
S A M P L E C H A P T E R

Elegant applications on the JVM

IN ACTION

Amit Rathore

M A N N I N G

Clojure in Action

by Amit Rathore

 Chapter 1

 Copyright 2012 Manning Publications

brief contents

PART 1 GETTING STARTED ..1

1 ■ Introduction to Clojure 3

2 ■ A whirlwind tour 30

3 ■ Building blocks of Clojure 60

4 ■ Polymorphism with multimethods 90

5 ■ Clojure and Java interop 106

6 ■ State and the concurrent world 122

7 ■ Evolving Clojure through macros 148

PART 2 GETTING REAL ..167

8 ■ Test-driven development and more 169

9 ■ Data storage with Clojure 189

10 ■ Clojure and the web 221

11 ■ Scaling through messaging 240

12 ■ Data processing with Clojure 273

13 ■ More on functional programming 307

14 ■ Protocols, records, and types 339

15 ■ More macros and DSLs 367

v

Introduction to Clojure

This chapter covers
■ Clojure basics
■ What makes Clojure special
■ Clojure as a Lisp
■ Clojure as a functional programming language
■ Clojure as a JVM-based language

The greatest single programming language ever designed.
Alan Kay on Lisp

Lisp is worth learning for the profound enlightenment experience you will have when
you finally get it; that experience will make you a better programmer for the rest of your
days, even if you never use Lisp itself a lot.

Eric Raymond

Any sufficiently complicated C or Fortran program contains an ad hoc, informally
specified, bug-ridden, slow implementation of half of Common Lisp.

Philip Greenspun

3

4 CHAPTER 1 Introduction to Clojure

1.1 What is Clojure?
Clojure is a new programming language, designed as a fresh take on Lisp, one of the
oldest programming languages still in active use (it’s the second oldest; only Fortran is
older). Why would anyone want to learn something associated with such old technol­
ogy? It turns out that although the answer is obvious to someone who already knows
Lisp, it can’t be explained without some background. This chapter attempts to pro­
vide that background.

 We’ll begin with the motivation for the language, in order to gain an understand­
ing of why Lisp was created. After that, we’ll address the seemingly strange syntax of
the language. This unfamiliarity with Lisp syntax often causes people to be turned off
the language; hence, it’s important to understand the reasoning behind its choice.
Once we get that out of the way, we’ll address three main topics. The first will deal
with what makes Lisp special and how Clojure benefits from being a Lisp. The second
will explain what it means for Clojure to be a functional programming language.
Finally, we’ll discuss the advantage of Clojure being hosted on the Java Virtual
Machine (JVM).

 By the end of this chapter, you should have an understanding of what’s possible
with a language like Clojure. There is some code in this chapter that serves as exam­
ples of the topics being discussed. Because Clojure code looks so different from other
languages you might be working with, you can choose to gloss over the code samples.
Rest assured that the next few chapters take a more detailed look at each concept.
The aim of this chapter is to arm you for what lies ahead in the remainder of the
book: a deep dive into an incredible language that’s both new and old.

1.1.1 Clojure—the reincarnation of Lisp

When someone says that Lisp is the world’s most powerful programming language,
many folks agree (even if they refer to the speaker as a smug Lisp weenie.) What other
programming language can lay claim to something similar and get away with it? C++?
Java? Ruby?

 Many people think of Lisp as a dead language, one that no one uses anymore. At
the same time, people hear of Lisp being used for some cutting-edge software systems
in various domains: NASA’s Pathfinder mission-planning software, algorithmic trading
of hedge funds, airline reservations, data mining, natural language processing, expert
systems, bio-informatics, robotics, electronic design automation, and so on.

 Lisp has the reputation of being a dark art; indeed, it has been referred to as a
secret weapon by several successful startups. All this is for good reason, and this chap­
ter attempts to explain this mysticism by talking about a new Lisp called Clojure. This
new computer programming language is not only a practical Lisp, but it has added to
its effectiveness by embracing the functional paradigm, by incorporating concurrency
semantics into its core, and by being hosted on the Java Virtual Machine.

 At the end of this discussion, you won’t be surprised to learn that Clojure is being
used in an equally wide set of domains to solve an equally challenging set of problems:

What is Clojure? 5

in large-scale text-archiving and data-mining systems, software implementing semantic
web technologies to understand the deep web, statistics and modeling packages,
AI-driven price-optimization systems for e-commerce, flight-delay prediction, weather-
based event forecasting for insurance purposes, robotics, drive worlds in the Second-
Life environment, and so on.

 We’ll now explore each strength of the Clojure programming language in
some depth.

1.1.2 How we got here

LISt Processing (Lisp) is a programming language, originally designed in 1958 by
John McCarthy, who lists the Turing award among his many achievements. Its design
arose from requirements in the field of artificial intelligence, specifically from a need
to operate on symbolic expressions (instead of numbers) and to represent these
expressions as lists of symbols. Lisp was also designed with functional abstraction as a
means of managing complexity, which means that functions are first-class citizens of
the language and can be passed around like values and can be composed of each
other. This is different from languages like Java and Ruby. Finally, Lisp was created
with a “code as data” ideology, which meant that code could be manipulated as easily
as regular data. This combination of features, as you shall see, results in a tremendous
level of expressiveness.

 But over the next few years, circumstances conspired against Lisp. A lot of money
was invested in AI research during the 70s and 80s, but AI ultimately delivered little of
all it had promised. Because Lisp had become associated with the field of artificial
intelligence, when the AI boom ended, so did the popularity of the language. Many
blamed the failure of AI on Lisp, and the stigma has been difficult to lose.

 Many Lisps have been born since those early days, and many Lisps have passed into
oblivion. Some are still being used today, especially certain Common Lisps like SBCL,
CMUCL, and Allegro CL. Several computer science schools use Scheme as a teaching
language, a role that it’s admirably suited for.

 There have been several attempts at a Lisp hosted on the JVM: JScheme, Kawa,
ABCL, and others. For a variety of reasons, these never became particularly popular.
Clojure is the latest attempt at reviving Lisp on the JVM, and Rich Hickey, its creator,
has done an incredible job. Clojure, finally, could be the Lisp that survives. Indeed, it
could be the future of Lisp and of dynamic programming languages.

 We’ll wrap up this section with an overview of the approach this book will take in
order to teach Clojure. We’ll then dive right into the first thing most people talk about
when starting to learn a Lisp-like language—the syntax.

1.1.3 How this book teaches Clojure

The philosophy of this book rests on two main pillars: emphasizing Clojure’s first prin­
ciples and taking a hands-on approach to understanding those principles. You’ll see
plenty of code examples that illustrate these concepts. Programming in Clojure

6 CHAPTER 1 Introduction to Clojure

requires a new way of thinking, one that’s probably different from what you might be
used to, depending on your programming background. We’ll address this by focusing
on the basics of Lisp, on functional programming, and on understanding the new
facilities provided by Clojure.

 As you work through the book, we’ll write a lot of code that will be applicable to a
variety of systems developed today. Once we get past the features of the language
itself, we’ll address real-world topics such as test-driven development, data storage,
web services, and more. We’ll look at scaling our Clojure applications through the use
of messaging systems, and we’ll even create a little distributed computing framework.
We’ll address using Clojure to process big data by leveraging technologies such as
Hadoop and HBase. We’ll also look at creating domain-specific languages in Clojure.

 With this background, we’re ready to explore Clojure. Our first stop is going to
address a question nearly everyone asks the first time they see code written in the lan­
guage: why does Clojure code look the way it does?

1.2 Understanding Clojure syntax
When most people think of learning a new programming language, they first think of
syntax. Syntax is what makes languages look different from each other; indeed, it’s
often a reason why some people like (or dislike!) certain languages.

