
Writing Play controllers in Scala
Play controllers are the most important part of any Play applications. A Play Scala application
share the same concepts than a classical Play application but use a more functional way to
describe actions.

Scala controllers are Objects
A Controller is a Scala singleton object, hosted by the controllers package, and
subclassing play.mvc.Controller. In Scala you can declare as many controllers you
want in the same file.

This a classical controller definition:

package controllers {

 import play._
 import play.mvc._

 object Users extends Controller {

 def show(id:Long) = Template("user" -> User.findById(id))

 def edit(id:Long, email:String) = {
 User.changeEmail(id, email)
 Action(show(id))
 }

 }

}

Because Scala provides the native notion of Singleton objects we don’t need anymore to
deal with Java static methods while keeping to ability to reference statically any action like
show(id).

Action methods return values
A Play controller usually uses imperative orders like render(…) or forbidden() to trigger
the response generation. On the contrary an action methods written in Scala is seen as
functions and must return a value. This value will be used by the framework to generate the
HTTP response resulting of the request.

An action method can of course return several kind of values depending of the request (like
for example a Template or an Forbidden value).

Here are listed the typical return types:

Ok

Returning the Ok value will generate an empty 200 OK response.

def index = Ok

Html

Returning an Html value will generated a 200 OK response filled with the HTML content. The
response content type will be automatically set to text/html.

def index = Html("<h1>Hello world!</h1>")

You can also generate Html by calling a template.

Xml

Returning an Xml value will generated a 200 OK response filled with the XML content. The
response content type will be automatically set to text/xml.

def index = Xml(<message>Hello world!</message>)

Text

Returning an Text value will generated a 200 OK response filled with the text content. The
response content type will be automatically set to text/plain.

def index = Text("Hello world!")

Json

Returning an Json value will generated a 200 OK response filled with the text content. The
response content type will be automatically set to application/json.

def index = Json("{message: 'Hello world'}")

You can also try to pass any Scala object and Play will try to serialize it to JSON:

def index = Json(users)

However currently the JSON serialization mechanism comes from Java and can not work as
exepected with complex Scala structures.

A workaround is to use a Scala dedicated JSON serialization library, for example Lift JSON,
and use it as Json(JsonAST.render(users))

https://github.com/jonifreeman/liftweb/tree/master/lift-json/

Created

Returning the Created value will generate an empty 201 Created response.

def index = Created

Accepted

Returning the Accepted value will generate an empty 202 Accepted response.

def index = Accepted

NoContent

Returning the NoContent value will generate an empty 204 No Content response.

def index = NoContent

Action

If an action method return a Action value, Play will redirect the Browser to the
corresponding action, using the action method arguments to properly resolve the proper URL.

def index = Action(show(3))

Note that here show(3) is a by-name parameter, and the corresponding methid will not been
invoked. Play will resolve this call as an URL (typically something like users/3), and will issue
an HTTP redirect to this URL. The action will then be invoked in a new request context.

In a Java controller you achieve the same result by calling directly the corresponding action
method. Using Scala call by name concept allow to keep the compiler checked and typesafe
redirection without any language hack.

Redirect

Returning the Redirect value will generate an empty 301 Moved Permanently response.

def index = Redirect("http://www.google.com")

You can optionnaly specify a second argument to switch between 301 and 302 response
status code.

def index = Redirect("http://www.google.com", false)

NotModified

Returning the NotModified value will generate an empty 304 Not Modified response.

def index = NotModified

You can also specify an ETag to the response:

def index = NotModified("123456")

BadRequest

Returning the BadRequest value will generate an empty 400 Bad Request response.

def index = BadRequest

Unauthorized

Returning the Unauthorized value will generate an empty 401 Unauthorized response.

def index = Unauthorized

You can optionnaly specify a realm name:

def index = Unauthorized("Administration area")

Forbidden

Returning the Forbidden value will generate an empty 403 Forbidden response.

def index = Forbidden

You can optionnaly specify an error message:

def index = Forbidden("Unsufficient permissions")

NotFound

Returning the NotFound value will generate an empty 404 Not Found response.

def index = NotFound

You can optionnaly specify a resource name:

def index = NotFound("Article not found")

Or use a more classical HTTP method, resource Path combination:

def index = NotFound("GET", "/toto")

Error

Returning the Error value will generate an empty 500 Internal Server Error response.

def index = Error

You can optionnaly specify an error message:

def index = Error("Oops…")

Or specify a more specific error code:

def index = Error(503, "Not ready yet…")

Return type inference
You can also directly use the inferred return type to send the action result. For example using
a String:

def index = "<h1>Hello world</h1>"

Or you can even use the built-in XML support to write XHTML in a literal way:

def index = <h1>Hello world</h1>

If the return type looks like a binary stream, play will automatically render the response as
binary. So generating a captcha image using the built-in Captcha helper can be written as:

def index = Images.captcha

Controller interceptors
Controller interceptors work almost the same way than for Java controller. You simply have to
annotate any controller method with the corresponding interceptor annotation:

@Before def logRequests {
 println("New request…")
}

You see that here, the logRequests method does not return any value. So the request
execution will continue by invoking the next interceptors and eventually the action method.

But you can also write some interceptor that return a value:

@Before def protectActions = {
 Forbidden
}

Here the execution will stop, and the Forbidden value will be used to generate the HTTP
response.

