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More on functional 
programming 

This chapter covers 
■	 A refresher on higher-order functions 
■	 Partial application and currying of functions 
■	 Lexical closures 
■	 Traditional object-oriented programming 

in Clojure 

So far, you’ve seen a lot of the Clojure programming language, and you’ve used it 
to write programs that can access data stores, communicate on message queues, 
consume and provide you services, crunch large amounts of data, and more. In 
this chapter, we’ll revisit a fundamental concept of Clojure—that of functional 
programming. 

 Instead of approaching this from, say, a mathematical (or plain theoretical) 
standpoint, we’ll write code to explore some of the main ideas. We’ll start by imple­
menting a few common higher-order functions used in functional programs, to 
help you become comfortable with recursion, lazy sequences, and functional 
abstraction and reuse in general. 

 Next, we’ll visit the land of currying and partial application. This exposure will 
give you further insight into functional programming and what you can do with it. 
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308 CHAPTER 13 More on functional programming 

Although partial application (and certainly currying) isn’t particularly widespread in 
Clojure code, sometimes it’s the perfect fit for the job.

 The final stop will be to explore closures. The last section puts everything 
together to write a little object system that illustrates the ideas of OOP vis-à-vis func­
tional programming. 

13.1 Using higher-order functions 
We talked about higher-order functions in chapter 3. A higher-order function is one that 
either accepts another function or returns a function. Higher-order functions allow 
the programmer to abstract out patterns of computation that would otherwise result 
in duplication in code. In this section, we’ll look at a few simple examples of higher-
order functions that can greatly simplify code. You’ve seen several of these functions 
before, in other forms, and we’ll point these out as you implement them.

 Overall, this section will give you a sense of how higher-order functions can be 
used to implement a variety of solutions in Clojure, indeed, how it’s an integral part of 
doing so. 

13.1.1 Collecting results of functions 
Let’s begin our look at higher-order functions by considering the idea of a function 
named square-all that accepts a list of numbers and returns a list of the squares of 
each element: 

(defn square [x]

 (* x x))


(defn square-all [numbers]

 (if (empty? numbers)

 ()

 (cons (square (first numbers))


 (square-all (rest numbers)))))


This works as expected, and you can test this at the REPL as follows: 

user=> (square-all [1 2 3 4 5 6])

(1 4 9 16 25 36)


Now let’s look at another function, cube-all, which also accepts a list of numbers but 
returns a list of cubes of each element: 

(defn cube [x]

 (* x x x))


(defn cube-all [numbers]

 (if (empty? numbers)

 ()

 (cons (cube (first numbers))


 (cube-all (rest numbers)))))


Again, this is easy to test: 

user=> (cube-all [1 2 3 4 5 6])

(1 8 27 64 125 216)
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They both work as expected. The trouble is that there’s a significant amount of dupli­
cation in the definitions of square-all and cube-all. You can easily see this com­
monality by considering the fact that both functions were applying a function to each 
element and were collecting the results before returning the list of return values.

 You’ve already seen that such functions can be captured as higher-order functions 
in languages such as Clojure: 

(defn do-to-all [f numbers]

 (if (empty? numbers)

 ()

 (cons (f (first numbers))


 (do-to-all f (rest numbers)))))


With this, you can perform the same operations easily: 

user> (do-to-all square [1 2 3 4 5 6])

(1 4 9 16 25 36)


user> (do-to-all cube [1 2 3 4 5 6])

(1 8 27 64 125 216)


You can imagine that the do-to-all implementation is similar to that of the map func­
tion that’s included in Clojure’s core library. The map function is an abstraction that 
allows you to apply any function across sequences of arguments and collect results 
into another sequence. Our implementation suffers from a rather fatal flaw. The issue 
is that without tail-call optimization, it will blow the call stack if a long enough list of 
elements is passed in. Here’s what it will look like: 

user=> (do-to-all square (range 11000))

No message.

 [Thrown class java.lang.StackOverflowError]


This is because Clojure doesn’t provide tail-call optimization (thanks to limitations of 
the JVM), but it does provide a way to fix this problem. Consider the following revised 
implementation: 

(defn do-to-all [f numbers]

 (lazy-seq 


(if (empty? numbers)

 ()

 (cons (f (first numbers))


 (do-to-all f (rest numbers))))))


Tail calls 
A tail call is a call to a function from the last expression of another function body. 
When such a tail call returns, the calling function returns the value of the tail call. In 
most functional languages, tail calls are eliminated, so that using such calls doesn’t 
consume the stack. This is possible because function calls from the tail position can 
be rewritten as jumps by the compiler or interpreter. 

Clojure doesn’t do this because of a related limitation on the JVM. 
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Now, because we made this return a lazy sequence, it no longer attempts to recursively 
compute all the elements to return. It now works as expected: 

user=> (take 10 (drop 10000 (do-to-all square (range 11000))))

(100000000 100020001 100040004 100060009 100080016 100100025 100120036 


100140049 100160064 100180081)


This is similar to the map function that comes with Clojure (the Clojure version does a 
lot more). The map function is an extremely useful higher-order function, and as you’ve 
seen over the last few chapters, it sees heavy usage. Let’s now look at another important 
operation, which can be implemented using another higher-order function. 

13.1.2 Reducing lists of things 

It’s often useful to take a list of things and compute a value based on all of them. An 
example might be a total of a list of numbers or the largest number. Let’s implement 
the total first: 

(defn total-of [numbers]

 (loop [l numbers sum 0]

 (if (empty? l)

 sum

 (recur (rest l) (+ sum (first l))))))


This works as expected, as you can see in the following test at the REPL: 

user> (total-of [5 7 9 3 4 1 2 8])

39


Now let’s write a function to return the greatest from a list of numbers. First, let’s write 
a simple function that returns the greater of two numbers: 

(defn larger-of [x y]

 (if (> x y) x y))


This is a simple enough function, but now we can use it to search for the largest num­
ber in a series of numbers: 

(defn greatest-of [numbers]

 (loop [l numbers candidate (first numbers)]

 (if (empty? l)

 candidate

 (recur (rest l) (larger-of candidate (first l))))))


Let’s see if this works: 

user> (greatest-of [5 7 9 3 4 1 2 8])

9

user> (greatest-of [])

nil


We have it working, but there’s clearly some duplication in total-of and greatest-
of. Specifically, the only difference between them is that one adds an element to an 
accumulator, whereas the other compares an element with a candidate. Let’s extract 
out the commonality into a function: 



311 Using higher-order functions 

(defn compute-across [func elements value]

 (if (empty? elements)

 value

 (recur func (rest elements) (func value (first elements)))))


Now, we can easily use compute-across in order to implement total-of and 
largest-of: 

(defn total-of [numbers]

 (compute-across + numbers 0))


(defn greatest-of [numbers]

 (compute-across larger-of numbers (first numbers)))


To ensure that things still work as expected, you can test these two functions at the 
REPL again: 

user> (total-of [5 7 9 3 4 1 2 8])

39


user> (greatest-of [5 7 9 3 4 1 2 8])

9


compute-across is generic enough that it can operate on any sequence. For instance, 
here’s a function that collects all numbers greater than some specified threshold: 

(defn all-greater-than [threshold numbers]

  (compute-across #(if (> %2 threshold) (conj %1 %2) %1) numbers []))


Before getting into how this works, let’s see if it works: 

user> (all-greater-than 5 [5 7 9 3 4 1 2 8])

[7 9 8]


It does work as expected. The implementation is simple: you’ve already seen how 
compute-across works. Our initial value (which behaves as an accumulator) is an 
empty vector. We need to conjoin numbers to this when it’s greater than the thresh­
old. The anonymous function does this. 

