
ARQ - Frequently Asked Questions
java.lang.NoClassDefFoundError

The classpath is wrong. Include all the jar files in lib/. You need to name each one. See also "The
CLASSPATH and Environment Variables"

java.lang.NoClassDefFoundError : Exception in thread "main"
The classpath is wrong. Include all the jar files in lib/ before running one of the command line
applications.

java.lang.NoSuchFieldError: actualValueType

This is almost always due to using the wrong version of the Xerces library. Jena and ARQ make
use of XML schema support that changed at Xerces 2.6.0 and is not compatible with earlier
versions. At the time of writing Jena ships with Xerces 2.6.1.

In some situations your runtime environment may be picking up an earlier version of Xerces from
an "endorsed" directory. You will need to either disable use of that endorsed library or replace it
by a more up to date version of Xerces. This appears to happen with some distributions of Tomcat
5.* and certain configurations of JDK 1.4.1.

Query Debugging

Look at the data in N3 or Turtle or N-triples. This can give you a better sense of the graph than
RDF/XML.

Use the command line tools and a sample of your data to develop a query, especially a complex
one.

Break your query up into smaller sections.

How do I do test substrings of literals?

SPARQL provides regular expression matching which can be used to test for substrings and other
forms that SQL's LIKE operator provides.

Example: find resource with an RDFS label contains the substring "orange", matching without
respecting case of the string.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?x
WHERE {
 ?x rdfs:label ?v .
 FILTER regex(?v, "orange", "i")
}

The regular expression matching in ARQ is provided by java.util.regex.

Accented characters and characters outside of basic latin ~ SPARQL queries are assumed to be Unicode
strings. If typing from a text editor, ensure it is working in UTF-8 and not the operating system native

http://www.dynamic-apps.com/tutorials/classpath.jsp
http://www.dynamic-apps.com/tutorials/classpath.jsp
http://jena.apache.org/documentation/query/cmds.html
http://xml.apache.org/xerces2-j/

character set. UTF-8 is not the default character set under MS Windows.

ARQ supports \\u escape sequences in queries for the input of 16bit
codepoints.

ARQ does not support 32 bit codepoints (it would require a move to
Java 1.5, including all support libraries and checking the codebase
for char/codepoint inconsistencies and drop support for Java 1.4).

The same is true for data. XML files can be written in any
XML-supported character set if the right `?xml` processing
instruction is used. The default is UTF-8 or UTF-16.

XSD DateTime

Examples of correctly formatted XSD DateTime literals are: these two are actually the same point
in time and will test equal in a filter:

 "2005-04-04T04:04:04Z"^^xsd:dateTime
 "2004-12-31T18:01:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>

• The timezone is required.
• The datatype must be given.

String Operations

ARQ provides many of the XPath/XQuery functions and operators including string operations.
These include: fn:contains, fn:starts-with, fn:ends-with. See the library page
for details of all function provided.

Note 1: For string operations taken from XQuery/XPath, character positions are numbered from
1, unlike Java where they are numbered from 0.

Note 2: fn:substring operation takes the length of the substring as the 3rd argument, unlike
Java where it is the end index.

Tutorial - Manipulating SPARQL using ARQ
When you've been working with SPARQL you quickly find that static queries are restrictive. Maybe
you want to vary a value, perhaps add a filter, alter the limit, etc etc. Being an impatient sort you dive
in to the query string, and it works. But what about little Bobby Tables? And, even if you sanitise your
inputs, string manipulation is a fraught process and syntax errors await you. Although it might seem
harder than string munging, the ARQ API is your friend in the long run.

Originally published on the Research Revealed project blog

Inserting values (simple prepared statements)
Let's begin with something simple. Suppose we wanted to restrict the following query to a particular
person:

 select * { ?person <http://xmlns.com/foaf/0.1/name> ?name }

http://researchrevealed.ilrt.bris.ac.uk/?p=35
http://xkcd.com/327/
http://jena.apache.org/documentation/query/library-function.html

String#replaceAll would work, but there is a safer way. QueryExecutionFactory in most
cases lets you supply a QuerySolution with which you can prebind values.

 QuerySolutionMap initialBinding = new QuerySolutionMap();
 initialBinding.add("name", personResource);
 qe = QueryExecutionFactory.create(query, dataset, initialBinding);

This is often much simpler than the string equivalent since you don't have to escape quotes in literals.
(Beware that this doesn't work for sparqlService, which is a great shame. It would be nice to
spend some time remedying that.)

Making a Query from Scratch
The previously mentioned limitation is due to the fact that prebinding doesn't actually change the query
at all, but the execution of that query. So what how do we really alter queries?

ARQ provides two ways to work with queries: at the syntax level (Query and Element), or the
algebra level (Op). The distinction is clear in filters:

 SELECT ?s { ?s <http://example.com/val> ?val . FILTER (?val < 20) }

If you work at the syntax level you'll find that this looks (in pseudo code) like:

 (GROUP (PATTERN (?s <http://example.com/val> ?val)) (FILTER (< ?val 20)))

That is there's a group containing a triple pattern and a filter, just as you see in the query. The algebra is
different, and we can see it using arq.qparse --print op

 $ java arq.qparse --print op 'SELECT ?s { ?s <http://example.com/val> ?val .
FILTER (?val < 20) }'
 (base <file:///...>
 (project (?s)
 (filter (< ?val 20)
 (bgp (triple ?s <http://example.com/val> ?val)))))

Here the filter contains the pattern, rather than sitting next to it. This form makes it clear that the
expression is filtering the pattern.

Let's create that query from scratch using ARQ. We begin with some common pieces: the triple to
match, and the expression for the filter.

 // ?s ?p ?o .
 Triple pattern =
 Triple.create(Var.alloc("s"), Var.alloc("p"), Var.alloc("o"));
 // (?s < 20)
 Expr e = new E_LessThan(new ExprVar("s"), new NodeValueInteger(20));

Triple should be familiar from jena. Var is an extension of Node for variables. Expr is the root
interface for expressions, those things that appear in FILTER and LET.

First the syntax route:

 ElementTriplesBlock block = new ElementTriplesBlock(); // Make a BGP
 block.addTriple(pattern); // Add our pattern match
 ElementFilter filter = new ElementFilter(e); // Make a filter matching
the expression
 ElementGroup body = new ElementGroup(); // Group our pattern

match and filter
 body.addElement(block);
 body.addElement(filter);

 Query q = QueryFactory.make();
 q.setQueryPattern(body); // Set the body of the
query to our group
 q.setQuerySelectType(); // Make it a select query
 q.addResultVar("s"); // Select ?s

Now the algebra:

 Op op;
 BasicPattern pat = new BasicPattern(); // Make a pattern
 pat.add(pattern); // Add our pattern match
 op = new OpBGP(pat); // Make a BGP from this
pattern
 op = OpFilter.filter(e, op); // Filter that pattern
with our expression
 op = new OpProject(op, Arrays.asList(Var.alloc("s"))); // Reduce to just ?s
 Query q = OpAsQuery.asQuery(op); // Convert to a query
 q.setQuerySelectType(); // Make is a select query

Notice that the query form (SELECT, CONSTRUCT, DESCRIBE, ASK) isn't part of the algebra,
and we have to set this in the query (although SELECT is the default). FROM and FROM NAMED are
similarly absent.

Navigating and Tinkering: Visitors
You can also look around the algebra and syntax using visitors. Start by extending OpVisitorBase
(ElementVisitorBase) which stubs out the interface so you can concentrate on the parts of
interest, then walk using OpWalker.walk(Op, OpVisitor)
(ElementWalker.walk(Element, ElementVisitor)). These work bottom up.

For some alterations, like manipulating triple matches in place, visitors will do the trick. They provide
a simple way to get to the right parts of the query, and you can alter the pattern backing BGPs in both
the algebra and syntax. Mutation isn't consistently available, however, so don't depend on it.

Transforming the Algebra
So far there is no obvious advantage in using the algebra. The real power is visible in transformers,
which allow you to reorganise an algebra completely. ARQ makes extensive use of transformations to
simplify and optimise query execution.

In Research Revealed I wrote some code to take a number of constraints and produce a query. There
were a number of ways to do this, but one way I found was to generate ops from each constraint and
join the results:

 for (Constraint con: cons) {
 op = OpJoin.create(op, consToOp(cons)); // join
 }

The result was a perfectly correct mess, which is only barely readable with just three conditions:

 (join

 (join
 (filter (< ?o0 20) (bgp (triple ?s <urn:ex:prop0> ?o0)))
 (filter (< ?o1 20) (bgp (triple ?s <urn:ex:prop1> ?o1))))
 (filter (< ?o2 20) (bgp (triple ?s <urn:ex:prop2> ?o2))))

Each of the constraints is a filter on a bgp. This can be made much more readable by moving the filters
out, and merging the triple patterns. We can do this with the following Transform:

 class QueryCleaner extends TransformBase
 {
 @Override
 public Op transform(OpJoin join, Op left, Op right) {
 // Bail if not of the right form
 if (!(left instanceof OpFilter && right instanceof OpFilter)) return
join;
 OpFilter leftF = (OpFilter) left;
 OpFilter rightF = (OpFilter) right;

 // Add all of the triple matches to the LHS BGP
 ((OpBGP) leftF.getSubOp()).getPattern().addAll(((OpBGP)
rightF.getSubOp()).getPattern());
 // Add the RHS filter to the LHS
 leftF.getExprs().addAll(rightF.getExprs());
 return leftF;
 }
 }
 ...
 op = Transformer.transform(new QueryCleaner(), op); // clean query

This looks for joins of the form:

 (join
 (filter (exp1) (bgp1))
 (filter (exp2) (bgp2)))

And replaces it with:

 (filter (exp1 && exp2) (bgp1 && bgp2))

As we go through the original query all joins are removed, and the result is:

 (filter (exprlist (< ?o0 20) (< ?o1 20) (< ?o2 20))
 (bgp
 (triple ?s <urn:ex:prop0> ?o0)
 (triple ?s <urn:ex:prop1> ?o1)
 (triple ?s <urn:ex:prop2> ?o2)
))

That completes this brief introduction. There is much more to ARQ, of course, but hopefully you now
have a taste for what it can do.

