
Java Content Repository: The Best Of Both 
Worlds
01.04.2010 
| 32205 views | 

Object 1  Object 2  

Object 3

inShare 

Here's a short introduction to JCR, the Java Content Repository. Instead of going into details about the 
API, we'll just explain the bare minimum to allow you to get a feel for how JCR works and how it is 
used. 

As shown in the picture below, JCR combines attributes of file systems and databases, and arguably 
provides the best of both worlds: using paths to locate atoms of contents, creating micro-trees to 
manage units of content, and still having database features like structured and full-text queries, 
transactions and optional schema constraints, creates a very powerful combination that's quite unique in 
the world of content management. 

 

What is JCR?
According to JSR 283, the Java Content Repository API defines an abstract model and a Java API for  
data storage and related services commonly used by content-oriented applications. 

JSR 283, released in 2009, is "V2.0" of the spec, and follows on JSR 170 which was released back in 

http://jcp.org/en/jsr/detail?id=283
javascript:void(0);


2005. We'll talk about JSR 283 here, but if your repository "only" supports JSR 170 that won't make a 
difference for our simple examples. 

The JCR storage model is a tree of nodes and properties: nodes (addressable by path like in a 
filesystem) are used to organize the content, and named properties store the actual data, either as simple 
types (string, boolean, number, etc.) or as binary streams for storing files of arbitrary size. 

As an example, here's how an image file can be stored in JCR: 

view source

print  ?  
01.{

02."jcr:primaryType": "nt:file",

03."jcr:created": "Fri Dec 18 2009 13:45:03 GMT+0100",

04."jcr:content": {

05."jcr:primaryType": "nt:resource"

06.":jcr:data": 6269,

07."jcr:mimeType": "image/png",

08."jcr:lastModified": "Fri Dec 18 2009 13:44:51 GMT+0100",

09.}

10.}

That JSON representation comes from Apache Sling, an application framework that provides a simple 
HTTP API on top of a JCR repository. We'll use Sling for our examples, as its HTTP requests and 
responses are easy to visualize here, but you could of course get the same results using the bare JCR 
API. We won't explain the Sling HTTP API in detail, for more details have a look at the Sling in 15 
minutes tutorial. 

The above JSON shows that our file is stored as a node of type nt:file, which is one of the standard JSR 
283 node types. The name of that node (not shown in our example) is the filename, and the node 
contains a child node of type nt:resource (another standard node type), named jcr:content. 

The file data itself is stored in the jcr:data binary property of the jcr:content node, and that node has a 
few other properties that provide the file size, last modification date and mime-type. 

In JCR, node types can optionally be used to define constraints on the node content models. As an 
example, here's the definition of the nt:resourcetype, straight from the JSR 283 spec: 
[nt:resource] > mix:mimeType, mix:lastModified

primaryitem jcr:data

- jcr:data (BINARY) mandatory

What this means is that the nt:resource type inherits the definitions of the mix:mimeType and 
mix:lastModified node types, and in addition requires a binary property named jcr:data. The mix:* 
types use similar definitions to specify the names and types of the jcr:mimeType and jcr:lastModified 
properties. 

This simple example shows how JCR splits things in nodes and properties, and as you can imagine 
using the right structures (or "micro-trees") to store your own content will help a lot in making things 
efficient and flexible. David's model  will tell you more about this. 

Unstructured content
Having precise definitions of content models, as in the file storage example, is very useful for content 

http://wiki.apache.org/jackrabbit/DavidsModel
http://sling.apache.org/site/discover-sling-in-15-minutes.html
http://sling.apache.org/site/discover-sling-in-15-minutes.html
http://sling.apache.org/
http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource


that has a well defined and stable structure. Binary files definitely fall into this category, but how about 
your own content? 

Having to define such node types for all your content would be painful, especially when you're 
prototyping or exploring JCR. The nt:unstructured node type comes to the rescue by allowing a node to 
have any properties and child nodes of any type. Let's see an example, again using Sling's HTTP 
interface to create content. 

view source

print  ?  

