
Twitter Shifting More Code to JVM,
Citing Performance and
Encapsulation As Primary Drivers
Posted by Charles Humble on Jul 04, 2011

Community
Java

Topics
Object Oriented Design ,
Performance & Scalability

Tags
Scala ,
JVM ,
Ruby on Rails ,
Lucene ,
JRuby ,
Java SE

 |

While it almost certainly remains the largest Ruby on Rails based site in the world,
Twitter has gradually been moving more and more of its stack to the JVM. The
change is partially motivated by oft-cited advantages of the JVM, such as
performance and scalability, but is also driven by a desire for better encapsulation
of individual services, and other architectural concerns.

RelatedVendorContent

Maximize Scale and Performance with BigMemory

Why NoSQL? A Primer on the Rise of NoSQL

Got fires in production? Find root cause in minutes. FREE Java performance tool

Choosing The Right Agile Transformation Partner for Immediate and Lasting
Results

Gunnar Peterson's Security Gateway Buyer’s Guide

Last year the company announced that both its back-end message queue and
Tweet storage had been re-written in Scala, and in the spring of 2010 the search
team at Twitter started to rewrite the search engine. As part of the effort, Twitter
changed the search storage from MySQL to a real-time version of Lucene. More
recently the team announced that they were replacing the Ruby on Rails front-end
for search with a Java server they called Blender. This change resulted in a 3x

http://www.infoq.com/articles/twitter-java-use
http://www.infoq.com/articles/twitter-java-use
http://www.infoq.com/articles/twitter-java-use
http://engineering.twitter.com/2011/04/twitter-search-is-now-3x-faster_1656.html
http://lucene.apache.org/
http://www.mysql.com/
http://www.infoq.com/vendorcontent/show.action?vcr=1510
http://www.infoq.com/vendorcontent/show.action?vcr=1508
http://www.infoq.com/vendorcontent/show.action?vcr=1508
http://www.infoq.com/vendorcontent/show.action?vcr=1411
http://www.infoq.com/vendorcontent/show.action?vcr=1500
http://www.infoq.com/vendorcontent/show.action?vcr=1514
http://www.addthis.com/bookmark.php?v=250&username=infoq
http://www.infoq.com/JavaSE
http://www.infoq.com/jruby
http://www.infoq.com/lucene
http://www.infoq.com/rails
http://www.infoq.com/JVM
http://www.infoq.com/Scala
http://www.infoq.com/performance-scalability
http://www.infoq.com/objectorienteddesign
http://www.infoq.com/java
http://www.infoq.com/author/Charles-Humble
http://www.addthis.com/bookmark.php?v=250&username=infoq
javascript:bookmarkContent();

drop in search latencies.

InfoQ spoke to Twitter engineer Evan Weaver to find out more about the
background to the change.

Twitter Architectural Overview

One of the overall observations one can make from looking at Twitter's
architecture is that many of the design decisions are admirably pragmatic. So for
example, Twitter's back-end uses both MySQL and Open-source distributed
database Cassandra extensively. Gizzard, its own open-source framework for
creating distributed datastores, is used to partition MySQL. This is "mainly used
for highly structured, very high SLA data", Weaver told us, "because it is relatively
inflexible".

All run-time data is served from either Gizzard/MySQL, or Cassandra. Twitter also
uses HDFS in Hadoop extensively for off-line computation, and is bringing online a
system that uses Gizzard to partition the key-value store Redis.

We had existing schemas in MySQL that worked, so we kept and sharded
them through Gizzard rather than moving to a system with a different
performance profile. But Cassandra is so much more flexible, we've had
a really good experience using that for new things.

For the mid-tier, more flexible kind of data concerns, like new product
features, time series data particularly, things that need a really high
write velocity, like serving of derived calculations from Hadoop, that kind
of thing, we use Cassandra very extensively.

Communication between front-end and back-end services uses the Facebook
developed Thrift as the RPC mechanism, and JSON over REST as the public RPC,
which is also used for Twitter's own clients including the new Twitter website.

Language Choices

A similar pragmatic approach can be seen in language selection. The first class
languages at Twitter are JavaScript, Ruby, Scala and Java. They also support C, but
rarely write new services in it. Generally, Weaver told us, developers coming from
a Ruby background tend to prefer working in Scala, whilst developers coming from
a C or C++ background choose Java.

In the case of the search team, since they do a lot of work on Lucene, which is
Java-based, they have a lot of experience in writing Java code. As such it is more
convenient for them to work in Java than Scala or another language.