If you want to continue the request execution, just make your interceptor return Continue:

@Before def protectActions = {
 session("isAdmin") match {
 case Some("yes") => Continue
 case _ => Forbidden("Restricted to administrators")
 }
}

Mixing controllers using Traits
Scala Traits can be used to compose controller more effeciently by mixing several aspects.
You can define both action methods and interceptors in a controller Trait.

For example the following Secure trait add a seucrity interceptor to any controller applying the
Trait:

trait Secure {
 self:Controller =>

 @Before checkSecurity = {
 session("username") match {
 case Some(username) => renderArgs += "user" -> User(username)
 Continue
 case None => Action(Authentication.login)
 }
 }

 def connectedUser = renderArgs("user").get

}

Note that here we use the self:Controller => notation to indicate that this Trait can only
be mixed with a Controller type.

And you can use it to create a secured controller:

object Application extends Controller with Secure {

 def index = <h1>Hello {connectedUser.name}!</h1>

}

There is also small differences about Data binding

Comments
Use this form to add corrections, additions and suggestions about the documentation on this
page. Please ask questions on the play-framework group instead. Support requests, bug
reports, and off-topic comments will be deleted without warning.

http://scala.playframework.org/documentation/scala-0.9.1/dataBinding

•

Disqus

• Login
• About Disqus

• Like
• Dislike

•

Glad you liked it. Would you like to share?

• Share
• No thanks

Sharing this page …

Thanks! Close

Add New Comment

Object 1

Showing 5 comments

 Subscribe by email

 Subscribe by RSS

•

Christoph Wulf 1 week ago

•

Great work, you are really "playing" with the capabilities of Scala ;-)

But I actually don't get how you decompose the call-by-name param show(id) of

http://scala.playframework.org/documentation/scala-0.9.1/controllers#comment-255178870
http://playframework.disqus.com/writing_play_controllers_in_scala/latest.rss
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://disqus.com/
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://disqus.com/guest/4825d2f747a9673ed85fd2128fe7214d/

Action(...) at runtime.

• Flag
•

•

•

Alejandro Paz 2 months ago

•

I found a typo in the first blue box: "Scala without limiting the expressivness of" ->
"Scala without limiting the expressiveness of"

• Flag
•

•

•

William Lee 2 months ago

•

Is there a way to return my own object for a particular content type?

• Flag
•

•

•

Dr Karl 2 months ago

•

There is a typo in the Secure trait code snippet. There should be a new line after
@Before, and most important a "def" is lacking before "checkSecurity"

• Flag
1 person liked this.

•

•

•

Louis Gueye 2 months ago

http://scala.playframework.org/documentation/scala-0.9.1/controllers#comment-191940139
http://deepintojee.wordpress.com/
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#comment-198461858
http://profiles.google.com/karlmaxxx
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#comment-204919346
http://www.facebook.com/william.w.lee
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://scala.playframework.org/documentation/scala-0.9.1/controllers#comment-208458872
http://scala.playframework.org/documentation/scala-0.9.1/controllers#
http://disqus.com/google-a16ee1848de9b5f53a9d5ff0585cf56b/
http://disqus.com/facebook-611398641/
http://disqus.com/google-b6fc1c8fcc940d85204a6bd03a67069c/
http://disqus.com/guest/df1516910ff74da1a423e6732f13c926/

•

Hi there,
Great work. Scala really needs something less ugly and more reachable in concept
than lift ...
By the way you can correct this typo :
"and the corresponding methid will not been" --> "and the corresponding method will
not been"

Louis

•

HTTP to Scala data binding
Like in Java, you can retrieve HTTP parameters directly from the action method signature.
The method parameter’s name must be the same as the HTTP parameter’s. This section
explain the difference related to specific Scala types.

Binding Option types
Sometimes you are not sure that a specific parameter will be present in the HTTP request. In
this case, you want probably bind this value to an Option type:

def hello(name: Option[String]) = {
 name.map("Hello " + _ + "!").getOrElse("Please give us your name!")
}

Using Scala default parameter values
Another way to handle the case where an HTTP parameter is missing, is to specify a default
value for the method parameter.

def hello(name: String = "Guest") = {
 "Hello " + name + "!"
}

An interesting side effect of this implementation is that the default parameter values are used
as well for reverse routing. So for example you can ask Play to redirect to the Hello action
without specifying the name parameter:

def redirectToHello = Action(hello())

Binding case classes
You can automatically ask Play to fill a more complex data structure, by specifying a case
class as method parameter. For example:

case class User(name: String, email: String)

And then, defining an action method:

def hello(user: User) = user match {
 case User("guillaume", _) => "Howdy, guillaume!"
 case User(name, _) => "Hello " + name
}

The same convention apply than for binding JavaBean in Java, ie:

/hello?user.name=Guillaume&user.email=gbo@zenexity.com

Note that Play will automatically generate a default constructor for your case class if you don’t
define it yourself. However this constructor will be completely empty, and your cass class
body will not been executed at object instantiation.

Next, there is some special features when using Scala types in Play templates

Database access options
Most of your applications will need to access to a database. This page describe options you
have to manage an SQL database from a Play Scala application.

Using Anorm
The Scala module includes a brand new data access layer called Anorm that uses plain SQL
to make your database request and provides several API to parse and transform the resulting
dataset.