Our compute-across function is similar to something you’ve already seen: the 
reduce function that’s part of Clojure’s core functions. It allows you to process 
sequences of data and compute some final result. Let’s now look at another related 
example of using our compute-across. 

13.1.3 Filtering lists of things 

We wrote a function in the previous section that allows us to collect all numbers 
greater than a particular threshold. Let’s now write another one that collects those 
numbers that are less than a threshold: 

(defn all-lesser-than [threshold numbers]

  (compute-across #(if (< %2 threshold) (conj %1 %2) %1) numbers []))


Here it is in action: 

user> (all-lesser-than 5 [5 7 9 3 4 1 2 8])

[3 4 1 2]
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Notice how easy it is, now that we have our convenient little compute-across function 
(or the equivalent reduce). Also, notice that there’s duplication in our all-greater­
than and all-lesser-than functions. The only difference between them is in the cri­
teria used in selecting which elements should be returned. Let’s extract the common 
part into a higher-order select-if function: 

(defn select-if [pred elements]

 (compute-across #(if (pred %2) (conj %1 %2) %1) elements []))


You can now use this to select all sorts of elements from a larger sequence. For 
instance, here’s an example of selecting all odd numbers from a vector: 

user> (select-if odd? [5 7 9 3 4 1 2 8])

[5 7 9 3 1]


To reimplement our previously defined all-lesser-than function, you could write it 
in the following manner: 

(defn all-lesser-than [threshold numbers]

 (select-if #(< % threshold) numbers))


This implementation is far more readable, because it expresses the intent with sim­
plicity and clarity. Our select-if function is another useful, low-level function that 
we can use with any sequence. In fact, Clojure comes with such a function, one that 
you’ve seen before: filter.

 Over the last few pages, we’ve created the functions do-to-all, compute-across, 
and select-if, which implement the essence of the built-in map, reduce, and filter 
functions. The reason we did this was two-fold: to demonstrate common use cases of 
higher-order functions and to show that the basic form of these functions is rather 
simple to implement. Our select-if isn’t lazy, for instance, but with all the knowl­
edge you’ve gained so far, you can implement one that is. With this background in 
place, let’s explore a few other topics of interest of functional programs. 

13.2 Partial application and currying 
We wrote several higher-order functions in the last section. Specifically, our functions 
accepted a function as one argument and applied it to other arguments. Now we’re 
going to look at another kind of higher-order functions, those that create and return 
new functions. The ability to create functions dynamically is a crucial aspect of func­
tional programming. In this section, we’ll focus on a functional programming tech­
nique where we’ll write functions that return new functions of less arity than the ones 
they accept as an argument. We’ll do this by partially applying the function, the mean­
ing of which will become clear shortly. 

13.2.1 Adapting functions 

Let’s imagine you have a function that accepts a tax percentage (such as 8.0 or 9.75) 
and a price. It returns the price by adding the appropriate tax. You can easily imple­
ment this with a threading macro: 
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(defn price-with-tax [tax-rate amount]

 (->> (/ tax-rate 100)


 (+ 1)

 (* amount)))


Now you can find out what something truly costs, because you can calculate its price 
including the sales tax, as follows: 

user> (price-with-tax 9.5 100)

109.5


If you had a list of prices that you wanted to convert into a list of tax-inclusive prices, 
you could write the following function: 

(defn with-california-taxes [prices]

 (map #(price-with-tax 9.25 %) prices))


And you could then batch-calculate pricing with taxes: 

user> (def prices [100 200 300 400 500])


user> (with-california-taxes prices)

(109.25 218.5 327.75 437.0 546.25)


Notice that in the definition of with-california-taxes, we created an anonymous 
function that accepted a single argument (a price) and applied price-with-tax to 
9.25 and the price. Creating this anonymous function is convenient; otherwise, we 
might have had to define a separate function that we may never have used anywhere 
else, such as this: 

(defn price-with-ca-tax [price]

 (price-with-tax 9.25 price))


And if we had to handle New York, it would look like this: 

(defn price-with-ny-tax [price]

 (price-with-tax 8.0 price))


If we had to handle any more, the duplication would certainly get to us. Luckily, a 
functional language such as Clojure can make short work of it: 

(defn price-calculator-for-tax [state-tax]

 (fn [price]

 (price-with-tax state-tax price)))


This function accepts a tax rate, presumably for a given state, and then returns a new 
function that accepts a single argument. When this new function is called with a price, 
it returns the result of applying price-with-tax to the originally supplied tax rate 
and the price. In this manner, the newly defined (and returned) function behaves like 
a closure around the supplied tax rate. Now that we have this meta function, we can 
remove the duplication you saw earlier, by defining state-specific functions as follows: 

(def price-with-ca-tax (price-calculator-for-tax 9.25))


(def price-with-ny-tax (price-calculator-for-tax 8.0))
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Notice again that we’re creating new vars (and that we’re directly using def here, not 
defn) that are bound to the anonymous functions returned by the price-calculator­
for-tax function. 

 These new functions accept a single argument and are perfect for functions such 
as with-california-taxes that accept a list of prices, and call map across them. A sin­
gle argument function serves well in such a case, and you can use any of the previous 
functions for this purpose. This is a simple case where we started out with a function 
of a certain arity (in this case, price-with-tax accepts two arguments), and we 
needed a new function that accepted a lesser number of arguments (in this case, a single-
argument function that could map across a sequence of prices). 

This approach of taking a function of n arguments and creating a new function of 
k arguments (where n > k) is a form of adaptation (you may be familiar with the 
adapter pattern from OO literature). You don’t need special ceremony to do this in 
Clojure, thanks to functions being first class. Let’s see how Clojure makes this easy. 

PARTIAL APPLICATION 

Let’s say you have a function of n arguments and you need to fix (n – k) arguments, in 
order to create a new function of k arguments. Let’s create a function to illustrate this: 

(defn of-n-args [a b c d e] 

(str a b c d e ))


Now, in order to fix, say, the first three arguments to 1, 2, and 3, you could do 
the following: 

(defn of-k-args [d e]

 (of-n-args 1 2 3 d e))


Let’s ensure that this function works as expected: 

user> (of-k-args \a \b)

"123ab"


OK, so that works. If you needed to create a function that fixed, say, two or four argu­
ments, you’d have to write similar code again. As you can imagine, if you had to do 
this a lot, it would get rather repetitive and tedious. 