To allow developers to choose the best language for the job, Twitter has invested a
lot of effort in writing internal frameworks which encapsulate common concerns.
Finagle, for example, is a library for building asynchronous RPC servers and clients
in Java, Scala, or any JVM language. It is written in Scala, but also supports a
highly Java-idiomatic API.

As the back-end code is being pulled towards the JVM, the front end client code, in

http://twitter.github.com/finagle/
http://thrift.apache.org/
http://redis.io/
http://hadoop.apache.org/
https://github.com/twitter/gizzard
http://cassandra.apache.org/

common with many contemporary web based applications, is gradually making
heavier and heavier use of browser-based JavaScript. In consequence the Ruby
component is shrinking.

We were originally a Rails shop, and I believe we are the largest Rails
site in the world, but as we've grown as an organization, and as a
service, performance and encapsulation have become very critical. I
wouldn't say that Rails has served as poorly in any way, it's just that we
outgrew it very quickly. So there are two things about Rails that make it
no longer ideal for our situation.

First, the Ruby runtime is slow, particularly in comparison to the JVM.
We've worked hard on the garbage collector to get reasonable
performance.

And also the LAMP model that Rails embodies, where you have a set of
tiers each of which only talks to the one above and below, and no
vertical encapsulation, doesn't serve a large organization like us very
well.

As we've been focusing on performance and encapsulation, we've fixed
performance problems as necessary, with caches, or working on the
VMs.

The majority of requests on Twitter go through Rails right now, but as we
build new services, if we choose to build them from scratch, in order to
achieve better encapsulation we move them into the JVM, because the
performance concerns outweigh any sort of productivity or agility
downside those languages might have. So when we re-built Tweet
storage we built it in Gizzard as a homogenous service, it exposes a
domain interface, and that's a Scala system that partitions and manages
uncoordinated MySQL nodes. So that effectively eliminated ActiveRecord
use for tweets from the core Rails stack.

The same with the queue; when we wanted to rebuild it and re-
encapsulate it for performance reasons we wrote it on JVM. So as those
kind of lightweight, service-oriented projects proceed, more and more
concerns are being taken out of the core Rails application.

On the opposite side, as we've moved the render code into browser-
based JavaScript, we no longer get much benefit from Rails' templating
model for building web pages. So we're pulling concerns out from both
sides, and when rewrite them it makes sense to rewrite them in a faster
stack, because performance is so critical for us. We're one of the largest
websites in the world, but run on a very small hardware footprint
compared to other big dynamic sites.

Keeping the hardware footprint small has advantages in terms of cost, but also

avoids some of the secondary scaleability concerns, such as the performance of
the TCP stack, that can impact sites with larger hardware demands.

You might assume that the move to the JVM was largely driven by performance
and scalability concerns, but in fact the existing Twitter codebase performs well.
As such the company isn't being forced into a ground-up re-write to allow it to
continue to grow. Rather, the move to JVM is driven as much by a need for better
developer productivity as it it for better performance.

The primary driver is honestly encapsulation, so we can iterate faster as
a company. Having a single, monolithic application codebase is not
amenable to quick movement on a per-team basis. So when we decide
to encapsulate something, then because of our performance concerns,
its better to rewrite it in the JVM for most systems, than to write a new
Ruby system.

That aside, because we rely on Ruby so heavily, we've put a lot of
investment into our existing infrastructure, and it works well for us.

Search: From Ruby to Java

The transition from Ruby to the Java-based Blender server was effectively done in
two stages. The first was to replace the MySQL back-end with a real-time reverse
index the search team developed based on Lucene, called Earlybird. Earlybird
doubled the memory efficiency and provided the flexibility to add relevance
filtering for search, helping to support the rapidly growing demand on the search
service. According to an engineering blog post

In 2008, Twitter search handled an average of 20 TPS [tweets per
second] and 200 QPS. By October 2010, when we replaced MySQL with
Earlybird, the system was handling 1,000 TPS and 12,000 QPS on
average...However, we still needed to replace the Ruby on Rails front-
end, which was only capable of synchronous calls to Earlybird and had
accrued significant technical debt through years of scaling and transition
to Earlybird.

To solve this the team began development of the Java Blender server. Blender is a
Thrift and HTTP service built on Netty, a highly-scalable New I/O (NIO) client
server library written in Java that enables the development of a variety of protocol
servers. Netty allows Twitter to create a fully asynchronous aggregation service,
which can aggregate the results from several back-end services such as the
indices for real-time, top tweet and geo. From the engineering blog:

Netty defines a key abstraction, called a Channel, to encapsulate a
connection to a network socket that provides an interface to do a set of
I/O operations like read, write, connect, and bind. All channel I/O
operations are asynchronous in nature.