We believe that it is the best way to access your relational databases from Scala and this
component will be encouraged and fully integrated with the rest of the Play Scala stack.

Please check the complete manual for more information.

Integrating other existing Database access librairies
Perhaps you already use another existing Database access library for Scala and you want to
keep using it from your Play application. Basically a Play application manage the JDBC
connection for you, and provide your application with a simple java.sql.Connection
object that you can use to integrate any other existing framework you want.

For example, here are the few steps need to integrate ScalaQuery with your Play application.

1. Add ScalaQuery to your dependencies.yml file

ScalaQuery is available from the Scala Tools repository. So open your application
conf/depenencies.yml file, and add the following content:

Application dependencies

require:
 - play

http://scala-tools.org/repo-releases/org/scalaquery/
http://scalaquery.org/download.html
http://scalaquery.org/
http://scala.playframework.org/documentation/scala-0.9.1/anorm
http://scala.playframework.org/documentation/scala-0.9.1/templates

 - play -> scala 0.9
 - org.scalaquery -> scalaquery_2.8.1 0.9.1:
 transitive: false

repositories:

 - Scala Tools:
 type: iBiblio
 root: http://scala-tools.org/repo-releases
 contains:
 - org.scalaquery -> *

Now run:

$ play dependencies

To resolve and install the required jars.

2. Configure a Datasource for your application

In the conf/application.conf file of your Play application, uncomment this line to enable an in
memory database:

To quickly set up a development database, use either:
- mem : for a transient in memory database (H2 in memory)
- fs : for a simple file written database (H2 file stored)
db=mem

3. Create an SQL evolution Script to initialize your database

Create the db/evolutions directory structure in your application if it doesn’t already exists,
and add a first evolution script 1.sql:

Users schema

--- !Ups

CREATE TABLE MEMBERS (
 ID bigint(20) NOT NULL,
 NAME varchar(255) NOT NULL,
 EMAIL varchar(255),
 PRIMARY KEY (ID)
);

INSERT INTO members VALUES (1, 'Guillaume', 'gbo@zenexity.com');
INSERT INTO members VALUES (2, 'Sadek', NULL);

--- !Downs

DROP TABLE MEMBERS;

This first script will be automatically applied since your database is empty and you run an in-
memory database. Check this log:

…
13:31:50,674 INFO ~ Connected to jdbc:h2:mem:play;MODE=MYSQL

13:31:50,752 INFO ~ Application 'myScalaQueryApp' is now started !
13:31:51,064 INFO ~ Automatically applying evolutions in in-memory database
…

Use ScalaQuery in your code

Now let’s write a simple action method that queries all the Members registred in our
database:

import play.mvc._

import org.scalaquery.session._
import org.scalaquery.session.Database.threadLocalSession
import org.scalaquery.ql.basic.BasicDriver.Implicit._
import org.scalaquery.ql.basic.{BasicTable => Table}
import org.scalaquery.ql.TypeMapper._
import org.scalaquery.ql._

package models {

 object Members extends Table[(Int, String, Option[String])]("MEMBERS") {
 def id = column[Int]("ID")
 def name = column[String]("NAME")
 def email = column[Option[String]]("EMAIL")
 def * = id ~ name ~ email

 def all = (for(m <- Members) yield m.name ~ m.email).list
 }

}

package controllers {

 object Application extends Controller {

 val db = Database.forDataSource(play.db.DB.datasource)

 def index = {

 db withSession {

 import models._

 Template('members -> Members.all)

 }

 }

 }

}

You see that we simply link ScalaQuery with the Play managed datasource, with this line:

val db = Database.forDataSource(play.db.DB.datasource)

That’s all! You can probably adapt this short tutorial to any other Scala data access library.

Testing your application
Play Scala comes with ScalaTest, that natively provide different styles of testing.

As in Play Java, you must place your test dedicated Scala sources into the test directory, and
run the application using play test to enable the integrated Test runner.

Please check the complete ScalaTest reference for more information.

JUnit Style
In this style you need to annotate any test method with the @Test annotation.

class JUnitStyle extends UnitTestCase with AssertionsForJUnit {

 @Before def setUp = Fixtures.deleteAll()

 @Test def verifyEasy {
 assert("A" == "A")
 intercept[StringIndexOutOfBoundsException] {
 "concise".charAt(-1)
 }
 }

}

JUnit Style with Should matchers
The ShouldMatchers trait provides a domain specific language (DSL) for expressing
assertions in tests using the word should.

class JUnitStyleWithShould extends UnitTestCase with ShouldMatchersForJUnit {

 @Before def setUp = Fixtures.deleteAll()

 @Test def verifyEasy {
 val name = "Guillaume"
 name should be ("Guillaume")
 evaluating {
 "name".charAt(-1)
 } should produce [StringIndexOutOfBoundsException]
 name should have length (9)
 name should include ("i")
 name.length should not be < (8)
 name should not startWith ("Hello")
 }

}

http://www.scalatest.org/user_guide
http://www.scalatest.org/

Functional suite Style
Here you will create a function for each test.

