns are also
serialized HRegionInfo instances. After the region has been split eventually this row will be deleted.

Notes on HRegionInfo: the empty key is used to denote table start and table end. A region with an
empty start key is the first region in a table. If region has both an empty start and an empty end key,
its the only region in the table

In the (hopefully unlikely) event that programmatic processing of catalog metadata is required, see
the Writables utility.

8.2.3. Startup Sequencing
The META location is set in ROOT first. Then META is updated with server and startcode values.

For information on region-RegionServer assignment, see Section 8.7.2, “Region-RegionServer
Assignment”.

8.3. Client
The HBase client HTable is responsible for finding RegionServers that are serving the particular
row range of interest. It does this by querying the .META. and -ROOT- catalog tables (TODO:
Explain). After locating the required region(s), the client directly contacts the RegionServer serving
that region (i.e., it does not go through the master) and issues the read or write request. This
information is cached in the client so that subsequent requests need not go through the lookup
process. Should a region be reassigned either by the master load balancer or because a
RegionServer has died, the client will requery the catalog tables to determine the new location of
the user region.

Administrative functions are handled through HBaseAdmin

8.3.1. Connections
For connection configuration information, see Section 2.6.4, “Client configuration and
dependencies connecting to an HBase cluster”.

HTable instances are not thread-safe. When creating HTable instances, it is advisable to use the
same HBaseConfiguration instance. This will ensure sharing of ZooKeeper and socket instances to

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HBaseConfiguration
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html
http://hbase.apache.org/book.html#client_dependencies
http://hbase.apache.org/book.html#client_dependencies
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HBaseAdmin.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html
http://hbase.apache.org/book.html#regions.arch.assignment
http://hbase.apache.org/book.html#regions.arch.assignment
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/util/Writables.html#getHRegionInfo(byte[])
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HRegionInfo.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HRegionInfo.html

the RegionServers which is usually what you want. For example, this is preferred:
HBaseConfiguration conf = HBaseConfiguration.create();
HTable table1 = new HTable(conf, "myTable");
HTable table2 = new HTable(conf, "myTable");

as opposed to this:
HBaseConfiguration conf1 = HBaseConfiguration.create();
HTable table1 = new HTable(conf1, "myTable");
HBaseConfiguration conf2 = HBaseConfiguration.create();
HTable table2 = new HTable(conf2, "myTable");

For more information about how connections are handled in the HBase client, see
HConnectionManager.

8.3.1.1. Connection Pooling
For applications which require high-end multithreaded access (e.g., web-servers or application
servers that may serve many application threads in a single JVM), see HTablePool.

8.3.2. WriteBuffer and Batch Methods
If Section 10.6.4, “HBase Client: AutoFlush” is turned off on HTable, Puts are sent to
RegionServers when the writebuffer is filled. The writebuffer is 2MB by default. Before an HTable
instance is discarded, either close() or flushCommits() should be invoked so Puts will not
be lost.

Note: htable.delete(Delete); does not go in the writebuffer! This only applies to Puts.

For additional information on write durability, review the ACID semantics page.

For fine-grained control of batching of Puts or Deletes, see the batch methods on HTable.

8.3.3. External Clients
Information on non-Java clients and custom protocols is covered in Chapter 9, External APIs

8.4. Client Request Filters
Get and Scan instances can be optionally configured with filters which are applied on the
RegionServer.

Filters can be confusing because there are many different types, and it is best to approach them by
understanding the groups of Filter functionality.

8.4.1. Structural
Structural Filters contain other Filters.

8.4.1.1. FilterList
FilterList represents a list of Filters with a relationship of
FilterList.Operator.MUST_PASS_ALL or
FilterList.Operator.MUST_PASS_ONE between the Filters. The following example
shows an 'or' between two Filters (checking for either 'my value' or 'my other value' on the same
attribute).

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FilterList.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html
http://hbase.apache.org/book.html#external_apis
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#batch(java.util.List)
http://hbase.apache.org/acid-semantics.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html
http://hbase.apache.org/book.html#perf.hbase.client.autoflush
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTablePool.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HConnectionManager.html

FilterList list = new FilterList(FilterList.Operator.MUST_PASS_ONE);
SingleColumnValueFilter filter1 = new SingleColumnValueFilter(
 cf,
 column,
 CompareOp.EQUAL,
 Bytes.toBytes("my value")
);
list.add(filter1);
SingleColumnValueFilter filter2 = new SingleColumnValueFilter(
 cf,
 column,
 CompareOp.EQUAL,
 Bytes.toBytes("my other value")
);
list.add(filter2);
scan.setFilter(list);

8.4.2. Column Value

8.4.2.1. SingleColumnValueFilter
SingleColumnValueFilter can be used to test column values for equivalence (CompareOp.EQUAL
), inequality (CompareOp.NOT_EQUAL), or ranges (e.g., CompareOp.GREATER). The
folowing is example of testing equivalence a column to a String value "my value"...
SingleColumnValueFilter filter = new SingleColumnValueFilter(
 cf,
 column,
 CompareOp.EQUAL,
 Bytes.toBytes("my value")
);
scan.setFilter(filter);

8.4.3. Column Value Comparators
There are several Comparator classes in the Filter package that deserve special mention. These
Comparators are used in concert with other Filters, such as Section 8.4.2.1,
“SingleColumnValueFilter”.

8.4.3.1. RegexStringComparator
RegexStringComparator supports regular expressions for value comparisons.
RegexStringComparator comp = new RegexStringComparator("my."); // any value
that starts with 'my'
SingleColumnValueFilter filter = new SingleColumnValueFilter(
 cf,
 column,
 CompareOp.EQUAL,
 comp
);
scan.setFilter(filter);

See the Oracle JavaDoc for supported RegEx patterns in Java.

8.4.3.2. SubstringComparator
SubstringComparator can be used to determine if a given substring exists in a value. The

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/SubstringComparator.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/RegexStringComparator.html
http://hbase.apache.org/book.html#client.filter.cv.scvf
http://hbase.apache.org/book.html#client.filter.cv.scvf
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/CompareFilter.CompareOp.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/SingleColumnValueFilter.html

comparison is case-insensitive.
SubstringComparator comp = new SubstringComparator("y val"); // looking for
'my value'
SingleColumnValueFilter filter = new SingleColumnValueFilter(
 cf,
 column,
 CompareOp.EQUAL,
 comp
);
scan.setFilter(filter);

8.4.3.3. BinaryPrefixComparator
See BinaryPrefixComparator.

8.4.3.4. BinaryComparator
See BinaryComparator.

8.4.4. KeyValue Metadata
As HBase stores data internally as KeyValue pairs, KeyValue Metadata Filters evaluate the
existence of keys (i.e., ColumnFamily:Column qualifiers) for a row, as opposed to values the
previous section.

8.4.4.1. FamilyFilter
FamilyFilter can be used to filter on the ColumnFamily. It is generally a better idea to select
ColumnFamilies in the Scan than to do it with a Filter.

8.4.4.2. QualifierFilter
QualifierFilter can be used to filter based on Column (aka Qualifier) name.

8.4.4.3. ColumnPrefixFilter
ColumnPrefixFilter can be used to filter based on the lead portion of Column (aka Qualifier) names.

8.4.4.4. ColumnRangeFilter
Use ColumnRangeFilter to get a column 'slice': i.e. if you have a million columns in a row but you
only want to look at columns bbbb-bbbd.

Note: Introduced in HBase 0.92

8.4.5. RowKey

8.4.5.1. RowFilter
It is generally a better idea to use the startRow/stopRow methods on Scan for row selection,
however RowFilter can also be used.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/RowFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/ColumnRangeFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/ColumnPrefixFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/QualifierFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FamilyFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BinaryComparator.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/BinaryPrefixComparator.html

8.4.6. Utility

8.4.6.1. FirstKeyOnlyFilter
This is primarily used for rowcount jobs. See FirstKeyOnlyFilter.

8.5. Master
HMaster is the implementation of the Master Server. The Master server is responsible for
monitoring all RegionServer instances in the cluster, and is the interface for all metadata changes. In
a distributed cluster, the Master typically runs on the Section 8.8.1, “NameNode” .

8.5.1. Startup Behavior
If run in a multi-Master environment, all Masters compete to run the cluster. If the active Master
loses it's lease in ZooKeeper (or the Master shuts down), then then the remaining Masters jostle to
take over the Master role.

8.5.2. Interface
The methods exposed by HMasterInterface are primarily metadata-oriented methods:

 Table (createTable, modifyTable, removeTable, enable, disable)
 ColumnFamily (addColumn, modifyColumn, removeColumn)
 Region (move, assign, unassign)

For example, when the HBaseAdmin method disableTable is invoked, it is serviced by the
Master server.

8.5.3. Processes
The Master runs several background threads:

8.5.3.1. LoadBalancer
Periodically, and when there are not any regions in transition, a load balancer will run and move
regions around to balance cluster load. See Section 2.8.3.1, “Balancer” for configuring this
property.

See Section 8.7.2, “Region-RegionServer Assignment” for more information on region assignment.

8.5.3.2. CatalogJanitor
Periodically checks and cleans up the .META. table. See Section 8.2.2, “META” for more
information on META.

8.6. RegionServer
HRegionServer is the RegionServer implementation. It is responsible for serving and managing
regions. In a distributed cluster, a RegionServer runs on a Section 8.8.2, “DataNode” .

8.6.1. Interface
The methods exposed by HRegionRegionInterface contain both data-oriented and region-

http://hbase.apache.org/book.html#arch.hdfs.dn
http://hbase.apache.org/book.html#arch.catalog.meta
http://hbase.apache.org/book.html#regions.arch.assignment
http://hbase.apache.org/book.html#balancer_config
http://hbase.apache.org/book.html#arch.hdfs.nn
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FirstKeyOnlyFilter.html

maintenance methods:

 Data (get, put, delete, next, etc.)
 Region (splitRegion, compactRegion, etc.)

For example, when the HBaseAdmin method majorCompact is invoked on a table, the client is
actually iterating through all regions for the specified table and requesting a major compaction
directly to each region.

8.6.2. Processes
The RegionServer runs a variety of background threads:

8.6.2.1. CompactSplitThread
Checks for splits and handle minor compactions.

8.6.2.2. MajorCompactionChecker
Checks for major compactions.

8.6.2.3. MemStoreFlusher
Periodically flushes in-memory writes in the MemStore to StoreFiles.

8.6.2.4. LogRoller
Periodically checks the RegionServer's HLog.

8.6.3. Block Cache

8.6.3.1. Design
The Block Cache is an LRU cache that contains three levels of block priority to allow for scan-
resistance and in-memory ColumnFamilies:

 Single access priority: The first time a block is loaded from HDFS it normally has this
priority and it will be part of the first group to be considered during evictions. The advantage
is that scanned blocks are more likely to get evicted than blocks that are getting more usage.

 Mutli access priority: If a block in the previous priority group is accessed again, it upgrades
to this priority. It is thus part of the second group considered during evictions.

 In-memory access priority: If the block's family was configured to be "in-memory", it will
be part of this priority disregarding the number of times it was accessed. Catalog tables are
configured like this. This group is the last one considered during evictions.

For more information, see the LruBlockCache source

8.6.3.2. Usage
Block caching is enabled by default for all the user tables which means that any read operation will
load the LRU cache. This might be good for a large number of use cases, but further tunings are
usually required in order to achieve better performance. An important concept is the working set
size, or WSS, which is: "the amount of memory needed to compute the answer to a problem". For a
website, this would be the data that's needed to answer the queries over a short amount of time.

The way to calculate how much memory is available in HBase for caching is:

http://en.wikipedia.org/wiki/Working_set_size
http://en.wikipedia.org/wiki/Working_set_size
http://hbase.apache.org/xref/org/apache/hadoop/hbase/io/hfile/LruBlockCache.html

 number of region servers * heap size * hfile.block.cache.size * 0.85

The default value for the block cache is 0.25 which represents 25% of the available heap. The last
value (85%) is the default acceptable loading factor in the LRU cache after which eviction is
started. The reason it is included in this equation is that it would be unrealistic to say that it is
possible to use 100% of the available memory since this would make the process blocking from the
point where it loads new blocks. Here are some examples:

 One region server with the default heap size (1GB) and the default block cache size will
have 217MB of block cache available.

 20 region servers with the heap size set to 8GB and a default block cache size will have
34GB of block cache.

 100 region servers with the heap size set to 24GB and a block cache size of 0.5 will have
about 1TB of block cache.

Your data isn't the only resident of the block cache, here are others that you may have to take into
account:

 Catalog tables: The -ROOT- and .META. tables are forced into the block cache and have the
in-memory priority which means that they are harder to evict. The former never uses more
than a few hundreds of bytes while the latter can occupy a few MBs (depending on the
number of regions).

 HFiles indexes: HFile is the file format that HBase uses to store data in HDFS and it
contains a multi-layered index in order seek to the data without having to read the whole
file. The size of those indexes is a factor of the block size (64KB by default), the size of
your keys and the amount of data you are storing. For big data sets it's not unusual to see
numbers around 1GB per region server, although not all of it will be in cache because the
LRU will evict indexes that aren't used.

 Keys: Taking into account only the values that are being stored is missing half the picture
since every value is stored along with its keys (row key, family, qualifier, and timestamp).
See Section 6.3.2, “Try to minimize row and column sizes” .

 Bloom filters: Just like the HFile indexes, those data structures (when enabled) are stored in
the LRU.

Currently the recommended way to measure HFile indexes and bloom filters sizes is to look at the
region server web UI and checkout the relevant metrics. For keys, sampling can be done by using
the HFile command line tool and look for the average key size metric.

It's generally bad to use block caching when the WSS doesn't fit in memory. This is the case when
you have for example 40GB available across all your region servers' block caches but you need to
process 1TB of data. One of the reasons is that the churn generated by the evictions will trigger
more garbage collections unnecessarily. Here are two use cases:

 Fully random reading pattern: This is a case where you almost never access the same row
twice within a short amount of time such that the chance of hitting a cached block is close to
0. Setting block caching on such a table is a waste of memory and CPU cycles, more so that
it will generate more garbage to pick up by the JVM. For more information on monitoring
GC, see Section 11.2.3, “JVM Garbage Collection Logs” .

 Mapping a table: In a typical MapReduce job that takes a table in input, every row will be
read only once so there's no need to put them into the block cache. The Scan object has the
option of turning this off via the setCaching method (set it to false). You can still keep block
caching turned on on this table if you need fast random read access. An example would be
counting the number of rows in a table that serves live traffic, caching every block of that
table would create massive churn and would surely evict data that's currently in use.

http://hbase.apache.org/book.html#trouble.log.gc
http://hbase.apache.org/book.html#keysize

8.6.4. Write Ahead Log (WAL)

8.6.4.1. Purpose
Each RegionServer adds updates (Puts, Deletes) to its write-ahead log (WAL) first, and then to the
Section 8.7.5.1, “MemStore” for the affected Section 8.7.5, “Store” . This ensures that HBase has
durable writes. Without WAL, there is the possibility of data loss in the case of a RegionServer
failure before each MemStore is flushed and new StoreFiles are written. HLog is the HBase WAL
implementation, and there is one HLog instance per RegionServer.

The WAL is in HDFS in /hbase/.logs/ with subdirectories per region.

For more general information about the concept of write ahead logs, see the Wikipedia Write-Ahead
Log article.

8.6.4.2. WAL Flushing
TODO (describe).

8.6.4.3. WAL Splitting

8.6.4.3.1. How edits are recovered from a crashed RegionServer

When a RegionServer crashes, it will lose its ephemeral lease in ZooKeeper...TODO

8.6.4.3.2. hbase.hlog.split.skip.errors
When set to true, the default, any error encountered splitting will be logged, the problematic WAL
will be moved into the .corrupt directory under the hbase rootdir, and processing will
continue. If set to false, the exception will be propagated and the split logged as failed.[21]

8.6.4.3.3. How EOFExceptions are treated when splitting a crashed RegionServers' WALs

If we get an EOF while splitting logs, we proceed with the split even when
hbase.hlog.split.skip.errors == false. An EOF while reading the last log in the set
of files to split is near-guaranteed since the RegionServer likely crashed mid-write of a record. But
we'll continue even if we got an EOF reading other than the last file in the set.[22]

8.7. Regions
Regions are the basic element of availability and distribution for tables, and are comprised of a
Store per Column Family.

8.7.1. Region Size
Determining the "right" region size can be tricky, and there are a few factors to consider:

 HBase scales by having regions across many servers. Thus if you have 2 regions for 16GB
data, on a 20 node machine your data will be concentrated on just a few machines - nearly
the entire cluster will be idle. This really cant be stressed enough, since a common problem
is loading 200MB data into HBase then wondering why your awesome 10 node cluster isn't
doing anything.

 On the other hand, high region count has been known to make things slow. This is getting
better with each release of HBase, but it is probably better to have 700 regions than 3000 for

http://hbase.apache.org/book.html#ftn.d1556e4688
http://hbase.apache.org/book.html#ftn.d1556e4671
http://en.wikipedia.org/wiki/Write-ahead_logging
http://en.wikipedia.org/wiki/Write-ahead_logging
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/regionserver/wal/HLog.html
http://hbase.apache.org/book.html#store
http://hbase.apache.org/book.html#store.memstore

the same amount of data.

 There is not much memory footprint difference between 1 region and 10 in terms of indexes,
etc, held by the RegionServer.

When starting off, its probably best to stick to the default region-size, perhaps going smaller for hot
tables (or manually split hot regions to spread the load over the cluster), or go with larger region
sizes if your cell sizes tend to be largish (100k and up).

See Section 2.8.2.6, “Bigger Regions” for more information on configuration.

8.7.2. Region-RegionServer Assignment
This section describes how Regions are assigned to RegionServers.

8.7.2.1. Startup
When HBase starts regions are assigned as follows (short version):

1. The Master invokes the AssignmentManager upon startup.
2. The AssignmentManager looks at the existing region assignments in META.
3. If the region assignment is still valid (i.e., if the RegionServer is still online) then the

assignment is kept.
4. If the assignment is invalid, then the LoadBalancerFactory is invoked to assign the

region. The DefaultLoadBalancer will randomly assign the region to a RegionServer.
5. META is updated with the RegionServer assignment (if needed) and the RegionServer start

codes (start time of the RegionServer process) upon region opening by the RegionServer.

8.7.2.2. Failover
When a RegionServer fails (short version):

1. The regions immediately become unavailable because the RegionServer is down.
2. The Master will detect that the RegionServer has failed.
3. The region assignments will be considered invalid and will be re-assigned just like the

startup sequence.

8.7.2.3. Region Load Balancing
Regions can be periodically moved by the Section 8.5.3.1, “LoadBalancer” .

8.7.3. Region-RegionServer Locality
Over time, Region-RegionServer locality is achieved via HDFS block replication. The HDFS client
does the following by default when choosing locations to write replicas:

1. First replica is written to local node
2. Second replica is written to another node in same rack
3. Third replica is written to a node in another rack (if sufficient nodes)

Thus, HBase eventually achieves locality for a region after a flush or a compaction. In a
RegionServer failover situation a RegionServer may be assigned regions with non-local StoreFiles
(because none of the replicas are local), however as new data is written in the region, or the table is
compacted and StoreFiles are re-written, they will become "local" to the RegionServer.

For more information, see HDFS Design on Replica Placement and also Lars George's blog on
HBase and HDFS locality.

http://www.larsgeorge.com/2010/05/hbase-file-locality-in-hdfs.html
http://hadoop.apache.org/common/docs/r0.20.205.0/hdfs_design.html#Replica+Placement%3A+The+First+Baby+Steps
http://hbase.apache.org/book.html#master.processes.loadbalancer
http://hbase.apache.org/book.html#bigger.regions

8.7.4. Region Splits
Splits run unaided on the RegionServer; i.e. the Master does not participate. The RegionServer
splits a region, offlines the split region and then adds the daughter regions to META, opens
daughters on the parent's hosting RegionServer and then reports the split to the Master. See
Section 2.8.2.7, “Managed Splitting” for how to manually manage splits (and for why you might do
this)

8.7.5. Store
A Store hosts a MemStore and 0 or more StoreFiles (HFiles). A Store corresponds to a column
family for a table for a given region.

8.7.5.1. MemStore
The MemStore holds in-memory modifications to the Store. Modifications are KeyValues. When
asked to flush, current memstore is moved to snapshot and is cleared. HBase continues to serve
edits out of new memstore and backing snapshot until flusher reports in that the flush succeeded. At
this point the snapshot is let go.

8.7.5.2. StoreFile (HFile)

8.7.5.2.1. HFile Format

The hfile file format is based on the SSTable file described in the BigTable [2006] paper and on
Hadoop's tfile (The unit test suite and the compression harness were taken directly from tfile).
Schubert Zhang's blog post on HFile: A Block-Indexed File Format to Store Sorted Key-Value Pairs
makes for a thorough introduction to HBase's hfile. Matteo Bertozzi has also put up a helpful
description, HBase I/O: HFile.

For more information, see the HFile source code.

8.7.5.2.2. HFile Tool

To view a textualized version of hfile content, you can do use the
org.apache.hadoop.hbase.io.hfile.HFile tool. Type the following to see usage:
$ ${HBASE_HOME}/bin/hbase org.apache.hadoop.hbase.io.hfile.HFile

For example, to view the content of the file
hdfs://10.81.47.41:8020/hbase/TEST/1418428042/DSMP/475950861828684
5475, type the following:
 $ ${HBASE_HOME}/bin/hbase org.apache.hadoop.hbase.io.hfile.HFile -v -f
hdfs://10.81.47.41:8020/hbase/TEST/1418428042/DSMP/4759508618286845475

If you leave off the option -v to see just a summary on the hfile. See usage for other things to do
with the HFile tool.

8.7.5.2.3. StoreFile Directory Structure on HDFS

For more information of what StoreFiles look like on HDFS with respect to the directory structure,
see Section 11.7.2, “Browsing HDFS for HBase Objects” .

http://hbase.apache.org/book.html#trouble.namenode.hbase.objects
http://hbase.apache.org/xref/org/apache/hadoop/hbase/io/hfile/HFile.html
http://th30z.blogspot.com/2011/02/hbase-io-hfile.html?spref=tw
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/io/file/tfile/TFile.html
http://research.google.com/archive/bigtable.html
http://hbase.apache.org/book.html#disable.splitting

8.7.5.3. Blocks
StoreFiles are composed of blocks. The blocksize is configured on a per-ColumnFamily basis.

For more information, see the HFileBlock source code.

8.7.5.4. KeyValue
The KeyValue class is the heart of data storage in HBase. KeyValue wraps a byte array and takes
offsets and lengths into passed array at where to start interpreting the content as KeyValue.

The KeyValue format inside a byte array is:

 keylength
 valuelength
 key
 value

The Key is further decomposed as:

 rowlength
 row (i.e., the rowkey)
 columnfamilylength
 columnfamily
 columnqualifier
 timestamp
 keytype (e.g., Put, Delete, DeleteColumn, DeleteFamily)

For more information, see the KeyValue source code.

8.7.5.4.1. Example

To emphasize the points above, examine what happens with two Puts for two different columns for
the same row:

 Put #1: rowkey=row1, cf:attr1=value1
 Put #2: rowkey=row1, cf:attr2=value2

Even though these are for the same row, a KeyValue is created for each column:

Key portion for Put #1:

 rowlength ------------> 4
 row -----------------> row1
 columnfamilylength ---> 2
 columnfamily --------> cf
 columnqualifier ------> attr1
 timestamp -----------> server time of Put
 keytype -------------> Put

Key portion for Put #2:

 rowlength ------------> 4
 row -----------------> row1
 columnfamilylength ---> 2
 columnfamily --------> cf
 columnqualifier ------> attr2

http://hbase.apache.org/xref/org/apache/hadoop/hbase/KeyValue.html
http://hbase.apache.org/xref/org/apache/hadoop/hbase/io/hfile/HFileBlock.html

 timestamp -----------> server time of Put
 keytype -------------> Put

It is critical to understand that the rowkey, ColumnFamily, and column (aka columnqualifier) are
embedded within the KeyValue instance. The longer these identifiers are, the bigger the KeyValue
is.

8.7.5.5. Compaction
There are two types of compactions: minor and major. Minor compactions will usually pick up a
couple of the smaller adjacent files and rewrite them as one. Minors do not drop deletes or expired
cells, only major compactions do this. Sometimes a minor compaction will pick up all the files in
the store and in this case it actually promotes itself to being a major compaction. For a description
of how a minor compaction picks files to compact, see the ascii diagram in the Store source code.

After a major compaction runs there will be a single storefile per store, and this will help
performance usually. Caution: major compactions rewrite all of the stores data and on a loaded
system, this may not be tenable; major compactions will usually have to be done manually on large
systems. See Section 2.8.2.8, “Managed Compactions” .

8.7.6. Bloom Filters
Bloom filters were developed over in HBase-1200 Add bloomfilters.[23][24]

See also Section 10.5.4, “Bloom Filters” and Section 2.9, “Bloom Filter Configuration” .

8.7.6.1. Bloom StoreFile footprint
Bloom filters add an entry to the StoreFile general FileInfo data structure and then two
extra entries to the StoreFile metadata section.

8.7.6.1.1. BloomFilter in the StoreFile FileInfo data structure

FileInfo has a BLOOM_FILTER_TYPE entry which is set to NONE, ROW or ROWCOL.

8.7.6.1.2. BloomFilter entries in StoreFile metadata

BLOOM_FILTER_META holds Bloom Size, Hash Function used, etc. Its small in size and is cached
on StoreFile.Reader load

BLOOM_FILTER_DATA is the actual bloomfilter data. Obtained on-demand. Stored in the LRU
cache, if it is enabled (Its enabled by default).

8.8. HDFS
As HBase runs on HDFS (and each StoreFile is written as a file on HDFS), it is important to have
an understanding of the HDFS Architecture especially in terms of how it stores files, handles
failovers, and replicates blocks.

See the Hadoop documentation on HDFS Architecture for more information.

8.8.1. NameNode
The NameNode is responsible for maintaining the filesystem metadata. See the above HDFS
Architecture link for more information.

http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://hbase.apache.org/book.html#config.bloom
http://hbase.apache.org/book.html#schema.bloom
http://hbase.apache.org/book.html#ftn.d1556e5043
http://hbase.apache.org/book.html#ftn.d1556e5031
https://issues.apache.org/jira/browse/HBASE-1200
http://en.wikipedia.org/wiki/Bloom_filter
http://hbase.apache.org/book.html#managed.compactions
http://hbase.apache.org/xref/org/apache/hadoop/hbase/regionserver/Store.html#836

8.8.2. DataNode
The DataNodes are responsible for storing HDFS blocks. See the above HDFS Architecture link for
more information.