This means any I/O call returns immediately with a ChannelFuture
instance that notifies whether the requested I/O operations succeed, fail,

http://www.jboss.org/netty
http://engineering.twitter.com/2011/05/engineering-behind-twitters-new-search.html

or are canceled.

When a Netty server accepts a new connection, it creates a new channel
pipeline to process it. A channel pipeline is nothing but a sequence of
channel handlers that implements the business logic needed to process
the request.

These pipelines are then mapped to a set of back-end services, automatically
handling transitive dependencies between them. Throughout the workflow
process, there are no thread busy-waits on I/O, making efficient use of the CPU
and allowing support for a large number of concurrent requests. In addition, many
requests to the back-end services can be handled in parallel, significantly
reducing latency.

Performance Gains

Twitter's search is one of the most heavily-trafficked search engines in the world,
serving over one billion queries per day. The impact of Blender has been dramatic

Following the launch of Blender, our 95th percentile latencies were
reduced by 3x from 800ms to 250ms and CPU load on our front-end
servers was cut in half. We now have the capacity to serve 10x the
number of requests per machine. This means we can support the same
number of requests with fewer servers, reducing our front-end service
costs.

Static Typing as a Productivity Boon

While performance and scalability are often cited as benefits of using a JVM-based
language, Twitter is also finding benefits in static typing, at least for its back-end
services. Weaver told us

I would say about half of the productivity gain is purely because of
accumulated technical debt in the search Rails stack. And the other half
is that, as search has moved into a Service Oriented Architecture and
exposes various APIs, static typing becomes a big convenience in
enforcing coherency across all the systems. You can guarantee that your
dataflow is more or less going to work, and focus on the functional
aspects. Whereas for something like building a web page you don't want
to recompile all the time, you don't really want to worry about whether
in some edge condition you are going to get a type you didn't expect.
But as we move into a light-weight Service Oriented Architecture model,
static typing becomes a genuine productivity boon. And Scala gives you
the same thing.

The ability to iterate faster is obviously critical for the company. In the case of
search, the team has added relevancy filtering and personalisation to the Twitter
website to improve the quality of results, and have extended Earlybird's data
structures to support efficient lookups of entities contained in Tweets, such as

http://engineering.twitter.com/2011/04/twitter-search-is-now-3x-faster_1656.html

images and videos. They are working on relevancy filtering for mobile, and are
continuing to work on improving the scalability of the search infrastructure and
the quality of its results.

Ruby MRI vs JRuby

Whilst in many cases it makes sense for Twitter to simply move away from Ruby to
Java or Scala, there are services where Ruby is still the best choice. Twitter is
currently based on Ruby MRI (also known as CRuby) version 1.8, albeit with a
heavily re-written garbage collector. They are planning to evaluate the effort
involved in moving to Ruby 1.9, and re-implementing the custom garbage
collector, versus the effort involved in moving the Rails code they don't plan to re-
encapsulate to JRuby.

The big issue is that the performance impact of moving to JRuby is
bound up in the quality of the various clients that you rely on. So, for
example, our memcached client for CRuby is extremely fast. JRuby
clients, as far as my understanding goes, are not even within an order of
magnitude as performant. So even if JRuby itself is twice as fast, moving
to a slower memcached client would destroy all that performance
benefit.

To fully evaluate JRuby Twitter would need to re-write their Thrift client,
memcached client, possibly their MySQL client and so on, before they can tell if it
really is a benefit for them.

That's not a fault of JRuby; it's just that at the moment the surrounding
ecosystem is still kind of immature. CRuby's was too; we put a lot of
investment into it, which we can now take advantage of, and we would
have to do the same for JRuby.

Conclusion

The combination of Ruby on Rails and MySQL has been a popular one for start-up
companies for the last several years. It is a sound choice in many cases, allowing
a company's engineers to rapidly try out small new ideas and see which of them
find traction in the market place. It does however come with well known costs,
both in terms of performance and scalability, and perhaps also the relative
maturity of the libraries and tool chain. In addition, the experience at Twitter
suggests that the Ruby on Rails stack can produce some significant architectural
challenges as the code base grows.

