
A Brief Overview of the Clojure Web Stack
This article introduces Clojure's web application stack. The heart of this stack is Ring: an interface for
conforming libraries, a set of adapters for various HTTP servers, and middleware and utilities. This
article aims to help you navigate the increasingly broad range of libraries and choose some solid
libraries and get an app moving with Ring.

You will need have at least a basic understand of Clojure (1.2.0), Leiningen and HTTP/Web
development to get the most out of this article.

All code in this article is using Clojure 1.2 and Ring 0.3.7.

A note on full stack frameworks:

If you are familiar with web application frameworks in other languages, such as Ruby on Rails or
Django, you may be looking for (or expecting) a full stack solution. While there is a full stack solution
for Clojure, I encourage you to explore the wide range of tools available in the Ring ecosystem with an
open mind; many of the reasons you might typically choose a full stack are not as important in Clojure.

Architecture Overview

• Application

The specific details for your web application.
• Handler(s)

Application specific
• Middleware

Both application specific and from ring-core.
• Ring Adapter
• Web Server

Most of the details we will be examining will be in the Application layer of this diagram, after all it is
the section specific to your sites. We will briefly look at adapters and servers; just enough to get going.

The Basics: Requests, Responses, Handlers & Middleware

“It is better to have 100 functions operate on one data structure than 10 functions on 10 data
structures.” — Alan J. Perlis

At its most basic, Ring is an interface spec. This spec defines Request and Response map contents and
how a function, called a handler, should treat them. A handler is just a function that takes a map and
returns a map. In both cases what the keys are, and what their corresponding values are is detailed in
the spec. Do look at the spec, and reference it whenever a new request or response key is introduced.
To reiterate: there is no magic in a handler function.

The simplest, and traditional, example of a handle is:

?

http://brehaut.net/blog/2011/ring_introduction
http://brehaut.net/blog/2011/ring_introduction#
https://github.com/mmcgrana/ring/blob/master/SPEC
https://github.com/macourtney/Conjure
https://github.com/mmcgrana/ring/blob/master/SPEC
https://github.com/mmcgrana/ring/

1
2
3
4
5
6
7

(defn hello-handler [req] {:body "Hello, World!"
 :headers {}
 :status 200})

(hello-handler {:uri "/hello"}) ; => {:body "Hello, World!",
 ; :headers {},
 ; :status 200}

This handler ignores the details of the request (such as the uri and http method) and returns a simple
'Hello, World!' resource. Notice that a web application in Ring is simply a Clojure function, thus it can
leverage all the standard Clojure tools for procressing maps and for handling functions. As we will see,
this also makes it trivial to test in a repl.

Spurious request maps

The observant of you (who have seen the spec) will realise that I am omitting a number of required
fields from the request map; it is easier to explore the interface in a REPL. I'll be adding more
properties as required, just be aware that these examples are not complete.

As an example of leveraging this power, the following handler uses Clojure's destructuring and a when
form to check for the correct uri before returning a result:

?

1
2
3
4
5
6
7
8
9

(defn hello-handler-2 [{:keys [uri]}]
 (when (= uri "/hello") {:body "Hello, World!"
 :headers {}
 :status 200}))

(hello-handler-2 {:uri "/"}) ; => nil
(hello-handler-2 {:uri "/hello"}) ; => {:body "Hello, World!",
 ; :headers {}
 ; :status 200}

We can extract out the concept of checking a path to match a constant so that we can reuse it:

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

(defn wrap-uri-check [expected-uri handler]
 (fn [{:keys [uri] :as req}]
 (when (= uri expected-uri)
 (handler req))))

(def hello-handler-3
 (wrap-uri-check "/hello"
 (fn [req] {:body "Hello, world!"
 :headers {}
 :status 200})))

(hello-handler-3 {:uri "/"}) ; => nil
(hello-handler-3 {:uri "/hello"}) ; => {:body "Hello, World!",
 ; :headers {}
 ; :status 200}

Now we have a reusable uri checking function. This pattern of decorating a handler function with a

http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#
https://github.com/mmcgrana/ring/blob/master/SPEC

wrapper that processes the request (or response) is known as a middleware. Note that middleware are
called in the reverse order to the wrapping, e.g. the inner most middleware handles the incoming
request last and the outgoing response first, while the outer most middleware handles the incoming
request first and the outgoing request last.