[21] See HBASE-2958 When hbase.hlog.split.skip.errors is set to false, we fail the split but thats it.
We need to do more than just fail split if this flag is set.
[22] For background, see HBASE-2643 Figure how to deal with eof splitting logs
[23] For description of the development process -- why static blooms rather than dynamic -- and for
an overview of the unique properties that pertain to blooms in HBase, as well as possible future
directions, see the Development Process section of the document BloomFilters in HBase attached to
HBase-1200.
[24] The bloom filters described here are actually version two of blooms in HBase. In versions up to
0.19.x, HBase had a dynamic bloom option based on work done by the European Commission One-
Lab Project 034819. The core of the HBase bloom work was later pulled up into Hadoop to
implement org.apache.hadoop.io.BloomMapFile. Version 1 of HBase blooms never worked that
well. Version 2 is a rewrite from scratch though again it starts with the one-lab work.

Chapter 9. External APIs
Table of Contents
9.1. Non-Java Languages Talking to the JVM
9.2. REST
9.3. Thrift

9.3.1. Filter Language

This chapter will cover access to HBase either through non-Java languages, or through custom
protocols.

9.1. Non-Java Languages Talking to the JVM
Currently the documentation on this topic in the HBase Wiki.

9.2. REST
Currently most of the documentation on REST exists in the HBase Wiki on REST.

9.3. Thrift
Currently most of the documentation on Thrift exists in the HBase Wiki on Thrift.

9.3.1. Filter Language

9.3.1.1. Use Case
Note: this feature was introduced in HBase 0.92

This allows the user to perform server-side filtering when accessing HBase over Thrift. The user

http://wiki.apache.org/hadoop/Hbase/ThriftApi
http://wiki.apache.org/hadoop/Hbase/Stargate
http://wiki.apache.org/hadoop/Hbase
http://hbase.apache.org/book.html#thrift.filter-language
http://hbase.apache.org/book.html#thrift
http://hbase.apache.org/book.html#rest
http://hbase.apache.org/book.html#nonjava.jvm
http://www.one-lab.org/
http://www.one-lab.org/
http://hbase.apache.org/book.html#d1556e5043
https://issues.apache.org/jira/browse/HBASE-1200
https://issues.apache.org/jira/secure/attachment/12444007/Bloom_Filters_in_HBase.pdf
http://hbase.apache.org/book.html#d1556e5031
https://issues.apache.org/jira/browse/HBASE-2643
http://hbase.apache.org/book.html#d1556e4688
https://issues.apache.org/jira/browse/HBASE-2958
http://hbase.apache.org/book.html#d1556e4671

specifies a filter via a string. The string is parsed on the server to construct the filter

9.3.1.2. General Filter String Syntax
A simple filter expression is expressed as: “FilterName (argument, argument, ... ,
argument)”
You must specify the name of the filter followed by the argument list in parenthesis. Commas
separate the individual arguments

If the argument represents a string, it should be enclosed in single quotes.

If it represents a boolean, an integer or a comparison operator like <, >, != etc. it should not be
enclosed in quotes

The filter name must be one word. All ASCII characters are allowed except for whitespace, single
quotes and parenthesis.

The filter’s arguments can contain any ASCII character. If single quotes are present
in the argument, they must be escaped by a preceding single quote

9.3.1.3. Compound Filters and Operators
Currently, two binary operators – AND/OR and two unary operators – WHILE/SKIP are supported.

Note: the operators are all in uppercase

AND – as the name suggests, if this operator is used, the key-value must pass both the filters

OR – as the name suggests, if this operator is used, the key-value must pass at least one of the
filters

SKIP – For a particular row, if any of the key-values don’t pass the filter condition, the entire row is
skipped

WHILE - For a particular row, it continues to emit key-values until a key-value is reached that fails
the filter condition

Compound Filters: Using these operators, a hierarchy of filters can be created. For example:
“(Filter1 AND Filter2) OR (Filter3 AND Filter4)”

9.3.1.4. Order of Evaluation
Parenthesis have the highest precedence. The SKIP and WHILE operators are next and have the
same precedence.The AND operator has the next highest precedence followed by the OR operator.

For example:

A filter string of the form:“Filter1 AND Filter2 OR Filter3” will be evaluated
as:“(Filter1 AND Filter2) OR Filter3”
A filter string of the form:“Filter1 AND SKIP Filter2 OR Filter3” will be evaluated
as:“(Filter1 AND (SKIP Filter2)) OR Filter3”

9.3.1.5. Compare Operator
A compare operator can be any of the following:

1. LESS (<)

2. LESS_OR_EQUAL (<=)

3. EQUAL (=)

4. NOT_EQUAL (!=)

5. GREATER_OR_EQUAL (>=)

6. GREATER (>)

7. NO_OP (no operation)

The client should use the symbols (<, <=, =, !=, >, >=) to express compare operators.

9.3.1.6. Comparator
A comparator can be any of the following:

1. BinaryComparator - This lexicographically compares against the specified byte array
using Bytes.compareTo(byte[], byte[])

2. BinaryPrefixComparator - This lexicographically compares against a specified byte array.
It only compares up to the length of this byte array.

3. RegexStringComparator - This compares against the specified byte array using the given
regular expression. Only EQUAL and NOT_EQUAL comparisons are valid with this
comparator

4. SubStringComparator - This tests if the given substring appears in a specified byte array.
The comparison is case insensitive. Only EQUAL and NOT_EQUAL comparisons are valid
with this comparator

The general syntax of a comparator is: ComparatorType:ComparatorValue
The ComparatorType for the various comparators is as follows:

1. BinaryComparator - binary

2. BinaryPrefixComparator - binaryprefix

3. RegexStringComparator - regexstring

4. SubStringComparator - substring

The ComparatorValue can be any value.

Example1: >, 'binary:abc' will match everything that is lexicographically greater than
"abc"

Example2: =, 'binaryprefix:abc' will match everything whose first 3 characters are
lexicographically equal to "abc"

Example3: !=, 'regexstring:ab*yz' will match everything that doesn't begin with "ab"
and ends with "yz"

Example4: =, 'substring:abc123' will match everything that begins with the substring
"abc123"

9.3.1.7. Example PHP Client Program that uses the Filter Language
<? $_SERVER['PHP_ROOT'] = realpath(dirname(__FILE__).'/..');
 require_once $_SERVER['PHP_ROOT'].'/flib/__flib.php';
 flib_init(FLIB_CONTEXT_SCRIPT);
 require_module('storage/hbase');
 $hbase = new HBase('<server_name_running_thrift_server>', <port on which
thrift server is running>);
 $hbase->open();
 $client = $hbase->getClient();
 $result = $client->scannerOpenWithFilterString('table_name', "(PrefixFilter

('row2') AND (QualifierFilter (>=, 'binary:xyz'))) AND (TimestampsFilter (123,
456))");
 $to_print = $client->scannerGetList($result,1);
 while ($to_print) {
 print_r($to_print);
 $to_print = $client->scannerGetList($result,1);
 }
 $client->scannerClose($result);
?>

9.3.1.8. Example Filter Strings

 “PrefixFilter (‘Row’) AND PageFilter (1) AND
FirstKeyOnlyFilter ()” will return all key-value pairs that match the following
conditions:

1) The row containing the key-value should have prefix “Row”

2) The key-value must be located in the first row of the table

3) The key-value pair must be the first key-value in the row

 “(RowFilter (=, ‘binary:Row 1’) AND TimeStampsFilter (74689,
89734)) OR ColumnRangeFilter (‘abc’, true, ‘xyz’, false))” will
return all key-value pairs that match both the following conditions:

1) The key-value is in a row having row key “Row 1”

2) The key-value must have a timestamp of either 74689 or 89734.

Or it must match the following condition:

1) The key-value pair must be in a column that is lexicographically >= abc and < xyz

 “SKIP ValueFilter (0)” will skip the entire row if any of the values in the row is
not 0

9.3.1.9. Individual Filter Syntax
1. KeyOnlyFilter

Description: This filter doesn’t take any arguments. It returns only the key component of
each key-value.

Syntax: KeyOnlyFilter ()

Example: "KeyOnlyFilter ()"

2. FirstKeyOnlyFilter
Description: This filter doesn’t take any arguments. It returns only the first key-value from
each row.

Syntax: FirstKeyOnlyFilter ()

Example: "FirstKeyOnlyFilter ()"

3. PrefixFilter
Description: This filter takes one argument – a prefix of a row key. It returns only those
key-values present in a row that starts with the specified row prefix

Syntax: PrefixFilter (‘<row_prefix>’)

Example: "PrefixFilter (‘Row’)"

4. ColumnPrefixFilter
Description: This filter takes one argument – a column prefix. It returns only those key-
values present in a column that starts with the specified column prefix. The column prefix
must be of the form: “qualifier”
Syntax:ColumnPrefixFilter(‘<column_prefix>’)

Example: "ColumnPrefixFilter(‘Col’)"

5. MultipleColumnPrefixFilter
Description: This filter takes a list of column prefixes. It returns key-values that are present
in a column that starts with any of the specified column prefixes. Each of the column
prefixes must be of the form: “qualifier”
Syntax:MultipleColumnPrefixFilter(‘<column_prefix>’, ‘<column_prefix>’, …,
‘<column_prefix>’)

Example: "MultipleColumnPrefixFilter(‘Col1’, ‘Col2’)"

6. ColumnCountGetFilter
Description: This filter takes one argument – a limit. It returns the first limit number of
columns in the table

Syntax: ColumnCountGetFilter (‘<limit>’)

Example: "ColumnCountGetFilter (4)"

7. PageFilter
Description: This filter takes one argument – a page size. It returns page size number of
rows from the table.

Syntax: PageFilter (‘<page_size>’)

Example: "PageFilter (2)"

8. ColumnPaginationFilter
Description: This filter takes two arguments – a limit and offset. It returns limit number of
columns after offset number of columns. It does this for all the rows

Syntax: ColumnPaginationFilter(‘<limit>’, ‘<offest>’)

Example: "ColumnPaginationFilter (3, 5)"

9. InclusiveStopFilter
Description: This filter takes one argument – a row key on which to stop scanning. It
returns all key-values present in rows up to and including the specified row

Syntax: InclusiveStopFilter(‘<stop_row_key>’)

Example: "InclusiveStopFilter ('Row2')"

10. TimeStampsFilter
Description: This filter takes a list of timestamps. It returns those key-values whose
timestamps matches any of the specified timestamps

Syntax: TimeStampsFilter (<timestamp>, <timestamp>, ... ,<timestamp>)

Example: "TimeStampsFilter (5985489, 48895495, 58489845945)"

11. RowFilter

Description: This filter takes a compare operator and a comparator. It compares each row
key with the comparator using the compare operator and if the comparison returns true, it
returns all the key-values in that row

Syntax: RowFilter (<compareOp>, ‘<row_comparator>’)

Example: "RowFilter (<=, ‘xyz)"

12. Family Filter
Description: This filter takes a compare operator and a comparator. It compares each
qualifier name with the comparator using the compare operator and if the comparison
returns true, it returns all the key-values in that column

Syntax: QualifierFilter (<compareOp>, ‘<qualifier_comparator>’)

Example: "QualifierFilter (=, ‘Column1’)"

13. QualifierFilter
Description: This filter takes a compare operator and a comparator. It compares each
qualifier name with the comparator using the compare operator and if the comparison
returns true, it returns all the key-values in that column

Syntax: QualifierFilter (<compareOp>,‘<qualifier_comparator>’)

Example: "QualifierFilter (=,‘Column1’)"

14. ValueFilter
Description: This filter takes a compare operator and a comparator. It compares each value
with the comparator using the compare operator and if the comparison returns true, it returns
that key-value

Syntax: ValueFilter (<compareOp>,‘<value_comparator>’)

Example: "ValueFilter (!=, ‘Value’)"

15. DependentColumnFilter
Description: This filter takes two arguments – a family and a qualifier. It tries to locate this
column in each row and returns all key-values in that row that have the same timestamp. If
the row doesn’t contain the specified column – none of the key-values in that row will be
returned.

The filter can also take an optional boolean argument – dropDependentColumn. If set to
true, the column we were depending on doesn’t get returned.

The filter can also take two more additional optional arguments – a compare operator and a
value comparator, which are further checks in addition to the family and qualifier. If the
dependent column is found, its value should also pass the value check and then only is its
timestamp taken into consideration

Syntax: DependentColumnFilter (‘<family>’, ‘<qualifier>’, <boolean>, <compare
operator>, ‘<value comparator’)

Syntax: DependentColumnFilter (‘<family>’, ‘<qualifier>’, <boolean>)

Syntax: DependentColumnFilter (‘<family>’, ‘<qualifier>’)

Example: "DependentColumnFilter (‘conf’, ‘blacklist’, false, >=, ‘zebra’)"

Example: "DependentColumnFilter (‘conf’, 'blacklist', true)"

Example: "DependentColumnFilter (‘conf’, 'blacklist')"

16. SingleColumnValueFilter
Description: This filter takes a column family, a qualifier, a compare operator and a
comparator. If the specified column is not found – all the columns of that row will be
emitted. If the column is found and the comparison with the comparator returns true, all the
columns of the row will be emitted. If the condition fails, the row will not be emitted.

This filter also takes two additional optional boolean arguments – filterIfColumnMissing
and setLatestVersionOnly

If the filterIfColumnMissing flag is set to true the columns of the row will not be emitted if
the specified column to check is not found in the row. The default value is false.

If the setLatestVersionOnly flag is set to false, it will test previous versions (timestamps)
too. The default value is true.

These flags are optional and if you must set neither or both

Syntax: SingleColumnValueFilter(<compare operator>, ‘<comparator>’, ‘<family>’,
‘<qualifier>’,<filterIfColumnMissing_boolean>, <latest_version_boolean>)

Syntax: SingleColumnValueFilter(<compare operator>, ‘<comparator>’, ‘<family>’,
‘<qualifier>)

Example: "SingleColumnValueFilter (<=, ‘abc’,‘FamilyA’, ‘Column1’, true, false)"

Example: "SingleColumnValueFilter (<=, ‘abc’,‘FamilyA’, ‘Column1’)"

17. SingleColumnValueExcludeFilter
Description: This filter takes the same arguments and behaves same as
SingleColumnValueFilter – however, if the column is found and the condition passes, all the
columns of the row will be emitted except for the tested column value.

Syntax: SingleColumnValueExcludeFilter(<compare operator>, '<comparator>', '<family>',
'<qualifier>',<latest_version_boolean>, <filterIfColumnMissing_boolean>)

Syntax: SingleColumnValueExcludeFilter(<compare operator>, '<comparator>', '<family>',
'<qualifier>')

Example: "SingleColumnValueExcludeFilter (‘<=’, ‘abc’,‘FamilyA’, ‘Column1’, ‘false’,
‘true’)"

Example: "SingleColumnValueExcludeFilter (‘<=’, ‘abc’, ‘FamilyA’, ‘Column1’)"

18. ColumnRangeFilter
Description: This filter is used for selecting only those keys with columns that are between
minColumn and maxColumn. It also takes two boolean variables to indicate whether to
include the minColumn and maxColumn or not.

If you don’t want to set the minColumn or the maxColumn – you can pass in an empty
argument.

Syntax: ColumnRangeFilter (‘<minColumn>’, <minColumnInclusive_bool>,
‘<maxColumn>’, <maxColumnInclusive_bool>)

Example: "ColumnRangeFilter (‘abc’, true, ‘xyz’, false)"

Chapter 10. Performance Tuning
Table of Contents
10.1. Operating System

http://hbase.apache.org/book.html#perf.os

10.1.1. Memory
10.1.2. 64-bit
10.1.3. Swapping

10.2. Network
10.2.1. Single Switch
10.2.2. Multiple Switches
10.2.3. Multiple Racks

10.3. Java
10.3.1. The Garbage Collector and HBase

10.4. HBase Configurations
10.4.1. Number of Regions
10.4.2. Managing Compactions
10.4.3. hbase.regionserver.handler.count
10.4.4. hfile.block.cache.size
10.4.5. hbase.regionserver.global.memstore.upperLimit
10.4.6. hbase.regionserver.global.memstore.lowerLimit
10.4.7. hbase.hstore.blockingStoreFiles
10.4.8. hbase.hregion.memstore.block.multiplier

10.5. Schema Design
10.5.1. Number of Column Families
10.5.2. Key and Attribute Lengths
10.5.3. Table RegionSize
10.5.4. Bloom Filters
10.5.5. ColumnFamily BlockSize
10.5.6. In-Memory ColumnFamilies
10.5.7. Compression

10.6. Writing to HBase
10.6.1. Batch Loading
10.6.2. Table Creation: Pre-Creating Regions
10.6.3. Table Creation: Deferred Log Flush
10.6.4. HBase Client: AutoFlush
10.6.5. HBase Client: Turn off WAL on Puts
10.6.6. HBase Client: Group Puts by RegionServer
10.6.7. MapReduce: Skip The Reducer
10.6.8. Anti-Pattern: One Hot Region

10.7. Reading from HBase
10.7.1. Scan Caching
10.7.2. Scan Attribute Selection
10.7.3. Close ResultScanners
10.7.4. Block Cache
10.7.5. Optimal Loading of Row Keys
10.7.6. Concurrency: Monitor Data Spread

10.8. Deleting from HBase
10.8.1. Using HBase Tables as Queues
10.8.2. Delete RPC Behavior

10.9. HDFS
10.9.1. Current Issues With Low-Latency Reads
10.9.2. Performance Comparisons of HBase vs. HDFS

10.10. Amazon EC2

http://hbase.apache.org/book.html#perf.ec2
http://hbase.apache.org/book.html#perf.hdfs.comp
http://hbase.apache.org/book.html#perf.hdfs.curr
http://hbase.apache.org/book.html#perf.hdfs
http://hbase.apache.org/book.html#perf.deleting.rpc
http://hbase.apache.org/book.html#perf.deleting.queue
http://hbase.apache.org/book.html#perf.deleting
http://hbase.apache.org/book.html#perf.hbase.read.dist
http://hbase.apache.org/book.html#perf.hbase.client.rowkeyonly
http://hbase.apache.org/book.html#perf.hbase.client.blockcache
http://hbase.apache.org/book.html#perf.hbase.client.scannerclose
http://hbase.apache.org/book.html#perf.hbase.client.selection
http://hbase.apache.org/book.html#perf.hbase.client.caching
http://hbase.apache.org/book.html#perf.reading
http://hbase.apache.org/book.html#perf.one.region
http://hbase.apache.org/book.html#perf.hbase.write.mr.reducer
http://hbase.apache.org/book.html#perf.hbase.client.regiongroup
http://hbase.apache.org/book.html#perf.hbase.client.putwal
http://hbase.apache.org/book.html#perf.hbase.client.autoflush
http://hbase.apache.org/book.html#def.log.flush
http://hbase.apache.org/book.html#precreate.regions
http://hbase.apache.org/book.html#perf.batch.loading
http://hbase.apache.org/book.html#perf.writing
http://hbase.apache.org/book.html#perf.compression
http://hbase.apache.org/book.html#cf.in.memory
http://hbase.apache.org/book.html#schema.cf.blocksize
http://hbase.apache.org/book.html#schema.bloom
http://hbase.apache.org/book.html#schema.regionsize
http://hbase.apache.org/book.html#perf.schema.keys
http://hbase.apache.org/book.html#perf.number.of.cfs
http://hbase.apache.org/book.html#perf.schema
http://hbase.apache.org/book.html#perf.hregion.memstore.block.multiplier
http://hbase.apache.org/book.html#perf.hstore.blockingstorefiles
http://hbase.apache.org/book.html#perf.rs.memstore.lowerlimit
http://hbase.apache.org/book.html#perf.rs.memstore.upperlimit
http://hbase.apache.org/book.html#perf.hfile.block.cache.size
http://hbase.apache.org/book.html#perf.handlers
http://hbase.apache.org/book.html#perf.compactions.and.splits
http://hbase.apache.org/book.html#perf.number.of.regions
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#gc
http://hbase.apache.org/book.html#jvm
http://hbase.apache.org/book.html#perf.network.multirack
http://hbase.apache.org/book.html#perf.network.2switch
http://hbase.apache.org/book.html#perf.network.1switch
http://hbase.apache.org/book.html#perf.network
http://hbase.apache.org/book.html#perf.os.swap
http://hbase.apache.org/book.html#perf.os.64
http://hbase.apache.org/book.html#perf.os.ram

10.1. Operating System

10.1.1. Memory
RAM, RAM, RAM. Don't starve HBase.

10.1.2. 64-bit
Use a 64-bit platform (and 64-bit JVM).

10.1.3. Swapping
Watch out for swapping. Set swappiness to 0.

10.2. Network
Perhaps the most important factor in avoiding network issues degrading Hadoop and HBbase
performance is the switching hardware that is used, decisions made early in the scope of the project
can cause major problems when you double or triple the size of your cluster (or more).

Important items to consider:

 Switching capacity of the device
 Number of systems connected
 Uplink capacity

10.2.1. Single Switch
The single most important factor in this configuration is that the switching capacity of the hardware
is capable of handling the traffic which can be generated by all systems connected to the switch.
Some lower priced commodity hardware can have a slower switching capacity than could be
utilized by a full switch.

10.2.2. Multiple Switches
Multiple switches are a potential pitfall in the architecture. The most common configuration of
lower priced hardware is a simple 1Gbps uplink from one switch to another. This often overlooked
pinch point can easily become a bottleneck for cluster communication. Especially with MapReduce
jobs that are both reading and writing a lot of data the communication across this uplink could be
saturated.

Mitigation of this issue is fairly simple and can be accomplished in multiple ways:

 Use appropriate hardware for the scale of the cluster which you're attempting to build.
 Use larger single switch configurations i.e. single 48 port as opposed to 2x 24 port
 Configure port trunking for uplinks to utilize multiple interfaces to increase cross switch

bandwidth.

10.2.3. Multiple Racks
Multiple rack configurations carry the same potential issues as multiple switches, and can suffer
performance degradation from two main areas:

 Poor switch capacity performance

 Insufficient uplink to another rack

If the the switches in your rack have appropriate switching capacity to handle all the hosts at full
speed, the next most likely issue will be caused by homing more of your cluster across racks. The
easiest way to avoid issues when spanning multiple racks is to use port trunking to create a bonded
uplink to other racks. The downside of this method however, is in the overhead of ports that could
potentially be used. An example of this is, creating an 8Gbps port channel from rack A to rack B,
using 8 of your 24 ports to communicate between racks gives you a poor ROI, using too few
however can mean you're not getting the most out of your cluster.

Using 10Gbe links between racks will greatly increase performance, and assuming your switches
support a 10Gbe uplink or allow for an expansion card will allow you to save your ports for
machines as opposed to uplinks.

10.3. Java

10.3.1. The Garbage Collector and HBase

10.3.1.1. Long GC pauses
In his presentation, Avoiding Full GCs with MemStore-Local Allocation Buffers, Todd Lipcon
describes two cases of stop-the-world garbage collections common in HBase, especially during
loading; CMS failure modes and old generation heap fragmentation brought. To address the first,
start the CMS earlier than default by adding -XX:CMSInitiatingOccupancyFraction and
setting it down from defaults. Start at 60 or 70 percent (The lower you bring down the threshold, the
more GCing is done, the more CPU used). To address the second fragmentation issue, Todd added
an experimental facility that must be explicitly enabled in HBase 0.90.x (Its defaulted to be on in
0.92.x HBase). See hbase.hregion.memstore.mslab.enabled to true in your
Configuration. See the cited slides for background and detail[25].

For more information about GC logs, see Section 11.2.3, “JVM Garbage Collection Logs” .

10.4. HBase Configurations
See Section 2.8.2, “Recommended Configurations” .

10.4.1. Number of Regions
The number of regions for an HBase table is driven by the Section 2.8.2.6, “Bigger Regions” . Also,
see the architecture section on Section 8.7.1, “Region Size”

10.4.2. Managing Compactions
For larger systems, managing compactions and splits may be something you want to consider.

10.4.3. hbase.regionserver.handler.count
See hbase.regionserver.handler.count.

10.4.4. hfile.block.cache.size
See hfile.block.cache.size. A memory setting for the RegionServer process.

http://hbase.apache.org/book.html#hfile.block.cache.size
http://hbase.apache.org/book.html#hbase.regionserver.handler.count
http://hbase.apache.org/book.html#disable.splitting
http://hbase.apache.org/book.html#arch.regions.size
http://hbase.apache.org/book.html#bigger.regions
http://hbase.apache.org/book.html#recommended_configurations
http://hbase.apache.org/book.html#trouble.log.gc
http://hbase.apache.org/book.html#ftn.d1556e5852
http://www.slideshare.net/cloudera/hbase-hug-presentation

10.4.5. hbase.regionserver.global.memstore.upperLimit
See hbase.regionserver.global.memstore.upperLimit. This memory setting is
often adjusted for the RegionServer process depending on needs.

10.4.6. hbase.regionserver.global.memstore.lowerLimit
See hbase.regionserver.global.memstore.lowerLimit. This memory setting is
often adjusted for the RegionServer process depending on needs.

10.4.7. hbase.hstore.blockingStoreFiles
See hbase.hstore.blockingStoreFiles. If there is blocking in the RegionServer logs,
increasing this can help.

10.4.8. hbase.hregion.memstore.block.multiplier
See hbase.hregion.memstore.block.multiplier. If there is enough RAM, increasing
this can help.

10.5. Schema Design

10.5.1. Number of Column Families
See Section 6.2, “ On the number of column families ” .

10.5.2. Key and Attribute Lengths
See Section 6.3.2, “Try to minimize row and column sizes” .

10.5.3. Table RegionSize
The regionsize can be set on a per-table basis via setFileSize on HTableDescriptor in the event
where certain tables require different regionsizes than the configured default regionsize.

See Section 10.4.1, “Number of Regions” for more information.

10.5.4. Bloom Filters
Bloom Filters can be enabled per-ColumnFamily. Use
HColumnDescriptor.setBloomFilterType(NONE | ROW | ROWCOL) to enable
blooms per Column Family. Default = NONE for no bloom filters. If ROW, the hash of the row will
be added to the bloom on each insert. If ROWCOL, the hash of the row + column family + column
family qualifier will be added to the bloom on each key insert.

See HColumnDescriptor and Section 8.7.6, “Bloom Filters” for more information.

