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Preface to the second edition


Since the first edition of Semantic Web for the Working Ontologist came out in June 2008, we have been 
encouraged by the reception the book has received. Practitioners from a wide variety of industries— 
health care, energy, environmental science, life sciences, national intelligence, and publishing, to name 
a few—have told us that the first edition clarified for them the possibilities and capabilities of Semantic 
Web technology. This was the audience we had hoped to reach, and we are happy to see that we have. 

Since that time, the technology standards of the Semantic Web have continued to develop. SPARQL, 
the query language for RDF, became a Recommendation from the World Wide Web Consortium and was 
so successful that version 2 is already nearly ready (it will probably be ratified by the time this book sees 
print). SKOS, which we described as an example of modeling “in the wild” in the first edition, has raced 
to the forefront of the Semantic Web with high-profile uses in a wide variety of industries, so we gave it 
a chapter of its own. Version 2 of the Web Ontology Language, OWL, also appeared during this time. 

Probably the biggest development in the Semantic Web standards since the first edition is the rise of 
the query language SPARQL. Beyond being a query language, SPARQL is a powerful graph-matching 
language which pushes its utility beyond simple queries. In particular, SPARQL can be used to specify 
general inferencing in a concise and precise way. We have adopted it as the main expository language 
for describing inferencing in this book. It turns out to be a lot easier to describe RDF, RDFS, and OWL 
in terms of SPARQL. 

The “in the wild” sections became problematic in the second edition, but for a good reason—we had 
too many good examples to choose from. We’re very happy with the final choices, and are pleased with the 
resulting “in the wild” chapters (9 and 13). The Open Graph Protocol and Good Relations are probably 
responsible for more serious RDF data on the Web than any other efforts. While one may argue (and many 
have) that FOAF is getting a bit long in the tooth, recent developments in social networking have brought 
concerns about privacy and ownership of social data to the fore; it was exactly these concerns that 
motivated FOAF over a decade ago. We also include two scientific examples of models “in the wild”— 
QUDT (Quantities, Units, Dimensions, and Types) and The Open Biological and Biomedical Ontologies 
(OBO). QUDT is a great example of how SPARQL can be used to specify detailed computation over 
a large set of rules (rules for converting units and for performing dimensional analysis). The wealth of 
information in the OBO has made them perennial favorites in health care and the life sciences. In our 
presentation, we hope to make them accessible to an audience who doesn’t have specialized experience 
with OBO publication conventions. While these chapters logically build on the material that precedes 
them, we have done our best to make them stand alone, so that impatient readers who haven’t yet mastered 
all the fine points of the earlier chapters can still appreciate the “wild” examples. 

We have added some organizational aids to the book since the first edition. The “Challenges” that 
appear throughout the book, as in the first edition, provide examples for how to use the Semantic Web 
technologies to solve common modeling problems. The “FAQ” section organizes the challenges by 
topic, or, more properly, by the task that they illustrate. We have added a numeric index of all the 
challenges to help the reader cross-reference them. 

We hope that the second edition will strike a chord with our readers as the first edition has done. 
On a sad note, many of the examples in Chapter 5 use “Elizabeth Taylor” as an example of a “living 

actress.” During postproduction of this book, Dame Elizabeth Taylor succumbed to congestive heart 
failure and died. We were too far along in the production to make the change, so we have kept the 
examples as they are. May her soul rest in peace. 

vii 
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PREFACE TO THE FIRST EDITION 
In 2003, when the World Wide Web Consortium was working toward the ratification of the Recom
mendations for the Semantic Web languages, RDF, RDFS, and OWL, we realized that there was a need 
for an industrial-level introductory course in these technologies. The standards were technically sound, 
but, as is typically the case with standards documents, they were written with technical completeness 
in mind rather than education. We realized that for this technology to take off, people other than 
mathematicians and logicians would have to learn the basics of semantic modeling. 

Toward that end, we started a collaboration to create a series of trainings aimed not at university 
students or technologists but at Web developers who were practitioners in some other field. In short, we 
needed to get the Semantic Web out of the hands of the logicians and Web technologists, whose job had 
been to build a consistent and robust infrastructure, and into the hands of the practitioners who were to 
build the Semantic Web. The Web didn’t grow to the size it is today through the efforts of only HTML 
designers, nor would the Semantic Web grow as a result of only logicians’ efforts. 

After a year or so of offering training to a variety of audiences, we delivered a training course at the 
National Agriculture Library of the U.S. Department of Agriculture. Present for this training were 
a wide variety of practitioners in many fields, including health care, finance, engineering, national 
intelligence, and enterprise architecture. The unique synergy of these varied practitioners resulted in 
a dynamic four-day investigation into the power and subtlety of semantic modeling. Although the 
practitioners in the room were innovative and intelligent, we found that even for these early adopters, 
some of the new ways of thinking required for modeling in a World Wide Web context were too subtle 
to master after just a one-week course. One participant had registered for the course multiple times, 
insisting that something else “clicked” each time she went through the exercises. 

This is when we realized that although the course was doing a good job of disseminating the 
information and skills for the Semantic Web, another, more archival resource was needed. We had to 
create something that students could work with on their own and could consult when they had 
questions. This was the point at which the idea of a book on modeling in the Semantic Web was 
conceived. We realized that the readership needed to include a wide variety of people from a number of 
fields, not just programmers or Web application developers but all the people from different fields who 
were struggling to understand how to use the new Web languages. 

It was tempting at first to design this book to be the definitive statement on the Semantic Web 
vision, or “everything you ever wanted to know about OWL,” including comparisons to program 
modeling languages such as UML, knowledge modeling languages, theories of inferencing and logic, 
details of the Web infrastructure (URIs and URLs), and the exact current status of all the developing 
standards (including SPARQL, GRDDL, RDFa, and the new OWL 1.1 effort). We realized, however, 
that not only would such a book be a superhuman undertaking, but it would also fail to serve our 
primary purpose of putting the tools of the Semantic Web into the hands of a generation of intelligent 
practitioners who could build real applications. For this reason, we concentrated on a particular 
essential skill for constructing the Semantic Web: building useful and reusable models in the World 
Wide Web setting. 

Many of these patterns entail several variants, each embodying a different philosophy or approach 
to modeling. For advanced cases such as these, we realized that we couldn’t hope to provide a single, 
definitive answer to how these things should be modeled. So instead, our goal is to educate domain 
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practitioners so that they can read and understand design patterns of this sort and have the intellectual 
tools to make considered decisions about which ones to use and how to adapt them. We wanted to focus 
on those trying to use RDF, RDFS, and OWL to accomplish specific tasks and model their own data 
and domains, rather than write a generic book on ontology development. Thus, we have focused on the 
“working ontologist” who was trying to create a domain model on the Semantic Web. 

The design patterns we use in this book tend to be much simpler. Often a pattern consists of only 
a single statement but one that is especially helpful when used in a particular context. The value of the 
pattern isn’t so much in the complexity of its realization but in the awareness of the sort of situation in 
which it can be used. 

This “make it useful” philosophy also motivated the choice of the examples we use to illustrate 
these patterns in this book. There are a number of competing criteria for good example domains in 
a book of this sort. The examples must be understandable to a wide variety of audiences, fairly 
compelling, yet complex enough to reflect real modeling situations. The actual examples we have 
encountered in our customer modeling situations satisfy the last condition but either are too 
specialized—for example, modeling complex molecular biological data; or, in some cases, they are too 
business-sensitive—for example, modeling particular investment policies—to publish for a general 
audience. 

We also had to struggle with a tension between the coherence of the examples. We had to decide 
between using the same example throughout the book versus having stylistic variation and different 
examples, both so the prose didn’t get too heavy with one topic, but also so the book didn’t become one 
about how to model—for example, the life and works of William Shakespeare for the Semantic Web. 

We addressed these competing constraints by introducing a fairly small number of example 
domains: William Shakespeare is used to illustrate some of the most basic capabilities of the 
Semantic Web. The tabular information about products and the manufacturing locations was inspired 
by the sample data provided with a popular database management package. Other examples come 
from domains we’ve worked with in the past or where there had been particular interest among our 
students. We hope the examples based on the roles of people in a workplace will be familiar to just 
about anyone who has worked in an office with more than one person, and that they highlight the 
capabilities of Semantic Web modeling when it comes to the different ways entities can be related to 
one another. 

Some of the more involved examples are based on actual modeling challenges from fairly involved 
customer applications. For example, the ice cream example in Chapter 7 is based, believe it or not, on 
a workflow analysis example from a NASA application. The questionnaire is based on a number of 
customer examples for controlled data gathering, including sensitive intelligence gathering for 
a military application. In these cases, the domain has been changed to make the examples more 
entertaining and accessible to a general audience. 

We have included a number of extended examples of Semantic Web modeling “in the wild,” where 
we have found publicly available and accessible modeling projects for which there is no need to sanitize 
the models. These examples can include any number of anomalies or idiosyncrasies, which would be 
confusing as an introduction to modeling but as illustrations give a better picture about how these 
systems are being used on the World Wide Web. In accordance with the tenet that this book does not 
include everything we know about the Semantic Web, these examples are limited to the modeling issues 
that arise around the problem of distributing structured knowledge over the Web. Thus, the treatment 
focuses on how information is modeled for reuse and robustness in a distributed environment. 
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By combining these different example sources, we hope we have struck a happy balance among all 
the competing constraints and managed to include a fairly entertaining but comprehensive set of 
examples that can guide the reader through the various capabilities of the Semantic Web modeling 
languages. 

This book provides many technical terms that we introduce in a somewhat informal way. Although 
there have been many volumes written that debate the formal meaning of words like inference, 
representation, and even meaning, we have chosen to stick to a relatively informal and operational use 
of the terms. We feel this is more appropriate to the needs of the ontology designer or application 
developer for whom this book was written. We apologize to those philosophers and formalists who 
may be offended by our casual use of such important concepts. 

We often find that when people hear we are writing a new Semantic Web modeling book, their first 
question is, “Will it have examples?” For this book, the answer is an emphatic “Yes!” Even with a wide 
variety of examples, however, it is easy to keep thinking “inside the box” and to focus too heavily on 
the details of the examples themselves. We hope you will use the examples as they were intended: for 
illustration and education. But you should also consider how the examples could be changed, adapted, 
or retargeted to model something in your personal domain. In the Semantic Web, Anyone can say 
Anything about Any topic. Explore the freedom. 

Second Printing: Since the first printing there have been advances in several of the technol
ogies we discuss such as SPARQL, OWL 2, and SKOS that go beyond the state of affairs at the 
time of first printing. We have created a web site that covers developing technology standards and 
changing thinking about the best practices for the Semantic Web. You can find it at http://www 
.workingontologist.org/. 

http://www
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This book is about something we call the Semantic Web. From the name, you can probably guess that it 
is related somehow to the World Wide Web (WWW) and that it has something to do with semantics. 
Semantics, in turn, has to do with understanding the nature of meaning, but even the word semantics 
has a number of meanings. In what sense are we using the word semantics? And how can it be applied 
to the Web? 

This book is for a working ontologist. That is, the aim of this book is not to motivate or pitch 
the Semantic Web but to provide the tools necessary for working with it. Or, perhaps more 
accurately, the World Wide Web Consortium (W3C) has provided these tools in the forms of 
standard Semantic Web languages, complete with abstract syntax, model-based semantics, refer
ence implementations, test cases, and so forth. But these are like any tools—there are some basic 
tools that are all you need to build many useful things, and there are specialized craftsman’s tools 
that can produce far more specializes outputs. Whichever tools are needed for a particular task, 
however, one still needs to understand how to use them. In the hands of someone with no 
knowledge, they can produce clumsy, ugly, barely functional output, but in the hands of a skilled 
craftsman, they can produce works of utility, beauty, and durability. It is our aim in this book to 
describe the craft of building Semantic Web systems. We go beyond only providing a coverage 
of the fundamental tools to also show how they can be used together to create semantic 
models, sometimes called ontologies, that are understandable, useful, durable, and perhaps even 
beautiful. 

1 



2 CHAPTER 1 What is the Semantic Web? 

WHAT IS A WEB? 
The idea of a web of information was once a technical idea accessible only to highly trained, elite 
information professionals: IT administrators, librarians, information architects, and the like. Since the 
widespread adoption of the World Wide Web, it is now common to expect just about anyone to be 
familiar with the idea of a web of information that is shared around the world. Contributions to this 
web come from every source, and every topic you can think of is covered. 

Essential to the notion of the Web is the idea of an open community: Anyone can contribute their 
ideas to the whole, for anyone to see. It is this openness that has resulted in the astonishing 
comprehensiveness of topics covered by the Web. An information “web” is an organic entity that 
grows from the interests and energy of the communities that support it. As such, it is a hodgepodge of 
different analyses, presentations, and summaries of any topic that suits the fancy of anyone with the 
energy to publish a web page. Even as a hodgepodge, the Web is pretty useful. Anyone with the 
patience and savvy to dig through it can find support for just about any inquiry that interests them. But 
the Web often feels like it is “a mile wide but an inch deep.” How can we build a more integrated, 
consistent, deep Web experience? 

SMART WEB, DUMB WEB 
Suppose you consult a web page, looking for a major national park, and you find a list of hotels that 
have branches in the vicinity of the park. In that list you see that Mongotel, one of the well-known hotel 
chains, has a branch there. Since you have a Mongotel rewards card, you decide to book your room 
there. So you click on the Mongotel web site and search for the hotel’s location. To your surprise, you 
can’t find a Mongotel branch at the national park. What is going on here? “That’s so dumb,” you tell 
your browsing friends. “If they list Mongotel on the national park web site, shouldn’t they list the 
national park on Mongotel’s web site?” 

Suppose you are planning to attend a conference in a far-off city. The conference web site lists the 
venue where the sessions will take place. You go to the web site of your preferred hotel chain and find 
a few hotels in the same vicinity. “Which hotel in my chain is nearest to the conference?” you wonder. 
“And just how far off is it?” There is no shortage of web sites that can compute these distances once 
you give them the addresses of the venue and your own hotel. So you spend some time copying and 
pasting the addresses from one page to the next and noting the distances. You think to yourself, “Why 
should I be the one to copy this information from one page to another? Why do I have to be the one to 
copy and paste all this information into a single map? 

Suppose you are investigating our solar system, and you find a comprehensive web site about objects 
in the solar system: Stars (well, there’s just one of those), planets, moons, asteroids, and comets are all 
described there. Each object has its own web page, with photos and essential information (mass, albedo, 
distance from the sun, shape, size, what object it revolves around, period of rotation, period of revolution, 
etc.). At the head of the page is the object category: planet, moon, asteroid, comet. Another page includes 
interesting lists of objects: the moons of Jupiter, the named objects in the asteroid belt, the planets that 
revolve around the sun. This last page has the nine familiar planets, each linked to its own data page. 

One day, you read in the newspaper that the International Astronomical Union (IAU) has decided 
that Pluto, which up until 2006 was considered a planet, should be considered a member of a new 
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category called a “dwarf planet”! You rush to the Pluto page and see that indeed, the update has been 
made: Pluto is listed as a dwarf planet! But when you go back to the “Solar Planets” page, you still see 
nine planets listed under the heading “Planet.” Pluto is still there! “That’s dumb.” Then you say to 
yourself, “Why didn’t someone update the web pages consistently?” 

What do these examples have in common? Each of them has an apparent representation of data, 
whose presentation to the end user (the person operating the Web browser) seems “dumb.” What do we 
mean by “dumb”? In this case, “dumb” means inconsistent, out of synchronized, and disconnected. 
What would it take to make the Web experience seem smarter? Do we need smarter applications or 
a smarter Web infrastructure? 

Smart web applications 
The Web is full of intelligent applications, with new innovations coming every day. Ideas that once 
seemed futuristic are now commonplace; search engines make matches that seem deep and intuitive; 
commerce sites make smart recommendations personalized in uncanny ways to your own purchasing 
patterns; mapping sites include detailed information about world geography, and they can plan routes 
and measure distances. The sky is the limit for the technologies a web site can draw on. Every 
information technology under the sun can be used in a web site, and many of them are. New sites with 
new capabilities come on the scene on a regular basis. 

But what is the role of the Web infrastructure in making these applications “smart”? It is tempting 
to make the infrastructure of the Web smart enough to encompass all of these technologies and more. 
The smarter the infrastructure, the smarter the Web’s performance, right? But it isn’t practical, or even 
possible, for the Web infrastructure to provide specific support for all, or even any, of the technologies 
that we might want to use on theWeb. Smart behavior in theWeb comes from smart applications on the 
Web, not from the infrastructure. 

So what role does the infrastructure play in making the Web smart? Is there a role at all? We have 
smart applications on the Web, so why are we even talking about enhancing the Web infrastructure to 
make a smarter Web if the smarts aren’t in the infrastructure? 

The reason we are improving the Web infrastructure is to allow smart applications to perform to 
their potential. Even the most insightful and intelligent application is only as smart as the data that is 
available to it. Inconsistent or contradictory input will still result in confusing, disconnected, “dumb” 
results, even from very smart applications. The challenge for the design of the Semantic Web is not to 
make a web infrastructure that is as smart as possible; it is to make an infrastructure that is most 
appropriate to the job of integrating information on the Web. 

The Semantic Web doesn’t make data smart because smart data isn’t what the Semantic Web needs. 
The Semantic Web just needs to get the right data to the right place so the smart applications can do 
their work. So the question to ask is not “How can we make the Web infrastructure smarter?” but 
“What can the Web infrastructure provide to improve the consistency and availability of Web data?” 

Connected data is smarter data 
Even in the face of intelligent applications, disconnected data result in dumb behavior. But the Web 
data don’t have to be smart; that’s the job of the applications. So what can we realistically and 
productively expect from the data in our Web applications? In a nutshell, we want data that don’t 
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surprise us with inconsistencies that make us want to say, “This doesn’t make sense!” We don’t need 
a smart Web infrastructure, but we need a Web infrastructure that lets us connect data to smart Web 
applications so that the whole Web experience is enhanced. The Web seems smarter because smart 
applications can get the data they need. 

In the example of the hotels in the national park, we’d like there to be coordination between the two 
web pages so that an update to the location of hotelswould be reflected in the list of hotels at any particular 
location. We’d like the two sources to stay synchronized; then we won’t be surprised at confusing 
and inconsistent conclusions drawn from information taken from different pages of the same site. 

In the mapping example, we’d like the data from the conference web site and the data from the 
hotels web site to be automatically understandable to the mapping web site. It shouldn’t take inter
pretation by a human user to move information from one site to the other. The mapping web site 
already has the smarts it needs to find shortest routes (taking into account details like toll roads and 
one-way streets) and to estimate the time required to make the trip, but it can only do that if it knows 
the correct starting and endpoints. 

We’d like the astronomy web site to update consistently. If we state that Pluto is no longer a planet, 
the list of planets should reflect that fact as well. This is the sort of behavior that gives a reader 
confidence that what they are reading reflects the state of knowledge reported in the web site, 
regardless of how they read it. 

None of these things is beyond the reach of current information technology. In fact, it is not 
uncommon for programmers and system architects, when they first learn of the Semantic Web, to 
exclaim proudly, “I implemented something very like that for a project I did a few years back. We 
used..” Then they go on to explain how they used some conventional, established technology such as 
relational databases, XML stores, or object stores to make their data more connected and consistent. 
But what is it that these developers are building? 

What is it about managing data this way that made it worth their while to create a whole subsystem 
on top of their base technology to deal with it? And where are these projects two or more years later? 
When those same developers are asked whether they would rather have built a flexible, distributed, 
connected data model support system themselves than have used a standard one that someone else 
optimized and supported, they unanimously chose the latter. Infrastructure is something that one would 
rather buy than build. 

SEMANTIC DATA 
In the Mongotel example, there is a list of hotels at the national park and another list of locations for 
hotels. The fact that these lists are intended to represent the presence of a hotel at a certain location is 
not explicit anywhere; this makes it difficult to maintain consistency between the two representations. 
In the example of the conference venue, the address appears only as text typeset on a page so that 
human beings can interpret it as an address. There is no explicit representation of the notion of an 
address or the parts that make up an address. In the case of the astronomy web page, there is no explicit 
representation of the status of an object as a planet. In all of these cases, the data describe the 
presentation of information rather than describe the entities in the world. 

Could it be some other way? Can an application organize its data so that they provide an integrated 
description of objects in the world and their relationships rather than their presentation? The answer is 
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“yes,” and indeed it is common good practice in web site design to work this way. There are a number 
of well-known approaches. 

One common way to make Web applications more integrated is to back them up with a relational 
database and generate the web pages from queries run against that database. Updates to the site are 
made by updating the contents of the database. All web pages that require information about 
a particular data record will change when that record changes, without any further action required by 
the Web maintainer. The database holds information about the entities themselves, while the rela
tionship between one page and another (presentation) is encoded in the different queries. 

Consider the case of the national parks and hotel. If these pages were backed by the same database, 
the national park page could be built on the query “Find all hotels with location ¼ national park,” and 
the hotel page could be built on the query “Find all hotels from chain ¼ Mongotel.” If Mongotel has 
a location at the national park, it will appear on both pages; otherwise, it won’t appear at all. Both 
pages will be consistent. The difficulty in the example given is that it is organizationally very unlikely 
that there could be a single database driving both of these pages, since one of them is published and 
maintained by the National Park Service and the other is managed by the Mongotel chain. 

The astronomy case is very similar to the hotel case, in that the same information (about the 
classification of various astronomical bodies) is accessed from two different places, ensuring 
consistency of information even in the face of diverse presentation. It differs in that it is more likely 
that an astronomy club or university department might maintain a database with all the currently 
known information about the solar system. 

In these cases, the Web applications can behave more robustly by adding an organizing query into 
the Web application to mediate between a single view of the data and the presentation. The data aren’t 
any less dumb than before, but at least what’s there is centralized, and the application or the web pages 
can be made to organize the data in a way that is more consistent for the user to view. It is the web page 
or application that behaves smarter, not the data. While this approach is useful for supporting data 
consistency, it doesn’t help much with the conference mapping example. 

Another approach to making Web applications a bit smarter is to write program code in a general-
purpose language (e.g., C, Perl, Java, Lisp, Python, or XSLT) that keeps data from different places up 
to date. In the hotel example, such a program would update the National Park web page whenever 
a change is made to a corresponding hotel page. A similar solution would allow the planet example to 
be more consistent. Code for this purpose is often organized in a relational database application in the 
form of stored procedures; in XML applications, it can be affected using a transformational language 
like XSLT. 

These solutions are more cumbersome to implement since they require special-purpose code to be 
written for each linkage of data, but they have the advantage over a centralized database that they do 
not require all the publishers of the data to agree on and share a single data source. Furthermore, such 
approaches could provide a solution to the conference mapping problem by transforming data from 
one source to another. Just as in the query/presentation solution, this solution does not make the data 
any smarter; it just puts an informed infrastructure around the data, whose job it is to keep the various 
data sources consistent. 

The common trend in these solutions is to move away from having the presentation of the data (for 
human eyes) be the primary representation of the data; that is, they move from having a web site be 
a collection of pages to having a web site be a collection of data, from which the web page presen
tations are generated. The application focuses not on the presentation but on the subjects of the 
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presentation. It is in this sense that these applications are semantic applications; they explicitly 
represent the relationships that underlie the application and generate presentations as needed. 

A distributed web of data 
The Semantic Web takes this idea one step further, applying it to the Web as a whole. The current Web 
infrastructure supports a distributed network of web pages that can refer to one another with global 
links called Uniform Resource Locators (URLs). As we have seen, sophisticated web sites replace this 
structure locally with a database or XML backend that ensures consistency within that page. 

The main idea of the Semantic Web is to support a distributed Web at the level of the data rather 
than at the level of the presentation. Instead of having one web page point to another, one data item can 
point to another, using global references called Uniform Resource Identifiers (URIs). The Web 
infrastructure provides a data model whereby information about a single entity can be distributed over 
the Web. This distribution allows the Mongotel example and the conference hotel example to work like 
the astronomy example, even though the information is distributed over web sites controlled by more 
than one organization. The single, coherent data model for the application is not held inside one 
application but rather is part of the Web infrastructure. When Mongotel publishes information about its 
hotels and their locations, it doesn’t just publish a human-readable presentation of this information but 
instead a distributable, machine-readable description of the data. The data model that the Semantic 
Web infrastructure uses to represent this distributed web of data is called the Resource Description 
Framework (RDF) and is the topic of Chapter 3. 

This single, distributed model of information is the contribution that the Semantic Web infra
structure brings to a smarter Web. Just as is the case with data-backed Web applications, the Semantic 
Web infrastructure allows the data to drive the presentation so that various web pages (presentations) 
can provide views into a consistent body of information. In this way, the Semantic Web helps data not 
be so dumb. 

Features of a Semantic Web 
TheWorld Wide Web was the result of a radical new way of thinking about sharing information. These 
ideas seem familiar now, as the Web itself has become pervasive. But this radical new way of thinking 
has even more profound ramifications when it is applied to a web of data like the Semantic Web. These 
ramifications have driven many of the design decisions for the Semantic Web Standards and have 
a strong influence on the craft of producing quality Semantic Web applications. 

Give me a voice . 
On the World Wide Web, publication is by and large in the hands of the content producer. People can 
build their own web page and say whatever they want on it. Awide range of opinions on any topic can 
be found; it is up to the reader to come to a conclusion about what to believe. The Web is the ultimate 
example of the warning caveat emptor (“Let the buyer beware”). This feature of the Web is so 
instrumental in its character that we give it a name: the AAA Slogan: “A nyone can say A nything about 
A ny topic.” 

In a web of documents, the AAA slogan means that anyone can write a page saying whatever they 
please, and publish it to the Web infrastructure. In the case of the Semantic Web, it means that our data 
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infrastructure has to allow any individual to express a piece of data about some entity in a way that can 
be combined with information from other sources. This requirement sets some of the foundation for 
the design of RDF. 

It also means that the Web is like a data wilderness—full of valuable treasure, but overgrown and 
tangled. Even the valuable data that you can find can take any of a number of forms, adapted to its own 
part of the wilderness. In contrast to the situation in a large, corporate data center, where one database 
administrator rules with an iron hand over any addition or modification to the database, the Web has no 
gatekeeper. Anything and everything can grow there. A distributed web of data is an organic system, 
with contributions coming from all sources. While this can be maddening for someone trying to make 
sense of information on the Web, this freedom of expression on the Web is what allowed it to take off 
as a bottom-up, grassroots phenomenon. 

. So l may speak! 
In the early days of the document Web, it was common for skeptics, hearing for the first time about the 
possibilities of a worldwide distributed web full of hyperlinked pages on every topic, to ask, “But who 
is going to create all that content? Someone has to write those web pages!” 

To the surprise of those skeptics, and even of many proponents of the Web, the answer to this 
question was that everyone would provide the content. Once the Web infrastructure was in place (so 
that Anyone could say Anything about Any topic), people came out of the woodwork to do just that. 
Soon every topic under the sun had a web page, either official or unofficial. It turns out that a lot of 
people had something to say, and they were willing to put some work into saying it. As this trend 
continued, it resulted in collaborative “crowdsourced” resources like Wikipedia and the Internet Movie 
DataBase (IMDB)—collaboratively edited information sources with broad utility. 

The document Web grew because of a virtuous cycle that is called the network effect. In a network 
of contributors like the Web, the infrastructure made it possible for anyone to publish, but what made it 
desirable for them to do so? At one point in the Web, whenWeb browsers were a novelty, there was not 
much incentive to put a page on this new thing called “the Web”; after all, who was going to read it? 
Why do I want to communicate to them? Just as it isn’t very useful to be the first kid on the block to 
have a fax machine (whom do you exchange faxes with?), it wasn’t very interesting to be the first kid 
with a Web server. 

But because a few people did have Web servers, and a few more got Web browsers, it became 
more attractive to have both web pages and Web browsers. Content providers found a larger 
audience for their work; content consumers found more content to browse. As this trend continued, 
it became more and more attractive, and more people joined in, on both sides. This is the basis of 
the network effect: The more people who are playing now, the more attractive it is for new people to 
start playing. 

A good deal of the information that populates the Semantic Web started out on the document Web, 
sometimes in the form of tables, spreadsheets, or databases, and sometimes as organized group efforts 
like Wikipedia. Who is doing the work of converting this data to RDF for distributed access? In the 
earliest days of the Semantic Web there was little incentive to do so, and it was done primarily by 
vanguards who had an interest in Semantic Web technology itself. As more and more data is available 
in RDF form, it becomes more useful to write applications that utilize this distributed data. Already 
there are several large, public data sources available in RDF, including an RDF image of Wikipedia 
called dbpedia, and a surprisingly large number of government datasets. Small retailers publish 
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information about their offerings using a Semantic Web format called RDFa. Facebook allows content 
managers to provide structured data using RDFa and a format called the Open Graph Protocol. The 
presense of these sorts of data sources makes it more useful to produce data in linked form for the 
Semantic Web. The Semantic Web design allows it to benefit from the same network effect that drove 
the document Web. 

What about the round-worlders? 
The network effect has already proven to be an effective and empowering way to muster the effort 
needed to create a massive information network like the World Wide Web; in fact, it is the only 
method that has actually succeeded in creating such a structure. The AAA slogan enables the 
network effect that made the rapid growth of the Web possible. But what are some of the ramifi
cations of such an open system? What does the AAA slogan imply for the content of an organically 
grown web? 

For the network effect to take hold, we have to be prepared to cope with a wide range of variance in 
the information on the Web. Sometimes the differences will be minor details in an otherwise agreed-on 
area; at other times, differences may be essential disagreements that drive political and cultural 
discourse in our society. This phenomenon is apparent in the document web today; for just about any 
topic, it is possible to find web pages that express widely differing opinions about that topic. The 
ability to disagree, and at various levels, is an essential part of human discourse and a key aspect of the 
Web that makes it successful. Some people might want to put forth a very odd opinion on any topic; 
someone might even want to postulate that the world is round, while others insist that it is flat. The 
infrastructure of the Web must allow both of these (contradictory) opinions to have equal availability 
and access. 

There are a number of ways in which two speakers on the Web may disagree. We will illustrate 
each of them with the example of the status of Pluto as a planet: 

They may fundamentally disagree on some topic. While the IAU has changed its definition of planet 
in such a way that Pluto is no longer included, it is not necessarily the case that every astronomy 
club or even national body agrees with this categorization. Many astrologers, in particular, who 
have a vested interest in considering Pluto to be a planet, have decided to continue to consider 
Pluto as a planet. In such cases, different sources will simply disagree. 
Someone might want to intentionally deceive. Someone who markets posters, models, or other 
works that depict nine planets has a good reason to delay reporting the result from the IAU and 
even to spreading uncertainty about the state of affairs. 
Someone might simply be mistaken. Web sites are built and maintained by human beings, and thus 
they are subject to human error. Some web site might erroneously list Pluto as a planet or, indeed, 
might even erroneously fail to list one of the eight “nondwarf” planets as a planet. 
Some information may be out of date. There are a number of displays around the world of scale 
models of the solar system, in which the status of the planets is literally carved in stone; these 
will continue to list Pluto as a planet until such time as there is funding to carve a new 
description for the ninth object. Web sites are not carved in stone, but it does take effort to 
update them; not everyone will rush to accomplish this. 
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While some of the reasons for disagreement might be, well, disagreeable (wouldn’t it be nice if we 
could stop people from lying?), in practice there isn’t any way to tell them apart. The infrastructure of 
the Web has to be able to cope with the fact that information on theWeb will disagree from time to time 
and that this is not a temporary condition. It is in the very nature of the Web that there be variations and 
disagreement. 

The Semantic Web is often mistaken for an effort to make everyone agree on a single ontology— 
but that just isn’t the way the Web works. The Semantic Web isn’t about getting everyone to agree, but 
rather about coping in a world where not everyone will agree, and achieving some degree of inter
operability nevertheless. There will always be multiple ontologies, just as there will always be multiple 
web pages on any given topic. The Web is innovative because it allows all these multiple viewpoints to 
coexist. 

To each their own 
How can the Web infrastructure support this sort of variation of opinion? That is, how can two people 
say different things, about the same topic? There are two approaches to this issue. First, we have to talk 
a bit about how one can make any statement at all in a web context. 

The IAU can make a statement in plain English about Pluto, such as “Pluto is a dwarf planet,” but 
such a statement is fraught with all the ambiguities and contextual dependencies inherent in natural 
language. We think we know what “Pluto” refers to, but how about “dwarf planet”? Is there any 
possibility that someone might disagree on what a “dwarf planet” is? How can we even discuss such 
things? 

The first requirement for making statements on a global web is to have a global way of identifying 
the entities we are talking about. We need to be able to refer to “the notion of Pluto as used by the IAU” 
and “the notion of Pluto as used by the American Federation of Astrologers” if we even want to be able 
to discuss whether the two organizations are referring to the same thing by these names. 

In addition to Pluto, another object was also classified as a “dwarf planet.” This object is sometimes 
known as UB313 and sometimes known by the name Xena. How can we say that the object known to 
the IAU as UB313 is the same object that its discoverer Michael Brown calls “Xena”? 

One way to do this would be to have a global arbiter of names decide how to refer to the object. 
Then Brown and the IAU can both refer to that “official” name and say that they use a private 
“nickname” for it. Of course, the IAU itself is a good candidate for such a body, but the process to name 
the object has taken over two years. Coming up with good, agreed-on global names is not always easy 
business. 

In the absence of such an agreement, different Web authors will select different URIs for the same 
real-world resource. Brown’s Xena is IAU’s UB313. When information from these different sources is 
brought together in the distributed network of data, the Web infrastructure has no way of knowing that 
these need to be treated as the same entity. The flip side of this is that we cannot assume that just 
because two URIs are distinct, they refer to distinct resources. This feature of the Semantic Web is 
called the Nonunique Naming Assumption; that is, we have to assume (until told otherwise) that some 
Web resource might be referred to using different names by different people. It’s also crucial to note 
that there are times when unique names might be nice, but it may be impossible. Some other orga
nization than the IAU, for example, might decide they are unwilling to accept the new nomenclature. 
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There’s always one more 
In a distributed network of information, as a rule we cannot assume at any time that we have seen all 
the information in the network, or even that we know everything that has been asserted about one 
single topic. This is evident in the history of Pluto and UB313. For many years, it was sufficient to say 
that a planet was defined as “any object of a particular size orbiting the sun.” Given the information 
available during that time, it was easy to say that there were nine planets around the sun. But the new 
information about UB313 changed that; if a planet is defined to be any body that orbits the sun of 
a particular size, then UB313 had to be considered a planet, too. Careful speakers in the late twentieth 
century, of course, spoke of the “known” planets, since they were aware that another planet was not 
only possible but even suspected (the so-called “Planet X,” which stood in for the unknown but 
suspected planet for many years). 

The same situation holds for the Semantic Web. Not only might new information be discovered at 
any time (as is the case in solar system astronomy), but, because of the networked nature of the Web, at 
any one time a particular server that holds some unique information might be unavailable. For this 
reason, on the Semantic Web we can rarely conclude things like “there are nine planets,” since we 
don’t know what new information might come to light. 

In general, this aspect of a Web has a subtle but profound impact on how we draw conclusions from 
the information we have. It forces us to consider the Web as an Open World and to treat it using the 
Open World Assumption. An Open World in this sense is one in which we must assume at any time that 
new information could come to light, and we may draw no conclusions that rely on assuming that the 
information available at any one point is all the information available. 

For many applications, the Open World Assumption makes no difference; if we draw a map of all 
the Mongotel hotels in Boston, we get a map of all the ones we know of at the time. The fact that 
Mongotel might have more hotels in Boston (or might open a new one) does not invalidate the fact that 
it has the ones it already lists. In fact, for a great deal of Semantic Web applications, we can ignore the 
Open World Assumption and simply understand that a semantic application, like any other web page, 
is simply reporting on the information it was able to access at one time. 

The openness of the Web only becomes an issue when we want to draw conclusions based on 
distributed data. If we want to place Boston in the list of cities that are not served by Mongotel (e.g., as 
part of a market study of new places to target Mongotels), then we cannot assume that just because we 
haven’t found a Mongotel listing in Boston, no such hotel exists. 

As we shall see in the following chapters, the Semantic Web includes features that correspond to all 
the ways of working with Open Worlds that we have seen in the real world. We can draw conclusions 
about missing Mongotels if we say that some list is a comprehensive list of all Mongotels. We can have 
an anonymous “Planet X” stand in for an unknown but anticipated entity. These techniques allow us to 
cope with the Open World Assumption in the Semantic Web, just as they do in the Open World of 
human knowledge. 

When will the Semantic Web arrive? It already has. In selecting candidate examples for this second 
edition, we had to pick and choose from a wide range of Semantic Web deployments. We devote two 
chapters to in-depth studies of these deployments “in the wild.” In Chapter 9, we see how the US 
government shares data about its operations in a flexible way and how Facebook uses the Semantic 
Web to link pages from all over the web into its network. Chapter 13 shows how the Semantic Web is 
used by thousands of e-commerce web pages to make information available to mass markets through 
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major search engines and how scientific communities share key information about engineering, 
chemistry, and biology. The Semantic Web is here today. 

SUMMARY 
The aspects of the Web we have outlined here—the AAA slogan, the network effect, nonunique 
naming, and the Open World Assumption—already hold for the document Web. As a result, the Web 
today is something of an unruly place, with a wide variety of different sources, organizations, and 
styles of information. Effective and creative use of search engines is something of a craft; efforts to 
make order from this include community efforts like social bookmarking and community encyclo
pedias to automated methods like statistical correlations and fuzzy similarity matches. 

For the Semantic Web, which operates at the finer level of individual statements about data, the 
situation is even wilder. With a human in the loop, contradictions and inconsistencies in the document 
Web can be dealt with by the process of human observation and application of common sense. With 
a machine combining information, how do we bring any order to the chaos? How can one have any 
confidence in the information we merge from multiple sources? If the document Web is unruly, then 
surely the Semantic Web is a jungle—a rich mass of interconnected information, without any road 
map, index, or guidance. 

How can such a mess become something useful? That is the challenge that faces the working 
ontologist. Their medium is the distributed web of data; their tools are the Semantic Web languages 
RDF, RDFS, SPARQL, SKOS, and OWL. Their craft is to make sensible, usable, and durable infor
mation resources from this medium. We call that craft modeling, and it is the centerpiece of this book. 

The cover of this book shows a system of channels with water coursing through them. If we think of 
the water as the data on the Web, the channels are the model. If not for the model, the water would not 
flow in any systematic way; there would simply be a vast, undistinguished expanse of water. Without 
the water, the channels would have no dynamism; they have no moving parts in and of themselves. Put 
the two together, and we have a dynamic system. The water flows in an orderly fashion, defined by the 
structure of the channels. This is the role that a model plays in the Semantic Web. 

Without the model, there is an undifferentiated mass of data; there is no way to tell which data can 
or should interact with other data. The model itself has no significance without data to describe it. Put 
the two together, however, and you have a dynamic web of information, where data flow from one 
point to another in a principled, systematic fashion. This is the vision of the Semantic Web—an 
organized worldwide system where information flows from one place to another in a smooth but 
orderly way. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

The AAA slogan—Anyone can say Anything about Any topic. One of the basic tenets of the Web 
in general and the Semantic Web in particular. 
Open world/Closed world—A consequence of the AAA slogan is that there could always be 
something new that someone will say; this means that we must assume that there is always 
more information that could be known. 
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Nonunique naming—Since the speakers on the Web won’t necessarily coordinate their naming

efforts, the same entity could be known by more than one name.

The network effect—The property of a web that makes it grow organically. The value of joining in

increases with the number of people who have joined, resulting in a virtuous cycle of participation.

The data wilderness—The condition of most data on the web. It contains valuable information, but

there is no guarantee that it will be orderly or readily understandable.
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What would you call a world in which any number of people can speak, when you never know who has 
something useful to say, and when someone new might come along at any time and make a valuable 
but unexpected contribution? What if just about everyone had the same goal of advancing the 
collaborative state of knowledge of the group, but there was little agreement (at first, anyway) about 
how to achieve it? 

If your answer is “That sounds like the Semantic Web!” you are right (and you must have read 
Chapter 1). If your answer is “It sounds like any large group trying to understand a complex 
phenomenon,” you are even more right. The jungle that is the Semantic Web is not a new thing; this 
sort of chaos has existed since people first tried to make sense of the world around them. 

What intellectual tools have been successful in helping people sort through this sort of tangle? Any 
number of analytical tools has been developed over the years, but they all have one thing in common: 
They help people understand their world by forming an abstract description that hides certain details 
while illuminating others. These abstractions are called models, and they can take many forms. 

How do models help people assemble their knowledge? Models assist in three essential ways: 

1.	 Models help people communicate. A model describes the situation in a particular way that other 
people can understand. 

2.	 Models explain and make predictions. A model relates primitive phenomena to one another and to 
more complex phenomena, providing explanations and predictions about the world. 

3.	 Models mediate among multiple viewpoints. No two people agree completely on what they want to 
know about a phenomenon; models represent their commonalities while allowing them to explore 
their differences. 

The Semantic Web standards have been created not only as a medium in which people can collaborate 
by sharing information but also as a medium in which people can collaborate on models. Models that 
they can use to organize the information that they share. Models that they can use to advance the 
common collection of knowledge. 

13 
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How can a model help us find our way through the mess that is the Web? How do these three 
features help? The first feature, human communication, allows people to collaborate on their under
standing. If someone else has faced the same challenge that you face today, perhaps you can learn from 
their experience and apply it to yours. There are a number of examples of this in the Web today, of 
newsgroups, mailing lists, and wikis where people can ask questions and get answers. In the case in 
which the information needs are fairly uniform, it is not uncommon for a community or a company to 
assemble a set of “Frequently Asked Questions,” or FAQs, that gather the appropriate knowledge as 
answers to these questions. As the number of questions becomes unmanageable, it is not uncommon to 
group them by topic, by task, by affected subsystem, and so forth. This sort of activity, by which 
information is organized for the purpose of sharing, is the simplest and most common kind of 
modeling, with the sole aim of helping a group of people collaborate in their effort to sort through 
a complex set of knowledge. 

The second feature, explanation and prediction, helps individuals make their own judgments based 
on information they receive. FAQs are useful when there is a single authority that can give clear 
answers to a question, as is the case for technical assistance for using some appliance or service. But in 
more interpretive situations, someone might want or need to draw a conclusion for themselves. In such 
a situation, a simple answer as given in a FAQ is not sufficient. Politics is a common example from 
everyday life. Politicians in debate do not tell people how to vote, but they try to convince them to vote 
in one way or another. Part of that convincing is done by explaining their position and allowing the 
individual to evaluate whether that explanation holds true to their own beliefs about the world. They 
also typically make predictions: If we follow this course of action, then a particular outcome will 
follow. Of course, a lot more goes into political persuasion than the argument, but explanation and 
prediction are key elements of a persuasive argument. 

Finally, the third feature, mediation of multiple viewpoints, is essential to fostering understanding 
in a web environment. As the web of opinions and facts grows, many people will say things that 
disagree slightly or even outright contradict what others are saying. Anyone who wants to make their 
way through this will have to be able to sort out different opinions, representing what they have in 
common as well as the ways in which they differ. This is one of the most essential organizing principles 
of a large, heterogeneous knowledge set, and it is one of the major contributions that modeling makes 
to helping people organize what they know. 

Astrologers and the IAU agree on the planethood of Mercury, Venus, Earth, Mars, Jupiter, Saturn, 
Uranus, and Neptune. The IAU also agrees with astrologers that Pluto is a planet, but it disagrees by 
calling it a dwarf planet. Astrologers (or classical astronomers) do not accept the concept of dwarf 
planets, so they are not in agreement with the IAU, which categorizes UB313 and Ceres as such. A 
model for the Semantic Web must be able to organize this sort of variation, and much more, in 
a meaningful and manageable way. 

MODELING FOR HUMAN COMMUNICATION 
Models used for human communication have a great advantage over models that are intended for use 
by computers; they can take advantage of the human capacity to interpret signs to give them meaning. 
This means that communication models can be written in a wide variety of forms, including plain 
language or ad hoc images. A model can be explained by one person, amended by another, interpreted 
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by a third person, and so on. Models written in natural language have been used in all manner of 
intellectual life, including science, religion, government, and mathematics. 

But this advantage is a double-edged sword; when we leave it to humans to interpret the meaning of 
a model, we open the door for all manner of abuse, both intentional and unintentional. Legislation 
provides a good example of this. A governing body like a parliament or a legislature enacts laws that 
are intended to mediate rights and responsibilities between various parties. Legislation typically sets 
up some sort of model of a situation, perhaps involving money (e.g., interest caps, taxes); access rights 
(who can view what information, how can information be legally protected); personal freedom (how 
freely can one travel across borders, when does the government have the right to restrict a person’s 
movements); or even the structure of government itself (who can vote and how are those votes counted, 
how can government officials be removed from office). These models are painstakingly written in 
natural language and agreed on through an elaborate process (which is also typically modeled in 
natural language). 

It is well known to anyone with even a passing interest in politics that good legislation is not an easy 
task and that crafting the words carefully for a law or statute is very important. The same flexibility of 
interpretation that makes natural language models so flexible also makes it difficult to control how the 
laws will be interpreted in the future. When someone else reads the text, they will have their own 
background and their own interests that will influence how they interpret any particular model. This 
phenomenon is so widespread that most government systems include a process (usually involving 
a court magistrate and possibly a committee of citizens) whereby disputes over the interpretation of 
a law or its applicability can be resolved. 