LARQ - adding free text searches to SPARQL
LARQ is a combination of ARQ and Lucene. It gives users the ability to perform free text searches
within their SPARQL queries. Lucene indexes are additional information for accessing the RDF graph,
not storage for the graph itself.

http://lucene.apache.org/java/docs/index.html
http://jena.apache.org/documentation/query/index.html

Some example code is available here: https://svn.apache.org/repos/asf/jena/trunk/jena-
larq/src/test/java/org/apache/jena/larq/examples/.

Two helper commands are provided: larq.larqbuilder and larq.larq used respectively for
updating and querying LARQ indexes.

A full description of the free text query language syntax is given in the Lucene query syntax document.

Usage Patterns
There are three basic usage patterns supported:

• Pattern 1 : index string literals. The index will return the literals matching the Lucene search
pattern.

• Pattern 2 : index subject resources by string literal. The index returns the subjects with property
value matching a text query.

• Pattern 3 : index graph nodes based on strings not present in the graph.

Patterns 1 and 2 have the indexed content in the graph. Both 1 and 2 can be modified by specifying a
property so that only values of a given property are indexed. Pattern 2 is less flexible as discussed
below. Pattern 3 is covered in the external content section below.

LARQ can be used in other ways as well but the classes for these patterns are supplied. In both patterns
1 and 2, strings are indexed, being plain strings, string with any language tag or any literal with
datatype XSD string.

Index Creation
There are many ways to use Lucene, which can be set up to handle particular features or languages.
The creation of the index is done outside of the ARQ query system proper and only accessed at query
time. LARQ includes some platform classes and also utility classes to create indexes on string literals
for the use cases above. Indexing can be performed as the graph is read in, or to built from an existing
graph.

Index Builders

An index builder is a class to create a Lucene index from RDF data.

• IndexBuilderString: This is the most commonly used index builder. It indexes plain
literals (with or without language tags) and XSD strings and stores the complete literal.
Optionally, a property can be supplied which restricts indexing to strings in statements using
that property.

• IndexBuilderSubject: Index the subject resource by a string literal, an store the subject
resource, possibly restricted by a specified property.

Lucene has many ways to create indexes and the index builder classes do not attempt to provide all
possible Lucene features. Applications may need to extend or modify the standard index builders
provided by LARQ.

Index Creation

An index can be built while reading RDF into a model:

http://jena.apache.org/documentation/larq/#external-content
http://jena.apache.org/documentation/larq/#query-using-a-lucene-index
http://jena.apache.org/documentation/larq/#query-using-a-lucene-index
http://lucene.apache.org/java/3_0_0/queryparsersyntax.html
https://svn.apache.org/repos/asf/jena/trunk/jena-larq/src/test/java/org/apache/jena/larq/examples/
https://svn.apache.org/repos/asf/jena/trunk/jena-larq/src/test/java/org/apache/jena/larq/examples/

// -- Read and index all literal strings.
IndexBuilderString larqBuilder = new IndexBuilderString() ;

// -- Index statements as they are added to the model.
model.register(larqBuilder) ;

FileManager.get().readModel(model, datafile) ;

// -- Finish indexing
larqBuilder.closeWriter() ;
model.unregister(larqBuilder) ;

// -- Create the access index
IndexLARQ index = larqBuilder.getIndex() ;

or it can be created from an existing model:

// -- Create an index based on existing statements
larqBuilder.indexStatements(model.listStatements()) ;
// -- Finish indexing
larqBuilder.closeWriter() ;
// -- Create the access index
IndexLARQ index = larqBuilder.getIndex() ;

Index Registration
Next the index is made available to ARQ. This can be done globally:

// -- Make globally available
LARQ.setDefaultIndex(index) ;

or it can be set on a per-query execution basis.

QueryExecution qExec = QueryExecutionFactory.create(query, model) ;
// -- Make available to this query execution only
LARQ.setDefaultIndex(qExec.getContext(), index) ;

In both these cases, the default index is set, which is the one expected by property function
pf:textMatch. Use of multiple indexes in the same query can be achieved by introducing new
properties. The application can subclass the search class
org.apache.jena.larq.LuceneSearch to set different indexes with different property
names.

Query using a Lucene index
Query execution is as usual using the property function pf:textMatch. "textMatch" can be thought of as
an implied relationship in the data. Note the prefix ends in ".".

String queryString = StringUtils.join("\n", new String[]{
 "PREFIX pf: <http://jena.hpl.hp.com/ARQ/property#>",
 "SELECT * {" ,
 " ?lit pf:textMatch '+text'",
 "}"
 }) ;
Query query = QueryFactory.create(queryString) ;
QueryExecution qExec = QueryExecutionFactory.create(query, model) ;

ResultSetFormatter.out(System.out, qExec.execSelect(), query) ;

The subjects with a property value of the matched literals can be retrieved by looking up the literals in
the model:

PREFIX pf: <http://jena.hpl.hp.com/ARQ/property#>
SELECT ?doc
{
 ?lit pf:textMatch '+text' .
 ?doc ?p ?lit
}

This is a more flexible way of achieving the effect of using a IndexBuilderSubject.
IndexBuilderSubject can be more compact when there are many large literals (it stores the
subject not the literal) but does not work for blank node subjects without extremely careful co-
ordination with a persistent model. Looking the literal up in the model does not have this complication.

Accessing the Lucene Score
The application can get access to the Lucene match score by using a list argument for the subject of
pf:textMatch. The list must have two arguments, both unbound variables at the time of the query.

PREFIX pf: <http://jena.hpl.hp.com/ARQ/property#>
SELECT ?doc ?score
{
 (?lit ?score) pf:textMatch '+text' .
 ?doc ?p ?lit
}

Limiting the number of matches
When used with just a query string, pf:textMatch returns all the Lucene matches. In many applications,
the application is only interested in the first few matches (Lucene returns matches in order, highest
scoring first), or only matches above some score threshold. The query argument that forms the object of
the pf:textMatch property can also be a list, including a score threshold and a total limit on the number
of results matched.

?lit pf:textMatch ('+text' 100) . # Limit to at most 100 hits

?lit pf:textMatch ('+text' 0.5) . # Limit to Lucene scores of 0.5 and
over.

?lit pf:textMatch ('+text' 0.5 100) . # Limit to scores of 0.5 and limit to
100 hits

Direct Application Use
The IndexLARQ class provides the ability to search programmatically, not just from ARQ. The
searchModelByIndex method returns an iterator over RDFNodes.

// -- Create the access index
IndexLARQ index = larqBuilder.getIndex() ;

NodeIterator nIter = index.searchModelByIndex("+text") ;
for (; nIter.hasNext() ;)
{
 // if it's an index storing literals ...
 Literal lit = (Literal)nIter.nextNode() ;
}

External Content
• Pattern 3: index graph nodes based on strings not present in the graph.

Sometimes, the index needs to be created based on external material and the index gives nodes in the
graph. This can be done by using IndexBuilderNode which is a helper class to relate external
material to some RDF node.

Here, the indexed content is not in the RDF graph at all. For example, the indexed content may come
from HTML.XHTML, PDFs or XML documents and the RDF graph only holds the metadata about
these content items.

The Lucene contributions page lists some content converters.

Getting Help and Getting Involved
If you have a problem with LARQ, make sure you read the Getting help with Jena page and post a
message on the users@jena.apache.org mailing list. You can also search the jena-users mailing list
archives here.

If you use LARQ and you want to get involved, make sure you read the Getting Involved page. You can
help us making LARQ better by:

• improving this documentation, writing tutorials or blog posts about LARQ
• letting us know how you use LARQ, your use cases and what are in your opinion missing

features
• answering users question about LARQ on the users@jena.apache.org mailing list
• submitting bug reports and feature requests on JIRA:

https://issues.apache.org/jira/browse/JENA
• voting or submitting patches for the currently open bugs or improvements for LARQ
• checking out LARQ source code, playing with it and let us know your ideas for possible

improvements: https://svn.apache.org/repos/asf/jena/trunk/jena-larq

ARQ - RDF Collections
RDF collections, also called RDF lists, are difficult to query directly.

ARQ provides a 3 property functions to work with RDF collections.

• list:member -- members of a list
• list:index -- index of a member in a list
• list:length -- length of a list

list:member is similar to rdfs:member except for RDF lists. ARQ also provides

https://svn.apache.org/repos/asf/jena/trunk/jena-larq
https://issues.apache.org/jira/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+JENA+AND+component+%3D+LARQ+AND+status+%3D+Open+ORDER+BY+priority+DESC&mode=hide
mailto:users@jena.apache.org?s=[LARQ]
http://jena.apache.org/getting_involved/index.html
http://markmail.org/search/?q=larq+list%3Aorg.apache.jena.users
mailto:users@jena.apache.org?s=[LARQ]
http://jena.apache.org/help_and_support/index.html
http://lucene.apache.org/java/3_4_0/contributions.html#Lucene%20Document%20Converters

rdfs:member.

See the property functions library page.

ARQ - Writing Filter Functions
Applications can add SPARQL functions to the query engine. This is done by writing a class
implementing the right interface, then either registering it or using the fake java: URI scheme to
dynamically call the function.

Writing SPARQL Value Functions
A SPARQL value function is an extension point of the SPARQL query language that allows URI to
name a function in the query processor.

In the ARQ engine, code to implement function must implement the interface
com.hp.hpl.jena.sparql.function.Function although it is easier to work with one of
the abstract classes for specific numbers of arguments like
com.hp.hpl.jena.sparql.function.FunctionBase1 for one argument functions.
Functions do not have to have a fixed number of arguments.

The abstract class FunctionBase, the superclass of FunctionBase1 to FunctionBase4,
evaluates its arguments and calls the implementation code with argument values (if a variable was
unbound, an error will have been generated)

It is possible to get unevaluated arguments but care must be taken not to violate the rules of function
evaluation. The standard functions that access unevaluated arguments are the logical 'or' and logical
'and' operations that back || and && are special forms to allow for the special exception handling rules.

Normally, function should be a pure evaluation based on it's argument. It should not access a graph nor
return different values for the same arguments (to allow expression optimization). Usually, these
requirements can be better met with a property function. Functions can't bind a variables; this would be
done in a property function as well.