 You could improve things by writing a function that generalizes the idea. Here’s a 
function that does this: 

(defn partially-applied [of-n-args & n-minus-k-args]

 (fn [& k-args]

 (apply of-n-args (concat n-minus-k-args k-args))))


Now, you could create any number of functions that fixed a particular set of argu­
ments of a particular function, for example: 

user> (def of-2-args (partially-applied of-n-args \a \b \c))

#'user/of-2-args


user> (def of-3-args (partially-applied of-n-args \a \b))

#'user/of-3-args
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And you can see if these work as expected: 

user> (of-2-args 4 5)

"abc45"


user> (of-3-args 3 4 5)

"ab345"


We called our new function partially-applied because it returns a function that’s 
a partially applied version of the function we passed into it. For example, of-3-args is a 
partially applied version of of-n-args. This is such a common technique in functional 
programming that Clojure comes with a function that does this, and it’s called partial.

 It’s used the same way: 

user> (def of-2-args (partial of-n-args \a \b \c))

#'user/of-2-args

user> (def of-3-args (partial of-n-args \a \b))

#'user/of-3-args


And here it is in action: 

user> (of-2-args 4 5)

"abc45"


user> (of-3-args 3 4 5)

"ab345"


You now understand what it means to partially apply a function. Although the exam­
ples showed this technique where you needed to adapt a function of a given arity to a 
function of a lower arity, there are other uses as well. You’ll see one such usage in the 
next section. 

13.2.2 Defining functions 

In this section, we’ll use the technique of partial application to define new functions. 
Recall the select-if function from the previous section: 

(defn select-if [pred elements]

 (compute-across #(if (pred %2) (conj %1 %2) %1) elements []))


Note that we pass the compute-across function an empty vector as the last argument. 
We’ll write a modified version of select-if called select-into-if, which will accept 
an initial container: 

(defn select-into-if [container pred elements]

  (compute-across #(if (pred %2) (conj %1 %2) %1) elements container))


Again, as you saw in the previous section, if you had a list of numbers such as 

(def numbers [4 9 5 7 6 3 8])


then you could use our new function as follows: 

user> (select-into-if [] #(< % 7) numbers)

[4 5 6 3]
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Similarly, you could also pass in an empty list instead of an empty vector, as shown here: 

user> (select-into-if () #(< % 7) numbers)

(3 6 5 4)


Note that depending on whether you want to filter results up or down (in the same 
order as the elements appear or in the reverse), you can use either the empty vector as 
your container or the empty list. Let’s now further abstract this idea of filtering results 
up or down as follows: 

(def select-up (partial select-into-if []))


Here, we’ve created a new function using partial. We fixed the first argument of the 
select-into-if function to the empty vector. Similarly, you could define the concept 
of selecting down a sequence of elements as follows: 

(def select-down (partial select-into-if ()))


Let’s test these two functions to ensure that they work: 

user> (select-up #(< % 9) [5 3 9 6 8])

[5 3 6 8]


user> (select-down #(< % 9) [5 3 9 6 8])

(8 6 3 5)


Obviously, there are specific implications that arise from using a vector versus a list, 
and depending on the situation, these may be a convenient way to filter elements of 
a sequence.

 As you’ve seen, partial application of functions can be a useful tool. This section 
showed two situations where this technique might come in handy. The first is to adapt 
functions to a suitable arity by fixing one or more arguments of a given function. The 
second is to define functions by partially applying a more general function to get spe­
cific functions that have one or more arguments fixed. In the next section, we’ll dis­
cuss a related functional programming concept called currying. 

13.2.3 Currying 

Currying is the process by which a function that takes multiple arguments is trans­
formed into another that takes a single argument and returns a partially applied func­
tion. As you can imagine, the concepts of currying and of partial application are 
closely related. To understand this better, consider the following function: 

(defn add-pair [a b]

 (+ a b))


Imagine that the add-pair function was curried. If you were to call it with only a single 
argument, you’d get back a new function of one argument, for example: 

(def inc-by-two (add-pair 2))

;; this won’t actually work, since Clojure functions are not curried
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This new function would add 2 to any argument it was passed, for instance: 

user> (inc-by-two 3)

5


Curried functions are particularly central to certain functional programming lan­
guages such as Haskell that have functions of only one argument. In such languages, a 
function such as add-pair would work the following way: 

user> (add-pair 2 3)

=> ((anonymous-function-that-adds-two) 3)

=> 5


The programmer wouldn’t have to do anything explicit in order to invoke such behav­
ior; all functions are curried by default in such languages. Okay, back to Clojure. Try­
ing the previous example on the REPL will fail because add-pair isn’t curried and it 
needs two arguments when called. You could accomplish what we’re describing here 
using partial, but the semantics would be different: 

user> (def inc-by-two (partial add-pair 2))

#'user/inc-by-two


This would then work as expected: 

user> (inc-by-two 3)

5


This difference (having to be explicit about partially applying arguments) is because 
Clojure functions aren’t automatically curried. You might be able to write a function 
as follows in order to remedy this situation: 

(defn curry-1 [f]

 (fn [x]

 (fn [y]

 (f x y))))


Now you could try our previous example again by first creating a curried version of 
add-pair as shown here: 

user> (def add-pair-curried (curry-1 add-pair))

#'user/add-pair-curried


This creates a curried version of add-pair that will work as desired when applied to a 
single argument: 

user> (def inc-by-two (add-pair-curried 2))

#'user/inc-by-two


Now inc-by-two will also work as you saw before: 

user> (inc-by-two 3)

5


curry-1 worked for us because add-pair takes two arguments. What if you had more 
arguments, such as the following function? 
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(defn add-quadruple [a b c d]

 (+ a b c d))


curry-1 won’t suffice to convert this into a curried function. Because Clojure func­
tions can accept a variable number of arguments, you can write a slightly more gener­
alized version of curry. Strictly speaking, currying returns single-argument functions 
because the concept applies more to languages that have only single-argument func­
tions. Still, our function here is more applicable to languages such as Clojure that do 
support more than one argument. Here it is: 

(defn curry-2 [f]

 (fn [& args]

 (fn [& more-args]

 (apply f (concat args more-args)))))


With this version of curry, you can create curried versions of functions that take more 
than two arguments as well, for instance: 

user> (def add-quadruple-curried (curry-2 add-quadruple))

#'user/add-quadruple-curried


Now, you can use our curried version of the function to get new functions when 
applied to fewer than four arguments: 

user> (def add-2-to-triple (add-quadruple-curried 2))

#'user/add-2-to-triple


And here’s how you can use it: 

user> (add-2-to-triple 3 4 5)

14


add-quadruple-curried will also work when passed more than one argument, as 
shown here: 

user> (def add-5-to-pair (add-quadruple-curried 2 3))

#'user/add-5-to-pair


user> (add-5-to-pair 4 5)

14


So far, we haven’t done anything too major that couldn’t be accomplished with par­
tial. If all functions were automatically curried, you’d be able to do something like 
the following: 

(def inc-by-9 (add-5-to-pair 4))

;; won’t work since add-5-to-pair isn’t curried


So even though we created add-5-to-pair by calling a curried function with less than 
complete arguments, the returned function itself isn’t curried. add-5-to-pair 
behaves like all regular Clojure functions in that it needs to be called with all its argu­
ments (or passed to partial explicitly). 