 Syntax, however, is only skin-deep. Concrete syntax, which is the rules that the lan­
guage imposes on the programmer in terms of what each construct looks like, isn’t
that important. Compilers generate a data structure called an abstract syntax tree
after parsing the code written in the concrete syntax of the language. The source code
of the program is discarded once the AST (abstract syntax tree) is generated. For all
other phases of compilation (for example, semantic analysis), only the AST is
required. You might say, therefore, that concrete syntax is fundamentally for
humans. That’s not to say that human convenience isn’t important, but syntax
shouldn’t get in the way of what’s possible with a computer language. (We’ll revisit this
issue in section 1.3.1.)

 Clojure is an extremely simple language to learn; from a syntax point of view,
there’s nearly nothing to it. Take a look at the following line of Clojure code:

(add 3 5 7)

This expression is a call to the add function with three numbers as arguments. A func­
tion is always called this way, with the function name appearing first followed by any
number of arguments. Let’s examine the general rules of Clojure syntax.

 A Clojure expression is either a symbol or a sequence. For example, in the one-
liner just shown, the expression is a list containing four symbols (add, 3, 5, and 7). An
example of an expression that contains only a symbol is 13 or +.

 If an expression is a sequence, it’s either empty or contains other symbols or
sequences. A symbol is anything that appears in the program text. That’s all there is to
it! Note the recursive nature of these rules. By allowing a Clojure list to contain other
lists (in essence allowing expressions to be nested), arbitrarily complex expressions

Understanding Clojure syntax 7

can be represented. Further, because of this regularity, all Clojure expressions look
the same. The same evaluation rule applies to nearly all Clojure expressions, with only
a few special cases. The evaluation rule states that the first symbol in a list represents a
function and is evaluated by treating the remaining expressions in the list as parame­
ters. You saw this in the call to the add function previously.

 This simplicity is also its strength and is what makes Lisp’s famous macro system
possible. Macros are tiny, inline code generators that any programmer can use to
modify program code or even generate arbitrary code on the fly. This language-level
construct that allows code generation and transformation at runtime (the compile
phase of the runtime, to be specific) is one of the reasons why Clojure is so differ­
ent from other languages and why it’s so powerful. You’ll learn a lot about macros in
this book.

 The remainder of this section talks about Clojure’s syntax. The comparison with
XML will help you realize that the unfamiliar parentheses have familiar cousins. By
the time you’re finished reading this section, you’ll at least understand the reason­
ing behind all those parentheses. You’ll certainly be more comfortable reading
Clojure code. You may even begin to see the possibilities that representing code this
way provides.

1.2.1 XML and parentheses

Many people get turned off at the sight of Clojure code; they complain about too
many parentheses. Let’s see why they’re no big deal, and in fact, they’re a large source
of Clojure’s capabilities. Few other programming languages have the sort of metapro­
gramming capabilities that Clojure has, and this is in large part due to the way code is
represented in the language. First, however, you’ll see that the unfamiliar syntax is simi­
lar to something most programmers are already familiar with.

XML has been used for many purposes, including as a programming language.
XSLT is one such example. As a thought experiment, let’s use XML to create our own
programming language. It might look something like the following listing.

Listing 1.1 A small program written in our fictitious XML-based language

<program>

 <function name=addToStock>

 <param name=counter></param>

 <callFunction name=increment>

 <argument value=counter></argument>

 </callFunction>

 </function>

 <function name=removeFromStock>

 <param name=item></param>

 <callFunction name=decrementFromStockFile>

 <argument value=item></argument>

 </callFunction>

 </function>

</program>

8 CHAPTER 1 Introduction to Clojure

This program should be understandable by anyone who has used any kind of XML-
based programming tool. For example, Ant build files look similar in some respects.
With a little imagination, you could envision a system that can read this file and exe­
cute the code described within it.

 These days, however, everyone likes to criticize XML for being kludgy and verbose.
So let’s try to clean it up by removing nonessential things from this example. First, if
we assume that these are source code files, we don’t need the root program tag. Also,
let’s get rid of all closing tags, because we can still write a parser that understands the
program structure without named closing tags. The resulting code might look like the
next listing.

Listing 1.2 A slightly less verbose version of the same program

<function name=addToStock>

 <param name=counter></>

 <callFunction name=increment>

 <argument value=counter></>

 </>

 </>

 <function name=removeFromStock>

 <param name=item></>

 <callFunction name=decrementFromStockFile>

 <argument value=item></>

 </>

 </>

Let’s make another couple of improvements: let’s use starting angle brackets to
denote the start of statements (no closing angle brackets until the end of the state­
ment), and let’s use a simple closing angle bracket to denote the ends. The code
might now look like the following:

<function name=addToStock

 <param name=counter >

 <callFunction name=increment

 <argument value=counter >

 >

 >

 <function name=removeFromStock

 <param name=item >

 <callFunction name=decrementFromStockFile

 <argument value=item >

 >

 >

For our final set of changes, let’s cook up a couple of rules. When defining a function,
we’ll use the special define construct, which is always followed by a set of symbols
between brackets. These symbols begin with the name of the function being defined
and are followed by its parameters. The define construct doesn’t need an extra clos­
ing bracket because it ends with the body of the function definition.

Understanding Clojure syntax 9

 Also, the first symbol in any non-special statement is always the name of a function,
so we don’t need to call out that fact. The following symbols are always parameters, so
we don’t need to call out that fact either. The resulting code looks like the following:

<define < addToStock counter >

 <increment counter > >

 <define < removeFromStock item >

 <decrementFromStockFile item > >

This is still quite readable and still follows rules that a parser can use to decode. For a
bit of flourish, let’s switch to using the nicer, curvier parentheses instead of the pointy
angle brackets. Take a look:

(define (addToStock counter)

 (increment counter))

 (define (removeFromStock item)

 (decrementFromStockFile item))

Believe it or not, this is Scheme (a Lisp dialect) syntax. Most Lisps look similar, with
minor differences about how many parentheses are used and where they go.

 The reason the parentheses exist is the same reason tags exist in XML, and that’s to
define a tree structure, which contains (in this case) the source code of the program.
Just as XML can be manipulated (or generated) with ease, so can Lisp programs. This
is because they get converted to simple data structures themselves. As mentioned ear­
lier, this code manipulation and generation is done using the macro system. We’ll
explore the macro system a little bit in section 1.3.1 and then again in chapter 7.
Thanks to this language-level code generation facility, some expressive abstractions
can be created rather easily in Clojure.

 Before completing this section, we’ll address one more aspect of Clojure syntax.
Clojure has syntactic sugar that makes it easy to work with all its core data structures,
namely lists, vectors, and hashes. This convenience makes Clojure code more read­
able as well.

1.2.2 Lists, vectors, and hashes
Okay, so I lied a little bit. Clojure does have a little more syntax than other Lisps, but
happily, this extra syntax improves readability.

 In order to make it easier to read and write Clojure code, it uses two other types of
brackets, square brackets and braces, in addition to the parentheses. As usual, simple
lists are denoted using parentheses, and most of your Clojure code will use lists.
Here’s a typical example:

(do

 (process-element (first all-the-xs))

 (process-element (last all-the-ys))

 (find-max all-the-numbers))

Vectors are denoted using square brackets. Vectors are like lists and can be used like
them, except that they can be indexed by integers. Clojure uses vectors to denote
function arguments or binding forms.

10 CHAPTER 1 Introduction to Clojure

 (defn do-something [an-argument another-argument]

 (do-something-with-both an-argument another-argument)

 (return-answer an-argument another-argument))

Hash maps are denoted using braces. Hash maps behave as you’d expect; they’re col­
lections of key-value pairs where values can be indexed by their keys. Here’s what that
looks like:

 (def a-map

{:first-key "first-value"

 :second-key "second-value"

 "third-key" :third-value

 "fourth-key" 4})

The combination of these three notations—parentheses, square brackets, and braces—
makes Clojure easy to read when compared to other Common Lisp or Scheme.