When a model relies on particulars of the context of its reader for interpretation of its meaning, as is 
the case in legislation, we say that a model is informal. That is, the model lacks a formalism whereby 
the meaning of terms in the model can be uniquely defined. 

In the document web today, there are informal models that help people communicate about the 
organization of the information. It is common for commerce web sites to organize their wares in 
catalogs with category names like “web-cams,” “Oxford shirts,” and “Granola.” In such cases, the 
communication is primarily one way; the catalogue designer wants to communicate to the buyers the 
information that will help them find what they want to buy. The interpretation of these words is up to 
the buyers. The effectiveness of such a model is measured by the degree to which this is successful. If 
enough people interpret the categories in a way similar enough to the intent of the cataloguer, then they 
will find what they want to buy. There will be the occasional discrepancy like “Why wasn’t that item 
listed as a webcam?” or “That’s not granola, that’s just plain cereal!” But as long as the interpretation 
is close enough, the model is successful. 

A more collaborative style of document modeling comes in the form of community tagging. A 
number of web sites have been successful by allowing users to provide meaningful symbolic 
descriptions of their content in the form of tags. A tag in this sense is simply a single word or short 
phrase that describes some aspect of the content. Examples of tagging systems include Flickr for photos 
and del.icio.us for Web bookmarks. The idea of community tagging is that each individual who 
provides content will describe it using tags of their own choosing. If any two people use the same tag, 
this becomes a common organizing entity; anyone who is browsing for content can access information 
from both contributors under that tag. The tagging infrastructure shows which tags have been used by 
many people. Not only does this help browsers determine what tags to use in a search, but it also helps 
content providers to find commonly used tags that they might want to use to describe new content. Thus, 
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a tagging system will have a certain self-organizing character, whereby popular tags become more 
popular and unpopular tags remain unpopular—something like evolution by artificial selection of tags. 

Tagging systems of this sort provide an informal organization to a large body of heterogeneous 
information. The organization is informal in the sense that the interpretation of the tags requires human 
processing in the context of the consumer. Just because a tag is popular doesn’t mean that everyone is 
using it in the same way. In fact, the community selection process actually selects tags that are used in 
several different ways, whether they are compatible or not. As more and more people provide content, 
the popular tags saturate with a wide variety of content, making them less and less useful as 
discriminators for people browsing for content. This sort of problem is inherent in information 
modeling systems; since there isn’t an objective description of the meaning of a symbol outside the 
context of the provider and consumer of the symbol, the communication power of that symbol 
degrades as it is used in more and more contexts. 

Formality of a model isn’t a black-and-white judgment; there can be degrees of formality. This is 
clear in legal systems, where it is common to have several layers of legislation, each one giving 
objective context for the next. A contract between two parties is usually governed by some regional 
law that provides standard definitions for terms in the contract. Regional laws are governed by national 
laws, which provide constraints and definitions for their terms. National laws have their own structure, 
in which a constitution or a body of case law provides a framework for new decisions and legislation. 
Even though all these models are expressed in natural language and fall back on human interpretation 
in the long run, they can be more formal than private agreements that rely almost entirely on the 
interpretation of the agreeing parties. 

This layering of informal models sometimes results in a modeling style that is reminiscent of 
Talmudic scholarship. The content of the Talmud includes not only the original scripture but also 
interpretative comments on the scripture by authoritative sources (classical rabbis). Their comments 
have gained such respect that they are traditionally published along with the original scripture for 
comment by later rabbis, whose comments in turn have become part of the intellectual tradition. The 
original scripture, along with all the authoritative comments, is collectively called the Talmud, and it is 
the basis of a classical Jewish education to this day. 

A similar effect happens with informal models. The original model is appropriate in some context, 
but as its use expands beyond that context, further models are required to provide common context to 
explicate the shared meaning. But if this further exposition is also informal, then there is the risk that 
its meaning will not be clear, so further modeling must be done to clarify that. This results in heavily 
layered models, in which the meaning of the terms is always subject to further interpretation. It is the 
inherent ambiguity of natural language at each level that makes the next layer of commentary 
necessary until the degree of ambiguity is “good enough” that no more levels are needed. When it is 
possible to choose words that are evocative and have considerable agreement, this process converges 
much more quickly. 

Human communication, as a goal for modeling, allows it to play a role in the ongoing collection of 
human knowledge. The levels of communication can be quite sophisticated, including the collection of 
information used to interpret other information. In this sense, human communication is the funda
mental requirement for building a Semantic Web. It allows people to contribute to a growing body of 
knowledge and then draw from it. But communication is not enough; to empower a web of human 
knowledge, the information in a model needs to be organized in such a way that it can be useful to 
a wide range of consumers. 
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EXPLANATION AND PREDICTION 
Models are used to organize human thought in the form of explanations. When we understand how 
a phenomenon results from other basic principles, we gain a number of advantages. Not least is the 
feeling of confidence that we have actually understood it; people often claim to “have a grasp on” or 
“have their head around” an idea when they finally understand it. Explanation plays a major role in this 
sort of understanding. Explanation also assists in memory; it is easier to remember that putting a lid on 
a flaming pot can quench the flame if one knows the explanation that fire requires air to burn. Most 
important for the context of the Semantic Web, explanation makes it easier to reuse a model in whole 
or in part; an explanation relates a conclusion to more basic principles. Understanding how a pot lid 
quenches a fire can help one understand how a candle snuffer works. Explanation is the key to 
understanding when a model is applicable and when it is not. 

Closely related to this aspect of a model is the idea of prediction. When a model provides an 
adequate explanation of a phenomenon, it can also be used to make predictions. This aspect of models 
is what makes their use central to the scientific method, where falsification of predictions made by 
models forms the basis of the methodology of inquiry. 

Explanation and prediction typically require models with a good deal more formality than is 
usually required for human communication. An explanation relates a phenomenon to “first principles”; 
these principles, and the rules by which they are related, do not depend on interpretation by the 
consumer but instead are in some objective form that stands outside the communication. Such an 
objective form, and the rules that govern how it works, is called a formalism. 

Formal models are the bread and butter of mathematical modeling, in which very specific rules for 
calculation and symbol manipulation govern the structure of a mathematical model and the valid ways 
in which one item can refer to another. Explanations come in the form of proofs, in which steps from 
premises (stated in some formalism) to conclusions are made according to strict rules of trans
formation for the formalism. Formal models are used in many human intellectual endeavors, wherever 
precision and objectivity are required. 

Formalisms can also be used for predictions. Given a description of a situation in some formalism, 
the same rules that govern transformations in proofs can be used to make predictions. We can explain 
the trajectory of an object thrown out of a window with a formal model of force, gravity, speed, and 
mass, but given the initial conditions of the object thrown, we can also compute, and thus predict, its 
trajectory. 

Formal prediction and explanation allow us to evaluate when a model is applicable. Furthermore, 
the formalism allows that evaluation to be independent of the listener. One can dispute the result that 
2 þ 2 ¼ 4 by questioning just what the terms “2,” “4,” “þ,” and “¼” mean, but once people agree on 
what they mean, they cannot (reasonably) dispute that this formula is correct. 

Formal modeling therefore has a very different social dynamic than informal modeling; because 
there is an objective reference to the model (the formalism), there is no need for the layers of inter
pretation that result in Talmudic modeling. Instead of layers and layers of interpretation, the buck stops 
at the formalism. 

As we shall see, the Semantic Web standards include a small variety of modeling formalisms. Because 
they are formalisms, modeling in the Semantic Web need not become a process of layering interpretation 
on interpretation. Also, because they are formalisms, it is possible to couch explanations in the Semantic 
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Web in the form of proofs and to use that proof mechanism to make predictions. This aspect of Semantic 
Web models goes by the name inference and it will be discussed in detail in Chapter 5. 

MEDIATING VARIABILITY 
In any Web setting, variability is to be expected and even embraced. The dynamics of the network 
effect require the ability to represent a variety of opinions. A good model organizes those opinions so 
that the things that are common can be represented together, while the things that are distinct can be 
represented as well. 

Let’s take the case of Pluto as an example. From 1930 until 2006, it was considered to be a planet 
by astronomers and astrologers alike. After the redefinition of planet by the IAU in 2006, Pluto was no 
longer considered to be a planet but more specifically a dwarf planet by the IAU and by astronomers 
who accept the IAU as an authority. Astrologers, however, chose not to adopt the IAU convention, and 
they continued to consider Pluto a planet. Some amateur astronomers, mostly for nostalgic reasons, 
also continued to consider Pluto a planet. How can we accommodate all of these variations of opinion 
on the Web? 

One way to accommodate them would be to make a decision as to which one is “preferred” and to 
control the Web so that only that position is supported. This is the solution that is most commonly used in 
corporate data centers, where a small group or even a single person acts as the database administrator 
and decides what data are allowed to live in the corporate database. This solution is not appropriate for 
the Web because it does not allow for the AAA slogan (see Chapter 1) that leads to the network effect. 

Another way to accommodate these different viewpoints would be to simply allow each one to be 
represented separately, with no reference to one another at all. It would be the responsibility of the 
information consumer to understand how these things relate to one another and to make any 
connections as appropriate. This is the basis of an informal approach, and it indeed describes the state 
of the document web as it is today. A Web search for Pluto will turn up a wide array of articles, in which 
some call it a planet (e.g., astrological ones or astronomical ones that have not been updated), some 
call it a dwarf planet (IAU official web sites), and some that are still debating the issue. The only way 
a reader can come to understand what is common among these things—the notion of a planet, of the 
solar system, or even of Pluto itself—is through reader interpretation. 

How can a model help sort this out? How can a model describe what is common about the astro
logical notion of a planet, the twentieth-century astronomical notion of a planet, and the post-2006 
notion of a planet? The model must also allow for each of these differing viewpoints to be expressed. 

Variation and classes 
This problem is not a new one; it is a well-known problem in software engineering. When a software 
component is designed, it has to provide certain functionality, determined by information given to it at 
runtime. There is a trade-off in such a design; the component can be made to operate in a wide variety 
of circumstances, but it will require a complex input to describe just how it should behave at any one 
time. Or the system could be designed to work with very simple input but be useful in only a small 
number of very specific situations. The design of a software component inherently involves a model of 
the commonality and variability in the environment in which it is expected to be deployed. In response 
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to this challenge, software methodology has developed the art of object modeling (in the context of 
Object-Oriented Programming, or OOP) as a means of organizing commonality and variability in 
software components. 

One of the primary organizing tools in OOP is the notion of a hierarchy of classes and subclasses. 
Classes high up in the hierarchy represent functionality that is common to a large number of 
components; classes farther down in a hierarchy represent more specific functionality. Commonality 
and variability in the functionality of a set of software components is represented in a class hierarchy. 

The Semantic Web standards also use this idea of class hierarchy for representing commonality and 
variability. Since the Semantic Web, unlike OOP, is not focused on software representation, classes are 
not defined in terms of behaviors of functions. But the notion of classes and subclasses remains, and it 
plays much the same role. High-level classes represent commonality among a large variety of entities, 
whereas lower-level classes represent commonality among a small, specific set of things. 

Let’s take Pluto as an example. The 2006 IAU definition of planet is quite specific in requiring 
these three criteria for a celestial body to be considered a planet: 

1. It is in orbit around the sun. 
2. It has sufficient mass to be nearly round. 
3. It has cleared the neighborhood around its orbit. 

The IAU goes further to state that a dwarf planet is a body that satisfies conditions 1 and 2 (and not 3); 
a body that satisfies only condition 1 is a small solar system body (SSSB). These definitions make 
a number of things clear: The classes SSSB, dwarf planet, and planet are all mutually exclusive; no 
body is a member of any two classes. However, there is something that all of them have in common: 
They all are in orbit around the sun. 

Twentieth-century astronomy and astrology are not quite as organized as this; they don’t have such 
rigorous definitions of the word planet. So how can we relate these notions to the twenty-first-century 
notion of planet? 

The first thing we need is a way to talk about the various uses of the word planet: the IAU use, the 
astrological use, and the twentieth-century astronomical use. This seems like a simple requirement, 
but until it is met, we can’t even talk about the relationship among these terms. We will see details of 
the Semantic Web solution to this issue in Chapter 3, but for now, we will simply prefix each term 
with a short abbreviation of its source—for example, use IAU:Planet for the IAU use of the word, 
horo:Planet for the astrological use, and astro:Planet for the twentieth-century astro
nomical use. 

The solution begins by noticing what it is that all three notions of planet have in common; in this 
case, it is that the body orbits the sun. Thus, we can define a class of the things that orbit the sun, which 
we may as well call solar system body, or  SSB for short. All three notions are subclasses of this notion. 
This can be depicted graphically as in Figure 2.1. 

We can go further in this modeling when we observe that there are only eight IAU:Planets, and 
each one is also a horo:Planet and an astro:Planet. Thus, we can say that IAU:Planet is 
a subclass of both horo:Planet and astro:Planet, as shown in Figure 2.2. We can continue in 
this way, describing the relationships among all the concepts we have mentioned so far: 
IAU:DwarfPlanet and IAU:SSSB. As we go down the tree, each class refers to a more restrictive 
set of entities. In this way, we can model the commonality among entities (at the high level) while 
respecting their variation (at a low level). 



20 CHAPTER 2 Semantic modeling 

SSB 

astro:Planet horo:Planet IAU:Planet 

FIGURE 2.1 

Subclass diagram for different notions of planet. 
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astro:Planethoro:Planet 

IAU:Planet 

FIGURE 2.2 

More detailed relationships between various notions of planet. 

Variation and layers 
Classes and subclasses are a fine way to organize variation when there is a simple, known relationship 
between the modeled entities and it is possible to determine a clear ordering of classes that describes 
these relationships. In a Web setting, however, this usually is not the case. Each contributor can have 
something new to say that may fit in with previous statements in a wide variety of ways. How can we 
accommodate variation of sources if we can’t structure the entities they are describing into a class 
model? 

The Semantic Web provides an elegant solution to this problem. The basic idea is that any model 
can be built up from contributions from multiple sources. One way of thinking about this is to consider 
a model to be described in layers. Each layer comes from a different source. The entire model is the 
combination of all the layers, viewed as a single, unified whole. 

Let’s have a look at how this could work in the case of Pluto. Figure 2.3 illustrates how different 
communities could assert varying information about Pluto. In part (a) of the figure, we see some 
information about Pluto that is common among astrologers—namely, that Pluto signifies rebirth and 
regeneration and that the preferred symbol for referring to Pluto is the glyph indicated. Part (b) shows 
some information that is of concern to astronomers, including the composition of the body Pluto and 
their preferred symbol. How can this variation be accommodated in a web of information? The 
simplest way is to simply merge the two models into a single one that includes all the information from 
each model, as shown in part (c). 
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FIGURE 2.3 

Layers of modeled information about Pluto. 
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Merging models in this way is a conceptually simple thing to do, but how does it cope with 
variability? In the first place, it copes in the simplest way possible: It allows the astrologers and the 
astronomers to both have their say about Pluto (remember the AAA slogan!). For any party that is 
interested in both of these things (perhaps someone looking for a spiritual significance for elements?), 
the information can be viewed as a single, unified whole. 

But merging models in this way has a drawback as well. In Figure 2.3(c), there are two distinct 
glyphs, each claiming to be the “preferred” symbol for Pluto. This brings up issues of consistency of 
viewpoints. On the face of it, this appears to be an inconsistency because, from its name, we might 
expect that there can be exactly one preferred symbol (prefSymbol) for any body. But how can 
a machine know that? For a machine, the name prefSymbol can’t be treated any differently from 
any other label—for instance, madeOf or signifies. In such a context, how can we even tell that 
this is an inconsistency? After all, we don’t think it is an inconsistency that Pluto can be composed of 
more than one chemical compound or that it can signify more than one spiritual theme. Do we have to 
describe this in a natural language commentary on the model? 

Detailed answers to questions like these are exactly the reason why we need to publish models on 
the Semantic Web. When two (or more!) viewpoints come together in a web of knowledge, there will 
typically be overlap, disagreement, and confusion before there is synergy, cooperation, and 
collaboration. If the infrastructure of the Web is to help us to find our way through the wild stage of 
information sharing, an informal notion of how things fit together, or should fit together, will not 
suffice. It is easy enough to say that we have an intuition that states there is something special about 
prefSymbol that makes it different from madeOf or signifies. If we can inform our infra
structure about this distinction in a sufficiently formal way, then it can, for instance, detect 
discrepancies of this sort and, in some cases, even resolve them. 

This is the essence of modeling in the Semantic Web: providing an infrastructure where not only 
can anyone say anything about any topic but the infrastructure can help a community work through the 
resulting chaos. A model can provide a framework (like classes and subclasses) for representing and 
organizing commonality and variability of viewpoints when they are known. But in advance of such an 
organization, a model can provide a framework for describing what sorts of things we can say about 
something. We might not agree on the symbol for Pluto, but we can agree that it should have just one 
preferred symbol. 

EXPRESSIVITY IN MODELING 
There is a trade-off when we model, and although anyone can say anything about any topic, not everyone 
will want to say certain things. There are those who are interested in saying details about individual 
entities, like the preferred symbol for Pluto or the themes in life that it signifies. Others (like that IAU) are 
interested in talking about categories, what belongs in a category, and how you can tell the difference. 
Still others (like lexicographers, information architects, and librarians) want to talk about the rules for 
specifying information, such as whether there can be more than one preferred label for any entity. All of 
these people have contributions to make to the web of knowledge, but the kinds of contributions they 
make are very different, and they need different tools. This difference is one of level of expressivity. 

The idea of different levels of expressivity is as well known in the history of collaborative human 
knowledge as modeling itself. Take as an example the development of models of a water molecule, as 
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FIGURE 2.4 

Different expressivity of models of a water molecule. 

shown in Figure 2.4. In part (a), we see a model of the water molecule in terms of the elements that 
make up the molecule and how many of each is present—namely, two hydrogen atoms and one oxygen 
atom. This model expresses important information about the molecule, and it can be used to answer 
a number of basic questions about water, such as calculating the mass of the molecule (given the 
masses of its component atoms) and what components would have to be present to be able to construct 
water from constituent parts. 

In Figure 2.4(b), we see a model with more expressivity. Not only does this model identify the 
components of water and their proportions, but it also shows how they are connected in the chemical 
structure of the molecule. The oxygen molecule is connected to each of the hydrogen molecules, which 
are not (directly) connected to one another at all. This model is somewhat more expressive than the 
model in part (a); it can answer further questions about the molecule. From (b), it is clear that when the 
water molecule breaks down into smaller molecules, it can break into single hydrogen atoms (H) or 
into oxygen-hydrogen ions (OH) but not into double-hydrogen atoms (H2) without some recombi
nation of components after the initial decomposition. 

Finally, the model shown in Figure 2.4(c) is more expressive still in that it shows not only the 
chemical structure of the molecule but also the physical structure. The fact that the oxygen atom is 
somewhat larger than the hydrogen atoms is shown in this model. Even the angle between the two 
hydrogen atoms as bound to the oxygen atom is shown. This information is useful for working out 
the geometry of combinations of water molecules, as is the case, for instance, in the crystalline 
structure of ice. 

Just because one model is more expressive than another does not make it superior; different 
expressive modeling frameworks are different tools for different purposes. The chemical formula for 
water is simpler to determine than the more expressive, but more complex, models, and it is useful for 
resolving a wide variety of questions about chemistry. In fact, most chemistry textbooks go for quite 
a while working only from the chemical formulas without having to resort to more structural models 
until the course covers advanced topics. 

The Semantic Web provides a number of modeling languages that differ in their level of expressivity; 
that is, they constitute different tools that allow different people to express different sorts of information. 
In the rest of this book, we will cover these modeling languages in detail. The Semantic Web standards 
are organized so that each language level builds on the one before so the languages themselves are 
layered. The following are the languages of the Semantic Web from least expressive to most expressive. 

RDF—The Resource Description Framework. This is the basic framework that the rest of the 
Semantic Web is based on. RDF provides a mechanism for allowing anyone to make a basic 
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statement about anything and layering these statements into a single model. Figure 2.3 shows the 
basic capability of merging models in RDF. RDF has been a recommendation from the W3C since 
1999. 
RDFS—The RDF Schema language. RDFS is a language with the expressivity to describe the basic 
notions of commonality and variability familiar from object languages and other class systems— 
namely classes, subclasses, and properties. Figures 2.1 and 2.2 illustrated the capabilities of RDFS. 
RDFS has been a W3C recommendation since 2004. 
RDFS-Plus. RDFS-Plus is a subset of OWL that is more expressive than RDFS but without the 
complexity of OWL. There is no standard in progress for RDFS-Plus, but there is a growing 
awareness that something between RDFS and OWL could be industrially relevant. We have 
selected a particular subset of OWL functionality to present the capabilities of OWL 
incrementally. RDFS-Plus includes enough expressivity to describe how certain properties can 
be used and how they relate to one another. RDFS-Plus is expressive enough to show the utility 
of certain constructs beyond RDFS, but it lacks the complexity that makes OWL daunting to 
many beginning modelers. The issue of uniqueness of the preferred symbol is an example of the 
expressivity of RDFS-Plus. 
OWL. OWL brings the expressivity of logic to the Semantic Web. It allows modelers to express 
detailed constraints between classes, entities, and properties. OWL was adopted as 
a recommendation by the W3C in 2004, with a second version adopted in 2009. 

SUMMARY 
The Semantic Web, just like the document web that preceded it, is based on some radical notions of 
information sharing. These ideas—the AAA slogan, the open world assumption, and nonunique 
naming—provide for an environment in which information sharing can thrive and a network effect of 
knowledge synergy is possible. But this style of information gathering creates a chaotic landscape rife 
with confusion, disagreement, and conflict. How can the infrastructure of the Web support the 
development from this chaotic state to one characterized by information sharing, cooperation, and 
collaboration? 

The answer to this question lies in modeling. Modeling is the process of organizing information for 
community use. Modeling supports this in three ways: It provides a framework for human commu
nication, it provides a means for explaining conclusions, and it provides a structure for managing 
varying viewpoints. In the context of the Semantic Web, modeling is an ongoing process. At any point 
in time, some knowledge will be well structured and understood, and these structures can be repre
sented in the Semantic Web modeling language. At the same time, other knowledge will still be in the 
chaotic, discordant stage, where everyone is expressing himself differently. And typically, as different 
people provide their own opinions about any topic under the sun, the Web will simultaneously contain 
organized and unorganized knowledge about the very same topic. The modeling activity is the activity 
of distilling communal knowledge out of a chaotic mess of information. This was nicely illustrated in 
the Pluto example. 

The next several chapters of the book introduce each of the modeling languages of the Semantic 
Web and illustrate how they approach the challenges of modeling in a Semantic Web context. For each 
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modeling language—RDF, RDFS, and OWL—we will describe the technical details of how the 
language works, with specific examples “in the wild” of the standard in use. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

Modeling—Making sense of unorganized information.

Formality/Informality—The degree to which the meaning of a modeling language is given

independent of the particular speaker or audience.

Commonality and Variability—When describing a set of things, some of them will have somem

things in common (commonality), and some will have important differences (variability).

Managing commonality and variability is a fundamental aspect of modeling in general, and of

Semantic Web models in particular.

Expressivity—The ability of a modeling language to describe certain aspects of the world. More

expressive modeling language can express a wider variety of statements about the model.

Modeling languages of the Semantic Web—RDF, RDFS, and OWL—differ in their levels of

expressivity.
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RDF, RDFS, and OWL are the basic representation languages of the Semantic Web, with RDF serving 
as the foundation. RDF addresses one fundamental issue in the Semantic Web: managing distributed 
data. All other Semantic Web standards build on this foundation of distributed data. RDF relies heavily 
on the infrastructure of the Web, using many of its familiar and proven features, while extending them 
to provide a foundation for a distributed network of data. 

The Web that we are accustomed to is made up of documents that are linked to one another. Any 
connection between a document and the thing(s) in the world it describes is made only by the person 
who reads the document. There could be a link from a document about Shakespeare to a document 
about Stratford-upon-Avon, but there is no notion of an entity that is Shakespeare or linking it to the 
thing that is Stratford. 

In the Semantic Web we refer to the things in the world as resources; a resource can be anything 
that someone might want to talk about. Shakespeare, Stratford, “the value of X,” and “all the cows in 
Texas” are all examples of things someone might talk about and that can be resources in the Semantic 
Web. This is admittedly a pretty odd use of the word resource, but alternatives like entity or thing, 
which might be more accurate, have their own issues. In any case, resource is the word used in the 
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Semantic Web standards. In fact, the name of the base technology in the Semantic Web (RDF) uses this 
word in an essential way. RDF stands for Resource Description Framework. 

In a web of information, anyone can contribute to our knowledge about a resource. It was 
this aspect of  the current Web that allowed it to grow at such an unprecedented rate. To implement  
the Semantic Web, we need a model of data that allows information to be distributed over the 
Web. 

DISTRIBUTING DATA ACROSS THE WEB 
Data are most often represented in tabular form, in which each row represents some item we are 
describing, and each column represents some property of those items. The cells in the table are the 
particular values for those properties. Table 3.1 shows a sample of some data about works completed 
around the time of Shakespeare. 

Let’s consider a few different strategies for how these data could be distributed over the Web. In all 
of these strategies, some part of the data will be represented on one computer, while other parts will be 
represented on another. Figure 3.1 shows one strategy for distributing information over many 
machines. Each networked machine is responsible for maintaining the information about one or more 
complete rows from the table. Any query about an entity can be answered by the machine that stores its 
corresponding row. One machine is responsible for information about “Sonnet 78” and Edward II, 
whereas another is responsible for information about As You Like It. 

This distribution solution provides considerable flexibility, since the machines can share the load of 
representing information about several individuals. But because it is a distributed representation of 
data, it requires some coordination between the servers. In particular, each server must share infor
mation about the columns. Does the second column on one server correspond to the same information 
as the second column on another server? This is not an insurmountable problem, and, in fact, it is 
a fundamental problem of data distribution. There must be some agreed-on coordination between the 
servers. In this example, the servers must be able to, in a global way, indicate which property each 
column corresponds to. 

Table 3.1 Tabular Data about Elizabethan Literature and Music 

ID Title Author Medium Year 

1 As You Like It Shakespeare Play 1599 

2 Hamlet Shakespeare Play 1604 

3 Othello Shakespeare Play 1603 

4 “Sonnet 78” Shakespeare Poem 1609 

5 Astrophil and Stella Sir Phillip Sidney Poem 1590 

6 Edward II Christopher Marlowe Play 1592 

7 Hero and Leander Christopher Marlowe Poem 1593 

8 Greensleeves Henry VIII Rex Song 1525 
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1 As You Like It Shakespeare Play 1599 

Needs common schema—which 
column is which? 

4 Sonnet 78 Shakespeare Poem 1609 

6 Edward II Christopher Marlowe Play 1592 

7 Hero and Leander Christopher Marlowe Poem 1593 

3 Othello Shakespeare Play 1603 

FIGURE 3.1 

Distributing data across the Web, row by row. 

Figure 3.2 shows another strategy, in which each server is responsible for one or more complete 
columns from the original table. In this example, one server is responsible for the publication dates 
and medium, and another server is responsible for titles. This solution is flexible in a different way 
from the solution of Figure 3.1. The solution in Figure 3.2 allows each machine to be responsible for 
one kind of information. If we are not interested in the dates of publication, we needn’t consider 
information from that server. If we want to specify something new about the entities (say, how many 
pages the manuscript is), we can add a new server with that information without disrupting the 
others. 

This solution is similar to the solution in Figure 3.1 in that it requires some coordination between 
the servers. In this case, the coordination has to do with the identities of the entities to be described. 
How do I know that row 3 on one server refers to the same entity as row 3 on another server? This 
solution requires a global identifier for the entities being described. 

The strategy outlined in Figure 3.3 is a combination of the previous two strategies, in which 
information is neither distributed row by row nor column by column but instead is distributed cell by 
cell. Each machine is responsible for some number of cells in the table. This system combines the 
flexibility of both of the previous strategies. Two servers can share the description of a single entity 
(in the figure, the year and title of Hamlet are stored separately), and they can share the use of 
a particular property (in Figure 3.3, the Mediums  of  rows  6 and  7 are  represented on different  
servers). 

This flexibility is required if we want our data distribution system to really support the AAA slogan 
that “Anyone can say Anything about Any topic.” If we take the AAA slogan seriously, any server 
needs to be able to make a statement about any entity (as is the case in Figure 3.2), but also any server 
needs to be able to specify any property of an entity (as is the case in Figure 3.1). The solution in 
Figure 3.3 has both of these benefits. 
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Needs to reference 
entities—which thing 

are we talking about? 

Greensleeves 

Hero and Leander 

Edward II 

Astrophil and Stella 

“Sonnet 78” 

Othello 

Hamlet 

As You Like It 

Title 

Henry VIII Rex 

Christopher 
Marlowe 

Christopher 
Marlowe 

Sir Phillip Sidney 

Shakespeare 

Shakespeare 

Shakespeare 

Shakespeare 

Author 

Song1525 

Poem 1593 

Play 1592 

Poem 1590 

Poem 1609 

Play 1603 

Play 1604 

Play 1599 

MediumYear 

FIGURE 3.2 

Distributing data across the Web, column by column. 

Medium Needs to reference both 
schema and entities 

Poem Row 7 
Title 

Row 2 Hamlet 
Author 

Row 4 Shakespeare 

1604Row 2 
Year 

Play Row 6 
Medium 

FIGURE 3.3 

Distributing data across the Web, cell by cell. 
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Table 3.2 Sample Triples 

Subject Predicate Object 

Row 7 Medium Poem 

Row 2 Title Hamlet 

Row 2 Year 1604 

Row 4 Author Shakespeare 

Row 6 Medium Play 

But this solution also combines the costs of the other two strategies. Not only do we now need 
a global reference for the column headings, but we also need a global reference for the rows. In fact, 
each cell has to be represented with three values: a global reference for the row, a global reference for 
the column, and the value in the cell itself. This third strategy is the strategy taken by RDF. We will see 
how RDF resolves the issue of global reference later in this chapter, but for now, we will focus on how 
a table cell is represented and managed in RDF. 

Since a cell is represented with three values, the basic building block for RDF is called the triple. 
The identifier for the row is called the subject of the triple (following the notion from elementary 
grammar, since the subject is the thing that a statement is about). The identifier for the column is called 
the predicate of the triple (since columns specify properties of the entities in the rows). The value in the 
cell is called the object of the triple. Table 3.2 shows the triples in Figure 3.3 as subject, predicate, and 
object. 

Triples become more interesting when more than one triple refers to the same entity, such as in 
Table 3.3. When more than one triple refers to the same thing, sometimes it is convenient to view the 
triples as a directed graph in which each triple is an edge from its subject to its object, with the 
predicate as the label on the edge, as shown in Figure 3.4. The graph visualization in Figure 3.4 
expresses the same information presented in Table 3.3, but everything we know about Shakespeare 
(either as subject or object) is displayed at a single node. 

Table 3.3 Sample Triples 

Subject Predicate Object 

Shakespeare wrote King Lear 

Shakespeare wrote Macbeth 

Anne Hathaway married Shakespeare 

Shakespeare livedIn Stratford 

Stratford isIn England 

Macbeth setIn Scotland 

England partOf UK 

Scotland partOf UK 
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FIGURE 3.4 

Graph display of triples from Table 3.3. Eight triples appear as eight labeled edges. 

MERGING DATA FROM MULTIPLE SOURCES 
We started off describing RDF as a way to distribute data over several sources. But when we want to 
use that data, we will need to merge those sources back together again. One value of the triples 
representation is the ease with which this kind of merger can be accomplished. Since information is 
represented simply as triples, merged information from two graphs is as simple as forming the graph 
of all of the triples from each individual graph, taken together. Let’s see how this is accomplished 
in RDF. 

Suppose that we had another source of information that was relevant to our example from Table 
3.3—that is, a list of plays that Shakespeare wrote or a list of parts of the United Kingdom. These 
would be represented as triples as in Tables 3.4 and 3.5. Each of these can also be shown as a graph, 
just as in the original table, as shown in Figure 3.5. 

What happens when we merge together the information from these three sources? We simply get 
the graph of all the triples that show up in Figures 3.4 and 3.5. Merging graphs like those in Figures 3.4 
and 3.5 to create a combined graph like the one shown in Figure 3.6 is a straightforward process—but 
only when it is known which nodes in each of the source graphs match. 

Table 3.4 Triples about Shakespeare’s Plays 

Subject Predicate Object 

Shakespeare Wrote As You Like It 

Shakespeare Wrote Henry V 

Shakespeare Wrote Love’s Labour’s Lost 

Shakespeare Wrote Measure for Measure 

Shakespeare Wrote Twelfth Night 

Shakespeare Wrote The Winter’s Tale 

Shakespeare Wrote Hamlet 

Shakespeare Wrote Othello 

etc. 
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Table 3.5 Triples about the Parts of the United Kingdom 

Subject Predicate Object 

Scotland part Of The UK 

England part Of The UK 

Wales part Of The UK 

Northern Ireland part Of The UK 

Channel Islands part Of The UK 

Isle of Man part Of The UK 

NAMESPACES, URIS, AND IDENTITY 
The essence of the merge comes down to answering the question “When is a node in one graph the 
same node as a node in another graph?” In RDF, this issue is resolved through the use of Uniform 
Resource Identifiers (URIs). 

In the figures so far, we have labeled the nodes and edges in the graphs with simple names like 
Shakespeare or Wales. On the Semantic Web, this is not sufficient information to determine whether 
two nodes are really the same. Why not? Isn’t there just one thing in the universe that everyone agrees 
refers to as Shakespeare? When referring to agreement on the Web, never say, “everyone.” Some
where, someone will refer not to the historical Shakespeare but to the title character of the feature film 
Shakespeare in Love, which bears very little resemblance to the historical figure. And “Shakespeare” is 
one of the more stable concepts to appear on the Web; consider the range of referents for a name like 
“Washington” or “Bordeaux.” To merge graphs in a Semantic Web setting, we have to be more 
specific: In what sense do we mean the word Shakespeare? 

RDF borrows its solution to this problem from foundational Web technology—in particular, the 
URI. The syntax and format of a URI are familiar even to casual users of the Web today because of the 
special, but typical, case of the URL—for example, http://www.WorkingOntologist.org/Examples/ 
Chapter3/Shakespeare#Shakespeare. But the significance of the URI as a global identifier for a Web 
resource is often not appreciated. A URI provides a global identification for a resource that is common 
across the Web. If two agents on the Web want to refer to the same resource, recommended practice on 
the Web is for them to agree to a common URI for that resource. This is not a stipulation that is 
particular to the Semantic Web but to theWeb in general; global naming leads to global network effects. 

URIs and URLs look exactly the same, and, in fact, a URL is just a special case of the URI. Why 
does theWeb have both of these ideas? Simplifying somewhat, the URI is an identifier with global (i.e., 
“World Wide” in the “World Wide Web” sense) scope. Any two Web applications in the world can 
refer to the same thing by referencing the same URI. But the syntax of the URI makes it possible to 
“dereference” it—that is, to use all the information in the URI (which specifies things like server name, 
protocol, port number, file name, etc.) to locate a file (or a location in a file) on the Web.1 This 

We are primarily discussing files here, but a URI can refer to other resources. The Wikipedia article on URIs 
includes more than 50 different resource types that can be referenced by URIs—see http://en.wikipedia.org/wiki/URI_ 
scheme. 

1

http://www.WorkingOntologist.org/Examples/
http://en.wikipedia.org/wiki/URI_
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(a) 

(b) 

FIGURE 3.5 

Graphic representation of triples describing (a) Shakespeare’s plays and (b) parts of the United Kingdom. 

dereferencing succeeds if all these parts work; the protocol locates the specified server running on the 
specified port and so on. When this is the case, we can say that the URI is not just a URI, but it also is 
a URL. From the point of view of modeling, the distinction is not important. But from the point of view 
of having a model on the Semantic Web, the fact that a URI can potentially be dereferenced allows the 
models to participate in a global Web infrastructure. 
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FIGURE 3.6 

Combined graph of all triples about Shakespeare and the United Kingdom. 

RDF applies the notion of the URI to resolve the identity problem in graph merging. The appli
cation is quite simple: A node from one graph is merged with a node from another graph—exactly, if 
they have the same URI. On the one hand, this may seem disingenuous, “solving” the problem of node 
identity by relying on another standard to solve it. On the other hand, since issues of identity appear in 
the Web in general and not just in the Semantic Web, it would be foolish not to use the same strategy to 
resolve the issue in both cases. 

Expressing URIs in print 
URIs work very well for expressing identity on the World Wide Web, but they are typically a bit 
of a pain to write out in detail when expressing models, especially in print. So for the examples in 
this book, we use a simplified version of a URI abbreviation scheme called qnames. In its simplest 
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form, a URI expressed as a qname has two parts: a namespace and an identifier, written with a colon 
between. So the qname representation for the identifier England in the namespace geo is simply 
geo:England. The RDF/XML standard includes elaborate rules that allow programmers to map 
namespaces to other URI representations (such as the familiar http:// notation). For the examples in 
this book, we will use the simple qname form for all URIs. It is important, however, to note that 
qnames are not global identifiers on the Web; only fully qualified URIs (e.g., http://www 
.WorkingOntologist.org/Examples/Chapter3/Shakespeare#Shakespeare) are global Web names. 
Thus, any representation of a qname must, in principle, be accompanied by a declaration of the 
namespace correspondence. 

It is customary on the Web in general and part of the XML specification to insist that URIs contain 
no embedded spaces. For example, an identifier “part of ” is typically not used in the web. Instead, we 
follow the InterCap convention (sometimes called CamelCase), whereby names that are made up of 
multiple words are transformed into identifiers without spaces by capitalizing each word. Thus, “part 
of ” becomes partOf, “Great Britain” becomes GreatBritain, “Measure for Measure” becomes 
MeasureForMeasure, and so on. 

There is no limitation on the use of multiple namespaces in a single source of data, or even in 
a single triple. Selection of namespaces is entirely unrestricted as far as the data model and standards 
are concerned. It is common practice, however, to refer to related identifiers in a single namespace. For 
instance, all of the literary or geographical information from Table 3.4 or Table 3.5 would be placed 
into one namespace per table, with a suggestive name—say, lit or geo—respectively. Strictly speaking, 
these names correspond to fully qualified URIs—for example, lit stands for http://www 
.WorkingOntologist.com/Examples/Chapter3/Shakespeare#, and geo stands for http://www 
.WorkingOntologist.com/Examples/Chapter3/geography#. 

For the purposes of explaining modeling on the Semantic Web, the detailed URIs behind the 
qnames are not important, so for the most part, we will omit these bindings from now on. In many 
examples, we will take this notion of abbreviation one step further; in the cases when we use a single 
namespace throughout one example, we will assume there is a default namespace declaration that 
allows us to refer to URIs simply with a symbolic name preceded by a colon (:), such as :Shake
speare, :JamesDean, :Researcher. 

Table 3.6 Plays of Shakespeare with Qnames 

Subject Predicate Object 

lit:Shakespeare lit:wrote lit:AsYouLikeIt 

lit:Shakespeare lit:wrote lit:HenryV 

lit:Shakespeare lit:wrote lit:LovesLaboursLost 

lit:Shakespeare lit:wrote lit:MeasureForMeasure 

lit:Shakespeare lit:wrote lit:TwelfthNight 

lit:Shakespeare lit:wrote lit:WintersTale 

lit:Shakespeare lit:wrote lit:Hamlet 

lit:Shakespeare lit:wrote lit:Othello 

etc. 

http://www
http://www
http://www
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Table 3.7 Geographical Information as Qnames 

Subject Predicate Object 

geo:Scotland geo:partOf geo:UK 

geo:England geo:partOf geo:UK 

geo:Wales geo:partOf geo:UK 

geo:NorthernIreland geo:partOf geo:UK 

geo:ChannelIslands geo:partOf geo:UK 

geo:IsleOfMan geo:partOf geo:UK 

Using qnames, our triple sets now look as shown in Tables 3.6 and 3.7. Compare Table 3.6 with 
Table 3.4, and compare Table 3.7 with Table 3.5. But it isn’t always that simple; some triples will have 
to use identifiers with different namespaces, as in the example in Table 3.8, which was taken from 
Table 3.3. 

In Table 3.8, we introduced a new namespace, bio:, without specifying the actual URI to which it 
corresponds. For this model to participate on the Web, this information must be filled in. But from 
the point of view of modeling, this detail is unimportant. For the rest of this book, we will assume 
that the prefixes of all qnames are defined, even if that definition has not been specified explicitly in 
print. 

Standard namespaces 
Using the URI as a standard for global identifiers allows for a worldwide reference for any symbol. 
This means that we can tell when any two people anywhere in the world are referring to the same 
thing. 

This property of the URI provides a simple way for a standard organization (like the W3C) to 
specify the meaning of certain terms in the standard. As we will see in coming chapters, the W3C 
standards provide definitions for terms such as type, subClassOf, Class, inverseOf, and so 
forth. But these standards are intended to apply globally across the Semantic Web, so the standards 

Table 3.8 Triples Referring to URIs with a Variety of Namespaces 

Subject Predicate Object 

lit:Shakespeare lit:wrote lit:KingLear 

lit:Shakespeare lit:wrote lit:MacBeth 

bio:AnneHathaway bio:married lit:Shakespeare 

bio:AnneHathaway bio:livedWith lit:Shakespeare 

lit:Shakespeare bio:livedIn geo:Stratford 

geo:Stratford geo:isIn geo:England 

geo:England geo:partOf geo:UK 

geo:Scotland geo:partOf geo:UK 
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refer to these reserved words in the same way as they refer to any other resource on the Semantic Web, 
as URIs. 

The W3C has defined a number of standard namespaces for use with Web technologies, including 
xsd: for XML schema definition; xmlns: for XML namespaces; and so on. The Semantic Web is 
handled in exactly the same way, with namespace definitions for the major layers of the Semantic Web. 
Following standard practice with the W3C, we will use qnames to refer to these terms, using the 
following definitions for the standard namespaces. 

rdf: Indicates identifiers used in RDF. The set of identifiers defined in the standard is quite small 
and is used to define types and properties in RDF. The global URI for the rdf namespace is http:// 
www.w3.org/1999/02/22-rdf-syntax-ns#. 
rdfs: Indicates identifiers used for the RDF Schema language, RDFS. The scope and semantics of 
the symbols in this namespace are the topics of future chapters. The global URI for the rdfs 
namespace is http://www.w3.org/2000/01/rdf-schema#. 
owl: Indicates identifiers used for the Web Ontology Language, OWL. The scope and semantics of 
the symbols in this namespace are the topics of future chapters. The global URI for the owl 
namespace is http://www.w3.org/2002/07/owl#. 

These URIs provide a good example of the interaction between a URI and a URL. For modeling 
purposes, any URI in one of these namespaces (e.g., http://www.w3.org/2000/01/rdf-schema# 
subClassOf, or rdfs:subClassOf for short) refers to a particular term that the W3C makes 
some statements about in the RDFS standard. But the term can also be dereferenced—that is, if we 
look at the server www.w3.org, there is a page at the location 2000/01/rdf-schema with an entry 
about subClassOf, giving supplemental information about this resource. From the point of view of 
modeling, it is not necessary that it be possible to dereference this URI, but from the point of view of 
Web integration, it is critical that it is. 

IDENTIFIERS IN THE RDF NAMESPACE 
The RDF data model specifies the notion of triples and the idea of merging sets of triples as just shown. 
With the introduction of namespaces, RDF uses the infrastructure of the Web to represent agreements 

Table 3.9 Using rdf:type to Describe Playwrights 

Subject Predicate Object 

lit:Shakespeare rdf:type lit:Playwright 

lit:Ibsen rdf:type lit:Playwright 

lit:Simon rdf:type lit:Playwright 

lit:Miller rdf:type lit:Playwright 

lit:Marlowe rdf:type lit:Playwright 

lit:Wilder rdf:type lit:Playwright 

http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2000/01/rdf-schema#
http:www.w3.org
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Table 3.10 Defining Types of Names 

Subject Predicate Object 

lit:Playwright rdf:type bus:Profession 

bus:Profession rdf:type hr:Compensation 

on how to refer to a particular entity. The RDF standard itself takes advantage of the namespace 
infrastructure to define a small number of standard identifiers in a namespace defined in the standard, 
a namespace called rdf. 

rdf:type is a property that provides an elementary typing system in RDF. For example, we can 
express the relationship between several playwrights using type information, as shown in Table 3.9. 
The subject of rdf:type in these triples can be any identifier, and the object is understood to be 
a type. There is no restriction on the usage of rdf:type with types; types can have types ad 
infinitum, as shown in Table 3.10. 

When we read a triple out loud (or just to ourselves), it is understandably tempting to read it (in 
English, anyway) in subject/predicate/object order so that the first triple in Table 3.9 would read, 
“Shakespeare type Playwright.” Unfortunately, this is pretty fractured syntax no matter how you inflect 
it. It would be better to have something like “Shakespeare has type Playwright” or maybe “The type of 
Shakespeare is Playwright.” 