10.5.5. ColumnFamily BlockSize
The blocksize can be configured for each ColumnFamily in a table, and this defaults to 64k. Larger
cell values require larger blocksizes. There is an inverse relationship between blocksize and the
resulting StoreFile indexes (i.e., if the blocksize is doubled then the resulting indexes should be
roughly halved).

http://hbase.apache.org/book.html#blooms
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
http://hbase.apache.org/book.html#perf.number.of.regions
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html
http://hbase.apache.org/book.html#keysize
http://hbase.apache.org/book.html#number.of.cfs
http://hbase.apache.org/book.html#hbase.hregion.memstore.block.multiplier
http://hbase.apache.org/book.html#hbase.hstore.blockingStoreFiles
http://hbase.apache.org/book.html#hbase.regionserver.global.memstore.lowerLimit
http://hbase.apache.org/book.html#hbase.regionserver.global.memstore.upperLimit

See HColumnDescriptor and Section 8.7.5, “Store” for more information.

10.5.6. In-Memory ColumnFamilies
ColumnFamilies can optionally be defined as in-memory. Data is still persisted to disk, just like any
other ColumnFamily. In-memory blocks have the highest priority in the Section 8.6.3, “Block
Cache”, but it is not a guarantee that the entire table will be in memory.

See HColumnDescriptor for more information.

10.5.7. Compression
Production systems should use compression with their ColumnFamily definitions. See Appendix B,
Compression In HBase for more information.

10.6. Writing to HBase

10.6.1. Batch Loading
Use the bulk load tool if you can. See Bulk Loads. Otherwise, pay attention to the below.

10.6.2. Table Creation: Pre-Creating Regions
Tables in HBase are initially created with one region by default. For bulk imports, this means that
all clients will write to the same region until it is large enough to split and become distributed across
the cluster. A useful pattern to speed up the bulk import process is to pre-create empty regions. Be
somewhat conservative in this, because too-many regions can actually degrade performance. An
example of pre-creation using hex-keys is as follows (note: this example may need to be tweaked to
the individual applications keys):
public static boolean createTable(HBaseAdmin admin, HTableDescriptor table,
byte[][] splits)
throws IOException {
 try {
 admin.createTable(table, splits);
 return true;
 } catch (TableExistsException e) {
 logger.info("table " + table.getNameAsString() + " already exists");
 // the table already exists...
 return false;
 }
}

public static byte[][] getHexSplits(String startKey, String endKey, int
numRegions) {
 byte[][] splits = new byte[numRegions-1][];
 BigInteger lowestKey = new BigInteger(startKey, 16);
 BigInteger highestKey = new BigInteger(endKey, 16);
 BigInteger range = highestKey.subtract(lowestKey);
 BigInteger regionIncrement = range.divide(BigInteger.valueOf(numRegions));
 lowestKey = lowestKey.add(regionIncrement);
 for(int i=0; i < numRegions-1;i++) {
 BigInteger key =
lowestKey.add(regionIncrement.multiply(BigInteger.valueOf(i)));
 byte[] b = String.format("%016x", key).getBytes();
 splits[i] = b;
 }
 return splits;

http://hbase.apache.org/bulk-loads.html
http://hbase.apache.org/book.html#compression
http://hbase.apache.org/book.html#compression
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
http://hbase.apache.org/book.html#block.cache
http://hbase.apache.org/book.html#block.cache
http://hbase.apache.org/book.html#store
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html

}

10.6.3. Table Creation: Deferred Log Flush
The default behavior for Puts using the Write Ahead Log (WAL) is that HLog edits will be written
immediately. If deferred log flush is used, WAL edits are kept in memory until the flush period. The
benefit is aggregated and asynchronous HLog- writes, but the potential downside is that if the
RegionServer goes down the yet-to-be-flushed edits are lost. This is safer, however, than not using
WAL at all with Puts.

Deferred log flush can be configured on tables via HTableDescriptor. The default value of
hbase.regionserver.optionallogflushinterval is 1000ms.

10.6.4. HBase Client: AutoFlush
When performing a lot of Puts, make sure that setAutoFlush is set to false on your HTable instance.
Otherwise, the Puts will be sent one at a time to the RegionServer. Puts added via
htable.add(Put) and htable.add(<List> Put) wind up in the same write buffer. If
autoFlush = false, these messages are not sent until the write-buffer is filled. To explicitly
flush the messages, call flushCommits. Calling close on the HTable instance will invoke
flushCommits.

10.6.5. HBase Client: Turn off WAL on Puts
A frequently discussed option for increasing throughput on Puts is to call
writeToWAL(false). Turning this off means that the RegionServer will not write the Put to
the Write Ahead Log, only into the memstore, HOWEVER the consequence is that if there is a
RegionServer failure there will be data loss. If writeToWAL(false) is used, do so with extreme
caution. You may find in actuality that it makes little difference if your load is well distributed
across the cluster.

In general, it is best to use WAL for Puts, and where loading throughput is a concern to use bulk
loading techniques instead.

10.6.6. HBase Client: Group Puts by RegionServer
In addition to using the writeBuffer, grouping Puts by RegionServer can reduce the number of
client RPC calls per writeBuffer flush. There is a utility HTableUtil currently on TRUNK that
does this, but you can either copy that or implement your own verison for those still on 0.90.x or
earlier.

10.6.7. MapReduce: Skip The Reducer
When writing a lot of data to an HBase table from a MR job (e.g., with TableOutputFormat), and
specifically where Puts are being emitted from the Mapper, skip the Reducer step. When a Reducer
step is used, all of the output (Puts) from the Mapper will get spooled to disk, then sorted/shuffled
to other Reducers that will most likely be off-node. It's far more efficient to just write directly to
HBase.

For summary jobs where HBase is used as a source and a sink, then writes will be coming from the
Reducer step (e.g., summarize values then write out result). This is a different processing problem
than from the the above case.

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableOutputFormat.html
http://hbase.apache.org/book.html#perf.batch.loading
http://hbase.apache.org/book.html#perf.batch.loading
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/HTableDescriptor.html

10.6.8. Anti-Pattern: One Hot Region
If all your data is being written to one region at a time, then re-read the section on processing
timeseries data.

Also, see Section 10.6.2, “ Table Creation: Pre-Creating Regions ” , as well as Section 10.4, “HBase
Configurations”

10.7. Reading from HBase

10.7.1. Scan Caching
If HBase is used as an input source for a MapReduce job, for example, make sure that the input
Scan instance to the MapReduce job has setCaching set to something greater than the default
(which is 1). Using the default value means that the map-task will make call back to the region-
server for every record processed. Setting this value to 500, for example, will transfer 500 rows at a
time to the client to be processed. There is a cost/benefit to have the cache value be large because it
costs more in memory for both client and RegionServer, so bigger isn't always better.

10.7.1.1. Scan Caching in MapReduce Jobs
Scan settings in MapReduce jobs deserve special attention. Timeouts can result (e.g.,
UnknownScannerException) in Map tasks if it takes longer to process a batch of records before the
client goes back to the RegionServer for the next set of data. This problem can occur because there
is non-trivial processing occuring per row. If you process rows quickly, set caching higher. If you
process rows more slowly (e.g., lots of transformations per row, writes), then set caching lower.

Timeouts can also happen in a non-MapReduce use case (i.e., single threaded HBase client doing a
Scan), but the processing that is often performed in MapReduce jobs tends to exacerbate this issue.

10.7.2. Scan Attribute Selection
Whenever a Scan is used to process large numbers of rows (and especially when used as a
MapReduce source), be aware of which attributes are selected. If scan.addFamily is called then
all of the attributes in the specified ColumnFamily will be returned to the client. If only a small
number of the available attributes are to be processed, then only those attributes should be specified
in the input scan because attribute over-selection is a non-trivial performance penalty over large
datasets.

10.7.3. Close ResultScanners
This isn't so much about improving performance but rather avoiding performance problems. If you
forget to close ResultScanners you can cause problems on the RegionServers. Always have
ResultScanner processing enclosed in try/catch blocks...
Scan scan = new Scan();
// set attrs...
ResultScanner rs = htable.getScanner(scan);
try {
 for (Result r = rs.next(); r != null; r = rs.next()) {
 // process result...
} finally {
 rs.close(); // always close the ResultScanner!
}
htable.close();

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/ResultScanner.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#precreate.regions
http://hbase.apache.org/book.html#timeseries

10.7.4. Block Cache
Scan instances can be set to use the block cache in the RegionServer via the setCacheBlocks
method. For input Scans to MapReduce jobs, this should be false. For frequently accessed rows,
it is advisable to use the block cache.

10.7.5. Optimal Loading of Row Keys
When performing a table scan where only the row keys are needed (no families, qualifiers, values or
timestamps), add a FilterList with a MUST_PASS_ALL operator to the scanner using setFilter.
The filter list should include both a FirstKeyOnlyFilter and a KeyOnlyFilter. Using this filter
combination will result in a worst case scenario of a RegionServer reading a single value from disk
and minimal network traffic to the client for a single row.

10.7.6. Concurrency: Monitor Data Spread
When performing a high number of concurrent reads, monitor the data spread of the target tables. If
the target table(s) have too few regions then the reads could likely be served from too few nodes.

See Section 10.6.2, “ Table Creation: Pre-Creating Regions ” , as well as Section 10.4, “HBase
Configurations”

10.8. Deleting from HBase

10.8.1. Using HBase Tables as Queues
HBase tables are sometimes used as queues. In this case, special care must be taken to regularly
perform major compactions on tables used in this manner. As is documented in Chapter 5, Data
Model, marking rows as deleted creates additional StoreFiles which then need to be processed on
reads. Tombstones only get cleaned up with major compactions.

See also Section 8.7.5.5, “Compaction” and HBaseAdmin.majorCompact.

10.8.2. Delete RPC Behavior
Be aware that htable.delete(Delete) doesn't use the writeBuffer. It will execute an
RegionServer RPC with each invocation. For a large number of deletes, consider
htable.delete(List).

See http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#delete
%28org.apache.hadoop.hbase.client.Delete%29

10.9. HDFS
Because HBase runs on Section 8.8, “HDFS” it is important to understand how it works and how it
affects HBase.

10.9.1. Current Issues With Low-Latency Reads
The original use-case for HDFS was batch processing. As such, there low-latency reads were
historically not a priority. With the increased adoption of HBase this is changing, and several
improvements are already in development. See the Umbrella Jira Ticket for HDFS Improvements
for HBase.

https://issues.apache.org/jira/browse/HDFS-1599
https://issues.apache.org/jira/browse/HDFS-1599
http://hbase.apache.org/book.html#arch.hdfs
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#delete(org.apache.hadoop.hbase.client.Delete)
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HTable.html#delete(org.apache.hadoop.hbase.client.Delete)
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HBaseAdmin.html#majorCompact(java.lang.String)
http://hbase.apache.org/book.html#compaction
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#precreate.regions
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/KeyOnlyFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/FirstKeyOnlyFilter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

10.9.2. Performance Comparisons of HBase vs. HDFS
A fairly common question on the dist-list is why HBase isn't as performant as HDFS files in a batch
context (e.g., as a MapReduce source or sink). The short answer is that HBase is doing a lot more
than HDFS (e.g., reading the KeyValues, returning the most current row or specified timestamps,
etc.), and as such HBase is 4-5 times slower than HDFS in this processing context. Not that there
isn't room for improvement (and this gap will, over time, be reduced), but HDFS will always be
faster in this use-case.

10.10. Amazon EC2
Performance questions are common on Amazon EC2 environments because it is a shared
environment. You will not see the same throughput as a dedicated server. In terms of running tests
on EC2, run them several times for the same reason (i.e., it's a shared environment and you don't
know what else is happening on the server).

If you are running on EC2 and post performance questions on the dist-list, please state this fact up-
front that because EC2 issues are practically a separate class of performance issues.

[25] The latest jvms do better regards fragmentation so make sure you are running a recent release.
Read down in the message, Identifying concurrent mode failures caused by fragmentation.

Chapter 11. Troubleshooting and Debugging HBase
Table of Contents
11.1. General Guidelines
11.2. Logs

11.2.1. Log Locations
11.2.2. Log Levels
11.2.3. JVM Garbage Collection Logs

11.3. Resources
11.3.1. Dist-Lists
11.3.2. search-hadoop.com
11.3.3. IRC
11.3.4. JIRA

11.4. Tools
11.4.1. Builtin Tools
11.4.2. External Tools

11.5. Client
11.5.1. ScannerTimeoutException or UnknownScannerException
11.5.2. Shell or client application throws lots of scary exceptions during normal operation
11.5.3. Long Client Pauses With Compression
11.5.4. ZooKeeper Client Connection Errors
11.5.5. Client running out of memory though heap size seems to be stable (but the off-
heap/direct heap keeps growing)

11.6. MapReduce
11.6.1. You Think You're On The Cluster, But You're Actually Local

11.7. NameNode
11.7.1. HDFS Utilization of Tables and Regions
11.7.2. Browsing HDFS for HBase Objects

http://hbase.apache.org/book.html#trouble.namenode.hbase.objects
http://hbase.apache.org/book.html#trouble.namenode.disk
http://hbase.apache.org/book.html#trouble.namenode
http://hbase.apache.org/book.html#trouble.mapreduce.local
http://hbase.apache.org/book.html#trouble.mapreduce
http://hbase.apache.org/book.html#trouble.client.oome.directmemory.leak
http://hbase.apache.org/book.html#trouble.client.oome.directmemory.leak
http://hbase.apache.org/book.html#trouble.client.zookeeper
http://hbase.apache.org/book.html#trouble.client.longpauseswithcompression
http://hbase.apache.org/book.html#trouble.client.scarylogs
http://hbase.apache.org/book.html#trouble.client.scantimeout
http://hbase.apache.org/book.html#trouble.client
http://hbase.apache.org/book.html#trouble.tools.external
http://hbase.apache.org/book.html#trouble.tools.builtin
http://hbase.apache.org/book.html#trouble.tools
http://hbase.apache.org/book.html#trouble.resources.jira
http://hbase.apache.org/book.html#trouble.resources.irc
http://hbase.apache.org/book.html#trouble.resources.searchhadoop
http://hbase.apache.org/book.html#trouble.resources.lists
http://hbase.apache.org/book.html#trouble.resources
http://hbase.apache.org/book.html#trouble.log.gc
http://hbase.apache.org/book.html#trouble.log.levels
http://hbase.apache.org/book.html#trouble.log.locations
http://hbase.apache.org/book.html#trouble.log
http://hbase.apache.org/book.html#trouble.general
http://osdir.com/ml/hotspot-gc-use/2011-11/msg00002.html
http://hbase.apache.org/book.html#d1556e5852

11.8. Network
11.8.1. Network Spikes
11.8.2. Loopback IP

11.9. RegionServer
11.9.1. Startup Errors
11.9.2. Runtime Errors
11.9.3. Shutdown Errors

11.10. Master
11.10.1. Startup Errors
11.10.2. Shutdown Errors

11.11. ZooKeeper
11.11.1. Startup Errors
11.11.2. ZooKeeper, The Cluster Canary

11.12. Amazon EC2
11.12.1. ZooKeeper does not seem to work on Amazon EC2
11.12.2. Instability on Amazon EC2
11.12.3. Remote Java Connection into EC2 Cluster Not Working

11.13. HBase and Hadoop version issues
11.13.1. NoClassDefFoundError when trying to run 0.90.x on hadoop-0.20.205.x (or
hadoop-1.0.x)

11.1. General Guidelines
Always start with the master log (TODO: Which lines?). Normally it’s just printing the same lines
over and over again. If not, then there’s an issue. Google or search-hadoop.com should return some
hits for those exceptions you’re seeing.

An error rarely comes alone in HBase, usually when something gets screwed up what will follow
may be hundreds of exceptions and stack traces coming from all over the place. The best way to
approach this type of problem is to walk the log up to where it all began, for example one trick with
RegionServers is that they will print some metrics when aborting so grepping for Dump should get
you around the start of the problem.

RegionServer suicides are “normal”, as this is what they do when something goes wrong. For
example, if ulimit and xcievers (the two most important initial settings, see Section 2.2.5, “
ulimit and nproc ”) aren’t changed, it will make it impossible at some point for DataNodes to
create new threads that from the HBase point of view is seen as if HDFS was gone. Think about
what would happen if your MySQL database was suddenly unable to access files on your local file
system, well it’s the same with HBase and HDFS. Another very common reason to see
RegionServers committing seppuku is when they enter prolonged garbage collection pauses that last
longer than the default ZooKeeper session timeout. For more information on GC pauses, see the 3
part blog post by Todd Lipcon and Section 10.3.1.1, “Long GC pauses” above.

11.2. Logs
The key process logs are as follows... (replace <user> with the user that started the service, and
<hostname> for the machine name)

NameNode: $HADOOP_HOME/logs/hadoop-<user>-namenode-<hostname>.log

DataNode: $HADOOP_HOME/logs/hadoop-<user>-datanode-<hostname>.log

JobTracker: $HADOOP_HOME/logs/hadoop-<user>-jobtracker-<hostname>.log

http://hbase.apache.org/book.html#gcpause
http://www.cloudera.com/blog/2011/02/avoiding-full-gcs-in-hbase-with-memstore-local-allocation-buffers-part-1/
http://www.cloudera.com/blog/2011/02/avoiding-full-gcs-in-hbase-with-memstore-local-allocation-buffers-part-1/
http://hbase.apache.org/book.html#ulimit
http://hbase.apache.org/book.html#ulimit
http://search-hadoop.com/
http://hbase.apache.org/book.html#trouble.versions.205
http://hbase.apache.org/book.html#trouble.versions.205
http://hbase.apache.org/book.html#trouble.versions
http://hbase.apache.org/book.html#trouble.ec2.connection
http://hbase.apache.org/book.html#trouble.ec2.instability
http://hbase.apache.org/book.html#trouble.ec2.zookeeper
http://hbase.apache.org/book.html#trouble.ec2
http://hbase.apache.org/book.html#trouble.zookeeper.general
http://hbase.apache.org/book.html#trouble.zookeeper.startup
http://hbase.apache.org/book.html#trouble.zookeeper
http://hbase.apache.org/book.html#trouble.master.shutdown
http://hbase.apache.org/book.html#trouble.master.startup
http://hbase.apache.org/book.html#trouble.master
http://hbase.apache.org/book.html#trouble.rs.shutdown
http://hbase.apache.org/book.html#trouble.rs.runtime
http://hbase.apache.org/book.html#trouble.rs.startup
http://hbase.apache.org/book.html#trouble.rs
http://hbase.apache.org/book.html#trouble.network.loopback
http://hbase.apache.org/book.html#trouble.network.spikes
http://hbase.apache.org/book.html#trouble.network

TaskTracker: $HADOOP_HOME/logs/hadoop-<user>-jobtracker-<hostname>.log

HMaster: $HBASE_HOME/logs/hbase-<user>-master-<hostname>.log

RegionServer: $HBASE_HOME/logs/hbase-<user>-regionserver-
<hostname>.log

ZooKeeper: TODO

11.2.1. Log Locations
For stand-alone deployments the logs are obviously going to be on a single machine, however this
is a development configuration only. Production deployments need to run on a cluster.

11.2.1.1. NameNode
The NameNode log is on the NameNode server. The HBase Master is typically run on the
NameNode server, and well as ZooKeeper.

For smaller clusters the JobTracker is typically run on the NameNode server as well.

11.2.1.2. DataNode
Each DataNode server will have a DataNode log for HDFS, as well as a RegionServer log for
HBase.

Additionally, each DataNode server will also have a TaskTracker log for MapReduce task
execution.

11.2.2. Log Levels

11.2.2.1. Enabling RPC-level logging
Enabling the RPC-level logging on a RegionServer can often given insight on timings at the server.
Once enabled, the amount of log spewed is voluminous. It is not recommended that you leave this
logging on for more than short bursts of time. To enable RPC-level logging, browse to the
RegionServer UI and click on Log Level. Set the log level to DEBUG for the package
org.apache.hadoop.ipc (Thats right, for hadoop.ipc, NOT, hbase.ipc). Then tail the
RegionServers log. Analyze.

To disable, set the logging level back to INFO level.

11.2.3. JVM Garbage Collection Logs
HBase is memory intensive, and using the default GC you can see long pauses in all threads
including the Juliet Pause aka "GC of Death". To help debug this or confirm this is happening GC
logging can be turned on in the Java virtual machine.

To enable, in hbase-env.sh add:

export HBASE_OPTS="-XX:+UseConcMarkSweepGC -verbose:gc -XX:+PrintGCDetails -XX:
+PrintGCTimeStamps -Xloggc:/home/hadoop/hbase/logs/gc-hbase.log"

Adjust the log directory to wherever you log. Note: The GC log does NOT roll automatically, so
you'll have to keep an eye on it so it doesn't fill up the disk.

At this point you should see logs like so:
64898.952: [GC [1 CMS-initial-mark: 2811538K(3055704K)] 2812179K(3061272K),
0.0007360 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
64898.953: [CMS-concurrent-mark-start]
64898.971: [GC 64898.971: [ParNew: 5567K->576K(5568K), 0.0101110 secs] 2817105K-
>2812715K(3061272K), 0.0102200 secs] [Times: user=0.07 sys=0.00, real=0.01 secs]

In this section, the first line indicates a 0.0007360 second pause for the CMS to initially mark. This
pauses the entire VM, all threads for that period of time.

The third line indicates a "minor GC", which pauses the VM for 0.0101110 seconds - aka 10
milliseconds. It has reduced the "ParNew" from about 5.5m to 576k. Later on in this cycle we see:

64901.445: [CMS-concurrent-mark: 1.542/2.492 secs] [Times: user=10.49 sys=0.33,
real=2.49 secs]
64901.445: [CMS-concurrent-preclean-start]
64901.453: [GC 64901.453: [ParNew: 5505K->573K(5568K), 0.0062440 secs] 2868746K-
>2864292K(3061272K), 0.0063360 secs] [Times: user=0.05 sys=0.00, real=0.01 secs]
64901.476: [GC 64901.476: [ParNew: 5563K->575K(5568K), 0.0072510 secs] 2869283K-
>2864837K(3061272K), 0.0073320 secs] [Times: user=0.05 sys=0.01, real=0.01 secs]
64901.500: [GC 64901.500: [ParNew: 5517K->573K(5568K), 0.0120390 secs] 2869780K-
>2865267K(3061272K), 0.0121150 secs] [Times: user=0.09 sys=0.00, real=0.01 secs]
64901.529: [GC 64901.529: [ParNew: 5507K->569K(5568K), 0.0086240 secs] 2870200K-
>2865742K(3061272K), 0.0087180 secs] [Times: user=0.05 sys=0.00, real=0.01 secs]
64901.554: [GC 64901.555: [ParNew: 5516K->575K(5568K), 0.0107130 secs] 2870689K-
>2866291K(3061272K), 0.0107820 secs] [Times: user=0.06 sys=0.00, real=0.01 secs]
64901.578: [CMS-concurrent-preclean: 0.070/0.133 secs] [Times: user=0.48
sys=0.01, real=0.14 secs]
64901.578: [CMS-concurrent-abortable-preclean-start]
64901.584: [GC 64901.584: [ParNew: 5504K->571K(5568K), 0.0087270 secs] 2871220K-
>2866830K(3061272K), 0.0088220 secs] [Times: user=0.05 sys=0.00, real=0.01 secs]
64901.609: [GC 64901.609: [ParNew: 5512K->569K(5568K), 0.0063370 secs] 2871771K-
>2867322K(3061272K), 0.0064230 secs] [Times: user=0.06 sys=0.00, real=0.01 secs]
64901.615: [CMS-concurrent-abortable-preclean: 0.007/0.037 secs] [Times:
user=0.13 sys=0.00, real=0.03 secs]
64901.616: [GC[YG occupancy: 645 K (5568 K)]64901.616: [Rescan (parallel) ,
0.0020210 secs]64901.618: [weak refs processing, 0.0027950 secs] [1 CMS-remark:
2866753K(3055704K)] 2867399K(3061272K), 0.0049380 secs] [Times: user=0.00
sys=0.01, real=0.01 secs]
64901.621: [CMS-concurrent-sweep-start]

The first line indicates that the CMS concurrent mark (finding garbage) has taken 2.4 seconds. But
this is a _concurrent_ 2.4 seconds, Java has not been paused at any point in time.

There are a few more minor GCs, then there is a pause at the 2nd last line:

64901.616: [GC[YG occupancy: 645 K (5568 K)]64901.616: [Rescan (parallel) ,
0.0020210 secs]64901.618: [weak refs processing, 0.0027950 secs] [1 CMS-remark:
2866753K(3055704K)] 2867399K(3061272K), 0.0049380 secs] [Times: user=0.00
sys=0.01, real=0.01 secs]

The pause here is 0.0049380 seconds (aka 4.9 milliseconds) to 'remark' the heap.

At this point the sweep starts, and you can watch the heap size go down:
64901.637: [GC 64901.637: [ParNew: 5501K->569K(5568K), 0.0097350 secs] 2871958K-
>2867441K(3061272K), 0.0098370 secs] [Times: user=0.05 sys=0.00, real=0.01 secs]
... lines removed ...

64904.936: [GC 64904.936: [ParNew: 5532K->568K(5568K), 0.0070720 secs] 1365024K-
>1360689K(3061272K), 0.0071930 secs] [Times: user=0.05 sys=0.00, real=0.01 secs]
64904.953: [CMS-concurrent-sweep: 2.030/3.332 secs] [Times: user=9.57 sys=0.26,
real=3.33 secs]

At this point, the CMS sweep took 3.332 seconds, and heap went from about ~ 2.8 GB to 1.3 GB
(approximate).

The key points here is to keep all these pauses low. CMS pauses are always low, but if your ParNew
starts growing, you can see minor GC pauses approach 100ms, exceed 100ms and hit as high at
400ms.

This can be due to the size of the ParNew, which should be relatively small. If your ParNew is very
large after running HBase for a while, in one example a ParNew was about 150MB, then you might
have to constrain the size of ParNew (The larger it is, the longer the collections take but if its too
small, objects are promoted to old gen too quickly). In the below we constrain new gen size to 64m.

Add this to HBASE_OPTS:

export HBASE_OPTS="-XX:NewSize=64m -XX:MaxNewSize=64m <cms options from above>
<gc logging options from above>"

For more information on GC pauses, see the 3 part blog post by Todd Lipcon and Section 10.3.1.1,
“Long GC pauses” above.

11.3. Resources

11.3.1. Dist-Lists
Sign up for the HBase Dist-Lists and post a question. 'Dev' is aimed at the community of developers
actually building HBase and for features currently under development, and 'User' for generally used
for questions on released versions of HBase.

11.3.2. search-hadoop.com
search-hadoop.com indexes all the mailing lists and is great for historical searches.