 You should now have an idea of what Clojure code looks like and even why it looks
like it does. With the question of the strange syntax out of the way, we can start talking
about the other features that Clojure offers.

1.3 The sources of Clojure’s power
Computers understand only one language, binary code. All other programming lan­
guages, including assembly (symbolic representation of the computer’s instruction
set), are at a higher level than native machine code. The reason these other languages
exist is so that programmers don’t have to deal with cryptic sequences of ones and
zeroes. High-level languages increase the programmer’s productivity.

 Programming languages vary greatly in expressiveness. Low-level languages, such
as assembly language and the C programming language, are useful for certain tasks,
such as writing operating systems and device drivers. For most other programming
tasks, software engineers favor high-level languages, such as C++, Java, Ruby, or
Python. Each programming language has a different philosophy, for instance, static or
dynamic, strongly or weakly typed. It’s these differences in design that result in differ­
ent levels of programmer productivity.

 Clojure has three broad sources of power: the ideology of Lisp, the functional par­
adigm, and the JVM. The rest of this section explores each of these topics in some
detail. The rest of this book illustrates these as well and makes the reasoning behind
these choices quite apparent.

1.3.1 Clojure and Lisp

Lisp is different from most other programming languages. This is immediately appar­
ent to anyone who looks at a fragment of Lisp code. In section 1.2, we talked about
why the syntax looks as it does and how it relates to being able to generate code on the
fly. Languages that represent code using their own data structures are said to follow
the code-as-data philosophy.

 This idea of code as data is why the Lisp family of languages can offer the ultimate
in programmer productivity for such a large class of problems. Specifically, it allows

The sources of Clojure’s power 11

program code to be manipulated or generated at runtime (at compile time to be spe­
cific), through a facility called the macro system. In section 1.3.4, we’ll explore in
more detail what it means for a language to be a Lisp.

1.3.2 Clojure and functional programming

A computer language is said to be functional if it treats computation as the applica­
tion of mathematical functions. As in mathematics, functional programs have no state
that arbitrarily mutates. In this sense, functional programming languages are different
from other popular languages such as Ruby and Java. In essence, the difference is that
these other languages are imperative in nature, which emphasizes modifying state as a
means of representing computations.

 Programming in functional languages is different from programming in impera­
tive languages, and it can take a little getting used to. It’s different from procedural
languages (such as C), despite the superficial similarity of procedures and functions.
The prime difference is that procedures aren’t first class, which means that proce­
dures are subroutines, whereas functions are real objects that can be passed around
and created dynamically.

 Being a functional language, however, Clojure is able to provide some rather unique
features. These include immutability, higher-order functions, laziness, and the excellent
concurrency semantics that allow Clojure programs to use all available CPU cores in a
thread-safe manner. A combination of these features packs quite a punch. When com­
bined with the fact that Clojure is a Lisp, magical things can be made to happen.

 Code written in Clojure is a great deal shorter and less error prone when com­
pared to that written in other languages. We’ll examine why this is so next.

1.3.3 Clojure and the JVM

For a programming language to be productive, it needs to come packaged with a large
set of libraries. Indeed, libraries often define a language as much as its syntax. Think
of C++ with its standard library and the STL. As a corollary, the lack of a comprehen­
sive set of libraries can cause a language to be neglected by the developer community.
Indeed, in many ways, Lisp itself is an example of this problem.

 Clojure sidesteps this problem neatly. By being hosted on the JVM, programmers
have instant access to thousands of libraries and frameworks that serve a wide variety
of purposes. The Clojure runtime benefits from the high-performance characteristics
of the HotSpot VM, which can optimize programs at runtime to make them run faster.
You’ll see how to exploit this synergy with Java in your programs.

1.3.4 Clojure as a Lisp

As described earlier, having been designed back in 1958, Lisp is one of the oldest com­
puter languages. It had originally been created as a notation to aid in the advance­
ment of the theory of computation. Specifically, it was being used to develop a model
of computation based on lambda calculus. Further, because it was born during a

12 CHAPTER 1 Introduction to Clojure

period of intense interest in artificial intelligence, there was a specific need to repre­
sent symbolic expressions as data. This combination of the functional basis and the
idea of code as data made it suitable for the complex applications being developed at
the time. In fact, the original Lisp spawned several dialects, and they all shared the
same basic tenets. These languages formed the Lisp family of languages. Clojure
shares these advantages because it too belongs to this family.

 Over the past few pages, we’ve talked a little about the relationship of some of the
features of Clojure to its syntax. The parentheses serve an important purpose (similar
to tags in an XML document) by marking the beginning and the end of each unit of
code. In order to understand what being a Lisp means for Clojure, you need to first
understand a couple of terms: s-expressions and forms.

 A line of Clojure code can be made up of a symbol that evaluates to something
such as account-balance (a variable) or calculate-total (a function). It can be a lit­
eral such as the string "Enter password" or the number 124.95. It can be a list
(denoted by a pair of parentheses), which could in turn contain symbols, vectors, hash
maps, sets, or other nested lists. When the program runs, these lines of code are first
converted into Clojure objects called s-expressions. An example of an s-expression is
println. Another is (+ 1 2). Here’s another example of a larger s-expression:

(defn print-all-things [a-list-of-things]

 (let [total (count a-list-of-things)]

 (println "Total things: " total)

 (dorun (map println a-list-of-things))))

Not all s-expressions are valid. An example of an invalid s-expression is ("me" "and"
"you"),because the first element of a Clojure s-expression must be a function, a
macro, or a special form. You’ll learn what these are soon. For now, suffice it to say
that the string "me" is not one of these. A valid s-expression is one that follows all the
rules of Clojure and is called a form. Valid Clojure programs are composed of one or
more Clojure forms.

It’s useful to have a basic understanding of how computer languages work. Figure 1.1
illustrates the three phases of processing before a file containing source code can exe­
cute as a program.

The lexical analyzer tokenizes the incoming character stream of the source code
into symbols and words. The parser parses the tokens into an AST (abstract syntax
tree, as was mentioned earlier). This AST is a syntax-free representation of the source
code; it represents each line of code in a tree structure, as XML does. A simple exam­
ple is shown in figure 1.2. From this point onward, the source code is no longer
needed. The AST is checked for validity. If it follows the rules of the language, it’s

Figure 1.1 Shows the stages
of a typical language processor
and where the developer has
programmatic control. Clojure
doesn’t follow this model, as
you’ll see.

13 The sources of Clojure’s power

deemed ready for the final stage. This third phase
depends on whether the language is interpreted or com­
piled. If it’s an interpreted language, each form is evalu­
ated and executed in sequence. If it’s compiled, machine
code is generated, which can then be executed later.

 With this background out of the way, we can talk
about more interesting things. In computer languages

that work as described previously, as far as the program- Figure 1.2 An example AST.

This shows a tree structure
mer is concerned, the source code is what gets executed representation of code that
(minus runtime optimizations). The whole AST thing is might be written as 1 + 2, in a

an internal detail well below the required level of language such as Java or Ruby.
There’s no notion of concreteabstraction when writing a program. In fact, the pro- syntax here.

grammer has no control of what happens during the var­
ious stages of transformation and processing of the code.
You may well wonder why such a thing would even be desirable. What possible use
could there be of being able to programmatically manipulate an AST of a program? It
turns out that having such control allows for great flexibility, and it comes in the form
of the macro system. We’ll explore macros in the next section.