Example: (this is the max function in the standard ARQ library):

public class max extends FunctionBase2
{
 public max() { super() ; }
 public NodeValue exec(NodeValue nv1, NodeValue nv2)
 {
 return Functions.max(nv1, nv2) ;
 }
}

The function takes two arguments and returns a single value. The class NodeValue represents values
and supports value-based operations. NodeValue value support includes the XSD datatypes,
xsd:decimal and all it's subtypes like xsd:integer and xsd:byte, xsd';double, xsd:float, xsd:boolean,
xsd:dateTime and xsd:date. Literals with language tags are also treated as values in additional "value
spaces" determined by the language tag without regard to case.

The Functions class contains the core XML Functions and Operators operations. Class
NodeFunctions contains the implementations of node-centric operations like isLiteral and str.

http://jena.apache.org/documentation/query/library-propfunc.html
http://jena.apache.org/documentation/query/library-propfunc.html
http://jena.apache.org/documentation/query/library-propfunc.html

If any of the arguments are wrong, then the function should throw ExprEvalException.

Example: calculate the canonical namespace from a URI (calls the Jena operation for the actual work):

public class namespace extends FunctionBase1
{
 public namespace() { super() ; }

 public NodeValue exec(NodeValue v)
 {
 Node n = v.asNode() ;
 if (! n.isURI())
 throw new ExprEvalException("Not a URI: "+FmtUtils.stringForNode(n)) ;
 String str = n.getNameSpace() ;
 return NodeValue.makeString(str) ;
 }
}

This throws an evaluation exception if it is passed a value that is not a URI.

The standard library, in package com.hp.hpl.jena.sparql.function.library, contains
many examples.

Registering Functions
The query compiler finds functions based on the functions URI. There is a global registry of known
functions, but any query execution can have it's own function registry.

For each function, there is a function factory associated with the URI. A new function instance is
created for each use of a function in each query execution.

// Register with the global registry.
FunctionRegistry.get().put("http://example.org/function#myFunction", new
MyFunctionFactory()) ;

A common case is registering a specific class for a function implementation so there is an addition
method that takes a class, wraps in a built-in function factory and registers the function
implementation.

// Register with the global registry.
FunctionRegistry.get().put("http://example.org/function#myFunction",
MyFunction.class) ;

Another convenience route to function calling is to use the java: URI scheme . This dynamically
loads the code, which must be on the Java classpath. With this scheme, the function URI gives the class
name. There is automatic registration of a wrapper into the function registry. This way, no explicit
registration step is needed by the application and queries issues with the command line tools can load
custom functions.

PREFIX f: <java:app.myFunctions.>
...
 FILTER f:myTest(?x, ?y)
...
 FILTER (?x + f:myIntToXSD(?y))
...

http://jena.apache.org/documentation/query/java-uri.html

ARQ - Building Queries Programmatically
It is possible to build queries by building and abstract syntax tree (as the parser does) or by building the
algebra expression for the query. It is usually better to work with the algebra form as it is more regular.

See the examples in the ARQ src-examples/ directory of the ARQ distribution, particularly
arq.examples.AlgebraExec.

See also ARQ - SPARQL Algebra

RQ - SPARQL Algebra
A SPARQL query in ARQ goes through several stages of processing:

• String to Query (parsing)
• Translation from Query to a SPARQL algebra expression
• Optimization of the algebra expression
• Query plan determination and low-level optimization
• Evaluation of the query plan

This page describes how to access and use expressions in the SPARQL algebra within ARQ. The
definition of the SPARQL algebra is to be found in the SPARQL specification in section 12. ARQ can
be extended to modify the evaluation of the algebra form to access difefrent graph storage
implementations.

The classes for the datastructures for the algebra resize in the package
com.hp.hpl.jena.sparql.algebra in the op subpackage. All the classes are names
"Op..."; the interface that they all offer is "Op".

Viewing the algebra expression for a Query
The command line tool arq.qparse will print the algebra form of a query:

arq.qparse --print=op --query=Q.rq
arq.qparse --print=op 'SELECT * { ?s ?p ?o}'

The syntax of the output is SSE, a simple format for writing data structures involving RDF terms. It can
be read back in again to produce the Java form of the algebra expression.

Turning a query into an algebra expression
Getting the algebra expression for a Query is simply a matter of passing the parsed Query object to the
transaction function in the Algebra class:

Query query = QueryFactory.create(.....) ;
Op op = Algebra.compile(query) ;

And back again.

Query query = OpAsQuery.asQuery(op) ;
System.out.println(query.serialize()) ;

http://jena.apache.org/documentation/notes/sse.html
http://jena.apache.org/documentation/query/cmds.html#arq.qparse
http://jena.apache.org/documentation/query/arq-query-eval.html
http://jena.apache.org/documentation/query/arq-query-eval.html
http://www.w3.org/TR/sparql11-query/#sparqlDefinition
http://jena.apache.org/documentation/query/algebra.html

This reverse translation can handle any algebra expression originally from a SPARQL Query, but not
any algebra expression. It is possible to create programmatically useful algebra expressions that can
not be truned into a query, especially if they involve algebra. Also, the query produced may not be
exactly the same but will yield the same results (for example, filters may be moved because the
SPARQL query algebra translation in the SPARQL specification moves filter expressions around).

Directly reading and writing algebra expression
The SSE class is a collection of functions to parse SSE expressions for the SPARQ algebra but also
RDF terms, filter expressions and even dataset and graphs.

Op op = SSE.parseOp("(bgp (?s ?p ?o))") ; // Read a string

Op op = SSE.readOp("filename.sse") ; // Read a file

The SSE class simply calls the appropriate builder operation from the
com.hp.hpl.jena.sparql.sse.builder package.

To go with this, there is a collection of writers for many of the Java structures in ARQ.

Op op = ... ;
SE.write(op) ; // Write to stdout

Writers default to writing to System.out but support calls to any output stream (it manages the
conversion to UTF-8) and ARQ own IndentedWriters form for embedding in structured output.
Again, SSE is simply passing the calls to the writer operation from the
com.hp.hpl.jena.sparql.sse.writer package.

Creating an algebra expression programmatically
See the example in src-examples/arq.examples.AlgebraExec.

To produce the complete javadoc for ARQ, download an ARQ distribution and run the ant task
'javadoc-all'.

Evaluating a algebra expression
See the example in src-examples/arq.examples.AlgebraExec.

QueryIterator qIter = Algebra.exec(op,graph) ;

QueryIterator qIter = Algebra.exec(op,datasetGraph) ;

Evaluating an algebra expression produces a iterator of query solutions (called Bindings).

for (; qIter.hasNext() ;)
{
 Binding b = qIter.nextBinding() ;
 Node n = b.get(var_x) ;
 System.out.println(var_x+" = "+FmtUtils.stringForNode(n)) ;
}
qIter.close() ;

Operations of CONSTRUCT, DESCRIBE and ASK are done on on top of algebra evaluation.
Applications can access this functionality by creating their own QueryEngine (see
arq.examples.engine.MyQueryEngine) and it's factory. A query engine is a one-time use
object for each query execution.

ARQ - Querying Remote SPARQL Services
SPARQL is a query language and a remote access protocol. The remote access protocol can be used
with plain HTTP or over SOAP.

See Joseki for an implementation of an RDF publishing server, using the SPARQL protocol (HTTP and
SOAP). Joseki uses ARQ to provide SPARQL query access to Jena models, including Jena persistent
models.

ARQ includes a query engine capable of using the HTTP version. A version using SOAP is include in
Joseki.

From your application
The QueryExecutionFactory has methods for creating a QueryExecution object for remote
use. QueryExecutionFactory.sparqlService

These methods build a query execution object that uses the query engine in
com.hp.hpl.jena.sparql.engine.http.

The remote request is made when the execSelect, execConstruct, execDescribe or
execAsk method is called.

The results are held locally after remote execution and can be processed as usual.

From the command line
The arq.sparql command can issue remote query requests using the --service argument:

java -cp ... arq.query --service 'http://host/service' 'SELECT ?s WHERE {?s [] []}'

This takes a URL that is the service location.

The query given is parsed locally to check for syntax errors before sending.

Firewalls and Proxies
Don't forget to set the proxy for Java if you are accessing a public server from behind a blocking
firewall. Most home firewalls do not block outgoing requests; many corporate firewalls do block
outgoing requests.

If, to use your web browser, you need to set a proxy, you need to do so for a Java program.

Simple examples include:

-DsocksProxyHost=YourSocksServer

-DsocksProxyHost=YourSocksServer -DsocksProxyPort=port

http://jena.apache.org/documentation/query/cmds.html#arq.sparql
http://www.joseki.org/
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/2001/sw/DataAccess/proto-wd/
http://www.w3.org/TR/sparql11-query/

-Dhttp.proxyHost=WebProxy -Dhttp.proxyPort=Port

This can be done in the application if it is done before any network connection are made:

 System.setProperty("socksProxyHost", "socks.corp.com");

Consult the Java documentation for more details. Searching the web is also very helpful.

ARQ - Extending Query Execution
This page describes the mechanisms that can be used to extend and modify query execution within
ARQ. Through these mechanisms, ARQ can be used to query different graph implementations and to
provide different query evaluation and opti-mization strategies for particular circumstances. These
mechanisms are used by TDB- and SDB.-

ARQ can be extended in various ways to incorporate custom code into a query. Custom filter functions
and property functions p-rovi-de ways to add application specific code. The free text search
capabilities, using Apache Lucene, are provided via a property function. Custom filter functions and
property functions should be used where possible.

Jena itself can be extended by providing a new implementation of the Graph interface. This can be
used to encapsulate specific specialised storage and also for wrapping non-RDF sources to look like
RDF. There is a common implementation framewo-fk provided-fby GraphBase so only one
operation, the find method, needs to be written for a read-only data source. Basic find works well is
many cases, and the whole Jena API will be able to use the extension. For higher SPARQL
performance, ARQ can be extended at the basic graph matching or algebra level.

Applications writers who extend ARQ at the query execution level should be prepared to work with the
source code for ARQ for specific details and for finding code to reuse. Some example can be found in
the src-examples directory in the ARQ download.