 Let’s now try to write a version of curry that returns curried functions if required. 
We’ll have to keep track of how many parameters such a function takes so we can 
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decide whether all arguments have been passed. The function curried-fn shown 
here does this: 

(defn curried-fn [func args-len]

 (fn [& args]

 (let [remaining (- args-len (count args))]

 (if (zero? remaining)

 (apply func args)

 (curried-fn (apply partial func args) remaining)))))


Before using this function, we’ll also create a wrapper around it so that we have a syn­
tactically clear way to create curried functions. The following macro, defcurried, 
does the job: 

(defmacro defcurried [fname args & body]

 `(let [fun# (fn ~args (do ~@body))]


 (def ~fname (curried-fn fun# ~(count args)))))


Now we’re ready to try this out. Let’s try our add-quadruple function again: 

(defcurried add-quadruple [a b c d]

 (+ a b c d))


Now we have a curried function that returns either the result of the computation as 
specified in its body or another function that’s the result of partially applying the sup­
plied arguments but also curried. Here’s an example: 

user> (def add-5-to-triple (add-quadruple 5))

#'user/add-5-to-triple


You’ve seen this before, when we used the add-quadruple-curried version of this 
function. The difference that time was that the resulting add-5-to-triple wasn’t cur­
ried but was a regular Clojure function. This time around, we can do the following: 

user> (def add-9-to-pair (add-5-to-triple 4))

#'user/add-9-to-pair


And it doesn’t end there. We can go further: 

user> (def inc-by-12 (add-9-to-pair 3))

#'user/inc-by-12


And finally, we can use the inc-by-12 function: 

user> (inc-by-12 3)

15


So, we’ve added the ability to automatically curry our functions. Figure 13.1 shows the 
difference between Clojure’s partial function and our new curry function.

 This functionality is limited, to be sure. For instance, it can’t handle a variable 
number of arguments. Even so, why would we need such a feature? Clojure has two 
things that reduce the necessity of such automatic currying: partial and anonymous 
functions. Between these two and the fact that Clojure functions aren’t restricted to 
being of a single arity, automatic currying is less of a requirement. Figure 13.1 shows 
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Figure 13.1 Although both partial and curry return functions, a partially applied 
function is always ready to run when it’s applied to the remaining arguments. If given 
insufficient arguments, a partially applied function will throw an exception 
complaining about that. Curried functions return functions that are further curried if 
they’re applied to insufficient arguments. 

the difference between partial and currying in a pictorial way. Our next stop will be to 
look at using anonymous functions to similar effect. 

ANONYMOUS FUNCTIONS 

The reader macro for anonymous functions is convenient shorthand for creating

functions that are partially applied. Let’s recall our regular function add-pair, whose

job is to add the two numbers passed to it. Consider the following:


(def inc-by-3 #(add-pair 3 %1))


You know what this does; inc-by-3 is now a single-argument function that will add 3 to

its argument. Note that this is equivalent to the following use of the partial function:


(def inc-by-3 (partial add-pair 3))


It’s also similar to the use of the curried add-pair-curried:


(def inc-by-3 (add-pair-curried 3)


The anonymous function requires a little more typing, but it’s more expressive. Not 
only can it handle variable args (via %&), but it can also handle arguments in specific 
places, for instance: 

user> (def half-of #(/ %1 2))

#'user/half-of


user> (half-of 10)

5


You couldn’t use partial (or curried functions) to do this, as shown here 

user> ((partial / 2) 10)

1/5
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because partial associates arguments in order (left to right). The same is true with 
curried functions. The anonymous function reader macro, on the other hand, is 
explicit about the order in which functions are applied. We mentioned that you could 
handle functions with variable arguments; let’s look at an example. Consider the fol­
lowing function of variable arity: 

(defn add-numbers [& numbers]

 (apply + numbers))


Now, you could create partially applied versions of this function using anonymous 
functions: 

user> (def add-5-to-remaining #(apply add-numbers 2 3 %&))

#'user/add-5-to-remaining


Here it is in action: 

user> (add-5-to-remaining 1 4 5)

15


As noted earlier, you couldn’t have done this with our defcurried macro or using any 
related technique. A final point for Clojure’s anonymous functions is that the reader 
macro syntax makes it abundantly clear that a function object is being constructed, 
whereas it isn’t as clear with curried functions. Having said all that, there may well be 
cases where having the behavior of curried functions is what you need.

 You’ve already seen closures, in previous chapters of this book as well as in this sec­
tion. In the next section, we’re going to explore them in more detail. 

13.3 Closures 
In this section, we’re going to explore the lexical closure, which is a central concept of 
functional programming. How central it is can be seen from the fact that the name 
Clojure itself is a play on the term closure. We’ll begin by reviewing what closures are and 
what they close over. Then we’ll look at a couple of closure use cases in functional pro­
gramming. Specifically, we’ll look at how closures can be used to delay computation and 
how they can be used as objects (in the object-oriented sense of the word). At the end, 
we’ll create a little object-oriented layer for Clojure in order to demonstrate that Clojure 
(and Lisps in general) go beyond traditional ideas of object-oriented programming. 

13.3.1 Free variables and closures 

Before we jump into what closures are, let’s look at the concept of free variables. A 
free variable is a placeholder for a value that will be substituted in at some later point. 
More specifically, given a lexically scoped block of code, a free variable is one that’s 
neither an argument nor a local variable, for instance: 

(defn adder [num1 num2]

 (let [x (+ num1 num2)]


 (fn [y]

 (+ x y))))
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Here, num1 and num2 are arguments of the adder function and so aren’t free variables. 
The let form creates a lexically scoped block of code, and within that block, num1 and 
num2 are free variables. Further, the let form creates a locally named value called x. 
Therefore, within the let block, x is not a free variable. Finally, an anonymous func­
tion is created that accepts an argument called y. Within this anonymous function, y is 
not a free variable, but x is.

 Now that you understand what a free variable is, let’s examine this function a little 
more. Consider the following code: 

user> (def add-5 (adder 2 3))

#'user/add-5


add-5 is a var that’s bound to the return value of the call to adder, which is the anon­
ymous function returned by the adder function. The function object contains within 
it a reference to x, which exists for only as long as the let block inside adder lives. 
Consider that the following works as expected: 

user> (add-5 10)

15


Given the fact that the life of a locally named value such as x lasts only until the enclos­
ing lexical block lasts, how can add-5 do its work? You might imagine that the x refer­
enced inside add-5 ceased to be the moment add-5 was created.

 The reason this works, though, is that the anonymous function returned by adder 
is a closure, in this case closing over the free variable x. The extent (life) of such 
closed-over free variables is that of the closure itself. This is why add-5 is able to use 
the value of x, and it adds 10 to 5 to return 15 in the example. Now let’s look at what 
closures can do for our Clojure programs. 

13.3.2 Delayed computation and closures 

One aspect of closures is that they can be executed at any time, any number of 
times, or not at all. This property of delayed execution can be useful. Consider the 
following code: 

(let [x 1

 y 0]


 (/ x y))


You know what this code will do: a nice divide-by-zero exception will be thrown. Let’s 
wrap the code with a try-catch block so as to control the situation programmatically: 

(let [x 1

 y 0]


 (try

 (/ x y)

 (catch Exception e

 (println (.getMessage e)))))


This pattern is common enough that you might want to extract it out into a higher-
order control structure: 
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(defn try-catch [the-try the-catch]

 (try

 (the-try)

 (catch Exception e

 (the-catch e))))


Now that you have this, you could write 

(let [x 1 

y 0]


 (try-catch #(/ x y) 

#(println (.getMessage %))))


Notice here that you’re passing in an anonymous function that closes around x and y. 
You could have written a macro to do this same thing, but this shows that you don’t 
need macros for something like this, even though the macro solution would be nicer 
(syntactically more convenient to use, resulting in code that’s easier to read). 