 The Clojure language runtime, on the other hand, works differently from other
languages. It features a just in time (JIT) compiler, and thanks to the JVM, it compiles
and executes code extremely fast. Internally though, it can be thought of as having
two separate phases, as illustrated in figure 1.3.

 The first phase, as the name implies, concerns itself with reading the source code
and converting it into s-expressions. Invalid s-expressions cause read errors, and the
program will abort with an appropriate error message. The second phase is to evalu­
ate valid s-expressions (forms) to produce a return value. If code needs to be com­
piled, it happens here and is then executed. As alluded to, the power of Lisp kicks in
here, because the programmer has full control between the read and evaluate phases.

 We’re now going to examine the first phase in a little more detail. The Clojure
reader is quite a marvel of innovation. Along with the syntax, It’s what makes this
whole macro thing possible.

THE READER

To understand this better, it’s useful to know what the Clojure reader is and what it does.
The reader is the entity that reads source code, from a program source file, for instance,
and converts it into s-expressions. These s-expressions are composed of ordinary

Figure 1.3 Shows the stages of the
Clojure runtime. Unlike typical
languages, the developer has
programmatic control in between the
read and evaluate stages, via the
macro system.

14 CHAPTER 1 Introduction to Clojure

Clojure data structures such as symbols, lists, vectors, sets, and hash maps. These data
structures are then evaluated by the evaluator to produce a result. To make this more
concrete, let’s consider a contrived example. Here’s a function definition in Clojure:

(defn my-own-function [an-argument another-argument]

 (println "The arguments were:" an-argument another-argument)

 (process-these an-argument another-argument))

Think of this as a list. The first symbol is defn, and it’s followed by a symbol that’s
the name to which the function will be bound. Next, is a vector of two symbols, an-
argument and another-argument. They’re followed by yet another list that begins
with println, and so on. This form represents a function definition, and when it’s
evaluated, the symbol my-own-function gets associated with the newly created func­
tion object.

 To summarize, the reader converts source code into an AST implemented using
Clojure’s own data structures. The reader does this by using parentheses (and other
brackets) as delimiters of each s-expression. In essence, the combination of the brack­
ets and the reader allows code to be written in the AST directly. This is the reason why
it’s sometimes said that Lisp has no syntax. It’s probably more accurate to say that Lisp
has no concrete syntax. After all, as described earlier, language processors discard
concrete syntax once the AST is created.

 Programming languages that exhibit this property are called homoiconic (homo
means same, iconic means representation). Code is written in the language’s own
data structures. This homoiconicity is also what makes Clojure’s macro system pos­
sible, and you’ll see this in the next section. Further, the reader invalidates the
need to write language parsers because the reader does that already, and along
with eval everything needed to write an internal DSL is already present. This is
why most DSLs in Lisp look structurally similar to Lisp (as opposed to the English-
like syntax favored by programmers of other languages). We’ll explore this in some
depth in chapter 15, and we’ll write several DSLs that illustrate this point through­
out the second part of this book. Meanwhile, let’s get back to our discussion of the
macro system.

THE MACRO SYSTEM

Having seen the s-expression for the definition of my-own-function, let’s consider
another data structure. This s-expression is structurally similar to the form that
defined my-own-function previously:

(1 [2 3] (4 5 6 7) (8 9 10))

This is a nested list containing symbols that represent numbers. It contains a leading
number, 1, a vector, [2 3], and two lists, (4 5 6 7) and (8 9 10). It’s easy to imagine
writing code that transformed this data structure into something else. The s-expressions
representing the definition of my-own-function can also be manipulated the same
way. For instance, let’s add logic to log the fact that it was called. We’d like the new
definition to be

15 The sources of Clojure’s power

(defn my-own-function [an-argument another-argument]

 (log-function-call "my-own-function")

 (println "The arguments were:" an-argument another-argument)

 (process-these an-argument another-argument))

Doing this programmatically is as simple as inserting another list into the original
s-expression. The list that should be inserted is (log-function-call "my-own­
function"). This list has log-function-call as its first symbol, followed by a string
containing the name of the function being logged. This ability to programmatically
manipulate code is what it means to have access to the AST as a simple data structure.
It can be manipulated and transformed as desired. To make this useful, however,
there needs to be a way for the transformed data structure to be evaluated instead of
the original form. To be specific, it would need a hook between the read and evaluate
phases of the Clojure runtime.

 Clojure’s macro system is exactly that hook. Macros are Clojure functions, but they
accept s-expressions as their arguments. Because s-expressions are data structures,
they can be transformed and returned, and the return values are used in place of the
original forms. These code-transforming macros are used to create mini-languages on
top of Clojure, or domain-specific languages (DSLs) as they’re called these days.

 Let’s now look at how macros can be used to write code that manipulates code.
Specifically, you’ll see how the macro system can be used to eliminate duplication and
to increase the expressiveness of the language by adding domain-specific constructs.

METAPROGRAMMING WITH MACROS

The introduction of Clojure’s macro system poses a question: “What could such pro­
grammatic manipulation of code be used for?” The answer is “a lot” and has to do
with metaprogramming, which is the idea of programs generating or manipulating
other programs (or themselves). Such metaprogramming is used for several purposes,
for instance, to reduce boilerplate code or to build syntactic abstractions (DSLs) on
top of the core language. Clojure’s macro system takes such metaprogramming to a
whole new level when compared to metaprogramming facilities provided by lan­
guages such as Python or Ruby.

 Another reason metaprogramming is easier in Clojure is because of its strange syn­
tax. All Clojure forms have the same structure, which makes code generation easy
compared to languages that have non-regular syntax. To generate Clojure code, you
create Clojure data structures containing symbols and other data structures! This
absence of formal syntax and the existence of the macro system make Clojure well
suited to creating DSLs. In Clojure, creating mini-languages on top of the core lan­
guage is a common approach to programming. It’s the whole reason why Lisp is con­
sidered a programmable programming language.

 To wrap up this section, let’s look at a couple of examples of using macros.

EXAMPLE OF A MACRO—REMOVING BOILERPLATE

Certain kinds of boilerplate code can’t be eliminated in languages like Java. Consider
the following Java methods.

16 CHAPTER 1 Introduction to Clojure

Listing 1.3 Typical duplication in Java code

public List getExpenses(long userId, Date start_date, Date end_date) {

 AuditLogger.logLookup(userId, AuditCode.GET_EXPENSES);

 ExpensesConnection connection = new ExpensesConnection(userId);

 List expenses = connection.findAllBetween(start_date, end_date);

 connection.close();

 connection.flush();

 return expenses;

}

public void addExpense(long userId, Date date, BigDecimal amount) {

 AuditLogger.logLookup(userId, AuditCode.ADD_EXPENSES);

 ExpensesConnection connection = new ExpensesConnection(userId);

 connection.saveNewExpense(date, amount);

 connection.flush();

 connection.close();

}

In both these methods, the first thing that happens is that an audit log entry is created
to record the fact that the method was called. Then, an ExpensesConnection object is
created, which is used for different purposes in each method. The first two lines of
code in each method are repeated. There’s little we can do in Java to eliminate this
duplication. We could try using the template method pattern, but it would still not be
elegant enough, without gaining much in return.

 Let’s examine the same situation in Clojure. First, equivalent code in Clojure
might look like that in the following listing.

Listing 1.4 The same code in Clojure, written as is

(defn get-expenses [user-id start-date end-date]

(create-audit-log user-id GET-EXPENSES)

 (let [connection (connect-to-expenses-db user-id)

 expenses (find-all-between connection start-date end-date)]

 (close-connection connection)

 (flush-connection connection)

 expenses))

(defn add-expense [user-id date amount]

 (create-audit-log user-id ADD-EXPENSE)

 (let [connection (connect-to-expenses-db user-id)]

 (save-new-expense connection date amount)

 (flush-connection connection)

 (close-connection connection)))

In Clojure, we could write a macro that we might name with-audited-connection that
would handle this duplication. The resulting code would look like the following listing.