One last variation of hello-handler:

Dependencies: [ring/ring-core "0.3.7"]

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

(use '[ring.util.response :only [response]])

(defn make-greeting-handler [word greeting]
 (wrap-uri-check (str "/" word)
 (constantly (response greeting))))

(defn first-of
 [arguments fns]
 (first (keep #(apply % arguments) fns)))

(def hallo-handler (make-greeting-handler "hallo" "Hallo Welt!"))
(def hello-handler-4 (make-greeting-handler "hello" "Hello, World!"))

(def greeting-handler
 #(first-of [%] [hello-handler-4 hallo-handler]))

(greeting-handler {:uri "/hallo"}) ; => {:status 200,
 :headers {},
 :body "Hallo Welt!"}
(greeting-handler {:uri "/hello"}) ; => {:status 200,
 :headers {},
 :body "Hello, World!"}
(greeting-handler {:uri "/gidday"}) ; => nil

This variation shows how applications can be composed of other applications. We use constantly to
generate a static handler around a response; We have a factory function that generates new handlers
already wrapped with a middleware, and then lastly we compose a couple of applications together into
one application using the first-of combinator we definedi.

nil Responses

The definition and use of first-of takes advantage of a feature of Ring that isn't mentioned in the
spec but is none the less idiomatic: Any ring handler may return nil instead of a response map; If the
top level handler returns nil, then Ring generates a (basic) 404 handler. This can be used (as we have
done here) to define handlers that compose easily.

We will return to this simple example later to examine more expressive tools for processing routes and
creating responses. Next though, we need to look at how to actually connect our simple hello
application to a web server.

http://clojuredocs.org/clojure_core/clojure.core/constantly
http://brehaut.net/blog/2011/ring_introduction#

Response Body

A brief aside on the :body property of the response map: So far we have just returned strings as the
body. However, Ring allows any of String, ISeq, File or InputStream. Check out the spec for
more details.

Servers and Adapters

So far we have been examining how the Application layer is created with Ring. We know how to define
handlers and middleware and how to compose them to create interesting applications. The adapter is
responsible for not only connecting a handler to a server, but for abstracting away the details of that
particular server. As a result each adapter can vary quite a bit in the details of how it is implemented
and used.

There are roughly three models for how your application may be connected to the server and outside
world:

• Host an HTTP server, such as Jetty, internally as part of your application. This adapter can be
found in ring.adapter.jetty which is part of the Ring project.

• Host your application as a servlet inside a container such as Tomcat. This adapter can be found
in ring.util.servlet which is part of the Ring project.

• Talk over some protocol to an web server outside your JVM, such as Mongrel2 over 0MQ.
Mongrel2 is currently supported via ring - mongrel2 - adapter .

You may find yourself mixing some of those approaches; e.g. hosting a Jetty server inside you
application and talking to an external NginX server over HTTP.

For getting started I would suggest that you stick with an embedded Jetty, as you can trivially run it
from a REPL and access it directly from your localhost. The following block of code shows how you
would connect the greeting-handler application from earlier to an internal Jetty:

Dependencies: [ring/ring-jetty-adapter "0.3.7"]

?
1
2
3
4

(use '[ring.adapter.jetty :only [run-jetty]])

(defonce server (run-jetty #'greeting-handler
 {:port 8000 :join? false}))

Visit http://localhost:8000/hello and http://localhost:8000/hallo to see your application in action!

The #' used above is known as var quote; this allows you rebind greeting-handler in your REPL
and the server will immediately reflect your changes. You can also start and stop your server from the
repl with (.start server) and (.stop server).

Common Stack
With the nuts and bolts of Ring covered, it's time to survey the options for putting together a stack of
your own.

While there is a lot of choice available to the Ring programmer, there are particular choices for various
layers of the stack that are common. In particular at route dispatch and HTML generation. The
following diagram expands on the one at the top of this article to show how a real application stack
might look:

http://clojure.org/reader
http://localhost:8000/hallo
http://localhost:8000/hello
http://brehaut.net/blog/2011/ring_introduction#
https://github.com/mikejs/ring/tree/master/ring-mongrel2-adapter/

• HTML Generation

• Enlive
• Hiccup

• View Handlers
Application logic, database access etc. The real guts of your application.