 When we compared macros to functions, we said that Clojure evaluates function 
arguments in an eager manner. This behavior  is an advantage of macros in that mac­
ros don’t evaluate arguments, allowing us as programmers to be in control. But the 
function try-catch here, achieves the same intended effect by accepting functions 
that will be evaluated later. This is the reason we created anonymous functions that we 
then passed in as arguments. Because the function enclosed free variables x and y, the 
try-catch function was able to work correctly.

 You can imagine creating other control structures in a similar manner. In the next 
section, you’ll see another extremely useful aspect of closures. 

13.3.3 Closures and objects 

In this section, we’re going to examine another benefit of the closure. As you’ve seen 
over the past few paragraphs, a closure captures the bindings of any free variables visi­
ble at the point of creation. These bindings are then hidden from view to the rest of 
the world, making the closure a candidate for private data. (Data hiding is somewhat 
of an overrated concept, especially in a language such as Clojure. You’ll see more on 
this in the next section). 

 For the moment, let’s continue exploring the captured bindings inside closures. 
Imagine that you needed to handle the concept of users in your application and that 
you wanted to store their login information, along with their email address. Consider 
the following function: 

(defn new-user [login password email]

 (fn [a]

 (condp = a

 :login login

 :password password

 :email email)))


There’s nothing particularly new here; you saw such code in the previous section. 
Here it is in action: 
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user> (def anya (new-user "anya" "secret" "anya@currylogic.com"))

#'user/anya


user> (anya :login)

"anya"


user> (anya :password)

"secret"


user> (anya :email)

"anya@currylogic.com"


First, we created a new function object by calling the new-user function with "anya", 
"secret", and "anya@currylogic.com" as arguments. Then, we were able to query it 
for the login, password, and email address. anya appears to behave something like a 
map, or at least a data object of some kind. You can query the internal state of the 
object using the keywords :login, :password, and :email, as shown previously. 

 It’s also worth noting that this is the only way to access the internals of anya. This is 
a form of message passing: the keywords are messages that we’re sending to a receiver 
object, which in this case is the function object anya. You can implement fewer of 
these should you choose to. For instance, you might deem the password to be a hid­
den detail. The modified function might look as follows: 

(defn new-user [login password email]

 (fn [a]

 (condp = a

 :login login

 :email email)))


With this constructor of new users, there’s no way to directly access the password a 
user was created with. Having come this far, we’ll take a short break to compare func­
tions such as anya with objects from other languages. 

DATA OR FUNCTION? 
Already, the line between what’s clearly a function and what might be construed to be 
data in languages such as Java and Ruby should have started to blur. Is anya a function 
or is it a kind of data object? It certainly behaves similarly to a hash map, where one 
can query the value associated with a particular key. In this case, we wrote code to  
expose only those keys that we considered public information, while hiding the pri­
vate pieces. Because anya is a closure, the free variables (the arguments passed to new-
user) are captured inside it and hang around until the closure itself is alive. Techni­
cally, although anya is a function, semantically it looks and behaves like data.

 Although data objects such as hash maps are fairly static (in that they do little more 
than hold information), traditional objects also have behavior associated with them. 
Let’s blur the line some more by adding behavior to our user objects. We’ll add a way 
to see if a given password is the correct one. Consider this code: 

(defn new-user [login password email]

 (fn [a & args]

 (condp = a

 :login login




Closures 325 

:email email

 :authenticate (= password (first args)))))


Now let’s try it out: 

user> (def adi (new-user "adi" "secret" "adi@currylogic.com"))

#'user/adi


user> (adi :authenticate "blah")

false


user> (adi :authenticate "secret")

true


Our little closure-based users can now authenticate themselves when asked to do so. 
As mentioned earlier, this form of message passing resembles calling methods on 
objects in languages such as Java and Ruby. The format for doing so could be written 
like so: 

(object message-name & arguments)


Objects in object-oriented programming are usually defined as entities that have state, 
behavior, and equality. Most languages also allow them to be defined in a manner that 
allows inheritance of functionality. So far, we’ve handled state (information such as 
login, password, and email) and behavior (such as :authenticate). Equality 
depends on the domain of usage of these objects, but you could conceivably create a 
generic form of equality testing based on, say, a hash function. In the next section, 
we’ll consolidate the ideas we talked about in this section and add inheritance and a 
nicer syntax to define such objects. 

13.3.4 An object system for Clojure 

In the previous section, we created a function named new-user that behaves as a sort 
of factory for new user objects. You could call new-user using the data elements that a 
user comprises (login, password, and email address), and you’d get a new user 
object. You could then query it for certain data or have it perform certain behaviors. 
We made this possible by implementing a simple message passing scheme, with mes­
sages such as :login and :authenticate. 

 In this section, we’ll generalize the idea of creating objects that have certain data 
and behavior into what traditional object-oriented languages call classes. We’ll allow a 
simple class hierarchy, and we’ll let objects refer to themselves by providing a special 
symbol, traditionally named, this. Finally, we’ll wrap this functionality in a syntactic 
skin in order to make it appear more familiar. 

DEFINING CLASSES 

We’ll start simple. We’ll create the ability to define classes that have no state or behav­
ior. We’ll lay the foundations of our object system starting with the ability to define a 
class that’s empty. For instance, we’d like to be able to say 

(defclass Person)




326 CHAPTER 13 More on functional programming 

This would define a class that would behave as a blueprint for future instances of peo­
ple. We could then ask for the name of such a class: 

(Person :name)

;"Person"


That would return the string "Person", which is the name of the class we’re defining. 
Once we implement this, we can start adding more functionality to our little object 
system. Consider the following implementation: 

(defn new-class [class-name]

 (fn [command & args]


 (condp = command

 :name (name class-name))))


(defmacro defclass [class-name]

 `(def ~class-name (new-class '~class-name)))


So our little Person class is a function that closes over the class-name, passed in along 
with a call to defclass. Our classes support a single message right now, which is 
:name. When passed :name, our Person function returns the string "Person". This 
allows us to do the following: 

user> (def some-class Person)

#'user/some-class


user> (some-class :name)

"Person"


This is to show that the name of the class isn’t associated with the var (in this case 
Person) but with the class object itself. Now that you can define classes, we’ll make it 
so you can instantiate them. 