• Overview of ARQ Query processing-
• The Main Query Engine
• Graph matching and a custom StageGenerator
• OpExecutor
• Quads
• Mixed Graph Implementation Datasets
• Custom Query Engines
• Extend the algebra

Overview of ARQ Query Processing
The sequence of actions performed by ARQ to perform a query are parsing, algebra generation,
execution building, high-level optimization, low-level optimization and finally evaluation. It is not
usual to modify the parsing step nor the conversion from the parse tree to the algebra form, which is a
fixed algorithm defined by the SPARQL standard. Extensions can modify the algebra form by
transforming it from one algebra expression to another, including introducing new operators. See also
the documentation on working with the SPARQL algebra in ARQ including building algebra
expressions programmatically, rather than obtaining them from a query string.

http://jena.apache.org/documentation/query/algebra.html
http://jena.apache.org/documentation/query/arq-query-eval.html#algebra-extensions
http://jena.apache.org/documentation/query/arq-query-eval.html#custom-query-engines
http://jena.apache.org/documentation/query/arq-query-eval.html#mixed-datasets
http://jena.apache.org/documentation/query/arq-query-eval.html#quads
http://jena.apache.org/documentation/query/arq-query-eval.html#opexecutor
http://jena.apache.org/documentation/query/arq-query-eval.html#stage-generator
http://jena.apache.org/documentation/query/arq-query-eval.html#main-query-engine
http://jena.apache.org/documentation/query/arq-query-eval.html#overview
http://jena.apache.org/documentation/query/arq-query-eval.html#opexecutor
http://jena.apache.org/documentation/query/arq-query-eval.html#stage-generator
http://jena.apache.org/documentation/larq/
http://jena.apache.org/documentation/query/extension.html#property-functio-ns
http://jena.apache.org/documentation/query/extension.html#value-functions
http://jena.apache.org/documentation/query/extension.html
http://jena.apache.org/documentation/sdb/
http://jena.apache.org/documentation/tdb

Parsing

The parsing step turns a query string into a Query object. The class Query represents the abstract
syntax tree (AST) for the query and provides methods to create the AST, primarily for use by the
parser. The query object also provides methods to serialize the query to a string. Because this is the
AST, the string produced is very close to the original query with the same syntactic elements, but
without comments, and formatted with a whitespace for readability. It is not usually the best way to
build a query programmatically and the AST is not normally an extension point.

The query object can be used many times. It is not modified once created, and in particular it is not
modified by query execution.

Algebra generation

ARQ generates the SPARQL algebra expression for the query. After this a number of transformations
can be applied (for example, identification of property functions) but the first step is the application of
the algorithm in the SPARQL specification for translating a SPARQL query string, as held in a Query
object into a SPARQL algebra expression. This includes the process of removing joins involving the
identity pattern (the empty graph pattern).

For example, the query:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?mbox ?nick
WHERE { ?x foaf:name ?name ;
 foaf:mbox ?mbox .
 OPTIONAL { ?x foaf:nick ?nick }
 }

becomes

(prefix ((foaf: <http://xmlns.com/foaf/0.1/>))
 (project (?name ?mbox ?nick)
 (leftjoin
 (bgp
 (triple ?x foaf:name ?name)
 (triple ?x foaf:mbox ?mbox)
)
 (bgp (triple ?x foaf:nick ?nick)
)
)))

using the SSE syntax to write out the internal data-structure for the algebra.

The online SPARQL validator at sparql.org can be used to see the algebra expression for a SPARQL
query. This validator is also include in Fuseki.

High-Level Optimization and Transformations

There is a collection of transformations that can be applied to the algebra, such as replacing equality
filters with a more efficient graph pattern and an assignment. When extending ARQ, a query processor
for a custom storage layout can choose which optimizations are appropriate and can also provide its
own algebra transformations.

A transform is code that converts an algebra operation into other algebra operations. It is applied using

http://jena.apache.org/documentation/serving_data/
http://sparql.org/
http://www.sparql.org/validator.html
http://jena.apache.org/documentation/notes/sse.html
http://www.w3.org/TR/sparql11-query/#sparqlQuery

the Transformer class:

Op op = ... ;
Transform someTransform = ... ;
op = Transformer.transform(someTransform, op) ;

The Transformer class applies the transform to each operation in the algebra expression tree.
Transform itself is an interface, with one method signature for each operation type, returning a
replacement for the operator instance it is called on.

One such transformation is to turn a SPARQL algebra expression involving named graphs and triples
into one using quads. This transformation is performed by a call to Algebra.toQuadForm.

Transformations proceed from the bottom of the expression tree to the top. Algebra expressions are best
treated as immutable so a change made in one part of the tree should result in a copy of the tree above
it. This is automated by the TransformCopy class which is the commonly used base class for
writing transforms. The other helper base class is TransformBase, which provides the identify
operation (returns the node supplied) for each transform operation.

Operations can be printed out in SSE syntax. The Java toString method is overridden to provide
pretty printing and the static methods in WriterOp provide output to various output objects like
java.io.OutputStream.

Low-Level Optimization and Evaluation

The step of evaluating a query is the process of executing the algebra expression, as modified by any
transformations applied, to yield a stream of pattern solutions. Low-level optimizations include
choosing the order in which to evaluate basic graph patterns. These are the responsibility of the custom
storage layer. Low-level optimization can be carried out dynamically as part of evaluation.

Internally, ARQ uses iterators extensively. Where possible, evaluation of an operation is achieved by
feeding the stream of results from the previous stage into the evaluation. A common pattern is to take
each intermediate result one at a time (use QueryIterRepeatApply to be called for each
binding) , substituting the variables of pattern with those in the incoming binding, and evaluating to a
query iterator of all results for this incoming row. The result can be the empty iterator (one that always
returns false for hasNext). It is also common to not have to touch the incoming stream at all but
merely to pass it to sub-operations.

Query Engines and Query Engine Factories

The steps from algebra generation to query evaluation are carried out when a query is executed via the
QueryExecution.execSelect or other QueryExecution exec operation. It is possible to
carry out storage-specific operations when the query execution is created. A query engine works in
conjunction with a QueryExecution created by the QueryExecutionFactory to provide the
evaluation of a query pattern. QueryExecutionBase provides all the machinery for the different
result types and does not need to be modified by extensions to query execution.

ARQ provides three query engine factories; the main query engine factory, one for a reference query
engine and one to remotely execute a query. SDB and TDB provide their own query engine factories
which they register during sub-system initialization. Both extend the main query engine described
below.

http://jena.apache.org/documentation/notes/sse.html

The reference query engine is a direct top-down evaluation of the expression. It's purpose is to be
simple so it can be easily verified and checked then its results used to check more complicated
processing in the main engine and other implementations. All arguments to each operator are fully
evaluated to produce intermediate in-memory tables then a simple implementation of the operator is
called to calculate the results. It does not scale and does not perform any optimizations. It is intended to
be clear and simple; it is not designed to be efficient.

Query engines are chosen by referring to the registry of query engine factories.

public interface QueryEngineFactory
{
 public boolean accept(Query query, DatasetGraph dataset, Context context) ;
 public Plan create(Query query, DatasetGraph dataset, Binding inputBinding,
Context context) ;

 public boolean accept(Op op, DatasetGraph dataset, Context context) ;
 public Plan create(Op op, DatasetGraph dataset, Binding inputBinding, Context
context) ;
}

When the query execution factory is given a dataset and query, the query execution factory tries each
registered engine factory in turn calling the accept method (for query of algebra depending on how it
was presented). The registry is kept in reverse registration order - the most recently registered query
engine factory is tried first. The first query engine factor to return true is chosen and no further engine
factories are checked.

When a query engine factory is chosen, the create method is called to return a Plan object for the
execution. The main operation of the plan interface is to get the QueryIterator for the query.

See the example in src-examples/arq.examples.engine.MyQueryEngine.

The Main Query Engine
The main query engine can execute any query. It contains a number of basic graph pattern matching
implementations including one that uses the Graph.find operation so it can work with any
implementation of the Jena Graph SPI. The main query engine works with general purpose datasets but
not quad stores directly; it evaluates patterns on each graph in turn. The main query engine includes
optimizations for the standard Jena implementation of in-memory graphs.

High-level optimization is performed by a sequence of transformations. This set of optimizations is
evolving. A custom implementation of a query engine can reuse some or all of these transformations
(see Algebra.optimize which is the set of transforms used by the main query engine).

The main query engine is a streaming engine. It evaluates expressions as the client consumes each
query solution. After preparing the execution by creating the initial conditions (a partial solution of one
row and no bound variables or any initial bindings of variables), the main query engine calls
QC.execute which is the algorithm to execute a query. Any extension that wished to reuse some of
the main query engine by providing it's own OpExecutor must call this method to evaluate a sub-
operation.

QC.execute finds the currently active OpExecutor factory, creates an OpExecutor object and
invokes it to evaluate one algebra operation.

There are two points of extension for the main query engine:

• Stage generators, for evaluating basic graph patterns and reusing the rest of the engine.
• OpExecutor to execute any algebra operator specially.

The standard OpExecutor invokes the stage generator mechanism to match a basic graph pattern.

Graph matching and a custom StageGenerator
The correct point to hook into ARQ for just extending basic graph pattern matching (BGPs) is to
provide a custom StageGenerator. (To hook into filtered basic graph patterns, the extension will
need to provide it's own OpExecutor factory). The advantage of the StageGenerator
mechanism, as compared to the more general OpExecutor described below, is that it more self-
contained and requires less detail about the internal evaluation of the other SPARQL algebra operators.
This extension point corresponds to section 12.6 "Extending SPARQL Basic Graph Matching".

Below is the default code to match a BGP from OpExecutor.execute(OpBGP,
QueryIterator). It merely calls fixed code in the StageBuilder class.The input is a stream of
results from earlier stages. The execution must return a query iterator that is all the possible ways to
match the basic graph pattern for each of the inputs in turn. Order of results does not matter.

protected QueryIterator execute(OpBGP opBGP, QueryIterator input)
{
 BasicPattern pattern = opBGP.getPattern() ;
 return StageBuilder.execute(pattern, input, execCxt) ;
}

The StageBuilder looks for the stage generator by accessing the context for the execution:

StageGenerator stageGenerator = (StageGenerator)context.get(ARQ.stageGenerator) ;

where the context is the global context and any query execution specific additions together with various
execution control elements.

A StageGenerator is an implementation of:

 public interface StageGenerator
 {
 public QueryIterator execute(BasicPattern pattern,
 QueryIterator input,
 ExecutionContext execCxt) ;
 }

Setting the Stage Generator

An extension stage generator can be registered on a per-query execution basis or (more usually) in the
global context.