11.3.3. IRC
#hbase on irc.freenode.net

11.3.4. JIRA
JIRA is also really helpful when looking for Hadoop/HBase-specific issues.

11.4. Tools

11.4.1. Builtin Tools

11.4.1.1. Master Web Interface
The Master starts a web-interface on port 60010 by default.

https://issues.apache.org/jira/browse/HBASE
http://search-hadoop.com/
http://hbase.apache.org/mail-lists.html
http://hbase.apache.org/book.html#gcpause
http://hbase.apache.org/book.html#gcpause
http://www.cloudera.com/blog/2011/02/avoiding-full-gcs-in-hbase-with-memstore-local-allocation-buffers-part-1/

The Master web UI lists created tables and their definition (e.g., ColumnFamilies, blocksize, etc.).
Additionally, the available RegionServers in the cluster are listed along with selected high-level
metrics (requests, number of regions, usedHeap, maxHeap). The Master web UI allows navigation
to each RegionServer's web UI.

11.4.1.2. RegionServer Web Interface
RegionServers starts a web-interface on port 60030 by default.

The RegionServer web UI lists online regions and their start/end keys, as well as point-in-time
RegionServer metrics (requests, regions, storeFileIndexSize, compactionQueueSize, etc.).

See Section 12.4, “Metrics” for more information in metric definitions.

11.4.2. External Tools

11.4.2.1. tail
tail is the command line tool that lets you look at the end of a file. Add the “-f” option and it will
refresh when new data is available. It’s useful when you are wondering what’s happening, for
example, when a cluster is taking a long time to shutdown or startup as you can just fire a new
terminal and tail the master log (and maybe a few RegionServers).

11.4.2.2. top
top is probably one of the most important tool when first trying to see what’s running on a
machine and how the resources are consumed. Here’s an example from production system:
top - 14:46:59 up 39 days, 11:55, 1 user, load average: 3.75, 3.57, 3.84
Tasks: 309 total, 1 running, 308 sleeping, 0 stopped, 0 zombie
Cpu(s): 4.5%us, 1.6%sy, 0.0%ni, 91.7%id, 1.4%wa, 0.1%hi, 0.6%si, 0.0%st
Mem: 24414432k total, 24296956k used, 117476k free, 7196k buffers
Swap: 16008732k total, 14348k used, 15994384k free, 11106908k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
15558 hadoop 18 -2 3292m 2.4g 3556 S 79 10.4 6523:52 java
13268 hadoop 18 -2 8967m 8.2g 4104 S 21 35.1 5170:30 java
 8895 hadoop 18 -2 1581m 497m 3420 S 11 2.1 4002:32 java
…

Here we can see that the system load average during the last five minutes is 3.75, which very
roughly means that on average 3.75 threads were waiting for CPU time during these 5 minutes. In
general, the “perfect” utilization equals to the number of cores, under that number the machine is
under utilized and over that the machine is over utilized. This is an important concept, see this
article to understand it more: http://www.linuxjournal.com/article/9001.

Apart from load, we can see that the system is using almost all its available RAM but most of it is
used for the OS cache (which is good). The swap only has a few KBs in it and this is wanted, high
numbers would indicate swapping activity which is the nemesis of performance of Java systems.
Another way to detect swapping is when the load average goes through the roof (although this could
also be caused by things like a dying disk, among others).

The list of processes isn’t super useful by default, all we know is that 3 java processes are using
about 111% of the CPUs. To know which is which, simply type “c” and each line will be expanded.
Typing “1” will give you the detail of how each CPU is used instead of the average for all of them
like shown here.

http://www.linuxjournal.com/article/9001
http://hbase.apache.org/book.html#hbase_metrics

11.4.2.3. jps
jps is shipped with every JDK and gives the java process ids for the current user (if root, then it
gives the ids for all users). Example:
hadoop@sv4borg12:~$ jps
1322 TaskTracker
17789 HRegionServer
27862 Child
1158 DataNode
25115 HQuorumPeer
2950 Jps
19750 ThriftServer
18776 jmx

In order, we see a:

 Hadoop TaskTracker, manages the local Childs
 HBase RegionServer, serves regions
 Child, its MapReduce task, cannot tell which type exactly
 Hadoop TaskTracker, manages the local Childs
 Hadoop DataNode, serves blocks
 HQuorumPeer, a ZooKeeper ensemble member
 Jps, well… it’s the current process
 ThriftServer, it’s a special one will be running only if thrift was started
 jmx, this is a local process that’s part of our monitoring platform (poorly named maybe).

You probably don’t have that.

You can then do stuff like checking out the full command line that started the process:
hadoop@sv4borg12:~$ ps aux | grep HRegionServer
hadoop 17789 155 35.2 9067824 8604364 ? S<l Mar04 9855:48
/usr/java/jdk1.6.0_14/bin/java -Xmx8000m -XX:+DoEscapeAnalysis -XX:
+AggressiveOpts -XX:+UseConcMarkSweepGC -XX:NewSize=64m -XX:MaxNewSize=64m
-XX:CMSInitiatingOccupancyFraction=88 -verbose:gc -XX:+PrintGCDetails -XX:
+PrintGCTimeStamps -Xloggc:/export1/hadoop/logs/gc-hbase.log
-Dcom.sun.management.jmxremote.port=10102
-Dcom.sun.management.jmxremote.authenticate=true
-Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.password.file=/home/hadoop/hbase/conf/jmxremote.p
assword -Dcom.sun.management.jmxremote -Dhbase.log.dir=/export1/hadoop/logs
-Dhbase.log.file=hbase-hadoop-regionserver-sv4borg12.log
-Dhbase.home.dir=/home/hadoop/hbase -Dhbase.id.str=hadoop
-Dhbase.root.logger=INFO,DRFA
-Djava.library.path=/home/hadoop/hbase/lib/native/Linux-amd64-64 -classpath
/home/hadoop/hbase/bin/../conf:[many jars]:/home/hadoop/hadoop/conf
org.apache.hadoop.hbase.regionserver.HRegionServer start

11.4.2.4. jstack
jstack is one of the most important tools when trying to figure out what a java process is doing
apart from looking at the logs. It has to be used in conjunction with jps in order to give it a process
id. It shows a list of threads, each one has a name, and they appear in the order that they were
created (so the top ones are the most recent threads). Here’s a few example:

The main thread of a RegionServer that’s waiting for something to do from the master:
 "regionserver60020" prio=10 tid=0x0000000040ab4000 nid=0x45cf waiting on

condition [0x00007f16b6a96000..0x00007f16b6a96a70]
 java.lang.Thread.State: TIMED_WAITING (parking)
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x00007f16cd5c2f30> (a
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
 at
java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:198)
 at
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.awaitNanos
(AbstractQueuedSynchronizer.java:1963)
 at
java.util.concurrent.LinkedBlockingQueue.poll(LinkedBlockingQueue.java:395)
 at
org.apache.hadoop.hbase.regionserver.HRegionServer.run(HRegionServer.java:647)
 at java.lang.Thread.run(Thread.java:619)

 The MemStore flusher thread that is currently flushing to a
file:
"regionserver60020.cacheFlusher" daemon prio=10 tid=0x0000000040f4e000
nid=0x45eb in Object.wait() [0x00007f16b5b86000..0x00007f16b5b87af0]
 java.lang.Thread.State: WAITING (on object monitor)
 at java.lang.Object.wait(Native Method)
 at java.lang.Object.wait(Object.java:485)
 at org.apache.hadoop.ipc.Client.call(Client.java:803)
 - locked <0x00007f16cb14b3a8> (a
org.apache.hadoop.ipc.Client$Call)
 at org.apache.hadoop.ipc.RPC$Invoker.invoke(RPC.java:221)
 at $Proxy1.complete(Unknown Source)
 at sun.reflect.GeneratedMethodAccessor38.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.jav
a:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at
org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHa
ndler.java:82)
 at
org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.
java:59)
 at $Proxy1.complete(Unknown Source)
 at
org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.closeInternal(DFSClient.java:33
90)
 - locked <0x00007f16cb14b470> (a
org.apache.hadoop.hdfs.DFSClient$DFSOutputStream)
 at
org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.close(DFSClient.java:3304)
 at
org.apache.hadoop.fs.FSDataOutputStream$PositionCache.close(FSDataOutputStream.j
ava:61)
 at
org.apache.hadoop.fs.FSDataOutputStream.close(FSDataOutputStream.java:86)
 at
org.apache.hadoop.hbase.io.hfile.HFile$Writer.close(HFile.java:650)
 at
org.apache.hadoop.hbase.regionserver.StoreFile$Writer.close(StoreFile.java:853)
 at
org.apache.hadoop.hbase.regionserver.Store.internalFlushCache(Store.java:467)
 - locked <0x00007f16d00e6f08> (a java.lang.Object)
 at
org.apache.hadoop.hbase.regionserver.Store.flushCache(Store.java:427)
 at
org.apache.hadoop.hbase.regionserver.Store.access$100(Store.java:80)
 at

org.apache.hadoop.hbase.regionserver.Store$StoreFlusherImpl.flushCache(Store.jav
a:1359)
 at
org.apache.hadoop.hbase.regionserver.HRegion.internalFlushcache(HRegion.java:907
)
 at
org.apache.hadoop.hbase.regionserver.HRegion.internalFlushcache(HRegion.java:834
)
 at
org.apache.hadoop.hbase.regionserver.HRegion.flushcache(HRegion.java:786)
 at
org.apache.hadoop.hbase.regionserver.MemStoreFlusher.flushRegion(MemStoreFlusher
.java:250)
 at
org.apache.hadoop.hbase.regionserver.MemStoreFlusher.flushRegion(MemStoreFlusher
.java:224)
 at
org.apache.hadoop.hbase.regionserver.MemStoreFlusher.run(MemStoreFlusher.java:14
6)

A handler thread that’s waiting for stuff to do (like put, delete, scan, etc):
"IPC Server handler 16 on 60020" daemon prio=10 tid=0x00007f16b011d800
nid=0x4a5e waiting on condition [0x00007f16afefd000..0x00007f16afefd9f0]
 java.lang.Thread.State: WAITING (parking)
 at sun.misc.Unsafe.park(Native Method)
 - parking to wait for <0x00007f16cd3f8dd8> (a
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject)
 at
java.util.concurrent.locks.LockSupport.park(LockSupport.java:158)
 at
java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(Abst
ractQueuedSynchronizer.java:1925)
 at
java.util.concurrent.LinkedBlockingQueue.take(LinkedBlockingQueue.java:358)
 at
org.apache.hadoop.hbase.ipc.HBaseServer$Handler.run(HBaseServer.java:1013)

And one that’s busy doing an increment of a counter (it’s in the phase where it’s trying to create a
scanner in order to read the last value):
"IPC Server handler 66 on 60020" daemon prio=10 tid=0x00007f16b006e800
nid=0x4a90 runnable [0x00007f16acb77000..0x00007f16acb77cf0]
 java.lang.Thread.State: RUNNABLE
 at
org.apache.hadoop.hbase.regionserver.KeyValueHeap.<init>(KeyValueHeap.java:56)
 at
org.apache.hadoop.hbase.regionserver.StoreScanner.<init>(StoreScanner.java:79)
 at
org.apache.hadoop.hbase.regionserver.Store.getScanner(Store.java:1202)
 at
org.apache.hadoop.hbase.regionserver.HRegion$RegionScanner.<init>(HRegion.java:2
209)
 at
org.apache.hadoop.hbase.regionserver.HRegion.instantiateInternalScanner(HRegion.
java:1063)
 at
org.apache.hadoop.hbase.regionserver.HRegion.getScanner(HRegion.java:1055)
 at
org.apache.hadoop.hbase.regionserver.HRegion.getScanner(HRegion.java:1039)
 at

org.apache.hadoop.hbase.regionserver.HRegion.getLastIncrement(HRegion.java:2875)
 at
org.apache.hadoop.hbase.regionserver.HRegion.incrementColumnValue(HRegion.java:2
978)
 at
org.apache.hadoop.hbase.regionserver.HRegionServer.incrementColumnValue(HRegionS
erver.java:2433)
 at sun.reflect.GeneratedMethodAccessor20.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.jav
a:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at
org.apache.hadoop.hbase.ipc.HBaseRPC$Server.call(HBaseRPC.java:560)
 at
org.apache.hadoop.hbase.ipc.HBaseServer$Handler.run(HBaseServer.java:1027)

A thread that receives data from HDFS:

"IPC Client (47) connection to sv4borg9/10.4.24.40:9000 from hadoop" daemon
prio=10 tid=0x00007f16a02d0000 nid=0x4fa3 runnable
[0x00007f16b517d000..0x00007f16b517dbf0]
 java.lang.Thread.State: RUNNABLE
 at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)
 at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:215)
 at
sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:65)
 at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:69)
 - locked <0x00007f17d5b68c00> (a sun.nio.ch.Util$1)
 - locked <0x00007f17d5b68be8> (a
java.util.Collections$UnmodifiableSet)
 - locked <0x00007f1877959b50> (a sun.nio.ch.EPollSelectorImpl)
 at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:80)
 at
org.apache.hadoop.net.SocketIOWithTimeout$SelectorPool.select(SocketIOWithTimeou
t.java:332)
 at
org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:157)
 at
org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:155)
 at
org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:128)
 at java.io.FilterInputStream.read(FilterInputStream.java:116)
 at
org.apache.hadoop.ipc.Client$Connection$PingInputStream.read(Client.java:304)
 at
java.io.BufferedInputStream.fill(BufferedInputStream.java:218)
 at
java.io.BufferedInputStream.read(BufferedInputStream.java:237)
 - locked <0x00007f1808539178> (a java.io.BufferedInputStream)
 at java.io.DataInputStream.readInt(DataInputStream.java:370)
 at
org.apache.hadoop.ipc.Client$Connection.receiveResponse(Client.java:569)
 at org.apache.hadoop.ipc.Client$Connection.run(Client.java:477)

And here is a master trying to recover a lease after a RegionServer died:
"LeaseChecker" daemon prio=10 tid=0x00000000407ef800 nid=0x76cd waiting on
condition [0x00007f6d0eae2000..0x00007f6d0eae2a70]
--
 java.lang.Thread.State: WAITING (on object monitor)

 at java.lang.Object.wait(Native Method)
 at java.lang.Object.wait(Object.java:485)
 at org.apache.hadoop.ipc.Client.call(Client.java:726)
 - locked <0x00007f6d1cd28f80> (a
org.apache.hadoop.ipc.Client$Call)
 at org.apache.hadoop.ipc.RPC$Invoker.invoke(RPC.java:220)
 at $Proxy1.recoverBlock(Unknown Source)
 at
org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.processDatanodeError(DFSClient.
java:2636)
 at
org.apache.hadoop.hdfs.DFSClient$DFSOutputStream.<init>(DFSClient.java:2832)
 at org.apache.hadoop.hdfs.DFSClient.append(DFSClient.java:529)
 at
org.apache.hadoop.hdfs.DistributedFileSystem.append(DistributedFileSystem.java:1
86)
 at org.apache.hadoop.fs.FileSystem.append(FileSystem.java:530)
 at
org.apache.hadoop.hbase.util.FSUtils.recoverFileLease(FSUtils.java:619)
 at
org.apache.hadoop.hbase.regionserver.wal.HLog.splitLog(HLog.java:1322)
 at
org.apache.hadoop.hbase.regionserver.wal.HLog.splitLog(HLog.java:1210)
 at
org.apache.hadoop.hbase.master.HMaster.splitLogAfterStartup(HMaster.java:648)
 at
org.apache.hadoop.hbase.master.HMaster.joinCluster(HMaster.java:572)
 at org.apache.hadoop.hbase.master.HMaster.run(HMaster.java:503)

11.4.2.5. OpenTSDB
OpenTSDB is an excellent alternative to Ganglia as it uses HBase to store all the time series and
doesn’t have to downsample. Monitoring your own HBase cluster that hosts OpenTSDB is a good
exercise.

Here’s an example of a cluster that’s suffering from hundreds of compactions launched almost all
around the same time, which severely affects the IO performance: (TODO: insert graph plotting
compactionQueueSize)

It’s a good practice to build dashboards with all the important graphs per machine and per cluster so
that debugging issues can be done with a single quick look. For example, at StumbleUpon there’s
one dashboard per cluster with the most important metrics from both the OS and HBase. You can
then go down at the machine level and get even more detailed metrics.

11.4.2.6. clusterssh+top
clusterssh+top, it’s like a poor man’s monitoring system and it can be quite useful when you have
only a few machines as it’s very easy to setup. Starting clusterssh will give you one terminal per
machine and another terminal in which whatever you type will be retyped in every window. This
means that you can type “top” once and it will start it for all of your machines at the same time
giving you full view of the current state of your cluster. You can also tail all the logs at the same
time, edit files, etc.

11.5. Client
For more information on the HBase client, see Section 8.3, “Client” .

http://hbase.apache.org/book.html#client
http://opentsdb.net/

11.5.1. ScannerTimeoutException or UnknownScannerException
This is thrown if the time between RPC calls from the client to RegionServer exceeds the scan
timeout. For example, if Scan.setCaching is set to 500, then there will be an RPC call to fetch
the next batch of rows every 500 .next() calls on the ResultScanner because data is being
transferred in blocks of 500 rows to the client. Reducing the setCaching value may be an option, but
setting this value too low makes for inefficient processing on numbers of rows.

See Section 10.7.1, “Scan Caching” .

11.5.2. Shell or client application throws lots of scary exceptions during normal
operation
Since 0.20.0 the default log level for org.apache.hadoop.hbase.*is DEBUG.

On your clients, edit $HBASE_HOME/conf/log4j.properties and change this:
log4j.logger.org.apache.hadoop.hbase=DEBUG to this:
log4j.logger.org.apache.hadoop.hbase=INFO, or even
log4j.logger.org.apache.hadoop.hbase=WARN.

11.5.3. Long Client Pauses With Compression
This is a fairly frequent question on the HBase dist-list. The scenario is that a client is typically
inserting a lot of data into a relatively un-optimized HBase cluster. Compression can exacerbate the
pauses, although it is not the source of the problem.

See Section 10.6.2, “ Table Creation: Pre-Creating Regions ” on the pattern for pre-creating regions
and confirm that the table isn't starting with a single region.

See Section 10.4, “HBase Configurations” for cluster configuration, particularly
hbase.hstore.blockingStoreFiles,
hbase.hregion.memstore.block.multiplier, MAX_FILESIZE (region size), and
MEMSTORE_FLUSHSIZE.

A slightly longer explanation of why pauses can happen is as follows: Puts are sometimes blocked
on the MemStores which are blocked by the flusher thread which is blocked because there are too
many files to compact because the compactor is given too many small files to compact and has to
compact the same data repeatedly. This situation can occur even with minor compactions.
Compounding this situation, HBase doesn't compress data in memory. Thus, the 64MB that lives in
the MemStore could become a 6MB file after compression - which results in a smaller StoreFile.
The upside is that more data is packed into the same region, but performance is achieved by being
able to write larger files - which is why HBase waits until the flushize before writing a new
StoreFile. And smaller StoreFiles become targets for compaction. Without compression the files are
much bigger and don't need as much compaction, however this is at the expense of I/O.

For additional information, see this thread on Long client pauses with compression.

11.5.4. ZooKeeper Client Connection Errors
Errors like this...
11/07/05 11:26:41 WARN zookeeper.ClientCnxn: Session 0x0 for server null,
 unexpected error, closing socket connection and attempting reconnect
 java.net.ConnectException: Connection refused: no further information
 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
 at sun.nio.ch.SocketChannelImpl.finishConnect(Unknown Source)
 at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1078)

http://search-hadoop.com/m/WUnLM6ojHm1/Long+client+pauses+with+compression&subj=Long+client+pauses+with+compression
http://hbase.apache.org/book.html#perf.configurations
http://hbase.apache.org/book.html#precreate.regions
http://hbase.apache.org/book.html#perf.hbase.client.caching

 11/07/05 11:26:43 INFO zookeeper.ClientCnxn: Opening socket connection to
 server localhost/127.0.0.1:2181
 11/07/05 11:26:44 WARN zookeeper.ClientCnxn: Session 0x0 for server null,
 unexpected error, closing socket connection and attempting reconnect
 java.net.ConnectException: Connection refused: no further information
 at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
 at sun.nio.ch.SocketChannelImpl.finishConnect(Unknown Source)
 at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:1078)
 11/07/05 11:26:45 INFO zookeeper.ClientCnxn: Opening socket connection to
 server localhost/127.0.0.1:2181

... are either due to ZooKeeper being down, or unreachable due to network issues.

11.5.5. Client running out of memory though heap size seems to be stable (but
the off-heap/direct heap keeps growing)
You are likely running into the issue that is described and worked through in the mail thread HBase,
mail # user - Suspected memory leak and continued over in HBase, mail # dev - FeedbackRe:
Suspected memory leak. A workaround is passing your client-side JVM a reasonable value for
-XX:MaxDirectMemorySize. By default, the MaxDirectMemorySize is equal to your
-Xmx max heapsize setting (if -Xmx is set). Try seting it to something smaller (for example, one
user had success setting it to 1g when they had a client-side heap of 12g). If you set it too small, it
will bring on FullGCs so keep it a bit hefty. You want to make this setting client-side only
especially if you are running the new experiemental server-side off-heap cache since this feature
depends on being able to use big direct buffers (You may have to keep separate client-side and
server-side config dirs).

11.6. MapReduce

11.6.1. You Think You're On The Cluster, But You're Actually Local
This following stacktrace happened using ImportTsv, but things like this can happen on any job
with a mis-configuration.
 WARN mapred.LocalJobRunner: job_local_0001
java.lang.IllegalArgumentException: Can't read partitions file
 at
org.apache.hadoop.hbase.mapreduce.hadoopbackport.TotalOrderPartitioner.setConf(T
otalOrderPartitioner.java:111)
 at
org.apache.hadoop.util.ReflectionUtils.setConf(ReflectionUtils.java:62)
 at
org.apache.hadoop.util.ReflectionUtils.newInstance(ReflectionUtils.java:117)
 at
org.apache.hadoop.mapred.MapTask$NewOutputCollector.<init>(MapTask.java:560)
 at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:639)
 at org.apache.hadoop.mapred.MapTask.run(MapTask.java:323)
 at
org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:210)
Caused by: java.io.FileNotFoundException: File _partition.lst does not exist.
 at
org.apache.hadoop.fs.RawLocalFileSystem.getFileStatus(RawLocalFileSystem.java:38
3)
 at
org.apache.hadoop.fs.FilterFileSystem.getFileStatus(FilterFileSystem.java:251)
 at org.apache.hadoop.fs.FileSystem.getLength(FileSystem.java:776)
 at
org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:1424)

 at
org.apache.hadoop.io.SequenceFile$Reader.<init>(SequenceFile.java:1419)
 at
org.apache.hadoop.hbase.mapreduce.hadoopbackport.TotalOrderPartitioner.readParti
tions(TotalOrderPartitioner.java:296)

.. see the critical portion of the stack? It's...
 at
org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:210)

LocalJobRunner means the job is running locally, not on the cluster.

See http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/package-
summary.html#classpath for more information on HBase MapReduce jobs and classpaths.

11.7. NameNode
For more information on the NameNode, see Section 8.8, “HDFS” .

11.7.1. HDFS Utilization of Tables and Regions
To determine how much space HBase is using on HDFS use the hadoop shell commands from the
NameNode. For example...
hadoop fs -dus /hbase/

...returns the summarized disk utilization for all HBase objects.
hadoop fs -dus /hbase/myTable

...returns the summarized disk utilization for the HBase table 'myTable'.
hadoop fs -du /hbase/myTable

...returns a list of the regions under the HBase table 'myTable' and their disk utilization.

For more information on HDFS shell commands, see the HDFS FileSystem Shell documentation.

11.7.2. Browsing HDFS for HBase Objects
Somtimes it will be necessary to explore the HBase objects that exist on HDFS. These objects could
include the WALs (Write Ahead Logs), tables, regions, StoreFiles, etc. The easiest way to do this is
with the NameNode web application that runs on port 50070. The NameNode web application will
provide links to the all the DataNodes in the cluster so that they can be browsed seamlessly.

The HDFS directory structure of HBase tables in the cluster is...
/hbase
 /<Table> (Tables in the cluster)
 /<Region> (Regions for the table)
 /<ColumnFamiy> (ColumnFamilies for the Region for the table)
 /<StoreFile> (StoreFiles for the ColumnFamily for the
Regions for the table)

The HDFS directory structure of HBase WAL is..
/hbase
 /.logs
 /<RegionServer> (RegionServers)

http://hadoop.apache.org/common/docs/current/file_system_shell.html
http://hbase.apache.org/book.html#arch.hdfs
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/package-summary.html#classpath
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/package-summary.html#classpath

 /<HLog> (WAL HLog files for the RegionServer)

See the HDFS User Guide for other non-shell diagnostic utilities like fsck.

11.7.2.1. Use Cases
Two common use-cases for querying HDFS for HBase objects is research the degree of
uncompaction of a table. If there are a large number of StoreFiles for each ColumnFamily it could
indicate the need for a major compaction. Additionally, after a major compaction if the resulting
StoreFile is "small" it could indicate the need for a reduction of ColumnFamilies for the table.

11.8. Network

11.8.1. Network Spikes
If you are seeing periodic network spikes you might want to check the compactionQueues to
see if major compactions are happening.

See Section 2.8.2.8, “Managed Compactions” for more information on managing compactions.

11.8.2. Loopback IP
HBase expects the loopback IP Address to be 127.0.0.1. See the Getting Started section on ???.

11.9. RegionServer
For more information on the RegionServers, see Section 8.6, “RegionServer” .

11.9.1. Startup Errors

11.9.1.1. Master Starts, But RegionServers Do Not
The Master believes the RegionServers have the IP of 127.0.0.1 - which is localhost and resolves to
the master's own localhost.

The RegionServers are erroneously informing the Master that their IP addresses are 127.0.0.1.

Modify /etc/hosts on the region servers, from...
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 fully.qualified.regionservername regionservername
localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6

... to (removing the master node's name from localhost)...
Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
::1 localhost6.localdomain6 localhost6

http://hbase.apache.org/book.html#regionserver.arch
http://hbase.apache.org/book.html#loopback.ip
http://hbase.apache.org/book.html#managed.compactions
http://hbase.apache.org/see%20http://hadoop.apache.org/common/docs/current/hdfs_user_guide.html

11.9.1.2. Compression Link Errors
Since compression algorithms such as LZO need to be installed and configured on each cluster this
is a frequent source of startup error. If you see messages like this...
11/02/20 01:32:15 ERROR lzo.GPLNativeCodeLoader: Could not load native gpl
library
java.lang.UnsatisfiedLinkError: no gplcompression in java.library.path
 at java.lang.ClassLoader.loadLibrary(ClassLoader.java:1734)
 at java.lang.Runtime.loadLibrary0(Runtime.java:823)
 at java.lang.System.loadLibrary(System.java:1028)

.. then there is a path issue with the compression libraries. See the Configuration section on LZO
compression configuration.