Listing 1.5 Removing duplication via a domain-specific macro

(defn get-expenses [user-id start-date end-date]

 (with-audited-connection [user-id connection]

 (find-all-between connection start-date end-date)))

The sources of Clojure’s power 17

(defn add-expense [user-id date amount]

 (with-audited-connection [user-id connection]

 (save-new-expense connection date amount)))

The implementation of the with-audited-connection isn’t shown here because
chapter 7 focuses exclusively on macros, but the two functions in listing 1.5 are much
cleaner than what would be possible with most languages. The domain-specific with-
audited-connection macro is now available to use anywhere you need to connect to
the expenses data store in an audited way. It also takes care of flushing and closing the
connection, so you never have to remember to do this. This is another happy advan­
tage, and it would be difficult to implement the same way in a language like Java. In
fact, with-audited-connection can set things up so that any function called within its
scope will be audited appropriately, without having to be explicit about it.

 If this were a more dynamic language such as Ruby, you could get rid of some
duplication by creating a third method that did the audit logging and accepted a
block that did the remaining work. To see what macros can do that blocks and func­
tions can’t, let’s look at another example that illustrates an even more powerful fea­
ture of macros—manipulating raw source code.

EXAMPLE OF A MACRO—SYNTACTIC ABSTRACTION

We discussed the advantages that a homoiconic language has in being able to make a
macro system possible. Prefix notation goes along with it, because it adds uniformity
to all function calls; the function object appears first, followed by arguments. This
works fine for most functions, but it causes mathematical operators to look a bit
strange, until you get used to them. Let’s write a somewhat frivolous macro to support
in-fix notation for math operators. First, a quick recap of what happens if we try to
evaluate (1 + 2) at the REPL:

user=> (1 + 2)

; Evaluation aborted.

java.lang.Integer cannot be cast to clojure.lang.IFn

 [Thrown class java.lang.ClassCastException]

Our infix macro will allow us to write addition in this manner:

user=> (infix (1 + 2))

3

Experienced Lispers will question the advantage of creating such a macro, because
prefix notation has significant advantages (that we’ll explore shortly). The point is
that it’s easy to write such a macro in Clojure, and you’ll see the implementation of
this macro in chapter 7. As a hint, it literally manipulates the s-expression (1 + 2) into
(+ 1 2). This is a trivial example of macros, but it would be rather hard to do this in
most other languages.

 Clojure macros can do much more. For now, it’s worth noting that they are one of
the crucial features of Clojure that distinguishes it from most other languages. Macros
are the ultimate form of metaprogramming.

18 CHAPTER 1 Introduction to Clojure

1.3.5 More advantages of Clojure

As you saw, the macro system is powerful indeed. There are, still more advantages that
come from Clojure being a Lisp. We’ll discuss a few of them now.

DYNAMIC LANGUAGE

Clojure, like Lisp, is a dynamic language. This means that many more things are deter­
mined at a program’s runtime rather than when a compiler looks at the source code.
This allows programs to be written in ways that wouldn’t be possible in static lan­
guages. For example, many static languages require type declarations when using vari­
ables or defining functions, whereas Clojure doesn’t.

As another example, Clojure has an eval function that allows code to be loaded up
and executed at runtime. This feature is absent in nearly all static languages.

THE REPL
Clojure includes an interactive environment that allows code to be typed in and exe­
cuted. It gives quick feedback and is helpful in incrementally writing code to solve the
problem at hand. This interactive environment is called the REPL, which stands for
read-eval-print loop.

 Many Clojure editors integrate with the REPL. This allows programmers to use the
IDEs’ text-editing features to write the code the way they’re used to. The integration
provides a convenient way to evaluate code written in the editor inside of the REPL.
Because the REPL is a long-running process, the edit-evaluate-test-edit cycle can keep
going as long as the programmer wants. The workflow becomes an uninterrupted flow
of feedback-driven editing and REPL interaction. In fact, in chapter 8, we’ll illustrate
this by using the REPL along with creating unit tests for a few functions, in a step-by­
step manner. The ability to work this way makes REPL an important contributor to the
increased productivity of working in Clojure.

 This section talked about the advantages that Clojure gains from belonging to the
Lisp family. There’s another reason why Clojure code is often shorter than code in
other languages, and it has to do with its primary means of representing computation:
function evaluation. We’ll explain why this is so in the next section.

1.3.6 Clojure as a functional language

Clojure deviates from many Lisps in that it exhibits far more functional purity. An
example of this is in its choice of treating all Clojure data structures as immutable.
Along with this aspect of functional programming, Clojure encourages the use of
higher-order functions such as map and reduce. Core data structures are lazy, which
means things get executed only as needed, thereby enabling some rather efficient
programming constructs. An example of the use of laziness is the ability to define and
use infinite sequences. Finally, Clojure takes advantage of its immutability and pro­
vides language-level support for safe, lock-free concurrency (using a software transac­
tional memory model). We’ll examine these features in this section.

19 The sources of Clojure’s power

HIGHER-ORDER FUNCTIONS

Clojure functions are first class, which means that functions can be passed as parame­
ters to other functions, can be created dynamically, and can be returned from func­
tions. They can be stored inside other data structures like regular data. Clojure also
provides lexical closures, which is a powerful construct that allows for expressive code.
You’ll learn about closures, along with other aspects of functional programming, in
the upcoming chapters of this book.

 This functional aspect of Clojure makes it easy to write code using higher-level con­
structs like map, reduce, and filter, which apply arbitrary functions to lists of data.
Given that all core data structures are immutable, this results in tight code that has
fewer bugs than equivalent code in imperative languages such as Java or C++, because
the code is far more declarative in nature. After all, lesser code leaves less scope for
programming error. Look at the following listing for a slightly larger example.

Listing 1.6 Typical usage of higher-order functions

(def post-headers [{:title "first one ever" :length 430}

{:title "second baby step" :length 650}

{:title "three is company" :length 720}

{:title "fourth for the road" :length 190}

{:title "five again" :length 280}])

(defn long-post-headers [threshold-length headers]

 (let [is-long? (fn [header]

 (> (header :length) threshold-length))]

 (filter is-long? headers)))

(defn long-post-titles [threshold-length headers]

 (map :title (long-post-headers threshold-length headers)))

(long-post-titles 300 post-headers)

The output of the last function call is

("first one ever" "second baby step" "three is company")

This is how a lot of functional code looks: mapping over sequences to collect things,
filtering from sequences using predicate functions, and so on. Notice how you can
define local functions like is-long? and how it functions as a closure around the
threshold-length parameter.

 All this leads to shorter code with fewer defects. Given how fundamental this is to
Clojure, you’ll be seeing a lot more about higher-order functions. For now, we’ll look
at another important aspect of functional languages: the absence of mutating state.

IMMUTABILITY

Clojure supports another aspect of functional programming, that of immutability.
What this means is that all of Clojure’s core data structures are immutable—once cre­
ated they can’t change. When something needs to change, a new object is created that
includes the change and is returned. (Clojure’s implementation of immutability per­
forms extremely well and doesn’t slow down programs). What this means in practice is

20 CHAPTER 1 Introduction to Clojure

that an entire class of bugs related to mutating state is eliminated from your code. To
imagine how this might be so, consider an imperative for loop with a loop variable
counter. If the programmer inadvertently modifies the value of counter in the body
of the for loop, the code won’t work properly. Similar bugs can happen with any
mutable variable.