 StageBuilder.setGenerator(Context, StageGenerator)

The global context can be obtained by a call to ARQ.getContext()

 StageBuilder.setGenerator(ARQ.getContext(), myStageGenerator) ;

In order to allow an extensions to still permit other graphs to be used, stage generators are usually
chained, with each new custom one passing the execution request up the chain if the request is not

http://www.w3.org/TR/sparql11-query/#sparqlBGPExtend

supported by this custom stage generator.

public class MyStageGenerator implements StageGenerator
{
 StageGenerator above = null ;

 public MyStageGenerator (StageGenerator original)
 { above = original ; }

 @Override
 public QueryIterator execute(BasicPattern pattern, QueryIterator input,
ExecutionContext execCxt)
 {
 Graph g = execCxt.getActiveGraph() ;
 // Test to see if this is a graph we support.
 if (! (g instanceof MySpecialGraphClass))
 // Not us - bounce up the StageGenerator chain
 return above.execute(pattern, input, execCxt) ;
 MySpecialGraphClass graph = (MySpecialGraphClass)g ;
 // Create a QueryIterator for this request
 ...

This is registered by setting the global context (StageBuilder has a convenience operation to do
this):

 // Get the standard one.
 StageGenerator orig = (StageGenerator)ARQ.getContext().get(ARQ.stageGenerator) ;
 // Create a new one
 StageGenerator myStageGenerator= new MyStageGenerator(orig) ;
 // Register it
 StageBuilder.setGenerator(ARQ.getContext(), myStageGenerator) ;

Example: src-examples/arq.examples.bgpmatching.

OpExecutor
A StageGenerator provides matching for a basic graph pattern. If an extension wishes to take
responsibility for more of the evaluation then it needs to work with OpExecutor. This includes
evaluation of filtered basic graph patterns.

An example query using a filter:

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX books: <http://example.org/book/>

SELECT *
WHERE
 { ?book dc:title ?title .
 FILTER regex(?title, "Paddington")
 }

results in the algebra expression for the pattern:

 (filter (regex ?title "Paddington")
 (bgp (triple ?book dc:title ?title)
))

showing that the filter is being applied to the results of a basic graph pattern matching.

Note: this is not the way to provide custom filter operations. See the documentation for application-
provided filter functions.

Each step of evaluation in the main query engine is performed by a OpExecutor and a new one is
created from a factory at each step. The factory is registered in the execution context. The
implementation of a specialized OpExecutor can inherit from the standard one and override only
those algebra operators it wishes to deal with, including inspecting the execution and choosing to
passing up to the super-class based on the details of the operation. From the query above, only regex
filters might be specially handled.

Registering an OpExecutorFactory:

OpExecutorFactory customExecutorFactory = new MyOpExecutorFactory(...) ;
QC.setFactory(ARQ.getCOntext(), customExecutorFactory) ;

QC is a point of indirection that chooses the execution process at each stage in a query so if the custom
execution wishes to evaluate an algebra operation within another operation, it shoudl call
QC.execute. Be careful not to loop endlessly if the operation is itself handled by the custom
evaluator. This can be done by swapping in a different OpExecutorFactory.

 // Execute an operation with a different OpExecution Factory

 // New context.
 ExecutionContext ec2 = new ExecutionContext(execCxt) ;
 ec2.setExecutor(plainFactory) ;

 QueryIterator qIter = QC.execute(op, input, ec2) ;

 private static OpExecutorFactory plainFactory =
 new OpExecutorFactory()
 {
 @Override
 public OpExecutor create(ExecutionContext execCxt)
 {
 // The default OpExecutor of ARQ.
 return new OpExecutor(execCxt) ;
 }
 } ;

Quads
If a custom extension provides named graphs, then it may be useful to execute the quad form of the
query. This is done by writing a custom query engine and overriding
QueryEngineMain.modifyOp:

 @Override
 protected Op modifyOp(Op op)
 {
 // Cope with initial bindings.
 op = Substitute.substitute(op, initialInput) ;
 // Use standard optimizations.
 op = super.modifyOp(op) ;
 // Turn into quad form.
 op = Algebra.toQuadForm(op) ;

http://jena.apache.org/documentation/query/extension.html#valueFunctions
http://jena.apache.org/documentation/query/extension.html#valueFunctions

 return op ;
 }

The extension may need to provide its own dataset implementation so that it can detect when queries
are directed to its named graph storage. TDB and SDB are examples of this.

Mixed Graph Implementation Datasets
The dataset implementation used in normal operation does not work on quads but instead can provide a
dataset with a collection of graphs each from different implementation sub-systems. In-memory graphs
can be mixed with database backed graphs as well as custom storage systems. Query execution
proceeds per-graph so that an custom OpExecutor will need to test the graph to work with to make
sure it is of the right class. The pattern in the StageGenerator extension point is an example of
design pattern in that situation.

Custom Query Engines
A custom query engine enables an extension to choose which datasets it wishes to handle. It also allows
the extension to intercept query execution during the setup of the execution so it can modify the algebra
expression, introduce it's own algebra extensions, choose which high-level optimizations to apply and
also transform to the expression into quad form. Execution can proceed with the normal algorithm or a
custom OpExecutor or a custom Stage Generator or a combination of all three extension mechanism.

Only a small, skeleton custom query engine is needed to intercept the initial setup. See the example in
src-examples/arq.examples.engine.MyQueryEngine.

While it is possible to replace the entire process of query evaluation, this is a substantial endeavour.
QueryExecutionBase provides the machinery for result presentation (SELECT, CONSTRUCT,
DESCRIBE, ASK), leaving the work of pattern evaluation to the custom query engine.
QueryExecutionFactory assumes that QueryExecutionBase will be used.

Algebra Extensions
New operators can be added to the algebra using the OpExt class as the super-class of the new
operator. They can be inserted into the expression to be evaluated using a custom query engine to
intercept evaluation initialization. When evaluation of a query requires the evaluation of a sub-class of
OpExt, the eval method is called. SDB uses this to introduce an operator that is implemented in
SQL.

TDB
TDB is a component of Jena for RDF storage and query. It support the full range of Jena APIs. TDB
can be used as a high performance RDF store on a single machine. This documentation describes the
latest version, unless otherwise noted.

A TDB store can be accessed and managed with the provided command line scripts and via the Jena
API.

See also Fuseki for a SPARQL server that uses TDB for persistent storage and provides the SPARQL

http://jena.apache.org/documentation/serving_data/
http://jena.apache.org/
http://jena.apache.org/documentation/sdb/
http://jena.apache.org/documentation/tdb/

protocols for query, update and REST update over HTTP.

Documentation
• TDB Download and Installation
• TDB Requirements
• Command line utilities
• Using TDB from Java through the API
• Transactions
• Assemblers for Graphs and Datasets
• Datasets and Named Graphs
• Dynamic Datasets : Query a subset of the named graphs
• Quad filtering : Hide information in the dataset
• The TDB Optimizer
• TDB Configuration
• Value Canonicalization
• TDB Design
• Use on 64 bit or 32 bit Java systems

Hi Sarven,
I think I have identified the problem.

With Lucene we can have only one IndexWriter at the time.
When we run larq.larqbuilder and we specify --desc=tdb.ttl
we need to make sure tdb.ttl does not have a ja:textIndex
property in it.

This is because larqbuilder creates one Lucene IndexWriter
and then it calls the DataSourceAssembler which is trying
to create another Lucene IndexWriter if ja:textIndex is
there.

Also, from the fact that you still have "null" in your
error message... I am not 100% sure you are using the
latest ARQ SNAPSHOT. To be absolutely sure, could you
try deleting it from your .m2 Maven repository.

However, I am experiencing another problem with Fuseki
which I do not understand:

cd /tmp
svn co http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/ fuseki
cd /tmp/fuseki
mvn test

 T E S T S

Running org.openjena.fuseki.TS_Fuseki
 INFO [qtp1548452562-20] (SPARQL_ServletBase.java:118) - [1] POST
http://localhost:3535/dataset/update
 INFO [qtp1548452562-20] (SPARQL_ServletBase.java:153) - [1] 204 No Content
 INFO [qtp1548452562-21] (SPARQL_ServletBase.java:118) - [2] GET
http://localhost:3535/dataset/data?default=

http://jena.apache.org/documentation/tdb/jvm_64_32.html
http://jena.apache.org/documentation/tdb/architecture.html
http://jena.apache.org/documentation/tdb/value_canonicalization.html
http://jena.apache.org/documentation/tdb/configuration.html
http://jena.apache.org/documentation/tdb/optimizer.html
http://jena.apache.org/documentation/tdb/quadfilter.html
http://jena.apache.org/documentation/tdb/dynamic_datasets.html
http://jena.apache.org/documentation/tdb/datasets.html
http://jena.apache.org/documentation/tdb/assembler.html
http://jena.apache.org/documentation/tdb/tdb_transactions.html
http://jena.apache.org/documentation/tdb/java_api.html
http://jena.apache.org/documentation/tdb/commands.html
http://jena.apache.org/documentation/tdb/requirements.html
http://jena.apache.org/documentation/tdb/tdb_download.html

 INFO [qtp1548452562-21] (SPARQL_ServletBase.java:153) - [2] 200 OK
 INFO [qtp1548452562-22] (SPARQL_ServletBase.java:118) - [3] GET
http://localhost:3535/dataset/data?graph=http://graph/1
 INFO [qtp1548452562-22] (SPARQL_ServletBase.java:155) - [3] 404 No such graph:
<http://graph/1>
 INFO [qtp1548452562-23] (SPARQL_ServletBase.java:118) - [4] POST
http://localhost:3535/dataset/update
 INFO [qtp1548452562-23] (SPARQL_ServletBase.java:153) - [4] 204 No Content
 INFO [qtp1548452562-24] (SPARQL_ServletBase.java:118) - [5] GET
http://localhost:3535/dataset/data?graph=http://graph/1
 INFO [qtp1548452562-24] (SPARQL_ServletBase.java:155) - [5] 404 No such graph:
<http://graph/1>
 INFO [qtp1548452562-19] (SPARQL_ServletBase.java:118) - [6] POST
http://localhost:3535/dataset/update
 INFO [qtp1548452562-19] (SPARQL_ServletBase.java:153) - [6] 204 No Content

It stops here, forever.