11.9.2. Runtime Errors

11.9.2.1. RegionServer Hanging
Are you running an old JVM (< 1.6.0_u21?)? When you look at a thread dump, does it look like
threads are BLOCKED but no one holds the lock all are blocked on? See HBASE 3622 Deadlock in
HBaseServer (JVM bug?). Adding -XX:+UseMembar to the HBase HBASE_OPTS in
conf/hbase-env.sh may fix it.

11.9.2.2. java.io.IOException...(Too many open files)
If you see log messages like this...
2010-09-13 01:24:17,336 WARN org.apache.hadoop.hdfs.server.datanode.DataNode:
Disk-related IOException in BlockReceiver constructor. Cause is
java.io.IOException: Too many open files
 at java.io.UnixFileSystem.createFileExclusively(Native Method)
 at java.io.File.createNewFile(File.java:883)

... see the Getting Started section on ulimit and nproc configuration.

11.9.2.3. xceiverCount 258 exceeds the limit of concurrent xcievers 256
This typically shows up in the DataNode logs.

See the Getting Started section on xceivers configuration.

11.9.2.4. System instability, and the presence of "java.lang.OutOfMemoryError: unable to
create new native thread in exceptions" HDFS DataNode logs or that of any system daemon
See the Getting Started section on ulimit and nproc configuration. The default on recent Linux
distributions is 1024 - which is far too low for HBase.

11.9.2.5. DFS instability and/or RegionServer lease timeouts
If you see warning messages like this...
2009-02-24 10:01:33,516 WARN org.apache.hadoop.hbase.util.Sleeper: We slept xxx
ms, ten times longer than scheduled: 10000
2009-02-24 10:01:33,516 WARN org.apache.hadoop.hbase.util.Sleeper: We slept xxx
ms, ten times longer than scheduled: 15000
2009-02-24 10:01:36,472 WARN org.apache.hadoop.hbase.regionserver.HRegionServer:
unable to report to master for xxx milliseconds - retrying

http://hbase.apache.org/book.html#ulimit
http://hbase.apache.org/book.html#dfs.datanode.max.xcievers
http://hbase.apache.org/book.html#ulimit
https://issues.apache.org/jira/browse/HBASE-3622
https://issues.apache.org/jira/browse/HBASE-3622
http://hbase.apache.org/book.html#lzo.compression
http://hbase.apache.org/book.html#lzo.compression

... or see full GC compactions then you may be experiencing full GC's.

11.9.2.6. "No live nodes contain current block" and/or YouAreDeadException
These errors can happen either when running out of OS file handles or in periods of severe network
problems where the nodes are unreachable.

See the Getting Started section on ulimit and nproc configuration and check your network.

11.9.2.7. ZooKeeper SessionExpired events
Master or RegionServers shutting down with messages like those in the logs:
WARN org.apache.zookeeper.ClientCnxn: Exception
closing session 0x278bd16a96000f to sun.nio.ch.SelectionKeyImpl@355811ec
java.io.IOException: TIMED OUT
 at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:906)
WARN org.apache.hadoop.hbase.util.Sleeper: We slept 79410ms, ten times longer
than scheduled: 5000
INFO org.apache.zookeeper.ClientCnxn: Attempting connection to server
hostname/IP:PORT
INFO org.apache.zookeeper.ClientCnxn: Priming connection to
java.nio.channels.SocketChannel[connected local=/IP:PORT
remote=hostname/IP:PORT]
INFO org.apache.zookeeper.ClientCnxn: Server connection successful
WARN org.apache.zookeeper.ClientCnxn: Exception closing session 0x278bd16a96000d
to sun.nio.ch.SelectionKeyImpl@3544d65e
java.io.IOException: Session Expired
 at
org.apache.zookeeper.ClientCnxn$SendThread.readConnectResult(ClientCnxn.java:589
)
 at org.apache.zookeeper.ClientCnxn$SendThread.doIO(ClientCnxn.java:709)
 at org.apache.zookeeper.ClientCnxn$SendThread.run(ClientCnxn.java:945)
ERROR org.apache.hadoop.hbase.regionserver.HRegionServer: ZooKeeper session
expired

The JVM is doing a long running garbage collecting which is pausing every threads (aka "stop the
world"). Since the RegionServer's local ZooKeeper client cannot send heartbeats, the session times
out. By design, we shut down any node that isn't able to contact the ZooKeeper ensemble after
getting a timeout so that it stops serving data that may already be assigned elsewhere.

 Make sure you give plenty of RAM (in hbase-env.sh), the default of 1GB won't be able
to sustain long running imports.

 Make sure you don't swap, the JVM never behaves well under swapping.
 Make sure you are not CPU starving the RegionServer thread. For example, if you are

running a MapReduce job using 6 CPU-intensive tasks on a machine with 4 cores, you are
probably starving the RegionServer enough to create longer garbage collection pauses.

 Increase the ZooKeeper session timeout

If you wish to increase the session timeout, add the following to your hbase-site.xml to
increase the timeout from the default of 60 seconds to 120 seconds.
<property>
 <name>zookeeper.session.timeout</name>
 <value>1200000</value>
</property>
<property>

http://hbase.apache.org/book.html#ulimit

 <name>hbase.zookeeper.property.tickTime</name>
 <value>6000</value>
</property>

Be aware that setting a higher timeout means that the regions served by a failed RegionServer will
take at least that amount of time to be transfered to another RegionServer. For a production system
serving live requests, we would instead recommend setting it lower than 1 minute and over-
provision your cluster in order the lower the memory load on each machines (hence having less
garbage to collect per machine).

If this is happening during an upload which only happens once (like initially loading all your data
into HBase), consider bulk loading.

See Section 11.11.2, “ZooKeeper, The Cluster Canary” for other general information about
ZooKeeper troubleshooting.

11.9.2.8. NotServingRegionException
This exception is "normal" when found in the RegionServer logs at DEBUG level. This exception is
returned back to the client and then the client goes back to .META. to find the new location of the
moved region.

However, if the NotServingRegionException is logged ERROR, then the client ran out of retries
and something probably wrong.

11.9.2.9. Regions listed by domain name, then IP
Fix your DNS. In versions of HBase before 0.92.x, reverse DNS needs to give same answer as
forward lookup. See HBASE 3431 RegionServer is not using the name given it by the master;
double entry in master listing of servers for gorey details.

11.9.2.10. Logs flooded with '2011-01-10 12:40:48,407 INFO
org.apache.hadoop.io.compress.CodecPool: Got brand-new compressor' messages
We are not using the native versions of compression libraries. See HBASE-1900 Put back native
support when hadoop 0.21 is released. Copy the native libs from hadoop under hbase lib dir or
symlink them into place and the message should go away.

11.9.3. Shutdown Errors

11.10. Master
For more information on the Master, see Section 8.5, “Master” .

11.10.1. Startup Errors

11.10.1.1. Master says that you need to run the hbase migrations script
Upon running that, the hbase migrations script says no files in root directory.

HBase expects the root directory to either not exist, or to have already been initialized by hbase
running a previous time. If you create a new directory for HBase using Hadoop DFS, this error will
occur. Make sure the HBase root directory does not currently exist or has been initialized by a
previous run of HBase. Sure fire solution is to just use Hadoop dfs to delete the HBase root and let

http://hbase.apache.org/book.html#master
https://issues.apache.org/jira/browse/HBASE-1900
https://issues.apache.org/jira/browse/HBASE-1900
https://issues.apache.org/jira/browse/HBASE-3431
https://issues.apache.org/jira/browse/HBASE-3431
http://hbase.apache.org/book.html#trouble.zookeeper.general

HBase create and initialize the directory itself.

11.10.2. Shutdown Errors

11.11. ZooKeeper

11.11.1. Startup Errors

11.11.1.1. Could not find my address: xyz in list of ZooKeeper quorum servers
A ZooKeeper server wasn't able to start, throws that error. xyz is the name of your server.

This is a name lookup problem. HBase tries to start a ZooKeeper server on some machine but that
machine isn't able to find itself in the hbase.zookeeper.quorum configuration.

Use the hostname presented in the error message instead of the value you used. If you have a DNS
server, you can set hbase.zookeeper.dns.interface and
hbase.zookeeper.dns.nameserver in hbase-site.xml to make sure it resolves to the
correct FQDN.

11.11.2. ZooKeeper, The Cluster Canary
ZooKeeper is the cluster's "canary in the mineshaft". It'll be the first to notice issues if any so
making sure its happy is the short-cut to a humming cluster.

See the ZooKeeper Operating Environment Troubleshooting page. It has suggestions and tools for
checking disk and networking performance; i.e. the operating environment your ZooKeeper and
HBase are running in.

11.12. Amazon EC2

11.12.1. ZooKeeper does not seem to work on Amazon EC2
HBase does not start when deployed as Amazon EC2 instances. Exceptions like the below appear in
the Master and/or RegionServer logs:
 2009-10-19 11:52:27,030 INFO org.apache.zookeeper.ClientCnxn: Attempting
 connection to server ec2-174-129-15-236.compute-
1.amazonaws.com/10.244.9.171:2181
 2009-10-19 11:52:27,032 WARN org.apache.zookeeper.ClientCnxn: Exception
 closing session 0x0 to sun.nio.ch.SelectionKeyImpl@656dc861
 java.net.ConnectException: Connection refused

Security group policy is blocking the ZooKeeper port on a public address. Use the internal EC2 host
names when configuring the ZooKeeper quorum peer list.

11.12.2. Instability on Amazon EC2
Questions on HBase and Amazon EC2 come up frequently on the HBase dist-list. Search for old
threads using Search Hadoop

http://search-hadoop.com/
http://wiki.apache.org/hadoop/ZooKeeper/Troubleshooting

11.12.3. Remote Java Connection into EC2 Cluster Not Working
See Andrew's answer here, up on the user list: Remote Java client connection into EC2 instance.

11.13. HBase and Hadoop version issues

11.13.1. NoClassDefFoundError when trying to run 0.90.x on hadoop-
0.20.205.x (or hadoop-1.0.x)
HBase 0.90.x does not ship with hadoop-0.20.205.x, etc. To make it run, you need to replace the
hadoop jars that HBase shipped with in its lib directory with those of the Hadoop you want to run
HBase on. If even after replacing Hadoop jars you get the below exception: sv4r6s38:
Exception in thread "main" java.lang.NoClassDefFoundError:
org/apache/commons/configuration/Configuration sv4r6s38: at
org.apache.hadoop.metrics2.lib.DefaultMetricsSystem.<init>(Default
MetricsSystem.java:37) sv4r6s38: at
org.apache.hadoop.metrics2.lib.DefaultMetricsSystem.<clinit>(Defau
ltMetricsSystem.java:34) sv4r6s38: at
org.apache.hadoop.security.UgiInstrumentation.create(UgiInstrument
ation.java:51) sv4r6s38: at
org.apache.hadoop.security.UserGroupInformation.initialize(UserGro
upInformation.java:209) sv4r6s38: at
org.apache.hadoop.security.UserGroupInformation.ensureInitialized(
UserGroupInformation.java:177) sv4r6s38: at
org.apache.hadoop.security.UserGroupInformation.isSecurityEnabled(
UserGroupInformation.java:229) sv4r6s38: at
org.apache.hadoop.security.KerberosName.<clinit>(KerberosName.java
:83) sv4r6s38: at
org.apache.hadoop.security.UserGroupInformation.initialize(UserGro
upInformation.java:202) sv4r6s38: at
org.apache.hadoop.security.UserGroupInformation.ensureInitialized(
UserGroupInformation.java:177) you need to copy under hbase/lib, the
commons-configuration-X.jar you find in your Hadoop's lib directory. That should fix
the above complaint.

Chapter 12. HBase Operational Management
Table of Contents
12.1. HBase Tools and Utilities

12.1.1. HBase hbck
12.1.2. HFile Tool
12.1.3. WAL Tools
12.1.4. Compression Tool
12.1.5. CopyTable
12.1.6. Export
12.1.7. Import
12.1.8. RowCounter

12.2. Region Management
12.2.1. Major Compaction
12.2.2. Merge

12.3. Node Management

http://hbase.apache.org/book.html#node.management
http://hbase.apache.org/book.html#ops.regionmgt.merge
http://hbase.apache.org/book.html#ops.regionmgt.majorcompact
http://hbase.apache.org/book.html#ops.regionmgt
http://hbase.apache.org/book.html#rowcounter
http://hbase.apache.org/book.html#import
http://hbase.apache.org/book.html#export
http://hbase.apache.org/book.html#copytable
http://hbase.apache.org/book.html#compression.tool
http://hbase.apache.org/book.html#wal_tools
http://hbase.apache.org/book.html#hfile_tool2
http://hbase.apache.org/book.html#hbck
http://hbase.apache.org/book.html#tools
http://search-hadoop.com/m/sPdqNFAwyg2

12.3.1. Node Decommission
12.3.2. Rolling Restart

12.4. Metrics
12.4.1. Metric Setup
12.4.2. RegionServer Metrics

12.5. HBase Monitoring
12.6. Cluster Replication
12.7. HBase Backup

12.7.1. Full Shutdown Backup
12.7.2. Live Cluster Backup - Replication
12.7.3. Live Cluster Backup - CopyTable
12.7.4. Live Cluster Backup - Export

12.8. Capacity Planning
12.8.1. Storage
12.8.2. Regions

This chapter will cover operational tools and practices required of a running HBase cluster. The
subject of operations is related to the topics of Chapter 11, Troubleshooting and Debugging HBase ,
Chapter 10, Performance Tuning , and Chapter 2, Configuration but is a distinct topic in itself.

12.1. HBase Tools and Utilities
Here we list HBase tools for administration, analysis, fixup, and debugging.

12.1.1. HBase hbck

An fsck for your HBase install
To run hbck against your HBase cluster run
$./bin/hbase hbck

At the end of the commands output it prints OK or INCONSISTENCY. If your cluster reports
inconsistencies, pass -details to see more detail emitted. If inconsistencies, run hbck a few times
because the inconsistency may be transient (e.g. cluster is starting up or a region is splitting).
Passing -fix may correct the inconsistency (This latter is an experimental feature).

12.1.2. HFile Tool
See Section 8.7.5.2.2, “HFile Tool” .

12.1.3. WAL Tools

12.1.3.1. HLog tool

The main method on HLog offers manual split and dump facilities. Pass it WALs or the product of a
split, the content of the recovered.edits. directory.

You can get a textual dump of a WAL file content by doing the following:
 $./bin/hbase org.apache.hadoop.hbase.regionserver.wal.HLog --dump
hdfs://example.org:8020/hbase/.logs/example.org,60020,1283516293161/10.10.21.10%
3A60020.1283973724012

http://hbase.apache.org/book.html#hfile_tool
http://hbase.apache.org/book.html#configuration
http://hbase.apache.org/book.html#performance
http://hbase.apache.org/book.html#trouble
http://hbase.apache.org/book.html#ops.capacity.regions
http://hbase.apache.org/book.html#ops.capacity.storage
http://hbase.apache.org/book.html#ops.capacity
http://hbase.apache.org/book.html#ops.backup.live.export
http://hbase.apache.org/book.html#ops.backup.live.copytable
http://hbase.apache.org/book.html#ops.backup.live.replication
http://hbase.apache.org/book.html#ops.backup.fullshutdown
http://hbase.apache.org/book.html#ops.backup
http://hbase.apache.org/book.html#cluster_replication
http://hbase.apache.org/book.html#ops.monitoring
http://hbase.apache.org/book.html#rs_metrics
http://hbase.apache.org/book.html#metric_setup
http://hbase.apache.org/book.html#hbase_metrics
http://hbase.apache.org/book.html#rolling
http://hbase.apache.org/book.html#decommission

The return code will be non-zero if issues with the file so you can test wholesomeness of file by
redirecting STDOUT to /dev/null and testing the program return.

Similarly you can force a split of a log file directory by doing:
 $./bin/hbase org.apache.hadoop.hbase.regionserver.wal.HLog --split
hdfs://example.org:8020/hbase/.logs/example.org,60020,1283516293161/

12.1.4. Compression Tool
See Section 12.1.4, “Compression Tool” .

12.1.5. CopyTable
CopyTable is a utility that can copy part or of all of a table, either to the same cluster or another
cluster. The usage is as follows:
$ bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable [--rs.class=CLASS] [--
rs.impl=IMPL] [--starttime=X] [--endtime=Y] [--new.name=NEW] [--peer.adr=ADR]
tablename

Options:

 rs.class hbase.regionserver.class of the peer cluster. Specify if different from current
cluster.

 rs.impl hbase.regionserver.impl of the peer cluster.
 starttime Beginning of the time range. Without endtime means starttime to forever.
 endtime End of the time range. Without endtime means starttime to forever.
 versions Number of cell versions to copy.
 new.name New table's name.
 peer.adr Address of the peer cluster given in the format

hbase.zookeeper.quorum:hbase.zookeeper.client.port:zookeeper.znode.parent
 families Comma-separated list of ColumnFamilies to copy.
 all.cells Also copy delete markers and uncollected deleted cells (advanced option).

Args:

 tablename Name of table to copy.

Example of copying 'TestTable' to a cluster that uses replication for a 1 hour window:
$ bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable
--rs.class=org.apache.hadoop.hbase.ipc.ReplicationRegionInterface
--
rs.impl=org.apache.hadoop.hbase.regionserver.replication.ReplicationRegionServer
--starttime=1265875194289 --endtime=1265878794289
--peer.adr=server1,server2,server3:2181:/hbase TestTable

Note: caching for the input Scan is configured via hbase.client.scanner.caching in the
job configuration.

12.1.6. Export
Export is a utility that will dump the contents of table to HDFS in a sequence file. Invoke via:
$ bin/hbase org.apache.hadoop.hbase.mapreduce.Export <tablename> <outputdir>
[<versions> [<starttime> [<endtime>]]]

http://hbase.apache.org/book.html#compression.tool

Note: caching for the input Scan is configured via hbase.client.scanner.caching in the
job configuration.

12.1.7. Import
Import is a utility that will load data that has been exported back into HBase. Invoke via:
$ bin/hbase org.apache.hadoop.hbase.mapreduce.Import <tablename> <inputdir>

12.1.8. RowCounter
RowCounter is a utility that will count all the rows of a table. This is a good utility to use as a sanity
check to ensure that HBase can read all the blocks of a table if there are any concerns of metadata
inconsistency.
$ bin/hbase org.apache.hadoop.hbase.mapreduce.RowCounter <tablename> [<column1>
<column2>...]

Note: caching for the input Scan is configured via hbase.client.scanner.caching in the
job configuration.

12.2. Region Management

12.2.1. Major Compaction
Major compactions can be requested via the HBase shell or HBaseAdmin.majorCompact.

Note: major compactions do NOT do region merges. See Section 8.7.5.5, “Compaction” for more
information about compactions.

12.2.2. Merge
Merge is a utility that can merge adjoining regions in the same table (see
org.apache.hadoop.hbase.util.Merge).
$ bin/hbase org.apache.hbase.util.Merge <tablename> <region1> <region2>

If you feel you have too many regions and want to consolidate them, Merge is the utility you need.
Merge must run be done when the cluster is down. See the O'Reilly HBase Book for an example of
usage.

12.3. Node Management

12.3.1. Node Decommission
You can stop an individual RegionServer by running the following script in the HBase directory on
the particular node:
$./bin/hbase-daemon.sh stop regionserver

The RegionServer will first close all regions and then shut itself down. On shutdown, the
RegionServer's ephemeral node in ZooKeeper will expire. The master will notice the RegionServer
gone and will treat it as a 'crashed' server; it will reassign the nodes the RegionServer was carrying.

http://ofps.oreilly.com/titles/9781449396107/performance.html
http://hbase.apache.org/book.html#compaction
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/HBaseAdmin.html#majorCompact(java.lang.String)

Disable the Load Balancer before Decommissioning a node
If the load balancer runs while a node is shutting down, then there could be
contention between the Load Balancer and the Master's recovery of the just
decommissioned RegionServer. Avoid any problems by disabling the balancer first.
See Load Balancer below.

A downside to the above stop of a RegionServer is that regions could be offline for a good period of
time. Regions are closed in order. If many regions on the server, the first region to close may not be
back online until all regions close and after the master notices the RegionServer's znode gone. In
HBase 0.90.2, we added facility for having a node gradually shed its load and then shutdown itself
down. HBase 0.90.2 added the graceful_stop.sh script. Here is its usage:
$./bin/graceful_stop.sh
Usage: graceful_stop.sh [--config &conf-dir>] [--restart] [--reload] [--thrift]
[--rest] &hostname>
 thrift If we should stop/start thrift before/after the hbase stop/start
 rest If we should stop/start rest before/after the hbase stop/start
 restart If we should restart after graceful stop
 reload Move offloaded regions back on to the stopped server
 debug Move offloaded regions back on to the stopped server
 hostname Hostname of server we are to stop

To decommission a loaded RegionServer, run the following:
$./bin/graceful_stop.sh HOSTNAME

where HOSTNAME is the host carrying the RegionServer you would decommission.

On HOSTNAME
The HOSTNAME passed to graceful_stop.sh must match the hostname that
hbase is using to identify RegionServers. Check the list of RegionServers in the
master UI for how HBase is referring to servers. Its usually hostname but can also be
FQDN. Whatever HBase is using, this is what you should pass the
graceful_stop.sh decommission script. If you pass IPs, the script is not yet
smart enough to make a hostname (or FQDN) of it and so it will fail when it checks
if server is currently running; the graceful unloading of regions will not run.

The graceful_stop.sh script will move the regions off the decommissioned RegionServer one
at a time to minimize region churn. It will verify the region deployed in the new location before it
will moves the next region and so on until the decommissioned server is carrying zero regions. At
this point, the graceful_stop.sh tells the RegionServer stop. The master will at this point
notice the RegionServer gone but all regions will have already been redeployed and because the
RegionServer went down cleanly, there will be no WAL logs to split.

Load Balancer
It is assumed that the Region Load Balancer is disabled while the graceful_stop
script runs (otherwise the balancer and the decommission script will end up fighting
over region deployments). Use the shell to disable the balancer:
hbase(main):001:0> balance_switch false
true
0 row(s) in 0.3590 seconds

This turns the balancer OFF. To reenable, do:

http://hbase.apache.org/book.html#lb

hbase(main):001:0> balance_switch true
false
0 row(s) in 0.3590 seconds

12.3.2. Rolling Restart
You can also ask this script to restart a RegionServer after the shutdown AND move its old regions
back into place. The latter you might do to retain data locality. A primitive rolling restart might be
effected by running something like the following:
$ for i in `cat conf/regionservers|sort`; do ./bin/graceful_stop.sh --restart
--reload --debug $i; done &> /tmp/log.txt &

Tail the output of /tmp/log.txt to follow the scripts progress. The above does RegionServers
only. Be sure to disable the load balancer before doing the above. You'd need to do the master
update separately. Do it before you run the above script. Here is a pseudo-script for how you might
craft a rolling restart script:

1. Untar your release, make sure of its configuration and then rsync it across the cluster. If this
is 0.90.2, patch it with HBASE-3744 and HBASE-3756.

2. Run hbck to ensure the cluster consistent
$./bin/hbase hbck

Effect repairs if inconsistent.

3. Restart the Master:
$./bin/hbase-daemon.sh stop master; ./bin/hbase-daemon.sh start master

4. Disable the region balancer:
$ echo "balance_switch false" | ./bin/hbase shell

5. Run the graceful_stop.sh script per RegionServer. For example:
$ for i in `cat conf/regionservers|sort`; do ./bin/graceful_stop.sh
--restart --reload --debug $i; done &> /tmp/log.txt &

If you are running thrift or rest servers on the RegionServer, pass --thrift or --rest options
(See usage for graceful_stop.sh script).

6. Restart the Master again. This will clear out dead servers list and reenable the balancer.

7. Run hbck to ensure the cluster is consistent.

12.4. Metrics

12.4.1. Metric Setup
See Metrics for an introduction and how to enable Metrics emission.

http://hbase.apache.org/metrics.html

12.4.2. RegionServer Metrics

12.4.2.1. hbase.regionserver.blockCacheCount
Block cache item count in memory. This is the number of blocks of StoreFiles (HFiles) in the cache.

12.4.2.2. hbase.regionserver.blockCacheFree
Block cache memory available (bytes).

12.4.2.3. hbase.regionserver.blockCacheHitRatio
Block cache hit ratio (0 to 100). TODO: describe impact to ratio where read requests that have
cacheBlocks=false

12.4.2.4. hbase.regionserver.blockCacheSize
Block cache size in memory (bytes). i.e., memory in use by the BlockCache

12.4.2.5. hbase.regionserver.compactionQueueSize
Size of the compaction queue. This is the number of Stores in the RegionServer that have been
targeted for compaction.

12.4.2.6. hbase.regionserver.fsReadLatency_avg_time
Filesystem read latency (ms). This is the average time to read from HDFS.

12.4.2.7. hbase.regionserver.fsReadLatency_num_ops
TODO

12.4.2.8. hbase.regionserver.fsSyncLatency_avg_time
Filesystem sync latency (ms)

12.4.2.9. hbase.regionserver.fsSyncLatency_num_ops
TODO

12.4.2.10. hbase.regionserver.fsWriteLatency_avg_time
Filesystem write latency (ms)

12.4.2.11. hbase.regionserver.fsWriteLatency_num_ops
TODO

12.4.2.12. hbase.regionserver.memstoreSizeMB
Sum of all the memstore sizes in this RegionServer (MB)

12.4.2.13. hbase.regionserver.regions
Number of regions served by the RegionServer

12.4.2.14. hbase.regionserver.requests
Total number of read and write requests. Requests correspond to RegionServer RPC calls, thus a
single Get will result in 1 request, but a Scan with caching set to 1000 will result in 1 request for
each 'next' call (i.e., not each row). A bulk-load request will constitute 1 request per HFile.

12.4.2.15. hbase.regionserver.storeFileIndexSizeMB
Sum of all the StoreFile index sizes in this RegionServer (MB)

12.4.2.16. hbase.regionserver.stores
Number of Stores open on the RegionServer. A Store corresponds to a ColumnFamily. For example,
if a table (which contains the column family) has 3 regions on a RegionServer, there will be 3 stores
open for that column family.