class FunctionsSuiteStyle extends UnitFunSuite with ShouldMatchers {

 Fixtures.deleteAll()

 test("Hello...") (pending)

 test("1 + 1") {
 (1 + 1) should be (2)
 }

 test("Something") {
 "Guillaume" should not include ("X")
 }

 test("1 + 1 again") {
 (1 + 1) should be (2)
 }

}

Specification Style
This style provides a “behavior-driven” style of development (BDD), in which tests are
combined with text that specifies the behavior the tests verify.

class SpecStyle extends UnitFlatSpec with ShouldMatchers {

 val name = "Hello World"

 "'Hello World'" should "not contain the X letter" in {
 name should not include ("X")
 }

 it should "have 11 chars" in {
 name should have length (11)
 }

}

Features list Style
A suite of tests in which each test represents one scenario of a feature.

class FeatureStyle extends UnitFeatureSpec {

 feature("The user can pop an element off the top of the stack") {
 scenario("pop is invoked on a non-empty stack") (pending)
 scenario("pop is invoked on an empty stack") (pending)
 }

}

Scala templates
Play Scala comes with a new and really poweful Scala based template engine. The design of
this new template engine is really inspired by ASP.NET Razor, especially:

Compact, Expressive, and Fluid: Minimizes the number of characters and keystrokes
required in a file, and enables a fast, fluid coding workflow. Unlike most template syntaxes,
you do not need to interrupt your coding to explicitly denote server blocks within your HTML.
The parser is smart enough to infer this from your code. This enables a really compact and
expressive syntax which is clean, fast and fun to type.

Easy to Learn: Enables you to quickly be productive with a minimum of concepts. You use all
your existing Scala language and HTML skills.

Is not a new language: We consciously chose not to create a new language. Instead we
wanted to enable developers to use their existing Scala language skills, and deliver a
template markup syntax that enables an awesome HTML construction workflow with your
language of choice.

Works with any Text Editor: Razor doesn’t require a specific tool and enables you to be
productive in any plain old text editor.

Overview
A Play Scala template is a simple text file text file, that contains small blocks of Scala code. It
can generate any text-based format (HTML, XML, CSV, etc.).

It’s particularely designed to feel comfortable to those used to working with HTML, allowing
Web designers to work with.

They are compiled as standard Scala functions, following a simple naming convention:

If you create a views/Application/index.scala.html template file, it will generate a
views.Application.html.index function.

Here is for example, a classic template content:

@(customer:models.Customer, orders:Seq[models.Order])

<h1>Welcome @customer.name!</h1>

@if(orders) {

 <h2>Here is a list of your current orders:</h2>

 @orders.map { order =>
 @order.title
 }

} else {

 <h2>You don't have any order yet...</h2>

}

And you can easily use it from any Scala code:

val page:play.template.Html = views.Application.html.index(
 customer, orders
)

Syntax: the magic ‘@’ character
The Scala template uses '@' as single special character. Each time this character is
encountered, it indicates the begining of a Scala statement. It does not require you to
explicitly close the code-block, and will infer it from your code:

Hello @customer.name!
 ^^^^^^^^^^^^^^
 Scala code

Because the template engine will automatically detect the end of your code block by
analysing your code, it only allow for simple statements. If you want to insert a multi-token
statement, just make it more explicit using brackets:

Hello @(customer.firstName + customer.lastName)!
 ^^^
 Scala Code

You can also use curly bracket, like in plain Scala code, to write a multi-statements block:

Hello @{val name = customer.firstName + customer.lastName; name}!
 ^^
 Scala Code

Because '@' is the only special character, if you want to escape it, just use '@@'

Template parameters
Because a template is a function, it needs parameters. Template parameters must be
declared on the first template line:

@(customer:models.Customer, orders:Seq[models.Order])

You can also use default values for parameters:

@(title:String = "Home")

Or even several parameter groups:

@(title:String)(body: => Html)

And even implicit parameters:

@(title:String)(body: => Html)(implicit session:play.mvc.Scope.Session)

Note that all parameter type names must be fully qualified.

Looping
You can use the Scala for comprehension, is a pretty standard way. Just note that the
template compiler will just add a yield keyword before your block:

@for(p <- products) {
 @p.name ($@p.price)
}

But as you probably know, here the for comprehension is just syntaxic sugar for a classic
map:

@products.map { p =>
 @p.name ($@p.price)
}

If-Blocks
Nothing special here. Just use the if instruction from Scala:

@if(items.isEmpty) {
 <h1>Nothing to display</h1>
} else {
 <h1>@items.size items!</h1>
}

Pattern matching
You can also use pattern matching in templates:

@connected match {

 case Admin(name) => {
 Connected as admin (@name)
 }

 case User(name) => {
 Connected as @name
 }

}

Declaring reusable blocks
You can create reusable code block (or sub template):

@display(product:models.Product) = {
 @product.name ($@product.price)
}

@products.map { p =>
 @display(product = p)
}

Note that you can also declare reusable pure Scala blocks:

@title(text:String) = @{
 text.split(' ').map(_.capitalize).mkString(" ")
}

<h1>@title("hello world")</h1>

Import statements
You can import whatever you want at the begining of your template (or of a sub template):

@(customer:models.Customer, orders:Seq[models.Order])

@import utils._

…

Composing templates (tags, layouts, includes, etc.)
Templates being simple functions you can compose them in any way you want. Below are a
few examples of other common scenarios:

Layout

Let’s declare a views/main.scala.html template that will act as main layout:

@(title:String)(content: => Html)

<h1>@title</h1>

<hr>

<div id="main">
 @content
</div>

<hr>

<div id="footer">
 ...
</div>

As you see this template takes 2 parameters: a title and an HTML block.