01.$ curl -D - -F "title=hello, JCR" 
http://admin:admin@localhost:8888/foo

02.HTTP/1.1 200 OK

03.Content-Type: text/html; charset=utf-8

04....

05. 

06.$ curl http://admin:admin@localhost:8888/foo.tidy.infinity.json

07.{

08."title": "hello, JCR",

09."jcr:primaryType": "nt:unstructured"

10.}

Using Sling's HTTP interface via curl (with -F for a POST request, without that for a GET), we create a 
node at /foo, with a single title property. 

To read the node, we make an HTTP GET request using the /foo.tidy.infinity.json path, which tells Sling 
to return a formatted JSON representation of the /foo node and all its child nodes and properties. 

The JSON output of that request shows that the node has been created with the nt:unstructured type, so 
we should be able to add any content to it. Let's try that. 

view source

print  ?  
01.$ curl -D - \

02.-F "text/content=This is some text" \

03.http://admin:admin@localhost:8888/foo

04.HTTP/1.1 200 OK

05....

06. 

07.$ curl http://admin:admin@localhost:8888/foo.tidy.infinity.json

08.{

09."title": "hello, JCR",

10."jcr:primaryType": "nt:unstructured",

11."text": {

12."content": "This is some text",

13."jcr:primaryType": "nt:unstructured"

http://admin/
http://admin/
http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource
http://admin/
http://admin/
http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource


14.}

15.}

The first request is a POST that asks Sling to add some content at the text/content path relative to the 
/foo node, and we see from the JSON output that this creates another nt:unstructured node under /foo. 
Note that we didn't have to define any content model to do that, the beauty of nt:unstructured is that it 
lets you play with content without constraints. 

Could we add a file under our /foo node? You bet! Using Sling's WebDAV interface (provided by 
Jackrabbit), we just have to navigate to /foo/text, which appears as a folder in the WebDAV explorer, 
and copy our file under that. 

view source

print  ?  
01.$ curl http://admin:admin@localhost:8888/foo.tidy.infinity.json

02.{

03."title": "hello, JCR",

04."jcr:mixinTypes": [

05."mix:lockable"

06.],

07."jcr:primaryType": "nt:unstructured",

08."text": {

09."jcr:mixinTypes": [

10."mix:lockable"

11.],

12."content": "This is some text",

13."jcr:primaryType": "nt:unstructured",

14."image1.jpg": {

15."jcr:mixinTypes": [

16."mix:lockable"

17.],

18."jcr:created": "Fri Dec 18 2009 14:31:32 GMT+0100",

19."jcr:primaryType": "nt:file",

20."jcr:content": {

21."jcr:uuid": "189d6fef-8c50-41c7-83c5-88026c78907d",

22.":jcr:data": 21784,

23."jcr:mimeType": "image/jpeg",

24."jcr:lastModified": "Fri Dec 18 2009 14:31:32 GMT+0100",

25."jcr:primaryType": "nt:resource"

26.}

27.}

28.}

29.}

http://admin/
http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource


Once that's done, we see that the image1.jpg file has been added as an nt:file node alongside the 
content node that we created before, with a similar structure than in our first example above. 

This simple example shows the power of JCR when it comes to combining different types of content. 
What we have created is a micro-tree of content that could represent a blog post, with attachments, 
comments etc. all stored under the same base path, with a combination of free-form and strictly 
structured data. That's quite a powerful way of creating agile content-based applications in a data-first 
way. 

The API: Nodes and Properties
Let's give a quick overview of the main elements of the APIs, the ones that you use to create and 
retrieve content. In our examples, Sling uses those under the hood to process HTTP requests. 

First, you need to acquire a Repository object. There are various ways of doing this, in Jackrabbit's case 
you can use a TransientRepository class to simplify setup for simple experiments. 