• Route Dispatch

Uses URL and Method to determine view handler and parse URL fragments.
• Moustache
• Compojure

• Middleware

• Session Handling
Specific implemention depends on your backend. Ring provides an in-memory solution
that is appropriate for development only.

• Form Decoding
• etc…

• ring.adapter.jetty
• Jetty

This is a jetty server instance running inside your JVM. At the time of writing the default
is Jetty 6.x.

Route Dispatch

The layer I am calling Route Dispatch covers mapping a request to the appropriate sub handler based
on (at least) the URI and HTTP method. This is like a generalized, and much more powerful, version of
the combination of wrap-uri-check and first-of that were presented in earlier.ii

A second major feature of this layer is that these libraries provide convenient tools for unpacking the
URI and binding them to names.

Moustache

Moustache wires together handlers and middleware using a route dispatch based application model that
determines which handler to call based on the route information in the request. Secondly it provides
sophisticated tools for unpacking a uris with literals, regular expression and custom validators.

From the library user's perspective there is only one macro you need to know: app; This returns a new
handler function that will dispatch your routes to handlers. Not only that, it will create new handlers for
routes with constant results. For example the entire greeting - handler is written as:

Dependencies: [moustache "1.0.0"]

?

http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#ring-intro-greeter-handler
https://github.com/cgrand/moustache

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

(use '[net.cgrand.moustache :only [app delegate]]))

(def greeting-handler-2
 (app ["hallo"] "Hallo welt!"
 ["hello"] "Hello, world!"))

(greeting-handler-2 {:uri "/hallo"})
 ; => {:status 200,
 ; :headers {"Content-Type" "text/plain;charset=UTF-8"},
 ; :body "Hallo welt!"}

(greeting-handler-2 {:uri "/hello"})
 ; => {:status 200,
 ; :headers {"Content-Type" "text/plain;charset=UTF-8"},
 ; :body "Hello, world!"}

(greeting-handler-2 {:uri "/"})
 ; => {:status 404}

Notice that not only is moustache making the things we were all ready doing easier it has made them
more comprehensive too; We have a real 404 response for "/" and Content-Type headers for the two
matching routes. Most of behaviour is only present when the app is being used to generate plain text.
This isnt the most useful for a real application but it is great for getting off the ground quickly.

Lets extend the example to use unpack the route and look up greeting based on the word for "hello" in
the route by dispatching to another handler:

?
1
2
3
4
5

(def greetings {"hello" "Hello, world!" "hallo" "Hallo welt!"})

(def greeting-handler-3
 (app [word] (fn [req] (when-let [greeting (greetings word)]
 greeting)))

Here we have created a new handler inline. The handler has word in its lexical scope and bound to the
text of :uri. This also shows how Moustache facilitates composition of handlers: any ring handler can
be the Right-Hand-Side of a route, handler pair in app.

As an example of this app/handler composition lets look for a moment at a super powered greeter
application. This greeter provides a number of ways to get personalised hello world strings, both via
http resources and XML-RPC.iii Finally, we'll create a simple middleware to make 404's cleaner.

Dependencies: [necessary-evil "1.1.0"]

?

http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

(require '[necessary-evil.core :as xml-rpc])
 (use '[ring.util.response :only [response]]
 '[net.cgrand.moustache :only [app delegate]])

(def rpc-hello (xml-rpc/end-point
 {:hello (fn hello ([] (hello "World"))
 ([name] (str "Hello, " name "!")))}))

(defn simple-greeting
 "A parameterised application"
 [greeting]
 (app [name] ["" greeting ", " name "!"]))

(defn make-404
 [req]
 (response (str "Sorry, the resource at "
 (:uri req "??")
 " was not able to be located")))

(defn wrap-404s
 [handler]
 (fn [req]
 (let [resp (handler req)]
 (if (or (nil? resp) (= (:status resp 404) 404))
 (make-404 req)
 resp))))

;; clearly you wouldnt do this in the real world, but its a nice
;; example
(def greeting-handler-4
 (app wrap-404s
 ["formal" name] (fn [r] (response (str "How do you do,"
 name "?")))
 ["everyday" &] (simple-greeting "Hello")
 ["casual" &] (simple-greeting "Hi")
 ["xmlrpc"] rpc-hello))

This is quite a bit of code compared to previous examples, but you should be able to work out what is
going on. The newly introduced constructions we have not seen before are:

• The xml-rpc/end-point; This is part of necessary-evil and just creates an ordinary
Ring handler.