 In languages that support immutability, the only way a function can do something
is to return a new data structure and in this way each function is independent and can
be written, debugged, and tested independently.

(def expenses [{:amount 12.99 :merchant "amazon"}])

(def updated-expenses (conj expenses {:amount 199.95 :merchant "frys"}))

That last function call returns a new sequence with the two expenses in it and is
assigned to updated-expenses. The old sequence expenses remains unchanged. As
you’ll see, this immutability greatly aids Clojure’s support of concurrency-safe multi-
threaded programs.

 By the way, in case you’re wondering how you can possibly write real-world code
with everything being immutable, relax! Clojure has fantastic support for explicit state
management, and you’ll see this soon.

LAZY AND INFINITE SEQUENCES

Most programming languages like Ruby and Java are eager. This means that when a
method or constructor is called, it’s executed immediately, and the result is returned.
But sometimes it’s desirable to defer such evaluation. An example where such a behav­
ior is useful is to avoid unnecessary computation (say an expensive calculation returns
a value that’s never used).

 Clojure solves this problem inside its core data structures. Clojure sequences can
be lazy; this means that elements are not computed until the values are needed for
something else. Most core functions produce lazy data structures that aren’t realized
until needed. Examples of such commonly used functions are map, reduce, and
filter. Further, this implies that a chain of such function calls returns a value that’s
also lazy! This laziness is a source of great convenience, and you’ll see more of it in
action later.

 As an example of laziness, Clojure allows the programmer to create infinite lists of
data. These infinite data structures are called streams and are a different way to model
the world. For instance, objects can be modeled as a series of events, as opposed to a
snapshot of the world.

 Here’s a classic example of an infinite sequence; it’s trivial but simple to under­
stand. We’ll create a sequence of all Fibonacci numbers. Yes, all, and because this
sequence is lazy, elements will be calculated only as needed:

(defn next-terms [term-1 term-2]

 (let [term-3 (+ term-1 term-2)]

 (lazy-seq

(cons term-3

(next-terms term-2 term-3)))))

21 The sources of Clojure’s power

(defn fibonacci [t1 t2]

 (concat [t1 t2]

(next-terms t1 t2)))

(take 15 (fibonacci 0 1))

This last function call is what realizes the lazy sequence of Fibonacci numbers. The
result is

(0 1 1 2 3 5 8 13 21 34 55 89 144 233 377)

First, let’s talk about the magic ingredient here, lazy-seq. It’s a macro that doesn’t
evaluate its body immediately but returns a sequence-like object. This object will eval­
uate the body only when needed (and will also cache the result for subsequent uses,
saving CPU cycles).

 The important thing to realize about this code is that without lazy-seq, there’d
be no useful way of using next-terms. You can see this by directly calling next-terms
at the REPL; it will run in an infinite loop until the program runs out of memory. This
happens because the REPL tries to print the sequence, and being infinite, the realiza­
tion fails. By using certain functions like take, you can intelligently produce the
required number of elements from such infinite sequences.

 Languages like Java and Ruby need lots of boilerplate code that implements some­
thing like the lazy-load pattern to do something similar. Much of Clojure is already lazy,
making code written in it automatically lazy. Such code then transparently benefits from
this behavior. We’ll visit this in more detail in the next chapter and in part 2 of the book,
where we’ll create an infinite sequence of messages read off a messaging system.

 Now, you’ll see another incredible benefit that results from a language being func­
tional and immutable: the possibility of safe concurrency.

CONCURRENCY AND THE MULTICORE FUTURE

Moore’s law states that the number of transistors that can be placed on a single inte­
grated circuit doubles every 18–24 months. This is what has been happening to CPUs
over the past two to three decades, and this gave us an exponential increase in processor
speed. Advances in CPU speed can’t proceed in this manner forever. Indeed Moore’s law
has pretty much already reached its limit in providing performance enhancements.

 Over the past few years, instead of increasing the speed of individual processor
cores, companies like Intel have started to increase the number of processor cores
that go into a single CPU. This has caused software performance to become tied to
Amdahl’s law, which relates the possible performance of a running computation to the
number of parallel processing units available. As the number of cores available on a
CPU grows, software will need to make use of them; this will soon become a crucial way
to make programs run faster.

 Multithreaded programming means trouble, as anyone who has written multi-
threaded code knows. At least two things are related to this issue: getting multithreaded
programs to behave correctly and using all available cores to speed up the program.
Clojure helps with both.

22 CHAPTER 1 Introduction to Clojure

SOFTWARE TRANSACTIONAL MEMORY

Clojure’s state management system addresses the issue of correctness of multi-
threaded programs. Not only does the language provide simple ways to handle muta­
tion, but it also provides constructs that allow and enforce safe mutation.

 Clojure implements a multiversion concurrency control (MVCC)–based software
transactional memory (STM) model. What this means in simpler terms is that mutating
the value of an object can only be done inside a transaction (think database transaction).

 This has two advantages. The first is that code becomes self-documenting. When
the value of something needs to change in a thread-safe manner, the programmer
must be explicit and use a special Clojure construct for it: the ref. The other advan­
tage is that if you attempt to modify the value inside a ref without an STM transaction,
the Clojure runtime will throw an exception. This is how Clojure enforces the use of the
transaction semantics and helps keep code thread-safe.

 When a transaction needs to commit, and another thread has already committed a
change to a shared ref, the later transaction is rolled back. Clojure’s STM system even
retries the failed transaction several times, and as far as the programmer is concerned,
all this happens transparently (this behavior depends on the function used to effect
the mutation; more on this in chapter 6). Here’s an example of this in action.

Listing 1.7 Clojure’s STM in action

(def total-expenditure (ref 0))

;; The following will throw a "No transaction running"

;; IllegalStateException exception

 (defn add-amount [amount]

 (ref-set total-expenditure (+ amount @total-expenditure)))

;; The following will work fine because it will do the update inside a

;; transaction

(defn add-amount [amount]

 (dosync

(ref-set total-expenditure (+ amount @total-expenditure))))

The @total-expenditure is a reader macro in action. It expands to (deref total-
expenditure) and it gets the value out of the object that the ref is pointing to. Clojure
provides several reader macros to make certain things convenient, and we’ll visit them
in the next chapter.

 This language-level support for concurrency-safe state management is what makes
Clojure extremely well suited for multithreaded applications. This is true whether
code runs on a single core or on a multicore CPU. By using a ref and by making sure
that updates are always performed inside a dosync block, access to the variable pro­
tected by the ref becomes thread safe.

 Over the past couple of sections, you’ve seen how Clojure benefits from being a
Lisp and from being a functional language. The macro system helps in creating pow­
erful abstractions such as domain-specific languages. The functional features allow for

23 The sources of Clojure’s power

Writing Clojure-like code in an other languages
There’s nothing to stop someone from writing code that treats variables as immuta­
ble (for example, by declaring them final in a language like Java, or through conven­
tion and discipline). Indeed, a large part of Clojure is written in Java, and you could
imagine a program written with great care and careful consideration of all we’ve seen
so far: immutability, an STM system for safe concurrency, and so on.

There’s a vast difference between such an approach and writing a similar program in
Clojure. The first is that the Java code (say) would look alien to even fluent Java pro­
grammers, because it would be far from idiomatic. More importantly, the difference
is that although the Java code would rely on convention and discipline, the Clojure
runtime would enforce it. That means the Clojure program wouldn’t work (and would
complain loudly when an attempt was made to run it) if, for example, some part of
the code violated either immutability or STM transactions.