Now we can use it from another views/Application/index.scala.html template:

@main(title = "Home") {

 <h1>Home page</h1>

}

Tags

Let’s write a simple views/tags/notice.scala.html tag that display an HTML notice:

@(level:String = "error")(body: (String) => Html)

@level match {

 case "success" => {
 <p class="success">
 @body("green")
 </p>
 }

 case "warning" => {
 <p class="warning">
 @body("orange")
 </p>
 }

 case "error" => {
 <p class="error">
 @body("red")
 </p>
 }

}

And let’s use it from any template:

@import views.tags.html._

@notice("error") { color =>
 Oops, something is wrong
}

Includes

Nothing special, you can just call any other templates:

<h1>Home</h1>

<div id="side">
 @views.common.html.sideBar()
</div>

Comments
Use this form to add corrections, additions and suggestions about the documentation on this
page. Please ask questions on the play-framework group instead. Support requests, bug

reports, and off-topic comments will be deleted without warning.

•

Disqus

• Login
• About Disqus

• Like
• Dislike

•

Glad you liked it. Would you like to share?

• Share
• No thanks

Sharing this page …

Thanks! Close

Add New Comment

Object 2

Showing 9 comments

 Subscribe by email

 Subscribe by RSS

•

DonK 1 week ago

•

Is there any documentation here on play-scalate and the differences?

http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-248167144
http://playframework.disqus.com/dealing_with_scala_types_in_play_templates/latest.rss
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://disqus.com/
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://disqus.com/guest/efd40a6d25acc4d3cd19dd6c1121dd49/

• Flag
•

•

•

Guest 1 month ago

•

How to use the "route functions" or "actions"?
http://www.playframework.org/d...

• Flag
•

•

•

Seki Takashi 1 week ago in reply to Guest

•

Maybe @action(method)
(note: If you are using the default paramaters, they are expanded.)

• Flag
•

•

•

 1 month ago

•

Is it an interpreter?
Razor is of course the latest from Microsoft. But still not perfect.
Looks like it there are no components at all.
How is it better that Velocity not even to mention HybridJava

• Flag
•

•

•

http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-219660855
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-227878952
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-247570976
http://www.facebook.com/hawk.seki
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://www.playframework.org/documentation/1.2.1/templates#Actionsor
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-227878952
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://disqus.com/guest/3e5d4161a4a8334e15d7fd0dcc73add4/
http://disqus.com/facebook-1018657139/
http://disqus.com/guest/972eeecc6a98b88d98040a4faf6981df/

HuangShengYu 1 month ago

•

would it support jade? it is easy and dry too. similar to ruby slim, http://slim-lang.com/

• Flag
•

•

•

Zhaopuming 1 month ago

•

Would the template support Jade/Scamel style code in the future ? I found those to be
really really "Compact, Expressive, and Fluid"

• Flag

HuangShengYu liked this
•

•

•

 1 month ago

•

It would be nice to explain the use of package objects so the user can give views some
default functions/imports. I found it very useful, and it helps with DRY principle.

• Flag
•

•

•

Ponny 1 month ago

•

Does it escape HTML? If so, how do you prevent it? If not, how do you force it?

• Flag

http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-214004790
http://storecrowd.com/
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-214910253
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-215347491
http://scala.playframework.org/documentation/scala-0.9.1/templates#
http://slim-lang.com/
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-216549563
http://disqus.com/HuangShengYu/
http://disqus.com/guest/65eba6da6b684caa036ea569bbfa15f6/
http://disqus.com/HuangShengYu
http://disqus.com/google-9831bf74d055f7f881119200ea980f3e/
http://disqus.com/guest/4aa0b43502b2d4f5b42737189d0fb760/

2 people liked this.
•

•

•

Diego Varese 1 month ago

•

This @ syntax is very similar to the one used by the Razor view engine in ASP.NET
MVC. It would be great if it were available for java code as well.

•

Anorm, SQL data access with Play Scala
The Scala module includes a brand new data access layer called Anorm that uses plain SQL
to make your database request and provides several API to parse and transform the resulting
dataset.

Anorm is Not a Object Relational Mapper

In the following documentation, we will use the MySQL world sample database.

If you want to enable it for your application, follow the MySQL website instruction, and enable
it for your application by adding the following configuration line in your conf/application.conf
file:

db=mysql:root@world

Overview
It can feel strange to fallback to plain old SQL to access an SQL Database these days. In
particular for Java developers that are accustomed to use high level Object Relational Mapper
like Hibernate to completely hide this aspect.

Now if we agree that these tools are almost required in Java, we think that they are not
needed at all wehen you have the power of a higher level programming language like Scala,
and in the contrary they will quickly become counter productive.

Using JDBC is a pain, but we provide a better API

We agree, using directly the JDBC API is tedious. Particularly in Java. You have to
deal everywhere with checked exceptions and iterate over and over around the
ResultSet to transform this raw dataset into your own data structure.