• A parameterised moustache application (simple-greeting). This is just returning a new
handler whenever it is called, binding greeting to its argument

• The Moustache string sequence literal notation in simple-greeting, e.g. ["" greeting
", " name "!"]. Note the empty string ""; this is due to a quirk in the moustache syntax.
The first item in the literal vector must be a string literal.

• The & in routes; This allows the remainder of the route to be passed on to the RHS handler.

One quirk of moustache is that you cannot have arbitrary code on the RHS of a route pair; you must
provide a handler function. However, if the handler is defined elsewhere it will not have the benefit of
lexical capture of route parameters. To help with this, Moustache broadens the interface for handler
functions using a utility called delegate.

delegate is best explained by its definition and an example:

?
1
2
3
4
5

(defn delegate
 "Take a function and all the normal arguments to f but the first,
 and returns a 1-argument fn."
 [f & args]
 #(apply f % args))

And an example:

?

1
2
3
4
5
6
7
8
9
10
11

(defn simple-greeting-2
 [req greeting name]
 (response (str greeting ", " name "!")))

(def greeting-handler-5
 (app wrap-404s
 ["formal" name] (fn [r] (response (str "How do you do,"
 name "?")))
 ["everyday" name] (delegate simple-greeting "Hello" name)
 ["casual" name] (delegate simple-greeting "Hi" name)
 ["xmlrpc"] rpc-hello))

I mentioned that route dispatch needs to be able to select a handler based on the HTTP method of the
request. Moustache support a number of ways of handling this. For example the following contrived
handler:

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

(def get-post-handler
 (app [fragment] {:get ["this was a get to: " fragment]
 :post ["this was a post to: " fragment]}))

(get-post-handler {:uri "/foo" :request-method :get})
 ; => {:status 200,
 :headers {"Content-Type" "text/plain;charset=UTF-8"},
 :body "this was a get to: foo"}

(get-post-handler {:uri "/foo" :request-method :post})
 ; => {:status 200,
 :headers {"Content-Type" "text/plain;charset=UTF-8"},
 :body "this was a post to: foo"}

(get-post-handler {:uri "/foo" :request-method :delete})
 ; => {:status 405,
 :headers {"Allow" "GET, POST"}}

As you can see we now are passing the :request-method in as a keyword. When our method
matches one of the ones allowed by our route we get the responses as expected. If we supply an

http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#
https://github.com/cgrand/moustache/blob/master/src/net/cgrand/moustache.clj#L172-176

unsupported method (or omit it while testing) moustache returns a 405 response with the Allow header
set to the methods that that resource will accept. Remember to check the syntax documentation and
walkthrough for additional ways of specifying method types.

The last major feature of Moustache we will look at in this article is route validation. Here is a simple
application that does some arithmatic, and needs to ensure that the routes are only valid when the
variables are valid numbers.

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

(defn integer [s]
 "Taken from the Moustache walkthrough"
 (try (Integer/parseInt s) (catch Exception e)))

(defn math-view
 [req op & args] (response (str (apply op args))))

(def arithmatic-app
 (app ["add" [n integer] [m integer]] (delegate math-view + n m)
 ["sub" [n integer] [m integer]] (delegate math-view - n m)
 ["negate" [n integer]] (delegate math-view * -1 n)))

(arithmatic-app {:uri "/add/1/2"}) ; => {:status 200,
 ; :headers {},
 ; :body "3"}
(arithmatic-app {:uri "/add/1/a"}) ; => {:status 404}

By now you should have a good understanding of the scope and style of moustache. Definately check
out the read me, walkthrough and syntax guide. Moustache is a little weird to get started with, but the
initial learn curve pays off.

Compojure

Like Moustach Compojure provides route dispatching. While it performs a similar role, the approach is
a little different. If you come from a Ruby web background (Sinatra in particular) a lot of Compojure
may feel familiar to you.

Caveat: I have only dabbled with Compojure, rather than implementing a full site with it like I have
with Moustache. As a result aspects of this section are not as detailed as the previous.
A note on versions: Compojure predates Ring and has changed dramatically over its life. When
reading articles about Compojure be sure to check the publishing date and versions discussed.