This support from the language makes programs written in Clojure less error prone
and forms part of the reason why functional languages are a big deal.

higher-quality code thanks to higher-order functions and immutability. Finally, thanks
to Clojure’s built-in support for concurrency, programs can take advantage of multiple
CPU cores without any effort from the programmer. These things all make Clojure a
capable language. But it doesn’t end there; by running on top of the Java runtime
(the JVM), Clojure manages to solve a critical piece of the puzzle for any new lan­
guage: the availability of libraries and interoperability with existing systems.

1.3.7 Clojure as a JVM-based language

Clojure is hosted on the Java Virtual Machine. This means that it’s ultimately a Java
program and runs as JVM byte code. The design of Clojure embraces interoperability
with other Java libraries as one of its central goals. Indeed, when Rich Hickey
designed Clojure, one of the goals was extreme practicality. In today’s world, a practi­
cal programming language almost demands interoperability with Java. Clojure
achieves this goal remarkably well, and in practice, this means several things.

 The obvious advantage is that the Clojure programmer has instant access to the
thousands of existing Java libraries. This substantially boosts productivity when com­
pared with other Lisps (and indeed other programming languages) because there’s
probably a Java library for most systems and frameworks.

 Another advantage that comes from running on the JVM is that Clojure can be
embedded into Java programs, thereby providing an incredibly flexible scripting capa­
bility to the end user.

 Often a combination of these two ideas leads to a system design where parts of the
code are written in Java and other parts are written in Clojure. Clojure itself can be
used as a glue language to bring the whole system together. This may be especially use­
ful when legacy applications are involved.

24 CHAPTER 1 Introduction to Clojure

 One final advantage of being a JVM language is that of the JVM itself. Sun Microsys­
tems (now Oracle) and the open-source community have together invested thousands
of person-years into improving the JVM, and today it’s one of the most efficient virtual
machines. The HotSpot optimizer does amazing things to speed up code running on
top of it, and Clojure benefits from all this innovation. Despite being incredibly
dynamic, Clojure code gets compiled to Java byte code and runs as fast or nearly as
fast as Java code itself. This gives programmers all of Clojure’s benefits without any
major performance costs.

CALLING JAVA FROM CLOJURE

It’s trivial to use Java libraries from Clojure. For instance, here’s an example of using a
method on the string class to do some simple text manipulation:

user=> (.toUpperCase "clojure")

"CLOJURE"

This is especially convenient, because Clojure strings are Java strings. Further, once
you import required classes using the import form, you can then use them like other
Clojure code. For instance, Selenium is an open-source functional testing automation
tool for web applications. You can find it at http://seleniumhq.org, and you’ll need
the Java Selenium client driver JAR on your classpath to try this example of using it to
drive a browser:

(import '(com.thoughtworks.selenium DefaultSelenium))

(defn start-new-selenium []

(let [s (DefaultSelenium. "localhost" 4444 "chrome*" "http://

localhost:3000")]

 (.start s)

 s))

Clojure provides a few syntactic conveniences to help use Java classes. The Default-
Selenium. (notice the period at the end) invokes the constructor of the class. Simi­
larly, .start calls the instance method start on the newly constructed Selenium object.

 There’s syntactic sugar for creating new instances of Java classes, accessing static
members of Java classes, and calling methods on Java objects. There are also
helper macros that make using Java classes and objects from within Clojure easy.
You can even implement interfaces using pure Clojure code. You’ll see all this and
more in chapter 5, which is dedicated to exploring Java-interop facilities of the
Clojure language.

CALLING CLOJURE FROM JAVA

Calling a Clojure script from inside a Java program is easy too. Clojure is itself a Java
program, so it’s as simple as using any other Java library and knowing the API.

 Here’s an example:

import clojure.lang.RT;

import clojure.lang.Var;

// some code here

http://seleniumhq.org

25 The sources of Clojure’s power

RT.loadResourceScript("clojure/file/from/classpath/clojure_script.clj");

Var aClojureFunction = RT.var("a-clojure-name-space",

"a-clojure-function");

aClojureFunction.invoke("an argument" "another one");

There’s a lot more you can do here, including compiling all your Clojure code into
Java byte code and then using it like any other library. This is called AOT (ahead of
time) compilation, and you’ll see all this and more in a future chapter.

TYPE HINTS

Clojure is an extremely dynamic language, but it strives to be so without the typical
cost associated with doing everything at runtime. You can help run Clojure programs
faster by giving the evaluator type hints about any Java class you’re using. That way,
Clojure will know how to call methods on objects of such classes without reflection.

 Using type hints is easy; here’s an example:

(import '(com.thoughtworks.selenium DefaultSelenium))

;; blah blah blah

(defn start-this-selenium [^DefaultSelenium selenium]

 (.start s)

 s)

The type hint is the ^ followed by the name of the class. When the start method is
called, Clojure will do so without any reflection. This is much faster than without the
type hint.

 Typical programming workflow is to write the Clojure code, test it, and debug until
you’re satisfied. Then, if performance is a concern, add type hints to your code. It’s
easy and quick.

EXTENSIBILITY

It’s worth mentioning one final point about Clojure being hosted on the JVM. Thanks
to the internal design of the language, Clojure is easily extensible. This means that
programmers can add to the core of Clojure in a natural manner. As an example, con­
sider that Clojure’s internal data structures like lists, vectors, and hash maps all behave
in the same way: as sequences. Operations like map, reduce, and filter all work, no
matter what kind of sequence is passed to them. Internally, they all do this because
they all implement the ISeq interface.

 The great thing about such a clean design is that anyone can add new data struc­
ture that implements the same ISeq interface. If your problem domain involves deal­
ing with a stream of financial charges, for instance, you can imagine creating a new
kind of sequence that would then work seamlessly with the core Clojure functions. Or,
as another example, the Clojure-based Incanter project provides matrices that imple­
ment the ISeq interface. A matrix consists of a sequence of rows, and each row is a
one-dimensional row matrix.

 This extensibility pays off when existing (or even new) Java code needs to work
with Clojure. By implementing the ISeq interface, the new data structure becomes
native to Clojure and behaves the same as core Clojure data structures. This makes for

26 CHAPTER 1 Introduction to Clojure

easy extensibility of Clojure and allows programmers to use all core Clojure functions
for free with their custom data structures.

 So far, you’ve seen where Clojure derives its power—and this comes primarily from
it being a JVM-based functional Lisp. Thinking in the functional way often takes some
time, especially for those coming from imperative backgrounds (such as Java and
Ruby). One of the first questions people ask is whether Clojure is object oriented.
Although OO has been all the rage over the past couple of decades, it isn’t the perfect
way of solving all problems. In fact, it’s only one of the many approaches that might
apply in any situation. Clojure, as a language, doesn’t limit the programmer by impos­
ing a specific paradigm. Instead, it allows programmers to move beyond objects.

1.4 Clojure—beyond object orientation
People new to Lisp and Clojure often ask where the object-oriented (OO) paradigm
fits into the picture. They’re disappointed to find that such languages have no obvious
support for objects. The truth is more nuanced. Clojure is more general than any spe­
cific paradigm. First, let’s examine the landscape of programming language para­
digms. Figure 1.4 shows that both functional and OO paradigms are only a couple
from the wide array that exist in the field today.

Figure 1.4 The object-oriented
paradigm is only one of many in the
field. The Clojure language borrows
from several and offers the
programmer the capability to quickly
create new languages on top of it.

27 Clojure—beyond object orientation

Because most concerns in this area are about Clojure’s lack of object-oriented
constructs, we’ll talk about that a little. Consider, for example, that Clojure provides
something called generic functions. In OO languages like Java or Ruby, method poly­
morphism is achieved by dispatching calls on the type of object the method is called on,
and this is decided at runtime. Generic functions, also called multimethods, let the pro­
grammer decide how to dispatch functions at runtime. This is a far more capable
approach to polymorphism, and you’ll learn about this in a chapter on multimethods.