This issue really has to do with the choice of name for the rdf:type resource; if it had been 
called rdf:isInstanceOf instead, it would have been much easier to read out loud in English. But 
since we never have control over how other entities (in this case, the W3C) chose their names, we don’t 
have the luxury of changing these names. When we read out loud, we just have to take some liberties in 
adding in connecting words. So this triple can be pronounced, “Shakespeare [has] type Playwright,” 
adding in the “has” (or sometimes, the word “is” works better) to make the sentence into somewhat 
correct English. 

rdf:Property is an identifier that is used as a type in RDF to indicate when another identifier is 
to be used as a predicate rather than as a subject or an object. We can declare all the identifiers we have 
used as predicates so far in this chapter as shown in Table 3.11. 

Table 3.11 rdf:Property Assertions for Tables 3.5 to 3.8 

Subject Predicate Object 

lit:wrote rdf:type rdf:Property 

geo:partOf rdf:type rdf:Property 

bio:married rdf:type rdf:Property 

bio:livedIn rdf:type rdf:Property 

bio:livedWith rdf:type rdf:Property 

geo:isIn rdf:type rdf:Property 
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CHALLENGE: RDF AND TABULAR DATA 
We began this chapter by motivating RDF as a way to distribute data over the Web—in particular, 
tabular data. Now that we have all of the detailed mechanisms of RDF (including namespaces and 
triples) in place, we can revisit tabular data and show how to represent it consistently in RDF. 

CHALLENGE 1 
Given a table from a relational database, describing products, suppliers, and stocking information about the 
products (see Table 3.12), produce an RDF graph that reflects the content of Table 3.12 in such a way that 
the information intent is preserved but the data are now amenable for RDF operations like merging and RDF 
query. 

Solution 
Each row in the table describes a single entity, all of the same type. That type is given by the name of the table 
itself, Product. We know certain information about each of these items, based on the columns in the table itself, 
such as the model number, the division, and so on. We want to represent these data in RDF. 

Since each row represents a distinct entity, each row will have a distinct URI. Fortunately, the need for 
unique identifiers is just as present in the database as it is in the Semantic Web, so there is a (locally) unique 
identifier available—namely, the primary table key, in this case the column called ID. For the Semantic Web, 
we need a globally unique identifier. The simplest way to form such an identifier is by having a single URI for 
the database itself (perhaps even a URL if the database is on the Web). Use that URI as the namespace for 
all the identifiers in the database. Since this is a database for a manufacturing company, let’s call that 
namespace mfg:. 

Table 3.12 Sample Tabular Data for Triples 

Product 

ID 
Model 
Number Division 

Product 
Line 

Manufacture 
Location SKU Available 

1 ZX-3 Manufacturing Paper Sacramento FB3524 23 
support machine 

2 ZX-3P Manufacturing Paper Sacramento KD5243 4 
support machine 

3 ZX-3S Manufacturing Paper Sacramento IL4028 34 
support machine 

4 B-1430 Control Feedback Elizabeth KS4520 23 
engineering line 

5 B-1430X Control Feedback Elizabeth CL5934 14 
engineering line 

6 B-1431 Control Active Seoul KK3945 0 
engineering sensor 

7 DBB-12 Accessories Monitor Hong Kong ND5520 100 

8 SP-1234 Safety Safety valve Cleveland HI4554 4 

9 SPX-1234 Safety Safety valve Cleveland OP5333 14 
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Then we can create an identifier for each line by concatenating the table name “Product” with the unique key 
and expressing this identifier in the mfg: namespace, resulting in identifiers mfg:Product1, 
mfg:Product2, and so on. 

Each row in the table says several things about that item—namely, its model number, its division, and so 
on. To represent this in RDF, each of these will be a property that will describe the Products. But just as is 
the case for the unique identifiers for the rows, we need to have global unique identifiers for these properties. 
We can use the same namespace as we did for the individuals, but since two tables could have the same 
column name (but they aren’t the same properties!), we need to combine the table name and the column 
name. This results in properties like mfg:Product_ModelNo, mfg:Product_Division, 
and so on. 

With these conventions in place, we can now express all the information in the table as triples. There will be 
one triple per cell in the table—that is, for n rows and c columns, there will be n � c triples. The data shown in 
Table 3.12 have 7 columns and 9 rows, so there are 63 triples, as shown in Table 3.13. 

The triples in the table are a bit different from the triples we have seen so far. Although the subject and 
predicate of these triples are RDF resources (complete with qname namespaces!), the objects are not resources 
but literal data—that is, strings, integers, and so forth. This should come as no surprise, since, after all, RDF is 
a data representation system. RDF borrows from XML all the literal data types as possible values for the object of 
a triple; in this case, the types of all data are strings or integers. 

The usual interpretation of a table is that each row in the table corresponds to one individual and that the type 
of these individuals corresponds to the name of the table. In Table 3.12, each row corresponds to a Product. We 
can represent this in RDF by adding one triple per row that specifies the type of the individual described by each 
row, as shown in Table 3.14. 

The full complement of triples from the translation of the information in Table 3.12 is shown in Figure 3.7. The 
types (i.e., where the predicate is rdf:type, and the object is the class mfg:Product) are shown as links 
in the graph; triples in which the object is a literal datum are shown (for sake of compactness in the figure) within 
a box labeled by their common subject. 

Table 3.13 Triples Representing Some of the Data in Table 3.12 

Subject Predicate Object 

mfg:Product1 mfg:Product_ID 1 

mfg:Product1 mfg:Product_ModelNo ZX-3 

mfg:Product1 mfg:Product_Division Manufacturing support 

mfg:Product1 mfg:Product_Product_Line Paper machine 

mfg:Product1 mfg:Product_Manufacture_Location Sacramento 

mfg:Product1 mfg:Product_SKU FB3524 

mfg:Product1 mfg:Product_Available 23 

mfg:Product2 mfg:Product_ID 2 

mfg:Product2 mfg:Product_ModelNo ZX-3P 

mfg:Product2 mfg:Product_Division Manufacturing support 

mfg:Product2 mfg:Product_Product_Line Paper machine 

mfg:Product2 mfg:Product_Manufacture_Location Sacramento 

mfg:Product2 mfg:Product_SKU KD5243 

mfg:Product2 mfg:Product_Available 4. 
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Table 3.14 Triples Representing Type of Information from Table 3.12 

Subject Predicate Object 

mfg:Product1 rdf:type mfg:Product 

mfg:Product2 rdf:type mfg:Product 

mfg:Product3 rdf:type mfg:Product 

mfg:Product4 rdf:type mfg:Product 

mfg:Product5 rdf:type mfg:Product 

mfg:Product6 rdf:type mfg:Product 

mfg:Product7 rdf:type mfg:Product 

mfg:Product8 rdf:type mfg:Product 

mfg:Product9 rdf:type mfg:Product 

HIGHER-ORDER RELATIONSHIPS 
It is not unusual for someone who is building a model in RDF for the first time to feel a bit limited by 
the simple subject/predicate/object form of the RDF triple. They don’t want to just say that 
Shakespeare wrote Hamlet, but they want to qualify this statement and say that Shakespeare wrote 
Hamlet in 1604 or that Wikipedia states that Shakespeare wrote Hamlet in 1604. In general, these are 
cases in which it is, or at least seems, desirable to make a statement about another statement. This 
process is called reification. Reification is not a problem specific to Semantic Web modeling; the 
same issue arises in other data modeling contexts like relational databases and object systems. In 
fact, one approach to reification in the Semantic Web is to simply borrow the standard solution that is 
commonly used in relational database schemas, using the conventional mapping from relational 
tables to RDF given in the preceding challenge. In a relational database table, it is possible to simply 
create a table with more columns to add additional information about a triple. So the statement 
Shakespeare wrote Hamlet is expressed (as in Table 3.1) in a single row of a table, where there is 
a column for the author of a work and another column for its title. Any further information about this 
event is done with another column (again, just as in Table 3.1). When this is converted to RDF 
according to the example in the Challenge, the row is represented by a number of triples, one triple 
per column in the database. The subject of all of these triples is the same: a single resource that 
corresponds to the row in the table. 

An example of this can be seen in Table 3.13, where several triples have the same subject and one 
triple apiece for each column in the table. This approach to reification has a strong pedigree in rela
tional modeling, and it has worked well for a wide range of modeling applications. It can be applied in 
RDF even when the data have not been imported from tabular form. That is, the statement Shakespeare 
wrote Hamlet in 1601 (disagreeing with the statement in Table 3.2) can be expressed with these three 
triples: 

bio:n1 bio:author lit:Shakespeare. 

bio:n1 bio:title “Hamlet”. 

bio:n1 bio:publicationDate 1601. 
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FIGURE 3.7 

Graphical version of the tabular data from Table 3.12. 

This approach works well for examples like Shakespeare wrote Hamlet in 1601, in which we  
want to express more information about some event or statement. It doesn’t work so well in cases like 
Wikipedia says Shakespeare wrote Hamlet, in which we are expressing information about the 
statement itself, Shakespeare wrote Hamlet. This kind of metadata about statements often takes the 
form of provenance (information about the source of a statement, as in this example), likelihood 
(expressed in some quantitative form like probability, such as It is 90 percent probable 
that Shakespeare wrote Hamlet), context (specific information about a project setting in which 
a statement holds, such as Kenneth Branagh played Hamlet in the movie), or time frame (Hamlet 
plays on Broadway January 11 through March 12). In such cases, it is useful to explicitly make 
a statement about a statement. This process, called explicit reification, is supported by the W3C RDF 
standard with three resources called rdf:subject, rdf:predicate, and  rdf:object. 
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Let’s take the example of Wikipedia says Shakespeare wrote Hamlet. Using the RDF standard, we 
can refer to a triple as follows: 

q:n1 rdf:subject lit:Shakespeare; 

rdf:predicate lit:wrote; 

rdf:object lit:Hamlet.


Then we can express the relation of Wikipedia to this statement as follows: 

web:Wikipedia m:says q:n1. 

Notice that just because we have asserted the reification triples about q:n1, it is not necessarily the 
case that we have also asserted the triple itself: 

lit:Shakespeare lit:wrote lit:Hamlet. 

This is as it should be; after all, if an application does not trust information from Wikipedia, then it 
should not behave as though that triple has been asserted. An application that does trust Wikipedia will 
want to behave as though it had. 

ALTERNATIVES FOR SERIALIZATION 
So far, we have expressed RDF triples in subject/predicate/object tabular form or as graphs of boxes 
and arrows. Although these are simple and apparent forms to display triples, they aren’t always 
the most compact forms, or even the most human-friendly form, to see the relations between entities. 

The issue of representing RDF in text doesn’t only arise in books and documents about RDF; it also 
arises when we want to publish data in RDF on the Web. In response to this need, there are multiple 
ways of expressing RDF in textual form. 

N-Triples 
The simplest form is called N-Triples and corresponds most directly to the raw RDF triples. It refers to 
resources using their fully unabbreviated URIs. Each URI is written between angle brackets (< and >). 
Three resources are expressed in subject/predicate/object order, followed by a period (.). For exam
ple, if the namespace mfg corresponds to http://www.WorkingOntologist.org/Examples/Chapter3 
Manufacture#, then the first triple from Table 3.14 is written in N-Triples as follows: 

<http://www.WorkingOntologist.org/Examples/Chapter3Manufacture# 

http://www.WorkingOntologist.org/Examples/Chapter3/Manufacture#Product1 

http://www.WorkingOntologist.org/Examples/Chapter3/Manufacture#Product 

It is difficult to print N-Triples on a page in a book—the serialization does not allow for new lines 
within a triple (as we had to do here, to fit it in the page). An actual ntriple file has the whole triple on 
a single line. 

http://www.WorkingOntologist.org/Examples/Chapter3
<http://www.WorkingOntologist.org/Examples/Chapter3Manufacture#
http://www.WorkingOntologist.org/Examples/Chapter3/Manufacture#Product1
http://www.WorkingOntologist.org/Examples/Chapter3/Manufacture#Product
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Turtle 
In this book, we use a more compact serialization of RDF called Turtle. Turtle combines the apparent 
display of triples from N-Triples with the terseness of qnames. We will introduce Turtle in this section 
and describe just the subset required for the current examples. We will describe more of the language 
as needed for later examples. For a full description of Turtle, see the W3C Turtle team submission.1 

Since Turtle uses qnames, there must be a binding between the (local) qnames and the (global) 
URIs. Hence, Turtle begins with a preamble in which these bindings are defined; for example, we can 
define the qnames needed in the Challenge example with the following preamble: 

@prefix mfg:

<http://www.WorkingOntologist.com/Examples/Chapter3/Manufac


turing#>

@prefix rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#


Once the local qnames have been defined, Turtle provides a very simple way to express a triple by 
listing three resources, using qname abbreviations, in subject/predicate/object order, followed by 
a period, such as the following: 

mfg:Product1 rdf:type mfg:Product . 

The final period can come directly after the resource for the object, but we often put a space in front 
of it, to make it stand out visually. This space is optional. 

It is quite common (especially after importing tabular data) to have several triples that share 
a common subject. Turtle provides for a compact representation of such data. It begins with the first 
triple in subject/predicate/object order, as before; but instead of terminating with a period, it uses 
a semicolon (;) to indicate that another triple with the same subject follows. For that triple, only the 
predicate and object need to be specified (since it is the same subject from before). The information in 
Tables 3.13 and 3.14 about Product1 and Product2 appears in Turtle as follows: 

mfg:Product1 rdf:type mfg:Product; 

mfg:Product_Division “Manufacturing support”; 

mfg:Product_ID “1”;

mfg:Product_Manufacture_Location “Sacramento”; 

mfg:Product_ModelNo “ZX-3”; 

mfg:Product_Product_Line “Paper Machine”; 

mfg:Product_SKU “FB3524”; 

mfg:Product_Available “23” . 


mfg:Product2 rdf:type mfg:Product; 

mfg:Product_Division “Manufacturing support”; 

mfg:Product_ID “2”;

mfg:Product_Manufacture_Location “Sacramento”; 

mfg:Product_ModelNo “ZX-3P”; 

mfg:Product_Product_Line “Paper Machine”; 

mfg:Product_SKU “KD5243”; 

mfg:Product_Available “4” . 


1http://www.w3.org/TeamSubmission/turtle/ 

<http://www.WorkingOntologist.com/Examples/Chapter3/Manufac
http://www.w3.org/1999/02/22-rdf-syntax-ns#
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When there are several triples that share both subject and predicate, Turtle provides a compact way to 
express this as well so that neither the subject nor the predicate needs to be repeated. Turtle uses 
a comma (,) to separate the objects. So the fact that Shakespeare had three children named Susanna, 
Judith, and Hamnet can be expressed as follows: 

lit:Shakespeare b:hasChild b:Susanna, b:Judith, b:Hamnet. 

There are actually three triples represented here—namely: 

lit:Shakespeare b:hasChild b:Susanna. 

lit:Shakespeare b:hasChild b:Judith. 

lit:Shakespeare b:hasChild b:Hamnet. 


Turtle provides some abbreviations to improve terseness and readability; in this book, we use just 
a few of these. One of the most widely used abbreviations is to use the word a to mean rdf:type. 
The motivation for this is that in common speech, we are likely to say, “Product1 is a Product” or 
“Shakespeare is a playwright” for the triples, 

mfg:Product1 rdf:type mfg:Product. 

lit:Shakespeare rdf:type lit:Playwright. 


respectively. Thus we will usually write instead: 

mfg:Product1 a mfg:Product. 

lit:Shakespeare a lit:Playwright.


RDF/XML 
While Turtle is convenient for human consumption and is more compact for the printed page, many 
Web infrastructures are accustomed to representing information in HTML or, more generally, XML. 
For this reason, the W3C has recommended the use of an XML serialization of RDF called RDF/XML. 
The information about Product1 and Product2 just shown looks as follows in RDF/XML. In this 
example, the subjects (Product1 and Product2) are referenced using the XML attribute 
rdf:about; the triples with each of these as subjects appear as subelements within these definitions. 
The complete details of the RDF/XML syntax are beyond the scope of this discussion and can be found 
in http://www.w3.org/TR/rdf-syntax-grammar/. 

<rdf:RDF 
xmlns:mfg=“http://www.WorkingOntologist.com/Examples/Chapter3/
Manufacturing#”

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax
ns#”> 
<mfg:Product 

http://www.w3.org/TR/rdf-syntax-grammar/
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rdf:about=“http://www.WorkingOntologist.com/Examples/Chapter3/
Manufacturing#Product1”> 


<mfg:Available>23</mfg:Available> 

<mfg:Division>Manufacturing support</mfg:Division> 

<mfg:ProductLine>Paper machine</mfg:ProductLine> 

<mfg:SKU>FB3524</mfg:SKU> 

<mfg:ModelNo>ZX-3</mfg:ModelNo> 

<mfg:ManufactureLocation>Sacramento</mfg:Manufacture 

Location> 

</mfg:Product>

<mfg:Product


rdf:about=“http://www.WorkingOntologist.com/Examples/Chapter3/
Manufacturing#Product2”> 


<mfg:SKU>KD5243</mfg:SKU> 

<mfg:Division>Manufacturing support</mfg:Division> 

<mfg:ManufactureLocation>Sacramento</mfg:Manufacture 

Location> 

<mfg:Available>4</mfg:Available> 

<mfg:ModelNo>ZX-3P</mfg:ModelNo> 

<mfg:ProductLine>Paper machine</mfg:ProductLine> 

</mfg:Product>


</rdf:RDF> 

The same information is contained in the RDF/XML form as in the Turtle, including the decla
rations of the qnames for mfg: and rdf:. RDF/XML includes a number of rules for determining the 
fully qualified URI of a resource mentioned in an RDF/XML document. These details are quite 
involved and will not be used for the examples in this book. 

BLANK NODES 
So far, we have described how RDF can represent sets of triples, in which each subject, predicate, and 
object is either a source or (in the case of the object of a triple) a literal data value. Each resource is 
given an identity according to the Web standard for identity, the URI. RDF also allows for resources 
that do not have any Web identity at all. But why would we want to represent a resource that has no 
identity on the Web? 

Sometimes we know that something exists, and we even know some things about it, but we don’t 
know its identity. For instance, suppose we want to represent the fact that Shakespeare had a mistress, 
whose identity remains unknown. But we know a few things about her; she was a woman, she lived in 
England, and she was the inspiration for “Sonnet 78.” 

It is simple enough to express these statements in RDF, but we need an identifier for the mistress. In 
Turtle, we could express them as follows: 

lit:Mistress1 rdf:type bio:Woman; 
bio:LivedIn geo:England. 

lit:Sonnet78 lit:hasInspiration lit:Mistress1. 
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But if we don’t want to have an identifier for the mistress, how can we proceed? RDF allows for 
a “blank node,” or bnode for short, for such a situation. If we were to indicate a bnode with a ?, the 
triples would look as follows: 

? rdf:type bio:Woman;
bio:livedIn geo:England. 

lit:Sonnet78 lit:hasInspiration ?. 

The use of the bnode in RDF can essentially be interpreted as a logical statement, “there exists.” 
That is, in these statements we assert “there exists a woman, who lived in England, who was the 
inspiration for ‘Sonnet78.’” 

But this notation (which does not constitute a valid Turtle expression) has a problem: If there is 
more than one blank node, how do we know which “?” references which node? For this reason, Turtle 
instead includes a compact and unambiguous notation for describing blank nodes. A blank node is 
indicated by putting all the triples of which it is a subject between square brackets ([ and ]), so: 

[ rdf:type bio:Woman;

bio:livedIn geo:England ]


It is customary, though not required, to leave blank space after the opening bracket to indicate that 
we are acting as if there were a subject for these triples, even though none is specified. 

We can refer to this blank node in other triples by including the entire bracketed sequence in place 
of the blank node. Furthermore, the abbreviation of “a” for rdf:type is particularly useful in this 
context. Thus, our entire statement about the mistress who inspired “Sonnet 78” looks as follows in 
Turtle: 

lit:Sonnet78 lit:hasInspiration [a :Woman; 

bio:livedIn geo:England].


This expression of RDF can be read almost directly as plain English: that is, “Sonnet78 has [as] 
inspiration a Woman [who] lived in England.” The identity of the woman is indeterminate. The use of 
the bracket notation for blank nodes will become particularly important when we come to describe 
OWL, the Web Ontology Language, since it makes very particular use of bnodes. 

Ordered information in RDF 
The children of Shakespeare appear in a certain order on the printed page, but from the point of view of 
RDF, they are in no order at all; there are just three triples, one describing the relationship between 
Shakespeare and each of his children. What if we do want to specify an ordering. How would we do it 
in RDF? 

RDF provides a facility for ordering elements in a list format. An ordered list can be expressed 
quite easily in Turtle as follows: 

lit:Shakespeare b:hasChild (b:Susanna b:Judith b:Hamnet). 
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This translates into the following triples, where _:a, _:b, and _:c are bnodes: 

lit:Shakespeare b:hasChild _:a.

_:a rdf:first b:Susanna. 

_:a rdf:rest _:b. 

_:b rdf:first b:Judith. 

_:b rdf:rest _:c. 

_:c rdf:rest rdf:nil. 

_:c rdf:first b:Hamnet. 


This rendition preserves the ordering of the objects but at a cost of considerable complexity of 
representation. Fortunately, the Turtle representation is quite compact, so it is not usually necessary to 
remember the details of the RDF triples behind it. 

SUMMARY 
RDF is, first and foremost, a system for modeling data. It gives up in compactness what it gains in 
flexibility. Every relationship between any two data elements is explicitly represented, allowing for 
a very simple model of merging data. There is no need to arrange the columns of tables so that they 
“match up” or to worry about data “missing” from a particular column. A relationship (expressed in 
a familiar form of subject/predicate/object) is either present or it is not. Merging data is thus reduced to 
a simple matter of considering all such statements from all sources, together in a single place. 

The only challenge that remains in such a system is the challenge of identity. How do we have 
a global notation for the identity of any entity? Fortunately, this problem is not unique to the RDF data 
model. The infrastructure of the Web itself has the same issue and has a standard solution: the URI. 
RDF borrows this solution. 

Since RDF is a Web language, a fundamental consideration is the distribution of information from 
multiple sources, across the Web. On the Web, the AAA slogan holds: Anyone can say Anything about 
Any topic. RDF supports this slogan by allowing any data source to refer to resources in any name-
space. Even a single triple can refer to resources in multiple namespaces. 

As a data model, RDF provides a clear specification of what has to happen to merge information 
from multiple sources. It does not provide algorithms or technology to implement those processes. 
These technologies are the topic of the next chapter. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

RDF (Resource Description Framework)—This distributes data on the Web.

Triple—The fundamental data structure of RDF. A triple is made up of a subject, predicate, and

object.

Graph—A nodes-and-links structural view of RDF data.

Merging—The process of treating two graphs as if they were one.

URI (Uniform Resource Indicator)—A generalization of the URL (Uniform Resource Locator),

which is the global name on the Web.
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namespace—A set of names that belongs to a single authority. Namespaces allow different agents

to use the same word in different ways.

qname—An abbreviated version of a URI, it is made up of a namespace identifier and a name,

separated by a colon.

rdf:type—The relationship between an instance and its type.

rdf:Property—The type of any property in RDF.

Reification—The practice of making a statement about another statement. It is done in RDF using

rdf:subject, rdf:predicate, and rdf:object.

N-Triples, Turtle, RDF/XML—The serialization syntaxes for RDF.

Blank nodes—RDF nodes that have no URI and thus cannot be referenced globally. They are used

to stand in for anonymous entities.
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So far, we have seen how RDF can represent data in a distributed way across the Web. As such, it forms 
the basis for the Semantic Web, a web of data in which Anyone can say Anything about Any topic. The 
focus of this book is modeling on the Semantic Web: describing and defining distributed data in such 
a way that the data can be brought back together in a useful and meaningful way. In a book about only 
modeling, one could say that there is no room for a discussion of system architecture—the components 
of a computer system that can actually use these models in useful applications. But this book is for the 
working ontologist who builds models so that they can be used. But used for what? These models are 
used to build some application that takes advantage of information distributed over the Web. In short, 
to put the Semantic Web to work, we need to describe, at least at a high level, the structure of 
a Semantic Web application—in particular, the components that comprise it, the kinds of inputs it gets 
(and from where), how it takes advantage of RDF, and why this is different from other application 
architectures. 

Many of the components of a Semantic Web application are provided both as supported products 
by companies specializing in Semantic Web technology and as free software under a variety of 
licenses. New software is being developed both by research groups as well as product companies on an 
ongoing basis. We do not describe any particular tools in this chapter, but rather we discuss the types of 
components that make up a Semantic Web deployment and how they fit together. 

RDF Parser/Serializer We have already seen a number of serializations of RDF, including the 
W3C standard serialization in XML. An RDF parser reads text in one (or more) of these 
formats and interprets it as triples in the RDF data model. An RDF serializer does the 
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reverse; it takes a set of triples and creates a file that expresses that content in one of the 
serialization forms. 
RDF Store We have seen how RDF distributes data in the form of triples. An RDF store 
(sometimes called a triple store) is a database that is tuned for storing and retrieving data in 
the form of triples. In addition to the familiar functions of any database, an RDF store has the 
additional ability to merge information from multiple data sources, as defined by the RDF 
standard. 
RDF Query Engine Closely related to the RDF store is the RDF query engine. The query engine 
provides the capability to retrieve information from an RDF store according to structured queries. 
Application An application has some work that it performs with the data it processes: analysis, 
user interaction, archiving, and so forth. These capabilities are accomplished using some 
programming language that accesses the RDF store via queries (processed with the RDF query 
engine). 

Most of these components have corresponding components in a familiar relational data-backed 
application. The relational database itself corresponds to the RDF store in that it stores the data. The 
database includes a query language with a corresponding query engine for accessing this data. In both 
cases, the application itself is written using a general-purpose programming language that makes 
queries and processes their results. The parser/serializer has no direct counterpart in a relational data-
backed system, at least as far as standards go. There is no standard serialization of a relational database 
that will allow it to be imported into a competing relational database system without a change of 
semantics. (This is a key advantage of RDF stores over traditional data stores.) 

In the following sections, we examine each of these capabilities in detail. Since new products in 
each of these categories are being developed on an ongoing basis, we describe them generically and do 
not refer to specific products. 

RDF PARSER/SERIALIZER 
How does an RDF-based system get started? Where do the triples come from? There are a number of 
possible answers for this, but the simplest one is to find them directly on the Web. 

Google can find millions of files with the extension .rdf. Any of these could be a source of data for 
an RDF application. But these files are useless unless we have a program that can read them. That 
program is an RDF parser. RDF parsers take as their input a file in some RDF format. Most parsers 
support the standard RDF/XML format, which is compatible with the more widespread XML standard. 
An RDF parser takes such a file as input and converts it into an internal representation of the triples that 
are expressed in that file. At this point, the triples are stored in the triple store and are available for all 
the operations of that store. 

The triples at this point could also be serialized back out, either in the same text form or in another 
text form. This is done using the reverse operation of the parser: the serializer. It is possible to take 
a “round-trip” with triples using a parser and serializer; if you serialize a set of triples, then you parse 
the resulting string with a corresponding parser (e.g., a Turtle parser for a Turtle serialization), and the 
result is the same set of triples that the process began with. Notice that this is not necessarily true if you 
start with a text file that represents some triples. Even in a single format, there can be many distinct 
files that represent the same set of triples. Thus, it is not, in general, possible to read in an RDF file, 
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export it again, and be certain that the resulting file will be identical (character by character) to the 
input file. 

Other data sources 
Parsers and serializers based on the standard representations of RDF are useful for the systematic 
processing and archiving of data in RDF. While there are considerable data available in these formats, 
even more data are not already available in RDF. Fortunately, for many common data formats (e.g., 
tabular data), it is quite easy to convert these formats into RDF triples. 

We already saw how tabular data can be mapped into triples in a natural way. This approach can be 
applied to relational databases or spreadsheets. Tools to perform a conversion based on this mapping, 
though not strictly speaking parsers, play the same role as a parser in a semantic solution: They connect 
the triple store with sources of information in the form of triples. Most RDF systems include a table 
input converter of some sort. Some tools specifically target relational databases, including appropriate 
treatment of foreign key references, whereas others work more directly with spreadsheet tables. Tools 
of this sort are called converters, since they typically convert information from some form into RDF 
and often into a standard form of RDF like Turtle. This allows them to be used with any other RDF. 
Another rich source of data for the Semantic Web can be found in existing web pages—that is, in 
HTML pages. Such pages often include structured information, like contact information, descriptions 
of events, product descriptions, publications, and so on. This information can be combined in novel 
ways on the Semantic Web once it is available in RDF. 

A related approach to encoding information in web pages is a trend that goes by the name of 
microformats. The idea of a microformat is that some web page authors might be willing to embed 
structured information in their web pages. To enable them to do this, a standard vocabulary 
(usually embedded in HTML as special tag attributes that have no impact on how a browser 
displays a page) is developed for commonly used items on a web page. Some of the first 
microformats were for business cards (including, in the controlled vocabulary, names, positions, 
companies, and phone numbers) and events (including location, start time, and end time). One 
limitation of microformats is the need to specify a controlled vocabulary and provide a parser that 
can process that vocabulary. Wouldn’t it be better if, instead, someone (like the W3C) would 
simply specify a single syntax for marking up HTML pages with RDF data? Then there would be 
a single processing script for all microformats. 

The W3C has proposed just such a format called RDFa. The idea behind RDFa is quite simple: Use 
the attribute tags in HTML to embed information that can be parsed into RDF. Just like microformats, 
RDFa has no effect on how a browser displays a page. A number of search engines (Google and 
Yahoo!) and retailers (BestBuy, Overstock.com) have begun to adopt RDFa to provide machine 
processable Semantic Web data. Facebook has adopted a variant of RDFa as part of the Open Graph 
Protocol—a network of information available in Facebook. 

RDFa provides two advantages for sharing data on the Web. First, from the point of view of data 
consumers, it is easier to harvest the RDF data from pages that were marked up with structured data 
extraction in mind, than from sources that were developed without this intention. But, more important, 
from the point of view of the content author, it allows them to express the intended meaning of a web 
page inside the web page itself. This ensures that the RDF data in the document matches the 
intended meaning of the document itself. This really is the spirit of the word semantic in the Semantic 
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Web—that page authors be given the capability of expressing what they mean in a web page for 
a machine to read and use. 

RDF STORE 
A database is a program that stores data, making them available for future use. An RDF data storage 
solution is no different; the RDF data are kept in a system called an RDF store. It is typical for an RDF 
data store to be accompanied by a parser and a serializer to populate the store and publish information 
from the store, respectively. Just as is the case for conventional (e.g., relational) data stores, an RDF 
store may also include a query engine, as described in the next section. Conventional data stores are 
differentiated based on a variety of performance features, including the volume of data that can be 
stored, the speed with which data can be accessed or updated, and the variety of query languages 
supported by the query engine. These features are equally relevant when applied to an RDF store. 

In contrast to a relational data store, an RDF store includes as a fundamental capability, the ability 
to merge two data sets together. Because of the flexible nature of the RDF data model, the specification 
of such a merge operation is clearly defined. Each data store represents a set of RDF triples; a merger 
of two (or more) data sets is the single data set that includes all and only the triples from the source data 
sets. Any resources with the same URI (regardless of the originating data source) are considered to be 
equivalent in the merged data set. Thus, in addition to the usual means of evaluating a data store, an 
RDF store can be evaluated on the efficiency of the merge process. 

RDF store implementations range from custom programmed database solutions to fully supported 
off-the-shelf products from specialty vendors. Conceptually, the simplest relational implementation of 
a triple store is as a single table with three columns, one each for the subject, predicate, and object of 
the triple. Table 4.1 shows some data about Los Angeles Metro stations, organized in this way. 

This representation should look familiar, as it is exactly the representation we used to introduce 
RDF triples in Chapter 3. Since this fits in a relational database representation, it can be accessed using 
conventional relational database tools such as SQL. An experienced SQL programmer would have no 
problem writing a query to answer a question like “List the dc:title of every instance of 
metro:Metro in the table.” As an implementation representation, it has a number of apparent 

Table 4.1 Names and Addresses of Los Angeles Metro Stations 

Subject Predicate Object 

metro:item0 rdf:type metro:Metro 

metro:item0 dc:title “Allen Station” 

metro:item0 simile:address “395 N. Allen Av., Pasadena 91106” 

metro:item1 rdf:type metro:Metro 

metro:item1 dc:title “Chinatown Station” 

metro:item1 simile:address “901 N. Spring St., Los Angeles 90012–1862” 

metro:item2 rdf:type metro:Metro 

metro:item2 dc:title Del Mar Station 

metro:item2 simile:address “230 S. Raymond Av., Pasadena 91105–2014” 
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problems, including the replication of information in the first column and the difficulty of building 
indices around string values like URIs. 

It is not the purpose of this discussion to go into details of the possible optimizations of the RDF 
store. These details are the topic of the particular (sometimes proprietary) solutions provided by 
a vendor of an off-the-shelf RDF store. In particular, the issue of building indices that work on URIs can 
be solved with a number of well-understood data organization algorithms. Serious providers of RDF 
stores differentiate their offerings based on the scalability and efficiency of these indexing solutions. 

RDF data standards and interoperability of RDF stores 
RDF stores bear considerable similarity to relational stores, especially in terms of how the quality of 
a store is evaluated. A notable distinction of RDF stores results from the standardization of the RDF 
data model and RDF/XML serialization syntax. Several competing vendors of relational data stores 
dominate the market today, and they have for several decades. While each of these products is based on 
the same basic idea of the relational algebra for data representation, it is a difficult process to transfer 
a whole database from one system to another. That is, there is no standard serialization language with 
which one can completely describe a relational database in such a way that it can be automatically 
imported into a competitor’s system. Such a task is possible, but it typically requires a database 
programmer to track down the particulars of the source database to ensure that they are represented 
faithfully in the target system. 

The standardization effort for RDF makes the situation very different when it comes to RDF stores. 
Just as for relational stores, there are several competing vendors and projects. In stark contrast to the 
situation for relational databases, the underlying RDF data model is shared by all of these products, 
and, even more specifically, all of them can import and export their data sets in any of the standard 
formats (RDF/XML or Turtle). This makes it a routine task to transfer an RDF data set—or several 
RDF data sets—from one RDF store to another. This feature, which is a result of an early and 
aggressive standardization process, makes it much easier to begin with one RDF store, secure in the 
knowledge that the system can be migrated to another as the need arises. It also simplifies the issue of 
federating data that are housed in multiple RDF stores, possibly coming from different vendor sources. 

RDF query engines 
An RDF store is typically accessed using a query language. In this sense, an RDF store is similar to 
a relational database or an XML store. Not surprisingly, in the early days of RDF, a number of different 
query languages were available, each supported by some RDF-based product or open-source project. 
From the common features of these query languages, the W3C has undertaken the process of stan
dardizing an RDF query language called SPARQL. We cover the details of the SPARQL query 
language in the next chapter. 

An RDF query engine is intimately tied to the RDF store. To solve a query, the engine relies on the 
indices and internal representations of the RDF store: the more finely tuned the store is to the query 
engine, the better its performance. For large-scale applications, it is preferable to have an RDF store 
and query engine that retain their performance even in the face of very large data sets. For smaller 
applications, other features (e.g., cost, ease of installation, platform, open-source status, and built-in 
integration with other enterprise systems) may dominate. 
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The SPARQL query language includes a protocol for communicating queries and results so that 
a query engine can act as a web service. This provides another source of data for the semantic web— 
the so-called SPARQL endpoints provide access to large amounts of structured RDF data. It is even 
possible to provide SPARQL access to databases that are not triple stores, effectively translating 
SPARQL queries into the query language of the underlying store. The W3C has recently begun the 
process to standardize a translation from SPARQL to SQL for relational stores. 

Comparison to relational queries 
In many ways, an RDF query engine is very similar to the query engine in a relational data store: It 
provides a standard interface to the data and defines a formalism by which data are viewed. A relational 
query language is based on the relational algebra of joins and foreign key references. RDF query 
languages look more like statements in predicate calculus. Unification variables are used to express 
constraints between the patterns. 

A relational query describes a new data table that is formed by combining two or more source tables. 
An RDF query (whether in SPARQL or another RDF query language) can describe a new graph that is 
formed by describing a subset of a source RDF graph. That graph, in turn, may be the result of having 
merged together several other graphs. The inherently recursive nature of graphs simplifies a number of 
detailed issues that arise in table-based queries. For instance, an RDF query language like SPARQL has 
little need for a subquery construct; in many cases, the same effect can be achieved with a single query. 
Similarly, there is nothing corresponding to the special case of an SQL “self-join” in SPARQL. 

In the special case in which an RDF store is implemented as a single table in a relational data
base, any graph pattern match in such a scenario will constitute a self-join on that table. Some end-
developers choose to work this way in a familiar SQL environment. Oracle takes another approach to 
making RDF queries accessible to SQL programmers by providing its own SPARQL extension to its 
version of SQL, optimized for graph queries. Their SPARQL engine is smoothly integrated with the 
table/join structure of their SQL scripting language. 

APPLICATION CODE 
Database applications include more than just a database and query engine; they also include some 
application code, in an application environment, that performs some analysis on or displays some 
information from the database. The only access the application has to the database is through the query 
interface, as shown in Figure 4.1. 

An RDF application has a similar architecture, but it includes the RDF parser and serializer, 
converters, the RDF merge functionality, and the RDF query engine. These capabilities interact with 
the application itself and the RDF store as shown in Figure 4.2. 

The application itself can take any of several forms. Most commonly, it is written in a conventional 
programming language (Java, C, Python, and Perl are popular options). In this case, the RDF capa
bilities are provided as API bindings for that language. It is also common for an RDF store to provide 
a scripting language as part of the query system, which gives programmatic access to these capabilities 
in a way that is not unlike how advanced dialects of SQL provide scripting capabilities for relational 
database applications. 
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Application architecture for a database application. 

Converters 
and Scrapers Parser and 

Serializer 
RDF Store 

(merge) 

Query Engine 

Application 
Analytics 
Interface 
… 

Web pages, Spreadsheets, 
Tables, Databases, etc. 

RDF Files 

FIGURE 4.2 

Application architecture for an RDF application. 

Regardless of the method by which the RDF store makes these functionalities available to the 
application, it is still the responsibility of the application to use them. Here are some examples of 
typical RDF applications: 

�	 Calendar integration—shows appointments from different people and teams on a single calendar 
view 

�	 Map integration—shows locations of points of interest gathered from different web sites, 
spreadsheets, and databases all on a single map 

�	 Annotation—allows a community of users to apply keywords (with URIs) to information (tagging) 
for others to consult 

�	 Content management—makes a single index of information resources (documents, web pages, 
databases, etc.) that are available in several content stores. 

The application will decide what information sources need to be scraped or converted (e.g., diary 
entries in XML, lists of addresses from a web page, directory listings of content servers). 
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Depending on the volatility of the data, some of this process may even happen offline (e.g., 
locations of subway stations in New York, entries in the Sears catalog, analyses of common chemical 
structures, etc., don’t change very rapidly; these sorts of data could be imported into RDF entirely 
outside of an application context), whereas other data (like calendar data of team members, trans
actional sales data, experimental results) will have to be updated on a regular basis. Some data can 
remain in the RDF store itself (private information about this team, order information, patented 
chemical formulas); other data could be published in RDF form for other applications to use (train 
timetables, catalog specials, FDA findings about certain chemicals). 

Once all the required data sources have been converted, fetched, or parsed, the application uses the 
merge functionality of the RDF store to produce a single, federated graph of all the merged data. It is 
this federated graph that the application will use for all further queries. There is no need for the queries 
themselves to be aware of the federation strategy or schedule; the federation has already taken place 
when the RDF merge was performed. 

From this point onward, the application behaves very like any other database application. 
A web page to display the appointments of any member of a team will include a query for that 
information. Even if the appointments came from different sources and the information about team 
membership from still another source, the query is made against the federated information graph. 

RDF-backed web portals 
When the front end of an application is a web server, the architecture (shown in Figure 4.1) is well 
known for a database-backed web portal. The pages are generated using any of a number of tech
nologies (e.g., CGI, ASP, JSP, ZOPE) that allow web pages to be constructed from the results of 
queries against a database. In the earliest days of the web, web pages were typically stored statically as 
files in a file system. The move to database-backed portals was made to allow web sites to reflect the 
complex interrelated structure of data as it appears in a relational database. 

The system architecture outlined in Figure 4.2 can be used the same way to implement a Semantic 
Web portal. The RDF store plays the same role that the database plays in database-backed portals. It is 
important to note that because of the separation between the presentation layer in both Figures 4.1 and 
4.2, it is possible to use all the same technologies for the actual web page construction for a Semantic 
Web portal as those used in a database-backed portal. But, in contrast to conventional data-backed web 
portals, and because of the distributed nature of the RDF store that backs a Semantic Web portal, 
information on a single RDF-backed web page typically comes from multiple sources. The merge 
capability of an RDF store supports this sort of information distribution as part of the infrastructure of 
the web portal. When the portal is backed by RDF, there is no difference between building a distributed 
web portal and one in which all the information is local. Using RDF, federated web portals are as easy 
as siloed portals. 

DATA FEDERATION 
The RDF data model was designed from the beginning with data federation in mind. Information from 
any source is converted into a set of triples so that data federation of any kind—spreadsheets and XML, 
database tables and web pages—is accomplished with a single mechanism. As shown in Figure 4.2, 
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this strategy of federation converts information from multiple sources into a single format and then 
combines all the information into a single store. This is in contrast to a federation strategy in which the 
application queries each source using a method corresponding to that format. RDF does not refer to 
a file format or a particular language for encoding data but rather to the data model of representing 
information in triples. It is this feature of RDF that allows data to be federated in this way. The 
mechanism for merging this information, and the details of the RDF data model, can be encapsulated 
into a piece of software—the RDF store—to be used as a building block for applications. 

The strategy of federating information first and then querying the federated information store 
separates the concerns of data federation from the operational concerns of the application. Queries 
written in the application need not know where a particular triple came from. This allows a single 
query to seamlessly operate over multiple data sources without elaborate planning on the part of the 
query author. This also means that changes to the application to federate further data sources will not 
impact the queries in the application itself. 

This feature of RDF applications forms the key to much of the discussion that follows. In our 
discussion of RDFS and OWL, we will assume that any federation necessary for the application has 
already taken place; that is, all queries and inferences will take place on the federated graph. The 
federated graph is simply the graph that includes information from all the federated data sources over 
which application queries will be run. 

SUMMARY 
The components described in this chapter—RDF parsers, serializers, stores, and query engines—are 
not semantic models in themselves but the components of a system that will include semantic models. 
Even the information represented in RDF is not necessarily a semantic model. These are the building 
blocks that go into making and using a semantic model. The model will be represented in RDF, to be 
sure. As we shall see, the semantic modeling languages of the W3C, RDFS, and OWL are built entirely 
in RDF, and they can be federated just like any other RDF data. 

Where do semantic models fit into the application architecture of Figure 4.2? As data expressed in 
RDF, they will be housed in the RDF store, along with all other data. But semantic models go beyond 
just including data that will be used to answer a query, like the list of plays that Shakespeare wrote or 
the places where paper machines are kept. Semantic models also include meta-data; data that help to 
organize other data. When we federate information from multiple sources, the RDF data model allows 
us to represent all the data in a single, uniform way. But it does nothing to resolve any conflicts of 
meaning between the sources. Do two states have the same definitions of “marriage”? Is the notion of 
“writing” a play the same as the notion of “writing” a song? It is the semantic models that give answers 
to questions like these. A semantic model acts as a sort of glue between disparate, federated data 
sources so we can describe how they fit together. 

Just as Anyone can say Anything about Any topic, so also can anyone say anything about a model; 
that is, anyone can contribute to the definition and mapping between information sources. In this way, 
not only can a federated, RDF-based, semantic application get its information from multiple sources, 
but it can even get the instructions on how to combine information from multiple sources. In this way, 
the Semantic Web really is a web of meaning, with multiple sources describing what the information 
on the Web means. 
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Fundamental concepts 
The following fundamental concepts were introduced in this chapter: 

RDF parser/serializer—A system component for reading and writing RDF in one of several file

formats.

RDF store—A database that works in RDF. One of its main operations is to merge RDF graphs.

RDF query engine—This provides access to an RDF store, much as an SQL engine provides

access to a relational store.

SPARQL—The W3C standard query language for RDF.

SPARQL endpoint—An application that can answer a SPARQL query, including one where the

native encoding of information is not in RDF.

Application interface—The part of the application that uses the content of an RDF store in an

interaction with some user.

Converter—A tool that converts data from some form (e.g., tables) into RDF.

RDFa—Standard for encoding and retrieving RDF metadata from HTML pages.
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RDF provides a simple way to represent distributed data. The triple is the simplest way to represent 
a named connection between two things. But a representation of data is useless without some means of 
accessing that data. The standard way to access RDF data uses a query language called SPARQL. 
SPARQL stands for SPARQL Protocol And RDF Query Language (yes, the “S” in “SPARQL” stands 
for “SPARQL,” sigh). The SPARQL query language works closely with the structure of RDF itself. 
SPARQL query patterns are represented in a variant of Turtle (the same language that we use to express 
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RDF throughout this book). The queried RDF graph can be created from one kind of data or merged 
from many; in either case, SPARQL is the way to query it. 

This chapter gives examples of the SPARQL query language. Most of the examples are based on 
version 1.0 of the standard, released in 2008. At the time of this writing, a new version of SPARQL is 
under development. The advanced examples will use features from the new standard (version 1.1) and 
will be indicated in the heading of each section as (SPARQL 1.1). Features described in sections 
without this indication are available in both SPARQL 1.0 as well as SPARQL 1.1. Since this 
recommendation is still in progress, the final version might deviate in small ways from the examples 
given here. 