12.4.2.17. hbase.regionserver.storeFiles
Number of StoreFiles open on the RegionServer. A store may have more than one StoreFile (HFile).

12.5. HBase Monitoring
TODO

12.6. Cluster Replication
See Cluster Replication.

12.7. HBase Backup
There are two broad strategies for performing HBase backups: backing up with a full cluster
shutdown, and backing up on a live cluster. Each approach has pros and cons.

For additional information, see HBase Backup Options over on the Sematext Blog.

12.7.1. Full Shutdown Backup
Some environments can tolerate a periodic full shutdown of their HBase cluster, for example if it is
being used a back-end analytic capacity and not serving front-end web-pages. The benefits are that
the NameNode/Master are RegionServers are down, so there is no chance of missing any in-flight
changes to either StoreFiles or metadata. The obvious con is that the cluster is down. The steps
include:

12.7.1.1. Stop HBase

12.7.1.2. Distcp
Distcp could be used to either copy the contents of the HBase directory in HDFS to either the same
cluster in another directory, or to a different cluster.

Note: Distcp works in this situation because the cluster is down and there are no in-flight edits to
files. Distcp-ing of files in the HBase directory is not generally recommended on a live cluster.

http://blog.sematext.com/2011/03/11/hbase-backup-options/
http://hbase.apache.org/replication.html

12.7.1.3. Restore (if needed)
The backup of the hbase directory from HDFS is copied onto the 'real' hbase directory via distcp.
The act of copying these files creates new HDFS metadata, which is why a restore of the
NameNode edits from the time of the HBase backup isn't required for this kind of restore, because
it's a restore (via distcp) of a specific HDFS directory (i.e., the HBase part) not the entire HDFS
file-system.

12.7.2. Live Cluster Backup - Replication
This approach assumes that there is a second cluster. See the HBase page on replication for more
information.

12.7.3. Live Cluster Backup - CopyTable
The Section 12.1.5, “CopyTable” utility could either be used to copy data from one table to another
on the same cluster, or to copy data to another table on another cluster.

Since the cluster is up, there is a risk that edits could be missed in the copy process.

12.7.4. Live Cluster Backup - Export
The Section 12.1.6, “Export” approach dumps the content of a table to HDFS on the same cluster.
To restore the data, the Section 12.1.7, “Import” utility would be used.

Since the cluster is up, there is a risk that edits could be missed in the export process.

12.8. Capacity Planning

12.8.1. Storage
A common question for HBase administrators is estimating how much storage will be required for
an HBase cluster. There are several apsects to consider, the most important of which is what data
load into the cluster. Start with a solid understanding of how HBase handles data internally
(KeyValue).

12.8.1.1. KeyValue
HBase storage will be dominated by KeyValues. See Section 8.7.5.4, “KeyValue” and Section 6.3.2,
“Try to minimize row and column sizes” for how HBase stores data internally.

It is critical to understand that there is a KeyValue instance for every attribute stored in a row, and
the rowkey-length, ColumnFamily name-length and attribute lengths will drive the size of the
database more than any other factor.

12.8.1.2. StoreFiles and Blocks
KeyValue instances are aggregated into blocks, and the blocksize is configurable on a per-
ColumnFamily basis. Blocks are aggregated into StoreFile's. See Section 8.7, “Regions” .

12.8.1.3. HDFS Block Replication
Because HBase runs on top of HDFS, factor in HDFS block replication into storage calculations.

http://hbase.apache.org/book.html#regions.arch
http://hbase.apache.org/book.html#keysize
http://hbase.apache.org/book.html#keysize
http://hbase.apache.org/book.html#keyvalue
http://hbase.apache.org/book.html#import
http://hbase.apache.org/book.html#export
http://hbase.apache.org/book.html#copytable
http://hbase.apache.org/replication.html

12.8.2. Regions
Another common question for HBase administrators is determining the right number of regions per
RegionServer. This affects both storage and hardware planning. See Section 10.4.1, “Number of
Regions”.

Chapter 13. Building and Developing HBase
Table of Contents
13.1. HBase Repositories

13.1.1. SVN
13.1.2. Git

13.2. IDEs
13.2.1. Eclipse

13.3. Building HBase
13.3.1. Building in snappy compression support
13.3.2. Adding an HBase release to Apache's Maven Repository
13.3.3. Build Gotchas

13.4. Tests
13.4.1. Unit Tests
13.4.2. Integration Tests

13.5. Maven Build Commands
13.5.1. Compile
13.5.2. Running all or individual Unit Tests
13.5.3. Running all or individual Integration Tests
13.5.4. To build against hadoop 0.22.x or 0.23.x

13.6. Getting Involved
13.6.1. Mailing Lists
13.6.2. Jira

13.7. Developing
13.7.1. Codelines
13.7.2. Unit Tests

13.8. Submitting Patches
13.8.1. Create Patch
13.8.2. Patch File Naming
13.8.3. Unit Tests
13.8.4. Attach Patch to Jira
13.8.5. Common Patch Feedback
13.8.6. ReviewBoard
13.8.7. Committing Patches

This chapter will be of interest only to those building and developing HBase (i.e., as opposed to just
downloading the latest distribution).

13.1. HBase Repositories

13.1.1. SVN
svn co http://svn.apache.org/repos/asf/hbase/trunk hbase-core-trunk

http://hbase.apache.org/book.html#committing.patches
http://hbase.apache.org/book.html#reviewboard
http://hbase.apache.org/book.html#common.patch.feedback
http://hbase.apache.org/book.html#submitting.patches.jira
http://hbase.apache.org/book.html#submitting.patches.tests
http://hbase.apache.org/book.html#submitting.patches.naming
http://hbase.apache.org/book.html#submitting.patches.create
http://hbase.apache.org/book.html#submitting.patches
http://hbase.apache.org/book.html#unit.tests
http://hbase.apache.org/book.html#codelines
http://hbase.apache.org/book.html#developing
http://hbase.apache.org/book.html#jira
http://hbase.apache.org/book.html#mailing.list
http://hbase.apache.org/book.html#getting.involved
http://hbase.apache.org/book.html#maven.build.hadoop
http://hbase.apache.org/book.html#maven.build.commanas.integration.tests
http://hbase.apache.org/book.html#maven.build.commands.unitall
http://hbase.apache.org/book.html#maven.build.commands.compile
http://hbase.apache.org/book.html#maven.build.commands
http://hbase.apache.org/book.html#integration.tests
http://hbase.apache.org/book.html#hbase.unittests
http://hbase.apache.org/book.html#hbase.tests
http://hbase.apache.org/book.html#build.gotchas
http://hbase.apache.org/book.html#mvn_repo
http://hbase.apache.org/book.html#build.snappy
http://hbase.apache.org/book.html#build
http://hbase.apache.org/book.html#eclipse
http://hbase.apache.org/book.html#ides
http://hbase.apache.org/book.html#git
http://hbase.apache.org/book.html#svn
http://hbase.apache.org/book.html#repos
http://hbase.apache.org/book.html#perf.number.of.regions
http://hbase.apache.org/book.html#perf.number.of.regions

13.1.2. Git
git clone git://git.apache.org/hbase.git

13.2. IDEs

13.2.1. Eclipse

13.2.1.1. Code Formatting
See HBASE-3678 Add Eclipse-based Apache Formatter to HBase Wiki for an Eclipse formatter to
help ensure your code conforms to HBase'y coding convention. The issue includes instructions for
loading the attached formatter.

Also, no @author tags - that's a rule. Quality Javadoc comments are appreciated. And include the
Apache license.

13.2.1.2. Subversive Plugin
Download and install the Subversive plugin.

Set up an SVN Repository target from Section 13.1.1, “SVN” , then check out the code.

13.2.1.3. HBase Project Setup
To set up your Eclipse environment for HBase, close Eclipse and execute...
mvn eclipse:eclipse

... from your local HBase project directory in your workspace to generate some new .project
and .classpathfiles. Then reopen Eclipse.

13.2.1.4. Maven Plugin
Download and install the Maven plugin. For example, Help -> Install New Software -> (search for
Maven Plugin)

13.2.1.5. Maven Classpath Variable
The M2_REPO classpath variable needs to be set up for the project. This needs to be set to your
local Maven repository, which is usually ~/.m2/repository
If this classpath variable is not configured, you will see compile errors in Eclipse like this...
Description Resource Path Location Type
The project cannot be built until build path errors are resolved hbase
Unknown Java Problem
Unbound classpath variable: 'M2_REPO/asm/asm/3.1/asm-3.1.jar' in project 'hbase'
hbase Build path Build Path Problem
Unbound classpath variable: 'M2_REPO/com/github/stephenc/high-scale-lib/high-
scale-lib/1.1.1/high-scale-lib-1.1.1.jar' in project 'hbase' hbase
Build path Build Path Problem
Unbound classpath variable: 'M2_REPO/com/google/guava/guava/r09/guava-r09.jar'
in project 'hbase' hbase Build path Build Path Problem
Unbound classpath variable: 'M2_REPO/com/google/protobuf/protobuf-

http://hbase.apache.org/book.html#svn
https://issues.apache.org/jira/browse/HBASE-3678

java/2.3.0/protobuf-java-2.3.0.jar' in project 'hbase' hbase
Build path Build Path Problem Unbound classpath variable:

13.2.1.6. Import via m2eclipse
If you install the m2eclipse and import the HBase pom.xml in your workspace, you will have to fix
your eclipse Build Path. Remove target folder, add target/generated-jamon and
target/generated-sources/java folders. You may also remove from your Build Path the
exclusions on the src/main/resources and src/test/resources to avoid error message
in the console 'Failed to execute goal org.apache.maven.plugins:maven-antrun-plugin:1.6:run
(default) on project hbase: 'An Ant BuildException has occured: Replace: source file
.../target/classes/hbase-default.xml doesn't exist'. This will also reduce the eclipse build cycles and
make your life easier when developing.

13.2.1.7. Eclipse Known Issues
Eclipse will currently complain about Bytes.java. It is not possible to turn these errors off.

Description Resource Path Location Type
Access restriction: The method arrayBaseOffset(Class) from the type Unsafe is
not accessible due to restriction on required library
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Classes/classes.jar
Bytes.java /hbase/src/main/java/org/apache/hadoop/hbase/util line
1061 Java Problem
Access restriction: The method arrayIndexScale(Class) from the type Unsafe is
not accessible due to restriction on required library
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Classes/classes.jar
Bytes.java /hbase/src/main/java/org/apache/hadoop/hbase/util line
1064 Java Problem
Access restriction: The method getLong(Object, long) from the type Unsafe is not
accessible due to restriction on required library
/System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Classes/classes.jar
Bytes.java /hbase/src/main/java/org/apache/hadoop/hbase/util line
1111 Java Problem

13.2.1.8. Eclipse - More Information
For additional information on setting up Eclipse for HBase development on Windows, see Michael
Morello's blog on the topic.

13.3. Building HBase
This section will be of interest only to those building HBase from source.

13.3.1. Building in snappy compression support
Pass -Dsnappy to trigger the snappy maven profile for building snappy native libs into hbase.

13.3.2. Adding an HBase release to Apache's Maven Repository
Follow the instructions at Publishing Maven Artifacts. The 'trick' to making it all work is answering
the questions put to you by the mvn release plugin properly, making sure it is using the actual
branch AND before doing the mvn release:perform step, VERY IMPORTANT, hand edit the

http://www.apache.org/dev/publishing-maven-artifacts.html
http://michaelmorello.blogspot.com/2011/09/hbase-subversion-eclipse-windows.html
http://michaelmorello.blogspot.com/2011/09/hbase-subversion-eclipse-windows.html

release.properties file that was put under ${HBASE_HOME} by the previous step, release:perform.
You need to edit it to make it point at right locations in SVN.

If you see run into the below, its because you need to edit version in the pom.xml and add
-SNAPSHOT to the version (and commit).
[INFO] Scanning for projects...
[INFO] Searching repository for plugin with prefix: 'release'.
[INFO] --
[INFO] Building HBase
[INFO] task-segment: [release:prepare] (aggregator-style)
[INFO] --
[INFO] [release:prepare {execution: default-cli}]
[INFO] --
[ERROR] BUILD FAILURE
[INFO] --
[INFO] You don't have a SNAPSHOT project in the reactor projects list.
[INFO] --
[INFO] For more information, run Maven with the -e switch
[INFO] --
[INFO] Total time: 3 seconds
[INFO] Finished at: Sat Mar 26 18:11:07 PDT 2011
[INFO] Final Memory: 35M/423M
[INFO] ---

13.3.3. Build Gotchas
If you see Unable to find resource 'VM_global_library.vm', ignore it. Its not an
error. It is officially ugly though.

13.4. Tests
HBase tests are divided into two groups: Section 13.4.1, “Unit Tests” and Section 13.4.2,
“Integration Tests”. Unit tests are run by the Apache Continuous Integration server and by
developers when they are verifying a fix does not cause breakage elsewhere in the code base.
Integration tests are generally long-running tests that are invoked out-of-bound of the CI server
when you want to do more intensive testing beyond the unit test set. Integration tests, for example,
are run proving a release candidate or a production deploy. Below we go into more detail on each of
these test types. Developers at a minimum should familiarize themselves with the unit test detail;
unit tests in HBase have a character not usually seen in other projects.

13.4.1. Unit Tests
HBase unit tests are subdivided into three categories: small, medium and large, with corresponding
JUnit categories: SmallTests, MediumTests, LargeTests. JUnit categories are denoted
using java annotations and look like this in your unit test code.
...
@Category(SmallTests.class)
public class TestHRegionInfo {

 @Test
 public void testCreateHRegionInfoName() throws Exception {
 // ...
 }
}

The above example shows how to mark a test as belonging to the small category.

http://www.junit.org/node/581
http://hbase.apache.org/book.html#integration.tests
http://hbase.apache.org/book.html#integration.tests
http://hbase.apache.org/book.html#hbase.unittests
http://jira.codehaus.org/browse/MSITE-286

Small tests are executed in a shared JVM. We put in this category all the tests that can be executed
quickly in a shared JVM. The maximum execution time for a test is 15 seconds, and they do not use
a cluster. Medium tests represent tests that must be executed before proposing a patch. They are
designed to run in less than 30 minutes altogether, and are quite stable in their results. They are
designed to last less than 50 seconds individually. They can use a cluster, and each of them is
executed in a separate JVM. Large tests are everything else. They are typically integration-like tests
(yes, some large tests should be moved out to be HBase Section 13.4.2, “Integration Tests”),
regression tests for specific bugs, timeout tests, performance tests. They are executed before a
commit on the pre-integration machines. They can be run on the developer machine as well.

HBase uses a patched maven surefire plugin and maven profiles to implement its unit test
characterizations.

13.4.1.1. Running tests
Below we describe how to run the HBase junit categories.

13.4.1.1.1. Default: small and medium category tests

Running
mvn test

will execute all small tests in a single JVM and medium tests in a separate JVM for each test
instance. Medium tests are NOT executed if there is an error in a small test. Large tests are NOT
executed. There is one report for small tests, and one report for medium tests if they are executed.
To run small and medium tests with the security profile enabled, do
mvn test -P security

13.4.1.1.2. Running all tests

Running
mvn test -P runAllTests

will execute small tests in a single JVM then medium and large tests in a separate JVM for each
test. Medium and large tests are NOT executed if there is an error in a small test. Large tests are
NOT executed if there is an error in a small or medium test. There is one report for small tests, and
one report for medium and large tests if they are executed

13.4.1.1.3. Running a single test or all tests in a package

To run an individual test, e.g. MyTest, do
mvn test -P localTests -Dtest=MyTest

You can also pass multiple, individual tests as a comma-delimited list:
mvn test -P localTests -Dtest=MyTest1,MyTest2,MyTest3

You can also pass a package, which will run all tests under the package:
mvn test -P localTests -Dtest=org.apache.hadoop.hbase.client.*

To run a single test with the security profile enabled:
mvn test -P security,localTests -Dtest=TestGet

http://hbase.apache.org/book.html#integration.tests

The -P localTests will remove the JUnit category effect (without this specific profile, the
profiles are taken into account). It will actually use the official release of surefire and the old
connector (The HBase build uses a patched version of the maven surefire plugin). junit tests are
executed in separated JVM. You will see a new message at the end of the report: "[INFO] Tests are
skipped". It's harmless.

13.4.1.1.4. Other test invocation permutations

Running
mvn test -P runSmallTests

will execute small tests only, in a single JVM.

Running
mvn test -P runMediumTests

will execute medium tests in a single JVM.

Running
mvn test -P runLargeTests

execute medium tests in a single JVM.

It's also possible to use the script hbasetests.sh. This script runs the medium and large tests in
parallel with two maven instances, and provide a single report. It must be executed from the
directory which contains the pom.xml.

For example running
./dev-support/hbasetests.sh

will execute small and medium tests. Running
./dev-support/hbasetests.sh runAllTests

will execute all tests. Running
./dev-support/hbasetests.sh replayFailed

will rerun the failed tests a second time, in a separate jvm and without parallelisation.

13.4.1.2. Writing Tests

13.4.1.2.1. General rules

 As much as possible, tests should be written as category small tests.
 All tests must be written to support parallel execution on the same machine, hence they

should not use shared resources as fixed ports or fixed file names.
 Tests should not overlog. More than 100 lines/second makes the logs complex to read and

use i/o that are hence not available for the other tests.
 Tests can be written with HBaseTestingUtility. This class offers helper functions to

create a temp directory and do the cleanup, or to start a cluster. Categories and execution
time

 All tests must be categorized, if not they could be skipped.
 All tests should be written to be as fast as possible.
 Small category tests should last less than 15 seconds, and must not have any side effect.

 Medium category tests should last less than 50 seconds.
 Large category tests should last less than 3 minutes. This should ensure a good

parallelization for people using it, and ease the analysis when the test fails.

13.4.1.2.2. Sleeps in tests

Whenever possible, tests should not use Thread.sleep, but rather waiting for the real event they
need. This is faster and clearer for the reader. Tests should not do a Thread.sleep without
testing an ending condition. This allows understanding what the test is waiting for. Moreover, the
test will work whatever the machine performance is. Sleep should be minimal to be as fast as
possible. Waiting for a variable should be done in a 40ms sleep loop. Waiting for a socket operation
should be done in a 200 ms sleep loop.

13.4.1.2.3. Tests using a cluster

Tests using a HRegion do not have to start a cluster: A region can use the local file system.
Start/stopping a cluster cost around 10 seconds. They should not be started per test method but per
test class. Started cluster must be shutdown using
HBaseTestingUtility#shutdownMiniCluster, which cleans the directories. As most as
possible, tests should use the default settings for the cluster. When they don't, they should document
it. This will allow to share the cluster later.

13.4.2. Integration Tests
HBase integration Tests are tests that are beyond HBase unit tests. They are generally long-lasting,
sizeable (the test can be asked to 1M rows or 1B rows), targetable (they can take configuration that
will point them at the ready-made cluster they are to run against; integration tests do not include
cluster start/stop code), and verifying success, integration tests rely on public APIs only; they do not
attempt to examine server internals asserring success/fail. Integration tests are what you would run
when you need to more elaborate proofing of a release candidate beyond what unit tests can do.
They are not generally run on the Apache Continuous Integration build server.

Integration tests currently live under the src/test directory and will match the regex:
**/IntegrationTest*.java.

HBase 0.92 added a verify maven target. Invoking it, for example by doing mvn verify, will
run all the phases up to and including the verify phase via the maven failsafe plugin, running all the
above mentioned HBase unit tests as well as tests that are in the HBase integration test group. If you
just want to run the integration tests, you need to run two commands. First:
mvn failsafe:integration-test

This actually runs ALL the integration tests.

Note
This command will always output BUILD SUCCESS even if there are test failures.

At this point, you could grep the output by hand looking for failed tests. However, maven will do
this for us; just use:
mvn failsafe:verify

The above command basically looks at all the test results (so don't remove the 'target' directory) for
test failures and reports the results.

http://maven.apache.org/plugins/maven-failsafe-plugin/

13.4.2.1. Running a subset of Integration tests
This is very similar to how you specify running a subset of unit tests (see above). To just run
IntegrationTestClassXYZ.java, use:
mvn failsafe:integration-test -Dtest=IntegrationTestClassXYZ

Pretty similar, right? The next thing you might want to do is run groups of integration tests, say all
integration tests that are named IntegrationTestClassX*.java:
mvn failsafe:integration-test -Dtest=*ClassX*

This runs everything that is an integration test that matches *ClassX*. This means anything
matching: "**/IntegrationTest*ClassX*". You can also run multiple groups of integration tests using
comma-delimited lists (similar to unit tests). Using a list of matches still supports full regex
matching for each of the groups.This would look something like:
mvn failsafe:integration-test -Dtest=*ClassX*, *ClassY

13.5. Maven Build Commands
All commands executed from the local HBase project directory.

Note: use Maven 3 (Maven 2 may work but we suggest you use Maven 3).

13.5.1. Compile
mvn compile

13.5.2. Running all or individual Unit Tests
See the Section 13.4.1.1, “Running tests” section above in Section 13.4.1, “Unit Tests”

13.5.3. Running all or individual Integration Tests
See Section 13.4.2, “Integration Tests”

13.5.4. To build against hadoop 0.22.x or 0.23.x
mvn -Dhadoop.profile=22 ...

That is, designate build with hadoop.profile 22. Pass 23 for hadoop.profile to build against hadoop
0.23. Tests do not all pass as of this writing so you may need ot pass -DskipTests unless you are
inclined to fix the failing tests.

13.6. Getting Involved
HBase gets better only when people contribute!

As HBase is an Apache Software Foundation project, see Appendix F, HBase and the Apache
Software Foundation for more information about how the ASF functions.

http://hbase.apache.org/book.html#asf
http://hbase.apache.org/book.html#asf
http://hbase.apache.org/book.html#integration.tests
http://hbase.apache.org/book.html#hbase.unittests
http://hbase.apache.org/book.html#hbase.unittests.cmds

13.6.1. Mailing Lists
Sign up for the dev-list and the user-list. See the mailing lists page. Posing questions - and helping
to answer other people's questions - is encouraged! There are varying levels of experience on both
lists so patience and politeness are encouraged (and please stay on topic.)

13.6.2. Jira
Check for existing issues in Jira. If it's either a new feature request, enhancement, or a bug, file a
ticket.

13.6.2.1. Jira Priorities
The following is a guideline on setting Jira issue priorities:

 Blocker: Should only be used if the issue WILL cause data loss or cluster instability reliably.
 Critical: The issue described can cause data loss or cluster instability in some cases.
 Major: Important but not tragic issues, like updates to the client API that will add a lot of

much-needed functionality or significant bugs that need to be fixed but that don't cause data
loss.

 Minor: Useful enhancements and annoying but not damaging bugs.
 Trivial: Useful enhancements but generally cosmetic.

13.6.2.2. Code Blocks in Jira Comments
A commonly used macro in Jira is {code}. If you do this in a Jira comment...
{code}
 code snippet
{code}

... Jira will format the code snippet like code, instead of a regular comment. It improves readability.

13.7. Developing

13.7.1. Codelines
Most development is done on TRUNK. However, there are branches for minor releases (e.g., 0.90.1,
0.90.2, and 0.90.3 are on the 0.90 branch).

If you have any questions on this just send an email to the dev dist-list.

13.7.2. Unit Tests
In HBase we use JUnit 4. If you need to run miniclusters of HDFS, ZooKeeper, HBase, or
MapReduce testing, be sure to checkout the HBaseTestingUtility. Alex Baranau of Sematext
describes how it can be used in HBase Case-Study: Using HBaseTestingUtility for Local Testing
and Development (2010).

13.7.2.1. Mockito
Sometimes you don't need a full running server unit testing. For example, some methods can make
do with a a org.apache.hadoop.hbase.Server instance or a
org.apache.hadoop.hbase.master.MasterServices Interface reference rather than a

http://blog.sematext.com/2010/08/30/hbase-case-study-using-hbasetestingutility-for-local-testing-development/
http://blog.sematext.com/2010/08/30/hbase-case-study-using-hbasetestingutility-for-local-testing-development/
http://junit.org/
https://issues.apache.org/jira/browse/HBASE
http://hbase.apache.org/mail-lists.html

full-blown org.apache.hadoop.hbase.master.HMaster. In these cases, you maybe able
to get away with a mocked Server instance. For example:
 TODO...

13.7.2.2. Code Standards
See Section 13.2.1.1, “Code Formatting” and Section 13.8.5, “Common Patch Feedback” .

13.8. Submitting Patches

13.8.1. Create Patch
Patch files can be easily generated from Eclipse, for example by selecting "Team -> Create Patch".
Patches can also be created by git diff and svn diff.

Please submit one patch-file per Jira. For example, if multiple files are changed make sure the
selected resource when generating the patch is a directory. Patch files can reflect changes in
multiple files.

Make sure you review Section 13.2.1.1, “Code Formatting” for code style.

13.8.2. Patch File Naming
The patch file should have the HBase Jira ticket in the name. For example, if a patch was submitted
for Foo.java, then a patch file called Foo_HBASE_XXXX.patch would be acceptable where
XXXX is the HBase Jira number.

If you generating from a branch, then including the target branch in the filename is advised, e.g.,
HBASE-XXXX-0.90.patch.

13.8.3. Unit Tests
Yes, please. Please try to include unit tests with every code patch (and especially new classes and
large changes). Make sure unit tests pass locally before submitting the patch.

Also, see Section 13.7.2.1, “Mockito” .

13.8.4. Attach Patch to Jira
The patch should be attached to the associated Jira ticket "More Actions -> Attach Files". Make sure
you click the ASF license inclusion, otherwise the patch can't be considered for inclusion.

Once attached to the ticket, click "Submit Patch" and the status of the ticket will change.
Committers will review submitted patches for inclusion into the codebase. Please understand that
not every patch may get committed, and that feedback will likely be provided on the patch. Fear
not, though, because the HBase community is helpful!

13.8.5. Common Patch Feedback
The following items are representative of common patch feedback. Your patch process will go faster
if these are taken into account before submission.

See the Java coding standards for more information on coding conventions in Java.

