
APracticalOptionalTypeSystemforClojure
Ambrose Bonnaire-Sergeant <abonnairesergeant@gmail.com> (20350292)

Supervised by Rowan Davies <rowan@csse.uwa.edu.au>

Background

Static and Dynamic Types

Traditionally there has been a clear distinction between program-
ming languages that perform type checking at compile-time, and
those that do not. A recent trend is to aim to combine the ad-
vantages of both kinds of languages by adding optional static type
systems to languages without static type checking.

Clojure

Clojure is a recent and increasingly popular dynamically typed pro-
gramming language. Designed to be pragmatic, it is a dialect of
Lisp supporting functional programming and immutability by de-
fault, while being hosted on, and providing direct interoperability
with, popular platforms.

Contributions

We take the lessons learnt from several projects to design Typed

Clojure, an optional type system for Clojure running on the Java
Virtual Machine. The main contributions are:

• We develop a prototype type checker based on Typed Racket
[1], which is able to type check many Clojure idioms

• We describe a novel use of occurrence typing for eliminating
erroneous access to Java's null pointer

• We show how a combination of occurrence typing and in-
tersection types allows accurate typing checking of the most
common usages of Clojure's sequence abstraction

• We capture the Clojure idiom of using maps with known
keyword �elds by using heterogeneous map types

• We identify the main future issues in typing Clojure code.Treatment of null

Clojure represents Java's null as the value nil , which has
the singleton type nil in Typed Clojure. This means, unlike
Java's static type system, null and reference types are separated
as static types. The programmer can then annotate Java methods
and �elds, specifying where null is allowed.

Listing 1: Annotating Java methods that never return null

(non-nil-return java.lang.Object/getClass :all)

(non-nil-return java.io.File/getName :all)

Sequence Abstraction

Typed Clojure types can express the most common usages of
Clojure's sequence abstraction, which is a set of functions providing
a common interface to collections. These functions include:

• seq , which takes a collection (or nil ) and returns

� a true value if the argument is non-empty

� a false value if the argument is empty (or nil )

• first , which takes a collection (or nil ) and returns

� the �rst item of the argument if the argument is non-
empty

� nil if the argument is empty (or nil )

By encoding these invariants in the respective types, we can
type check common combinations of these functions.

Listing 2: Assuming coll is a collection of numbers currently in
local scope, we can infer that this expression always returns a num-
ber

(if (seq coll)

(first coll)

0)

Heterogeneous Maps

Heterogeneous map types that record the presence of keyword
keys are su�cient to type check the most common usages of the
Clojure idiom of using plain maps with known keyword keys.

Map Literals {:a 1 :b 2} creates a map value with
two entries, and is of the heterogeneous map type
'{:a Number :b Number}

Associating keyword keys (assoc {:a 1 :b 2} :c 3) ex-
tends the �rst argument with a new entry with key :c, and
is of type '{:a Number :b Number :c Number}

Dissociating keyword keys (dissoc {:a 1 :b 2} :a) dissoci-
ates from the �rst argument the entry with key :a, and is of
type '{:b Number}

Keyword lookup (get {:a 1 :b 2} :a) returns the value cor-
responding to the key :a in the �rst argument, and is of type
Number

Source

Typed Clojure is available at:
https://github.com/frenchy64/typed-clojure

Experiments

Monads

Almost all of a Clojure library for monadic programming
(algo.monads) was successfully ported to Typed Clojure, including
most monad, monad function, and monad transformer de�nitions.
This experiment warranted an extension for type functions (func-
tions at the type level) with variance.

Java Interoperability

A function relying heavily on Java interoperability was ported suc-
cessfully. This function chained several Java calls together, and
Typed Clojure was able to express and check invariants related to
occurrences of null and primitive arrays.

Future Work

There is signi�cant future work.

• Implement a blame calculus to improve error messages when
using untyped code

• Support type checking multimethod de�nitions

• Support Clojure records, which are datatypes with known
keyword keys

• Port Typed Clojure to other Clojure implementations

Conclusion

This work has demonstrated that it is both practical and useful
to design and implement an optional type system for Clojure that
preserves current Clojure style.

References

[1] Tobin-Hochstadt, S. Typed Scheme: From Scripts to Programs PhD
Dissertation, Northeastern University, 2010

Bachelor of Computer Science Honours (Semester 1, 2012)