About the Author
Charles Humble (@charleshumble on twitter) is the CTO for PRP i
Consulting with overall responsibility for the development of all the
custom software used within the company. He has worked in enterprise

software for around 15 years as a developer, architect and development manager.
He co-founded Conissaunce, a UK based enterprise computing consultancy

http://www.conissaunce.com/
http://www.prpiconsulting.com/
http://www.prpiconsulting.com/
http://www.prpiconsulting.com/
http://twitter.com/charleshumble/

focused on the retail and financial services industries, and remains a director of
the firm. He spends as much time as he can with his young family, and writes
music with twofish.

11 comments

Watch Thread Reply

Conclusion is wrong by matt mcknight Posted 06/07/2011 09:18
Re: Conclusion is wrong by Brian Edwards Posted 06/07/2011 11:39
Re: Conclusion is wrong by matt mcknight Posted 07/07/2011 00:00
Re: Conclusion is wrong by Eric Weise Posted 07/07/2011 11:55
Re: Conclusion is wrong by William H Posted 08/07/2011 03:12
Re: Conclusion is wrong by Daniele (Dan) Mazzini Posted 11/07/2011
07:30
Re: Conclusion is wrong by matt mcknight Posted 13/07/2011 10:10
Re: Conclusion is wrong by William H Posted 13/07/2011 03:35
Re: Conclusion is wrong by matt mcknight Posted 13/07/2011 10:07
Is Erlang is a better one than java by dileep stanley george Posted 13/07/2011
02:44
Small companies should definitely go for rails. by Surendran Sujith Posted
17/07/2011 12:00
Sort by date descending

1. Back to top

Conclusion is wrong

06/07/2011 09:18 by matt mcknight

Your conclusion is completely wrong and horrible advice for just about
anyone. What makes it most clear is that you offer no positive alternatives.
Are you actually suggesting that people write their own web server like
Twitter did? No, you're not suggesting that because you write of the
importance of the maturity of the toolchain...

What Twitter found is that they wanted to rewrite their search stack to go
from a synchronous to asynchronous/evented architecture. They wrote
everything from scratch on top of netty. It's not like they switched to Spring
MVC, they wrote their own web application server (Blender). They didn't
even switch the main application, which is still trucking along...

The very telling point is that if you haven't gotten to the point of using
memcached on your project yet, your web stack probably isn't the
bottleneck.

If you want to switch to a more asynchronous architecture, why not look at
Goliath? github.com/postrank-labs/goliath It's a great implementation of the
reactor pattern. Or Node.js?

https://github.com/postrank-labs/goliath
http://www.infoq.com/articles/twitter-java-use#view_70884
http://www.infoq.com/articles/twitter-java-use#
javascript:changeOrder(2);
javascript:void(0)
javascript:void(0)
http://www.twofish-music.com/

Reply

2. Back to top

Re: Conclusion is wrong

06/07/2011 11:39 by Brian Edwards

Well I enjoyed the article. I guess Matt read the article while in a bad mood.

Reply

3. Back to top

Re: Conclusion is wrong

07/07/2011 00:00 by matt mcknight

I found the source Twitter articles useful, and had read them previously. I
found Mr. Humble's attempts to extrapolate general conclusions from them
quite weak. His biases show through so clearly, that reading this article will
lead people to misunderstand the source material.

As an example, Humble states "Rather, the move to JVM is driven as much
by a need for better developer productivity as it it for better performance."

This is the absolute wrong conclusion to draw. What the Twitter guy said was
that they wanted to break their monolithic application into many smaller
applications- encapsulation. This did not require a move to the JVM. The
Twitter guy said that when they encapsulated, they moved some pieces to a
JVM platform for performance- particularly because where they wanted to
use Netty and non-blocking I/O.

Reply

4. Back to top

Re: Conclusion is wrong

07/07/2011 11:55 by Eric Weise

As an example, Humble states "Rather, the move to JVM is driven as much
by a need for better developer productivity as it it for better performance."

"This is the absolute wrong conclusion to draw."

Huh? What about this comment?
"But as we move into a light-weight Service Oriented Architecture model,
static typing becomes a genuine productivity boon. And Scala gives you the
same thing."

Reply

5. Back to top

http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_70924
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_70908
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_70907
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)

Re: Conclusion is wrong

08/07/2011 03:12 by William H

Not only that but the motivation for better encapsulation is to be able to
"iterate faster as a company." in other words better developer productivity.

Reply

6. Back to top

Re: Conclusion is wrong

11/07/2011 07:30 by Daniele (Dan) Mazzini

You can make a pretty big distinction between "developer productivity" e
company wide development productivity: For a single developer, it's very
difficult to argue that Ruby on Rails isn't (much) more productive than any
Java web development solution.