 As you’ve seen, Clojure already sports various bits of different paradigms: func­
tional, aspects of laziness, various options for concurrent programming, and so on.
But as a language, it’s much broader in its support for all kinds of other paradigms.
You can write procedural code if you want, or you can write your program in a func­
tional style. If you desire, Clojure programs can be written with an OO approach;
indeed, you can build your own object-oriented language on top of the core language.
You could build an Erlang-style process-oriented language on top of Clojure if you
wanted to. The idea of building custom languages on top of a Lisp foundation isn’t
new. Before the term domain-specific languages (DSL) became popular, people were
using Lisp to create such little languages. Clojure is well suited for this style of pro­
gramming. The macro system built into Clojure plays a large role in this.

 Clojure is also well suited for bottom-up design. Bottom-up design is an approach
where higher-level components are built up from a collection of lower-level ones. A
problem domain is analyzed, and several low-level components are created where
each represents a single concept. These pieces are then combined to create the
higher-level components as demanded by the problem at hand. Bottom-up design is
often used to solve a whole class of problems in a specific domain rather than a spe­
cific instance of a problem. Systems built this way are more flexible and are more resil­
ient to changing requirements.

 Thanks to Clojure’s functional paradigm (higher-order functions and closures)
and the associated possibility of using function combination, it’s a great language for
designing systems in a bottom-up manner. In fact, Clojure programs are often “grown
up” from the ground, by using this bottom-up decomposition of the domain, and are
then combined with one or more little languages built on top of it. It’s common to see
Clojure programs that first create a mini-language that allows concepts in the problem
domain to be expressed at a high level and then the problem solved in this language
instead. This is a powerful style of programming that results in systems that are more
flexible and code that’s more readable and ultimately more maintainable. It’s why
Lisp is called a programmable programming language and is why Clojure benefits
from being a Lisp.

 The bottom line is that Clojure doesn’t limit you by imposing a particular para­
digm. It’s general enough to support any paradigm that might suit the problem
domain. Perhaps more important, it’s capable of evolving into a language that works
well for that paradigm and problem domain.

28 CHAPTER 1 Introduction to Clojure

1.5 Summary
As you saw, Lisp is a special language, and Clojure is a special Lisp. It’s homoiconic
with almost no syntax and has a full macro system. It’s a functional language with first-
class functions and immutable data structures, and it has concurrency semantics built
into its core. It’s hosted on the extremely mature and performant Java VM, which
allows it to offer seamless interoperability with Java code. Being as fast, or nearly as fast
as Java, adds another gratifying advantage to Clojure: raw speed.

 This combination packs a tremendous productivity punch. The dynamic program­
ming style that Clojure makes possible is well suited to bottom-up design and results in
programs that can do a lot more with a lot fewer lines of code. Indeed, when com­
pared with equivalent lines of Ruby code, Clojure code can be two to three times
smaller; when compared with Java, it can be nearly five to ten times smaller. Less code
means fewer bugs. Clojure code comes close to satisfying the claim of being better,
faster, smaller, and cheaper.

When is Clojure not applicable?
Although Clojure brings together the best ideas from a variety of programming lan­
guages, it’s no panacea. There can be times when it isn’t quite the language of
choice for a project. The first issue is that despite the fact that the syntax is a key
part of its strength, it can be alien and confusing to some programmers. If your team
is unable to look past the unfamiliarity of the syntax, it can be difficult to embrace
the language.

Further, the macro system can be used for good or bad. We’ve explored some of its
power in this chapter, and there’s more throughout this book. But it’s important to real­
ize that macros aren’t functions and that specifically, they don’t compose well. It takes
experience to know when a macro is the right tool for the job, and indeed, if you can do
without a macro, you should. The misuse of macros results in suboptimal code, and a
team without an experienced developer or two may suffer from this problem.

The functional programming paradigm is also oftentimes a major shift for most devel­
opers. Because OOP is the most commonly used approach to writing software today,
functional programming languages can leave developers at a loss as to how to design
systems. It can be expeditious to have a developer or two on hand who has experi­
ence with functional programming. Without these, it can be difficult to get started.

Having said that, every tool has its pros and cons. If you can mitigate these issues,
then Clojure is often the best choice, especially for new projects.

Compared to several other dynamic languages, Clojure supports better rapid proto­
typing and incremental development of code. By combining the dynamism of the lan­
guage and the hyperproductivity of the REPL, you can develop code quickly and in a
more exploratory fashion. When a bottom-up approach to code is combined with
a functional approach to domain modeling and the macro system, a powerful design
pattern emerges—that of creating little languages on top of Clojure. This kind of

Summary 29

metalinguistic programming is extremely expressive, and you’ll learn a lot more about
this throughout the rest of this book.

 Further, the functional paradigm, along with immutable data structures, removes a
whole class of bugs associated with imperative, state-based code design. And the con­
currency support built into Clojure makes the complicated task of writing multi-
threaded programs that work correctly downright easy. All this means that Clojure
programs more often work right the first time and have fewer problems during their
life spans.

 Overall, using Clojure on a project can mean higher-quality software that runs
faster and that can use multicore CPUs efficiently and correctly. The resulting code
base will be smaller, which also means it will be cheaper to develop and maintain. It’s
possible that Clojure (or a variant of it) will be the Lisp that survives, indeed, as the
language of the future.

 The remaining chapters of the first part of the book will give you a thorough
understanding of Clojure the language. They’ll address practical issues of using it and
advanced topics that show Clojure use in the real world. To get the most of the rest of
this part, however, we’ll need to get some more fundamentals out of the way. The next
chapter is a quick breeze through most of the basic features of the language. With that
background, the details in the following chapters will be easier to understand.

PROGRAMMING

Clojure IN ACTION
Amit Rathore

C
lojure is a modern Lisp for the JVM, and it has the strengths
you’d expect: first-class functions, macros, support for func­
tional programming, and a Lisp-like, clean programming

style. But it’s not enough to learn a language, you also need to
know what to do with it.

Clojure in Action is a practical guide focused on applying Clojure
to practical programming challenges. You’ll start with a language
tutorial written for readers who already know OOP. Th en, you’ll
dive into the use cases where Clojure really shines: state manage­
ment, safe concurrency and multicore programming, fi rst-class
code generation, and Java interop. In each chapter, you’ll fi rst
explore the unique characteristics of a problem area and then
discover how to tackle them using Clojure. Along the way, you’ll
explore practical matters like architecture, unit testing, and set­
up as you build a scalable web application that includes custom
DSLs, Hadoop, HBase, and RabbitMQ.

What’s Inside
● A fast-paced Clojure tutorial
● Creating web services with Clojure
● Scaling through messaging
● Creating DSLs with Clojure’s macro system
● Test-driven development with Clojure
● Distributed programming with Clojure, and more

This book assumes you’re familiar with an OO language like Java,
C#, or C++ but requires no background in Lisp or Clojure itself.

Amit Rathore is a VP of Engineering with a decade of experience
building highly performant data-heavy web applications.

For access to the book’s forum and a free eBook for owners of this
book, go to manning.com/ClojureinAction

SEE INSERT

“An easy to read book and a
 great way to get up-to­
speed on Clojure.” —Craig Smith, Suncorp

“Down-to-earth

—Stuart Caborn,
and thorough.”BNP Paribas

“Explains functional
programming with Java.” —Doug Warren

 Java Web Services

“An intriguing mix of
emerging tech.” —Andrew Oswald

 Chariot Solutions

“Teaches you how to put
 Clojure into action at
 warp speed!” —Baishampayan Ghose (BG)

 Qotd, Inc.

M A N N I N G $49.99 / Can $52.99 [INCLUDING eBOOK]