To retry the patch for LARQ in Fuseki, do:

cd /tmp
svn co http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/ fuseki
cd /tmp/fuseki
wget
https://issues.apache.org/jira/secure/attachment/12482758/JENA-
63_Fuseki_r1136050.patch
patch -p0 < JENA-63_Fuseki_r1136050.patch
mvn -DskipTests=true package

Then you should be able to index a dataset using:

java -cp target/fuseki-0.2.1-SNAPSHOT-sys.jar larq.larqbuilder
--allow-duplicates --larq=/tmp/lucene --desc=/path/to/your/assembler.ttl

But, please, make sure you do not have any ja:textIndex in your assembler.ttl
when you do the initial bulk indexing.

You should put the ja:textIndex back in for normal operations.

It's not ideal, but at least now I understand the cause of the problem
and there is a workaround.

Let me know how it goes.

Paolo

Sarven Capadisli wrote:
> Thanks a lot Paulo. Just some feedback on these steps:
>
> My pom.xml contains http://pastebin.com/5HAJBL95
>
> $ java -cp target/fuseki-0.2.1-SNAPSHOT-sys.jar larq.larqbuilder
> --allow-duplicates --larq=/usr/lib/fuseki/lucene-index/
> --desc=/usr/lib/fuseki/tdb2.ttl
>
> 11:56:34 WARN DataSourceAssembler :: Unable to initialize LARQ using
> org.apache.jena.larq.assembler.AssemblerLARQ: null
> 11:56:34 WARN DataSourceAssembler :: Unable to initialize LARQ using

> com.hp.hpl.jena.query.larq.AssemblerLARQ: null
>
> -Sarven
>
> On Thu, 2011-06-16 at 10:45 +0100, Paolo Castagna wrote:
>> Hi Sarven,
>> first of all, thanks for your email.
>>
>> This is about an open issue (an improvement) which aim is to add the new LARQ
>> (i.e. the one as separate module) to Fuseki and make it as easy as possible for
>> people to use.
>>
>> See: https://issues.apache.org/jira/browse/JENA-63
>> The issue is still open and there are problems.
>> I cleaned up the attachments on JENA-63 and uploaded a new patch for Fuseki.
>>
>> This is how you can apply the patch to Fuseki:
>>
>> cd /tmp
>> svn co http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/ fuseki
>> cd /tmp/fuseki
>> wget
>> https://issues.apache.org/jira/secure/attachment/12482758/JENA-
63_Fuseki_r1136050.patch
>> patch -p0 < JENA-63_Fuseki_r1136050.patch
>> mvn package
>>
>> Then you should be able to index a dataset using:
>>
>> java -cp target/fuseki-0.2.1-SNAPSHOT-sys.jar larq.larqbuilder
>> --allow-duplicates --larq=/tmp/lucene --desc=/path/to/your/assembler.ttl
>>
>> However, there is a problem (I improved the error message):
>>
>> 10:32:35 WARN DataSourceAssembler :: Unable to initialize LARQ using
>> org.apache.jena.larq.assembler.AssemblerLARQ: Lock obtain timed out:
>> NativeFSLock@/tmp/lucene/write.lock
>>
>> This is the stack trace:
>>
>> java.lang.reflect.InvocationTargetException
>> at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
>> at
sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
>> at
>>
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:2
5)
>> at java.lang.reflect.Method.invoke(Method.java:597)
>> at
>>
com.hp.hpl.jena.sparql.core.assembler.DataSourceAssembler.createTextIndex(DataSourc
eAssembler.java:115)
>> at
>>
com.hp.hpl.jena.sparql.core.assembler.DataSourceAssembler.createTextIndex(DataSourc
eAssembler.java:97)
>> at
>>

com.hp.hpl.jena.sparql.core.assembler.DatasetAssembler.open(DatasetAssembler.java:2
2)
>> at
>>
com.hp.hpl.jena.assembler.assemblers.AssemblerGroup$PlainAssemblerGroup.openBySpeci
ficType(AssemblerGroup.java:118)
>> at
>>
com.hp.hpl.jena.assembler.assemblers.AssemblerGroup$PlainAssemblerGroup.open(Assemb
lerGroup.java:105)
>> at
>>
com.hp.hpl.jena.assembler.assemblers.AssemblerGroup$ExpandingAssemblerGroup.open(As
semblerGroup.java:69)
>> at
com.hp.hpl.jena.assembler.assemblers.AssemblerBase.open(AssemblerBase.java:37)
>> at
com.hp.hpl.jena.assembler.assemblers.AssemblerBase.open(AssemblerBase.java:34)
>> at
>>
com.hp.hpl.jena.sparql.core.assembler.AssemblerUtils.build(AssemblerUtils.java:88)
>> at arq.cmdline.ModAssembler.create(ModAssembler.java:55)
>> at
arq.cmdline.ModDatasetAssembler.createDataset(ModDatasetAssembler.java:31)
>> at arq.cmdline.ModDataset.getDataset(ModDataset.java:22)
>> at larq.larqbuilder.exec(larqbuilder.java:84)
>> at arq.cmdline.CmdMain.mainMethod(CmdMain.java:85)
>> at arq.cmdline.CmdMain.mainRun(CmdMain.java:47)
>> at arq.cmdline.CmdMain.mainRun(CmdMain.java:34)
>> at larq.larqbuilder.main(larqbuilder.java:50)
>> Caused by: org.apache.lucene.store.LockObtainFailedException: Lock obtain timed
>> out: NativeFSLock@/tmp/lucene/write.lock
>> at org.apache.lucene.store.Lock.obtain(Lock.java:84)
>> at org.apache.lucene.index.IndexWriter.<init>(IndexWriter.java:1097)
>> at
org.apache.jena.larq.IndexWriterFactory.create(IndexWriterFactory.java:36)
>> at org.apache.jena.larq.assembler.AssemblerLARQ.make(AssemblerLARQ.java:85)
>> ... 21 more
>>
>>
>> It seems to me that Lucene is failing to acquire the write.lock,
>> as if initialization code were called twice.
>>
>> I have not yet identified the cause of this and I am investigating.
>>
>> Apologies and be patience (until we make progress and we close JENA-63).
>>
>> Paolo
>>
>> Sarven Capadisli wrote:
>>> Hi,
>>>
>>> I'd like to get Fuseki and LARQ running. Below is where I'm at. Any help
>>> would be great:
>>>
>>> I use https://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk
>>> and it sits at /usr/lib/fuseki
>>>
>>> I have

>>> http://ftp.heanet.ie/mirrors/www.apache.org/dist//lucene/java/3.2.0/lucene-
3.2.0.tgz
at /usr/lib/lucene/
>>>
>>> I've applied
>>> https://issues.apache.org/jira/secure/attachment/12478735/JENA-
63_Fuseki_r8810.patch
>>>
>>> My /usr/lib/fuseki/pom.xml is http://pastebin.com/Cpaz75ai
>>>
>>> My /usr/lib/fuseki/tdb2.ttl is http://pastebin.com/SXv5LWEn
>>>
>>> When I run
>>> $java -cp target/fuseki-0.2.1-SNAPSHOT-sys.jar larq.larqbuilder
>>> --allow-duplicates --larq=/usr/lib/lucene/index/
>>> --desc=/usr/lib/fuseki/tdb2.ttl
>>>
>>> I get http://pastebin.com/JQPqsPtH
>>>
>>> -Sarven
>>>
>

Hi Tao,
could you try this for me:

svn co http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/
fuseki cd fuseki

edit pom.xml adding LARQ dependency:

 <dependency>
 <groupId>org.apache.jena</groupId>
 <artifactId>jena-larq</artifactId>
 <version>1.0.0-incubating</version>
 </dependency>

mvn clean package
java -jar target/jena-fuseki-0.2.2-incubating-SNAPSHOT-server.jar
--config=config.ttl

---- config.ttl ----
@prefix : <#> .
@prefix fuseki: <http://jena.apache.org/fuseki#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix tdb: <http://jena.hpl.hp.com/2008/tdb#> .
@prefix ja: <http://jena.hpl.hp.com/2005/11/Assembler#> .

[] rdf:type fuseki:Server ;
 fuseki:services (
 <#service1>
) .

<#service1> rdf:type fuseki:Service ;
 fuseki:name "ds" ;
 fuseki:serviceQuery "sparql" ;
 fuseki:serviceQuery "query" ;
 fuseki:serviceUpdate "update" ;

http://jena.hpl.hp.com/2005/11/Assembler#
http://jena.hpl.hp.com/2008/tdb#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://jena.apache.org/fuseki#
http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/

 fuseki:serviceUpload "upload" ;
 fuseki:serviceReadWriteGraphStore "data" ;
 fuseki:serviceReadGraphStore "get" ;
 fuseki:serviceReadGraphStore "" ;
 fuseki:dataset <#dataset1> ;
 .

<#dataset1> rdf:type tdb:DatasetTDB ;
 tdb:location "/tmp/tdb" ;
 ja:textIndex "/tmp/lucene"
 .

I get results when I query with:
s-query --service=http://127.0.0.1:3030/ds/sparql "PREFIX pf:
<http://jena.hpl.hp.com/ARQ/property#> SELECT * { ?s pf:textMatch 'word'}
LIMIT 10"

Now, I have done the exactly the same with:
http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/tags/jena-fuseki
-0.2.1-incubating-RC-1/
and
http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/tags/jena-fuseki
-0.2.1-incubating/
and I experience your problem. (I checked both since I was not 100% which
tag corresponds to the actual release, it should be
jena-fuseki-0.2.1-incubating,
right?)

The Lucene index is created correctly and it's there, I can query in using
the larq.larq command line:
java -cp target/jena-fuseki-0.2.1-incubating-server.jar larq.larq
--larq=/tmp/lucene "word"

The only hypothesis I have is that somehow something goes wrong with the
assembler which initialize LARQ. I am sorry not being able to be more
helpful at the moment.

The only suggestion I have for you is to try using Fuseki from trunk:
http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/
and let me know if you experience problems with that. That works for me.

In the meantime, I'll see if I can find what's the cause of this problem.