The Repository class allows you to login and get a Session, which in turn allows you to create and 
retrieve content. The Session is tied to a Workspace - each workspace can store a distinct tree of nodes 
and properties, but for our simple examples we'll just use the default workspace. 

view source

print  ?  

1.Repository repository = new TransientRepository(); 

2.Session session = repository.login(...); 

Now that we have a Session, we can access the root node of the tree, and create a simple subtree with a 
/hello/world node that has a message property saying Hello, JCR World!. 

view source

print  ?  
1.Node root = session.getRootNode(); 

2.Node hello = root.addNode("hello"); 

3.Node world = hello.addNode("world"); 

4.world.setProperty("message", "Hello, JCR World!"); 

5.session.save(); 

Note the session.save() call at the end. JCR uses a transient space to prepare changes before saving 
them, providing a simplified transaction-like mechanism that's often sufficient when working with 
content. Real transactions are also possible with JCR, if needed. 

Let's retrieve the node that we just created: 

view source

print  ?  
1.Node node = root.getNode("hello/world"); 

2.System.out.println(node.getPath()); 

3.System.out.println(node.getProperty("message").getString());

Quite straightforward: we just address the node by its full path relative to the root, and print out its path 
and the value of its message property. This would output /hello/world and Hello, JCR World!. 

The JCR API provides much more than the few simple interfaces shown here, but those are by far the 
most widely used parts of the API. I haven't checked but I'd guess 95% of the JCR API calls that we use 

http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource
http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource
http://java.dzone.com/articles/java-content-repository-best#about
http://java.dzone.com/articles/java-content-repository-best#printSource
http://java.dzone.com/articles/java-content-repository-best#viewSource


in our content management products involve just the Node and Property interfaces. 

Going further
Although we have just scratched the surface of JCR, the concepts exposed here are probably the most 
important ones: 

• Combining unstructured and structured content provides a lot of flexibility, and content model 
constraints can be used selectively where they make sense. In terms of storage flexibility, think 
XML - but without the dreaded angle brackets. 

• The storage model uses simple Node and Property interfaces, no need to study tons of 
documentation to use it. 

• The API leads to fairly readable code, and although object-to-content mappers are available for 
JCR they are usually not necessary. Working directly with micro-trees is straightforward and 
close to the domain model of structured content. 

 

To go further, the best might be to read the JSR 283 spec itself. API specifications are usually not one's 
favorite bedtime reading, but this one is surprisingly readable. I would not read it linearly however, and 
suggest the following reading order: 

• The Reading chapter explains the various ways in which Nodes and properties can be accessed, 
using tree navigation. 

• The Query chapter that follows explains how to query the JCR repository. Good content models 
allow you to go a long way without using queries, but they are obviously also needed at some 
point. 

• The Writing chapter comes next in my opinion, as you'll obviously want to create some content! 

• I would then suggest studying at least the Observation chapter, as getting selective callbacks 
when content is created or modified is very powerful and might be a bit unusual. 

 

At this point, you would have most of the tools required to manage content, the rest of the spec's 
features are certainly useful but you might not need all of them. 

It took me a while to really grasp JCR and use it effectively in my content management activities, but 
I'm not going back to the often messy world of hybrid databases and files and message queues and a 
few others things content management architecture. I like what my colleague Lars Trieloff sometimes 
calls the Zero Bullshit Architecture  much better! 

Author bio
Bertrand Delacretaz works as a senior developer in Day Software's R&D group, using open source 
tools to create world-class content management systems. Bertrand is a member of the Apache software 
foundation, served on its Board of Directors from 2008 to 2009, and is involved in a number of Apache 
projects related to content management. 

http://www.day.com/
http://grep.codeconsult.ch/
http://www.slideshare.net/lars3loff/the-zero-bullshit-architecture

	Java Content Repository: The Best Of Both Worlds
	What is JCR?
	Unstructured content
	The API: Nodes and Properties
	Going further
	Author bio