SPARQL is a query language and shares many features with other query languages like 
XQUERY and SQL. But it differs from each of these query languages in important ways (as they 
differ from one another). Since we don’t want to assume that a reader has a background in any 
specific query language (or even query languages at all), we begin with a gentle introduction to 
querying data. We start with the most basic information retrieval system, which we call a Tell-and-
Ask system. 

TELL-AND-ASK SYSTEMS 
ATell-and-Ask system is a simple system—you tell it some facts, and then it can answer questions you 
ask based on what you told it. Consider the following simple example: 

Tell: James Dean played in the movie Giant. 

Then you could ask questions like: 

Ask: Who played in Giant? 
Answer: James Dean 
Ask: James Dean played in what? 
Answer: Giant 

You might tell it some more things, too, like: 

Tell: James Dean played in East of Eden. 
James Dean played in Rebel Without a Cause. 

Then if you ask: 

Ask: James Dean played in what? 
Answer: Giant, East of Eden, Rebel Without a Cause. 

One could imagine a sophisticated Tell-and-Ask system that understands natural language and can 
cope with questions like 

Ask: What movies did James Dean star in? 
Answer: Giant, East of Eden, Rebel Without a Cause. 

Instead of using the simplified language in these examples. As we shall see, most real Tell-and-Ask 
systems don’t do anything with natural language processing at all. In more complex Tell-and-Ask 
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systems, it can be quite difficult to be very specific about just what you really want to ask, so they 
usually use languages that are quite precise and technical. 

On the face of it, it might seem that Tell-and-Ask systems aren’t very interesting. They don’t figure 
out anything you didn’t tell them yourself. They don’t do any calculations, they don’t do any analysis. 
But this judgment is premature; even very simple Tell-and-Ask systems are quite useful. Let’s have 
a look at one—a simple address book. 

You have probably used an address book at some point in your life. Even a paper-and-pencil 
address book is a Tell-and-Ask system, though the process of telling it something (i.e., writing down an 
address) and the process of asking it something (looking up an address) take a lot of human effort. Let’s 
think instead of a computer program that does the job of an address book. How does it work? 

Like a paper address book, you tell it names and addresses (and probably phone numbers and email 
addresses and other information). Unlike the sample Tell-and-Ask system that we used to talk about 
James Dean and movies, you probably don’t talk to your address book in anything that remotely 
resembles English; you probably fill out a form, with a field for a name, and another for the parts of the 
address, and so on. You “tell” it an address by filling in a form. 

How do you ask a question? If you want to know the address of someone, you type in their name, 
perhaps into another form, very similar to the one you filled in to tell it the information in the first 
place. Once you have entered the name, you get the address. 

The address book only gives you back what you told it. It does no calculations, and draws no 
conclusions. How could this be an interesting system? Even without any ability to do computations, 
address books are useful systems. They help us organize certain kinds of information that is useful to 
us and to find it when we need it. It is a simple Tell-and-Ask system—you tell it things, then you ask 
questions. 

Even the address book is a bit more advanced than the simplest Tell-and-Ask system. When you 
look up an address in an address book, you usually get a lot more information than just the address. It is 
as if you asked a whole set of questions: 

Ask: What is the address of Maggie Smith? 
Ask: What is the phone number of Maggie Smith? 
Ask: What is the email address of Maggie Smith? 
And so on. 

How can we make our address book system a bit more useful? There are a number of ways to enhance 
its behavior (and many of these are available in real address book applications). One way to make the 
address book “smarter” is to require less of the user who is asking questions. For instance, instead of 
typing in “Maggie Smith” when looking for an address, the system could let you just type in “Maggie,” 
and look for any address where the name of the addressee contains the word “Maggie.” Now it is as if 
you have asked 

Ask: What is the address of everyone whose name includes “Maggie”?

You might get more answers if you do this—if, for instance, you also have an address for Maggie

King, you’ll get both addresses in response to your question.

You can go even further—you can ask your question based on some other information. You could

ask about the address instead of the name, by filling in information in the address field:

Ask: Who lives at an address that contains “Downing”?
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Common tell-and-ask infrastructure—spreadsheets 

The address book was an example of a special-purpose tell-and-ask system; it is aimed at a single task, 
and has a fixed structure to the information you can tell it and ask it about. A spreadsheet is an example 
of a tell-and-ask system that is highly configurable and can be applied to a large number of situations. 
Spreadsheets are often cited as the most successful “killer application” ever; putting data management 
into the hands of intelligent people without the need to learn any heavy-duty technical skills. 
Spreadsheets apply the notion of WYSIWYG (What You See Is What You Get) to data management; 
a visual representation of data. 

The “language” for telling information to a spreadsheet and asking information of a spreadsheet is 
visual; information is entered into a particular row and column and is retrieved by visually inspecting 
the table. 

Since spreadsheets are primarily a visual presentation of data, you don’t communicate with them in 
any particular language—much less natural language. You don’t write “where does Maggie live?” to 
a spreadsheet; instead you search for Maggie in the “Name” column, and look into the “address” 
column to answer your question. 

Spreadsheets become more cumbersome when the data aren’t conveniently represented in a single 
table. Probably the simplest example of data that don’t fit into a table is multiple values. Suppose we 
have more than one email address for Maggie Smith. How do we deal with this? We could have 
multiple email columns, like this: 

Name Email1 Email2 

Maggie Smith MSmith@acme.com maggie@gmail.com 

This solution works as long as nobody has three email addresses, etc. Another solution is to have a new 
row for Maggie, for each email address 

Name Email 

Maggie Smith MSmith@acme.com 

Maggie Smith maggie@gmail.com 

This is a bit confusing, in that it is unclear whether we have one contact named “Maggie Smith” with 
two emails, or two contacts who happen to have the same name, one with each email address. 

Spreadsheets also start to break down when an application requires highly interconnected data. 
Consider a contacts list that maintains names of people and the companies they work for. Then they 
maintain separate information for the companies—billing information, contract officer, etc. If this 
information is put into a single table, the relationship between the company and its information will be 
duplicated for each contact that works at that company, as illustrated in the table below: 

Name Email Company Contract Officer Headquarters 

Maggie Smith MSmith@acme.com ACME Product Inc. Cynthia Wiley Pittsburgh 

Maggie King MKing@acme.com ACME Product Inc. Cynthia Wiley Pittsburgh 
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Both Maggies work for ACME, where the Contract Officer is Cynthia and the headquarters is in Pitts
burgh. Duplicating information in this manner is error-prone as well as wasteful; for instance, if ACME 
gets a new contract officer, all the contact records for people who work for ACME need to be changed. 

A common solution to this problem is to separate out the company information from the contact 
information into two tables, e.g.: 

Name Email Company 

Maggie Smith MSmith@acme.com ACME Product Inc. 

Maggie King MKing@acme.com ACME Product Inc. 

Company Contract Officer Headquarters 

ACME Product Inc. Cynthia Wiley Pittsburgh 

This sort of solution is workable in modern spreadsheet software, but begins to degrade the main 
advantages of spreadsheets; we can no longer use visualization to answer questions. Its structure relies 
on cross-references that are not readily visible by examining the spreadsheet. In fact, this sort of 
solution moves the tell-and-ask system from spreadsheets into a more structured form of tell-and-ask 
system, a relational database. 

Advanced tell-and-ask infrastructure—relational database 

Relational databases form the basis for most large-scale tell-and-ask systems. They share with 
spreadsheets a tabular presentation of data, but include a strong formal system (based on a mathe
matical formalism called the “relational algebra”) that provides a systematic way to link tables 
together. This facility, along with some well-defined methodological support, allows relational data
bases to represent highly structured data, and respond to very detailed, structured questions. 

Tell: Maggie King works for Acme Product Inc. 
Tell: The contract officer for Acme Product Inc. is Cynthia Wiley 
Tell: Cynthia Wiley’s email address is CJWiley@acme.com 
Ask: What is the email address for the contract officer at the company where Maggie King works? 
Answer: CJWiley@acme.com 

This sort of detailed structure comes at a price—asking a question becomes a very detailed process, 
requiring a specialized language. Such a language is called a query language. 

In the query language for relational databases, links from one table to another are done by cross-
referencing a closer rendering of the question above, in a query language for a relational database, 
would be: 

Ask: What is the email address for the person matched by the “contract officer” reference for the 
company matched by the “works for” reference for the person whose name is “Maggie King”? 
Answer: CJWiley@acme.com 

This might seem like a needlessly wordy way to ask the question, but this is how you pose questions 
precisely enough to recover information from a complex database structure. 

mailto:CJWiley@acme.com
mailto:CJWiley@acme.com
mailto:CJWiley@acme.com
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RDF AS A TELL-AND-ASK SYSTEM 
RDF is also a tell-and-ask system. Like a relational database, RDF can represent complex structured 
data. Also like a relational database, RDF requires a precise query language to specify questions. 
Unlike a relational database, the cross-references are not visible to the end user, and there is no need to 
explicitly represent them in the query language. 

As discussed in previous chapters, in RDF, relationships are represented as triples. Asserting 
a triple amounts to TELLing the triple store a fact. 

Tell: James Dean played in the movie Giant. 

Howdowe ASK questions of this?Evenwith a single triple, there are already somequestionswe could ask: 

Ask: What did James Dean play in? 
Ask: Who played in Giant? 
Ask: What did James Dean do in Giant? 

All of these questions can be asked in SPARQL in a simple way, by replacing part of the triple with 
a question word, like Who, What, Where, etc. SPARQL doesn’t actually distinguish between question 
words, so we can choose words that make sense in English. In SPARQL, question words are written 
with a question mark at the start, e.g., ?who, ?where, ?when, etc. 

Ask: James Dean played in ?what 
Answer: Giant 
Ask: ?who played in Giant 
Answer: James Dean 
Ask: James Dean ?what Giant 
Answer: played in 

This is the basic idea behind SPARQL—that you can write a question that looks a lot like the data, with 
a question word standing in for the thing you want to know. Like query languages for relational 
databases and spreadsheets, SPARQL makes no attempt to mimic the syntax of natural language, but it 
does use the idea that a question can look just like a statement, but with a question word to indicate 
what we want to know. 

SPARQL—QUERY LANGUAGE FOR RDF 
The syntax of SPARQL actually looks like Turtle. So these examples really look more like this: 

Tell: :JamesDean :playedIn :Giant . 

Ask: :JamesDean :playedIn ?what .

Answer: :Giant 

Ask: ?who :playedIn :Giant . 

Answer: :JamesDean 

Ask: :JamesDean ?what :Giant . 

Answer: :playedIn
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Before we go further, let’s talk a bit about the syntax of a SPARQL query. We’ll start with a simple 
form, the SELECT query. Readers familiar with SQL will notice a lot of overlap with SPARQL syntax 
(e.g., keywords like SELECT and WHERE). This is not coincidental; SPARQL was designed to be 
easily learned by SQL users. 

A SPARQL SELECT query has two parts; a set of question words, and a question pattern. The 
keyword WHERE indicates the selection pattern, written in braces. We have already seen some 
question patterns, e.g., 

WHERE {:JamesDean :playedIn ?what .}

WHERE {?who :playedIn :Giant .} 

WHERE {:JamesDean ?what :Giant .} 


The query begins with the word SELECT followed by a list of the question words. So the queries 
for the questions above are 

SELECT ?what WHERE {:JamesDean ?playedIn ?what .} 

SELECT ?who WHERE {?who :playedIn :Giant .} 

SELECT ?what WHERE {:JamesDean ?what :Giant .} 


It might seem that listing the question words in the SELECT part is redundant—after all, they 
appear in the patterns already. To some extent, this is true, but we’ll see later how modifying this list 
can be useful. 

RDF (and SPARQL) deals well with multiple values. If we TELL the system that James Dean played 
in multiple movies, we can do this without having to make any considerations in the representation: 

Tell: :JamesDean :playedIn :Giant . 

Tell: :JamesDean :playedIn :EastOfEden . 

Tell: :JamesDean :playedIn :RebelWithoutaCause . 


Now if we ASK a question with SPARQL 

Ask: SELECT ?what WHERE {:JamesDean :playedIn ?what} 

Answer: :Giant, :EastOfEden, :RebelWithoutaCause.  


The WHERE clause of a SPARQL query can be seen as a graph pattern, that is, a pattern that is 
matched against the data graph. In this case, the pattern has just one triple, :JamesDean as the 
subject, :playedIn as the predicate, and a question word as the object. The action of the query engine is 
to find all matches for the pattern in the data, and to return all the values that the question word matched. 

We can see this as a graph—Figure 5.1 shows the James Dean data in the form of a graph, and the 
WHERE clause as a graph pattern. There are three matches for this pattern in the graph, where a match 
has to match resources in the pattern exactly, but anything can match the question word. 

Suppose we follow the data along further. Each of these movies is directed by someone. Some of 
them might be directed by more than one person, as shown in Figure 5.2. Who were the directors that 



68 CHAPTER 5 Querying the Semantic Web—SPARQL 

FIGURE 5.1 

James Dean data in a graph, and a query to fetch it. 

FIGURE 5.2 

James Dean’s movies and their directors. 
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FIGURE 5.3 

Graphic version of a query to find James Dean’s directors. 

James Dean worked with? We can query this by asking who directed the movies that James Dean 
played in. The graph pattern for this query has two triples: 

:JamesDean :playedIn ?what . 

?what :directedBy ?who .


Since the variable ?what appears in both triples, the graph pattern is joined at that point. We can 
draw a graph pattern the same way we draw a graph. Figure 5.3 shows this graph pattern. There are two 
triples in the pattern and two triples in the diagram. 

This graph pattern has two question words, so the query engine will find all matches for the pattern, 
with both question words being free to match any resource. This results in several matches: 

?what=:Giant  ?who=:GeorgeStevens 

?what=:Giant   ?who=:FredGuiol 

?what=:EastOfEden  ?who=:EliaKazan 

?what=:RebelWithoutaCause  ?who=:NicholasRay


When we have more than one question word, we might actually only be interested in one of them. 
In this case, we asked what directors James Dean had worked with; the movies he played in were just 
a means to that end. This is where the details of the SELECT clause come in—we can specify which 
question words we are interested in. So the complete query to find James Dean’s directors looks like 
this: 

Ask: 
SELECT ?who 

WHERE {:JamesDean :playedIn ?what . 

        ?what :directedBy ?who .} 


Answer: 
:GeorgeStevens, :EliaKazan, :NicholasRay,  :FredGuiol 

Since a query in SPARQL can have several question words and several answers, it is convenient 
to display the answers in a table with one column for each question word and one row for each 
answer. 

?who 

:GeorgeStevens 

:EliaKazan 

:NicholasRay 

:FredGuiol 
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If we decide to keep both question words in the SELECT, we will have more columns in the table 

Ask: 
SELECT ?what ?who 

WHERE {:JamesDean :playedIn ?what . 


        ?what :directedBy ?who .} 


?what ?who 

:Giant :GeorgeStevens 

:Giant :FredGuiol 

:EastOfEden :EliaKazan 

:RebelWithoutaCause :NicholasRay 

Naming question words in SPARQL 

In English, we have a handful of question words—who, what, where, etc. A question doesn’t make 
sense if we use some other word. But in SPARQL, a question word is just signaled by the ? at the 
start—any word would do just as well. If we look at the output table above, the question words ?who 
and ?what are not very helpful in describing what is going on in the table. If we remember the question, 
we know what they mean (?what is a movie, and ?who is its director). But we can make the table more 
understandable, even out of the context of the question, by selecting descriptive question words. It is 
customary in SPARQL to do this, to communicate the intention of a question word to someone who 
might want to read the query. For example, we might write this query as 

Ask: 
SELECT ?movie ?director 

WHERE {:JamesDean :playedIn ?movie . 


?movie :directedBy ?director .}

Answer: 

?movie ?director 

:Giant :GeorgeStevens 

:Giant :FredGuiol 

:EastOfEden :EliaKazan 

:RebelWithoutaCause :NicholasRay 

The graph pattern we just saw was a simple chain—James Dean played in some movie that was 
directed by someone. Graph patterns in SPARQL can be as elaborate as the graphs they match against. 
For instance, given a more complete set of information about James Dean movies we could find the 
actresses who worked with him with a graph pattern: 

Ask: 
SELECT ?actress ?movie 
WHERE {:JamesDean :playedIn ?movie . 


?actress :playedIn ?movie .

?actress rdf:type :Woman }


Answer: 
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?actress 

:AnnDoran 

:ElizabethTaylor 

:CarrollBaker 

:JoVanFleet 

:JulieHarris 

:MercedesMcCambridge 

:NatalieWood 

Figure 5.4 shows a fragment of the data graph, and the graph pattern, with the result for the question 
word ?actress indicated in the third ‘column’ of the figure. Notice that Rock Hudson is not a match; 
while he indeed played in Giant, there is no match for the third triple, 

 :RockHudson rdf:type :Woman. 

FIGURE 5.4 

Information about James Dean’s co-stars, and a query to fetch some of it.
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Remember that ?actress is just a question word like ?who, renamed to be more readable; the only 
reason ?actress doesn’t match :RockHudson is because the data do not support the match. That 
is, the meaning of ?actress is not given by its name, but instead by the structure of the graph 
pattern. 

With this observation, one might wonder how we know that ?movie is sure to come up with 
movies? And indeed this is a consideration; in this example, the only things that James Dean played in 
were movies, so it really isn’t an issue. But on the Semantic Web, we could have more information 
about things that James Dean played in. So we really should restrict the value of the question word ? 
movie to be a member of the class movie. We can do this by adding one more triple to the pattern: 

Ask: 
SELECT ?actress 
WHERE {:JamesDean :playedIn ?movie .

   ?movie rdf:type :Movie . 
   ?actress :playedIn ?movie . 
   ?actress rdf:type :Woman } 

This query pattern is shown graphically in Figure 5.5. 
Triples like 

?movie rdf:type :Movie . 
can seem a bit confusing at first—with two uses of the word movie, what does this mean? But now that 
we know that ?movie is just a generic question word with a name that prints well in a table, we can see 
that this triple is how we tell SPARQL what we really mean by ?movie. The meaning isn’t in the name, 
so we have to put it in a triple. 

You might come upon a model that gives properties the same name as the class of entity they are 
intended to point to—so that instead of a property called :directedBy in this example, a model 
might call it simply :director. In such a case, the query to find the people who directed James Dean 
movies would look like this: 

SELECT ?director 

WHERE {:JamesDean :playedIn ?movie .


   ?movie :director ?director .} 


FIGURE 5.5 

Extended query pattern that includes the fact that ?movie has type Movie. 
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This can look a bit daunting—what is the difference between ?director and :director? As  
we’ve already seen, :director refers to a particular resource (using the default namespace— 
that’s what the “:” means) On the other hand, ?director is a question word—it could have been ?foo 
or ?bar just as easily, but we chose ?director to remind us of its connection with a movie director, 
when we see it out of the context of the query. If you have to write (or read!) a query written for 
a model that names its properties in this way, don’t panic! Just remember that the ? marks 
a question word—the name ?director is just there to let you (and whoever else reads the query) 
know what ?director is expected to mean. If you are creating your own model, we recommend that 
you use property names like :directedBy instead of :director so that you don’t invite this 
confusion in the people who want to query data using your model. 

Query structure vs. data structure 

In Figure 5.4, we saw how the graph pattern in a query looks a lot like the data graph it matches against. 
This is true of graph patterns in general. The complexity of a question that can be specified with 
SPARQL is limited only by the complexity of the data. We could, for instance, ask about actresses who 
played in a movie with James Dean who themselves were in a movie directed by John Ford: 

Ask: 
SELECT ?actress ?movie 
WHERE {:JamesDean :playedIn ?movie . 

  ?actress :playedIn ?movie . 
?actress a :Woman . 

   ?actress :playedIn ?anotherMovie . 
   ?anotherMovie :directedBy :JohnFord .} 

Answer:  

?actress 

NatalieWood 

CarrollBaker 

Figure 5.6 shows this query as a graph. In the text version of the query, we often see the same 
question word appear in multiple triples, and some of them even refer to the same kind of thing 
(?movie, ?anotherMovie). In the graph version, we see that these are the points where two triples must 
refer to the same thing. For instance, we know that James Dean and ?actress played in the same movie, 
because both triples use the same question word (?movie) for that movie. Similarly, that ?actress is 
the same one who played in ?anotherMovie, because there the same question word ?actress appears 
in those two triples. All these relationships are visibly apparent in Figure 5.6, where we see that 
?movie is the connection between James Dean and ?actress, ?actress is the connection between 
?movie and ?anotherMovie, and ?anotherMovie is the connection between ?actress and John Ford. 

If we look at the information supporting the answer “Natalie Wood,” we see that the data graph 
looks just like the graph pattern—this should come as no surprise, since that is how the pattern works. 
But we can use this feature to our advantage when writing queries. One way to write a complex query 
like the one in Figure 5.6 is to walk through the question we want to answer, writing down triples as we 
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FIGURE 5.6 

Data about James Dean and Natalie Wood, and a query to fetch that data. 

go until we have the full query. But another way is to start with the data. Suppose we have an example 
of what we want to search for, for example, we know that Natalie Wood played in The Searchers, 
which was directed by John Ford. Next, we show how we can use the close match between graphs and 
patterns to construct the pattern from the example. 

Since the example from the data graph matches the graph pattern triple for triple, we already know 
a lot about the graph pattern we want to create. The only thing we need to specify is which values from 
the example we want to keep as literal values in the pattern, and which ones we want to replace with 
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question words. In Figure 5.7(a) the boxed x on certain resources (James Dean, John Ford, and 
Woman) indicates those that will stay as they are; all other resources (Natalie Wood, The Searchers, 
Rebel Without a Cause) will be replaced with question words. We have to decide what question words 
to use; there could be a lot of them. Remember that as far as the SPARQL query engine is concerned, 
the names of the question words aren’t important, so we can call them whatever we like as long as we 
make sure to use the same question word when we need the same value to be used in the answer. For 
this example, we’ll call them ?q1, ?q2, etc. Figure 5.7(b) shows the query pattern graphically. 

FIGURE 5.7 

Creating a graph pattern from a data graph. Resources marked with X appear as themselves in the query. 
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Now we can create our SPARQL query by simply copying down the graph pattern in Turtle. Each 
arrow in the graph becomes a triple. If a particular entity (either a literal resource or a question word) 
participates in more than one triple in the graph, then it will appear more than one time in the Turtle 
rendering of the pattern. The graph diagram in Figure 5.7(b) has five connecting arrows; the corre
sponding query will have the same number of triples: 

{    :JamesDean :playedIn ?q1 . 
  ?q3 :playedIn ?q1 . 

   ?q3 rdf:type :Woman . 
   ?q3 :playedIn ?q2 . 
   ?q2 :directedBy :JohnFord .} 

To complete the query, simply SELECT the question word(s) you want to report on, and perhaps 
give it a meaningful name. This brings us back to a query very like the original query (differing only in 
the names of the unselected question words)—but this time, it was generated from a pattern in the 
data. 

SELECT ?actress 
WHERE {:JamesDean :playedIn ?q1 . 

?actress :playedIn ?q1 .
   ?actress rdf:type :Woman . 
   ?actress :playedIn ?q2 . 
   ?q2 :directedBy :JohnFord .} 

As we saw above, there are two matches for this query in the sample data, Natalie Wood (no 
surprise there—after all, it was her performance that we used as a model for this query) and Carroll 
Baker. Carroll Baker is similar to Natalie Wood, in that she is also a woman, she also played alongside 
James Dean in a movie, and she was also directed by John Ford. She is similar to Natalie Wood in 
exactly the features specified in the query. 

This method for creating queries can be seen as a sort of “more like this” capability; once you have 
one example of something you are interested in, you can ask for “more like this,” where the notion of 
“like this” is made specific by including particular triples in the example, and hence in the graph 
pattern. 

For example, we just wrote a query that found actresses who played in James Dean movies and also 
played in movies directed by John Ford. How do we know that the results are limited to actresses? In 
the example, Natalie Wood is an actress. But she is one of the resources that we replaced by a question 
word—how do we know that all the things that the pattern matches will also be actresses? We know 
this because we included the triple 

?q3 rdf:type :Woman . 

in the example, and hence in the pattern. 
What would happen if we left that triple out? Natalie Wood is, of course, still a Woman in the data 

graph, but we haven’t included that fact in our example. So that fact does not get copied into the query. 
Our new query looks like this: 
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SELECT ?q3
WHERE {:JamesDean :playedIn ?q1 . 

  ?q3 :playedIn ?q1 .        
   ?q3 :playedIn ?q2 . 
   ?q2 :directedBy :JohnFord .} 

It has one fewer triple than the previous query. What is the difference if we run this query against 
the data? Now we get another answer—Raymond Massey (who also played in East of Eden). It would 
be misleading (but perfectly fine from the point of view of the SPARQL query language) to name this 
question word ?actress in this situation—we might want to call it ?actor instead (with the convention 
that women can also be actors; if we don’t like that convention, we might just keep the meaningless 
name ?q3). 

So when we say we want to match “more like this” from the example of Natalie Wood, in the first 
case, we meant “Women who played with James Dean in some movie, and who played in a movie 
directed by John Ford.” In the second case, we just asked for “Anyone who played with James Dean in 
some movie, and who played in a movie directed by John Ford.” How did we specify the difference? 
By including (or excluding) the triple that asserts that Natalie Wood is a woman. When we include it, 
“more like this” includes the fact that the result must be a Woman. When we exclude it, “more like 
this” does not include this stipulation. 

Ordering of triples in SPARQL queries 

In the previous section, we copied down a graph pattern that was expressed in graphical form into 
Turtle. The process was straightforward—for each triple in the graph (i.e., each arrowhead), write 
down one triple in Turtle. But this process left out one variation—in what order do you write down the 
triples? 

One of the beauties of the RDF data model is that its semantics are specified by the graph—the 
order in which triples are written down makes no difference to an RDF data graph. And to a large 
extent, this is also true for a graph pattern. To be specific, a graph pattern written in one order will 
produce the same results (when matched against the same data graph) as another graph pattern, with 
all the same triples, written in a different order. This means that, as far as the pattern matches are 
concerned, it makes no difference what order the triples are written in; the graph pattern is the same 
either way. 

But there can be other ramifications of the ordering of the triples in the Turtle rendering of the 
graph. Most query engines process the queries in top-to-bottom order, constraining the set of possible 
matches for all variables as the query is processed. This suggests a heuristic for writing graph patterns 
that are easier for the query engine to process than others. If we take our most recent query as an 
example: 

SELECT ?q3
WHERE {:JamesDean :playedIn ?q1 . 

  ?q3 :playedIn ?q1 .        
   ?q3 :playedIn ?q2 . 
   ?q2 :directedBy :JohnFord .} 
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The first triple in this query matches three values for ?q1 (since James Dean played in just three 
movies). If each movie has N actors in it, then the second triple will match Nx3 actors. 
If we write the query differently, say 

SELECT ?q3
WHERE {?q3 :playedIn ?q1 .

:JamesDean :playedIn ?q1 .
   ?q3 :playedIn ?q2 .  
   ?q2 :directedBy :John Ford. } 

The meaning of this query in terms of results is the same—it matches exactly the same triples as 
the previous query. But in this case, the first triple in this query will match all pairs of values for 
?q3 and ?q1 in which someone played in something. If we have N people and M movies, this could be 
on the order of NxM matches. The second triple invalidates a large number of these, since for many of 
them, ?q1 does not match (i.e., James Dean didn’t play in that movie). But the query engine has to 
remember the NxM intermediate results—a difference that can make quite a difference in the execution 
time for a query. Even if James Dean had played in a larger number of movies, the number is likely to 
be far less than M. This suggests a simple heuristic for ordering triples in a query: 

Order triples in a query so that the fewest number of new variables are introduced in each new triple. 
In this case, the heuristic suggests starting the query either with 

:JamesDean :playedIn ?q1 .

?q3 :playedIn ?q1 .


or with 

?q2 :directedBy :JohnFord.

?q3 :playedIn ?q2 .  


since in each case, a single new variable is introduced at each triple. 
While this heuristic can sometimes dramatically improve the processing speed of a query, it is 

important to remember that it won’t change the results that are matched. The meaning of the query is 
given by the matches for the graph pattern, and the presentation order of the triples does not have an 
impact on that match. Another way in which ordering can have an impact is when multiple graph 
patterns interact. As we shall see in “Subqueries (SPARQL 1.1),” later in this chapter, SPARQL 
allows for circumstances in which a query pattern includes another one as an optional subpattern. 
Even in this situation, the ordering of the triples has no impact on the results of the query, but the 
ordering of the subgraphs can have an impact. 

Querying for properties and schema 

In all of our examples so far, we have used question words only for the subjects and objects of triples. 
But the SPARQL pattern matching paradigm allows predicates to be matched as well. 

A simple exploitation of this is to answer the question, “What do you know about James Dean?” 
This can be done with a graph pattern of a single triple: 
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Ask: 
SELECT ?property ?value
WHERE {:JamesDean ?property ?value} 

Answer: 

?property ?value 

bornOn 1931-02-08 

diedOn 1955-09-30 

playedIn RebelWithoutaCause 

playedIn EastOfEden 

playedIn Giant 

rdf:type Man 

rdfs:label James Dean 

This is a powerful feature for exploring data sets that you aren’t very familiar with. And since we 
are on the Semantic Web, that is likely to happen frequently. You might not know what properties are 
defined for James Dean, but this query will find them for you, and show you the values. 

You don’t have to ask for the values—you can just ask for the properties. This will tell you what 
sort of information is available, without reporting all of the details: 

Ask: 
SELECT ?property

WHERE {:JamesDean ?property ?value} 


Answer: 

?property 

bornOn 

diedOn 

playedIn 

playedIn 

playedIn 

rdf:type 

rdfs:label 

This query effectively asks for metadata about James Dean—it is asking, “what are the sorts of 
things this dataset knows about James Dean?” 

Notice that the result :playedIn appears three times in the answers. This is because there are 
actually three different matches for the graph pattern in the data graph. SPARQL includes the keyword 
DISTINCT to filter out the duplicate results. 

Ask: 
SELECT DISTINCT ?property  

WHERE {:JamesDean ?property ?value} 


Answer: 
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?property 

bornOn 

diedOn 

playedIn 

rdf:type 

rdfs:label 

This ability to query for properties used in the data distinguishes SPARQL from many other query 
languages. Among other things, this makes it possible to reverse-engineer schema information from 
the data itself. For example, we can change the query about properties used to describe James Dean to 
find all properties used to describe any actor. 

Ask: 
SELECT DISTINCT ?property 

WHERE {?q0 a :Actor .


   ?q0 ?property ?object .} 

Answer: 

?property 

bornOn 

diedOn 

playedIn 

rdf:type 

rdfs:label 

produced 

sang 

wrote 

What if we don’t know about the class :Actor? We can ask about that as well: 

Ask: 
SELECT DISTINCT ?class 

WHERE {?class rdfs:subClassOf :Person} 


Answer: 

?class 

:Actor 

:Actress 

:Man 

:Woman 

:Politician 

:Producer 
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If we don’t know anything about the data at all, we can find the classes used in the data 

SELECT DISTINCT ?class 

WHERE {?q0 a ?class} 


Or find all the properties used anywhere in the data 

SELECT DISTINCT ?property 

WHERE {?q0 ?property ?q1}


Queries of this sort take advantage of a number of distinctive features of RDF; first, that it is possible to 
match any part of the data (subjects, predicates, objects) with a question word, and that RDFS, the 
schema language of RDF (Chapter 7), is also expressed in RDF. These two features of RDF/SPARQL 
make RDF “self-describing” in a way that goes beyond most representation languages. 

Variables, bindings, and filters 

In the last example, we showed how we can use DISTINCT to remove some rows from the result set. 
We can use this idea to pose more detailed questions using SPARQL. 

James Dean and many of his co-stars died very young, while others enjoyed long lives and careers. 
We might want to find out which of the actors who played in Giant lived for more than five years after 
the movie was made. We’ll start by finding the date of death of every actor in Giant with the query: 

Ask: 
SELECT ?actor ?deathdate 

WHERE {?actor :playedIn :Giant . 


   ?actor :diedOn ?deathdate .} 

Answer: 

Actor deathdate 

RockHudson 1985-10-02 

JamesDean 1955-10-30 

. . .  

This is useful information, and the answer lies in the table, but the query hasn’t really answered our 
question—who lived on past November 24, 1961 (five years after the production date of Giant)? 

You can define your own conditions under which rows will be excluded from the results, using the 
keyword FILTER. The idea of FILTER is that you can define a Boolean test that determines whether 
that row will be included in the results or not. We can filter out the names of the actors who lived on by 
adding a FILTER to the query, as follows: 

Ask: 
SELECT ?actor 
WHERE {?actor :playedIn :Giant . 

   ?actor :diedOn ?deathdate . 
FILTER (?deathdate > "1961-11-24"^^xsd:date)} 

Answer: 
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Actor 

RockHudson 

. .  .  

So far, we have referred to things like ?property, ?q0, ?deathdate, etc. as “question words,” par
alleling the use of words like who, what, where, etc. in English. But in SPARQL these things are 
normally referred to as variables—that’s what we’ll call them from now on. A FILTER defines 
a Boolean condition on one or more of the variables in the query that determines which rows in 
the result will be kept and which will be discarded. In this example, the test compares the variable 
?deathdate to the particular date November 24, 1961. Rows for which this condition is true (like Rock 
Hudson) are kept; others (like James Dean) are discarded. 

A note about syntax; the FILTER is a Boolean test, not a graph pattern, so it isn’t written like a graph 
pattern in braces; instead, it is written in parentheses. The tests that are available in the FILTER clause 
are taken from similar tests available in XQuery, and are outlined in detail in the SPARQL standard.1 In 
general, arithmetic and comparisons on all XML data types (integers, floats, strings, dates, etc.) are 
allowed, as well as some useful functions like REGEX (regular expression matching for strings), and 
Boolean functions for AND, OR, and NOT (which is indicated by an exclamation point “!”). 

Earlier, we pointed out that a variable does not get its meaning from its name, but from triples in 
the graph pattern. Just because we call a variable ?actress doesn’t mean that it will only match 
women—we need to include a triple relating it to :Woman. A common error among beginning 
SPARQL users is to use a variable with a meaningful name in a FILTER, assuming that it has been 
bound to something. For example, to find actors who played in East of Eden, who were born in 1930 
or later, one might write: 

Ask: 
SELECT ?actor 

WHERE {?actor :playedIn :EastOfEden . 


FILTER (?birthday > "1930-01-01"^^xsd:date)} 

Answer: 

(none) 


Why are there no answers? Because the variable ?birthday is not mentioned anywhere in the graph 
pattern, and has no value at all. Remembering that variables are just meaningless question words, this 
query is equivalent to 

SELECT ?actor 

WHERE {?actor :playedIn :EastOfEden . 


FILTER (?q0 > "1930-01-01"^^xsd:date)} 

where the meaningful variable ?birthdate has been replaced by the meaningless (but equivalent) 
variable ?q0. There is nothing in this graph pattern to indicate what ?q0 is supposed to mean; there is 
nothing in the original query to indicate what ?birthdate is supposed to mean. The correct way to write 
this query is: 

1http://www.w3.org/TR/sparql11-query/ 
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SELECT ?actor 
WHERE {?actor :playedIn :EastOfEden . 

   ?actor :bornOn ?birthday . 
FILTER (?birthday > "1930-01-01"^^xsd:date)} 

There is now a triple in the pattern that provides meaning for the variable ?birthday, and the 
variable has a value that can be compared to the date Jan 1, 1930. This query will find the actors in East 
of Eden who were born after 1930. The syntax of FILTER does not prohibit this sort of incorrect use of 
variables. A rule of thumb is that you cannot reference a variable in a FILTER that hasn’t already been 
referenced in the graph pattern. A query can have more than one FILTER clause—to find the people 
born during the 1960s, we can say 

SELECT ?person
WHERE {?person a :Person .

   ?person :bornOn ?birthday . 
FILTER (?birthday > "Jan 1, 1960"^^xsd:date) 
FILTER (?birthday < "Dec 31, 1969"^^xsd:date)} 

The meaning of multiple filters is that all tests must hold true, for the binding to make it into 
the result set. Notice again that the fact that ?person is a :Person is not enforced by the variable 
name ?person, but by the first triple, 

?person a :Person. 

Optional matches 

So far, we have talked about single graph patterns. Every triple in the graph pattern must match in the 
data set in order for the match to succeed; if any triple fails to match, then no row appears in the result 
set at all. 

For example, consider a query we looked at earlier about dates of death: 

Ask: 
SELECT ?actor ?deathdate 

WHERE {?actor :playedIn :Giant . 


   ?actor :diedOn ?deathdate .} 

Answer: 

actor deathdate 

RockHudson 1985-10-02 

JamesDean 1955-10-30 

. . .  

Elizabeth Taylor does not appear in this list, because she has not died, and thus has no entry 
for :diedOn. It isn’t that there is some reserved null value for unassigned values; there simply is no 
triple in the data set of the form 

:ElizabethTaylor :diedOn ?x . 
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Since the whole graph pattern does not match, no match is found for any variable in the pattern; the 
row for Elizabeth Taylor simply doesn’t show up in the result set. 

A row in a result set (like this one) includes a value for each selected variable (here, actor and 
deathdate); this value is called the binding of the variable in that row, and we say that in a particular 
row, the variable is bound to that value. So in the first row of this result set, ?actor is bound to 
RockHudson and ?deathdate is bound to 1985-10-02. In the case of Elizabeth Taylor, we say that there 
is no binding of the variable ?actor to ElizabethTaylor (since one of the triples in the pattern fails 
to match in her case). 

But it is a reasonable question to ask—“who played in East of Eden, and when did they die (if 
applicable)?” SPARQL provides a capability for this with the keyword OPTIONAL, which specifies 
another graph pattern, which is not required to match in order for the overall match to succeed. The 
OPTIONAL (sub) pattern can bind variables when it does match, but will not invalidate the match if it 
does not. 

Ask: 
SELECT ?actor ?deathdate 

WHERE {?actor :playedIn :Giant . 


OPTIONAL {?actor :diedOn ?deathdate .}} 

Answer: 

Actor deathdate 

RockHudson 1985-10-02 

JamesDean 1955-10-30 

Elizabeth Taylor (no binding) 

. .  .  

It is difficult to write the results of such a query in tabular form, since in a table, we have to 
put something in the table next to Elizabeth Taylor’s name (even if that something is just 
a blank!). The actual SPARQL result set does not have any particular value for the variable 
?deathdate for this match—it simply has no binding at all. We have chosen to display that in the 
answer with “(no binding).” 

Negation (SPARQL 1.1) 

We have already seen how graph patterns provide a flexible way to describe desired results from 
a data graph. But sometimes it is convenient to specify that there are certain triples that aren’t in the 
data set. 

In our previous example, we found the death dates of actors who played in Giant. Examination of 
that table can tell us which actors are living, by looking for the “(no binding)” in the deathdate column. 
But it is reasonable to want to ask the question—which actors from Giant are still living? 

We can use the SPARQL UNSAID keyword for this. UNSAID introduces a subgraph; the 
meaning of UNSAID is that the overall graph pattern will match just if the UNSAID pattern does 
not match. 
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SELECT ?actor 
WHERE {?actor :playedIn :Giant . 

UNSAID {?actor :diedOn ?deathdate .} } 
This finds all of the living actors who played in East of Eden. 
UNSAID can be used to query about set differences. For instance, some actors are also producers; 

we might be interested in just those actors who are not members of the class :Producer. This can be 
done easily with UNSAID: 

SELECT ?actor 
WHERE {?actor a :Actor . 

UNSAID {?actor a :Producer} } 
Notice that interpreting UNSAID as negation makes a closed-world assumption; we haven’t 

actually found the actors who are not also producers; we have found the actors for which there are no 
data in this data set to say that they are producers. Since this is the Semantic Web, and anyone can say 
anything about any topic, we might come to learn that someone is a producer, but we didn’t know it 
before. Using the keyword “UNSAID” (vs. a proposed alternative syntax, “NOT EXISTS”) reminds us 
of this subtlety. The “UNSAID” and “NOT EXISTS” keywords are available only in SPARQL 1.1. 

Yes/No queries 

SELECT queries in SPARQL select bindings for variables (hence the word “select”). It is also possible 
to ask Yes/No questions of a graph—for instance, one could ask if Elizabeth Taylor is still alive? (Yes). 
Or if any actor who played in Giant was born after 1950? (No). Questions of this sort can be used by 
reporting software to decide whether to include a particular section in a report, or by decision support 
software to make recommendations. 

SPARQL includes a keyword ASK for questions of this sort. They keyword appears at the very 
beginning of the query—instead of the word SELECT. For example: 

ASK WHERE {:ElizabethTaylor :diedOn ?any} 
This query will produce a true answer if any match is found for the graph pattern (that is, if we have 

any date on which Elizabeth Taylor died); in this data set, the result is false, since no such date exists. 
We can combine UNSAID with ASK, and create the query for “Is Elizabeth Taylor alive?” as 

ASK WHERE {UNSAID {:ElizabethTaylor :diedOn ?any}} 

The answer to this, happily, is true. 
We can ASK about more complex graph patterns just as easily—was any actor in Giant born after 

1950? 

ASK WHERE {?any :playedIn :Giant.  
      ?any :bornOn ?birthday . 

FILTER (?birthday > “1950-01-01”^^xsd:date) } 

Given Giant’s 1956 production date, we shouldn’t be surprised at the false response to this 
query. 
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CONSTRUCT QUERIES IN SPARQL 
So far, we have seen that the answers to questions in SPARQL can take the form of a table, or of a single 
bit (true/false for Yes/No questions). But in the RDF world, answers to queries can take a more flexible 
form—an answer could take the form of an RDF graph. This is the idea behind CONSTRUCT—we use 
the expressive power of RDF in the answer to a query, as well as in the question. 

Suppose we wanted to find out all the movie directors in our dataset about movies. One way to 
find this out would be to write a query that finds out all the people that movies were directed by: 

Ask: 
SELECT ?director 

WHERE {?m :directedBy ?director} 


Answer: 

?director 

:EliaKazan 

:FredGuiol 

:GeorgeCukor 

:GeorgeStevens 

:NicholasRay 

etc. 

This returns the answer as a table. We know that the answer refers to a “director” because we chose 
that name for a variable. This information is amenable for pasting into a spreadsheet, or even a rela
tional database. But suppose we wanted to convey the answer to this question in a more complete 
way—we want to convey the fact that these five people are directors, and that by “Director” we have 
a very specific meaning in mind—a particular URI for “Director.” And we might want to convey some 
further information about them—perhaps a string representation of their names (instead of the qnames 
we have been using so far—that is, “Elia Kazan” instead of :EliaKazan). How can we convey all of 
this information in a concise, standard way? 

RDF provides a way to do this—we can say that each of these resources is a Director by using 
triples of the form 

:EliaKazan rdf:type :Director . 

We can provide a print name for this resource with a triple of the form 

:EliaKazan rdfs:label "Elia Kazan" . 

We can specify these triples in a SPARQL query by using the CONSTRUCT keyword. The WHERE 
clause behaves exactly as before, matching triple patterns against the data. But instead of SELECTing 
some variables, the CONSTRUCT keyword introduces a graph pattern to be used as a template in con
structing a new graph, based on results from the old data graph. For our Directors example, we have 
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CONSTRUCT {?d rdf:type :Director .  

       ?d rdfs:label ?name . }


WHERE {?any :directedBy ?d . 

   ?d rdfs:label ?name . } 


Figure 5.8 (a) shows some data triples, while Figure 5.8 (b) the triples that will be constructed by 
this query. The data include several people and movies directed by them. The query matches for each 
of these, as well as an rdfs:label (not shown). For each director, the CONSTRUCT specifies two 
triples; one is a rdf:type triple, the other a rdfs:label triple. For five directors, ten triples were 
produced. These ten triples are shown in Figure 5.8 (b). 

USING RESULTS OF CONSTRUCT QUERIES 
A query language provides a way to ask a question. The question is posed to a system that processes the 
query and replies with an answer. That answer can come in many forms—a Yes or No (ASK), a table 
(SELECT), or, as we just saw, a set of triples (CONSTRUCT). It is reasonable to wonder, where does 
this information go? For a Yes/No answer or a table, one can easily imagine a user interface like a web 
page that displays that information in some form. But one could also imagine integrating the infor
mation into another application—putting a table into Excel or injecting it into a database. 

In some sense, it isn’t the job of the query language to specify this. The query language just provides 
a formalism to describe themeaning of a query, i.e., it specifieswhat answers a particular querywill return, 
given the data. Most query languages are accompanied with (often proprietary) scripting languages that 
provide ways to specify what happens to the results of the queries. Sophisticated RDF query systems 
provideworkbenches where users are afforded a variety of options for what to dowith constructed triples: 

� Insert the constructed triples back into the original data source that the query was run against, 
� Store the constructed triples as a separate graph, for processing further triples, 
� Store the constructed triples into a new dataset (in another database) for publication, 
� Serialize the results in some standard form, and save them to a file. 

Any of these options could be appropriate, depending on a user’s future plans for the data. These 
options are similar to information storage options available in other query systems. 