Paolo

Tao (陶信东) wrote:
> Hi Paolo,
> The index files seem ok (see below). It was obviously created by
> Fuseki (It didn't exist before I create it). It seems that LARQ is not
> called when performing the pf:textMatch search.
>
> -rw-r--r-- 1 17459784 Apr 27 14:32 _2.fdt
> -rw-r--r-- 1 2325668 Apr 27 14:32 _2.fdx
> -rw-r--r-- 1 40 Apr 27 14:32 _2.fnm
> -rw-r--r-- 1 2269211 Apr 27 14:32 _2.frq
> -rw-r--r-- 1 581420 Apr 27 14:32 _2.nrm
> -rw-r--r-- 1 1414550 Apr 27 14:32 _2.prx
> -rw-r--r-- 1 40894 Apr 27 14:32 _2.tii

http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/trunk/
http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/tags/jena-fuseki
http://svn.apache.org/repos/asf/incubator/jena/Jena2/Fuseki/tags/jena-fuseki
http://jena.hpl.hp.com/ARQ/property#
http://127.0.0.1:3030/ds/sparql

> -rw-r--r-- 1 4475539 Apr 27 14:32 _2.tis
> -rw-r--r-- 1 253 Apr 27 14:32 segments_1
> -rw-r--r-- 1 20 Apr 27 14:32 segments.gen
> -rw-r--r-- 1 0 Apr 27 14:32 write.lock
>
> -----Original Message-----
> From: Paolo Castagna [mailto:castagna.li...@googlemail.com]
> Sent: Friday, April 27, 2012 3:26 PM
> To: jena-users@incubator.apache.org
> Subject: Re: [ANN] Release of Apache Jena LARQ 1.0.0-incubating
>
> Hi Tao,
> can you share the bit of your Fuseki configuration where you point at
> the path for your Lucene indexes?
>
> #dataset> rdf:type tdb:DatasetTDB ;
> ...
> ja:textIndex "/path/to/lucene/index/" ;
> .
>
> Can you do an ls -la of that directory to see the file sizes?
>
> Can you try to point to a non existing directory and restart Fuseki?
>
> If the directory exists an empty index will be created (this is a side
> effect of opening a Lucene Directory when your Lucene index does not
exist).
> If the directory does not exist your dataset will be indexed.
>
> Let's see if you can sort this out and let me know if you have ideas
> on how to improve this.
>
> Paolo
>

> Tao (陶信东) wrote:
>> Thanks Paolo. Now I can find the lucene files. But pf:textMatch still
>> doesn't seem to work. See details below.
>>
>> select * where {?s rdfs:label ?o} limit 10
>> ---
>> -
>> ------
>> -
>> | s | o
>> |
>> ===
>> =
>> ======
>> =
>> | <http://xmlns.com/foaf/0.1/LabelProperty> | "Label
> Property"
>> |
>> | <http://xmlns.com/foaf/0.1/Person> | "Person"
>> |
>> | <http://www.w3.org/2000/10/swap/pim/contact#Person> | "Person"
>> |
>> | <http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing> | "Spatial
Thing"
>> |

http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing
http://www.w3.org/2000/10/swap/pim/contact#Person
http://xmlns.com/foaf/0.1/Person
http://xmlns.com/foaf/0.1/LabelProperty
mailto:castagna.li...@googlemail.com

>> | <http://xmlns.com/foaf/0.1/Document> | "Document"
>> |
>> | <http://xmlns.com/foaf/0.1/Organization> | "Organization"
>> |
>> | <http://xmlns.com/foaf/0.1/Group> | "Group"
>> |
>> | <http://xmlns.com/foaf/0.1/Agent> | "Agent"
>> |
>> | <http://xmlns.com/foaf/0.1/Project> | "Project"
>> |
>> | <http://xmlns.com/foaf/0.1/Image> | "Image"
>> |
>> ---
>> -
>> ------
>> -
>>
>> prefix pf: <http://jena.hpl.hp.com/ARQ/property#>
>> select * where {?s pf:textMatch "+Label"} limit 10
>> -----
>> | s |
>> =====
>> -----
>>
>>
>> -----Original Message-----
>> From: Paolo Castagna [mailto:castagna.li...@googlemail.com]
>> Sent: Thursday, April 26, 2012 10:26 PM
>> To: jena-users@incubator.apache.org
>> Subject: Re: [ANN] Release of Apache Jena LARQ 1.0.0-incubating
>>

>> Tao (陶信东) wrote:
>>> Thanks Paolo, I'll try that.
>>>
>>> Meanwhile, would you please clarify whether Fuseki will build LARQ
>>> index automatically, after the patch?
>> Yes, if the directory does not exist LARQ will create it and build
>> the Lucene index automatically, if a directory exists a Lucene index
>> will be opened pointing to that directory (however, if the directory
>> exists and it's empty, you'll have an empty Lucene index as result):
>>
>> if (indexPath != null)
>> {
>> File path = new File(indexPath) ;
>> if (!path.exists())
>> {
>> log.debug("Directory {} does not exist, building
>> Lucene
>> index...") ;
>> path.mkdirs() ;
>> build (dataset, path) ;
>> }
>> directory = FSDirectory.open(path);
>> } else {
>> directory = new RAMDirectory();
>> }
>>
>> http://svn.apache.org/repos/asf/incubator/jena/Jena2/LARQ/tags/jena-l
>> a

http://svn.apache.org/repos/asf/incubator/jena/Jena2/LARQ/tags/jena-l
mailto:castagna.li...@googlemail.com
http://jena.hpl.hp.com/ARQ/property#
http://xmlns.com/foaf/0.1/Image
http://xmlns.com/foaf/0.1/Project
http://xmlns.com/foaf/0.1/Agent
http://xmlns.com/foaf/0.1/Group
http://xmlns.com/foaf/0.1/Organization
http://xmlns.com/foaf/0.1/Document

>> rq-1.0
>> .0-incubating/src/main/java/org/apache/jena/larq/assembler/AssemblerL
>> A
>> RQ.jav
>> a
>>
>>> Your reply and Venkat's seemed different regarding this.
>> This is because things have been improved since the latest release.
>>
>> Paolo
>>
>>> Thanks
>>> Tao
>>>
>>> -----Original Message-----
>>> From: Paolo Castagna [mailto:castagna.li...@googlemail.com]
>>> Sent: Wednesday, April 25, 2012 6:51 PM
>>> To: jena-users@incubator.apache.org
>>> Subject: Re: [ANN] Release of Apache Jena LARQ 1.0.0-incubating
>>>
>>> Hi Tao
>>>

>>> Tao(陶信东) wrote:
>>>> Hi Paolo,
>>>>
>>>> This is great! I've been waiting for it since several weeks ago.
>>> Good to know.
>>>
>>>> However, after I configured Fuseki for it by adding LARQ to my
>>>> class path and the following lines to the assembly file,
>>>> pf:textMatch doesn't work (the usual sparql query works).
>>>>
>>>> <#dataset> rdf:type tdb:DatasetTDB ;
>>>> tdb:location "/path/to/my/tdb/indexes/" ;
>>>> ja:textIndex "/path/to/lucene/index/" ;
>>>> .
>>>>
>>>> Is Fuseki supported by this LARQ release?
>>> Fuseki does not include LARQ.
>>>
>>> For more details, please, see also:
>>> https://issues.apache.org/jira/browse/JENA-63
>>> https://issues.apache.org/jira/browse/JENA-164
>>>
>>> The good news is that it is extremely easy to check out Fuseki
>>> sources, patch the pom.xml file and repackage it (i.e. mvn package).
See:
>>> https://issues.apache.org/jira/secure/attachment/12504042/JENA-63_Fu
>>> s
>>> e
>>> ki_r12
>>> 03107.patch
>>> (be warned, that patch might not be up-to-date, but you see it's
>>> just a new dependency on LARQ).
>>>
>>>> Or should I build the lucene index
>>>> by myself when Fuseki started?
>>> No, you do not need that.
>>>

https://issues.apache.org/jira/secure/attachment/12504042/JENA-63_Fu
https://issues.apache.org/jira/browse/JENA-164
https://issues.apache.org/jira/browse/JENA-63
mailto:castagna.li...@googlemail.com

>>> 1. Checkout Fuseki source code.
>>> 2. Add LARQ dependency to the Fuseki pom.xml file 3. mvn package
>>>
>>> Let me know how it goes and if you have problems.
>>>
>>> Cheers,
>>> Paolo
>>>
>>>> Thanks
>>>> Tao
>>>>
>>>> -----Original Message-----
>>>> From: Paolo Castagna [mailto:castagna.li...@googlemail.com]
>>>> Sent: Tuesday, April 24, 2012 5:43 AM
>>>> To: jena-users@incubator.apache.org
>>>> Subject: [ANN] Release of Apache Jena LARQ 1.0.0-incubating
>>>>
>>>> LARQ 1.0.0-incubating has been released, this is the first release
>>>> of LARQ as separate module and under the Apache License.
>>>>
>>>> LARQ is a combination of ARQ and Lucene aimed at providing
>>>> developers with the ability to perform free text searches within
>>>> their SPARQL
>>> queries.
>>>> Documentation for LARQ is available here:
>>>>
>>>> - http://incubator.apache.org/jena/documentation/larq/
>>>> - http://incubator.apache.org/jena/documentation/javadoc/larq/
>>>>
>>>>
>>>> == Mailing lists
>>>>
>>>> The user mailing list for Jena is jena-users@incubator.apache.org
>>>> Send email to jena-users-subscr...@incubator.apache.org to subscribe.
>>>>
>>>> See also:
>>>> http://incubator.apache.org/jena/help_and_support/index.html
>>>>
>>>>
>>>> == About This Release
>>>>
>>>> The main new feature in this release is support for updating the
>>>> Lucene index as RDF statements are added/removed to the Jena Model
>>>> via the Jena APIs.
>>>> Moreover, LARQ now depends on Apache Lucene 3.5.0.
>>>>
>>>>
>>>> == Download
>>>>
>>>> Maven artifacts are here:
>>>> http://repo1.maven.org/maven2/org/apache/jena/jena-larq/1.0.0-incub
>>>> a
>>>> t
>>>> i
>>>> ng/
>>>>
>>>> Source release is here:
>>>> http://www.apache.org/dyn/closer.cgi/incubator/jena/jena-larq-1.0.0
>>>> -

http://www.apache.org/dyn/closer.cgi/incubator/jena/jena-larq-1.0.0
http://repo1.maven.org/maven2/org/apache/jena/jena-larq/1.0.0-incub
http://incubator.apache.org/jena/help_and_support/index.html
http://incubator.apache.org/jena/documentation/javadoc/larq/
http://incubator.apache.org/jena/documentation/larq/
mailto:castagna.li...@googlemail.com

>>>> i
>>>> n
>>>> cubati
>>>> ng
>>>>
>>>>
>>>> == Status
>>>>
>>>> Apache Jena is an effort undergoing incubation at the Apache
>>>> Software Foundation (ASF), sponsored by the Apache Incubator PMC.
>>>>
>>>> Incubation is required of all newly accepted projects until a
>>>> further review indicates that the infrastructure, communications,
>>>> and decision making process have stabilized in a manner consistent
>>>> with other successful ASF projects.
>>>>
>>>> While incubation status is not necessarily a reflection of the
>>>> completeness or stability of the code, it does indicate that the
>>>> project has yet to be fully endorsed by the ASF.
>>>>
>>>> For more information about the incubation status of the Jena
>>>> project you can go to the following page:
>>>> http://incubator.apache.org/projects/jena.html
>>>>
>

#summary Install Fuseki triple store with LARQ text index

= Introduction =

Jena Fuseki is a SPARQL server and triple store which can be used as a backend for ONKI Light.
Enabling the LARQ index speeds up text search queries. This currently requires performing a custom
build of Fuseki, because LARQ is not included in the standard Fuseki distribution.