But we provide a simpler API for JDBC, using Scala you don’t need to bother with
exceptions, and transforming data is really easy with a functional language; in fact

http://dev.mysql.com/doc/world-setup/en/world-setup.html
http://scala.playframework.org/documentation/scala-0.9.1/templates#comment-213975556
http://twitter.com/diegovarese
http://disqus.com/twitter-116027670/

it is the point of the Play Scala SQL access layer to provide several API to
effectively transform JDBC data into other Scala structures.

You don’t need another DSL to access relational Database

SQL is already the best DSL to access relational Databases. We don’t need to
invent something new. Moreover the SQL syntax and features can differ from one
database vendor to another.

If you try to abstract this point with another proprietary SQL like DSL you will have
to deal with several ‘dialects’ dedicated for each vendor (like Hibernate ones), and
limit yourself of using interesting features of a particular Database.

Sometimes we will provide you with prefilled SQL statements. But the idea is not to
hide you the fact that we use SQL under the hood. Just save a bunch of characters
to type for trivial queries, and you can always fallback to plain old SQL.

A type safe DSL to generate SQL is a mistake

Some argue that a type safe DSL is better since all your queries are checked by
the compiler. Unfortunately the compiler check your queries based on a MetaModel
definition that you often write yourself by ‘mapping’ your data structure to the
database schema.

And there are no guarantees at all that this MetaModel is correct. Even if the
compiler says that you code and your queries are correctly typed, it can still
miserably fail at runtime because of a mismatch in your actual database definition.

Take Control of your SQL code

Object Relationnal Mapper work well for trivial cases. But when you have to deal
with complex schemas or existing databases, you will spend most of your time to
fighting with your ORM to make it generate the SQL queries you want.

Writing yourself SQL queries can be tedious for a simple ‘Hello World’ application,
but for any real life application, you will eventually save time and simplify your code
by taking the full control of your SQL code.

Now, let’s see of to manage an SQL database with Play Scala.

Executing SQL requests
To start you need to learn how to execute SQL requests.

Well, import play.db.anorm._, and then simply use the SQL object to create queries.

import play.db.anorm._

val result:Boolean = SQL("Select 1").execute()

The execute() method returns a Boolean value indicating if the execution was succesful.

To execute an update query, you can use executeUpdate() that returns a
MayErr[IntegrityConstraintViolation,Int] value:

val result = SQL("delete from City where id = 99").executeUpdate().fold(
 e => "Oops, there was an error" ,
 c => c + " rows were updated!"
)

Since Scala supports multiline String, feel free to use them for complex SQL statements:

var sqlQuery = SQL(
 """
 select * from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = 'FRA';
 """
)

If your SQL query needs dynamic parameters, you can declare placeholders like {name} in
the query String, and assign them later to any value:

SQL(
 """
 select * from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = {countryCode};
 """
).on("countryCode" -> "FRA")

Another variant is to fill them by position:

SQL(
 """
 select * from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = {countryCode};
 """
).onParams("FRA")

Retrieving data using the Stream API
The first way to access data coming from a Select query, is to use the Stream API.

When you call apply() on any SQL statement, you will receive a lazy Stream of Row,
where each row can be seen as a dictionary:

// Create an SQL query
val selectCountries = SQL("Select * from Country")

// Transform the resulting Stream[Row] as a List[(String,String)]
val countries = selectCountries().map(row =>
 row[String]("code") -> row[String]("name")
).toList

In the following example we will count the number of Country in the database. So the
resultSet will be a single row with a single column:

// First retrieve the first row
val firstRow = SQL("Select count(*) as c from Country").apply().head

// Next get the content of the 'c' column as Long
val countryCount = firstRow[Long]("c")

Using Pattern Matching
You can also use Pattern Matching to match and extract the Row content. In this case the
column name doesn’t matter. Only the order and the type of the parameters is used to match.

The following example transform each row to the correct Scala type:

case class SmallCountry(name:String)
case class BigCountry(name:String)
case class France

val countries = SQL("Select name,population from Country")().collect {
 case Row("France", _) => France()
 case Row(name:String, pop:Int) if(pop > 1000000) => BigCountry(name)
 case Row(name:String, _) => SmallCountry(name)
}

Note that since collect(…) ignore the cases where the partial function isn’t defined, it allow
your code to safely ignore rows that you don’t expect.

Dealing with Nullable columns
If a column can contain Null values in the database schema, you need to manipulate it as an
Option type.

For example, the indepYear of the Country table being nullable, you need to match it as
Option[Short]:

SQL("Select name,indepYear from Country")().collect {
 case Row(name:String, Some(year:Short)) => name -> year
}

If you try to match this column as Short it won’t be able to parse Null cases. If you try to
retrieve the column content as Short directly from the dictionnary:

SQL("Select name,indepYear from Country")().map { row =>
 row[String]("name") -> row[Short]("indepYear")
}

It will produce an UnexpectedNullableFound(COUNTRY.INDEPYEAR) exception if it
encounter a null value. So you need to map it properly to an Option[Short], as:

SQL("Select name,indepYear from Country")().map { row =>
 row[String]("name") -> row[Option[Short]]("indepYear")
}

This rule is also true for the parser API we will just see.

Using the Parser combinator API
The Scala Parsers API provides generic parser combinators. Play Scala can use them to
parse the result of any Select query.

First you need to import play.db.anorm.SqlParser._.