In a web service context, there is another option for what to do with the constructed triples. The “P” 
in SPARQL stands for “protocol.” Since SPARQL was designed as a query language for the Web, it 
includes a protocol for publishing the results of a query to the web. The protocol can deal with binary 
results (from Yes/No ASK queries), tabular results (from SELECT queries), and, of course, triples 
(from CONSTRUCT queries). This means that the output of a SPARQL query could be used on the 
Web as input for another query (since a SPARQL query retrieves information from a set of triples, and 
CONSTRUCT provides a set of triples). A server for the SPARQL protocol is called a SPARQL 
Endpoint—it is a service that accepts SPARQL queries, and returns results, according to the details of 
the protocol. Many SPARQL Endpoints are available today, providing information about a variety of 
subjects. The movie examples in this chapter were derived from an open SPARQL endpoint called 
LinkedMDB (The Linked Movie DataBase, http://linkedmdb.org/). 

A SPARQL endpoint is the most web-friendly way to provide access to RDF data. The endpoint is 
identified with a URL and provides flexible access to its data set. It is common to speak of “wrapping” 

http://linkedmdb.org/)
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FIGURE 5.8 

Constructing a model about directors from a query about movies. 

some data set with a SPARQL endpoint—that is, providing a service that responds to the SPARQL 
protocol, providing access to that data set. 

SPARQL RULES—USING SPARQL AS A RULE LANGUAGE 
SPARQL CONSTRUCT allows us to specify templates of new information based on patterns found in 
old information. A specification of this sort is sometimes called a Rule, since it provides a way to 
specify things like “Whenever you see this, conclude that.” Examples of rules include data 
completeness rules (“If John’s father is Joe, then Joe’s son is John”), logical rules (“If Socrates is 
a man, and all men are mortal, then Socrates is mortal”), definitions (“If Ted’s sister is Maria’s mother, 
then Ted is Maria’s uncle”), as well as business rules (“Customers who have done more than $5000 



SPARQL rules—using SPARQL as a rule language 89 

worth of business with us are preferred customers”). Useful rules can often be expressed simply in 
SPARQL—though there are some subtleties. 

Consider the following data: 

:John a :Man.    

:Joe a :Man. 

:Eunice a :Woman . 

:Maria a :Woman . 

:Caroline a :Woman . 

:Ted a :Man . 

:Socrates a :Man . 

:Caroline :hasFather :John . 

:Ted :hasBrother :John . 

:John :hasFather :Joe . 

:Maria :hasMother :Eunice . 

:Maria :hasFather :Sargent .

:Ted :hasSister :Eunice . 


We could write a rule relating father to son as 

CONSTRUCT {?q1 :hasSon :q2 .}

WHERE {?q2 :hasFather ?q1} 


But this wouldn’t quite work the way we want; while we do construct 

:Joe :hasSon :John . 

as desired, we also conclude  

:Sargent :hasSon :Maria .  

which is not the usual interpretation of “son”.  

So, we need to restrict the rule a bit, so that it only applies to men: 


CONSTRUCT {?q1 :hasSon :q2 .}

WHERE {?q2 a :Man .


   ?q2 :hasFather ?q1} 


SPARQL allows us to be as specific as we want when writing a rule. 
The rule about Socrates is already restricted just to men: 

CONSTRUCT {?q1 a :Mortal}

WHERE {?q1 a :Man} 
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So we will conclude that Socrates (as well as Ted, John, Joe, and Sargent) are mortal. But Maria and 
Eunice are off the hook—we’ll draw no conclusion about them. 

The definition of “uncle” is easy to do in SPARQL 

CONSTRUCT {?q1 :hasUncle ?q2}

WHERE {?q2 :hasSister ?s . 


   ?q1 :hasMother ?s .} 

But this is both too permissive and too restrictive; for example, we won’t conclude that 

:Caroline :hasUncle :Ted . 
One way to deal with this would be to write a system of rules—some dealing with completeness of 

concepts like mother, father, sister, and brother, and another for uncle: 

CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasBrother ?q2}

CONSTRUCT {?q1 :hasSibling ?q2} WHERE {?q1 :hasSister ?q2}

CONSTRUCT {?q1 :hasParent ?q2} WHERE {?q1 :hasFather ?q2}

CONSTRUCT {?q1 :hasParent ?q2} WHERE {?q1 :hasMother ?q2}


Now we can define uncle in terms of siblings and parents: 

CONSTRUCT {?q1 :hasUncle ?q2}
WHERE {?q2 :hasSibling ?parent .  


?q2 a :Man .

   ?q1 :hasParent ?parent } 


and can conclude both relationships: 

:Caroline :hasUncle :Ted . 

:Maria :hasUncle :Ted . 

(Acomplete model of family relationships will includequite a fewdata completeness rules about siblings 

and parents. In Chapter 7, we’ll see a more systematic way to organize a set of rules about these things.) 
If we know how much business a customer has done with us, we can write a business rule in 

SPARQL to sort out our preferred customers. 

:ACME :totalBusiness 5253.00 . 

:PRIME :totalBusiness 12453.00 . 

:ABC :totalbusiness 1545.00 . 


The query 

CONSTRUCT {?c a :PreferredCustomer} 

WHERE {?c :totalBusiness ?tb . 


   FILTER (?tb > 5000) } 


will assert all the preferred customers: 

:ACME a :PreferredCustomer . 
:PRIME a :PreferredCustomer . 
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Later in this section, we’ll see how to use aggregators and subqueries to compute things like total 
business from information about various business transactions. 

For many of these queries, it was important to restrict the application of the query to particular sets 
of individuals—e.g., Uncles and Sons can only be Men. This is a typical sort of restriction—a rule only 
applies to a particular class of things. In Chapter 7, we’ll revisit SPARQL rules, and see how an RDFS 
class structure can be used to organize a set of interacting SPARQL rules. 

CHALLENGE 2: USING SPARL TO TRANSFORM HIERARCHICAL DATA 
In the data wilderness, information comes in many forms. Some of the variety stems from all the systems and 
syntaxes that we use to represent data—spreadsheets, XML, relational databases, and even text documents. RDF, 
as a general way to represent data, resolves many of the more superficial issues with different data formats. But 
even within a single system, there are a variety of ways to represent the same information. If we want to deal with 
data from the wilderness, we often have to transform data to make it easier to use. 

We’ll start with a simple example. Taking someof the family treedata from the previous example (plus a fewmore): 

:Caroline :hasFather :John .

:John :hasFather :Joe . 

:Eunice :hasFather :Joe . 

:Maria :hasMother :Eunice . 

:Maria :hasFather :Sargent . 

:Joe :hasSon :Robert . 

:Joe :hasSon :Ted . 

:Ted :hasSon :Patrick . 


We could speculate about how a dataset could get to be in such an inconsistent state—with some family rela
tionships relating children to their parents, while others relate parents to their children. The data might originally 
come from multiple sources, or have been entered using multiple systems or by people following different 
methodologies. But regardless of how it happened, this is a typical state of affairs in the data wilderness; the data 
you find are organized in an inconsistent way. 

Now suppose we are interested in building a family tree that looks something like Figure 5.9, in which we see 
children and grandchildren, regardless of gender, all in a single display. The tree is defined in a uniform way— 
Eunice has parent Joe, Maria has parent Eunice (and Sargent), Caroline has parent John, etc. 

FIGURE 5.9 

Family tree shown in a uniform manner. 
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All this information is available in the data set, if you abstract away fromgender words (like Son,Daughter,Mother, 
and Father) and re-order some triples (turning hasSon around to be hasParent). How can we do this using SPARQL? 

We can do this by specifying a few rules as SPARQL constructs to map these things into the form we want. 

CONSTRUCT {?s :hasParent ?o} WHERE {?s :hasMother ?o}

CONSTRUCT {?s :hasParent ?o} WHERE {?s :hasFather ?o}

CONSTRUCT {?s :hasParent ?o} WHERE {?o :hasSon ?s}

CONSTRUCT {?s :hasParent ?o} WHERE {?o :hasDaughter ?s}

These queries match all the various forms of hasSon, hasDaughter, hasMother, and hasFather and map them 

all into appropriate triples using hasParent. The resulting triples are 

:Caroline :hasParent :John .

:Eunice :hasParent :Joe . 

:John :hasParent :Joe . 

:Maria :hasParent :Sargent . 

:Maria :hasParent :Eunice . 

:Patrick :hasParent :Ted . 

:Robert :hasParent :Joe . 

:Ted :hasParent :Joe .


These provide a uniform representation of the family tree and are amenable for producing a display like that in 
Figure 5.9. 

We can extend this example to compute the gender of the familymembers, by adding another triple to each query: 

CONSTRUCT {?s :hasParent ?o . 
?o a :Woman .}


WHERE {?s :hasMother ?o} 

CONSTRUCT {?s :hasParent ?o . 


?o a :Man .}

WHERE {?s :hasFather ?o} 

CONSTRUCT {?s :hasParent ?o . 


?s a :Man .}

WHERE {?o :hasSon ?s}

CONSTRUCT {?s :hasParent ?o . 


?s a :Woman .}

WHERE {?o :hasDaughter ?s}


Transitive queries (SPARQL 1.1) 

Hierarchical data can pose very particular problems when it comes to querying. We can see this using 
the example of the family tree in Figure 5.9. Suppose we want to query for all members of Joe’s family. 
We can query for his children with a simple graph pattern: 

Ask: 
SELECT ?member 

WHERE {?member :hasParent :Joe} 


Answer: 
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?member 

Eunice 

John 

Robert 

Ted 

If we want his grandchildren, we can build a slightly more complicated query: 

Ask: 
SELECT ?member 

WHERE {?int :hasParent :Joe . 


   ?member :hasParent ?int .} 

Answer: 

?member 

Maria 

Caroline 

Patrick 

If we wanted Joe’s great-grandchildren, we could make another query, and so on. But what if we want 
all of his family, regardless of how many generations intervene? SPARQL 1.1 includes a transitivity 
operator for just this purpose. If we include a ) after a property name, then the triple matches any 
number of chained occurrences of the same property. 

Ask: 
SELECT ?member 

WHERE {?member :hasParent* :Joe .} 


Answer: 

?member 

Joe 

Eunice 

Maria 

John 

Caroline 

Robert 

Ted 

Patrick 

Notice that Joe himself is matched—even chains of zero triples will match. If we want to insist that 
there is at least one triple in the chain (Joe’s progeny, not including himself), we can use a þ instead: 
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Ask: 
SELECT ?member 
WHERE {?member :hasParent+ :Joe .} 

Answer: 

?member 

Eunice 

Maria 

John 

Caroline 

Robert 

Ted 

Patrick 

(SPARQL 1.1 includes a number of variations on this theme, beyond what we cover here. Details can 
be found in the SPARQL 1.1 standard.) 

CHALLENGE 3: USING SPARQL TO RECORD SAMENESS IN THE 
LINKED MDB 
When merging information from multiple sources, it is typical for the same entity to appear in each data source 
with a different identifier. Even in the case of a single data source, it is not unusual for the same item to appear 
multiple times, with a different identifier each time. This is especially common when the data source is imple
mented as a relational database, where common practice involves separating out information based on the role an 
entity plays in an application. 

The Linked Movie DataBase2 (LinkedMDB) is an open data source containing data about movies. The Link
edMDB is based on a relational database containing information about movies, actors, directors, etc. The 
underlying database includes information about what movies directors made as well as what movies actors played 
in. This information is represented in two separate tables—a director table and an actor table. When converted to 
triples, this database structure results in two classes in the published SPARQL endpoint with corresponding 
names—director and actor. 

Members of the classes in the linkedMDB are given numeric URIs—here is a very small excerpt of data from 
that endpoint: 

actor:29753 
  rdf:type linkedmdb:actor ; 
  linkedmdb:actor_name "Clint Eastwood" . 

film:38599 
  rdf:type linkedmdb:film ; 
  dc:title "Unforgiven" ; 
  linkedmdb:actor  actor:29753 ; 
  linkedmdb:director director:8533 . 

director:8533 
  rdf:type linkedmdb:director ; 
  linkedmdb:director_name "Clint Eastwood" . 
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In this fragment, there is a movie whose dc:title is “Unforgiven” (the namespace dc stands for “Dublin 
Core,” a metadata standard used by many libraries worldwide that includes standard terms for titles, authors, 
publication dates, etc.), stars an actor (number 29753) whose name is “Clint Eastwood,” and was directed by 
a director (number 8533) whose name is “Clint Eastwood.” Is the fact that both of these people are named “Clint 
Eastwood” enough for us to conclude that they are the same person? 

Fortunately, there is another triple for each of these resources in the LinkedMBD dataset: 

actor:29753 foaf:page freebase:9202a8c04000641f8000000000056de6 .
director:8533 foaf:page freebase:9202a8c04000641f8000000000056de6 . 

Freebase is a linked data resource that (among other things) provides an identity service for resources on the Web. 
Any data source on the Web can refer to a freebase resource, to unambiguously identify its own resources. Freebase 
is not the only such service—in the life sciences, there are several such identification services for proteins, genes, 
and other biological entities, and others exist for a number of areas. 

In this case, we can use this information to determine that these two people named “Clint Eastwood” are in 
fact the same person; since linkedMDB links both of them to the same Freebase resource, they must be the same. 
But what can we do with that information? 

We can use SPARQL to detect identities of this sort, and record it as a new triple. 

CONSTRUCT {?a skos:exactMatch ?b} 

WHERE {?a foaf:page ?page .  


   ?b foaf:page ?page .}


You can understand this query, even without knowing anything else about the resources in it—foaf:page and 
skos:exactMatch (though these will be discussed in Chapters 9 and 10). This query simply says that any 
two resources with the same foaf:page are skos:exactMatch to one another. On this data set, we get 
the following triples: 

actor:29753 skos:exactMatch director:8533 . 

director:8533 skos:exactMatch actor:29753 . 

director:8533 skos:exactMatch director:8533 . 

actor:29753 skos:exactMatch actor:29753 . 


These triples indeed encode the identity match that we observed—that the director of Unforgiven also played in it. 
But it brings along some extra baggage—the exactMatch appears twice, once relating the actor to the 
director, and another time relating the director to the actor. Furthermore, we have two rather trivial results, that 
every actor is an exact match to itself (and the same for directors). These extra results appear because SPARQL 
finds every match for the graph pattern in the data; and all four assignments of ?a and ?b to director:8533 
and actor:29753 satisfy the pattern (they have the same values for :page). These extra triples don’t really 
cause any harm—after all, it seems correct to say that something is an exact match to itself—but at the same time, 
they are somewhat superfluous. In an earlier example, we were able to drop duplicates by using the DISTINCT 
keyword in SPARQL. In this case, we need something else; since all four of these triples are already distinct (i.e., 
no two have the same value for all three positions; subject, predicate and object). 

We can use a FILTER clause to eliminate many of these spurious values—since we aren’t interested in 
statements that say that an actor is an exact match for himself, we can eliminate these with a filter for matching the 
same values: 

CONSTRUCT {?a skos:exactMatch ?b} 
WHERE {?a foaf:page ?page .  

   ?b foaf:page ?page . 
FILTER (?a != ?b)} 
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The comparison !¼ in a filter stands for “not equal”—it evaluates to ‘true’ just if ?a and ?b are not the same. This 
results in the following triples: 

actor:29753 skos:exactMatch director:8533 . 

director:8533 skos:exactMatch actor:29753 . 


This is an improvement. And if we didn’t know that skos:exactMatch is a symmetric property (see Chapter 
10), we would be satisfied at this point that we had filtered out all the spurious triples. 

If we want to go one step further, we can sort these triples so that only the first one of the pair is kept. The 
FILTER clause in SPARQL includes capabilities for managing data types borrowed from XML, so there are many 
ways to compare values. We can convert a URI to an XML, then compare the strings. We can use this trick to reduce 
our results to a single triple: 

CONSTRUCT {?a skos:exactMatch ?b} 
WHERE {?a foaf:page ?page .  

   ?b foaf:page ?page . 
FILTER (xsd:string (?a) > xsd:string (?b)) 

} 

This query will keep a triple only when the subject comes after the object in alphabetical order; this means that of 
the two triples in the previous result, only the second one is kept: 

director:8533 skos:exactMatch actor:29753 . 

In general, there could be many ways to determine that two resources are actually referring to the same thing; having 
a reference system like Freebase is the easiest way. The need for such reference systems of this kind did not begin 
with the Semantic Web—it has been around for centuries. The Semantic Web simply provides a means for 
publishing these systems, and referring to them, on the Web. When there isn’t a reference system like Freebase 
around, more complex means of identifying individuals can be used. The same strategy using SPARQL CONSTRUCT 
can be used to determine these matches and to record them using skos:exactMatch. For example, suppose 
that the data set included information about date and place of birth. If it is reasonable to assume in the dataset that 
two people who share the same name, place, and date of birth are indeed the same persons, then the query 

CONSTRUCT {?a skos:exactMatch ?b} 
WHERE {?a :name ?name .   

  ?b :name ?name . 
   ?a :birthplace ?bplace . 
   ?b :birthplace ?bplace . 
  ?a :birthdate ?date .  

   ?b :birthdate ?date . 
FILTER (xsd:string (?a) > xsd:string (?b)) 

} 
will construct triples asserting the matches between these resources. 

The Semantic Web doesn’t provide any particular mechanism for determining that one resource refers to the 
same individual as another; it provides a means for writing down such a conclusion, and publishing it on the Web. 

Now that we know that both people named Clint Eastwood are really the same person, we are in a position to 
answer the question, “Which directors played in movies they directed?” We can answer it with the following query: 

2http://linkedmdb.org/ 



SPARQL rules—using SPARQL as a rule language 97 

Ask: 

SELECT ?director 
WHERE {?dir foaf:made ?m . 

   ?dir linkedmdb:director_name ?director . 
   ?m linkedmdb:actor ?star . 
   ?dir skos:exactMatch ?star . } 

Answer: 

?director 

“Clint Eastwood” 

CHALLENGE 4: USING SPARQL TO COPY AN EXCERPT OF A DATABASE 
An RDF data set is often made up of a very large number of triples. There are a number of reasons why one might 
want to create a smaller excerpt of such a data set: 

•	 The data set might be available only as a network resource, with inconsistent connectivity. You might want to keep 

a more robust copy of the information that is used the most. 

•	 The data set might be very large, resulting in slow query time for complex queries. You might want to keep a cache 

of a small, relevant part of the database for fast queries. 
•	 The data set might contain sensitive information that should not be disclosed to certain audiences. You might want 

to make a copy of the less sensitive information for public access. 

In any case, it can be useful to be able to select a part of a data set for separate storage. This can be done with 
SPARQL CONSTRUCT queries. 

Following on the previous example, suppose we wanted to create a data set that contains information about the 
film “Unforgiven.” We want to include the actors who played in it, its director, producer, and any other information 
about it. 

In the LinkedMDB, Unforgiven is given the resource name film:38599. How can we select all the 
information in the LinkedMDB about Unforgiven? 

Depending on just what we mean by “all” the information, we can start with a simple query: 

CONSTRUCT {film:38599 ?p ?o . } WHERE {film:38599 ?p ?o . } 
This apparently trivial query selects all the triples from the data set with film:38599 as the subject. From the 

full LinkedMDB, it returns a few dozen results, including the triples: 

film:38599 rdf:type linkedmdb:film . 

film:38599 dc:title "Unforgiven" . 

film:38599 linkedmdb:actor actor:29753 . 

film:38599 linkedmdb:actor actor:30285 . 

film:38599 linkedmdb:director director:8533 . 

film:38599 linkedmdb:editor editor:2920  . 


This is a good start for getting “all” the information about Unforgiven. It includes the information about actors and 
directors we need to figure out that it is one of the movies that Clint Eastwood both directed and starred in. But 
there could be more information in the data set that is relevant to this movie—for instance, there is the triple 
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director:8522 foaf:made film:38599 . 
This triple doesn’t appear in the results of the query, since in this case, film:38599 is the object of the triple, 
not the subject. We can use a very similar query to fetch these triples: 

CONSTRUCT {?s ?p film:38599. } WHERE {?s ?p film:38599 . } 
This will fetch all the triples in which Unforgiven appears as the object, including the foaf:made triple above. 
This is a more comprehensive notion of what it could mean to fetch “all” the information about a particular resource. 

But even these triples might not seem like quite enough to tell us all about Unforgiven; for example, who 
is actor:30285? In addition to the information about the movie itself, we might want to also identify 
information about related entities. A more elaborate graph pattern can do this as well: 

CONSTRUCT {?s ?p ?o} 

WHERE {film:38599 ?p1 ?s . 


?s ?p ?o . } 

The pattern 

?s ?p ?o 
matches every triple in the data set, subject to the bindings so far. In this case, ?s is already bound from the first 
triple pattern to anything that is related (in any way) to Unforgiven. So in this case, this pattern copies all triples 
whose subjects are related to Unforgiven. 

For example, since 

film:38599 linkedmdb:actor actor:30285 . 
is in the data set, this query will find all the triples starting with actor:30285, including  

actor:30285 linkedmdb:actor_name "Richard Harris" . 
If we merge together the results of all of these queries, we can create a comprehensive cache of all information 
regarding Unforgiven. This method was used to create most of the sample files for the examples in this chapter. 

ADVANCED FEATURES OF SPARQL 

Limits and ordering 

Suppose we want to know the movies that James Dean played in, and the dates they were released: 

Ask: 
SELECT ?movie ?date  
WHERE {:JamesDean :playedIn ?m.  


   ?m rdfs:label ?movie . 

   ?m dc:date  ?date . }


Answer:  

?movie ?date 

Giant 1956 

EastOfEden 1955 

RebelWithoutaCause 1955 
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These answers come back in no particular order; different SPARQL implementations (and 
even the same implementation, at different times) are free to produce the results in any order 
they like. 

We can specify an ordering in the query for the results using the directiveORDER BY. The ORDER 
BY directive comes after the graph pattern, and specifies one or more variables to use to determine the 
order in which the results are returned. The following two examples show how this works, ordering by 
?date and ?movie (title), respectively: 

Ask: 
SELECT ?title ?date  
WHERE {:JamesDean :playedIn ?movie.  


   ?movie rdfs:label ?title . 

   ?movie dc:date  ?date . }


ORDER BY ?date 
Answer: 

?title ?date 

EastOfEden 1955 

RebelWithoutaCause 1955 

Giant 1956 

Ask: 
SELECT ?title ?date 
WHERE {:JamesDean :playedIn ?movie.  

   ?movie rdfs:label ?title . 
   ?movie dc:date  ?date . } 

ORDER BY ?title 
Answer: 

?title ?date 

EastOfEden 1955 

Giant 1956 

RebelWithoutaCause 1955 

(Note that SPARQL uses simple notions of ordering for each type of value: numbers in numerical 
order, strings in alphabetic order, etc.) 

Sometimes we don’t want all the possible matches to a query—for a user interface, we might want 
to limit the number of items we display at a time. Or we might want to provide a report of just the 
highest values—the “top ten” results. To accommodate these sorts of requests, SPARQL includes 
a LIMIT directive, with which the query can specify the maximum number of results to be fetched. 
LIMIT works together with ORDER BY to determine which items to return; when LIMIT is used 
without ORDER BY, the SPARQL implementation is free to fetch any matching results, up to the 
specified limit. 
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So to find the earliest James Dean movie, we can ORDER BY ?date and specify a LIMIT 
of 1: 

Ask: 
SELECT ?title 
WHERE {:JamesDean :playedIn ?m.  


   ?m rdfs:label ?title . 

   ?m dc:date  ?date . }


ORDER BY ?date 

LIMIT 1 


Answer: 

?title 

East Of Eden 

All three stars (James Dean, Natalie Wood, and Sal Mineo) of Rebel Without a Cause died young 
under tragic circumstances. Which one died first? 

Ask: 
SELECT ?first 
WHERE {?who :playedIn :RebelWithoutaCause .


   ?who rdfs:label ?first . 

   ?who :diedOn ?date} 


ORDER BY ?date 

LIMIT 1 


Answer: 

?first 

James Dean 

By default, SPARQL orders results in ascending order. We can reverse the ordering, and find the 
star who lived the longest with the keyword DESC (for “descending”) 

Ask: 
SELECT ?last 
WHERE {?who :playedIn :RebelWithoutaCause .


   ?who rdfs:label ?last .

   ?who :diedOn ?date} 


ORDER BY DESC (?date) 

LIMIT 1 


Answer: 

?last 

Sal Mineo 
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AGGREGATES AND GROUPING (SPARQL 1.1) 
SPARQL 1.1 includes a facility for specifying aggregate functions of data. Specifically, it provides 
aggregate functions COUNT, MIN, MAX, AVG, and SUM. These aggregates can be used alongside 
any graph pattern, computing a result for all matches for the pattern. 

For example, we could find out how many movies James Dean has played in: 

SELECT (COUNT (?movie) AS ?howmany) 

WHERE {:JamesDean ?playedIn ?movie .}


The syntax of SPARQL3 aggregates appears in the SELECT clause—the aggregate expres
sion appears in parentheses, starting with the aggregate word, followed by the variable to be 
aggregated (also in parentheses), then the keyword AS followed by a new variable, which will 
be bound to the aggregated value. In this case, the query result is a single binding for ?howmany 

?howmany 

3 

Sums work in much the same way—suppose we want to add up the amount of business we have 
done each year with various customers, and we have data about our sales—which company made the 
purchase, the amount of the purchase, and the year in which the purchase was made. The data are 
shown in tabular form here: 

Company Amount Year 

ACME $1250 2010 

PRIME $3000 2009 

ABC $2500 2009 

ABC $2800 2010 

PRIME $1950 2010 

ACME $2500 2009 

ACME $3100 2010 

ABC $1500 2009 

ACME $1250 2009 

PRIME $2350 2009 

PRIME $1850 2010 

As the specification for SPARQL 1.1 is still in flux at the time of this writing, some SPARQL implementations use 
notational variants. In this section, we use the proposed syntax in the emerging recommendation. 

3
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As triples, each row is represented as four triples, with an arbitrary URI for the row. Each row is 
a member of a single class, :Sale. So the first row looks like the triples: 

:row1 a :Sale . 

:row1 :company :ACME . 

:row1 :amount 1250 . 

:row1 :year 2010 . 


Using this representation in triples, we can find our total sales using a SUM aggregator: 

Ask: 
SELECT (SUM (?val) AS ?total)

WHERE {?s a :Sale .


   ?s :amount ?val } 

Answer: 

?total 

24050.00 

With this sort of data, we are interested in breaking this answer down in various ways; how much 
business did we do with each customer? How much business did we do in a given year? SPARQL 
allows us to organize the query in these ways, using the notion of GROUP BY. For instance, we can 
find the amount of business for each year by grouping by years: 

Ask: 
SELECT ?year (SUM (?val) AS ?total)
WHERE {?s a :Sale . 

   ?s :amount ?val .  
   ?s :year ?year  }

GROUP BY ?year
Answer: 

?year ?total 

2009 13100.00 

2010 10950.00 

The GROUP BY keyword comes after the graph pattern and informs the aggregate how to group 
the sums; instead of summing all the results, it sums results grouped by the specified variable. In this 
case, the sum is grouped by ?year. The GROUP BY variable must already have been bound in the 
graph pattern; these values are used to sort the results for aggregation. Since a variable mentioned in 
the GROUP BY clause will have the same value for every summand for a particular sum, it is sensible 
to include it in the SELECT clause (if desired). Other variables (like ?s and ?val) will have different 
values for each summand, and hence won’t have a single defined value for a sum; these variables are 
not available for inclusion in the SELECT clause. 
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We can sort by more than one variable at a time: 

Ask: 
SELECT ?year ?company (SUM  (?val) AS ?total)
WHERE {?s a :Sale .

   ?s :amount ?val . 
   ?s :year ?year  . 
   ?s :company ?company . 

}
GROUP BY ?year ?company  

Answer: 

?year ?company ?total 

2009 ACME 3750.00 

2009 ABC 4000.00 

2009 PRIME 5350.00 

2010 ACME 4350.00 

2010 PRIME 3800.00 

2010 ABC 2800.00 

This tells us how much business we did with each customer in a particular year. If we’d like to find 
out customers that did more than $5000 of business in some year, we can show only some of these 
results, using the keyword HAVING to choose particular results: 

Ask: 
SELECT ?year ?company (SUM (?val) AS ?total)
WHERE {?s a :Sale .

   ?s :amount ?val . 
   ?s :year ?year  . 
   ?s :company ?company . 

}
GROUP BY ?year ?company  
HAVING (?total > 5000)

Answer: 

?year ?company ?total 

2009 PRIME 5350.00 

PRIME was the only customer who satisfied this criterion, which they did in 2009. The keywords 
HAVING and FILTER are very similar; both of them introduce a condition that is to be met by the 
results. FILTER refers to variables bound within a particular graph pattern, hence the FILTER keyword 
always appears in the pattern (between “{“ and ”}”), while HAVING refers to variables defined by 
aggregations in the SELECT clause, and hence always appears outside a graph pattern. 
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SUBQUERIES (SPARQL 1.1) 
A subquery is a query within a query. Since a SPARQL graph pattern can include arbitrary connections 
between variables and resource identifiers, there isn’t as much need to have subquery as there is in 
other query languages. In fact, for basic SPARQL (i.e., without limit or aggregate functions), there is 
no need for subquery at all. 

But subqueries can be useful when combining limits and aggregates with other graph patterns. 
A question has to be pretty complex to require a subquery in SPARQL. A subquery limits the scope of 
things like aggregators, orderings, and limits to just part of the query. Following along the example using 
customer sales above, we notice that some companies increased their sales from 2009 to 2010, while 
others decreased. We can use subqueries to find out which ones increased their sales during that time: 

Ask: 
SELECT ?company

WHERE {


{SELECT ?company ((SUM(?val)) AS ?total09)

WHERE {


?s a :Sale . 

?s :amount ?val . 


        ?s :company ?company . 

?s :year 2009 . }


GROUP BY ?company } .
{SELECT ?company ((SUM(?val)) AS ?total10)

WHERE {

?s a :Sale . 

?s :amount ?val . 


        ?s :company ?company . 

?s :year 2010 .}


GROUP BY ?company } .

FILTER (?total10 > ?total09) . } 


Answer:  

?company 

ACME 

The two subqueries in this example compute the total sales for years 2009 and 2010, respectively. 
The FILTER retains only the matches in which the 2010 total exceeds the 2009 totals—customers who 
did more business in 2010 than in 2009. Each subquery (including GROUP BY etc. at the end) is 
enclosed in braces. Within the subqueries, variables have their own scope; that is, the variable ?val in 
each of these subqueries matches completely different values (in one subquery, it matches the 2009 
values; in the other, it matches the 2010 values). This sort of computation requires subqueries, since it 
involves independent subsets of the data to be compared. 

Another application of subqueries is to bring the power of aggregates (available only in SELECT 
queries) to other SPARQL query constructs (like ASK and CONSTRUCT). Earlier, we saw a query 
that selected the companies who had done more than $5000 worth of business in a single year. 



Union 105 

Suppose we wanted to use this result as part of a CONSTRUCT query—where would we put the 
aggregation specification? This can be handled uniformly with a subquery, as in the following 
example: 

CONSTRUCT {?company a :PreferredCustomer. 
       ?company :totalSales ?total .} 

WHERE {SELECT ?year ?company (SUM  (?val) as ?total) 
WHERE {?s a :Sale .

?s :amount ?val . 
?s :year ?year . 
?s :company ?company . 

}
   GROUP BY ?year ?company  

HAVING (?total > 5000)} 
This results in two triples: 

:PRIME a :PreferredCustomer .

:PRIME :totalSales 5350.00 . 


The subquery is the same query we saw before, determining which companies did more than $5000 of 
business in a single year. The CONSTRUCT query creates a graph with just the information about 
preferred customers—their preferred status as membership in the class :PreferredCustomer, 
and the total sales as a numeric value. 

UNION 
A graph pattern is made up of several triples—all of which have to match in order for the pattern to 
match. In logical terms, this means that there is an implicit “and” operation between the triples. One 
could correctly read a graph pattern as saying “the first triple matches AND the second triple matches 
AND the third triple matches .” But there are times when we might want to say that this triple 
matches OR that triple matches. For those times, SPARQL provides UNION. 

UNION combines two graph patterns, resulting in the set union of all bindings made by each 
pattern. Variables in each pattern take values independently (just as they do in subqueries), but the 
results are combined together. 

A simple example would be to find out all the actors who played either in Rebel Without a Cause or 
Giant. Each of these is a simple query;we can get all the answers bymaking aUNIONof the two queries: 

Ask: 
SELECT ?actor 

WHERE {


   {?actor :playedIn :Giant .} 
UNION

   {?actor :playedIn :RebelWithoutaCause .} 
} 

Answer: 
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actor 

Ann Doran 

Carroll Baker 

Elizabeth Taylor 

James Dean 

James Dean 

Jim Backus 

Mercedes McCambridge 

Natalie Wood 

Rock Hudson 

Sal Mineo 

Sal Mineo 

Some names appear twice, if the actor appeared in both movies. This repetition can be removed by 
using the DISTINCT keyword. 

UNION can be used in the context of CONSTRUCTas well. In a challenge earlier in this chapter, we 
used SPARQL to transform hierarchical information, by mapping several related relationships (mother, 
father, son, daughter) onto a single hierarchy (parent); the resulting triples were shown in Figure 5.9. 
This involved four CONSTRUCT queries, with an implicit understanding that all the triples resulting 
from each query would be merged. This is a perfectly fine assumption, if the queries are run in the 
context of a program that indeed combines all the results (e.g., by adding all the triples to the same triple 
store). But with UNION, we can specify explicitly that the triples are to be combined. We can take the 
graph pattern for each of the triples, and combine them all with the UNION operator, thus: 

CONSTRUCT {?s :hasParent ?o}

WHERE{ {?s :hasMother ?o} 


UNION
   {?s :hasFather ?o} 

UNION
   {?o :hasSon ?s} 

UNION 
   {?o :hasDaughter ?s}} 

The result of this query is the same as the combined results of the queries in the Challenge, i.e., the 
set of hasParent relationships shown in Figure 5.9. 

ASSIGNMENTS (SPARQL 1.1) 
Suppose we want to query the full names of the authors of the book “Semantic Web for the Working 
Ontologist.” We can easily find first names and last names, but how do we get the full names? It is 
a simple enough computation—concatenate the first and last names together, with an embedded space. 
But the string “James Hendler” is nowhere to be found in the data set. How do we create it? 

Tell-and-ask systems typically answer questions based on information that was told to them—this 
is true for spreadsheets, notebooks, databases, and RDF stores. But many tell-and-ask systems go 
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beyond this, and provide ways for you to specify information that you didn’t (directly) tell the system. 
We have already seen how this can be done with aggregators in SPARQL—the sums, averages, counts, 
etc., are information that was not directly told to the system, but was computed from information that 
was already there. 

But sometimes we would like to specify a special purpose computation as part of the ask process. 
Spreadsheets excel at this functionality, with the ability for the user to specify arbitrary formulas that 
will be calculated and updated whenever data are changed or entered. Databases have stored proce
dures that execute arbitrary code based on information in the database. SPARQL provides a similar 
capability through query-time assignments. An assignment lets the query write specifically the value of 
a variable through some computation—“assigning” a value to that variable, rather than matching some 
value in the data. 

Assignments are not supported in the SPARQL 1.0 standard, but will be supported in some form in 
the 1.1 standard. Assignments are expressed as part of the SELECT clause, with a renaming syntax: 

SELECT ( expression (?other) AS ?var) 
The expression can include arithmetic formulas (using the usual operators þ, �, ), /, etc.) or 

a series of function calls. Like stored procedures in relational databases, the function calls can include 
arbitrary programs in a variety of programming languages. For the examples in this book, we will 
restrict ourselves to some standard functions, those from the XPATH spec for XML. 

Suppose we have some data about books and their authors, including the following data: 

:DeanAllemang 
rdf:type :Person ;
:firstName "Dean" ; 
 :lastName "Allemang" . 

:JimHendler 
rdf:type :Person ;
:firstName "James" ; 
 :lastName "Hendler" . 

:WorkingOntologist 
rdf:type :Book ;
rdfs:label "Semantic Web for the Working Ontologist" ; 
 dc:creator :DeanAllemang , :JimHendler . 

This is where assignments come in. We can match for the first and last names, but we need to do 
a computation to get the full name. There is a function for concatenate in the XPATH spec—it is called 
fn:concat. We can use this to compute the full names: 

Ask: 

SELECT (fn:concat (?first, " ", ?last) AS ?fullname) 
WHERE {:WorkingOntologist dc:creator ?author .

   ?author :firstName ?first . 
   ?author :lastName ?last . 

}
Answer: 
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?fullname 

James Hendler 

Dean Allemang 

Assignments are a convenient way to compute information based on other things you are already 
asking for. But they really show their power when they are used for intermediate computations, so that 
the results of an assignment can be used to specify parameters for the ongoing search. 

As an example, let’s consider merging the information about this book with our movie database. One 
might wonder if there are any actors with names that are like the authors of this book—perhaps one 
whose name is made up of the first names of the book’s authors. We can fetch those first names easily 
enough: 

Ask: 
SELECT ?n1 ?n2 
WHERE { authors:WorkingOntologist dc:creator ?a1 . 

    authors:WorkingOntologist dc:creator?a2 . 
    ?a1 authors:firstName ?n1 .   
    ?a2 authors:firstName ?n2 .} 

Answer: 

?n1 ?n2 

Dean Dean 

Dean James 

James Dean 

James James 

Now, let’s make a full name out of the two first names, by concatenating them together, using the 
same function from XPATH as in the previous example. At the same time, we’ll get rid of the situations 
where both variables match the same name by filtering them out. This leaves us with: 

Ask: 

SELECT (fn:concat (?n1, " ", ?n2) AS ?probe)
WHERE { authors:WorkingOntologist dc:creator ?a1 . 


    authors:WorkingOntologist dc:creator?a2 . 

    ?a1 authors:firstName ?n1 .   

    ?a2 authors:firstName ?n2 . 


FILTER (?a1 != ?a2)}

Answer:  

?probe 

“Dean James” 

“James Dean” 
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Now, let’s use this computed result as a way to query the movie database. We want to find an actor 
who has one of these as his name. If we consider an actor to be someone who acts in a movie, we can 
find such an actor by matching a triple for the predicate :playsIn. But this poses a problem—we’d 
like to use the result ?probe later on in the graph pattern, but the assignment is only specified as part of 
the SELECT clause. We can get around this issue by using subqueries: 

Ask: 
SELECT DISTINCT ?who 
WHERE {


SELECT  (fn:concat (?n1, " ", ?n2))  AS ?probe)  

WHERE {

    authors:WorkingOntologist dc:creator ?a1 .

    authors:WorkingOntologist dc:creator ?a2 .

    ?a1 authors:firstName ?n1 .  

    ?a2 authors:firstName ?n2 .  


FILTER (?a1 != ?a2)

} }


{SELECT  ?probe ?who 
WHERE {

    ?who movies:playedIn ?any .

    ?who rdfs:label ?probe .}}}


Answer: 

?who 

movies:JamesDean 

Indeed, there is an actor in the database whose full name is made up of the concatenation of the first 
names of the authors of this book. 

Having the assignment happen only in the SELECT clause is inconvenient from the point of view 
of writing queries of this sort (where we want to use the result of the assignment to restrict another 
query), but does have the virtue that the meaning of a graph pattern does not depend on the ordering of 
its conditions. Creating a subquery structure of this sort makes the ordering of the assignments crystal 
clear; within any particular query, the ordering of the triple patterns has no effect on the meaning of the 
query. 

FEDERATING SPARQL QUERIES 
In the previous example, we assumed that all the triples about books and authors, and the triples about 
movies were available in a single graph. This isn’t such a far-fetched assumption, since it is 
a conceptually simple matter to merge multiple graphs into a single one for the purpose of running 
queries. But it is certainly not guaranteed that this will be the case; when data sets are very large, it can 
be impractical to merge them together before querying them. The data sets may be available only on 
the Web, and access to them could be limited. 
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For this reason, it is desirable to be able to federate a query across more than one data source. “
Federate” in this sense means to virtually combine the data sources in the query, while leaving each 
component with its own identity. Multiple data sources can be made available in a variety of ways. 
Data sources on the Web can be published for remote access as SPARQL endpoints. But even within 
a single data source, sets of triples can be given names as named graphs. Both endpoints and named 
graphs can participate in federated SPARQL queries. 

When each data set is published via a SPARQL endpoint, SPARQL allows subqueries to be dis
patched to different endpoints. The endpoint for the subquery is specified by putting the keyword 
SERVICE followed by a URL for the SPARQL endpoint before a graph pattern. A similar syntax is 
used for named graphs, but using the keyword GRAPH, followed by the URL that denotes the named 
graph. For instance, we could find out what the SPARQL endpoint dbpedia (http://dbpedia.org/sparql) 
knows about the movies that James Dean played in. As a simple query, we could find out whether there 
are any entries in dbpedia that have labels matching the names of actors who played in the movie 
Giant: 

Ask: 
SELECT ?entry

WHERE {?actor :playedIn :Giant . 

  ?actor rdfs:label ?name . 


SERVICE <http://dbpedia.org/sparql>

      {?entry rdfs:label ?name .} 


}

Answer:  

?entry 

<http://dbpedia.org/resource/Carroll_Baker> 

<http://dbpedia.org/resource/Elizabeth_Taylor> 

<http://dbpedia.org/resource/James_Dean> 

<http://dbpedia.org/resource/Mercedes_McCambridge> 

<http://dbpedia.org/resource/Rock_Hudson> 

<http://dbpedia.org/resource/Sal_Mineo> 

The variable ?name, which was defined in the second triple, is used again in the subquery; in 
effect, a value from the local data set has been given to the remote data set (dbpedia) as a pre
defined binding of a variable. From the point of view of the dbpedia endpoint, ?name isn’t 
a variable anymore; it is already bound to some value(s) from outside the query (“Giant,” “Rebel 
Without a Cause,” and “East of Eden”). The value(s) found for ?entry in the subquery is available 
as a result for the full query. 

The query we made to the dbpedia service in this example wasn’t very interesting—it just found 
the dbpedia reference for something (someone) we already know about. It would be more interesting 

(http://dbpedia.org/sparql)
<http://dbpedia.org/sparql>
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if we would ask dbpedia to tell us something we don’t already know—for instance, the birth name of 
these actors: 

Ask: 
SELECT DISTINCT ?name ?realname 

WHERE {?actor :playedIn :Giant . 

  ?actor rdfs:label ?name . 


SERVICE <http://dbpedia.org/sparql>  

        {?entry rdfs:label ?name . 

         ?entry dbpedia:birthname ?realname } 


} 

Answer: 
?name ?realname 
Elizabeth Taylor Elizabeth Rosemond Taylor
Rock Hudson Roy Harold Scherer, Jr. 
Sal Mineo Salvatore Mineo, Jr. 

A drawback of this query is that it assumes that rdfs:label is an appropriate property for 
identifying a resource in dbpedia. But dbpedia has information about millions of things—people, 
movies, places, countries, etc. It includes pretty much anything that has a Wikipedia entry; it is likely 
that two things could have the same rdfs:label. A better way to identify a resource in dbpedia 
would be to refer to the dbpedia URL directly. This isn’t something we can just do in the query—the 
data source would have to include a link between its resources and dbpedia. For example, if the data 
source were to include the following triples: 

:ElizabethTaylor skos:exactMatch dbpedia:Elizabeth_Taylor . 

:RockHudson skos:exactMatch dbpedia:Rock_Hudson . 

:SalMineo skos:exactMatch dbpedia:Sal_Mineo . 


Then we could change the query to be 

SELECT DISTINCT ?name ?realname 

WHERE {?actor :playedIn :Giant . 

  ?actor skos:exactMatch ?db . 


SERVICE <http://dbpedia.org/sparql>  

        { ?db dbpedia:birthname ?realname } 


}


Not only is this a shorter query, but it also has less chance of going awry; even if there are other 
people with names like “Sal Mineo” or “Elizabeth Taylor,” the inclusion of the exact match in the 
data set ensures that the correct resource will be used in the dbpedia query. It is quite common for 
published data sets to include this sort of linkage to data source like dbpedia to resolve ambiguity— 
dbpedia has become a de facto registry of names for celebrities, places, works of art, etc., that is, for 
anything that is mentioned in Wikipedia. 

<http://dbpedia.org/sparql>
<http://dbpedia.org/sparql>
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Any number of federated SERVICE specifications are allowed in a SPARQL query, making it 
possible to write queries that are federated over several data sources. 

SUMMARY 
The SPARQL query language provides a means for querying information from an RDF data 
graph. The workhorse of the query is the graph pattern—a smaller graph including both resources 
and variables, that is matched against a data graph. The graph pattern specifies what information 
is to be fetched from the graph, and how the entities that match the variables are related to one 
another. 

SPARQL queries can be used to fetch information (like SQL queries) or to transform a graph into 
a new form (like rules). Both forms use the same notion of graph pattern to specify the desired 
information. 

Fundamental concepts 

The following fundamental concepts were introduced in this chapter. 

Graph pattern—a graph with wildcards, used to match against a data graph to specify desired

results.

Variables (question words)—wildcards in a graph pattern. They can match any resource.

SELECT query—a query form that fetches binding for variables from a graph.

CONSTRUCT query—a query form that builds a new graph based on matches in a data graph,

along with a graph template.

Queries as rules—using a CONSTRUCT query to specify rules.