= Preparation =

Building Fuseki requires a Java SDK and Maven. Checking out the latest source requires Subversion.
You can install these on Ubuntu like this: `sudo apt-get install openjdk-6-jdk maven subversion`

If you have previously used Maven, you may want to clear your Maven repository before building
Fuseki to get rid of any old package versions: `rm -rf ~/.m2`

= Checking out the source =

Check out the Jena source: `svn co https://svn.apache.org/repos/asf/jena/trunk/ Jena`

= Adding LARQ dependency =

http://incubator.apache.org/projects/jena.html

You will need to add a LARQ dependency to the Jena/jena-fuseki/pom.xml file. Edit the file and add
this block after the other dependencies:

{{{
 <dependency>
 <groupId>org.apache.jena</groupId>
 <artifactId>jena-larq</artifactId>
 <version>1.0.1-SNAPSHOT</version>
 </dependency>
}}}

Newer versions of LARQ may be available by the time you read this. Check out
[https://repository.apache.org/content/groups/snapshots/org/apache/jena/jena-larq/ this directory
listing].

= Building =

Build the package using Maven like this:
{{{
cd Jena/jena-fuseki
mvn clean package
}}}

= Installing =

After a succesful build, the `target/` subdirectory should contain a file jena-fuseki-X.X.X-
SNAPSHOT-distribution.tar.gz (among others). This tarball can be installed just like the standard
Fuseki distribution, see the [http://jena.apache.org/documentation/serving_data/index.html Fuseki
installation instructions]. In short, you just unpack the tarball into a directory and run the `fuseki-
server` command to start the server.

= Configuring LARQ indexes =

To actually use LARQ indexes, you will need to specify a filesystem path for them in a Fuseki
configuration file. Here is an example configuration file which uses a TDB store at `/tmp/tdb` and a
LARQ Lucene index at `/tmp/lucene`:

{{{
@prefix : <#> .
@prefix fuseki: <http://jena.apache.org/fuseki#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix tdb: <http://jena.hpl.hp.com/2008/tdb#> .
@prefix ja: <http://jena.hpl.hp.com/2005/11/Assembler#> .

[] rdf:type fuseki:Server ;
 fuseki:services (
 <#service1>
) .

<#service1> rdf:type fuseki:Service ;
 fuseki:name "ds" ;
 fuseki:serviceQuery "sparql" ;
 fuseki:serviceQuery "query" ;
 fuseki:serviceUpdate "update" ;
 fuseki:serviceUpload "upload" ;
 fuseki:serviceReadWriteGraphStore "data" ;
 fuseki:serviceReadGraphStore "get" ;
 fuseki:serviceReadGraphStore "" ;
 fuseki:dataset <#dataset1> ;
 .

[] ja:loadClass "com.hp.hpl.jena.tdb.TDB" .
tdb:DatasetTDB rdfs:subClassOf ja:RDFDataset .
tdb:GraphTDB rdfs:subClassOf ja:Model .

<#dataset1> rdf:type tdb:DatasetTDB ;
 tdb:location "/tmp/tdb" ;
 ja:textIndex "/tmp/lucene" .

}}}

Save this as `larq-config.ttl` and then you can run Fuseki with `./fuseki-server --config=larq-config.ttl`

= Updating LARQ indexes =

Currently, LARQ indexes are not kept up to date when the data in the triple store changes (see the
[https://issues.apache.org/jira/browse/JENA-164 JENA-164 issue] for current status). To update the
indexes, you can do either of these:

 # Shut down Fuseki, remove the Lucene index directory, and start Fuseki again. The index will be
rebuilt when the server starts.
 # Shut down Fuseki and run the larqbuilder script that comes with Fuseki, e.g. like this:

{{{
java -cp fuseki-server.jar larq.larqbuilder --larq=/tmp/lucene --desc=fuseki-config.ttl
}}}
Then start Fuseki again.

Introduction
Jena Fuseki is a SPARQL server and triple store which can be used as a backend for ONKI Light.
Enabling the LARQ index speeds up text search queries. This currently requires performing a custom
build of Fuseki, because LARQ is not included in the standard Fuseki distribution.

Preparation
Building Fuseki requires a Java SDK and Maven. Checking out the latest source requires Subversion.
You can install these on Ubuntu like this: sudo apt-get install openjdk-6-jdk maven
subversion

If you have previously used Maven, you may want to clear your Maven repository before building
Fuseki to get rid of any old package versions: rm -rf ~/.m2

Checking out the source
Check out the Jena source: svn co
https://svn.apache.org/repos/asf/jena/trunk/ Jena

Adding LARQ dependency
You will need to add a LARQ dependency to the Jena/jena-fuseki/pom.xml file. Edit the file and add
this block after the other dependencies:

 <dependency>
 <groupId>org.apache.jena</groupId>
 <artifactId>jena-larq</artifactId>
 <version>1.0.1-SNAPSHOT</version>
 </dependency>

Newer versions of LARQ may be available by the time you read this. Check out this directory listing.

Building
Build the package using Maven like this:

cd Jena/jena-fuseki
mvn clean package

https://repository.apache.org/content/groups/snapshots/org/apache/jena/jena-larq/

Installing
After a succesful build, the target/ subdirectory should contain a file jena-fuseki-X.X.X-
SNAPSHOT-distribution.tar.gz (among others). This tarball can be installed just like the standard
Fuseki distribution, see the Fuseki installation instructions. In short, you just unpack the tarball into a
directory and run the fuseki-server command to start the server.

Configuring LARQ indexes
To actually use LARQ indexes, you will need to specify a filesystem path for them in a Fuseki
configuration file. Here is an example configuration file which uses a TDB store at /tmp/tdb and a
LARQ Lucene index at /tmp/lucene:

@prefix : <#> .
@prefix fuseki: <http://jena.apache.org/fuseki#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix tdb: <http://jena.hpl.hp.com/2008/tdb#> .
@prefix ja: <http://jena.hpl.hp.com/2005/11/Assembler#> .
[] rdf:type fuseki:Server ;
 fuseki:services (
 <#service1>
) .
<#service1> rdf:type fuseki:Service ;
 fuseki:name "ds" ;
 fuseki:serviceQuery "sparql" ;
 fuseki:serviceQuery "query" ;
 fuseki:serviceUpdate "update" ;
 fuseki:serviceUpload "upload" ;
 fuseki:serviceReadWriteGraphStore "data" ;
 fuseki:serviceReadGraphStore "get" ;
 fuseki:serviceReadGraphStore "" ;
 fuseki:dataset <#dataset1> ;
 .
[] ja:loadClass "com.hp.hpl.jena.tdb.TDB" .
tdb:DatasetTDB rdfs:subClassOf ja:RDFDataset .
tdb:GraphTDB rdfs:subClassOf ja:Model .
<#dataset1> rdf:type tdb:DatasetTDB ;
 tdb:location "/tmp/tdb" ;
 ja:textIndex "/tmp/lucene" .

Save this as larq-config.ttl and then you can run Fuseki with ./fuseki-server
--config=larq-config.ttl

Updating LARQ indexes
Currently, LARQ indexes are not kept up to date when the data in the triple store changes (see the
JENA-164 issue for current status). To update the indexes, you can do either of these:

1. Shut down Fuseki, remove the Lucene index directory, and start Fuseki again. The index will be
rebuilt when the server starts.

2. Shut down Fuseki and run the larqbuilder script that comes with Fuseki, e.g. like this:

https://issues.apache.org/jira/browse/JENA-164
http://jena.apache.org/documentation/serving_data/index.html

java -cp fuseki-server.jar larq.larqbuilder --larq=/tmp/lucene --desc=fuseki-
config.ttl

Then start Fuseki again.

	ARQ - Frequently Asked Questions
	Tutorial - Manipulating SPARQL using ARQ
	Inserting values (simple prepared statements)
	Making a Query from Scratch
	Navigating and Tinkering: Visitors
	Transforming the Algebra

	LARQ - adding free text searches to SPARQL
	Usage Patterns
	Index Creation
	Index Builders
	Index Creation

	Index Registration
	Query using a Lucene index
	Accessing the Lucene Score
	Limiting the number of matches
	Direct Application Use
	External Content
	Getting Help and Getting Involved

	ARQ - RDF Collections
	ARQ - Writing Filter Functions
	Writing SPARQL Value Functions
	Registering Functions

	ARQ - Building Queries Programmatically
	RQ - SPARQL Algebra
	Viewing the algebra expression for a Query
	Turning a query into an algebra expression
	Directly reading and writing algebra expression
	Creating an algebra expression programmatically
	Evaluating a algebra expression

	ARQ - Querying Remote SPARQL Services
	From your application
	From the command line
	Firewalls and Proxies

	ARQ - Extending Query Execution
	Overview of ARQ Query Processing
	Parsing
	Algebra generation
	High-Level Optimization and Transformations
	Low-Level Optimization and Evaluation
	Query Engines and Query Engine Factories

	The Main Query Engine
	Graph matching and a custom StageGenerator
	Setting the Stage Generator

	OpExecutor
	Quads
	Mixed Graph Implementation Datasets
	Custom Query Engines
	Algebra Extensions

	TDB
	Documentation

	Introduction
	Preparation
	Checking out the source
	Adding LARQ dependency
	Building
	Installing
	Configuring LARQ indexes
	Updating LARQ indexes