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://hbase.apache.org/book.html#mockito
http://hbase.apache.org/book.html#eclipse.code.formatting
http://hbase.apache.org/book.html#common.patch.feedback
http://hbase.apache.org/book.html#eclipse.code.formatting

13.8.5.1. Space Invaders
Rather than do this...
if (foo.equals(bar)) { // don't do this

... do this instead...
if (foo.equals(bar)) {

Also, rather than do this...
foo = barArray[i]; // don't do this

... do this instead...
foo = barArray[i];

13.8.5.2. Auto Generated Code
Auto-generated code in Eclipse often looks like this...
 public void readFields(DataInput arg0) throws IOException { // don't do this
 foo = arg0.readUTF(); // don't do this

... do this instead ...
 public void readFields(DataInput di) throws IOException {
 foo = di.readUTF();

See the difference? 'arg0' is what Eclipse uses for arguments by default.

13.8.5.3. Long Lines
Keep lines less than 80 characters.
Bar bar = foo.veryLongMethodWithManyArguments(argument1, argument2, argument3,
argument4, argument5); // don't do this

... do this instead ...
Bar bar = foo.veryLongMethodWithManyArguments(argument1,
 argument2, argument3,argument4, argument5);

... or this, whichever looks better ...
Bar bar = foo.veryLongMethodWithManyArguments(
 argument1, argument2, argument3,argument4, argument5);

13.8.5.4. Trailing Spaces
This happens more than people would imagine.
Bar bar = foo.getBar(); <--- imagine there's an extra space(s) after the
semicolon instead of a line break.

Make sure there's a line-break after the end of your code, and also avoid lines that have nothing but
whitespace.

13.8.5.5. Implementing Writable
Every class returned by RegionServers must implement Writable. If you are creating a new class
that needs to implement this interface, don't forget the default constructor.

13.8.5.6. Javadoc
This is also a very common feedback item. Don't forget Javadoc!

13.8.5.7. Javadoc - Useless Defaults
Don't just leave the @param arguments the way your IDE generated them. Don't do this...
 /**
 *
 * @param bar <---- don't do this!!!!
 * @return <---- or this!!!!
 */
 public Foo getFoo(Bar bar);

... either add something descriptive to the @param and @return lines, or just remove them. But the
preference is to add something descriptive and useful.

13.8.5.8. One Thing At A Time, Folks
If you submit a patch for one thing, don't do auto-reformatting or unrelated reformatting of code on
a completely different area of code.

Likewise, don't add unrelated cleanup or refactorings outside the scope of your Jira.

13.8.5.9. Ambigious Unit Tests
Make sure that you're clear about what you are testing in your unit tests and why.

13.8.6. ReviewBoard
Larger patches should go through ReviewBoard.

For more information on how to use ReviewBoard, see the ReviewBoard documentation.

13.8.7. Committing Patches
Committers do this. See How To Commit in the HBase wiki.

Commiters will also resolve the Jira, typically after the patch passes a build.

Appendix A. FAQ
A.1. General

When should I use HBase?
Are there other HBase FAQs?
Does HBase support SQL?

A.2. Architecture
How does HBase handle Region-RegionServer assignment and locality?

A.3. Configuration
How can I get started with my first cluster?
Where can I learn about the rest of the configuration options?

http://hbase.apache.org/book.html#faq.config.started
http://hbase.apache.org/book.html#faq.config.started
http://hbase.apache.org/book.html#faq.config
http://hbase.apache.org/book.html#faq.arch.regions
http://hbase.apache.org/book.html#faq.arch
http://hbase.apache.org/book.html#faq.sql
http://hbase.apache.org/book.html#d1556e8480
http://hbase.apache.org/book.html#d1556e8471
http://hbase.apache.org/book.html#d1556e8468
http://wiki.apache.org/hadoop/Hbase/HowToCommit
http://www.reviewboard.org/docs/manual/1.5/
http://reviews.apache.org/

A.4. Schema Design / Data Access
How should I design my schema in HBase?
How can I store (fill in the blank) in HBase?
How can I handle secondary indexes in HBase?
Can I change a table's rowkeys?
What APIs does HBase support?

A.5. MapReduce
How can I use MapReduce with HBase?

A.6. Performance and Troubleshooting
How can I improve HBase cluster performance?
How can I troubleshoot my HBase cluster?

A.7. Amazon EC2
I am running HBase on Amazon EC2 and...

A.8. Operations
How do I manage my HBase cluster?
How do I back up my HBase cluster?

A.9. HBase in Action
Where can I find interesting videos and presentations on HBase?

A.1. General
When should I use HBase?
Are there other HBase FAQs?
Does HBase support SQL?

When should I use HBase?

See the Section 8.1, “Overview” in the Architecture chapter.

Are there other HBase FAQs?

See the FAQ that is up on the wiki, HBase Wiki FAQ.

Does HBase support SQL?

Not really. SQL-ish support for HBase via Hive is in development, however Hive is based on
MapReduce which is not generally suitable for low-latency requests. See the Chapter 5, Data
Model section for examples on the HBase client.

A.2. Architecture
How does HBase handle Region-RegionServer assignment and locality?

How does HBase handle Region-RegionServer assignment and locality?

See Section 8.7, “Regions” .

http://hbase.apache.org/book.html#regions.arch
http://hbase.apache.org/book.html#faq.arch.regions
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/book.html#datamodel
http://hive.apache.org/
http://wiki.apache.org/hadoop/Hbase/FAQ
http://hbase.apache.org/book.html#arch.overview
http://hbase.apache.org/book.html#faq.sql
http://hbase.apache.org/book.html#d1556e8480
http://hbase.apache.org/book.html#d1556e8471
http://hbase.apache.org/book.html#d1556e8660
http://hbase.apache.org/book.html#d1556e8657
http://hbase.apache.org/book.html#d1556e8648
http://hbase.apache.org/book.html#d1556e8639
http://hbase.apache.org/book.html#d1556e8636
http://hbase.apache.org/book.html#d1556e8625
http://hbase.apache.org/book.html#ec2
http://hbase.apache.org/book.html#d1556e8613
http://hbase.apache.org/book.html#d1556e8604
http://hbase.apache.org/book.html#d1556e8601
http://hbase.apache.org/book.html#faq.mapreduce.use
http://hbase.apache.org/book.html#faq.mapreduce
http://hbase.apache.org/book.html#faq.apis
http://hbase.apache.org/book.html#faq.changing.rowkeys
http://hbase.apache.org/book.html#secondary.indices
http://hbase.apache.org/book.html#d1556e8549
http://hbase.apache.org/book.html#faq.design.schema
http://hbase.apache.org/book.html#faq.design

A.3. Configuration
How can I get started with my first cluster?
Where can I learn about the rest of the configuration options?

How can I get started with my first cluster?

See Section 1.2, “Quick Start” .

Where can I learn about the rest of the configuration options?

See Chapter 2, Configuration .

A.4. Schema Design / Data Access
How should I design my schema in HBase?
How can I store (fill in the blank) in HBase?
How can I handle secondary indexes in HBase?
Can I change a table's rowkeys?
What APIs does HBase support?

How should I design my schema in HBase?

See Chapter 5, Data Model and Chapter 6, HBase and Schema Design

How can I store (fill in the blank) in HBase?

See Section 6.5, “ Supported Datatypes ” .
How can I handle secondary indexes in HBase?

See Section 6.8, “ Secondary Indexes and Alternate Query Paths ”

Can I change a table's rowkeys?

This is a very common quesiton. You can't. See Section 6.3.5, “Immutability of Rowkeys” .

What APIs does HBase support?

See Chapter 5, Data Model , Section 8.3, “Client” and Section 9.1, “Non-Java Languages Talking
to the JVM”.

A.5. MapReduce
How can I use MapReduce with HBase?

How can I use MapReduce with HBase?

http://hbase.apache.org/book.html#faq.mapreduce.use
http://hbase.apache.org/book.html#nonjava.jvm
http://hbase.apache.org/book.html#nonjava.jvm
http://hbase.apache.org/book.html#client
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/book.html#changing.rowkeys
http://hbase.apache.org/book.html#secondary.indexes
http://hbase.apache.org/book.html#supported.datatypes
http://hbase.apache.org/book.html#schema
http://hbase.apache.org/book.html#datamodel
http://hbase.apache.org/book.html#faq.apis
http://hbase.apache.org/book.html#faq.changing.rowkeys
http://hbase.apache.org/book.html#secondary.indices
http://hbase.apache.org/book.html#d1556e8549
http://hbase.apache.org/book.html#faq.design.schema
http://hbase.apache.org/book.html#configuration
http://hbase.apache.org/book.html#quickstart
http://hbase.apache.org/book.html#faq.config.started
http://hbase.apache.org/book.html#faq.config.started

See Chapter 7, HBase and MapReduce

A.6. Performance and Troubleshooting
How can I improve HBase cluster performance?
How can I troubleshoot my HBase cluster?

How can I improve HBase cluster performance?

See Chapter 10, Performance Tuning .

How can I troubleshoot my HBase cluster?

See Chapter 11, Troubleshooting and Debugging HBase .

A.7. Amazon EC2
I am running HBase on Amazon EC2 and...

I am running HBase on Amazon EC2 and...

EC2 issues are a special case. See Troubleshooting Section 11.12, “Amazon EC2” and
Performance Section 10.10, “Amazon EC2” sections.

A.8. Operations
How do I manage my HBase cluster?
How do I back up my HBase cluster?

How do I manage my HBase cluster?

See Chapter 12, HBase Operational Management

How do I back up my HBase cluster?

See Section 12.7, “HBase Backup”

A.9. HBase in Action
Where can I find interesting videos and presentations on HBase?

Where can I find interesting videos and presentations on HBase?

See Appendix E, Other Information About HBase

http://hbase.apache.org/book.html#other.info
http://hbase.apache.org/book.html#d1556e8660
http://hbase.apache.org/book.html#ops.backup
http://hbase.apache.org/book.html#ops_mgt
http://hbase.apache.org/book.html#d1556e8648
http://hbase.apache.org/book.html#d1556e8639
http://hbase.apache.org/book.html#perf.ec2
http://hbase.apache.org/book.html#trouble.ec2
http://hbase.apache.org/book.html#d1556e8625
http://hbase.apache.org/book.html#trouble
http://hbase.apache.org/book.html#performance
http://hbase.apache.org/book.html#d1556e8613
http://hbase.apache.org/book.html#d1556e8604
http://hbase.apache.org/book.html#mapreduce

Appendix B. Compression In HBase
Table of Contents
B.1. CompressionTest Tool
B.2. hbase.regionserver.codecs
B.3. LZO
B.4. GZIP
B.5. SNAPPY

B.1. CompressionTest Tool
HBase includes a tool to test compression is set up properly. To run it, type /bin/hbase
org.apache.hadoop.hbase.util.CompressionTest. This will emit usage on how to
run the tool.

B.2. hbase.regionserver.codecs
To have a RegionServer test a set of codecs and fail-to-start if any code is missing or misinstalled,
add the configuration hbase.regionserver.codecs to your hbase-site.xml with a
value of codecs to test on startup. For example if the hbase.regionserver.codecs value is
lzo,gz and if lzo is not present or improperly installed, the misconfigured RegionServer will fail
to start.

Administrators might make use of this facility to guard against the case where a new server is added
to cluster but the cluster requires install of a particular coded.

B.3. LZO
Unfortunately, HBase cannot ship with LZO because of the licensing issues; HBase is Apache-
licensed, LZO is GPL. Therefore LZO install is to be done post-HBase install. See the Using LZO
Compression wiki page for how to make LZO work with HBase.

A common problem users run into when using LZO is that while initial setup of the cluster runs
smooth, a month goes by and some sysadmin goes to add a machine to the cluster only they'll have
forgotten to do the LZO fixup on the new machine. In versions since HBase 0.90.0, we should fail
in a way that makes it plain what the problem is, but maybe not.

See Section B.2, “ hbase.regionserver.codecs ” for a feature to help protect against
failed LZO install.

B.4. GZIP
GZIP will generally compress better than LZO though slower. For some setups, better compression
may be preferred. Java will use java's GZIP unless the native Hadoop libs are available on the
CLASSPATH; in this case it will use native compressors instead (If the native libs are NOT present,
you will see lots of Got brand-new compressor reports in your logs; see ???).

B.5. SNAPPY
If snappy is installed, HBase can make use of it (courtesy of hadoop-snappy [26]).

1. Build and install snappy on all nodes of your cluster.

http://hbase.apache.org/book.html#
http://hbase.apache.org/book.html#hbase.regionserver.codecs
http://wiki.apache.org/hadoop/UsingLzoCompression
http://wiki.apache.org/hadoop/UsingLzoCompression
http://hbase.apache.org/book.html#snappy.compression
http://hbase.apache.org/book.html#gzip.compression
http://hbase.apache.org/book.html#lzo.compression
http://hbase.apache.org/book.html#hbase.regionserver.codecs
http://hbase.apache.org/book.html#compression.test

2. Use CompressionTest to verify snappy support is enabled and the libs can be loaded ON
ALL NODES of your cluster:
$ hbase org.apache.hadoop.hbase.util.CompressionTest
hdfs://host/path/to/hbase snappy

3. Create a column family with snappy compression and verify it in the hbase shell:
$ hbase> create 't1', { NAME => 'cf1', COMPRESSION => 'SNAPPY' }
hbase> describe 't1'

In the output of the "describe" command, you need to ensure it lists "COMPRESSION =>
'SNAPPY'"

[26] See Alejandro's note up on the list on difference between Snappy in Hadoop and Snappy in
HBase

Appendix C. YCSB: The Yahoo! Cloud Serving Benchmark
and HBase
TODO: Describe how YCSB is poor for putting up a decent cluster load.

TODO: Describe setup of YCSB for HBase

Ted Dunning redid YCSB so its mavenized and added facility for verifying workloads. See Ted
Dunning's YCSB.

Appendix D. HFile format version 2
Table of Contents
D.1. Motivation
D.2. HFile format version 1 overview

D.2.1. Block index format in version 1
D.3. HBase file format with inline blocks (version 2)

D.3.1. Overview
D.3.2. Unified version 2 block format
D.3.3. Block index in version 2
D.3.4. Root block index format in version 2
D.3.5. Non-root block index format in version 2
D.3.6. Bloom filters in version 2
D.3.7. File Info format in versions 1 and 2
D.3.8. Fixed file trailer format differences between versions 1 and 2

D.1. Motivation
Note: this feature was introduced in HBase 0.92

We found it necessary to revise the HFile format after encountering high memory usage and slow
startup times caused by large Bloom filters and block indexes in the region server. Bloom filters can
get as large as 100 MB per HFile, which adds up to 2 GB when aggregated over 20 regions. Block
indexes can grow as large as 6 GB in aggregate size over the same set of regions. A region is not

http://hbase.apache.org/book.html#d1556e9113
http://hbase.apache.org/book.html#d1556e9067
http://hbase.apache.org/book.html#d1556e9030
http://hbase.apache.org/book.html#d1556e9005
http://hbase.apache.org/book.html#d1556e8952
http://hbase.apache.org/book.html#d1556e8927
http://hbase.apache.org/book.html#d1556e8858
http://hbase.apache.org/book.html#d1556e8843
http://hbase.apache.org/book.html#d1556e8840
http://hbase.apache.org/book.html#d1556e8816
http://hbase.apache.org/book.html#d1556e8794
http://hbase.apache.org/book.html#d1556e8781
https://github.com/tdunning/YCSB
https://github.com/tdunning/YCSB
https://github.com/brianfrankcooper/YCSB/
http://search-hadoop.com/m/Ds8d51c263B1/%2522Hadoop-Snappy+in+synch+with+Hadoop+trunk%2522&subj=Hadoop+Snappy+in+synch+with+Hadoop+trunk
http://hbase.apache.org/book.html#d1556e8737
http://code.google.com/p/snappy/
http://hbase.apache.org/book.html#ftn.d1556e8737
http://code.google.com/p/hadoop-snappy/

considered opened until all of its block index data is loaded. Large Bloom filters produce a different
performance problem: the first get request that requires a Bloom filter lookup will incur the latency
of loading the entire Bloom filter bit array.

To speed up region server startup we break Bloom filters and block indexes into multiple blocks and
write those blocks out as they fill up, which also reduces the HFile writer’s memory footprint. In the
Bloom filter case, “filling up a block” means accumulating enough keys to efficiently utilize a
fixed-size bit array, and in the block index case we accumulate an “index block” of the desired size.
Bloom filter blocks and index blocks (we call these “inline blocks”) become interspersed with data
blocks, and as a side effect we can no longer rely on the difference between block offsets to
determine data block length, as it was done in version 1.

HFile is a low-level file format by design, and it should not deal with application-specific details
such as Bloom filters, which are handled at StoreFile level. Therefore, we call Bloom filter blocks
in an HFile "inline" blocks. We also supply HFile with an interface to write those inline blocks.

Another format modification aimed at reducing the region server startup time is to use a contiguous
“load-on-open” section that has to be loaded in memory at the time an HFile is being opened.
Currently, as an HFile opens, there are separate seek operations to read the trailer, data/meta
indexes, and file info. To read the Bloom filter, there are two more seek operations for its “data” and
“meta” portions. In version 2, we seek once to read the trailer and seek again to read everything else
we need to open the file from a contiguous block.

D.2. HFile format version 1 overview
As we will be discussing the changes we are making to the HFile format, it is useful to give a short

D.2.1. Block index format in version 1
The block index in version 1 is very straightforward. For each entry, it contains:

1. Offset (long)

2. Uncompressed size (int)

3. Key (a serialized byte array written using Bytes.writeByteArray)

a. Key length as a variable-length integer (VInt)

b. Key bytes

The number of entries in the block index is stored in the fixed file trailer, and has to be passed in to
the method that reads the block index. One of the limitations of the block index in version 1 is that
it does not provide the compressed size of a block, which turns out to be necessary for
decompression. Therefore, the HFile reader has to infer this compressed size from the offset
difference between blocks. We fix this limitation in version 2, where we store on-disk block size
instead of uncompressed size, and get uncompressed size from the block header.

D.3. HBase file format with inline blocks (version 2)

D.3.1. Overview
The version of HBase introducing the above features reads both version 1 and 2 HFiles, but only

http://hbase.apache.org/book.html#ftn.d1556e8809

writes version 2 HFiles. A version 2 HFile is structured as follows:

D.3.2. Unified version 2 block format
In the version 2 every block in the data section contains the following fields:

1. 8 bytes: Block type, a sequence of bytes equivalent to version 1's "magic records".
Supported block types are:

a. DATA – data blocks

b. LEAF_INDEX – leaf-level index blocks in a multi-level-block-index

c. BLOOM_CHUNK – Bloom filter chunks

d. META – meta blocks (not used for Bloom filters in version 2 anymore)

e. INTERMEDIATE_INDEX – intermediate-level index blocks in a multi-level
blockindex

f. ROOT_INDEX – root>level index blocks in a multi>level block index

g. FILE_INFO – the “file info” block, a small key>value map of metadata

h. BLOOM_META – a Bloom filter metadata block in the load>on>open section

i. TRAILER – a fixed>size file trailer. As opposed to the above, this is not an HFile v2
block but a fixed>size (for each HFile version) data structure

j. INDEX_V1 – this block type is only used for legacy HFile v1 block

2. Compressed size of the block's data, not including the header (int).

Can be used for skipping the current data block when scanning HFile data.

3. Uncompressed size of the block's data, not including the header (int)

This is equal to the compressed size if the compression algorithm is NON

4. File offset of the previous block of the same type (long)

Can be used for seeking to the previous data/index block

5. Compressed data (or uncompressed data if the compression algorithm is NONE).

The above format of blocks is used in the following HFile sections:

1. Scanned block section. The section is named so because it contains all data blocks that need
to be read when an HFile is scanned sequentially. Also contains leaf block index and Bloom
chunk blocks.

2. Non-scanned block section. This section still contains unified-format v2 blocks but it does
not have to be read when doing a sequential scan. This section contains “meta” blocks and
intermediate-level index blocks.

We are supporting “meta” blocks in version 2 the same way they were supported in version 1, even
though we do not store Bloom filter data in these blocks anymore.

D.3.3. Block index in version 2
There are three types of block indexes in HFile version 2, stored in two different formats (root and
non-root):

1. Data index — version 2 multi-level block index, consisting of:

a. Version 2 root index, stored in the data block index section of the file

b. Optionally, version 2 intermediate levels, stored in the non%root format in the data
index section of the file. Intermediate levels can only be present if leaf level blocks
are present

c. Optionally, version 2 leaf levels, stored in the non%root format inline with data
blocks

2. Meta index — version 2 root index format only, stored in the meta index section of the file

3. Bloom index — version 2 root index format only, stored in the “load-on-open” section as
part of Bloom filter metadata.

D.3.4. Root block index format in version 2
This format applies to:

1. Root level of the version 2 data index

2. Entire meta and Bloom indexes in version 2, which are always single-level.

A version 2 root index block is a sequence of entries of the following format, similar to entries of a
version 1 block index, but storing on-disk size instead of uncompressed size.

1. Offset (long)

This offset may point to a data block or to a deeper>level index block.

2. On-disk size (int)

3. Key (a serialized byte array stored using Bytes.writeByteArray)

a. Key (VInt)

b. Key bytes

A single-level version 2 block index consists of just a single root index block. To read a root index
block of version 2, one needs to know the number of entries. For the data index and the meta index
the number of entries is stored in the trailer, and for the Bloom index it is stored in the compound
Bloom filter metadata.

For a multi-level block index we also store the following fields in the root index block in the load-
on-open section of the HFile, in addition to the data structure described above:

1. Middle leaf index block offset

2. Middle leaf block on-disk size (meaning the leaf index block containing the reference to the
“middle” data block of the file)

3. The index of the mid-key (defined below) in the middle leaf-level block.

These additional fields are used to efficiently retrieve the mid-key of the HFile used in HFile splits,
which we define as the first key of the block with a zero-based index of (n – 1) / 2, if the total
number of blocks in the HFile is n. This definition is consistent with how the mid-key was
determined in HFile version 1, and is reasonable in general, because blocks are likely to be the same
size on average, but we don’t have any estimates on individual key/value pair sizes.

When writing a version 2 HFile, the total number of data blocks pointed to by every leaf-level index
block is kept track of. When we finish writing and the total number of leaf-level blocks is
determined, it is clear which leaf-level block contains the mid-key, and the fields listed above are
computed. When reading the HFile and the mid-key is requested, we retrieve the middle leaf index
block (potentially from the block cache) and get the mid-key value from the appropriate position
inside that leaf block.

D.3.5. Non-root block index format in version 2
This format applies to intermediate-level and leaf index blocks of a version 2 multi-level data block
index. Every non-root index block is structured as follows.

1. numEntries: the number of entries (int).

2. entryOffsets: the “secondary index” of offsets of entries in the block, to facilitate a quick
binary search on the key (numEntries + 1 int values). The last value is the total length of all
entries in this index block. For example, in a non-root index block with entry sizes 60, 80,
50 the “secondary index” will contain the following int array: {0, 60, 140, 190}.

3. Entries. Each entry contains:

a. Offset of the block referenced by this entry in the file (long)

b. On>disk size of the referenced block (int)

c. Key. The length can be calculated from entryOffsets.

D.3.6. Bloom filters in version 2
In contrast with version 1, in a version 2 HFile Bloom filter metadata is stored in the load-on-open
section of the HFile for quick startup.

1. A compound Bloom filter.

a. Bloom filter version = 3 (int). There used to be a DynamicByteBloomFilter class that
had the Bloom filter version number 2

b. The total byte size of all compound Bloom filter chunks (long)

c. Number of hash functions (int

d. Type of hash functions (int)

e. The total key count inserted into the Bloom filter (long)

f. The maximum total number of keys in the Bloom filter (long)

g. The number of chunks (int)

h. Comparator class used for Bloom filter keys, a UTF>8 encoded string stored using
Bytes.writeByteArray

i. Bloom block index in the version 2 root block index format

D.3.7. File Info format in versions 1 and 2
The file info block is a serialized HbaseMapWritable (essentially a map from byte arrays to byte
arrays) with the following keys, among others. StoreFile-level logic adds more keys to this.

hfile.LASTKEY The last key of the file (byte array)

hfile.AVG_KEY_LEN The average key length in the file (int)

hfile.AVG_VALUE_LEN The average value length in the file (int)

File info format did not change in version 2. However, we moved the file info to the final section of
the file, which can be loaded as one block at the time the HFile is being opened. Also, we do not
store comparator in the version 2 file info anymore. Instead, we store it in the fixed file trailer. This

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/io/HbaseMapWritable.html

is because we need to know the comparator at the time of parsing the load-on-open section of the
HFile.

D.3.8. Fixed file trailer format differences between versions 1 and 2
The following table shows common and different fields between fixed file trailers in versions 1 and
2. Note that the size of the trailer is different depending on the version, so it is “fixed” only within
one version. However, the version is always stored as the last four-byte integer in the file.

Version 1 Version 2

File info offset (long)

Data index offset (long)

loadOnOpenOffset (long)

The offset of the section that we need toload when opening
the file.

Number of data index entries (int)

metaIndexOffset (long)

This field is not being used by the
version 1 reader, so we removed it
from version 2.

uncompressedDataIndexSize (long)

The total uncompressed size of the whole data block index,
including root-level, intermediate-level, and leaf-level
blocks.

Number of meta index entries (int)

Total uncompressed bytes (long)

numEntries (int) numEntries (long)

Compression codec: 0 = LZO, 1 = GZ, 2 = NONE (int)

The number of levels in the data block index (int)

firstDataBlockOffset (long)

The offset of the first first data block. Used when scanning.

lastDataBlockEnd (long)

The offset of the first byte after the last key/value data
block. We don't need to go beyond this offset when
scanning.

Version: 1 (int) Version: 2 (int)

[27] Image courtesy of Lars George, hbase-architecture-101-storage.html.

Appendix E. Other Information About HBase
Table of Contents
E.1. HBase Videos
E.2. HBase Presentations (Slides)
E.3. HBase Papers
E.4. HBase Sites
E.5. HBase Books
E.6. Hadoop Books

E.1. HBase Videos
Introduction to HBase

 Introduction to HBase by Todd Lipcon (Chicago Data Summit 2011).
 Introduction to HBase by Todd Lipcon (2010).

Building Real Time Services at Facebook with HBase by Jonathan Gray (Hadoop World 2011).

HBase and Hadoop, Mixing Real-Time and Batch Processing at StumbleUpon by JD Cryans
(Hadoop World 2010).

E.2. HBase Presentations (Slides)
Advanced HBase Schema Design by Lars George (Hadoop World 2011).

Introduction to HBase by Todd Lipcon (Chicago Data Summit 2011).

Getting The Most From Your HBase Install by Ryan Rawson, Jonathan Gray (Hadoop World 2009).

E.3. HBase Papers
BigTable by Google (2006).

HBase and HDFS Locality by Lars George (2010).

No Relation: The Mixed Blessings of Non-Relational Databases by Ian Varley (2009).