Federated query—querying multiple data sources in a single query.
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Suppose you hit the web page of an online clothing retailer, and you search for “chamois” in the 
category of “Shirts.” Your search comes up empty. You are surprised, because you were quite certain 
that you saw a chamois Henley in the paper catalog that landed in your mailbox. So you look up the 
unit number in the catalog and do another search, using that. Sure enough, there is the chamois Henley. 
Furthermore, you find that “Henleys” is shown in the catalog as a kind of “Shirts.” You mutter to 
yourself. “If it comes up under ‘Henleys,’ it should come up under ‘Shirts.’ What’s the matter with this 
thing?” 

What do we expect from a search like this? We want any search, query, or other access to the data 
that reference “Shirts” to also look at “Henleys.” What is so special about the relationship between 
“Shirts” and “Henleys” to make us expect this? That is what we mean when we say, “‘Henleys’ is 
a kind of ‘Shirts.’ ” How can we express this meaning in a way that is consistent and maintainable? 

One solution to this problem is to leverage the power of the query; after all, in conventional 
database applications, it is in the query where relationships among data elements are elaborated. In this 
case, we could use the transitive query facility in SPARQL (Chapter 5) to write a query to search all the 
of shirts. If we represent relationships between categories with :subClassOf, we could write: 

SELECT ?item 

WHERE {?class :subClassOf* :Shirts .


?item a ?class . } 


In addition to this approach, the Semantic Web also provides a model of data expression that allows 
for explicit representation of the relationship between various data items. In this sense, it genuinely 
allows a data modeler to create data that are more connected, better integrated, and in which the 
consistency constraints on the data can be expressed in the data itself. The data can describe something 
about the way they should be used. 

113 
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As an alternative to this approach, the Semantic Web stack includes a series of layers on top of the 
RDF layer to describe consistency constraints in the data. The key to these levels is the notion of 
inferencing. In the context of the Semantic Web, inferencing simply means that given some stated 
information, we can determine other, related information that we can also consider as if it had been 
stated. In the Henleys/Shirts example, we would infer that any members of the class “Henleys” is also 
a member of the class “Shirts.” Inferencing is a powerful mechanism for dealing with information, and 
it can cover a wide range of elaborate processing. For the purposes of making our data more integrated 
and consistent, very simple inferences are often more useful than elaborate ones. As a simple example, 
in Chapter 5, we saw how to write a set of queries to maintain relationship information in a family tree, 
whether the information was originally expressed about chidren, brothers, sisters, mothers, sons, etc. It 
is this sort of mundane consistency completion of data that can be done with inferencing in the 
Semantic Web. Although inferencing of this sort seems trivial from the point of view of the natural 
world (after all, doesn’t everyone just know that this is the way families work?), it is the lack of just this 
sort of correlation that keeps data inconsistent. 

INFERENCE IN THE SEMANTIC WEB 
To make our data seem more connected and consistently integrated, we must be able to add relationships 
into the data that will constrain how the data are viewed. We want to be able to express the relationship 
between “Henleys” and “Shirts” that will tell us that any item in the “Henleys” category should also be 
in the “Shirts” category. We want to express the fact about locations that says that if a hotel chain has 
a hotel at a particular location, then that location is served by a hotel in that chain. We want to express 
the list of planets in terms of the classifications of the various bodies in the solar system. 

Many of these relationships are familiar to information modelers in many paradigms. Let’s take the 
relationship between “Henleys” and “Shirts” as an example. Thesaurus writers are familiar with the 
notion of broader term. “Shirts” is a broader term than “Henleys.” Object-oriented programmers are 
accustomed to the notion of subclasses or class extensions. “Henleys” is a subclass of, or extends, the 
class “Shirts.” In the RDF Schema language, to be described in the next chapter, we say, “Henleys” 
subClassOf “Shirts.” It is all well and good to say these things, but what do they mean? 

Thesauri take an informal stance on what these things mean in a number of contexts. If you use 
a broader term in a search, you will also find all the entries that were tagged with the narrower term. If 
you classify something according to a broad term, you may be offered a list of the narrower terms to 
choose from to focus your classification. 

Many readers may be familiar with terms like class and subclass from Object-Oriented Programming (OOP). There is 
a close historical and technical relationship between the use of these and other terms in OOP and their use in the 
Semantic Web, but there are also important and subtle differences. OOP systems take a more formal, if program
matic, view of class relationships than that taken by thesauri and taxonomies. An object whose type is “Henleys” will 
respond to all messages defined for object of type “Shirts.” Furthermore, the action associated with this call will be 
the same for all “Shirts,” unless a more specific behavior has been defined for “Henley,” and so on. The Semantic 
Web also takes a formal view of these relationships, but in contrast to the programmatic definition found in OOP, the 
Semantic Web defines the meaning of these things in terms of inference. 
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The Semantic Web infrastructure provides a formal and elegant specification of the meaning of the 
various terms like subClassOf. For example, the meaning of “B is a SubClassOf C” is “Every 
member of class B is also a member of class C.” This specification is expressed in the form of an 
inference. From the information “x is a member of B,” one can derive the new information, “x is 
a member of C.” 

For the next several chapters, we will introduce terms that can be used in an RDF model, along with 
a statement of what each term means. This statement of meaning will be given in the form of an 
inference pattern: “Given some initial information, the following new information can be derived.” 
This is how the RDF Schema language (RDFS, Chapter 6) and the Web Ontology Language (OWL, 
Chapter 10) work. 

Our first example is one that we can use with the Henleys and Shirts example. The meaning for 
rdfs:subClassOf is given by the following inference: 

IF 

?A rdfs:subClassOf ?B. 

AND 

?x rdf:type ?A.

THEN 

?x rdf:type ?B. 


In plain English, this says that if one class A is a subclass of another class B, anything of type A is 
also of type B. This simple statement is the entire definition of the meaning of subClassOf in the 
RDF Schema language. We will refer to this rule as the type propagation rule. This very simple 
interpretation of the subclass relationship makes it a workhorse for RDFS modeling (and also for OWL 
modeling, as described in subsequent chapters). It closely corresponds to the IF/THEN construct of 
programming languages: IF something is a member of the subclass, THEN it is a member of the 
superclass. 

The Semantic Web definition of subClassOf is similar to the definition of subclass or extension in OOP. In 
OOP, an instance of some class responds to the same methods in the same way that instances of its superclass do. In 
Semantic Web terms, this is because that instance is also a member of the superclass, and thus must behave like 
any such member. For example, the reason why an instance of class “Henleys” responds to methods defined in 
“Shirts” is because the instance actually is also a member of class “Shirts.” 

This similarity only goes so far. For example, it breaks down when, in the OOP system, the subclass defines an 
override for a method defined in the superclass. In Semantic Web terms, the instances of “Henleys” are still 
instance of “Shirts” and should respond accordingly. But in most OOP semantics, this is not the case; the defi
nitions at “Henleys” take precedence over those at “Shirts,” and thus “Henleys” need not actually behave like 
“Shirts” at all. In the logic of the Semantic Web, this is not allowed. 

SPARQL and inference 
Often, we can express the inference rules of RDFS (and OWL) by using SPARQL CONSTRUCT. For  
example, since a CONSTRUCT query specifies new triples based on a graph pattern of triples found in 
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the data, in the case of the type propagation rule, we can specify the type propagation rule with the 
following SPARQL CONSTRUCT query: 

CONSTRUCT {?r rdf:type ?B}
WHERE {?A rdfs:subClassOf ?B .

?r rdf:type ?A} 

SPARQL provides a precise and compact way to express inference rules of this sort. We will use 
this SPARQL notation throughout the rest of the book to describe much of the inferencing in RDFS and 
OWL. It is a clean, concise way to specify inferences, provide ample examples of SPARQL queries, 
and show the relationship between SPARQL and these other Semantic Web languages. 

Using SPARQL to define inference isn’t just a convenience for writing a book—SPARQL can be 
used as the basis for an inference language itself. One proposal for such an inference language is called 
SPARQL Inferencing Notation (SPIN).1 SPIN includes a number of constructs for managing infer
encing with SPARQL, but for the purposes of this book, SPIN is simply a way to specify that 
a particular CONSTRUCT query is to be used as a definition for inferences for a particular model. For 
example, if we want to say that the type propagation rule holds for all members of the class Shirt, 
we can specify this in SPIN as 

:Shirt spin:rule "CONSTRUCT {?this rdf:type ?B}

WHERE {?A rdfs:subClassOf ?B .


                         ?this rdf:type ?A}" . 


The variable ?this has special meaning in SPIN; it refers to a member of the class that the query is 
attached to by spin:rule. In this example, ?this refers to any member of the class :Shirt. We will 
use SPIN from time to time to elaborate how inferences in RDFS and OWL are related to constructions 
that can be specified in SPARQL. 

Virtues of inference-based semantics 
Inference patterns constitute an elegant way to define the meaning of a data construct. But is this 
approach really useful? Why is it a particularly effective way to define the meaning of constructs in the 
Semantic Web? 

Since our data are living in the Web, a major concern for making our data more useful is to have 
them behave in a consistent way when combined with data from multiple sources. The strategy of 
basing the meaning of our terms on inferencing provides a robust solution to understanding the 
meaning of novel combinations of terms. Taking subClassOf as an example, it is not out of the 
question for a single class to be specified as subClassOf two other classes. What does this mean? 

In an informal thesaurus setting, the meaning of such a construct is decided informally: What do we 
want such an expression to mean? Since we have a clear but informal notion of what broader term 
means, we can use that intuition to argue for a number of positions, including but not limited to, 
deciding that such a situation should not be allowed, to defining search behavior for all terms involved. 
When the meaning of a construct like broader term is defined informally, the interpretation of novel 
combinations must be resolved by consensus or authoritative proclamation. 

1http://spinrdf.org/ 



Where are the smarts? 117 

OOP also faces the issue of deciding an appropriate interpretation for a single subclass of two distinct classes. The 
issue is known as multiple inheritance, and it is much discussed in OOP circles. Indeed, each OOP modeling system 
has a response to this issue, ranging from a refusal to allow it (C#), a distinction between different types of 
inheritance (interface vs. implementation inheritance, e.g., Java), to complex systems for defining such things (e.g., 
the Meta-Object Protocol of the Common Lisp Object System). Each of these provides an answer to the multiple 
inheritance question, and each is responsive to particular design considerations that are important for the respective 
programming language. 

In an inference-based system like the Semantic Web, the answer to this question (for better or 
worse) is defined by the interaction of the basic inference patterns. How does multiple inheritance 
work in the RDF Schema Language? Just apply the rule twice. If A is subClassOf B and A is also 
subClassOf C, then any individual x that is a member of A will also be a member of B and of C. No  
discussion is needed, no design decisions. The meaning of subClassOf, in any context, is given 
elegant expression in a single simple rule: the type propagation rule. This feature of inference systems 
is particularly suited to a Semantic Web context, in which novel combinations of relationships are 
bound to occur as data from multiple sources are merged. 

WHERE ARE THE SMARTS? 
An inference-based system for describing the meaning of Semantic Web constructs is elegant and 
useful in a distributed setting, but how does it help us make our data more useful? For our application 
to behave differently, we will need a new capability in our deployment architecture, something that 
will respond to queries based not only on the triples that have been asserted but also on the triples that 
can be inferred based on the rules of inference. This architecture is shown in Figure 6.1, and it is very 
similar to the RDF query architecture shown in Figure 4.4. 

Converters 
and Scrapers Parser and 

Serializer 

Application 
Analytics 
Interface 
… 

Web pages, Spreadsheets, 
Tables, Databases, etc. 

RDF Files 

RDF Store 
(merge) 

Inference and Query 
Engine 

FIGURE 6.1 

Semantic Web architecture with inferencing. 



118 CHAPTER 6 RDF and inferencing 

The novelty of this architecture is an inferencing capability that stands with the query component 
between the application and the RDF data store. The power of a query engine with inferencing 
capability is determined by the set of inferences that it supports. An RDFS inference query engine 
supports a small set of inferences defined in the RDFS standard; an OWL inference query engine 
supports the larger set of OWL inferences. (Note that there are alternative formulations where the data 
are preprocessed by an inferencing engine and then queried directly. We discuss this later in this 
chapter.) 

EXAMPLE Simple RDFS Query 

Suppose we have an inference engine that includes support for the type propagation rule working over an RDF 
store that contains only these two triples: 

shop:Henleys rdfs:subClassOf shop:Shirts.

shop:ChamoisHenley rdf:type shop:Henleys. 


Suppose we have a SPARQL triple pattern that we use to examine these triples, thus: 

Ask: 
SELECT ?item 

WHERE {?x rdf:type shop:Shirts . } 


In a plain RDF query situation, this pattern will match no triples because there is no triple with predicate 
rdf:type and object shop:Shirts. However, since the RDFS inference standard includes the type 
propagation rule just listed, with an RDFS inferencing query engine, the following single result will be 
returned: 

Answer: 

?item 

Shop:ChamoisHenley 

Asserted triples versus inferred triples 
It is often convenient to think about inferencing and queries as separate processes, in which an 
inference engine produces all the possible inferred triples, based on a particular set of inference 
rules. Then, in a separate pass, an ordinary SPARQL query engine runs over the resulting 
augmented triple store. It then becomes meaningful to speak of asserted triples versus inferred 
triples. 

Asserted triples, as the name suggests, are the triples that were asserted in the original RDF store. In 
the case where the store was populated by merging triples from many sources, all the triples are 
asserted. Inferred triples are the additional triples that are inferred by one of the inference rules that 
govern a particular inference engine. It is, of course, possible for the inference engine to infer a triple 
that has already been asserted. In this case, we still consider the triple to have been asserted. It is 
important to note that there is no logical distinction between inferred and asserted triples, the inference 
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engine will draw exactly the same conclusions from an inferred triple as it would have done, had that 
same triple been asserted. 

EXAMPLE Asserted versus Inferred Triples 

Even with a single inference rule like the type propagation rule, we can show the distinction of asserted vs. 
inferred triples. Suppose we have the following triples in a triple store: 

shop:Henleys rdfs:subClassOf shop:Shirts.

shop:Shirts rdfs:subClassOf shop:MensWear.

shop:Blouses rdfs:subClassOf shop:WomensWear.

shop:Oxfords rdfs:subClassOf shop:Shirts.

shop:Tshirts rdfs:subClassOf shop:Shirts.

shop:ChamoisHenley rdf:type shop:Henleys.

shop:ClassicOxford rdf:type shop:Oxfords.

shop:ClassicOxford rdf:type shop:Shirts.

shop:BikerT rdf:type shop:Tshirts.

shop:BikerT rdf:type shop:MensWear. 


These triples are shown graphically in Figure 6.2. 

shop:MensWear 

shop:Shirts 

shop:Henleysshop:Tshirts 
shop:Oxfords 

shop:ChamoisHenley shop:ClassicOxford 

rdfs:subClassOf 

rdfs:subClassOf 

rdfs:subClassOf rdfs:subClassOf 

rdf:type 

rdf:type 
rdf:type 

FIGURE 6.2 

Asserted triples in the catalog model. 

An inferencing query engine that enforces just the type propagation rule will draw the following 
inferences: 

shop:ChamoisHenley rdf:type shop:Shirts. 

shop:ChamoisHenley rdf:type shop:MensWear. 

shop:ClassicOxford rdf:type shop:Shirts. 

shop:ClassicOxford rdf:type shop:MensWear. 

shop:BikerT rdf:type shop:Shirts. 

shop:BikerT rdf:type shop:MensWear. 
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shop:MensWear 

shop:Shirts 

shop:Henleysshop:Tshirts shop:Oxfords 

shop:ChamoisHenley shop:ClassicOxford 

FIGURE 6.3 

All triples in the catalog model. Inferred triples are shown as dashed lines. 

Some of these triples were also asserted; the complete set of triples over which queries will take place is as 
follows, with inferred triples in italics: 

shop:Henleys rdfs:subClassOf shop:Shirts.

shop:Shirts rdfs:subClassOf shop:MensWear.

shop:Blouses rdfs:subClassOf shop:WomensWear.

shop:Oxfords rdfs:subClassOf shop:Shirts.

shop:TShirts rdfs:subClassOf shop:Shirts.

shop:ChamoisHenley rdf:type shop:Henleys.

shop:ChamoisHenley rdf:type shop:Shirts. 

shop:ChamoisHenley rdf:type shop:MensWear.

shop:ClassicOxford rdf:type shop:Oxfords.

shop:ClassicOxford rdf:type shop:Shirts.

shop:ClassicOxford rdf:type shop:MensWear. 
shop:BikerT rdf:type shop:Tshirts.
shop:BikerT rdf:type shop:Shirts. 
shop:BikerT rdf:type shop:MensWear. 

All triples in the model, both asserted and inferred, are shown in Figure 6.3. We use the convention that 
asserted triples are printed with unbroken lines, and inferred triples are printed with dashed lines. This 
convention is used throughout the book. 

The situation can become a bitmore subtlewhen we begin tomerge information from multiple sources 
in which each source itself is a system that includes an inference engine. Most RDF implementations 
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provide a capability by which new triples can be asserted directly in the triple store. This makes it quite 
straightforward for an application to assert any or all inferred triples. If those triples are then serialized 
(say, in RDF/XML) and shared on theWeb, another application could merge themwith other sources and 
draw further inferences. In complex situations like this, the simple distinction of asserted versus inferred 
might be too coarse to be a useful description of what is happening in the system. 

WHEN DOES INFERENCING HAPPEN? 
The RDFS and OWL standards define what inferences are valid, given certain patterns of triples. But 
when does inferencing happen? Is inferencing done at all? Where and how are inferred triples stored, if 
at all? How many of them are there? 

These questions are properly outside the range of the definitions of RDFS and OWL, but they are 
clearly important for any implementation that conforms to these standards. It should, therefore, come 
as no surprise that the answers to these questions can differ from one implementation to another. The 
simplest approach is to store all triples in a single store, regardless of whether they are asserted or 
inferred. As soon as a pattern is identified, any inferred triples are inserted into the store. We will call 
this cached inferencing, since all inferences are stored (“cached”) with the data. This approach is quite 
simple to describe and implement but risks an explosion of triples in the triple store. At the other 
extreme, an implementation could instead never actually store any inferred triples in any persistent 
store at all. Inferencing is done in response to queries only. We will call this just in time inferencing, 
since the inferences are computed at the latest possible moment. The query responses are produced in 
such a way as to respect all the appropriate inferences, but no inferred triple is retained. This method 
risks duplicating inference work, but it is parsimonious in terms of persistent storage. These different 
approaches have an important impact in terms of change management. What happens if a data source 
changes—that is, a new triple is added to some data store or a triple is removed? A strategy that 
persistently saves inferences will have to decide which inferred triples must also be removed. This 
presents a difficult problem, since it is possible that there could be many ways for a triple to be 
inferred. Just because one inference has been undermined by the removal of a triple, does that mean 
that it is appropriate to remove that triple? An approach that recomputes all inferences whenever 
a query is made need not face this issue. 

An important variant of “just in time” inferencing is where no explicit inferencing is done at all. We 
already saw, in our example about subclasses of Shirts, how a query could explicitly express what data 
it wanted, without relying on the inference semantics of the model at all. As we see in the next section, 
even in this case, where there is no explicit inferencing, the inference interpretation of a model is still 
important in organizing and understanding a semantic application. 

Inferencing as specification 
At the beginning of this chapter, we looked at a query to find all the Shirts in a catalog, explicitly 
tracing down the all rdfs:subClassOf links: 

SELECT ?item 
WHERE {?class :subClassOf* :Shirts .

?item a ?class . } 
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This selection was done to support a search operation—“find me all the chamois Shirts.” This query 
operates without any explicit reference to inference at all; it returns its answers without reference to 
inferred triples vs. asserted triples; it just processes the asserted data. But how do we know that the 
items returned by this query are Shirts? 

This same question could be asked of a program in Java or Cþþ or even SQL—if we write 
a program to collect up the members of all the subclasses of Shirts (and their subclasses, and so on), do 
we know that all the things we have collected are Shirts? If we return one of these things as the result of 
a user search, can we be justified in thinking that it is itself a shirt? This suggests a role that a semantic 
model can play in the interpretation of data—it can tell us whether the queries we have written are 
correct. In this example, our model tells us that every Henley is a shirt, because the class Henleys is 
a subclass of the class Shirts. The same goes for Oxfords, and for any subclasses of Oxfords. The 
model, along with its formal semantics, guarantees that all the results of this query will indeed be 
shirts. 

In this sense, the model is a specification. Any discussion about the appropriateness of a particular 
query can appeal to the model for arbitration—is this query consistent with the model? In this example, 
the model tells us that any result from this query will be a Shirt, so it is appropriate to treat them as 
such. When the model is written in a language for which there is a capability to do automated 
inferences (like RDFS, RDFS-Plus, or OWL), it becomes particularly useful—the specification is said 
to be executable. This means that we can run a program that will tell us exactly what the model means. 
In the example above where we showed asserted and inferred triples, we showed the results of just such 
a capability, resulting in a list of all the Shirts (of any type). 

When building an application, we might decide to use a general-purpose inference capability, or we 
might decide to use an extended query (like the one shown here), or we might write a program in some 
other language. A specification (even an executable one) tells us what our program or query ought to 
do; it doesn’t tell us how we should do it. Regardless of this implementation choice, the model plays 
a central role of justifying the query or program. If many people develop different systems (even using 
different technological approaches), the results they provide will be consistent, if they justify them all 
against the same model. 

SUMMARY 
RDF provides a way to represent data so that information from multiple sources can be brought 
together and treated as if they came from a single source. But when we want to use that data, the 
differences in those sources comes out. For instance, we’d like to be able to write a single query that 
can fetch related data from all the integrated data sources. 

The Semantic Web provides an approach to this problem in the form of modeling languages in 
which the relationship between data sources can be described. A modeling construct’s meaning is 
given by the pattern of inferences that can be drawn from it. Information integration can be achieved by 
invoking inferencing before or during the query process; a query returns not only the asserted data but 
also inferred information. This inferred information can draw on more than one data source. 

We have seen how even very simple inferencing can provide value for data integration. But just 
exactly what kind of inferencing is needed? There isn’t a single universal answer to this question. The 
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Semantic Web standards identify a number of different levels of expressivity, each supporting different 
inferences, and intended for different levels of sophistication of data integration over the SemanticWeb. 

In the following chapters, we will explore three particular inferencing levels. They differ only in 
terms of the inferences that each of the languages allow. RDFS (Chapter 6) is a recommendation 
defined and maintained by the W3C. It operates on a small number of inference rules that deal mostly 
with relating classes to subclasses and properties to classes. RDFS-PLUS (Chapter 7) is a mode that we 
have defined for this book. We have found a particular set of inference patterns to be helpful both 
pedagogically (as a gentle introduction to the more complex inference patterns of OWL) and prac
tically (as a useful integration tool in its own right). RDFS-PLUS builds on top of RDFS to include 
constraints on properties and notions of equality. OWL (Chapters 9 and 10) is a recommendation 
defined and maintained by the W3C, which builds further to include rules for describing classes based 
on allowed values for properties. All of these standards use the notion of inferencing to describe the 
meaning of a model; they differ in the inferencing that they support. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

Inferencing—The process by which new triples are systematically added to a graph based on

patterns in existing triples.

Asserted triples—The triples in a graph that were provided by some data source.

Inferred triples—Triples that were added to a model based on systematic inference patterns.

Inference rules—Systematic patterns defining which of the triples should be inferred.

Inference engine—A program that performs inferences according to some inference rules. It is

often integrated with a query engine.
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Just as Semantic Web modeling in RDF is about graphs, Semantic Web modeling in the RDF Schema 
Language (RDFS) is about sets. Some aspects of set membership can be modeled in RDF alone, as we 
have seen with the rdf:type built-in property. But RDF itself simply creates a graph structure to 
represent data. RDFS provides some guidelines about how to use this graph structure in a disciplined 
way. It provides a way to talk about the vocabulary that will be used in an RDF graph. Which indi
viduals are related to one another, and how? How are the properties we use to define our individuals 
related to other sets of individuals and, indeed, to one another? RDFS provides a way for an 
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information modeler to express the answers to these sorts of questions as they pertain to particular data 
modeling and integration needs. 

As such, RDFS is like other schema languages: It provides information about the ways in which we 
describe our data. But RDFS differs from other schema languages in important ways. 

SCHEMA LANGUAGES AND THEIR FUNCTIONS 
RDFS is the schema language for RDF. But what is a schema language in the first place? There are 
a number of successful schema languages for familiar technologies, but the role that each of the
se languages play in the management of information is closely tied to the particular language or 
system. 

Let’s consider document modeling systems as an example. For such a system, a schema language 
allows one to express the set of allowed formats for a document. For a given schema, it is possible to 
determine (often automatically) whether a particular document conforms to that schema. This is the 
major capability provided by XML Schema definitions. XML parsers can automatically determine 
whether a particular XML document conforms to a given schema. 

Other schema languages help us to interpret particular data. For example, a database schema 
provides header and key information for tables in a relational database. There is neither anything in the 
table itself to indicate the meaning of the information in a particular column nor anything to indicate 
which column is to be used as an index for the table. This information is appropriately included in the 
database schema, since it does not change from one data record to the next. 

For Object-Oriented Programming systems, the class structure plays an organizing role for 
information as well. But in object-oriented programming, the class diagram does more than describe 
data. It determines, according to the inheritance policy of the particular language, what methods are 
available for a particular instance and how they are implemented. This stands in stark contrast to 
relational databases and XML, in that it does not interpret information but instead provides 
a systematic way for someone to describe information and available transformations for that 
information. 

Given this variety of understandings of how schema information can be used in different modeling 
paradigms, one might wonder whether calling something a schema language actually tells us anything 
at all! But there is something in common among all these notions of a schema. In all cases, the schema 
tells us something about the information that is expressed in the system. The schema is information 
about the data. 

How then can we understand the notion of schema in RDF? What might we want to say about RDF 
data? And how might we want to say it? The key idea of the schema in RDF is that it should help 
provide some sense of meaning to the data. It accomplishes this by specifying semantics using 
inference patterns. 

Relationship between schema and data 

In most modeling systems, there is a clear division between the data and its schema. The schema for 
a relational database is not typically expressed in a table in the database; the object model of an 
object-oriented system is not expressed as objects, and an XML DTD is not a valid XML document. 
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But in many cases, modern versions of such systems do model the schema in the same form as the 
data; the meta-object protocol of Common Lisp and the introspection API of Java represent the 
object models as objects themselves. The XML Stylesheet Definition defines XML Styles in an XML 
language. 

In the case of RDF, the schema language was defined in RDF from the very beginning. That is, all 
schema information in RDFS is defined with RDF triples. The relationship between “plain” resources 
in RDF and schema resources is made with triples, just like relationships between any other 
resources. This elegance of design makes it particularly easy to provide a formal description of the 
semantics of RDFS, simply by providing inference rules that work over patterns of triples. While this 
is good engineering practice (in some sense, the RDF standards committee learned a lesson from the 
issues that the XML standards had with DTDs), its significance goes well beyond its value as good 
engineering. In RDF, everything is expressed as triples. The meaning of asserted triples is expressed 
in new (inferred) triples. The structures that drive these inferences, that describe the meaning of our 
data, are also in triples. This means that this process can continue as far as it needs to; the schema 
information that provides context for information on the Semantic Web can itself be distributed on 
the Semantic Web. 

We can see this in action by showing how a set is defined in RDFS. The basic  construct for  
specifying a set in RDFS is called an rdfs:Class.  Since  RDFS  is  expressed in RDF,  the  way we  
express that something is a class is with a triple—in particular, a triple in which the predicate is 
rdf:type, and  the object is  rdfs:Class. Here are some examples that we will use in the 
following discussion: 

:AllStarPlayer rdf:type rdfs:Class. 

:MajorLeaguePlayer rdf:type rdfs:Class. 

:Surgeon rdf:type rdfs:Class. 

:Staff rdf:type rdfs:Class. 

:Physician rdf:type rdfs:Class. 


These are triples in RDF just like any other; the only way we know that they refer to the 
schema rather than the data is because of the use of the term in the rdfs: namespace, 
rdfs:Class. But what is new here? In Chapter 3, we already discussed the notion of 
rdf:type, which we used to specify that something was a member of a set. What do we gain 
by specifying explicitly that something is a set? We gain a description of the meaning of 
membership in a set. In RDF, the only “meaning” we had for set membership was given by the 
results of some query; rdf:type actually didn’t behave any differently from any other (even 
user-defined) property. How can we specify what we mean by set membership? In RDFS, we 
express meaning through the mechanism of inference. 

THE RDF SCHEMA LANGUAGE 
RDFS “extends” RDF by introducing a set of distinguished resources into the language. This is similar 
to the way in which a traditional programming language can be extended by defining new language-
defined keywords. But there is an important difference: In RDF, we already had the capability to use 
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any resource in any triple (Anyone can say Anything about Any topic). So by identifying certain 
specific resources as “new keywords,” we haven’t actually extended the language at all! We have 
simply identified certain triples as having a special meaning, as defined by a standard. 

How can we define the “meaning” of a distinguished resource? As we saw in Chapter 6, in RDFS, 
meaning is expressed by specifying inferences that can be drawn when the resource is used in a certain 
way. Throughout the rest of this section, whenever we introduce a new RDFS resource, we will answer 
the question “What does it mean?” with an answer of the form “In these circumstances (defined by 
some pattern of triples), you can add (infer) the following new triples.” We already saw how to do this 
with the type propagation rule for rdfs:subClassOf; now we will demonstrate this principle using 
another of the most fundamental terms in RDFS: rdfs:subPropertyOf. 

Relationship propagation through rdfs:subPropertyOf 
The basic intuition behind the use of rdfs:subPropertyOf is that terminology includes verbs as 
well as nouns, and many of the same requirements for mapping nouns from one source to another will 
apply to relationships. Simple examples abound in ordinary parlance. The relationship brother is more 
specific than the relationship sibling; if someone is my brother, then he is also my sibling. This is 
formalized in RDFS for rdfs:subPropertyOf using an inference rule that is almost as simple as 
the one for rdfs:subClassOf. 

CONSTRUCT {?x ?r ?y .}
WHERE {?x ?q ?y .
       ?q rdfs:subPropertyOf ?r } 

That is, in any triple, we can replace the predicate with any property it is a subPropertyOf. 

EXAMPLE Employment 

A large firm engages a number of people in various capacities and has a variety of ways to administer these 
relationships. Some people are directly employed by the firm, whereas others are contractors. Among these 
contractors, some of them are directly contracted to the company on a freelance basis, others on a long-term 
retainer, and still others contract through an intermediate firm. All of these people could be said to work for the 
firm. 

How can we model this situation in RDFS? First, we need to consider the inferences we wish to be able to 
draw and under what circumstances. There are a number of relationships that can hold between a person 
and the firm; we can call them contractsTo, freeLancesTo, indirectlyContractsTo, 
isEmployedBy, and worksFor. 

If we assert any of these statements about some person, then we would like to infer that that person 
worksFor the firm. Furthermore, there are intermediate conclusions we can draw—for instance, both 
a freelancer and an indirect contractor contract to the firm and indeed work for the firm. 

All these relationships can be expressed in RDFS using the rdfs:subPropertyOf relation: 

:freeLancesTo rdfs:subPropertyOf contractsTo. 
:indirectlyContractsTo rdfs:subPropertyOf contractsTo. 
:isEmployedBy rdfs:subPropertyOf worksFor. 
:contractsTo rdfs:subPropertyOf worksFor. 
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worksFor 

isEmployedBy 

indirectlyContractsTo 

contractsTo 

freeLancesTo 

FIGURE 7.1 

rdfs:subPropertyOf relations for workers in the firm. 

The discussion will be easier to follow if we represent this as a diagram, where the arrows denote 
rdfs:subPropertyOf (see Figure 7.1). 

To see what inferences can be drawn, we will need some instance data: 

:Goldman :isEmployedBy :TheFirm. 
:Spence :freeLancesTo :TheFirm. 
:Long :indirectlyContractsTo :TheFirm. 

The rule that defines the meaning of rdfs:subPropertyOf implies a new triple, replacing any sub-
property with its superproperty. So, since 

:isEmployedBy :rdfs:subPropertyOf :worksFor. 
we can infer that 

:Goldman :worksFor :TheFirm. 

And because of the assertions about freelancing and indirect contracts, we can infer that 

:Spence :contractsTo :TheFirm. 
:Long contractsTo :TheFirm. 

And finally, since, like asserted triples, inferred triples can be used to make further inferences, we can 
further infer that 

:Spence :worksFor :TheFirm. 
:Long :worksFor :TheFirm. 

In general, rdfs:subPropertyOf allows a modeler to describe a hierarchy of related properties. 
Just as in class hierarchies, specific properties are at the bottom of the tree, and more general properties are 
higher up in the tree. Whenever any property in the tree holds between two entities, so does every property 
above it. 
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The construct rdfs:subPropertyOf has no direct analog in object-oriented programming, where proper
ties are not first-class entities (i.e., they cannot be related to one another, independent of the class in which they are 
defined). For this reason, unlike the case of rdfs:subClassOf, object-oriented programmers have no conflict 
with a similar known concept. The only source of confusion is that subproperty diagrams like the preceding one are 
sometimes mistaken for class diagrams. 

Typing data by usage—rdfs:domain and rdfs:range 
We have seen how inferences around rdfs:subPropertyOf can be used to describe how two 
properties relate to each other. But when we describe the usage of terms in our data, we would also like 
to represent how a property is used relative to the defined classes. In particular, we might want to say 
that when a property is used, the triple subject comes from (i.e., has rdf:type) a certain class and 
that the object comes from some other type. These two stipulations are expressed in RDFS with the 
resources (keywords) rdfs:domain and rdfs:range, respectively. 

In mathematics, the words domain and range are used to refer to how a function (or more generally, 
a relation) can be used. The domain of a function is the set of values for which it is defined, and the 
range is the set of values it can take. In Real Analysis, for instance, the relation squareroot has the 
positive numbers as the domain (since negative numbers don’t have square roots in the reals), and all 
reals as the range (since there are both positive and negative square roots). 

In RDFS, the properties rdfs:domain and rdfs:range have meanings inspired by the 
mathematical uses of these words. A property p can have an rdfs:domain and/or an 
rdfs:range. These are specified, as is everything in RDF, via triples: 

:p rdfs:domain :D.

:p rdfs:range :R. 

The informal interpretation of this is that the relation p relates values from the class D to values 

from the class R. D and R need not be disjoint, or even distinct. 
The meaning of these terms is defined by the inferences that can be drawn from them. RDFS 

inferencing interprets domain with the inference rule: 

CONSTRUCT {?x rdf:type ?D .}

WHERE {?P rdfs:domain ?D . 


?x ?P ?y .} 


Similarly, range is defined with the rule 

CONSTRUCT {?y rdf:type ?D .}

WHERE {?P rdfs:range ?D . 


?x ?P ?y .} 


In RDFS, domain and range give some information about how the property P is to be used; 
domain refers to the subject of any triple that uses P as its predicate, and range refers to the object of 
any such triple. When we assert that property P has domain D (respectively, range R), we are saying 
that whenever we use the property P, we can infer that the subject (respectively object) of that triple is 
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a member of the class D (respectively R). In short, domain and range tell us how P is to be used. Rather 
than signaling an error if P is used in a way that is apparently inconsistent with this declaration, RDFS 
will infer the necessary type information to bring P into compliance with its domain and range 
declarations. 

In RDFS, there is no way to assert that a particular individual is not a member of a particular class 
(contrast with OWL, Chapter 12). In fact, in RDFS, there is no notion of an incorrect or inconsistent 
inference. This means that, unlike the case of XML Schema, an RDF Schema will never proclaim an 
input as invalid; it will simply infer appropriate type information. In this way, RDFS behaves much 
more like a database schema, which declares what joins are possible but makes no statement about the 
validity of the joined data. 

Combination of domain and range with rdfs:subClassOf 
So far, we have seen inference patterns for some resources in the rdfs namespace: rdfs:domain, 
rdfs:range, rdfs:subPropertyOf, and rdfs:subClassOf. We have seen how the 
inference patterns work on sample triples. But the inference patterns can also interact with one another 
in interesting ways. We can already see this happening with the three patterns we have seen so far. We 
will show the interaction between rdfs:subClassOf and rdfs:domain by starting with an 
example. 

Suppose we have a very simple class tree that includes just two classes, Woman and Married-
Woman, in the usual subclass relation: 

:MarriedWoman rdfs:subClassOf :Woman. 

Suppose we have a property called hasMaidenName, whose domain is MarriedWoman: 

:hasMaidenName rdfs:domain :MarriedWoman. 

Figure 7.2 shows how this looks in diagram form. 
This unsurprising model holds some subtlety; let’s examine closely what it says. If we assert 

the hasMaidenName of anything (even if we don’t know that it is a Woman!),  the rule for  
rdfs:domain allows us to infer that it is a MarriedWoman. So, for instance, if someone 
asserts 

:Karen :hasMaidenName "Stephens". 

hasMaidenName 
rdfs:domain 

rdfs:subclassof 

MarriedWoman 

Woman 

FIGURE 7.2 

Domain and subClassOf triples for hasMaidenName. 



132 CHAPTER 7 RDF schema 

We can infer 

:Karen rdf:type :MarriedWoman. 

But we can make further inferences based on the rdfs:subClassOf relationship between the 
classes—namely, that 

:Karen rdf:type :Woman. 

There was nothing in this example that was particular to Karen; in fact, if we learn of any resource 
at all that it has a hasMaidenName, then we will infer that it is a Woman. That is, we know that for 
any resource X, if we have a triple of the form 

?X :hasMaidenName ?Y . 

we can infer 

?X rdf:type :Woman. 

But this is exactly the definition of rdfs:domain; that is, we have just seen that 

:hasMaidenName rdfs:domain :Woman. 

This is a different way to use the definition of rdfs:domain from what we have encountered so 
far. Until now, we applied the inference pattern whenever a triple using rdfs:domain was asserted 
or inferred. Now we are inferring an rdfs:domain triple whenever we can prove that the inference 
pattern holds. That is, we view the inference pattern as the definition of what it means for 
rdfs:domain to hold. 

We can generalize this result to form a new inference pattern as follows: 

CONSTRUCT {?P rdfs:domain ?C .} 
WHERE {?P rdfs:domain ?D . 
       ?D rdfs:subClassof ?C .} 

That is, whenever we specify the rdfs:domain of a property to be some class, we can also infer 
that the property also has any superclass as rdfs:domain. The same conclusion holds for 
rdfs:range, using the same argument. 

These simple definitions of domain and range are actually quite aggressive; we can draw 
conclusions about the type of any element based simply on its use in a single triple whenever we have 
domain or range information about the predicate. As we shall see in later examples, this can result in 
some surprising inferences. The definitions of domain and range in RDFS are the most common 
problem areas for modelers with experience in another data modeling paradigm. It is unusual to have 
such a strong interpretation for very common concepts. 
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The interaction between rdfs:domain and rdfs:subClassOf can seem particularly counterintu
itive when viewed in comparison to Object-Oriented Programming (OOP). One of the basic mechanisms for 
organizing code in OOP is called inheritance. There are a number of different schemes for defining inheritance, 
but they typically work by propagating information down the class tree; that is, something (e.g., a method or 
a variable) that is defined at one class is also available at its subclasses. 

When they first begin working with RDFS, there is a tendency for OO programmers to expect inheritance to work 
the same way. This tendency results from an “obvious” mapping from RDFS to OOP in which an rdfs:Class 
corresponds to a Class in OOP, a property in RDFS corresponds to a variable in OOP, and in which the assertion 

P rdfs:domain C. 
corresponds to the definition of the variable corresponding to P being defined at class C. From this “obvious” 
mapping comes an expectation that these definitions should inherit in the same way that variable definitions inherit 
in OOP. 

But in RDFS, there is no notion of inheritance per se; the only mechanism at work in RDFS is inference. The 
inference rule in RDFS that most closely corresponds to the OO notion of inheritance is the subclass propagation 
rule: that the members of a subclass are also members of a class. The ramifications of this rule for instance 
correspond to what one would expect from inheritance. Since an instance of a subclass is also an instance of the 
parent class, then anything we say about members of the parent class will necessarily hold for all instances of the 
subclass; this is consistent with usual notions of inheritance. 

The interaction between rdfs:domain and rdfs:subClassOf, on the other hand, is more prob
lematic. Using the “obvious” interpretation, we asserted that the variable hasMaidenName was defined at 
MarriedWoman and then inferred that it was defined at a class higher in the tree—namely, Woman. Seen from 
an OO point of view, this interaction seems like inheritance up the tree—in other words, just the opposite of what is 
normally expected of inheritance in OOP. 

The fallacy in this conclusion comes from the “obvious” mapping of rdfs:domain as defining a variable 
relative to a class. In the Semantic Web, because of the AAA slogan, a property can be used anywhere, and it must be 
independent of any class. The property hasMaidenName was, by design, always available for any resource in 
the universe (including members of the class Woman); the assertion or inference of rdfs:domain made no 
change in that respect. That is, it is never accurate in the Semantic Web to say that a property is “defined for 
a class.” A property is defined independently of any class, and the RDFS relations specify which inferences can be 
correctly made about it in particular contexts. 

RDFS MODELING COMBINATIONS AND PATTERNS 
The inference rules for RDFS are few in number and quite simple. Nevertheless, their effect can be 
quite subtle in the context of shared information in the Semantic Web. In this section, we outline 
a number of patterns of use of the basic RDFS features, illustrating each one with a simple example. 

Set intersection 

It is not uncommon for someone modeling in RDFS to ask whether some familiar notions from logic 
are available. “Can I model set intersection in RDFS?” is a common question. The technically correct 
answer to this question is simply “no.” There is no explicit modeling construct in RDFS for set 
intersection (or for set union). However, when someone wants to model intersections (or unions), they 
don’t always need to model them explicitly. They often only need certain particular inferences that are 
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supported by these logical relations. Sometimes these inferences are indeed available in RDFS through 
particular design patterns that combine the familiar RDFS primitives in specific ways. 

In the case of intersection in particular, one of the inferences someone might like to draw is that if 
a resource x is in C, then it is also in both A and B. Expressed formally, the relationship they are 
expressing is that C 4 A X B. This inference can be supported by making C a common subclass of both 
A and B, as follows: 

:C rdfs:subClassOf :A. 

:C rdfs:subClassOf :B. 


How does this support an intersection-like conclusion? From the inference rule governing 
rdfs:subClassOf, it is evident that from the triple 

?x rdf:type :C. 
We can infer 

?x rdf:type :B.

?x rdf:type :A. 


as desired. Notice that we can only draw the inferences in one direction; from membership in C, we can 
infer membership in A and B. But from membership in A and B, we cannot infer membership in C. That 
is, we cannot express A X B 4 C. This is the sense in which RDFS cannot actually express set 
intersection; it can only approximate it by supporting the inferencing in one direction. 

EXAMPLE Hospital Skills 

Suppose we are describing the staff at a hospital. There are a number of different jobs and people who fill 
them, including nurses, doctors, surgeons, administrators, orderlies, volunteers, and so on. A very specialized 
role in the hospital is the surgeon. Among the things we know about surgeons is that they are members of the 
hospital staff. They are also qualified physicians. Logically, we would say that Surgeon 4 Staff X 
Physician—that is, Surgeon is a subset of those people who are both staff members and physicians. 

Notice that we don’t want to say that every staff physician is a surgeon, so the set inclusion goes only one 
way. From this statement, we want to be able to infer that if Kildare is a Surgeon, then he is also a member of 
the staff, and he is a physician. If we say 

:Surgeon rdfs:subClassOf :Staff. 
:Surgeon rdfs:subClassOf :Physician. 
:Kildare rdf:type :Surgeon. 

then we can infer that 

:Kildare rdf:type :Staff. 
:Kildare rdf:type :Physician. 
We cannot make the inference the other way; that is, if we were to assert that Kildare is a Physician and 

member of the Staff, no RDFS rules are applicable, and no inferences are drawn. This is appropriate; consider 
the case in which Kildare is a psychiatrist. As such, he is both a member of the Staff and a Physician, but it is 
inappropriate to conclude that he must be a Surgeon. (OWL, Chapter 12, provides means for making it so that 
this conclusion would hold, but RDFS does not.) 
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Property intersection 

In RDFS, properties are treated in a way analogous to the treatment of classes, and all the same 
operations and limitations apply. Even though it might seem unfamiliar to think of a property as a set, 
we can still use the set combination terms (intersection, union) to describe the functionality supported 
for properties. As was the case for Class intersections and unions, RDFS cannot express these things 
exactly, but it is possible to approximate these notions with judicious use of subPropertyOf. 

One of the inferences we can express using subPropertyOf is that one property is an intersection 
of two others, P 4 R X S. That is, if we know that two resources x and y are related by property P, 

?x :P ?y . 
we want to be able to infer both 

?x :R ?y .

?x :S ?y. 


EXAMPLE Patients in Hospital Rooms 

Suppose we are describing patients in a hospital. When a patient is assigned to a particular room, we can infer 
a number of things about the patient: We know that they are on the duty roster for that room and that their 
insurance will be billed for that room. How do we express that both of these inferences come from the single 
assignment of a patient to a room? 

:lodgedIn rdfs:subPropertyOf :billedFor. 

:logdedIn rdfs:subPropertyOf :assignedTo. 


Now if patient Marcus is lodgedIn Room101, 

:Marcus :lodgedIn :Room101. 

we can infer the billing and duty roster properties as well: 

:Marcus :billedFor :Room101. 

:Marcus :assignedTo :Room101. 