The core of the Compojure is the routes macro (and the convenience form defroutes). routes
performs a similar role as app does in Moustache (see above). In addition to this macro, there are six
macros that are used in combination to define routing: GET, POST, PUT, DELETE, HEAD, and ANY.
These clearly correspond to the main HTTP methods and all take the same arguments: [path args &
body].

Lets re-examine greeting-handler-2 as a Compojure application:

Dependencies: [compojure "0.6.2"]

?

http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#ring-intro-greating-handler-2
http://brehaut.net/blog/2011/ring_introduction#ring-intro-moustache
https://github.com/weavejester/compojure/
http://moustache.cgrand.net/syntax.html
http://gist.github.com/109955
https://github.com/cgrand/moustache/blob/master/README.textile
http://brehaut.net/blog/2011/ring_introduction#
https://gist.github.com/109955
http://moustache.cgrand.net/syntax.html

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

(use 'compojure.core)

(defroutes greeting-handler-6
 (ANY "/hallo" [] "Hallo welt!")
 (ANY "/hello" [] "Hello, world!"))

(greeting-handler-6 {:uri "/hallo"})
 ; => {:status 200,
 ; :headers {"Content-Type" "text/html"},
 ; :body "Hallo welt!"}

(greeting-handler-6 {:uri "/hello"})
 ; => {:status 200,
 ; :headers {"Content-Type" "text/html"},
 ; :body "Hello, world!"}

(greeting-handler-6 {:uri "/"})
 ; => nil

If you worked through the Moustache section above, this will be familiar. As you can see, the
greeting-handler-6 defines two routes, /hallo and /hello. Each of these responds to any
HTTP method and returns a constant string response. The empty vector is the arguments for local
bindings of the request and any variables destructured from the path. Because the routes here are
returning constant values this has been left empty. Like Moustache, the first matching route is the one
that responsds.

Aside from the definition of the routes, the handling of URIs that are not specified in the routes is the
biggest difference. This can specifically handled with the compojure.route/not-found utility
function:

?

1
2
3
4
5
6

(require '[compojure.route :as route])

(defroutes greeting-handler-6
 (ANY "/hallo" [] "Hallo welt!")
 (ANY "/hello" [] "Hello, world!")
 (route/not-found "Four Oh Four"))

It is important that not-found is the last route in your configuration as it will match any and every
request that has not otherwise been handled.

The definition of not-found is clear and simple example of composition in Compojure:

?

1
2
3
4
5
6
7

(defn not-found
 "A route that returns a 404 not found response, with its argument
 as the response body."
 [body]
 (routes
 (HEAD "*" [] {:status 404})
 (ANY "*" [] {:status 404, :body body})))

We know that route returns a new ring handler (afterall, we have been using a route as a ring handler

http://brehaut.net/blog/2011/ring_introduction#
https://github.com/weavejester/compojure/blob/master/src/compojure/route.clj#L34-40
http://brehaut.net/blog/2011/ring_introduction#

in the previous examples). This route uses a wildcard route to match every request that comes in
regardless of :uri. HEAD is special cased (to not return a body), otherwise any other method is caught
by the ANY route. As you can see, the body of a rule is allowed to be a raw Ring response map.

This parametric handler generation follows the same pattern we saw previous with Moustache. Lets
look at another example by porting the overkill greeter app from Moustache to Compojure:

Dependencies: [necessary-evil "1.1.0"]

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

(require '[necessary-evil.core :as xml-rpc])
 (use '[ring.util.response :only [response]])

(defn dispatch
 "dispatch is takes a handler and a new uri and returns a new handler"
 [uri handler]
 (fn [req] (handler (assoc req :uri uri))))

(def rpc-hello (xml-rpc/end-point
 {:hello (fn hello ([] (hello "World"))
 ([name] (str "Hello, " name "!")))}))

(defn simple-greeting-3
 "A parameterised application"
 [greeting]
 (routes (ANY "/:name" [name] (str greeting ", " name "!"))))

(defroutes greeting-handler-7
 (ANY "/formal/:name" [name]
 (response (str "How do you do," name "?")))
 (ANY "/everyday*" [*] (dispatch * (simple-greeting-3 "Hello")))
 (ANY "/casual*" [*] (dispatch * (simple-greeting-3 "Hi")))
 (ANY "/xmlrpc" [] rpc-hello)
 (route/not-found "Nope; not here."))