CREATING INSTANCES 

Because our classes are closures, our instantiated classes will also be closures. We’ll 
create this with a function called new-object that will accept the class that we’d like to 
instantiate. Here’s the implementation: 

(defn new-object [klass]

 (fn [command & args]


 (condp = command

 :class klass)))


Here it is in action: 

(def cindy (new-object Person))


As you can tell, the only message you can send this new object is one that queries its 
class. You can say 

user> (cindy :class)

#<user$new_class__4224$fn__4226 user$new_class__4224$fn__4226@26ced1a8>


That isn’t terribly informative, because it’s returning the class as the function object. 
You can instead further ask its name: 
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user> ((cindy :class) :name)

"Person"


You could add this functionality as a convenience message that an instantiated object 
itself could handle: 

(defn new-object [klass]

 (fn [command & args]

 (condp = command

 :class klass

 :class-name (klass :name))))


You can test this now, but you’ll need to create the object again, because we redefined 
the class. Here it is: 

user> (def cindy (new-object Person))

#'user/cindy


user> (cindy :class-name)

"Person"


Finally, you’re going to be instantiating classes a lot, so you can add a more convenient 
way to do so. You’d like something like a new operator that’s common to several lan­
guages such as Java and Ruby. Luckily, we’ve already set up our class as a function that 
can handle incoming messages, so we’ll add to the vocabulary with a :new message. 
Here’s the new implementation of new-class: 

(defn new-class [class-name]

 (fn klass [command & args]

 (condp = command

 :name (name class-name)

 :new (new-object klass))))


Notice that new-object accepts a class, and we need to refer to the class object from 
within it. We were able to do this by giving the anonymous function a name (klass) 
and then refer to it by that name in the :new clause. With this, creating new objects is 
easier and more familiar: 

user> (def nancy (Person :new))

#'user/nancy


user> (nancy :class-name)

"Person"


So here you are: you’re able to define new classes as well as instantiate them. Our next 
stop will be to allow our objects to maintain state. 

OBJECTS AND STATE 

In chapter 6, we explored Clojure’s support for managing state. In this section, we’ll 
use one of those available mechanisms to allow objects in our object system to also 
become stateful. We’ll use a ref so that our objects will be able to participate in coordi­
nated transactions. We’ll also expand the vocabulary of messages that our objects can 
understand by supporting :set! and :get. They’ll allow us to set and fetch values 
from our objects, respectively. 
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 Consider the following updated definition of our new-object function: 

(defn new-object [klass]

 (let [state (ref {})]

 (fn [command & args]

 (condp = command

 :class klass

 :class-name (klass :name)

 :set! (let [[k v] args] 


(dosync (alter state assoc k v))

 nil)


 :get (let [[key] args]

 (key @state))))))


So now the messages that you can pass to your objects include :class, :class-name, 
:set!, and :get. Let’s see our new stateful objects in action: 

user> (def nancy (Person :new))

#'user/nancy


user> (nancy :set! :name "Nancy Warhol")

nil


user> (nancy :get :name)

"Nancy Warhol"


You can also update your objects using the same :set! message, as follows: 

user> (nancy :set! :name "Nancy Drew")

nil


user> (nancy :get :name)

"Nancy Drew"


We’re coming along in our journey to create a simple object-system. You now have the 
infrastructure to define classes, instantiate them, and manage state. Our next stop will 
be to add support for method definitions. 

DEFINING METHODS 

So far, we’ve dealt with the state side of objects. In this section, we’ll start working on 
behavior by adding support for method definitions. The syntax we’d like to support is 
to include the methods along with the class definition so as to keep it together. This 
is another common pattern with languages such as Java and C++. The following is the 
syntax we’d like to be able to use: 

(defclass Person

 (method age []

 (* 2 10))


 (method greet [visitor]

 (str "Hello there, " visitor)))


We’ve started with simple methods. The age method, for instance, doesn’t take any 
arguments and returns the result of a simple computation. Similarly, the greet 
method accepts a single argument and returns a simple computation involving it. 
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Now that we’ve laid out the expected syntax, we can go about the implementa­
tion. First, we’ll work on defclass, in order to make the previous notation valid. 
Consider the following function, which operates on a single method definition 
s-expression: 

(defn method-spec [sexpr]

 (let [name (keyword (second sexpr))


 body (next sexpr)]

 [name (conj body 'fn)]))


This creates a vector containing the name of the method definition (as a keyword) 
and another s-expression, which can later be evaluated to create an anonymous func­
tion. Here’s an example: 

user> (method-spec '(method age [] (* 2 10)))

[:age (fn age [] (* 2 10))]


Because you’re going to specify more than one method inside your class definition, 
you’ll need to call method-spec for each of them. The following method-specs func­
tion will accept the complete specification of your class, pick out the method defini­
tions by filtering on the first symbol (it should be method), and then call method-spec 
on each. Here it is: 

(defn method-specs [sexprs]

 (->> sexprs


 (filter #(= 'method (first %)))

 (mapcat method-spec)

 (apply hash-map)))


The easiest way to see what’s going on is to examine a sample output: 

user> (method-specs '((method age [] 

(* 2 10))


 (method greet [visitor]

 (str "Hello there, " visitor))))


{:age (fn age [] 

(* 2 10)), 


:greet (fn greet [visitor] 

(str "Hello there, " visitor))}


We now have a literal map that can be evaluated to return one containing keywords as 
keys for each method definition and an associated anonymous function. This map 
could then be passed to our new-class function for later use. Here’s the associated 
revision of new-class: 

(defn new-class [class-name methods]

 (fn klass [command & args]

 (condp = command

 :name (name class-name)

 :new (new-object klass))))


Now that all the supporting pieces are in place, we can make the final change to 
defclass, which will allow us to accept method definitions: 
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(defmacro defclass [class-name & specs]

 (let [fns (or (method-specs specs) {})]


 `(def ~class-name (new-class '~class-name ~fns))))


Now, our desired syntax from before will work: 

user> (defclass Person

 (method age []

 (* 2 10))


 (method greet [visitor]

 (str "Hello there, " visitor)))


#'user/Person


So we’ve successfully made it possible to specify methods along with our class defini­
tions. Now, all you have to do is to extend our objects so that you can invoke these 
methods. We’ll do this in the next section. 

INVOKING METHODS 

In order to be able to invoke a method on one of our objects, such as nancy, you’ll 
need some way to look up the definition from the associated class. You’ll need to be 
able to query the class of a given object for a particular method. Let’s add the :method 
message to our classes, which would accept the name of the method you’re looking 
for. Consider the following revision to our new-class function: 

(defn new-class [class-name methods]

 (fn klass [command & args]

 (condp = command

 :name (name class-name)

 :new (new-object klass)

 :method (let [[method-name] args] 


(find-method method-name methods)))))


We haven’t defined find-method yet, so this code isn’t quite ready to be compiled. In 
order to find a method from our previously created map of methods, you can do a 
simple hash map lookup. Therefore, the implementation of find-method is simple: 

(defn find-method [method-name instance-methods]

 (instance-methods method-name))


With this addition, you can look up a method in a class, using the same keyword nota­
tion you’ve been using for our all other messages. Here’s an example: 

(Person :method :age)

#<user$age__3921 user$age__3921@1b4865b1>


Now that you can get a handle on the function object that represents a method, 
you’re ready to call it. Indeed, you can call the previous function on the REPL, and it 
will do what we laid out in the class definition: 

user> ((Person :method :age))

20


That works, but it’s far from pretty. You should be able to support the same familiar 
interface of calling methods on objects that they belong to. Let’s expand the capability 
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of the message-passing system we’ve built so far in order to handle such methods also. 
Here’s an updated version of new-object that does this:

 (defn new-object [klass]

 (let [state (ref {})]

 (fn [command & args]

 (condp = command

 :class klass

 :class-name (klass :name)

 :set! (let [[k v] args] 


(dosync (alter state assoc k v))

 nil)


 :get (let [[key] args]

 (key @state))


 (let [method (klass :method command)]

 (if-not method 


(throw (RuntimeException. 