Notice that we cannot make the inference in the other direction; that is, if we were to assert that Marcus is 
billedFor Room101 and assignedTo Room101, no RDFS rules are applicable, and no inferences 
can be drawn. 

SET UNION 
Using a pattern similar to the one we used for set intersection, we can also express certain things about 
set unions in RDFS. In particular, we can express that A W B 4 C. We do this by making C a common 
superclass of A and B, thus: 

:A rdfs:subClassOf :C. 

:B rdfs:subClassOf :C. 
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Any instance ?x that is a member of either A or B is inferred to be also a member of C; that is, 

?x rdf:type :A. 
or 

?x rdf:type :B. 
implies 

?x rdf:type :C. 

EXAMPLE All Stars 

In determining the candidates for a season’s All Stars, a league’s rules could state that they will select among 
all the players who have been named Most Valuable Player (MVP), as well as among those who have been 
top scorers (TopScorer) in their league. We can model this in RDFS by making AllStarCandidate 
a common superclass of MVP and TopScorer as follows: 

:MVP rdfs:subClassOf :AllStarCandidate. 

:TopScorer rdfs:subClassOf :AllStarCandidate. 


Now, if we know that Reilly was named MVP and Kaneda was a TopScorer: 

:Reilly rdf:type :MVP. 

:Kaneda rdf:type :TopScorer. 


then we can infer that both of them are AllStarCandidates 

:Reilly rdf:type :AllStarCandidate. 

:Kaneda rdf:type :AllStarCandidate. 


as desired. Notice that as in the case of intersection, we can only draw the inference in one direction—that is, 
we can infer that AllStarCandidate J MVP W TopScorer, but not the other way around. 

In summary, we can use rdfs:subClassOf to represent statements about intersection and union as 
follows: 

■ C⊆ A B (by making C rdfs:subClassOf both A and B) 

■ C⊇ A B (by making both A and B rdfs:subClassOf C). 

Property union 

One can use rdfs:subPropertyOf to combine properties from different sources in a way that is 
analogous to the way in which rdfs:subClassOf can be used to combine classes as a union. If two 
different sources use properties P and Q in similar ways, then a single amalgamated property R can be 
defined with rdfs:subPropertyOf as follows: 

:P rdfs:subPropertyOf :R . 

:Q rdfs:subPropertyOf :R . 
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For any pair of resources x and y related by P or by Q 

?x :P ?y . 

or 

?x :Q ?y . 

we can infer that 

?x :R ?y . 

EXAMPLE Merging Library Records 

Suppose one library has a table in which it keeps lists of patrons and the books they have borrowed, it 
uses a property called borrows to indicate that a patron has borrowed a book. Another library uses 
checkedOut to indicate the same relationship. 

Just as in the case of classes, there are a number of ways to handle this situation. If we are sure that the two 
properties have exactly the same meaning, we can make one property equivalent to another with a creative 
use of rdfs:subPropertyOf as follows: 

Library1:borrows rdfs:subPropertyOf Library2:checkedOut. 
Library2:checkedOut rdfs:subPropertyOf Library1:borrows. 

Then any relationship that is expressed by one library will be inferred to hold for the other. In such a case, 
both properties are essentially equivalent. 

If we aren’t sure that the two properties are used in exactly the same way, but we have an application that 
we do know wants to treat them as the same, then we use the union pattern to create a common superproperty 
of both, as follows: 

Library1:borrows rdfs:subPropertyOf :hasPossession. 
Library2:checkedOut rdfs:subPropertyOf :hasPossession. 

Using these triples, all patrons and books from both libraries will be related by the property has-
Possession, thus merging information from the two sources. 

Property transfer 

When modeling the relationship between information that comes from multiple sources, a common 
requirement is to state that if two entities are related by some relationship in one source, the same 
entities should be related by a corresponding relationship in the other source. This can be accom
plished quite easily in RDFS with a single triple. That is, if we have a property P in one source and 
property Q in another source, and we wish to state that all uses of P should be considered as uses of Q, 
we can simply assert that 

:P rdfs:subPropertyOf :Q. 
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Now, if we have any triple of the form 

?x :P ?y . 

then we can infer that 

?x :Q ?y . 

It may seem strange to have a design pattern that consists of a single triple, but this use of 
rdfs:subPropertyOf is so pervasive that it really merits being called out as a pattern in its own 
right. 

EXAMPLE Terminology Reconciliation 

There are a growing number of standard information representation schemes being published in RDFS 
form. Information that has been developed in advance of these standards (or in a silo away from them) 
needs to be retargeted to be compliant with the standard. This process can involve a costly and error-prone 
search-and-replace process through all the data sources. When the data are represented in RDF, there is 
often an easier option available, using the Property Transfer pattern. 

As a particular example, the Dublin Core is a set of standard attributes used to describe bibliographic 
information for library systems. One of the most frequently used Dublin Core terms is dc:creator, 
which indicates an individual (person or organization) that is responsible for having created a published 
artifact. 

Suppose that a particular legacy bibliography system uses the term author to denote the person who 
created a book. This has worked fine for this system because it was not intended to classify books that were 
created without an author, such as compilations (which instead have an editor). 

How can we make this data conformant to the Dublin Core without performing a costly and error-prone 
process to copy-and-replace author with dc:creator? This can be achieved in RDFS with the single 
triple. 

:author rdfs:subPropertyOf dc:creator. 

Now any individual for which the author property has been defined will now have the same value defined 
for the (standard) dc:creator property. The work is done by the RDFS inference engine instead of by an 
off-line editing process. In particular, this means that legacy applications that are using the author property 
can continue to operate without modification, while newer, Dublin Core–compliant applications can use the 
inferred data to operate in a standard fashion. 

CHALLENGES 
Each of the preceding patterns demonstrates the utility of combining one or more RDFS constructs to 
achieve a particular modeling goal. In this section, we outline a number of modeling scenarios that can 
be addressed with these patterns and show how they can be applied to address these challenges. 
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Term reconciliation 

One of the most common challenges in terminology management is the resolution of terms used by 
different agents who want to use their descriptions together in a single federated application. For 
example, suppose that one agent uses the word analyst, and another uses the word researcher. There 
are a number of relationships that can hold between these two usages; we will examine a number of 
common relations as a series of challenges. 

CHALLENGE 5 
How do we then enforce the assertion that any member of the one class will automatically be treated as a member 
of the other? There are a number of approaches to this situation, depending on the details of the situation. All of 
them can be implemented using the patterns we have identified so far. 

Solution 
Let’s first take the case in which we determine that a particular term in one vocabulary is fully subsumed by a term 
in another. For example, we determine that a researcher is actually a special case of an analyst. How 
can we represent this fact in RDFS? 

First, we examine the inferences we want RDFS to draw, given this information. If a researcher is a special case 
of an analyst, then all researchers are also analysts. We can express this sort of “IF/THEN” relationship with 
a single rdfs:subClassOf relationship, thus: 

:Researcher rdfs:subClassOf :Analyst. 
Now any resource that is a Researcher, such as 

:Wenger rdf:type :Researcher. 
will be inferred to be an Analyst as well: 

:Wenger rdf:type :Analyst. 

If the relationship happens to go the other way around (that is, all analysts are researchers), the 
rdfs:subClassOf triple can be reversed accordingly. 

CHALLENGE 6 
What if the relationship is more subtle? Suppose there is considerable semantic overlap between the two concepts 
analyst and researcher, but neither concept is defined in a sharp, formal way. It seems that there could 
be some analysts who are not researchers, and vice versa. Nevertheless, for the purposes of the federated appli
cation, we want to treat these two entities as the same. What can we do? 

Solution 
In such a case, we can use the union pattern outlined previously. We can define a new term (for the federated 
domain) that is not defined in either of the sources, such as investigator. Then we effectively define 
investigator as the union of researcher and analyst, using the common superproperty idiom: 

:Analyst rdfs:subClassOf :Investigator. 

:Researcher rdfs:subClassOf :Investigator. 
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Described this way, we have made no commitment to a direct relationship between analyst and 
researcher, but we have provided a federated handle for speaking of the general class of these 
entities. 

CHALLENGE 7 
At the other extreme, suppose that we determine that the two classes really are identical in every way—that these 
two terms really are just two words for the same thing. In terms of inference, we would like any member of one class 
to be a member of the other, and vice versa. 

Solution 
RDFS does not provide a primitive statement of class equivalence, but the same result can be achieved with 
creative use of rdfs:subClassOf: 

:Analyst rdfs:subClassOf :Researcher. 

:Researcher rdfs:subClassOf :Analyst. 


This may seem a bit paradoxical, especially to someone who is accustomed to object-oriented programming, 
but the conclusions based on RDFS inferencing are clear. For example, if we know that 

:Reilly rdf:type :Researcher. 

:Kaneda rdf:type :Analyst. 


then we can infer the other statements: 

:Reilly rdf:type :Analyst. 

:Kaneda rdf:type :Researcher. 


In effect, the two rdfs:subClassOf triples together (or, indeed, any cycle of rdfs:sub-
ClassOf triples) assert the equivalence of the two classes. 

Instance-level data integration 

Suppose you have contributions to a single question coming from multiple sources. In the case 
where the question determines which instances are of interest, there is a simple way to inte
grate them using rdfs:subClassOf. We will give an example from a simplified military 
domain. 

A Command-and-Control Mission Planner wants to determine where ordnance can be targeted or, 
more specifically, where it cannot be targeted. There are a number of different sources of information 
that contribute to this decision. One source provides a list of targets and their types, some of which 
must never be targeted (civilian facilities like churches, schools, and hospitals). Another source 
provides descriptions of airspaces, some of which are off-limits (e.g., politically defined no-fly 
zones). A target is determined to be off-limits if it is excluded on the grounds of either of these data 
sources. 
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CHALLENGE 8 
Define a single class whose contents will include all the individuals from all of these data sources (and any new 
ones that are subsequently discovered). 

Solution 
The solution is to use the union construction to join together the two information sources into a single, federated 
class. 

fc:CivilianFacility rdfs:subClassOf cc:OffLimitsTarget. 

space:NoFlyZone rdfs:subClassOf cc:OffLimitsTarget. 


Now any instance from either the facility descriptions or the airspace descriptions that have been identified as 
restricted will be inferred to have cc:OffLimitsTarget. 

Readable labels with rdfs:label 
Resources on the Semantic Web are specified by URIs, which provide a globally scoped unique 
identifier for the resource. But URIs are not particularly attractive or meaningful to people. RDFS 
provides a built-in property, rdfs:label, whose intended use is to provide a printable name for any 
resource. This provides a standard way for presentation engines (e.g., web pages or desktop appli
cations) to display the print name of a resource. 

Depending on the source of the RDF data that are being displayed, there might be another source 
for human-readable names for any resource. One solution would be to change the display agent to use 
a particular display property for each resource. A simpler solution can be done entirely using the 
semantics of RDFS, through a combination of the property union and property transfer patterns. 

Suppose we have imported RDF information from an external form, such as a database or 
spreadsheet, there are two classes of individuals defined by the import: Person and Movie. For  
Person, a property called personName is defined that gives the name by which that person is 
professionally known. For Movie, the property called movieTitle gives the title under which the 
movie was released. Some sample data from this import might be as follows: 

:Person1 :personName "James Dean". 

:Person2 :personName "Elizabeth Taylor". 

:Person3 :personName "Rock Hudson". 

:Movie1 :movieTitle "Rebel Without a Cause". 

:Movie2 :movieTitle "Giant". 

:Movie3 :movieTitle "East of Eden". 


CHALLENGE 9 
We would like to use a generic display mechanism, which uses the standard property rdfs:label to display 
information about these people and movies. How can we use RDFS to achieve this? 

Solution 
The answer is to define each of these properties as subproperties of rdfs:label as follows: 

:personName rdfs:subPropertyOf rdfs:label. 

:movieTitle rdfs:subPropertyOf rdfs:label. 
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When the presentation engine queries for rdfs:label of any resource, by the rules of RDFS inferencing, it 
will find the value of personName or movieTitle, depending on which one is defined for a particular 
individual. There is no need for the presentation engine to include any code that understands the (domain-specific) 
distinction between Person and Movie. 

Data typing based on use 

Suppose a shipping company has a fleet of vessels that it manages. The fleet includes new vessels that 
are under construction, vessels that are being repaired, vessels that are currently in service, and vessels 
that have been retired from service. The information that the company keeps about its ships might 
include the information in Table 7.1. 

The information in the table can be expressed in RDF triples in the manner outlined in Chapter 3. 
Each row corresponds to a resource of type ship:Vessel; triples express the information that 
appears in the body of the table, such as the following: 

ship:Berengaria ship:maidenVoyage "June 16, 1913". 

ship:QEII ship:nextDeparture "Mar 4, 2010". 


In addition to the class ship:Vessel, we can have subclasses that correspond to the status of the 
ships, such as the following: 

ship:DeployedVessel rdfs:subClassOf ship:Vessel. 

ship:InServiceVessel rdfs:subClassOf ship:Vessel. 

ship:OutOfServiceVessel rdfs:subClassOf ship:Vessel. 


A DeployedVessel is one that has been deployed sometime in its lifetime; an 
InServiceVessel is one that is currently in service; and an OutOfServiceVessel is one that 
is currently out of service (for any reason, including retired ships and ships that have not been 
deployed). 

Table 7.1 Ships 

Berengaria June 16, 1913 – 1938 – Johnson 

QEII May 2, 1969 March 4, 
2010 

– – Warwick 

Titanic April 10, 1912 – – April 14, 1912 Smith 

Constitution July 22, 1798 January 
12, 2009 

– – Preble 

Name Maiden Voyage 
Next 
Departure 

Decommission 
Date 

Destruction 
Date Commander 
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CHALLENGE 10 
How can we automatically classify each vessel into more specific subclasses, depending on the information 
we have about it in Table 7.1? For instance, if a vessel has had a maiden voyage, then it is 
a ship:DeployedVessel. If its next departure is set, then it is an ship:InServiceVessel. If  
it has a decommission date or a destruction date, then it is an ship:OutOfServiceVessel. 

Solution 
We can enforce these inferences using rdfs:domain as follows: 

ship:maidenVoyage rdfs:domain ship:DeployedVessel. 

ship:nextDeparture rdfs:domain ship:InServiceVessel. 

ship:decommissionedDate rdfs:domain ship:OutOfServiceVessel. 

ship:destructionDate rdfs:domain ship:OutOfServiceVessel. 


The whole structure is shown in Figure 7.3. Vessel has three subclasses: DeployedVessel, 
InServiceVessel, and OutOfServiceVessel. Each of these is in the domain of one or 
more of the properties maidenVoyage, nextDeparture, decommissionedDate, and 
destructionDate, as shown in the preceding triples and in Figure 6.3. Four instances are 
shown; maidenVoyage is specified for all four of them, so all of them have been classified 
as DeployedVessel. QEII and Constitution have nextDeparture dates specified, so 
these two are classified as InServiceVessel. The remaining two vessels, Titanic and 
Berengaria, have specified destructionDate and decommissionedDate, respectively, 
and thus are classified as OutOfServiceVessel. 

CHALLENGE 11 
All of these inferences concern the subject of the rows, that is, the vessels themselves. It is also possible to draw 
inferences about the entities in the other table cells. 

How can we express the fact that the commander of a ship has the rank of Captain? 

Solution 
We express ranks as classes, as follows: 

ship:Captain rdfs:subClassOf ship:Officer. 

ship:Commander rdfs:subClassOf ship:Officer. 

ship:LieutenantCommander rdfs:subClassOf ship:Officer. 

ship:Lieutenant rdfs:subClassOf ship:Officer. ship:Ensign 

rdfs:subClassOf ship:Officer. 


Now we can express the fact that a ship’s commander has rank Captain with rdfs:range, as follows: 

ship:hasCommander rdfs:range ship:Captain. 
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maidenVoyage 

nextDeparture 

destructionDate 

decommissionedData 

rdfs:domain 

rdfs:subClassOf 
rdfs:subClassOf 

rdfs:subClassOf 

rdfs:domain 

rdf:type 

rdf:typerdf:type 

rdf:type 

rdf:type 

rdf:type 

rdf:type 

rdf:type 

rdfs:domain 

rdfs:domain 

InServiceVessel 

DeployedVesselVessel 

outOfServiceVessel 

maidenVoyage = 1969-05-02 
nextDeparture = 2010-03-04 

maidenVoyage = 1798-07-22 
nextDeparture = 2009-01-12 

destructionDate = 1912-04-14 
maidenVoyage = 1912-04-10 

decommissionedDate = 1938-01... 
maidenVoyage = 1913-06-16 

FIGURE 7.3 

Inferring classes of vessels from the information known about them. 

From the information in Table 7.1, we can infer that all of Johnson, Warwick, Smith, and 
Preble are members of the class ship:Captain. These inferences, as well as the triples that led 
to them, can be seen in Figure 7.4. 

Filtering undefined data 

A related challenge is to sort out individuals based on the information that is defined for them. The set 
of individuals for which a particular value is defined should be made available for future processing; 
those for which it is undefined should not be processed. 

CHALLENGE 12 
In the preceding example, the set of vessels for which nextDeparture is defined could be used as input to 
a scheduling system that plans group tours. Ships for which no nextDeparture is known should not be 
considered. 
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Officer 

Captain 

rdfs:subClassOf 

rdfs:range 

hasCommander hasCommander hasCommander hasCommander 

Warwick Preble Smith Johnson 

hasCommander 

rdf:typerdf:typerdf:typerdf:type 

FIGURE 7.4 

Inferring that the commanders of the ships have rank “Captain.” 

Solution 
It is easy to define the set of vessels that have nextDeparture specified by using rdfs:domain. First, 
define a class of DepartingVessels that will have these vessels as its members. Then define this to be the 
domain of nextDeparture: 

ship:DepartingVessel rdf:type rdfs:Class. 

ship:nextDeparture rdfs:domain ship:DepartingVessel. 


From Table 7.1, only the Constitution and the QEII are members of the class 
ship:DepartingVessels and can be used by a scheduling program (see Figure 7.5). 

RDFS and knowledge discovery 

The use of rdfs:domain and rdfs:range differs dramatically from similar notions in other 
modeling paradigms. Because of the inference-based semantics of RDFS (and OWL), domains and 
ranges are not used to validate information (as is the case, for example, in OO modeling and XML) but 
instead are used to determine new information based on old information. We have just seen how this 
unique aspect of rdfs:domain and rdfs:range support particular uses of filtering and classi
fying information. 

These definitions are among the most difficult for beginning Semantic Web modelers to come to 
terms with. It is common for beginning modelers to find these tools clumsy and difficult to use. This 
difficulty can be ameliorated to some extent by understanding that RDFS in general, and domain and 
range in particular, are best understood as tools for knowledge discovery rather than knowledge 
description. On the Semantic Web, we don’t know in advance how information from somewhere else 
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Vessel 

DepartingVessel 
rdfs:label = Departingvessel 

rdf:typerdf:type 

rdfs:domain 

rdfs:subClassOf
nextDeparture 

maidenVoyage = 1798-07-22 
nextDeparture = 2009-01-12 

maidenVoyage = 1969-05-02 
nextDeparture = 2010-03-04 

FIGURE 7.5 

Ships with a nextDeparture specified are DepartingVessels. 

on the Web should be interpreted in a new context. The RDFS definitions of domain and range 

allow us to discover new things about our data based on its use. 
What does this mean for the skillful use of domain and range in RDFS? They are not to be used 

lightly—that is, merely as a way to bundle together several properties around a class. Filtering results 
such as those shown in these challenge problems are the result of the use of domain and range. 
Proper use of domain and range must take these results into account. Recommended use of 
domain and range goes one step further; its use is in one of these patterns, where some particular 
knowledge filtering or discovery pattern is intended. When used in this way (e.g., using domain to 
describe which of the ships are departing), it is guaranteed that the meaning of domain and range 

will be appropriate even in a web setting. 

MODELING WITH DOMAINS AND RANGES 
Although RDFS has considerable applicability in data amalgamation and the simplicity of its small 
number of axioms makes it compact and easy to implement, there are some confusions that arise even 
in very simple modeling situations when using RDFS. 

Multiple domains/ranges 

In our shipping example, we had two definitions for the nextDeparture domain: 

ship:nextDeparture rdfs:domain DepartingVessel. 

ship:nextDeparture rdfs:domain InServiceVessel. 


What is the interpretation of these two statements? Is the nextDeparture domain Departing-
Vessel, InServiceVessel, or both? What does this sort of construction mean? 
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The right way to understand what a statement or set of statements means in RDFS is to understand 
what inferences can be drawn from them. Let’s consider the case of the QEII, for which we have the 
following asserted triples: 

ship:QEII ship:maidenVoyage "May 2, 1969". 

ship:QEII ship:nextDeparture "Mar 4, 2010". 

ship:QEII ship:hasCommander Warwick. 


The rules of inference for rdfs:domain allow us to draw the following conclusions: 

ship:QEII rdf:type ship:DepartingVessel. 

ship:QEII rdf:type ship:InServiceVessel.


Each of these conclusions is drawn from the definition of rdfs:domain, as applied, respectively, 
to each of the domain declarations just given. This behavior is not a result of a discussion of “what will 
happen when there are multiple domain statements?” but rather a simple logical conclusion based on 
the definition of rdfs:domain. 

How can we interpret these results? Any vessel for which a nextDeparture is specified will be 
inferred to be a member (i.e., rdf:type) of both Departing Vessel and InServiceVessel 

classes. Effectively, any such vessel will be inferred to be in the intersection of the two classes 
specified in the domain statements. This is something that many people find counterintuitive, even 
though it is “correct” in RDFS. 

In object-oriented modeling, when one asserts that a property (or field, or variable, or slot) is 
associated with a class (as is done by rdfs:domain), the intuition is that “it is now permissible to 
use this property to describe members of this class.” If there are two such statements, then the intuitive 
interpretation is that “it is now permissible to use this property with members of either of these 
classes.” Effectively, multiple domain declarations are interpreted in the sense of set union: You may 
now use this property to describe any item in the union of the two specified domains. For someone 
coming in with this sort of expectation, the intersection behavior of RDFS can be something of 
a surprise. 

This interaction makes it necessary to exercise some care when modeling information with the 
expectation that it will be merged with other information. Let’s suppose we have another modeling 
context in which a company is managing a team of traveling salespeople. Each salesperson has 
a schedule of business trips. Some of the triples that define this model are as follows: 

sales:SalesPerson rdfs:subClassOf foaf:Person. 

sales:sells rdfs:domain sales:SalesPerson. 

sales:sells rdfs:range sales:ProductLine. 

sales:nextDeparture rdfs:domain sales:SalesPerson. 


That is, we have a sales force that covers certain ProductLines; each member travels on 
a regular basis, and it is useful for us to track the date of the next departure of any particular 
SalesPerson. 

Suppose we were to merge the information for our sales force management with the schedules of 
the ocean liners. This merge becomes interesting if we map some of the items in one model to items 
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in another. An obvious candidate for such a mapping is between sales:nextDeparture and 
ship:nextDeparture. Both refer to dates, and the intuition is that they specify the next departure 
date of something or someone. So a simple connection to make between the two models would be to 
link these two properties, such as the following: 

sales:nextDeparture rdfs:subPropertyOf ship:nextDeparture. 

ship:nextDeparture rdfs:subPropertyOf sales:nextDeparture. 

using the mutual subPropertyOf pattern. The intuition here is that the two uses of 

nextDeparture, one for ships and the other for sales, are in fact the same. 
But wait! Let’s see what inferences are drawn from this merger. Suppose we have a triple that 

describes a member of the sales force: 

sales:Johannes sales:nextDeparture "May 31, 2008". 

and we already have the triple about the QEII: 

ship:QEII ship:nextDeparture "Mar 4, 2010". 

What inferences can we draw from these two triples? Using rdfs:subPropertyOf inferences 
first, then rdfs:domain inferences, and finally using the rdfs: subClassOf triple with 
foaf:Person, we get the following inferred triples: 

sales:Johannes ship:nextDeparture "May 31, 2008". 

ship:QEII sales:nextDeparture "Mar 4, 2010". 

sales:Johannes rdf:type ship:DepartingVessel. 

ship:QEII rdf:type sales:SalesPerson. 

ship:QEII rdf:type foaf:Person.


These inferences start off innocently enough, but they become more and more counterintuitive as 
they go on, and eventually (when the QEII is classified as a foaf:Person) become completely 
outrageous (or perhaps dangerously misleading, especially given that the Monarch herself might 
actually be a foaf:Person, causing the inferences to confuse the Monarch with the ship named 
after her). The asserted triples, and the inferences that can be drawn from them, are shown in 
Figure 7.6. 

It is easy to lay blame for this unfortunate behavior at the feet of the definition of 
rdfs:domain, but to do so would throw out the baby with the bathwater. The real issue in 
this example is that we have made a modeling error. The error resulted from the overzealous urge 
to jump to the conclusion that two properties should be mapped so closely to each other. The 
ramifications of using subPropertyOf (or any other RDFS construct) can be subtle and 
far-reaching. 

In particular, when each of these models stated its respective domain and range statements about 
sales:nextDeparture and ship:nextDeparture, respectively, it was saying, “Whenever 
you see any individual described by sales:nextDeparture (resp. ship:nextDeparture), 
that individual is known to be of type sales:SalesPerson (resp. ship:DepartingVessel).” 
This is quite a strong statement, and it should be treated as such. In particular, it would be surprising if 
two properties defined so specifically would not have extreme ramifications when merged. 
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Ships:nextDepature Sales:nextDeparture 

Ships:DepartingVessel 
Sales:SalesPerson 

foaf:Person 

Sales:Johannes 

Ships:QEII 

rdf:typerdf:type 

rdf:type 

rdf:type 

rdfs:domain rdfs:subClassOf 

rdfs:subPropertyOf 

rdfs:domain 

FIGURE 7.6 

Inferences resulting from merging two notions of nextDeparture. 

So what is the solution? Should we refrain from merging properties? This is hardly a solution in 
the spirit of the Semantic Web. Should we avoid making strong statements about properties? This 
will not help us to make useful models. Should we change the RDFS standard so we can’t make these 
statements? This is a bit extreme, but as we shall see, OWL does provide some more subtle 
constructs for property definitions that allow for finer-grained modeling. Rather, the solution lies in 
understanding the source of the modeling error that is at the heart of this example: We should refrain 
from merging things, like the two notions of nextDeparture, whose meanings have important 
differences. 

Using the idioms and patterns of RDFS shown in this chapter, there are more things we can do, 
depending on our motivation for the merger. In particular, we can still merge these two properties but 
without making such a strong statement about their equivalence. 

If, for instance, we just want to merge the two notions of nextDeparture to drive a calendar 
application that shows all the departure dates for the sales force and the ocean liner fleet, then what we 
really want is a single property that will provide us the information we need (as we did in the property 
union pattern). Rather than mapping the properties from one domain to another, instead we map both 
properties to a third, domain-neutral property, thus: 

ship:nextDeparture rdfs:subPropertyOf cal:nextDeparture. 

sales:nextDeparture rdfs:subPropertyOf cal:nextDeparture. 


Notice that the amalgamating property cal:nextDeparture doesn’t need any domain infor
mation at all. After all, we don’t need to make any (further) inferences about the types of the entities 
that it is used to describe. Now we can infer that 

sales:Johannes cal:nextDeparture "May 31, 2008". 

ship:QEII cal:nextDeparture "Mar 4, 2010".
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A single calendar display, sorted by the property cal:nextDeparture, will show these two dates, 
but no further inference can be made. In particular, no inferences will be made about considering the 
QEII as a member of the sales force or Johannes as a sailing vessel. 

What can we take from this example into our general Semantic Web modeling practice? Even with 
a small number of primitives, RDFS provides considerable subtlety for modeling relationships 
between different data sources. But with this power comes the ability to make subtle and misleading 
errors. The way to understand the meaning of modeling connections is by tracing the inferences. The 
ramifications of any modeling mapping can be worked through by following the simple inference rules 
of RDFS. 

NONMODELING PROPERTIES IN RDFS 
In addition to the properties described so far, RDFS also provides a handful of properties that 
have no defined inference semantics—that is, there are no inferences that derive from them. We 
already saw one example of such a property, rdfs:label. No inferences are drawn from 
rdfs:label, so in that sense it has no semantics. Nevertheless, it does by convention have an 
operational semantics in that it describes the ways in which display agents interact with the 
model. 

Cross-referencing files: rdfs:seeAlso 
Every resource in a Semantic Web model is specified by a URI that can also be dereferenced and used 
as a URL. In the case where this URL resolves to a real document, this provides a place where defining 
information about a resource can be stored. 

In some contexts, it is useful to include some supplementary information about a resource for its 
use in a certain context. This is usually meant to be other documents that might help explain the 
entity—for example, we might include a pointer to a Wikipedia entry, or a pointer to related data (e.g., 
if the resource corresponds to a table from a database, the supplementary information could be the 
other tables from the same database) or even to another RDF or RDFS file that contains linked 
information. For such cases, rdfs:seeAlso provides a way to specify the web location of this 
supplementary information (i.e. it should be a URI, not a human-readable property). rdfs:seeAlso 

has no formal semantics, so the precise behavior of any processor when it encounters 
rdfs:seeAlso is not specified. A common behavior of tools that encounter rdfs:seeAlso links 
is to expose those links in a browser or application interface through which the RDFS document is 
being used. 

Organizing vocabularies: rdfs:isDefinedBy 
Just as rdfs:seeAlso can provide supplementary information about a resource, 
rdfs:isDefinedBy provides a link to the primary source of information about a resource. This 
allows modelers to specify where the definitional description of a resource can be found. 
rdfs:isDefinedBy is defined in RDF to be a rdfs:subPropertyOf of rdfs:seeAlso. 
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Model documentation: rdfs:comment 
Just as in any computer language (modeling languages, markup languages, or programming 
languages), sometimes it is helpful if a document author can leave natural language comments about 
a model for future readers to see. Since RDFS is implemented entirely in RDF, the comment feature is 
also implemented in RDF. To make a comment on some part of a model, simply assert a triple using the 
property rdfs:comment as a predicate. For example: 

sales:nextDeparture rdfs:comment "This indicates the next

planned departure date for a salesperson." 


SUMMARY 
RDFS is the schema language for RDF; it describes constructs for types of objects (Classes), 
relating types to one another (subClasses), properties that describe objects (Properties), and 
relationships between them (subProperty). The Class system in RDFS includes a simple and 
elegant notion of inheritance, based on set inclusion; one class is a subclass of another means that 
instances of the one are also instances of the other. 

The RDFS language benefits from the distributed nature of RDF by being expressed in RDF itself. 
All schema information (classes, subclasses, subproperties, domain, range, etc.) is expressed in RDF 
triples. In particular, this makes schema information, as well as data, subject to the AAA slogan: 
Anyone can say Anything about Any topic—even about the schema. 

The semantics of RDFS is expressed through the mechanism of inferencing; that is, the meaning of 
any construct in RDFS is given by the inferences that can be inferred from it. For example, it is this 
simple but powerful mechanism for specifying semantics that allows for the short and elegant defi
nition of subclass and subproperty. 

RDFS also includes the constructs rdfs:domain and rdfs:range to describe the relationship 
between properties and classes. The meanings of these constructs are given by very simple rules, but 
these rules have subtle and far-reaching impact. The rules may be simple, but the statements are 
powerful. 

Even with its small set of constructs and simple rules, RDFS allows for the resolution of a wide 
variety of integration issues. Whenever you might think of doing a global find-and-replace in a set of 
structured data, consider using rdfs:subPropertyOf or rdfs:subClassOf instead. It may 
seem trivial to say that one should merge only entities from multiple sources that don’t have important 
differences. Using the inference mechanism of RDFS, we can determine just what happens when we 
do merge things and judge whether the results are desirable or dangerous. Although RDFS does not 
provide logical primitives like union and intersection, it is often possible to achieve desired inferences 
by using specific patterns of subClassOf and subPropertyOf. RDFS provides a framework 
through which information can flow; we can think of subClassOf and subPropertyOf as the IF/ 
THEN facility of semantic modeling. This utility persists even when we move on to modeling in OWL. 
In fact, using subClassOf in this way provides a cornerstone of OWL modeling. 

When used in careful combination, the constructs of RDFS are particularly effective at defining 
how differently structured information can be used together in a uniform way. 
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Fundamental concepts 

The following fundamental concepts were introduced in this chapter. 

rdfs:subClassOf—Relation between classes, that the members of one class are included in

the members of the other.

rdfs:subPropertyOf—Relation between properties, that the pairs related by one property

are included in the other.

rdfs:domain and rdfs:range—Description of a property that determines class membership

of individuals related by that property.

Logical operations (Union, Intersection, etc.) in RDFS—RDFS constructs can be used to

simulate certain logical combinations of sets and properties.
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RDFS provides a very limited set of inference capabilities that, as we have seen, have considerable 
utility in a Semantic Web setting for merging information from multiple sources. In this chapter, we 
take the first step toward the Web Ontology Language, OWL, in which more elaborate constraints on 
how information is to be merged can be specified. We have selected a particular set of OWL constructs 
to present at this stage. This set was selected to satisfy a number of goals: 

�	 Pedagogically, these constructs constitute a gentle addition to the constructs that are already 
familiar from RDFS, increasing the power of the language without making a large conceptual 
leap from RDFS. 

�	 Practically, we have found that this set of OWL constructs has considerable utility in the 
information integration projects we have done. In fact, it is much easier to find and describe 
case studies using RDFS-Plus this set of OWL constructs than it is to find case studies that use 
RDFS by itself. 

�	 Computationally, this subset of OWL can be implemented using a wide variety of inferencing 
technologies, lessening the dependency between the Semantic Web and any particular technology. 

153 
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For these reasons, we feel that this particular subset will have value beyond the pedagogical value 
in this book. We call this subset of OWL RDFS-Plus, because we see a trend among vendors of 
Semantic Web tools and Web applications designers for determining a subset of OWL that is at the 
same time useful and can be implemented quickly. We have identified this particular subset via an 
informal poll of cutting-edge vendors, and from our own experience with early adopters of Semantic 
Web technology. 

Just as was the case for RDFS, RDFS-Plus is expressed entirely in RDF. The only distinction is 
that there are a number of resources, all in the namespace owl. The meaning of these resources is 
specified, as before, by the rules that govern the inferences that can be made from them. As we did 
for RDFS, we will specify the rules that govern the inferences using SPARQL CONSTRUCT 
queries. 

In the case of RDFS, we saw how the actions of an inference engine could be used to combine 
various features of the schema language in novel ways. This trend will continue for RDFS-Plus, but as 
you might expect, the more constructs we have to begin with, the more opportunity we have for useful 
and novel combinations. 

INVERSE 
The names of many of the OWL constructs come from corresponding names in mathematics. Despite 
their mathematical names, they also have a more common, everyday interpretation. The idea 
owl:inverseOf is a prime example; if a relationship—say, hasParent—is interesting enough to 
mention in a model, then it’s a good bet that another relationship—say, hasChild—is also interesting. 
Because of the evocative names hasParent and hasChild, you can guess the relationship between 
them, but of course the computer can’t. The OWL construct owl:inverseOf makes the relationship 
between hasParent and hasChild explicit, and describes precisely what it means. 

In mathematics, the inverse of a function f (usually written as f–1) is the function that satisfies the 
property that if f(x) ¼ y, then f–1(y) ¼ x. Similarly in OWL, the inverse of a property is another property 
that reverses its direction. 

To be specific, we look at the meaning of owl:inverseOf. In OWL, as in RDFS, the meaning of 
any construct is given by the inferences that can be drawn from it. We can express the rule for 
owl:inverseOf in SPARQL as follows: 

CONSTRUCT {?y ?q ?x}
WHERE {?p owl:inverseOf ?q .

?x ?p ?y . } 
In the examples in the book, we have already seen a number of possibilities for inverses, though we 

haven’t used them so far. In our Shakespeare examples, we have the triples 

lit:Shakespeare lit:wrote lit:Macbeth.

lit:Macbeth lit:setIn geo:Scotland. 

If, in addition to these triples, we also state some inverses, such as: 

lit:wrote owl:inverseOf lit:writtenBy.

lit:settingFor owl:inverseOf lit:setIn. 
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then we can infer that 

lit:Macbeth lit:writtenBy lit:Shakespeare.

geo:Scotland lit:settingFor lit:Macbeth. 


Although the meaning of owl:inverseOf is not difficult to describe, what is the utility of 
such a construct in a modeling language? After all, the effect of inverseOf can be achieved 
just as easily by writing the query differently. For instance, if we want to know all the plays 
that are setIn Scotland, we can use the inverse property settingFor in our query pattern, 
such as 

{geo:Scotland lit:settingfor?play.} 

Because of the semantics of the inverse property, this will give us all plays that were setIn 

Scotland. 
But we could have avoided the use of the inverse property and simply written the query as 

{?play lit:setIn geo:Scotland.} 

We get the same answers, and we don’t need an extra construct in the modeling language. 
While this is true, owl:inverseOf nevertheless does have considerable utility in modeling, 

based on how it can interact with other modeling constructs. In the next two challenges, we’ll see how 
some earlier challenges can be extended using inverses. 

CHALLENGE 2, CONTINUED: USING SPARQL TO TRANSFORM 
HIERARCHICAL DATA 
In Chapter 5, we saw a Challenge problem to use SPARQL to transform hierarchical data. The original 
data was expressed using a variety of properties like hasSon, hasMother, hasDaughter, and  
hasFather. The response to the challenge involved a series of SPARQL queries to transform e.g., 
hasMother into hasParent. The queries that accomplished the transformations all had a very similar 
form, e.g., 

CONSTRUCT {?s :hasParent ?o}

WHERE {?s :hasMother ?o} 


The transformation that this query accomplishes can also be represented in RDFS. This query says “whenever 
a triple uses hasMother, infer a similar triple with hasParent.” This can be expressed in RDFS by 
relating the two properties together with subPropertyOf, thus: 

:hasMother rdfs:subPropertyOf :hasParent . 
When we combine this statement with the definition of subPropertyOf, we see that we come to 

the same conclusions—from every triple that uses hasMother we can infer a similar triple using 
hasParent. 

Some of the queries included a bit of a twist on this pattern—for example, one query rectified uses of 
hasSon as follows: 

CONSTRUCT {?s :hasParent ?o}
WHERE {?o :hasSon ?s} 
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FIGURE 8.1 

Display of family relationships, and how they are connected. The figure shows only the 
subPropertyOf relationships, not the inverseOf relationships. 

A simplesubPropertyOf relationship can’t capture the meaning of this query, because the order of the 
subject and object are reversed. We can’t model this relationship in RDFS alone. But with the addition of 
inverseOf, we can do it. We will need to introduce a new property that is the inverse of hasSon. We’ll call it 
isSonOf. 

:isSonOf owl:inverseOf :hasSon . 
:isSonOf rdfs:subPropertyOf :hasParent . 

Using the definition of subPropertyOf from RDFS, and the definition of inverseOf from OWL, we get 
the same result as we did from the SPARQL query—from each triple that use hasSon, we can infer a new triple 
using hasParent, with the appropriate subject and object. 

One advantage to representing these relationships in RDFS-Plus is that all the relationships among these 
properties are represented in a single model, and can even be displayed visually. If we define all the variations of 
sons, daughters, parents, etc., we can see them in a single display as shown in Figure 8.1. 

This is a fairly common modeling pattern in RDFS-Plus, in which a hierarchy of properties is specified, along 
with a corresponding hierarchy of inverses. 

Challenge: integrating data that do not want to be integrated 
In the Property Union challenge, we had two properties, borrows and checkedOut. We were able 
to combine them under a single property by making them both rdfs:subPropertyOf the same 
parent property, hasPosession. We were fortunate that the two sources of data happened to link 
a Patron as the subject to a Book as the object (i.e., they had the same domain and range). Suppose 
instead that the second source was an index of books, and for each book there was a field specifying the 
patron the book was signedTo (i.e., the domain and range are reversed). 
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CHALLENGE 13 
How can we merge signedTo and borrows in a way analogous to how we merged borrows and 
checkedOut, given that signedTo and borrows don’t share good domains and ranges? 

Solution 
The solution involves a simple use of owl:inverseOf to specify two properties for which the domain and 
range do match, as required for the merge. We define a new property—say, signedOut—as the inverse of 
signedTo, as follows: 

:signedTo owl:inverseOf :signedOut. 
Now we can use the original Property Union pattern to merge signedOut and borrows into the single 

hasPossession property: 

:signedOut rdfs:subPropertyOf :hasPossession.

:borrows rdfs:subPropertyOf :hasPossession. 

So if we have some data expressed using signedTo, along with data expressed with borrows, as  

follows: 

:Amit :borrows :MobyDick.

:Marie :borrows :Orlando. 

:LeavesOfGrass :signedTo :Jim.

:WutheringHeights :signedTo :Yoshi. 


then with the rule for inverseOf, we have the additional triples 

:Jim :signedOut :LeavesOfGrass.

:Yoshi :signedOut :WutheringHeights. 


and with subPropertyOf, we have 

:Amit :hasPossession :MobyDick.

:Marie :hasPossession :Orlando. 

:Jim :hasPossession :LeavesOfGrass. 

:Yoshi :hasPossession :WutheringHeights. 


as desired. 

Solution (alternative) 
There is a certain asymmetry in this solution; the choice to specify an inverse for signedTo rather than for 
hasPossession was somewhat arbitrary. Another solution that also uses owl:inverseOf and 
rdfs:subPropertyOf and is just as viable as the first is the following: 

:signedTo :rdfs:subPropertyOf :possessedBy.

:borrows rdfs:subPropertyOf :hasPossession.

:possessedBy owl:inverseOf :hasPossession. 


These statements use the same rules for owl:inverseOf and rdfs:subPropertyOf but in 
a different order, resulting in the same hasPossession triples. Which solution is better in what situations? 
How can we tell which to use? 

If all we were concerned with was making sure that the inferences about hasPossession will be 
supported, then there would be no reason to prefer one solution over the other. But modeling in the Semantic 
Web is not just about supporting desired inferences but also about supporting reuse. What if someone else 
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FIGURE 8.2 

Systematic combination of inverseOf and subPropertyOf. 

wants to use this model in a slightly different way? A future query is just as likely to be interested in 
hasPossession as possessedBy. Furthermore, we might in the future wish to combine has 
Possession (or possessedBy) with another property. For this reason, one might choose to use 
both solutions together by using both inverseOf and subPropertyOf in a systematic way—that 
is, by specifying inverses for every property, regardless of the subPropertyOf level. In this case, this 
results in 

:signedTo owl:inverseOf :signedOut.

:signedTo rdfs:subPropertyOf :possessedBy.

:signedOut rdfs:subPropertyOf :hasPossession.

:lentTo owl:inverseOf :borrows. 

:lentTo rdfs:subPropertyOf :possessedBy.

:borrows rdfs:subPropertyOf :hasPossession.

:possessedBy owl:inverseOf :hasPossession. 


The systematicity of this structure can be more readily seen in Figure 8.2. The attentive reader might have 
one more concern about the systematicity of Figure 8.2—in particular, the selection of which properties are the 
subject of owl:inverseOf and which are the object (in the diagram, which ones go on the left or on 
the right of the diagram) is arbitrary. Shouldn’t there be three more owl:inverseOf triples, pointing from 
right to left? Indeed, there should be, but there is no need to assert these triples, as we shall see in the next 
challenge. 

Challenge: using the modeling language to extend the modeling language 
It is not unusual for beginning modelers to look at the list of constructs defined in OWL and say, 
“There is a feature of the OWL language I would like to use that is very similar to the ones that are 
included. Why did they leave it out? I would prefer to build my model using a different set of 
primitives.” In many cases, the extra language feature that they desire is actually already supported 
by OWL as a combination of other features. It is a simple matter of using these features in 
combination. 
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CHALLENGE 14 
For example, RDFS allows you to specify that one class is a subClassOf another, but you might like to think of 
it the other way around (perhaps because of the structure of some legacy data you want to work with) and specify 
that something is superClassOf something else. That is, you want the parent class to be the subject of all 
the definitional triples. Using your own namespace myowl: for this desired relation, you would like to have the 
triples look like this: 

:Food myowl:superClassOf :BakedGood;

myowl:superClassOf :Confectionary;

myowl:superClassOf :PackagedFood;

myowl:superClassOf :PreparedFood;

myowl:superClassOf :ProcessedFood. 


If we instead use rdfs:subClassOf, all the triples go the other way around; Food will be the object of 
each triple, and all the types of Food will be the subjects. 

Since OWL does not provide a superClassOf resource (or to speak more correctly, OWL does not define 
any inference rules that will provide any semantics for a superClassOf resource), what can we do? 

Solution 
What do we want myowl:superClassOf to mean? For every triple of the form 

?P myowl:superClassOf ?Q. 
we want to be able to infer that 

?Q rdfs:subClassOf ?P. 
This can be accomplished simply by declaring an inverse 

myowl:superClassOf owl:inverseOf rdfs:subClassOf. 
It is a simple application of the rule for owl:inverseOf to see that this accomplishes the desired effect. 

Nevertheless, this is not a solution that many beginning modelers think of. It seems to them that they have no right 
to modify or extend the meaning of the OWL language or to make statements about the OWL and RDFS resources 
(like rdfs:subClassOf). But remember the AAA slogan of RDF: Anyone can say Anything about Any topic. 
In particular, a modeler can say things about the resources defined in the standard. 