The biggest difference between the two versions of this code is the introduction of the dispatch
function. To the best of my knowledge there is no Compojure specific way of doing this. This does
however demonstrate a difference between Moustache and Compojure: Moustache modifies the :uri
of the request for us when it matches, and Compojure does not.

Updated, 7 June 2011: James Reeves (author of Compojure and Ring contributer) provided the
following correction to my claim above and the corrected code snippet:

There is, in the recently-introduced context macro. However, it appears that this isn't a
well-known feature.

?

http://brehaut.net/blog/2011/ring_introduction#
http://www.reddit.com/r/Clojure/comments/hqooc/a_not_so_brief_overview_of_the_clojure_webstack/c1xjzzu
http://weavejester.com/
http://brehaut.net/blog/2011/ring_introduction#
http://brehaut.net/blog/2011/ring_introduction#ring-intro-moustache-overkill-greeter
http://brehaut.net/blog/2011/ring_introduction#moustach-composition

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

(require '[necessary-evil.core :as xml-rpc])

(def rpc-hello (xml-rpc/end-point
 {:hello (fn hello ([] (hello "World"))
 ([name] (str "Hello, " name "!")))}))

(defn simple-greeting-3
 "A parameterised application"
 [greeting]
 (ANY "/:name" [name] (str greeting ", " name "!")))

(defroutes greeting-handler-7
 (ANY "/formal/:name" [name]
 (str "How do you do," name "?"))
 (context "/everyday" [] (simple-greeting-3 "Hello"))
 (context "/casual" [] (simple-greeting-3 "Hi"))
 (ANY "/xmlrpc" [] rpc-hello)
 (route/not-found "Nope; not here."))

This example also shows some of the routing patterns that Compojure uses for matching. Compojure
uses a library called Clout under the hood to handle route matching.

Finally, Compojure allows complex forms as the body of a route. This form also has an implicit do.
This is probably the biggest casual differentiator between Moustache and Compojure. I recommend
examining the implemetation of the render function to learn more about the various things you can
return from a route body.

Route Dispatch Summary

As you can see from the brief surveys of Moustache and Compojure, they provide a similar range of
features. While my preference is for Moustache, either is a good choice and switching between them is
relatively trivial.

Compojure is more popular and has a more natural syntax to get started with, the cost is that its a some
impedance mismatch with composing apps with other Ring libraries. Moustache is conceptually simple
and fits nicely into the Ring ecosystem but at the cost of some slightly surprising syntax at times.
Neither has particular comprehensive documentation. If you are very new to Clojure or web
development, Compojure might be a better choice. Otherwise my suggestion is to choose the one that
seems most straight forward to you.

HTML Generation

HTML Generation is a core requirement of most web applications (see below for notes on JSON). We
will briefly survey the two main candidates.

Enlive

Enlive is a fantastic library from Christophe Grand who also created Moustache (see above). Instead of
trying to cover it myself, I suggest that you read (and work) through David Nolen's in-depth tutorial.

Enlive has a steeper learning curve than the common alternative (Hiccup, see below) but it is, in my

https://github.com/swannodette/enlive-tutorial
https://github.com/cgrand/enlive
https://github.com/weavejester/compojure/blob/master/src/compojure/response.clj#L9-34
https://github.com/weavejester/clout

opinion, a superior library. Firstly, in addition to just generating HTML, you can use the same tools to
manipulate existing documents. For example David Nolen's tutorial starts out using enlive to scrap web
pages. Secondly, the seperation between templates and code is clearer than in any tool I have used: the
HTML files are pure HTML, no additional markup, and are manipulated with CSS-like selectors.

A note on teams: There is a popular idea that enlive is better when you have a team with seperate
people in designer and developer roles, and hiccup is better for the one person does it all application. I
disagree however, as working iteratively on the design is much easier as I can edit the html and css in
textmate (despite using emacs for my Clojure code) and use the built in webkit preview to see my
changes without having to reload anything, or have an application running.