E.4. HBase Sites
Cloudera's HBase Blog has a lot of links to useful HBase information.

 CAP Confusion is a relevant entry for background information on distributed storage
systems.

HBase Wiki has a page with a number of presentations.

http://ianvarley.com/UT/MR/Varley_MastersReport_Full_2009-08-07.pdf
http://www.larsgeorge.com/2010/05/hbase-file-locality-in-hdfs.html
http://research.google.com/archive/bigtable.html
http://www.slideshare.net/cloudera/hw09-practical-h-base-getting-the-most-from-your-h-base-install
http://www.slideshare.net/cloudera/chicago-data-summit-apache-hbase-an-introduction
http://www.cloudera.com/resource/hadoop-world-2011-presentation-slides-advanced-hbase-schema-design
http://www.cloudera.com/videos/hw10_video_how_stumbleupon_built_and_advertising_platform_using_hbase_and_hadoop
http://www.cloudera.com/videos/hadoop-world-2011-presentation-video-building-realtime-big-data-services-at-facebook-with-hadoop-and-hbase
http://www.cloudera.com/videos/intorduction-hbase-todd-lipcon
http://www.cloudera.com/videos/chicago_data_summit_apache_hbase_an_introduction_todd_lipcon
http://hbase.apache.org/book.html#other.info.books.hadoop
http://hbase.apache.org/book.html#other.info.books
http://hbase.apache.org/book.html#other.info.sites
http://hbase.apache.org/book.html#other.info.papers
http://hbase.apache.org/book.html#other.info.pres
http://hbase.apache.org/book.html#other.info.videos
http://www.larsgeorge.com/2009/10/hbase-architecture-101-storage.html
http://hbase.apache.org/book.html#d1556e8809

E.5. HBase Books
HBase: The Definitive Guide by Lars George.

E.6. Hadoop Books
Hadoop: The Definitive Guide by Tom White.

Appendix F. HBase and the Apache Software Foundation
Table of Contents
F.1. ASF Development Process
F.2. ASF Board Reporting

HBase is a project in the Apache Software Foundation and as such there are responsibilities to the
ASF to ensure a healthy project.

F.1. ASF Development Process
See the Apache Development Process page for all sorts of information on how the ASF is structured
(e.g., PMC, committers, contributors), to tips on contributing and getting involved, and how open-
source works at ASF.

F.2. ASF Board Reporting
Once a quarter, each project in the ASF portfolio submits a report to the ASF board. This is done by
the HBase project lead and the committers. See ASF board reporting for more information.

Index

C
Cells, Cells
Column Family, Column Family
Column Family Qualifier, Column Family
Compression, Compression In HBase

H
Hadoop, Hadoop

N
nproc, ulimit and nproc

U
ulimit, ulimit and nproc

http://hbase.apache.org/book.html#hadoop
http://hbase.apache.org/book.html#compression
http://hbase.apache.org/book.html#columnfamily
http://hbase.apache.org/book.html#columnfamily
http://hbase.apache.org/book.html#cells
http://www.apache.org/foundation/board/reporting
http://www.apache.org/dev/#committers
http://hbase.apache.org/book.html#asf.reporting
http://hbase.apache.org/book.html#asf.devprocess
http://shop.oreilly.com/product/9780596521981.do
http://shop.oreilly.com/product/0636920014348.do
http://wiki.apache.org/hadoop/HBase/HBasePresentations
http://www.cloudera.com/blog/2010/04/cap-confusion-problems-with-partition-tolerance/
http://www.cloudera.com/blog/category/hbase/

V
Versions, Versions

X
xcievers, dfs.datanode.max.xcievers

Z
ZooKeeper, ZooKeeper

http://hbase.apache.org/book.html#zookeeper
http://hbase.apache.org/book.html#dfs.datanode.max.xcievers
http://hbase.apache.org/book.html#versions
http://hbase.apache.org/book.html#ulimit
http://hbase.apache.org/book.html#ulimit

	Apache HBase Book
	
	Preface
	Heads-up

	Chapter 1. Getting Started
	1.1. Introduction
	1.2. Quick Start
	1.2.1. Download and unpack the latest stable release.
	1.2.2. Start HBase
	Is java installed?
	1.2.3. Shell Exercises
	1.2.4. Stopping HBase
	1.2.5. Where to go next

	Chapter 2. Configuration
	2.1. Java
	2.2. Operating System
	2.2.1. ssh
	2.2.2. DNS
	2.2.3. Loopback IP
	2.2.4. NTP
	2.2.5. ulimit and nproc
	2.2.5.1. ulimit on Ubuntu

	2.2.6. Windows

	2.3. Hadoop
	Please read all of this section
	2.3.1. Hadoop Security
	2.3.2. dfs.datanode.max.xcievers

	2.4. HBase run modes: Standalone and Distributed
	2.4.1. Standalone HBase
	2.4.2. Distributed
	2.4.2.1. Pseudo-distributed

	Note
	Note
	2.4.2.2. Fully-distributed
	2.4.2.2.1. regionservers
	2.4.2.2.2. ZooKeeper and HBase
	2.4.2.2.3. HDFS Client Configuration

	2.4.3. Running and Confirming Your Installation

	2.5. ZooKeeper
	How many ZooKeepers should I run?
	2.5.1. Using existing ZooKeeper ensemble
	2.5.2. SASL Authentication with ZooKeeper
	2.5.2.1. Operating System Prerequisites
	2.5.2.2. HBase-managed Zookeeper Configuration
	2.5.2.3. External Zookeeper Configuration
	2.5.2.4. Zookeeper Server Authentication Log Output
	2.5.2.5. Zookeeper Client Authentication Log Output
	2.5.2.6. Configuration from Scratch
	2.5.2.7. Future improvements
	2.5.2.7.1. Fix target/cached_classpath.txt
	2.5.2.7.2. Set JAAS configuration programmatically
	2.5.2.7.3. Elimination of kerberos.removeHostFromPrincipal and kerberos.removeRealmFromPrincipal

	2.6. Configuration Files
	2.6.1. hbase-site.xml and hbase-default.xml
	2.6.1.1. HBase Default Configuration
	HBase Default Configuration

	2.6.2. hbase-env.sh
	2.6.3. log4j.properties
	2.6.4. Client configuration and dependencies connecting to an HBase cluster
	2.6.4.1. Java client configuration

	2.7. Example Configurations
	2.7.1. Basic Distributed HBase Install
	2.7.1.1. hbase-site.xml
	2.7.1.2. regionservers
	2.7.1.3. hbase-env.sh

	2.8. The Important Configurations
	2.8.1. Required Configurations
	2.8.2. Recommended Configurations
	2.8.2.1. zookeeper.session.timeout
	2.8.2.2. Number of ZooKeeper Instances
	2.8.2.3. hbase.regionserver.handler.count
	2.8.2.4. Configuration for large memory machines
	2.8.2.5. Compression
	2.8.2.6. Bigger Regions
	2.8.2.7. Managed Splitting
	2.8.2.8. Managed Compactions

	2.8.3. Other Configurations
	2.8.3.1. Balancer
	2.8.3.2. Disabling Blockcache

	2.9. Bloom Filter Configuration
	2.9.1. io.hfile.bloom.enabled global kill switch
	2.9.2. io.hfile.bloom.error.rate
	2.9.3. io.hfile.bloom.max.fold

	Chapter 3. Upgrading
	3.1. Upgrading to HBase 0.90.x from 0.20.x or 0.89.x
	Chapter 4. The HBase Shell
	4.1. Scripting
	4.2. Shell Tricks
	4.2.1. irbrc
	4.2.2. LOG data to timestamp
	4.2.3. Debug
	4.2.3.1. Shell debug switch
	4.2.3.2. DEBUG log level

	Chapter 5. Data Model
	5.1. Conceptual View
	Column Names

	5.2. Physical View
	5.3. Table
	5.4. Row
	5.5. Column Family
	5.6. Cells
	5.7. Data Model Operations
	5.7.1. Get
	5.7.2. Put
	5.7.3. Scans
	5.7.4. Delete

	5.8. Versions
	5.8.1. Versions and HBase Operations
	5.8.1.1. Get/Scan
	5.8.1.2. Default Get Example
	5.8.1.3. Versioned Get Example
	5.8.1.4. Put
	5.8.1.4.1. Implicit Version Example
	5.8.1.4.2. Explicit Version Example

	5.8.1.5. Delete

	5.8.2. Current Limitations
	5.8.2.1. Deletes mask Puts
	5.8.2.2. Major compactions change query results

	Chapter 6. HBase and Schema Design
	6.1. Schema Creation
	6.1.1. Schema Updates

	6.2. On the number of column families
	6.2.1. Cardinality of ColumnFamilies

	6.3. Rowkey Design
	6.3.1. Monotonically Increasing Row Keys/Timeseries Data
	6.3.2. Try to minimize row and column sizes
	Or why are my StoreFile indices large?
	6.3.2.1. Column Families
	6.3.2.2. Attributes
	6.3.2.3. Rowkey Length
	6.3.2.4. Byte Patterns

	6.3.3. Reverse Timestamps
	6.3.4. Rowkeys and ColumnFamilies
	6.3.5. Immutability of Rowkeys

	6.4. Number of Versions
	6.4.1. Maximum Number of Versions
	6.4.2. Minimum Number of Versions

	6.5. Supported Datatypes
	6.5.1. Counters

	6.6. Time To Live (TTL)
	6.7. Keeping Deleted Cells
	6.8. Secondary Indexes and Alternate Query Paths
	6.8.1. Filter Query
	6.8.2. Periodic-Update Secondary Index
	6.8.3. Dual-Write Secondary Index
	6.8.4. Summary Tables
	6.8.5. Coprocessor Secondary Index

	6.9. Schema Design Smackdown
	6.9.1. Rows vs. Versions
	6.9.2. Rows vs. Columns

	6.10. Operational and Performance Configuration Options
	6.11. Constraints
	Chapter 7. HBase and MapReduce
	7.1. Map-Task Spitting
	7.1.1. The Default HBase MapReduce Splitter
	7.1.2. Custom Splitters

	7.2. HBase MapReduce Examples
	7.2.1. HBase MapReduce Read Example
	7.2.2. HBase MapReduce Read/Write Example
	7.2.3. HBase MapReduce Read/Write Example With Multi-Table Output
	7.2.4. HBase MapReduce Summary to HBase Example
	7.2.5. HBase MapReduce Summary to File Example
	7.2.6. HBase MapReduce Summary to HBase Without Reducer
	7.2.7. HBase MapReduce Summary to RDBMS

	7.3. Accessing Other HBase Tables in a MapReduce Job
	7.4. Speculative Execution
	Chapter 8. Architecture
	8.1. Overview
	8.1.1. NoSQL?
	8.1.2. When Should I Use HBase?
	8.1.3. What Is The Difference Between HBase and Hadoop/HDFS?

	8.2. Catalog Tables
	8.2.1. ROOT
	8.2.2. META
	8.2.3. Startup Sequencing

	8.3. Client
	8.3.1. Connections
	8.3.1.1. Connection Pooling

	8.3.2. WriteBuffer and Batch Methods
	8.3.3. External Clients

	8.4. Client Request Filters
	8.4.1. Structural
	8.4.1.1. FilterList

	8.4.2. Column Value
	8.4.2.1. SingleColumnValueFilter

	8.4.3. Column Value Comparators
	8.4.3.1. RegexStringComparator
	8.4.3.2. SubstringComparator
	8.4.3.3. BinaryPrefixComparator
	8.4.3.4. BinaryComparator

	8.4.4. KeyValue Metadata
	8.4.4.1. FamilyFilter
	8.4.4.2. QualifierFilter
	8.4.4.3. ColumnPrefixFilter
	8.4.4.4. ColumnRangeFilter

	8.4.5. RowKey
	8.4.5.1. RowFilter

	8.4.6. Utility
	8.4.6.1. FirstKeyOnlyFilter

	8.5. Master
	8.5.1. Startup Behavior
	8.5.2. Interface
	8.5.3. Processes
	8.5.3.1. LoadBalancer
	8.5.3.2. CatalogJanitor

	8.6. RegionServer
	8.6.1. Interface
	8.6.2. Processes
	8.6.2.1. CompactSplitThread
	8.6.2.2. MajorCompactionChecker
	8.6.2.3. MemStoreFlusher
	8.6.2.4. LogRoller

	8.6.3. Block Cache
	8.6.3.1. Design
	8.6.3.2. Usage

	8.6.4. Write Ahead Log (WAL)
	8.6.4.1. Purpose
	8.6.4.2. WAL Flushing
	8.6.4.3. WAL Splitting
	8.6.4.3.1. How edits are recovered from a crashed RegionServer
	8.6.4.3.2. hbase.hlog.split.skip.errors
	8.6.4.3.3. How EOFExceptions are treated when splitting a crashed RegionServers' WALs

	8.7. Regions
	8.7.1. Region Size
	8.7.2. Region-RegionServer Assignment
	8.7.2.1. Startup
	8.7.2.2. Failover
	8.7.2.3. Region Load Balancing

	8.7.3. Region-RegionServer Locality
	8.7.4. Region Splits
	8.7.5. Store
	8.7.5.1. MemStore
	8.7.5.2. StoreFile (HFile)
	8.7.5.2.1. HFile Format
	8.7.5.2.2. HFile Tool
	8.7.5.2.3. StoreFile Directory Structure on HDFS

	8.7.5.3. Blocks
	8.7.5.4. KeyValue
	8.7.5.4.1. Example

	8.7.5.5. Compaction

	8.7.6. Bloom Filters
	8.7.6.1. Bloom StoreFile footprint
	8.7.6.1.1. BloomFilter in the StoreFile FileInfo data structure
	8.7.6.1.2. BloomFilter entries in StoreFile metadata

	8.8. HDFS
	8.8.1. NameNode
	8.8.2. DataNode

	Chapter 9. External APIs
	9.1. Non-Java Languages Talking to the JVM
	9.2. REST
	9.3. Thrift
	9.3.1. Filter Language
	9.3.1.1. Use Case
	9.3.1.2. General Filter String Syntax
	9.3.1.3. Compound Filters and Operators
	9.3.1.4. Order of Evaluation
	9.3.1.5. Compare Operator
	9.3.1.6. Comparator
	9.3.1.7. Example PHP Client Program that uses the Filter Language
	9.3.1.8. Example Filter Strings
	9.3.1.9. Individual Filter Syntax

	Chapter 10. Performance Tuning
	10.1. Operating System
	10.1.1. Memory
	10.1.2. 64-bit
	10.1.3. Swapping

	10.2. Network
	10.2.1. Single Switch
	10.2.2. Multiple Switches
	10.2.3. Multiple Racks

	10.3. Java
	10.3.1. The Garbage Collector and HBase
	10.3.1.1. Long GC pauses

	10.4. HBase Configurations
	10.4.1. Number of Regions
	10.4.2. Managing Compactions
	10.4.3. hbase.regionserver.handler.count
	10.4.4. hfile.block.cache.size
	10.4.5. hbase.regionserver.global.memstore.upperLimit
	10.4.6. hbase.regionserver.global.memstore.lowerLimit
	10.4.7. hbase.hstore.blockingStoreFiles
	10.4.8. hbase.hregion.memstore.block.multiplier

	10.5. Schema Design
	10.5.1. Number of Column Families
	10.5.2. Key and Attribute Lengths
	10.5.3. Table RegionSize
	10.5.4. Bloom Filters
	10.5.5. ColumnFamily BlockSize
	10.5.6. In-Memory ColumnFamilies
	10.5.7. Compression

	10.6. Writing to HBase
	10.6.1. Batch Loading
	10.6.2. Table Creation: Pre-Creating Regions
	10.6.3. Table Creation: Deferred Log Flush
	10.6.4. HBase Client: AutoFlush
	10.6.5. HBase Client: Turn off WAL on Puts
	10.6.6. HBase Client: Group Puts by RegionServer
	10.6.7. MapReduce: Skip The Reducer
	10.6.8. Anti-Pattern: One Hot Region

	10.7. Reading from HBase
	10.7.1. Scan Caching
	10.7.1.1. Scan Caching in MapReduce Jobs

	10.7.2. Scan Attribute Selection
	10.7.3. Close ResultScanners
	10.7.4. Block Cache
	10.7.5. Optimal Loading of Row Keys
	10.7.6. Concurrency: Monitor Data Spread

	10.8. Deleting from HBase
	10.8.1. Using HBase Tables as Queues
	10.8.2. Delete RPC Behavior

	10.9. HDFS
	10.9.1. Current Issues With Low-Latency Reads
	10.9.2. Performance Comparisons of HBase vs. HDFS

	10.10. Amazon EC2
	Chapter 11. Troubleshooting and Debugging HBase
	11.1. General Guidelines
	11.2. Logs
	11.2.1. Log Locations
	11.2.1.1. NameNode
	11.2.1.2. DataNode

	11.2.2. Log Levels
	11.2.2.1. Enabling RPC-level logging

	11.2.3. JVM Garbage Collection Logs

	11.3. Resources
	11.3.1. Dist-Lists
	11.3.2. search-hadoop.com
	11.3.3. IRC
	11.3.4. JIRA

	11.4. Tools
	11.4.1. Builtin Tools
	11.4.1.1. Master Web Interface
	11.4.1.2. RegionServer Web Interface

	11.4.2. External Tools
	11.4.2.1. tail
	11.4.2.2. top
	11.4.2.3. jps
	11.4.2.4. jstack
	11.4.2.5. OpenTSDB
	11.4.2.6. clusterssh+top

	11.5. Client
	11.5.1. ScannerTimeoutException or UnknownScannerException
	11.5.2. Shell or client application throws lots of scary exceptions during normal operation
	11.5.3. Long Client Pauses With Compression
	11.5.4. ZooKeeper Client Connection Errors
	11.5.5. Client running out of memory though heap size seems to be stable (but the off-heap/direct heap keeps growing)

	11.6. MapReduce
	11.6.1. You Think You're On The Cluster, But You're Actually Local

	11.7. NameNode
	11.7.1. HDFS Utilization of Tables and Regions
	11.7.2. Browsing HDFS for HBase Objects
	11.7.2.1. Use Cases

	11.8. Network
	11.8.1. Network Spikes
	11.8.2. Loopback IP

	11.9. RegionServer
	11.9.1. Startup Errors
	11.9.1.1. Master Starts, But RegionServers Do Not
	11.9.1.2. Compression Link Errors

	11.9.2. Runtime Errors
	11.9.2.1. RegionServer Hanging
	11.9.2.2. java.io.IOException...(Too many open files)
	11.9.2.3. xceiverCount 258 exceeds the limit of concurrent xcievers 256
	11.9.2.4. System instability, and the presence of "java.lang.OutOfMemoryError: unable to create new native thread in exceptions" HDFS DataNode logs or that of any system daemon
	11.9.2.5. DFS instability and/or RegionServer lease timeouts
	11.9.2.6. "No live nodes contain current block" and/or YouAreDeadException
	11.9.2.7. ZooKeeper SessionExpired events
	11.9.2.8. NotServingRegionException
	11.9.2.9. Regions listed by domain name, then IP
	11.9.2.10. Logs flooded with '2011-01-10 12:40:48,407 INFO org.apache.hadoop.io.compress.CodecPool: Got brand-new compressor' messages

	11.9.3. Shutdown Errors

	11.10. Master
	11.10.1. Startup Errors
	11.10.1.1. Master says that you need to run the hbase migrations script

	11.10.2. Shutdown Errors

	11.11. ZooKeeper
	11.11.1. Startup Errors
	11.11.1.1. Could not find my address: xyz in list of ZooKeeper quorum servers

	11.11.2. ZooKeeper, The Cluster Canary

	11.12. Amazon EC2
	11.12.1. ZooKeeper does not seem to work on Amazon EC2
	11.12.2. Instability on Amazon EC2
	11.12.3. Remote Java Connection into EC2 Cluster Not Working

	11.13. HBase and Hadoop version issues
	11.13.1. NoClassDefFoundError when trying to run 0.90.x on hadoop-0.20.205.x (or hadoop-1.0.x)

	Chapter 12. HBase Operational Management
	12.1. HBase Tools and Utilities
	12.1.1. HBase hbck
	An fsck for your HBase install

	12.1.2. HFile Tool
	12.1.3. WAL Tools
	12.1.3.1. HLog tool

	12.1.4. Compression Tool
	12.1.5. CopyTable
	12.1.6. Export
	12.1.7. Import
	12.1.8. RowCounter

	12.2. Region Management
	12.2.1. Major Compaction
	12.2.2. Merge

	12.3. Node Management
	12.3.1. Node Decommission
	Disable the Load Balancer before Decommissioning a node
	On HOSTNAME
	Load Balancer
	12.3.2. Rolling Restart

	12.4. Metrics
	12.4.1. Metric Setup
	12.4.2. RegionServer Metrics
	12.4.2.1. hbase.regionserver.blockCacheCount
	12.4.2.2. hbase.regionserver.blockCacheFree
	12.4.2.3. hbase.regionserver.blockCacheHitRatio
	12.4.2.4. hbase.regionserver.blockCacheSize
	12.4.2.5. hbase.regionserver.compactionQueueSize
	12.4.2.6. hbase.regionserver.fsReadLatency_avg_time
	12.4.2.7. hbase.regionserver.fsReadLatency_num_ops
	12.4.2.8. hbase.regionserver.fsSyncLatency_avg_time
	12.4.2.9. hbase.regionserver.fsSyncLatency_num_ops
	12.4.2.10. hbase.regionserver.fsWriteLatency_avg_time
	12.4.2.11. hbase.regionserver.fsWriteLatency_num_ops
	12.4.2.12. hbase.regionserver.memstoreSizeMB
	12.4.2.13. hbase.regionserver.regions
	12.4.2.14. hbase.regionserver.requests
	12.4.2.15. hbase.regionserver.storeFileIndexSizeMB
	12.4.2.16. hbase.regionserver.stores
	12.4.2.17. hbase.regionserver.storeFiles

	12.5. HBase Monitoring
	12.6. Cluster Replication
	12.7. HBase Backup
	12.7.1. Full Shutdown Backup
	12.7.1.1. Stop HBase
	12.7.1.2. Distcp
	12.7.1.3. Restore (if needed)

	12.7.2. Live Cluster Backup - Replication
	12.7.3. Live Cluster Backup - CopyTable
	12.7.4. Live Cluster Backup - Export

	12.8. Capacity Planning
	12.8.1. Storage
	12.8.1.1. KeyValue
	12.8.1.2. StoreFiles and Blocks
	12.8.1.3. HDFS Block Replication

	12.8.2. Regions

	Chapter 13. Building and Developing HBase
	13.1. HBase Repositories
	13.1.1. SVN
	13.1.2. Git

	13.2. IDEs
	13.2.1. Eclipse
	13.2.1.1. Code Formatting
	13.2.1.2. Subversive Plugin
	13.2.1.3. HBase Project Setup
	13.2.1.4. Maven Plugin
	13.2.1.5. Maven Classpath Variable
	13.2.1.6. Import via m2eclipse
	13.2.1.7. Eclipse Known Issues
	13.2.1.8. Eclipse - More Information

	13.3. Building HBase
	13.3.1. Building in snappy compression support
	13.3.2. Adding an HBase release to Apache's Maven Repository
	13.3.3. Build Gotchas

	13.4. Tests
	13.4.1. Unit Tests
	13.4.1.1. Running tests
	13.4.1.1.1. Default: small and medium category tests
	13.4.1.1.2. Running all tests
	13.4.1.1.3. Running a single test or all tests in a package
	13.4.1.1.4. Other test invocation permutations

	13.4.1.2. Writing Tests
	13.4.1.2.1. General rules
	13.4.1.2.2. Sleeps in tests
	13.4.1.2.3. Tests using a cluster

	13.4.2. Integration Tests
	Note
	13.4.2.1. Running a subset of Integration tests

	13.5. Maven Build Commands
	13.5.1. Compile
	13.5.2. Running all or individual Unit Tests
	13.5.3. Running all or individual Integration Tests
	13.5.4. To build against hadoop 0.22.x or 0.23.x

	13.6. Getting Involved
	13.6.1. Mailing Lists
	13.6.2. Jira
	13.6.2.1. Jira Priorities
	13.6.2.2. Code Blocks in Jira Comments

	13.7. Developing
	13.7.1. Codelines
	13.7.2. Unit Tests
	13.7.2.1. Mockito
	13.7.2.2. Code Standards

	13.8. Submitting Patches
	13.8.1. Create Patch
	13.8.2. Patch File Naming
	13.8.3. Unit Tests
	13.8.4. Attach Patch to Jira
	13.8.5. Common Patch Feedback
	13.8.5.1. Space Invaders
	13.8.5.2. Auto Generated Code
	13.8.5.3. Long Lines
	13.8.5.4. Trailing Spaces
	13.8.5.5. Implementing Writable
	13.8.5.6. Javadoc
	13.8.5.7. Javadoc - Useless Defaults
	13.8.5.8. One Thing At A Time, Folks
	13.8.5.9. Ambigious Unit Tests

	13.8.6. ReviewBoard
	13.8.7. Committing Patches

	Appendix A. FAQ
	A.1. General
	A.2. Architecture
	A.3. Configuration
	A.4. Schema Design / Data Access
	A.5. MapReduce
	A.6. Performance and Troubleshooting
	A.7. Amazon EC2
	A.8. Operations
	A.9. HBase in Action

	Appendix B. Compression In HBase
	B.1. CompressionTest Tool
	B.2. hbase.regionserver.codecs
	B.3. LZO
	B.4. GZIP
	B.5. SNAPPY
	Appendix C. YCSB: The Yahoo! Cloud Serving Benchmark and HBase
	Appendix D. HFile format version 2
	D.1. Motivation
	D.2. HFile format version 1 overview
	D.2.1. Block index format in version 1

	D.3. HBase file format with inline blocks (version 2)
	D.3.1. Overview
	D.3.2. Unified version 2 block format
	D.3.3. Block index in version 2
	D.3.4. Root block index format in version 2
	D.3.5. Non-root block index format in version 2
	D.3.6. Bloom filters in version 2
	D.3.7. File Info format in versions 1 and 2
	D.3.8. Fixed file trailer format differences between versions 1 and 2

	Appendix E. Other Information About HBase
	E.1. HBase Videos
	E.2. HBase Presentations (Slides)
	E.3. HBase Papers
	E.4. HBase Sites
	E.5. HBase Books
	E.6. Hadoop Books
	Appendix F. HBase and the Apache Software Foundation
	F.1. ASF Development Process
	F.2. ASF Board Reporting
	Index
	C
	H
	N
	U
	V
	X
	Z