Use the as(…) method of the SQL statement to specify the parser you want to use. For
example scalar[Long] is a simple parser that knows how to parse a single column row as
Long:

val count:Long = SQL("select count(*) from Country").as(scalar[Long])

Let’s write a more complicated parser:

str("name") ~< int("population") *, will parse the content of the name column as
String, then the content of the population column as Int, and will repeat for each row. Here
we use ~< to combine several parsers that read the same row.

val populations:List[String~Int] = {
 SQL("select * from Country").as(str("name") ~< int("population") *)
}

As you see, the result type of this query is a List[String~Int], so a list of country name
and population items.

You can also, use Symbol and rewrite the same code as:

val populations:List[String~Int] = {
 SQL("select * from Country").as('name.of[String]~<'population.of[Int]*)
}

Or even as:

val populations:List[String~Int] = {
 SQL("select * from Country").as(
 get[String]("name") ~< get[Int]("population") *
)
}

When you parse a ResultSet using as(…) it must consume all the input. If your parser
doesn’t consume all the available input, an error will be thrown. It avoids to have your parser
fails silently.

If you want to parse only a small part of the input, you can use parse(…) instead of as(…).
However use it with caution, as it make it more difficult to detect errors in your code:

val onePopulation:String~Int = {
 SQL("select * from Country").parse(
 str("name") ~< int("population")
)
}

Now let’s try with a more complicated example. How to parse the result of the following

http://www.scala-lang.org/api/current/scala/util/parsing/combinator/Parsers.html

query?

select c.name, c.code, l.language from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = 'FRA'

As this query uses a join, our parser will need to span several rows of the ResultSet to
generate a single item. We will use the spanM combinator to construct this parser:

str("name") ~< spanM(by=str("code"), str("language"))

Now let’s use this parser to create a function that gives us all languages spoken in a country:

case class SpokenLanguages(country:String, languages:Seq[String])

def spokenLanguages(countryCode:String):Option[SpokenLanguages] = {
 SQL(
 """
 select c.name, c.code, l.language from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = {code};
 """
)
 .on("code" -> countryCode)
 .as(
 str("name") ~< spanM(by=str("code"), str("language")) ^^ {
 case country~languages => SpokenLanguages(country, languages)
 } ?
)

}

Finally, let’s complicate our example to separate the official language and the other ones:

case class SpokenLanguages(
 country:String,
 officialLanguage: Option[String],
 otherLanguages:Seq[String]
)

def spokenLanguages(countryCode:String):Option[SpokenLanguages] = {
 SQL(
 """
 select * from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 where c.code = 'FRA';
 """
).as(
 str("name") ~< spanM(
 by=str("code"), str("language") ~< str("isOfficial")
) ^^ {
 case country~languages =>
 SpokenLanguages(
 country,
 languages.collect { case lang~"T" => lang } headOption,
 languages.collect { case lang~"F" => lang }
)
 } ?

)

}

If you try this on the world sample database, you will get:

$ spokenLanguages("FRA")
> Some(
 SpokenLanguages(France,Some(French),List(
 Arabic, Italian, Portuguese, Spanish, Turkish
))
)

Adding some Magic[T]
Based on all these concepts, Play provides a Magic helper that will help you to write parsers.
The idea is that if you define a case class that match a database table, Play Scala will
generate a parser for you.

The Magic parsers need a convention to map you Scala structures to your database scheme.
In this example we will use the default convention that map Scala case classes to Tables
using exactly the class names as table name, and the field names as column names.

So before continuing, you need to import:

import play.db.anorm.defaults._

Let’s try by defining a first Country case class that describes the Country table:

case class Country(
 code:Id[String], name:String, population:Int, headOfState:Option[String]
)

Note that we are not required to specify every existing table column in the case class. Only a
subset is enough.

Now let’s create an object that extends Magic to automatically get a parser of Country:

object Country extends Magic[Country]

If you want to break the convention here and use a different table name to for the Country
case class, you can specify it:

object Country extends Magic[Country]().using("Countries")

And we can simply use Country as Country parser:

val countries:List[Country] = SQL("select * from Country").as(Country*)

Magic provides automatically a set of methods that can generate basic SQL queries:

val c:Long = Country.count().single()
val c:Long = Country.count("population > 1000000").single()
val c:List[Country] = Country.find().list()
val c:List[Country] = Country.find("population > 1000000").list()
val c:Option[Country] = Country.find("code = {c}").on("c" -> "FRA").first()

Magic also provides the update and insert methods. For example:

Country.update(Country(Id("FRA"), "France", 59225700, Some("Nicolas S.")))

Finally, let’s write the missing City and CountryLanguage case classes, and make a more
complex query:

case class Country(
 code:Id[String], name:String, population:Int, headOfState:Option[String]
)

case class City(
 id:Pk[Int], name: String
)

case class CountryLanguage(
 language:String, isOfficial:String
)

object Country extends Magic[Country]
object CountryLanguage extends Magic[CountryLanguage]
object City extends Magic[City]

val Some(country~languages~capital) = SQL(
 """
 select * from Country c
 join CountryLanguage l on l.CountryCode = c.Code
 join City v on v.id = c.capital
 where c.code = {code}
 """
)
.on("code" -> "FRA")
.as(Country.span(CountryLanguage *) ~< City ?)

val countryName = country.name
val capitalName = capital.name
val headOfState = country.headOfState.getOrElse("No one?")

val officialLanguage = languages.collect {
 case CountryLanguage(lang, "T") => lang
 }.headOption.getOrElse("No language?")