Hiccup

Hiccup is at the complete opposite end of the spectrum from Enlive: everything exists in Clojure code
and there are no external template files. Hiccup is a DSL built around a single macro: html. The macro
takes zero or more forms which may be either literal text, vectors representing elements or lists which
are executed. The following example illustrates how this works:

Dependencies: [hiccup "0.3.4"]

?

http://brehaut.net/blog/2011/ring_introduction#
https://github.com/weavejester/hiccup

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

(use 'hiccup.core)

; literals:
(html "Hello, world!")
 ; => "Hello, world!"

(html 1)
 ; => "1"

; elements:
(html [:p "Hello, world!"])
 ; => "<p>Hello, world!</p>"

(html [:h1 "Hello," " world!"]
 [:p "Greetings from your computer!"])
 ; => "<h1>Hello, world!</h1><p>Greetings from your computer!</p>"

; element with attributes:
(html [:div {:class "grid_8 alpha"}
 [:p "Trendy grid system time"]])
 ; => "<div class=\"grid_8 alpha\"><p>Trendy grid system
time</p></div>"

; the same html using the CSS like shortcuts:
(html [:div.grid_8.alpha
 [:p "Trendy grid system time"]])
 ; => "<div class=\"grid_8 alpha\"><p>Trendy grid system
time</p></div>"

; calling functions:
(html (interpose " " (range 5)))
 ; => "0 1 2 3 4"

(html [:ul (map (fn [name] [:li name])
 ["Croaker" "Raven" "Murgen" "One-Eye"])])
 ; => "CroakerRavenMurgenOne-
Eye"

This example highlights basicly everything you need to get going with hiccup. You can see that is
extremely simple and allows straight forward composition of elements.

One thing to watch out with hiccup is that content is not escaped by default; you need wrap it in
escape-html or its alias h. This is an unfortunate default that you definately need to be aware of if
you choose to use hiccup.

?

http://brehaut.net/blog/2011/ring_introduction#

1
2
3
4
5
6
7
8

(html "malicious content: <script>while (true) { /* uh oh */ }</script>")
 ; => "malicious content: <script>while (true) { /* uh oh */ }
</script>"

(html (escape-html "malicious content: <script>while (true) { /* uh oh */ }
</script>"))
 ; => "malicious content: <script>while (true) { /* uh oh */ }
</script>"

(html (h "malicious content: <script>while (true) { /* uh oh */ }
</script>"))
 ; => "malicious content: <script>while (true) { /* uh oh */ }
</script>"

The code for hiccup is quite straight forward and worth your time reading at least briefly. The library
has some additional middlewares and utilities for pages and forms that may make your life easier. In
particular hiccup.page-helpers contains macros and functions for different doctypes, common
elements such as includes for javascript, css, lists and images. hiccup.form-helpers has utility
functions for most of the major form controls. Reading through these will help you get a feel for
idiomatic hiccup code. You may also find the Hiccup Cheatsheet useful.

Other Components
A real web application is more than route dispatch and HTML generation. These aspects are further
from ring so we will only look at the them briefly.

Database Connectivity

You probably want to be able to communication with a database of some description. Clojure has a
wide range of options here depending on your needs.

There are no SQL/Relational DB ORMs for Clojure for obvious reasons. Depending on the amount of
abstraction you want, you probably want to look at clojure.contrib.sql or ClojureQL.

ClojureQL is an implementation of relational algebra as first class Clojure functions. The most
significant advantage is that it allows you to write various expressions as functions on a table and then
compose them together to create the particular queries you need. Definitely worth a look. Lau Jensen
has an example site on his GitHub built with Moustache, Enlive and ClojureQL that shows how you
might use ClojureQL.

clojure.contrib.sql is a relatively low level abstraction over JDBC. It is used as internally by
ClojureQL.

Forms

This is one area that has relatively weak support currently. Decoding form data from
application/x-www-form-urlencoded, or multipart/form-data encodings is provided by
the core middlewares in ring.middleware.params and ring.middleware.multipart-
params.