If you have a large project with many teams, though, individual productivity
becomes less important than the general productivity of the whole
company, and even small bugs can have a big impact because of the bigger
and bigger overhead in communication and coordination between teams.

So it's both possible that RoR is more productive for the developer, and
Scala is more productive for the whole company, depending on the task...

Reply

7. Back to top

Is Erlang is a better one than java

13/07/2011 02:44 by dileep stanley george

Is Erlang is a better one than java

Reply

8. Back to top

Re: Conclusion is wrong

13/07/2011 10:07 by matt mcknight

As an example, Humble states "Rather, the move to JVM is driven as much
by a need for better developer productivity as it it for better performance."

"This is the absolute wrong conclusion to draw."

Huh? What about this comment?
"But as we move into a light-weight Service Oriented Architecture model,
static typing becomes a genuine productivity boon. And Scala gives you the
same thing."

http://www.infoq.com/articles/twitter-java-use#view_71223
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_71217
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_71123
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_70975

Because you don't get static typing by running on the JVM- see groovy,
jruby, clojure, jython, etc.; you get it from languages. You can get static
typing from, say, c++. So, the argument by the author of the article that the
JVM is a developer productivity boon does not follow from the statements
you are basing it on.

Reply

9. Back to top

Re: Conclusion is wrong

13/07/2011 10:10 by matt mcknight

"So it's both possible that RoR is more productive for the developer, and
Scala is more productive for the whole company, depending on the task..."

That's an interesting response to the encapsulation issue- which is language
independent. You could build a monolithic application in any language. Most
languages allow you to build a modular application.

Reply

10.Back to top

Re: Conclusion is wrong

13/07/2011 03:35 by William H

That's an interesting response to the encapsulation issue- which is
language independent. You could build a monolithic application in
any language. Most languages allow you to build a modular
application.

Again to be clear the reason for the desire for better encapsulation comes
from a need for better developer productivity as both Weaver and Humble
state:
"Having a single, monolithic application codebase is not amenable to quick
movement on a per-team basis"

The point that Weaver makes is that Ruby when used in conjunction with
Rails doesn't lend itself to the design they found that they now needed:
"...the LAMP model that Rails embodies, where you have a set of tiers each
of which only talks to the one above and below, and no vertical
encapsulation, doesn't serve a large organization like us very well."
So could you have got there with Ruby? Possibly. You could probably have
got there with postscript come to that. Twitter clearly just felt that getting
there with Java was simply easier.

Matt - you also state "you don't get static typing by running on the JVM."

http://www.infoq.com/articles/twitter-java-use#view_71233
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)
http://www.infoq.com/articles/twitter-java-use#view_71224
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)

This is incorrect - the JVM is, as of today, statically typed. Dynamically typed
languages that want to target the JVM have to resort to all sorts of tricks to
get dynamic typing to work. This will change a bit with Java 7, when it ships,
since it includes an invokeDynamic instruction specifically for this purpose.

Reply

11.Back to top

Small companies should definitely go for rails.

17/07/2011 12:00 by Surendran Sujith

I believe Charles Humble has just narrated the twitter experience and
explained their reasons for choosing not selecting Ruby for their specific
case. In fact one of reasons assigned is the availability and skill of their
existing resource. Charles Humble doesn't necessarily argue against Rails
but in a way it is a suggestion that small timers would definitely benefit
using rails. Further Ruby and Rails has grown much beyond the status of
what it used to be. The sole reason that Rails drastically reduces
development time and effort is enough for most people to go for rails.

http://www.infoq.com/articles/twitter-java-use#view_71364
http://www.infoq.com/articles/twitter-java-use#
javascript:void(0)

	Twitter Shifting More Code to JVM, Citing Performance and Encapsulation As Primary Drivers
	RelatedVendorContent
	Twitter Architectural Overview
	Language Choices
	Search: From Ruby to Java
	Performance Gains
	Static Typing as a Productivity Boon
	Ruby MRI vs JRuby
	Conclusion
	About the Author
	11 comments
	Conclusion is wrong
	Re: Conclusion is wrong
	Re: Conclusion is wrong
	Re: Conclusion is wrong
	Re: Conclusion is wrong
	Re: Conclusion is wrong
	Is Erlang is a better one than java
	Re: Conclusion is wrong
	Re: Conclusion is wrong
	Re: Conclusion is wrong
	Small companies should definitely go for rails.