Comments
Use this form to add corrections, additions and suggestions about the documentation on this
page. Please ask questions on the play-framework group instead. Support requests, bug
reports, and off-topic comments will be deleted without warning.

•

Disqus

http://scala.playframework.org/documentation/scala-0.9.1/anorm#

• Login
• About Disqus

• Like
• Dislike

•

Glad you liked it. Would you like to share?

• Share
• No thanks

Sharing this page …

Thanks! Close

Add New Comment

Object 3

Showing 7 comments

 Subscribe by email

 Subscribe by RSS

•

Guest 2 months ago

•

Anyone can point me to the api doc for Anorm? I couldn't find any details
documentation of play.db.anorm._

Thanks

• Flag
1 person liked this.

•

•

•

http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-211501373
http://playframework.disqus.com/anorm_sql_data_access_with_play_scala/latest.rss
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://disqus.com/
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://disqus.com/guest/d05c0a73a76a832a11102162d28a12c8/

H Sf 2 months ago

•

相相相 JPA。 。。。。还还还还还还还 还还scala module相相相相相相 orm

• Flag
•

•

•

Przemysław Pokrywka 2 months ago

•

Guys, I'd like you to notice, that the real benefit of type safe DSLs is centralized
metamodel (and not guarantee of its correctness). If schema changes, what would you
like to do? To search for all places, where you have SQLs and correct it possibly by
trial and error process? Or just to correct metamodel and have the compiler tell you all
places, that need update?
Otherwise Anorm features several nice ideas, but the lack of type safety is too serious
flaw for me to use it. Besides of making refactoring difficult, it violates DRY principle,
because I have to repeat the type of a column in all places I use it (for example in
firstRow[Long]("c")). You cannot also safely extract fragments of SQL statements to be
reused in other places when SQL lives in Strings.

Instead of Anorm I would use Squeryl / QueryDSL / ScalaQuery at data layer, even
when using Play.

• Flag

Wil Moore III and 9 more liked this
•

•

•

 1 month ago in reply to Przemysław Pokrywka

•

I agree with you - the original author's rejection of type safety is nonsensical. Anorm is
also useless for anybody who wants to release an open source project supporting
more than one database technology. Disappointed it's being pushed as the standard
Scala Play option.

http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-195290124
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-219575000
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-195290124
http://twitter.com/przemekpokrywka
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-203085986
http://disqus.com/guest/ab406a07c7a2cfa7c633c5eb6939eb79/
http://disqus.com/twitter-137622400/
http://disqus.com/wilmoore
http://disqus.com/guest/9653cf0f270b28e4cbf9fc6019521677/

• Flag
2 people liked this.

•

•

•

Guest 2 months ago in reply to Przemysław Pokrywka

•

I share your concerns. I would appreciate if this chapter addressed this issue. Or at
least linked to a discussion of it.

• Flag
•

•

•

 2 months ago

•

@OMAROMAN
I'm wondering the same thing: 1-1, 1-m, m-m, etc.

• Flag
•

•

•

OMAROMAN 3 months ago

•

Hi,

Does anybody know how to implement a ManyToMany relationship using
Anorm?

I have two models, User and Role, and I want to relate them using a
join table, but I don't know how to indicate in the models the
references just like in Hibernate/JPA

@Entity

http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-187800396
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-195283302
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-195290124
http://scala.playframework.org/documentation/scala-0.9.1/anorm#comment-210624053
http://scala.playframework.org/documentation/scala-0.9.1/anorm#
http://disqus.com/guest/2e1dd0dca0e7e1e0e612fc2ad44c75fa/
http://disqus.com/guest/ade9c8b4784de8ef8c5446a67d88afa7/
http://disqus.com/guest/2cd85ec37f1e39e624e97a73c0db5409/

@Table(name = "users")
public class User extends Model {
@ManyToMany
public List<role> roles;

...
}

@Entity
@Table(name = "roles")
public class Role extends Model {
@Required
public String name;
}

Here's my code in Scala:

EVOLUTIONS

CREATE TABLE users (
id bigint(20) NOT NULL AUTO_INCREMENT,
username varchar(20) NOT NULL,
email varchar(255) NOT NULL,
password_hash varchar(255) NOT NULL,
password_salt varchar(255) NOT NULL,
PRIMARY KEY (id)
);

CREATE TABLE roles (
id bigint(20) NOT NULL AUTO_INCREMENT,
name varchar(20) NOT NULL,
PRIMARY KEY (id)
);

CREATE TABLE roles_users (
role_id bigint(20) NOT NULL,
user_id bigint(20) NOT NULL,
FOREIGN KEY (role_id) REFERENCES roles(id),
FOREIGN KEY (user_id) REFERENCES users(id)
);

SCALA MODELS

case class User(
id: Pk[Long],
@Required username:String,
email:String,
password_hash:String,
password_salt:String,

)
object User extends Magic[User](Option("users"))

case class Role(
id: Pk[Long],
@Required name:String
)
object Role extends Magic[Role](Option("roles"))

Any help would be very apprecited.
Thanks ahead of time</role>

•