The following is an extremely simple example of handling a post-back:

https://github.com/LauJensen/SocialSite
http://bestinclass.dk/index.clj/2011/01/building-a-social-media-site.html
http://compojure.googlegroups.com/web/hiccup_cheatsheet.html?gda=ieqXl0gAAAAYgJf9SeyUHcyESNq8VOMSnVHIFri-xPVmWHWcBqiPX4qb7lnzYYGH2lkPt_s99BZ3Vb0rL0TI2pkQqoSDTBNYGjVgdwNi-BwrUzBGT2hOzg

?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

(defn form-view
 [r] (response "<html>
 <form method=\"post\">
 <input type=\"text\" name=\"val\">
 <input type=\"submit\">
 </form>
 </html>"))

(defn handle-form-view
 [r] (response (str "<html>val was:"
 (-> r :form-params (get "val"))
 "</html>")))

(def ^{:doc "A very simple moustache based handler that uses wrap-params
to decode a form postback"}
 simple-form-handler
 (app
 wrap-params
 [] {:get form-view
 :post handle-form-vew}))

(run-jetty #'simple-form-handler {:port 8000 :join?
false})

Now visit http://localhost:8000/ and you should see a simple form. Enter a value and click submit and
you will be taken to a page that displays 'val was:' and the value you entered.

What is not supported is form validation or generation. Users of compojure may find Brenton
Ashworth's Sandbar useful. Both Enlive and Compojure/Hiccup may gain utilities for generating forms
in the futureiv.

At the time of writing a collection libraries have just appeared that may fit this space: Flutter (a Hiccup
based library), and clj-decline. The author, Joost Diepenmaat has provided a demo application that
covers most of the details.

JSON Generation

JSON is very straight forward in Clojure as the datastructures in JSON have a very straight-forward
mapping to the core Clojure structures. The library ring - json - params provides a middleware to
take care of decoding incoming JSON data. Mark McGranaghan has an tutorial on building simple
RESTful apis using JSON that uses this middleware. Note that this was published in August 2010.

Finding More…

This article has touched on a number of common components you might want to investigate, but there
is probably something else that you need for your project's stack. The following are additional
resources that you may find useful:

• Ring Libraries — A catalog of libraries built on top of Ring on the Ring Wiki.
• Clojure Toolbox — A categorised directory of libraries and tools for Clojure.

http://www.clojure-toolbox.com/
https://www.github.com/mmcgrana/ring/wiki/Libraries
http://mmcgrana.github.com/2010/08/clojure-rest-api.html
https://github.com/mmcgrana/ring-json-params
https://github.com/joodie/flutter-decline-demo
https://github.com/joodie
https://github.com/joodie/clj-decline
http://brehaut.net/blog/2011/ring_introduction
https://github.com/brentonashworth/sandbar
http://localhost:8000/
http://brehaut.net/blog/2011/ring_introduction#

• Clojure Libraries
• Clojars

See Also

• Mark McGranaghan: One Ring to Bind Them – A video introducing Ring.

Glossary
Handler

A function that takes a request map and may return a response map.
Middleware

A Middleware takes a Handler and wraps it with a new handler that interposes itself between the
caller and the handler and operates on either or both of request and response.

Adapter
Connects a top level Ring handler to an HTTP Server.

Footnotes

1. If you have come from an OO background, you may want to consider how handlers and
middleware relate to the Decorator and Composite patterns. These ideas are central to building
applications with Ring.

2. You should definately prefer one of these libraries to wrap-uri-check and first-of.
3. Shameless self promotion aside, you really shouldnt use xml-rpc unless a legacy client or

service requires it. It does however illustrate how you can use a black box Ring handler in your
application.

4. Observant readers may note that these two components exist in different layers in my common
stack diagram above.

Thanks

Thanks to Steven Ashley, Matt Wilson and Alex Popescu for reading over drafts and providing
feedback.

Updates

June 7, 2011

• Added James Reeve's comment about context in Compojure.
• Corrected small errors in code snippets. Thanks to Shashy Dass for spotting these.
• Corrected German “Hello World”, thanks to Philipp Steinwender for the correction.

http://blip.tv/file/4706750
http://clojars.org/
http://clojure.org/libraries

	A Brief Overview of the Clojure Web Stack
	A note on full stack frameworks:
	Architecture Overview
	Application
	The Basics: Requests, Responses, Handlers & Middleware
	Spurious request maps
	nil Responses
	Response Body

	Servers and Adapters

	Common Stack
	HTML Generation
	Route Dispatch
	Middleware
	Route Dispatch
	Moustache
	Compojure
	Route Dispatch Summary

	HTML Generation
	Enlive
	Hiccup

	Other Components
	Database Connectivity
	Forms
	JSON Generation
	Finding More…
	See Also

	Glossary
	Footnotes
	Thanks
	Updates
	June 7, 2011