(str "Unable to respond to " command))))


 (apply method args))))))


What we added was a default clause to condp. If the message passed in isn’t one of 
:class, :class-name, :set!, or :get, then we assume it’s a method call on the object. 
We ask the class for the function by passing along the received command as the 
method name, and if we get back a function, we execute it. Here it is in action: 

user> (def shelly (Person :new))

#'user/shelly


user> (shelly :age)

20


user> (shelly :greet "Nancy")

"Hello there, Nancy"


Remember, in order for this to work, the definition of Person would need to be reeval­
uated after these changes. Once you’re satisfied that your implementation does what 
you want so far, you’ll be ready to move on. Our next little feature is the ability of our 
objects to refer to themselves. 

REFERRING TO THIS 

So far, our method definitions have been simple. But there’s often a need for methods 
within a class definition to call each other. Most programming languages that support 
this feature do so via a special keyword (usually named this or self), which refers to 
the object itself. We’ll support the same functionality by providing a special name, 
which we’ll also call this. 

 Once we’re finished, we’d like to be able to say the following: 

(defclass Person

 (method age []

 (* 2 10))


 (method about [diff]

 (str "I was born about " (+ diff (this :age)) " years ago")))
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Notice how the about method calls the age method via the this construct. In order to 
implement this, we’ll first create a var named this, so that our class definitions con­
tinue to work (without complaining about unresolved symbols). 

(declare this)


This var will need a binding when any method executes so that its bound value refers 
to the object itself. A simple binding form will do, as long as we have something to 
bind to. We will employ the same trick we did when we named the anonymous class 
function klass earlier, by naming the anonymous object function thiz. Here’s the 
updated code for the new-object function: 

(defn new-object [klass]

 (let [state (ref {})]

 (fn thiz [command & args]

 (condp = command

 :class klass

 :class-name (klass :name)

 :set! (let [[k v] args] 


(dosync (alter state assoc k v))

 nil)


 :get (let [[key] args]

 (key @state))


 (let [method (klass :method command)]

 (if-not method 


(throw (RuntimeException. 

(str "Unable to respond to " command))))


 (binding [this thiz]

 (apply method args)))))))


And that’s all there is to it. You can confirm that it works on the REPL: 

user> (def shelly (Person :new))

#'user/shelly


user> (shelly :about 2)

"I was born about 22 years ago"


Remember to evaluate the new, revised definition of new-object before trying it out. 
We’ve added almost all the features we wanted to when we started this section. The 
last thing we’ll add is the ability of a class to inherit from another. 

CLASS INHERITANCE 

We’re about to add a final feature to our little object system. Traditional OO program­
ming languages such as Java and Ruby allow modeling of objects using inheritance, so 
that problems can be decomposed into hierarchies of functionality. The lower in a 
hierarchy you go, the more specific you get. For instance, Animal might be a parent 
class of Dog. In this section, we’ll add the ability to do that.

 The first thing we’ll do is allow our class definition to specify the parent class. 
Imagine that our syntax will look like this: 

(defclass Woman

 (extends Person)
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(method greet [v]

 (str "Hello, " v))


 (method age []

 (* 2 9)))


Here, our new Woman class inherits from a previously defined Person class. We’ve used 
the term extends to signify this relationship, as is common to other OO languages. 
Okay, now that we have our notation, let’s implement it. The first step is to write a 
function that can extract the parent class information from the class definition. 
Before we can do so, we have to decide what to do if one isn’t provided. 

 Again, we’ll look at other languages for the answer. Our class hierarchies will all be 
singly rooted, and the top-level class (highest parent class) will be OBJECT. We’ll define 
this shortly. For now, we’re ready to write parent-class-spec, the function that will 
parse the specification of the parent class from a given class definition: 

(defn parent-class-spec [sexprs]

 (let [extends-spec (filter #(= 'extends (first %)) sexprs)


 extends (first extends-spec)]

 (if (empty? extends)

 'OBJECT

 (last extends))))


To confirm that this works, try it at the REPL. You’ll pass it the specification part of a 
class definition: 

user> (parent-class-spec '((extends Person)

 (method age []

 (* 2 9))))


Person


Now that we have the parent class, we’ll pass it to our new-class function. We don’t 
want to pass a symbol as the parent class but rather the var named by that symbol. For 
instance, the value returned by the call to parent-class-spec is a Clojure symbol. If 
you have a symbol, you can find the var of that name by using the var special form: 

user> (var map)

#'clojure.core/map


There’s a reader macro for the var special form, #' (the hash followed by a tick). With 
this information in hand, we can make the needed modification to defclass: 

(defmacro defclass [class-name & specs]

 (let [parent-class (parent-class-spec specs)


 fns (or (method-specs specs) {})]

    `(def ~class-name (new-class '~class-name  #'~parent-class ~fns))))


Note that we’re now passing an extra parameter (the parent class) to the new-class 
function, so we’ll have to change that to accommodate it: 

(defn new-class [class-name parent methods]

 (fn klass [command & args]

 (condp = command

 :name (name class-name)
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 :parent parent

 :new (new-object klass)

 :method (let [[method-name] args] 


(find-method method-name methods)))))


There’s one more thing to handle before we can use our new defclass. We’re look­
ing up the parent class using var, so we’ll need OBJECT to resolve to something. It’s 
now time to define it: 

(def OBJECT (new-class :OBJECT nil {}))


With these changes, the definition of the Woman class from earlier in this section 
should work. Let’s check this on the REPL: 

user>(defclass Person

 (method age []

 (* 2 10))


 (method about [diff]

         (str "I was born about " (+ diff (this :age)) " years ago")))

#'user/Person


This is our parent class; now we’ll inherit from it to create the Woman class: 

user>(defclass Woman

 (extends Person)

 (method greet [v]

 (str "Hello, " v))


 (method age []

 (* 2 9)))


#'user/Woman


We’ve only half finished the job we started out to do. Although we can specify the par­
ent class in our calls to defclass, method calls on our objects won’t work right with 
respect to parent classes. The following illustrates the problem: 

user>(def donna (Woman :new))

#'user/donna


user>(donna :greet "Shelly")

"Hello, Shelly"


user>(donna :age)

18


user>(donna :about 3)

; Evaluation aborted.

Unable to respond to :about

 [Thrown class java.lang.RuntimeException]


In order to fix this last error, we’ll have to improve our method lookup in order to 
find the method in the parent class. Indeed, we’ll have to search up the hierarchy of 
classes (parent of the parent of the parent…) until we hit OBJECT. We’ll implement 
this new method lookup by modifying the find-method function as follows: 

(defn find-method [method-name klass]

 (or ((klass :methods) method-name)
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(if-not (= #'OBJECT klass)

 (find-method method-name (klass :parent)))))


In order for this to work, we’ll need to have our classes handle another message, 
namely, :methods. Also, our classes will use this new version of find-method in order 
to perform method lookup. Here’s the updated code: 

(defn new-class [class-name parent methods]

 (fn klass [command & args]

 (condp = command

 :name (name class-name)

 :parent parent

 :new (new-object klass)

 :methods methods

 :method (let [[method-name] args] 


(find-method method-name klass)))))


With this final change, our object system will work as planned. Figure 13.2 shows the 
conceptual model of the class system we’ve built.

 Here’s the call to the :about method that wasn’t working a few paragraphs back: 

user> (donna :about 3)

"I was born about 21 years ago"


Again, remember to reevaluate everything after the last change, including the defini­
tion of donna itself. Notice that the :about method is being called from the parent 
class Person. Further notice that the body of the :about method calls :age on the 

Figure 13.2 The minimal object system we’ve 
built implements a major portion of features 
that are supported by most common OO 
systems. Everything ultimately derives from a 
common entity called OBJECT. Instances look 
up the class they derive from and look up 
methods there. Methods can also be looked up 
in the chain of hierarchy. 
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this reference, which is defined in both Person and Woman. Our object system cor­
rectly calls the one on donna, because we overrode the definition in the Woman class.

 We’ve completed what we set out to do. We’ve written a simple object system that 
does most of what other languages provide. We can define classes, inherit from others, 
create instances, and call methods that follow the inheritance hierarchy. Objects can 
even refer to themselves using the this keyword. The following listing shows the com­
plete code. 

Listing 13.1 A simple object system for Clojure 

(declare this find-method)


(defn new-object [klass]

 (let [state (ref {})]

 (fn thiz [command & args]

 (condp = command

 :class klass

 :class-name (klass :name)

 :set! (let [[k v] args] 


(dosync (alter state assoc k v))

 nil)


 :get (let [[key] args]

 (key @state))


 (let [method (klass :method command)]

 (if-not method 


(throw (RuntimeException. 

(str "Unable to respond to " command))))


 (binding [this thiz]

 (apply method args)))))))


(defn new-class [class-name parent methods]

 (fn klass [command & args]

 (condp = command

 :name (name class-name)

 :parent parent

 :new (new-object klass)

 :methods methods

 :method (let [[method-name] args] 


(find-method method-name klass)))))


(def OBJECT (new-class :OBJECT nil {}))


(defn find-method [method-name klass]

 (or ((klass :methods) method-name)


 (if-not (= #'OBJECT klass)

 (find-method method-name (klass :parent)))))


(defn method-spec [sexpr]

 (let [name (keyword (second sexpr))


 body (next sexpr)]

 [name (conj body 'fn)]))


(defn method-specs [sexprs]

 (->> sexprs


 (filter #(= 'method (first %)))
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(mapcat method-spec)

 (apply hash-map)))


(defn parent-class-spec [sexprs]

 (let [extends-spec (filter #(= 'extends (first %)) sexprs)


 extends (first extends-spec)]

 (if (empty? extends)

 'OBJECT

 (last extends))))


(defmacro defclass [class-name & specs]

 (let [parent-class (parent-class-spec specs)


 fns (or (method-specs specs) {})]

    `(def ~class-name (new-class '~class-name  #'~parent-class ~fns))))


So that’s it, clocking in at a little over 50 lines of code. We haven’t added several fea­
tures that are provided by more robust object systems, but you can certainly do so. For 
instance, this function doesn’t perform a lot of error checking. The key to this imple­
mentation is the lexical closure. It’s left up to you to take a stand on the old debate: 
are objects a poor man’s closures, or is it the other way around? 

 More than anything else, though, it’s important to remember this: although this 
little example showed some of the power of functional programming (and that tradi­
tional object-oriented programming features aren’t particularly special), in most 
cases, such artificial constructs are unnecessary in languages such as Clojure. We’ll 
talk about this briefly next. 

DATA ABSTRACTION 

We said that constructs such as our object system aren’t particularly useful in a lan­
guage such as Clojure. There are two reasons for this. 

 The first relates to abstraction. Despite popular belief, you don’t need objects to 
create data abstraction. There’s a real alternative in Clojure in its core data structures: 
each implementation of the sequence abstraction (the hash map, the vector, and so 
on) is a suitable candidate to represent data in an application. Given that these are 
immutable and therefore thread safe, there’s no strict need for procedural abstrac­
tions that wrap their mutation. 

 The second reason is a bit more subjective. Alan Perlis once said that it’s better to 
have a 100 functions that operate on a single data structure instead of 10 functions 
that operate on 10 data structures. Having a common data structure (in Clojure’s 
case, the sequence abstraction) allows for more code reuse, because code that works 
on sequences can be used no matter what specific data it contains. An example is the 
large sequence library, which works no matter what the specific implementation is.

 Using the let-over-lambda technique shown previously has its value, as you saw in 
the earlier part of the chapter. But creating an object system like the one we created in 
the second half raises a barrier of inoperability with other libraries that don’t know 
about it. In conclusion, although the object system serves to illustrate the usage of clo­
sures and some traditional OOP concepts, using the built-in core data structures is a 
much better choice in your own programs. 
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FINAL NOTES 

It’s worth recalling that the implementation of this little object system was done using 
functions. Fewer than half of the total lines of code were for manipulating the func­
tions, and the rest were to make the syntax look a certain way. The macro defclass 
and the supporting functions (parent-class-spec, method-specs, and method-spec) 
account for over half the code. This syntactic layer sports an arbitrarily chosen syntax. 
The semantics of the object system wouldn’t change if we decided to use a different 
syntax. The syntax isn’t important (in this case certainly, and also in general); instead, 
it’s the underlying mechanisms and features that make a piece of code useful. Having 
said that, a nice syntax certainly helps! The first reason is that it makes for convenient, 
intuitive usage. The second is that you can write error checkers by analyzing the code 
as data and give meaningful errors that are easier to understand and correct. You 
could certainly do more at the syntactic level to make this library easier to use.

 Similarly, there are many features that you could add at a semantic level. For 
instance, there’s no reason for a class hierarchy to be static. Instead of it being cast in 
stone when defclass is called, you could add messages that support modifying the hier­
archy at runtime. As an example, our classes could respond to :set-class! and :set­
parent!. Adding such features might be an interesting exercise for a spare afternoon. 

13.4 Summary 
This chapter was about functional programming, the understanding of which is cru­
cial to programming in Clojure. If you’re coming from an imperative background,  
this transition can take some effort. But the results are sweet, because functional code 
is more expressive, more reusable, and usually shorter.

 We started out creating our own implementations of map, reduce, and filter—the 
workhorses of functional programming languages. Thinking recursively and in terms 
of lazy sequences is another important skill that will have a big impact on your Clojure 
programs. We then looked at partial application of functions and the associated con­
cept of currying. Although these aren’t used that often in Clojure, the insight you 
gleaned from these concepts can help when they do fit. 

Our final stop was to explore closures, another fundamental tool in the func­
tional programmer’s tool belt. Once we  presented a basic explanation of them, we 
gathered everything from this chapter (and from the ones so far!) to create our own 
little object system. This exercise was meant to demonstrate the power of closures 
and to also shed light on the fact that functional programming transcends tradi­
tional object-oriented programming. 
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