In fact, we can take this slogan so far as to allow a modeler to say 

rdfs:subClassOf owl:inverseOf rdfs:superClassOf. 
This differs from the previous triple in that the subject is a resource in the (standard) RDFS namespace. The 

RDF slogan allows a modeler to say this, and indeed, there is nothing in the standards that will prevent it. However, 
referring to a resource in the RDFS namespace is likely to suggest to human readers of the model that this rela
tionship is part of the RDFS standard. Since one purpose of a model is to communicate to other human beings, it is 
generally not a good idea to make statements that are likely to be misleading, so we do not endorse this practice. 

Challenge: the marriage of Shakespeare 
Consider a simple model about the marriage of Shakespeare—a model with only one triple. 

bio:AnneHathaway bio:married lit:Shakespeare. 
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If we were to query this with the SPARQL query 

SELECT ?who 

WHERE {?lit:Shakespeare bio:married ?who} 


We would get no answer—Shakespeare married no one, despite our intuition that marriage is 
a two-way street. We would like to express this part of our understanding of how marriage works in 
a model. 

CHALLENGE 15 
How can we infer marriages in the reverse direction from which they are asserted? 

Solution 
We could do this by simply declaring bio:married to be its own inverse, thus: 

bio:married owl:inverseOf bio:married. 
Now any triple that used bio:married would automatically be inferred to hold in the other direction. In 
particular, if we asserted 

bio:AnneHathaway bio:married lit:Shakespeare. 
we could infer that 

lit:Shakespeare bio:married bio:AnneHathaway. 

This pattern of self-inverses is so common that it has been built into OWL using a special construct called 
owl:SymmetricProperty. 

SYMMETRIC PROPERTIES 
owl:inverseOf relates one property to another. The special case in which these two properties 
are the same (as was the case for bio:married for the Shakespeare example) is common enough 
that the OWL language provides a special name for it: owl:SymmetricProperty. Unlike 
owl:inverseOf, which is a property that relates two other properties, owl:SymmetricProperty 

is just an aspect of a single property and is expressed in OWL as a Class. We express that a property 
is symmetric in the same way as we express membership in any class—in other words: 

:P rdf:type owl:SymmetricProperty. 
As usual, we express the meaning of this statement in SPARQL: 

CONSTRUCT {?p owl:inverseOf ?p. }

WHERE {?p a owl:SymmetricProperty . } 


So in the case of the marriage of Shakespeare, we can simply assert that 

bio:married rdf:type owl:SymmetricProperty. 
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FIGURE 8.3 

Systematic combination of inverseOf and subPropertyOf. Contrast this with Figure 8.2, with one-
directional inverses. 

Using OWL to extend OWL 
As we describe more and more of the power of the OWL modeling language, there will be more and 
more opportunities to define at least some aspects of a new construct in terms of previously defined 
constructs. We can use this method to streamline our presentation of the OWL language. We have seen 
a need for this already in figure Figure 8.2, in which all of our inverses are expressed in one direction 
but we really need to have them go both ways, as shown in Figure 8.3. 

We asserted the triples from left to right—namely: 

:possessedBy owl:inverseOf :hasPossession.

:signedTo owl:inverseOf :signedOut.

:lentTo owl:inverseOf :borrows. 


But we would like to be able to infer the triples from right to left—namely: 

:hasPossession owl:inverseOf :possessedBy. 

:signedOut owl:inverseOf :signedTo. 

:borrows owl:inverseOf :lentTo. 


CHALLENGE 16 
How can we infer all of these triples without having to assert them? 

Solution 
Since we want owl:inverseOf to work in both directions, this can be done easily by asserting that 
owl:inverseOf is its own inverse, thus: 

owl:inverseOf owl:inverseOf owl:inverseOf. 
You might have done a double take when you read that owl:inverseOf is its own inverse. Fortunately, 

we now have a more readable and somewhat more understandable way to say this—namely: 

owl:inverseOf rdf:type owl:SymmetricProperty. 
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In either case, we get the inferences we desire for Figure 8.3, in which the inverses point both ways. This also 
means that all the inferences in both directions will always be found. 

TRANSITIVITY 
In mathematics, a relation R is said to be transitive if R(a,b) and  R(b,c) implies  R(a,c). The same idea is 
used for the OWL construct owl:TransitiveProperty. Just  like  owl:SymmetricProperty, 

owl:TransitiveProperty is a class of properties, so a model can assert that a property is 
a member of the class 

:P rdf:type owl:TransitiveProperty. 

The meaning of this is given by a somewhat more elaborate rule than we have seen so far in this 
chapter. 

CONSTRUCT {?x ?p ?z .}
WHERE {?x ?p ?y .

?y ?p ?x .
?p a owl:TransitiveProperty . } 

Notice that there is no need for even more elaborate rules like 

CONSTRUCT {?a ?p ?d .}
WHERE {?a ?p ?b .

?b ?p ?c .
?c ?p ?d . } 

since this conclusion can be reached by applying the simple rule over and over again. 
Some typical examples of transitive properties include ancestor/descendant (if Victoria is 

an ancestor of Edward, and Edward is an ancestor of Elizabeth, then Victoria is an ancestor of 
Elizabeth) and geographical containment (if Osaka is in Japan, and Japan is in Asia, then Osaka is in 
Asia). 

Challenge: relating parents to ancestors 
A model of genealogy will typically include notions of parents as well as ancestors, and we’d like them 
to fit together. But parents are not transitive (my parents’ parents are not my parents), whereas 
ancestors are. 

CHALLENGE 17 
How can we allow a model to maintain consistent ancestry information, given parentage information. 

Solution 
Start by defining the parent property to be a subPropertyOf the ancestor property, thus: 

:hasParent rdfs:subPropertyOf :hasAncestor. 
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Then declare ancestor (only) to be a transitive property: 

:hasAncestor rdf:type owl:TransitiveProperty. 
Let’s see how this works on some examples. 

:Alexia :hasParent :WillemAlexander. 

:WillemAlexander :hasParent :Beatrix. 

:Beatrix :hasParent :Wilhelmina. 


Because of the subPropertyOf relation between hasParent and hasAncestor and the fact that 
hasAncestor is a TransitiveProperty, we can infer that 

:Alexia :hasAncestor :WillemAlexander. 

:WillemAlexander :hasAncestor :Beatrix. 

:Alexia :hasAncestor :Beatrix. 

:WillemAlexander :hasAncestor :Wilhelmina. 

:Alexia :hasAncestor :Wilhelmina. 


Information about the heritage is integrated, regardless of whether it originated with hasParent 

or hasAncestor. Information about hasParent, on the other hand, is only available as it was 
directly asserted because it was not declared to be transitive. The results of this inference are shown in 
Figure 8.4. 
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FIGURE 8.4 

Inferences from transitive properties. 
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Challenge: layers of relationships 
Sometimes it can be somewhat controversial whether a property is transitive or not. For instance, the 
relationship that is often expressed by the words “part of” in English is sometimes transitive (a piston is 
part of the engine, and the engine is part of the car; is the piston part of the car?) and sometimes not 
(Mick Jagger’s thumb is part of Mick Jagger, and Mick Jagger is part of the Rolling Stones; is 
Mick Jagger’s thumb part of the Rolling Stones?). In the spirit of anticipating possible uses of a model, it 
is worthwhile to support both points of view whenever there is any chance that controversy might arise. 

CHALLENGE 18 
How can we simultaneously maintain transitive and nontransitive versions of the partOf information? 

Solution 
We can define two versions of the partOf property in different namespaces (or with different names) with one 
a subPropertyOf the other, and with the superproperty declared as transitive: 

dm:partOf rdfs:subPropertyOf gm:partOf.

gm:partOf rdf:type owl:TransitiveProperty. 


(a) (b) 
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FIGURE 8.5 

Different interpretations of partOf. 

Depending on which interpretation of partOf any particular application needs, it can query the appropriate 
property. For those who prefer to think that Mick Jagger’s thumb is not part of the Rolling Stones, the original 
dm:partOf property is useful. For those who instead consider that Mick Jagger’s thumb is part of the Rolling 
Stones, the transitive superproperty gm:partOf is appropriate (see Figure 8.5) 

Managing networks of dependencies 
The same modeling patterns we have been using to manage relationships (like ancestry) or set 
containment (like part of) can be used just as well in a very different setting—namely, to manage 
networks of dependencies. In the series of challenges that follow, we will see how the familiar 
constructs of rdfs:subPropertyOf, owl:inverseOf, and owl:TransitiveProperty 

can be combined in novel ways to model important aspects of such networks. 
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A common application of this idea is in workflow management. In a complex working situation, 
a variety of tasks must be repeatedly performed in a set sequence. The idea of workflow management is 
that the sequence can be represented explicitly and the progress of each task tracked in that sequence. 
Why would someone want to model workflow in a Semantic Web? The answer is for the same reason 
one wants to put anything on the Web: so that parts of the workflow can be shared with others, 
encouraging reuse, review, and publication of work fragments. 

Real workflow specifications are far too detailed to serve as examples in a book, so we will use 
a simple example to show how it works. Let’s make some ice cream, using the following recipe: 

Slice a vanilla bean lengthwise, and scrape the contents into 1 cup of heavy cream. Bring the 
mixture to a simmer, but do not boil. While the cream is heating, separate three eggs. Add 1/2 cup 
white sugar to the eggs and beat until fluffy. Gradually add the warm cream, beating constantly. Return 
the custard mixture to medium heat, and cook until mixture leaves a heavy coat on the back of 

TurnInFreezer 

dependsOn 

dependsOn 

dependsOn 

dependsOn 

dependsOn 

dependsOn 

SliceBeanAddSugar 

SeparateEggs 

HeatCream 

dependsOn 

dependsOn 

BeatEggs 

dependsOn 

AddMilk 

Chill 

CookCustard 

GraduallyMix 

FIGURE 8.6 

Dependencies for homemade ice cream. 
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a spatula. Chill well. Combine custard with 1 cup whole milk, and turn in ice cream freezer according 
to manufacturer’s instructions. 

First, let’s use a property dependsOn to represent the dependencies between the steps and 
define its inverse enables, since each step enables the next in the correct execution of the workflow: 

:dependsOn owl:inverseOf :enables. 
Now we can define the dependency structure of the recipe steps: 

:SliceBean :enables :HeatCream. 

:SeparateEggs :enables :AddSugar.

:AddSugar :enables :BeatEggs

:BeatEggs :enables :GraduallyMix.

:HeatCream :enables :GraduallyMix.

:GraduallyMix :enables :CookCustard.

:CookCustard :enables :Chill. 

:Chill :enables :AddMilk. 

:AddMilk :enables :TurnInFreezer. 

Because of the inverseOf, we can view these steps either in enabling order as asserted or in 

dependency order, as shown in Figure 8.6. 

CHALLENGE 19 
For any particular step in the process, we might want to know all the steps it depends on or all the steps that 
depend on it. How can we do this, using the patterns we already know? 

Solution 
We can use the subPropertyOf/TransitiveProperty pattern for each of dependsOn and 
enables as follows: 

rdf:type 

rdfs:subPropertyOf 

owl:inverseOf 

rdfs:subPropertyOf 

rdf:type 

prerequisiteFor 

enables dependsOn 

hasPrerequisite 

owl:TransitiveProperty 

FIGURE 8.7 

Transitive properties hasPrerequisite and prerequisiteFor defined in terms of 
dependsOn and enables. 
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:dependsOn rdfs:subPropertyOf :hasPrerequisite.

:hasPrerequisite rdf:type owl:TransitiveProperty.

:enables rdfs:subPropertyOf :prerequisiteFor.

:prerequisiteFor rdf:type owl:TransitiveProperty. 


These relationships can be seen graphically in Figure 8.7. 

From these triples, for instance, we can infer that GraduallyMix has five prerequisites— 
namely: 

:GraduallyMix :hasPrerequisite :AddSugar; 

:hasPrerequisite :SeparateEggs; 

:hasPrerequisite :SliceBean; 

:hasPrerequisite :HeatCream; 

:hasPrerequisite :BeatEggs. 


CHALLENGE 20 
In a more realistic workflow management setting, we wouldn’t just be managing a single process (corresponding to 
a single recipe). We would be managing several processes that interact in complex ways. We could even lose track 
of which steps are in the same procedure. Is there a way to find out, given a particular step, what the other steps in 
the same process are? In our recipe example, can we model the relationship between steps so that we can connect 
steps in the same recipe together? 

Solution 
First, we combine together both of our fundamental relationships (enables and dependsOn) as  
common subPropertyOf a single unifying property (neighborStep). We then, in turn, make that 
a subPropertyOf of a transitive property (inSameRecipe), shown here in Turtle and in 
Figure 8.8(a). 

:dependsOn rdfs:subPropertyOf :neighborStep.

:enables rdfs:subPropertyOf :neighborStep.

:neighborStep rdfs:subPropertyOf :inSameRecipe.

:inSameRecipe rdf:type owl:TransitiveProperty. 


What inferences can we draw from these triples for the instance GraduallyMix? Any directly related 
step (related by either dependsOn or enables) becomes a neighborStep, and any combination of 
neighbors is rolled up with inSameRecipe. A few selected inferences are shown here: 

:GraduallyMix :neighborStep :BeatEggs; 

:neighborStep :HeatCream; 

:neighborStep :CookCustard. 

:CookCustard :neighborStep :Chill; 

:neighborStep :GraduallyMix. 


:GraduallyMix :inSameRecipe :BeatEggs; 

:inSameRecipe :HeatCream; 

:inSameRecipe :CookCustard. 

:CookCustard :inSameRecipe :Chill; 

:inSameRecipe :GraduallyMix.


... 
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:GraduallyMix :inSameRecipe :AddMilk; 
:inSameRecipe :CookCustard; 
:inSameRecipe :TurnInFreezer; 
:inSameRecipe :AddSugar; 
:inSameRecipe :SeparateEggs; 
:inSameRecipe :SliceBean; 
:inSameRecipe :HeatCream; 
:inSameRecipe :GraduallyMix; 
:inSameRecipe :Chill; 
:inSameRecipe :BeatEggs. 

(a) 

owl:TransitiveProperty 
rdf:type 

rdfs:subPropertyOf 

rdfs:subPropertyOf 

rdfs:subPropertyOf 

enables 

neighborStep 

inSameRecipe 

dependsOn 

(b) 

rdfs:subPropertyOf 

OtherStep 

rdfs:subPropertyOf


owl:TransitiveProperty 

rdfs:subPropertyOf 

rdf:typerdf:type 

rdfs:subPropertyOf 

enables 

prerequisiteForhasPrerequisite 

dependsOn 

FIGURE 8.8 

Contrast patterns for inSameRecipe (includes self) and otherStep (excludes self). Both patterns 
work from the same input properties dependsOn and enables but yield different results. 
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All the steps in this recipe have been gathered up with inSameRecipe, as desired. In fact, any two steps in 
this recipe will be related to one another by inSameRecipe, including relating each step to itself. In 
particular, the triple 

:GraduallyMix :inSameRecipe :GraduallyMix. 
has been inferred. Although this is, strictly speaking, correct (after all, indeed GraduallyMix is in the same 
recipe as GraduallyMix), it might not be what we actually wanted to know. 

CHALLENGE 21 
How can we define a property that will relate a recipe step only to the other steps in the same recipe? 

Solution 
Earlier we defined two properties, hasPrerequisite and prerequisiteFor, one looking “down
stream” along the dependencies and one looking “upstream.” 

:dependsOn rdfs:subPropertyOf :hasPrerequisite.

:hasPrerequisite rdf:type owl:TransitiveProperty.

:enables rdfs:subPropertyOf :prerequisiteFor.

:prerequisiteFor rdf:type owl:TransitiveProperty. 


If we join these two together under a common superproperty that is not transitive, we get the following: 

:hasPrerequisite rdfs:subPropertyOf :otherStep.

:prerequisiteFor rdfs:subPropertyOf :otherStep. 


These relationships are shown diagrammatically in Figure 8.8(b). 

We track the inferences separately for each property. For hasPrerequisite, we have already seen that 
we can infer the following: 

:GraduallyMix :hasPrerequisite :AddSugar; 
:hasPrerequisite :SeparateEggs;

:hasPrerequisite :SliceBean; 

:hasPrerequisite :HeatCream; 

:hasPrerequisite :BeatEggs. 


For prerequisiteFor, we get the following inferences: 

:GraduallyMix :prerequisiteFor :AddMilk; 

:prerequisiteFor :CookCustard; 

:prerequisiteFor :TurnInFreezer; 

:prerequisiteFor :Chill. 


Now, for otherStep, we get the combination of these two. Notice that neither list includes Gradually 
Mix itself, so it does not appear in this list either. 

:GraduallyMix :otherStep :AddMilk; 

:otherStep :CookCustard; 

:otherStep :TurnInFreezer; 

:otherStep :AddSugar; 

:otherStep :SeparateEggs; 

:otherStep :SliceBean; 

:otherStep :HeatCream; 

:otherStep :Chill; 

:otherStep :BeatEggs. 
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Figure 8.8 shows the two patterns. For inSameRecipe, we have a single transitive property at the 
top of a subPropertyOf tree; both primitive properties (enables and dependsOn) are brought 
together, and any combinations of the resulting property (neighborStep) are chained together as 
a TransitiveProperty (inSameRecipe). For otherStep, the top-level property itself is not 
transitive but is a simple combination (via two subPropertyOf links) of two transitive properties 
(hasPrerequisite and prerequisiteFor). Inference for each of these transitive properties is 
done separately from the other, and the results combined (without any more transitive interaction). 
Hence, for inSameRecipe, the reflexive triples like 

:GraduallyMix :inSameRecipe :GraduallyMix 

are included, whereas for otherStep, they are not. 
Another ramification of the difference between these two models has to do with whether or not they 

can “turn the corner” in Figure 8.6 and determine a relationship between, e.g., BeatEggs and 
HeatCream. The transitive structure of inSameRecipe allows this to happen, whereas for 
otherStep it does not; that is, we can infer 

:BeatEggs :inSameRecipe :HeatCream 

but not 

:BeatEggs :otherStep :HeatCream . 

EQUIVALENCE 
RDF provides a global notion of identity that has validity across data sources; that global identity is the 
URI. This makes it possible to refer to a single entity in a distributed way. But when we want to merge 
information from multiple sources controlled by multiple stakeholders, it is not necessarily the case 
that any two stakeholders will use the same URI to refer to the same entity. Thus, in a federated 
information setting, it is useful to be able to stipulate that two URIs actually refer to the same entity. 
But there are different ways in which two entities can be the same. Some are more equal than others. 
RDFS-Plus provides a variety of notions of equivalence. As with other constructs in OWL, these 
different constructs are defined by the inferences they entail. 

Equivalent classes 
We previously used a simple idiom to express that one class had the same elements as another; in 
particular, we asserted two triples 

:Analyst rdf:subClassOf :Researcher.

:Researcher rdf:subClassOf :Analyst. 


to indicate that every Analyst is a Researcher and every Researcher is an Analyst. As we saw, the rule 
for rdf:subClassOf can be applied in each direction to support the necessary inferences to make 
every Analyst a Researcher and vice versa. When two classes are known to always have the same 
members, we say that the classes are equivalent. The preceding pattern allows us to express class 
equivalence in RDFS, if in a somewhat unintuitive way. 
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RDFS-Plus provides a more intuitive expression of class equivalence, using the construct 
owl:equivalentClass. A single triple expresses class equivalence in the obvious way: 

:Analyst owl:equivalentClass :Researcher. 
As with any other construct in RDFS or OWL, the precise meaning of owl:equivalentClass is 
given by the inferences that can be drawn, which we express in SPARQL: 

CONSTRUCT {?r rdf:type ?b .}
WHERE {?a owl:equivalentClass ?b .

?r rdf:type ?a . } 
So far, this is just the type propagation rule that we used to define the meaning of rdf: 

subClassOf in Chapter 7. But owl:equivalentClass has another rule as well: 

CONSTRUCT {?r rdf:type ?a .}
WHERE {?a owl:equivalentClass ?b .

?r rdf:type ?b . } 
That is, the two classes ?a and ?b have exactly the same members. 

It seems a bit of a shame that something as simple as equivalence requires two rules to express, 
especially when the rules are so similar. In fact, this isn’t necessary; if we observe that 

owl:equivalentClass rdf:type owl:SymmetricProperty. 
then there is no need for the second rule; we can infer it from the first rule and the symmetry of 
equivalentClass. 

In fact, we don’t actually need any rules at all; if we also assert that 

owl:equivalentClass rdfs:subPropertyOf rdfs:subClassOf. 
we can use the rules for subPropertyOf and subClassOf to infer everything about 
equivalentClass! Let’s see how the rules for OWL, which we have already learned work for 
owl:equivalentClass, in the case of the Analyst and the Researcher. 

From the rule about rdfs:subClassOf and the statement of equivalence of Analyst and 
Researcher, we can infer that 

:Analyst rdfs:subClassOf :Researcher. 

But since owl:equivalentClass is symmetric, we can also infer that 

:Researcher owl:equivalentClass :Analyst. 

and by applying the rule for rdfs:subClassOf once again, we get 

:Researcher rdfs:subClassOf :Analyst. 

That is, simply by applying what we already know about rdfs:subClassOf and 
owl:SymmetricProperty, we can infer both rdfs:subClassOf triples from the single 
owl:equivalentClass triple. 

Notice that when two classes are equivalent, it only means that the two classes have the same 
members. Other properties of the classes are not shared; for example, each class keeps its own 
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rdfs:label. This means that if these classes have been merged from two different applications, 
each of these applications will still display the class by the original print name; only the members of 
the class will change. 

Equivalent properties 
We have seen how to use rdfs:subPropertyOf to make two properties behave in the same 
way; the trick we used there was very similar to the double subClassOf trick. We use 
rdfs:subPropertyOf twice to indicate that two properties are equivalent. 

:borrows rdfs:subPropertyOf :checkedOut.

:checkedOut rdfs:subPropertyOf :borrows. 


RDFS-Plus also provides a more intuitive way to express property equivalence, using 
owl:equivalentProperty, as follows: 

:borrows owl:equivalentProperty :checkedOut. 
When two properties are equivalent, we expect that in any triple that uses one as a predicate, the 

other can be substituted—this is, we can define it in SPARQL with 

CONSTRUCT {?a :checkedOut ?b . }

WHERE {?a :borrows ?b . } 


and vice versa. We can accomplish this in a manner analogous to the method used for 
owl:equivalentClass. We define owl:equivalentProperty in terms of other RDFS-Plus 
constructs. 

owl:equivalentProperty rdfs:subPropertyOf

rdfs:subPropertyOf.

owl:equivalentProperty rdf:type owl:SymmetricProperty. 

Starting with the asserted equivalence of borrows and checkedOut, using these triples, and the 

rules for rdfs:subPropertyOf and owl:SymmetricProperty, we can infer that 

:borrows rdfs:subPropertyOf checkedOut. 

:checkedOut owl:equivalentProperty borrows. 

:checkedOut rdfs:subPropertyOf borrows. 


Once we have inferred that borrows and checkedOut are rdfs:subPropertyOf one 
another, we can make all the appropriate inferences. 

When we express new constructs (like owl:equivalentProperty in this section) to 
constructs we already know (rdfs:subPropertyOf and owl:SymmetricProperty), 
we explicitly describe how the various parts of the language fit together. That is, rather than 
just noticing that the rule governing owl:equivalent Property is the same rule as the one 
that governs rdfs:subPropertyOf (except that it works both ways!), we can actually model 
these facts. By making owl: equivalentProperty a subproperty of rdfs:subProperty 

Of, we explicitly assert that they are governed by the same rule. By making owl: 

equivalentProperty an owl:SymmetricProperty, we assert the fact that this rule 
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works in both directions. This makes the relationship between the parts of the OWL language 
explicit and, in fact, models them in OWL. 

Same individuals 
Class equivalence—that is, owl:equivalentClass—and property equivalence 
(own:equivalentProperty) provide intuitive ways to express relationships that were 
already expressible in RDFS. In this sense, neither of these constructs has increased the 
expressive power of RDFS-Plus beyond what was already available in RDFS. They has just 
made it easier to express and clearer to read. These constructs refer respectively to classes of 
things and the properties that relate them. 

But when we are describing things in the world, we aren’t only describing classes and prop
erties; we are describing the things themselves. These are the members of the classes. We refer to 
these as individuals. We have encountered a number of individuals in our examples so far—Wenger 
the Analyst, Kildare the Surgeon, Kaneda the All-Star Player—and any number of things whose 
class membership has not been specified—Wales, The Firm, and Moby Dick. But remember the 
nonunique naming assumption: Often, our information comes from multiple sources that might not 
have done any coordination in their reference to individuals. How do we handle the situation in 
which we determine that two individuals that we originally thought of separately are in fact the 
same individual? 

In RDFS-Plus, this is done with the single construct owl:sameAs. Our old friend William 
Shakespeare will provide us with an example of how owl:sameAs works. From Chapter 3, we have 
the following triples about the literary career of William Shakespeare: 

lit:Shakespeare lit:wrote lit:AsYouLikeIt;
lit:wrote lit:HenryV;
lit:wrote lit:LovesLaboursLost;
lit:wrote lit:MeasureForMeasure;
lit:wrote lit:TwelfthNight;
lit:wrote lit:WintersTale;
lit:wrote lit:Hamlet;
lit:wrote lit:Othello. 

Suppose we have at our disposal information from the Stratford Parish Register, which lists the 
following information from some baptisms that occurred there. We will use spr: as the namespace 
identifier for URIs from the Stratford Parish Register. 

spr:Gulielmus spr:hasFather spr:JohannesShakspere.

spr:Susanna spr:hasFather spr:WilliamShakspere.

spr:Hamnet spr:hasFather spr:WilliamShakspere.

spr:Judeth spr:hasFather spr:WilliamShakspere. 

Suppose that our research determines that, indeed, the resources mentioned here as 

spr:Gulielmus, spr:WilliamShakspere, and lit:Shakespeare all refer to the same 
individual, so the answer to the question “Did Hamnet’s father write Hamlet?” would be “yes.” If we 
had known that all of these things refer to the same person in advance of having represented the 
Stratford Parish Register in RDF, we could have used the same URI (e.g., lit:Shakespeare) for 
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each occurrence of the Bard. But we are living in the data wilderness, and now it is too late; the URIs 
from each data source have already been chosen. What is to be done? 

First, let’s think about how to pose the question “Did Hamnet’s father write Hamlet?” We can write 
this as a graph pattern in SPARQL as follows: 

{spr:Hamnet spr:hasFather?d.

?d lit:wrote lit:Hamlet.} 


that is, we are looking for a single resource that links Hamnet to Hamlet via the two links 
spr:hasFather and lit:wrote. 

In RDFS-Plus, we have the option of asserting the sameness of two resources. Let’s start with just 
one: 

spr:WilliamShakspere owl:sameAs lit:Shakespeare. 
The meaning of this triple, as always in RDFS-Plus, is expressed by the inferences that can be 

drawn. The rule for owl:sameAs is quite intuitive; it says that if A owl:sameAs B, then in any 
triple where we see A, we can infer the same triple, with A replaced by B. So for our Shakespeare 
example, the inference is defined as 

CONSTRUCT {lit:Shakespeare ?p ?o . }

WHERE {spr:WilliamShakespeare ?p ?o . } 


Similarly, 

CONSTRUCT {?s ?p lit:Shakespeare. }

WHERE {?s ?p spr:WilliamShakespeare. } 


More generally, owl:sameAs is defined by three rules that can be expressed in SPARQL as 

CONSTRUCT {?s ?p ?x. }

WHERE {?s ?p ?y.


?x owl:sameAs ?y .}

CONSTRUCT {?x ?p ?o. }

WHERE {?y ?p ?o .


?x owl:sameAs ?y .}

CONSTRUCT {?s ?x ?o. }

WHERE {?s ?y ?o .


?x owl:sameAs ?y .} 
Also, as we did for owl:equivalentClass and owl:equivalentProperty, we assert 

that owl:sameAs is an owl:SymmetricProperty: 

owl:sameAs rdf:type owl:SymmetricProperty. 
Otherwise, we would need three more rules, with the owl:sameAs triples reversed. This allows 

us to infer that 

lit:Shakespeare owl:sameAs spr:WilliamShakspere. 
so that we can replace any occurrence of lit:Shakespeare with spr:WilliamShakspere 

as well. 
Let’s see how this works with the triples we know from literary history and the Register. We list all 

triples, with asserted triples in Roman and inferred triples in italics. Among the inferred triples, we 
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begin by replacing lit:Shakespeare with spr:WilliamShakspere, then continue by 
replacing spr:WilliamShakspere with lit:Shakespeare: 

lit:Shakespeare lit:wrote lit:AsYouLikeIt;

lit:wrote lit:HenryV;

lit:wrote lit:LovesLaboursLost;

lit:wrote lit:MeasureForMeasure;

lit:wrote lit:TwelfthNight;

lit:wrote lit:WintersTale;

lit:wrote lit:Hamlet;

lit:wrote lit:Othello.


spr:Gulielmus spr:hasFather spr:JohannesShakspere.

spr:Susanna spr:hasFather spr:WilliamShakspere.

spr:Hamnet spr:hasFather spr:WilliamShakspere.

spr:Judeth spr:hasFather spr:WilliamShakspere.

spr:WilliamShakspere


lit:wrote lit:AsYouLikeIt;

lit:wrote lit:HenryV;

lit:wrote lit:LovesLaboursLost;

lit:wrote lit:MeasureForMeasure;

lit:wrote lit:TwelfthNight;

lit:wrote lit:WintersTale;

lit:wrote lit:Hamlet;
lit:wrote lit:Othello.


spr:Susanna spr:hasFather lit:Shakespeare.

spr:Hamnet spr:hasFather lit:Shakespeare.

spr:Judeth spr:hasFather lit:Shakespeare.


Now the answer to the query “Did Hamnet’s father write Hamlet?” is “yes,” since there is a binding 
for the variable ?d in the preceding SPARQL graph pattern. In fact, there are two possible bindings: 
?d ¼ lit:Shakespeare and ?d ¼ spr:Shakspere. 

Challenge: merging data from different databases 
We have seen how to interpret information in a table as RDF triples. Each row in the table 
became  a single individual,  and each cell in the  table became a triple.  The subject of the triple is  
the individual corresponding to the row that the cell is in; the predicate is made up from the table 
name and the field name; and the object is the cell contents. Table 8.1 (from Table 3.10) shows 
63 triples for the 7 fields and 9 rows. Let’s look at just the triples having to do with the 
Manufacture_Location. 

mfg:Product1 mfg:Product_Manufacture_Location Sacramento.

mfg:Product2 mfg:Product_Manufacture_Location Sacramento.

mfg:Product3 mfg:Product_Manufacture_Location Sacramento.

mfg:Product4 mfg:Product_Manufacture_Location Elizabeth.

mfg:Product5 mfg:Product_Manufacture_Location Elizabeth.

mfg:Product6 mfg:Product_Manufacture_Location Seoul.

mfg:Product7 mfg:Product_Manufacture_Location Hong Kong.

mfg:Product8 mfg:Product_Manufacture_Location Cleveland.

mfg:Product9 mfg:Product_Manufacture_Location Cleveland. 




176 CHAPTER 8 RDFS-Plus 

Table 8.1 Sample Tabular Data for Triples 

1 ZX-3 Manufacturing Support Paper Machine Sacramento FB3524 23 

2 ZX-3P Manufacturing Support Paper Machine Sacramento KD5243 4 

3 ZX-3S Manufacturing Support Paper Machine Sacramento IL4028 34 

4 B-1430 Control Engineering Feedback Line Elizabeth KS4520 23 

5 B-1430X Control Engineering Feedback Line Elizabeth CL5934 14 

6 B-1431 Control Engineering Active Sensor Seoul KK3945 0 

7 DBB-12 Accessories Monitor Hong Kong ND5520 100 

8 SP-1234 Safety Safety Valve Cleveland HI4554 4 

9 SPX-1234 Safety Safety Valve Cleveland OP5333 14 

Product 

ID 
Model 
Number Division 

Product 
Line 

Manufacture 
Location SKU Available 

Product 

ID Model Number Facility 

Table 8.2 Sample Data: Parts and the Facilities Required to Produce Them 

1 B-1430 Assembly Center 

2 B-1431 Assembly Center 

3 M13-P Assembly Center 

4 ZX-3S Assembly Center 

5 ZX-3 Factory 

6 TC-43 Factory 

7 B-1430X Machine Shop 

8 SP-1234 Machine Shop 

9 1180-M Machine Shop 

Suppose that another division in the company keeps its own table of the products with information 
that is useful for that division’s business activities—namely, it describes the sort of facility that is 
required to produce the part. Table 8.2 shows some products and the facilities they require. Some of the 
products in Table 8.2 also appeared in Table 8.1, and some did not. It is not uncommon for different 
databases to overlap in such an inexact way. 

CHALLENGE 22 
Using the products that appear in both tables, how can we write a federated query that will cross-reference cities with 
the facilities that are required for the production that takes place there? 

Solution 
If these two tables had been in a single database, then there could have been a foreign-key reference from one table 
to the other, and we could have joined the two tables together. Since the tables come from two different databases, 
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there is no such common reference. This is typical of data found in the wilderness; no effort has been made to align 
data from different sources. 

When we turn both tables into triples, the individuals corresponding to each row are assigned global identifiers. 
Suppose that we use the namespace p: for this second database; when we turn Table 8.2 into triples, we get 27 
triples, for the 9 rows and 3 fields. The triples corresponding to the required facilities are as follows: 

p:Product1 p:Product_Facility “Assembly Center”. 

p:Product2 p:Product_Facility “Assembly Center”. 

p:Product3 p:Product_Facility “Assembly Center”. 

p:Product4 p:Product_Facility “Assembly Center”. 

p:Product5 p:Product_Facility “Factory”. 

p:Product6 p:Product_Facility “Factory”. 

p:Product7 p:Product_Facility “Machine Shop”. 

p:Product8 p:Product_Facility “Machine Shop”. 

p:Product9 p:Product_Facility “Machine Shop”. 


Although we have global identifiers for individuals in these tables, those identifiers are not the same. For 
instance, p:Product1 is the same as mfg:Product4 (both correspond to model number B-1430). 
How can we cross-reference from one table to the other? The answer is to use a series of owl:sameAs 
triples, as follows: 

p:Product1 owl:sameAs mfg:Product4.

p:Product2 owl:sameAs mfg:Product6.

p:Product4 owl:sameAs mfg:Product3.

p:Product5 owl:sameAs mfg:Product1.

p:Product7 owl:sameAs mfg:Product5.

p:Product8 owl:sameAs mfg:Product8. 


Now if we match the following SPARQL graph pattern: 

{?p p:Product_Facility ?facility.

?p mfg:Product_Manufacture_Location ?location.} 


and display ?facility and ?location, we get the results in Table 8.3. 
This solution has addressed the challenge for the particular data in the example, but the solution relied on 

the fact that we knew which product from one table matched with which product from another table. But 
owl:sameAs only solves part of the problem. In real data situations, in which the data in the tables change 

Table 8.3 Locations Cross-Referenced with Facilities, Computed via 
Products 

?location ?facility 

Elizabeth Assembly Center 

Seoul Assembly Center 

Sacramento Assembly Center 

Sacramento Factory 

Elizabeth Machine Shop 

Cleveland Machine Shop 
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frequently, it is not practical to assert all the owl:sameAs triples by hand. In the next section, we will see how 
RDFS-Plus provides a solution to the rest of the challenge. 

COMPUTING SAMENESS—FUNCTIONAL PROPERTIES 
Functional Properties in OWL get their name from a concept in mathematics, but like most of the OWL 
constructs, they have a natural interpretation in everyday life. A function property is one for which 
there can be just one value. Examples of such properties are quite common: hasMother (since 
a person has just one biological mother), hasBirthplace (someone was born in just one place), and 
birthdate (just one) are a few simple examples. 

In mathematics, a function is a mapping that gives one value for any particular input, so x 2 is 
a function, since for any value of x, there is exactly one value for x 2. Another way to say this is that if 
x ¼ y, then x 2 ¼ y2. To solve the previous challenge problem, we have to have constructs in RDFS-Plus 
that have this same sort of behavior; that is, we want to describe something as being able to refer to 
only a single value. 

The next two constructs, FunctionalProperty and InverseFunctionalProperty, use 
this idea to determine when two resources refer to the same individual, thereby providing the OWL 
modeler with a means for describing how information from multiple sources are to be considered as 
a distributed web of information. These constructs provide an important semantic framework for using 
RDFS-Plus in the Semantic Web setting. 

Functional properties 
RDFS-Plus borrows the name functional to describe a property that, like a mathematical function, 
can only take one value for any particular individual. The precise details of the meaning of 
owl:FunctionalProperty is given, as usual, as an inference pattern expressed in SPARQL: 

CONSTRUCT {?a owl:sameAs ?b . }
WHERE {?p rdf:type owl:FunctionalProperty .

?x ?p ?a .
?x ?p ?b . } 

This definition of owl:FunctionalProperty is analogous to the mathematical situation in 
which we know that x 2 has a single unambiguous value. More precisely, if we know that x 2 ¼ a and 
x 2 ¼ b, then we may conclude that a ¼ b. In RDFS-Plus, this looks as follows, in which the first three 
triples are asserted and the fourth is inferred: 

math:hasSquare rdf:type owl:FunctionalProperty.

:x math:hasSquare :A.

:x math:hasSquare :B.

:A owl:sameAs :B. 

Functional properties are important in RDFS-Plus because they allow sameness to be inferred. For 
instance, suppose that in the Stratford Parish Registry we have an entry that tells us 

lit:Shakespeare fam:hasFather bio:JohannesShakspere. 
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and that from Shakespeare’s grave we learn that 

lit:Shakespeare fam:hasFather bio:JohnShakespeare. 
We would like to conclude that John and Johannes are in fact the same person. If we know from 

a background model of family relationships that 

fam:hasFather rdf:type owl:FunctionalProperty. 
then we can conclude, from the definition of owl:FunctionalProperty, that 

bio:JohannesShakspere owl:sameAs bio:JohnShakespeare. 

as desired. 
Although owl:FunctionalProperty provides us with a means of concluding that two resources 

are the same, this is not the usual pattern for determining that two entities are the same in most real data. 
Much more common is the closely related notion of owl:InverseFunctionalProperty, which  
we treat next. 

Inverse functional properties 
Some people consider owl:InverseFunctionalProperty to be the most important modeling 
construct in RDFS-Plus, especially in situations in which a model is being used to manage data from 
multiple sources. Whether or not this is true, it is certainly true that it has the most difficult name with 
respect to its utility of any construct. 

The name owl:InverseFunctionalProperty was chosen to be consistent with the 
closely related owl:FunctionalProperty, and in fact one can think of an owl:Inverse 

FunctionalProperty simply as the inverse of an owl:Functional Property. So if  
math:hasSquare is a functional property, then its inverse, math: hasSquareRoot, is  an  
inverse functional property. 

What exactly does this mean in terms of inferences that can be drawn? The rule looks very similar 
to the rule for owl:FunctionalProperty, 

CONSTRUCT {?a owl:sameAs ?b . }
WHERE {?p rdf:type owl:InverseFunctionalProperty .

?a ?p ?x .
?b ?p ?x . } 

For example, if we define a property buriedAt to be sufficiently specific that we cannot have 
two people buried at the same location, then we can declare it to be an owl:Inverse 

FunctionalProperty. If we were then to have two triples that assert 

spr:Shakespere buriedAt:TrinityChancel.

lit:Shakespeare buriedAt:TrinityChancel. 


then we could infer that 

spr:Shakespere owl:sameAs lit:Shakespeare. 

an owl:InverseFunctionalProperty plays a similar role as a key field in a relational data
base. A single value of the property cannot be shared by two entities, just as a key field may not be 
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duplicated in more than one row. Unlike the case of a relational database, RDFS-Plus does not signal 
an error if two entities are found to share a value for an inverse functional property. Instead, RDFS-Plus 
infers that the two entities must be the same. Because of the nonunique naming assumption, we cannot 
tell that two entities are distinct just by looking at their URIs. 

Examples of inverse functional properties are fairly commonplace; any identifying number (Social 
Security number, employee number, driver’s license number, serial number, etc.) is an inverse func
tional property. In some cases, full names are inverse functional properties, though in most applica
tions, name duplications (is it the same John Smith?) are common enough that full names are not 
inverse functional properties. In an application at the Boston Children’s Hospital, it was necessary to 
find an inverse functional property that would uniquely identify a baby (since newborns don’t always 
have their Social Security numbers assigned yet). The added catch was that it had to be a property that 
the mother was certain, or at least extremely likely, to remember. Although babies are born at any time 
of day in a busy hospital, it is sufficiently unusual for two babies to be born at exactly the same minute 
that time of birth could be used as an inverse functional property. And every mother was able to 
remember when her baby was born. 

Now that we have inverse functional properties, we are able to continue the solution to the chal
lenge. Previously, we merged information from two databases by matching the global URIs of indi
viduals from two databases with the following series of owl:sameAs triples: 

p:Product1 owl:sameAs mfg:Product4.

p:Product2 owl:sameAs mfg:Product6.

p:Product4 owl:sameAs mfg:Product3.

p:Product5 owl:sameAs mfg:Product1.

p:Product7 owl:sameAs mfg:Product5.

p:Product8 owl:sameAs mfg:Product8. 

Once we had these triples, we were able to cross-reference cities with facilities, using products as 

an intermediary. But we had to create these triples by hand. 

CHALLENGE 23 
How can we infer the appropriate owl:sameAs triples from the data that have already been asserted? 

Solution 
The approach we will take to this challenge is to find an inverse functional property that is present in both data sets 
that we can use to bridge between them. When we examine Tables 8.1 and 8.2, we see that they both have a field 
called ModelNo, which refers to the identifying model number of the product. As is typical for such identifying 
numbers, if two products have the same model number, they are the same product. So we want to declare 
ModelNo to be an inverse functional property, thus: 

mfg:Product_ModelNo rdf:type owl:InverseFunctionalProperty. 
This almost works, but there is still a catch: Each database has its own ModelNo property. The 

one in this triple came from the database in Chapter 3; in this chapter, there is another property, 
p:Product_ModelNo. So it seems that we still have more integration to do. Fortunately, we already have 
the tool we need to do this; we simply have to assert that these two properties are equivalent, thus: 

p:Product_ModelNo owl:equivalentProperty mfg:Product_ModelNo. 
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It really doesn’t matter in which order we do any of these things. Since owl:equivalent 
Property is symmetric, we can write this triple with the subject and object reversed, and it will make no 
difference to the inferences. 

Let’s see how these inferences roll out. We begin with the asserted triples from both data sources and proceed 
with inferred triples: 

p:Product1 p:Product_ModelNo “B–1430”. 

p:Product2 p:Product_ModelNo “B–1431”. 

p:Product3 p:Product_ModelNo “M13–P”. 

p:Product4 p:Product_ModelNo “ZX–3S”. 

p:Product5 p:Product_ModelNo “ZX–3”. 

p:Product6 p:Product_ModelNo “TC–43”. 

p:Product7 p:Product_ModelNo “B–1430X”. 

p:Product8 p:Product_ModelNo “SP–1234”. 

p:Product9 p:Product_ModelNo “1180–M”. 

mfg:Product1 mfg:Product_ModelNo “ZX–3”. 

mfg:Product2 mfg:Product_ModelNo “ZX–3P”. 

mfg:Product3 mfg:Product_ModelNo “ZX–3S”. 

mfg:Product4 mfg:Product_ModelNo “B–1430”. 

mfg:Product5 mfg:Product_ModelNo “B–1430X”. 

mfg:Product6 mfg:Product_ModelNo “B–1431”. 

mfg:Product7 mfg:Product_ModelNo “DBB–12”. 

mfg:Product8 mfg:Product_ModelNo “SP–1234”. 

mfg:Product9 mfg:Product_ModelNo “SPX–1234”. 

p:Product1 mfg:Product_ModelNo “B–1430 ”. 

p:Product2 mfg:Product_ModelNo “B–1431”. 

p:Product3 mfg:Product_ModelNo “M13–P ”. 

p:Product4 mfg:Product_ModelNo “ZX–3S ”. 

p:Product5 mfg:Product_ModelNo “ZX–3 ”. 

p:Product6 mfg:Product_ModelNo “TC–43 ”. 

p:Product7 mfg:Product_ModelNo “B–1430X ”. 

p:Product8 mfg:Product_ModelNo “SP–1234 ”. 

p:Product9 mfg:Product_ModelNo “1180–M ”. 

p:Product1 owl:sameAs mfg:Product4. 

p:Product2 owl:sameAs mfg:Product6. 

p:Product4 owl:sameAs mfg:Product3. 

p:Product5 owl:sameAs mfg:Product1. 

p:Product7 owl:sameAs mfg:Product5. 

p:Product8 owl:sameAs mfg:Product8. 


The last six triples are exactly the owl:sameAs triples that we needed to complete our challenge. 

Although this use of owl:InverseFunctionalProperty works fine for an example like 
this, most real data integration situations rely on more elaborate notions of identity that include 
multiple properties as well as uncertainty (what about that one freak day when two babies were born 
the same minute and the same second at the same hospital?). This problem can often be solved by 
using combinations of OWL properties that we will explore later in this book, although a fully general 
solution remains a topic of research. 
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Combining functional and inverse functional properties 
It is possible and often very useful for a single property to be both an owl:FunctionalProperty 

and an owl:InverseFunctionalProperty. When a property is in both of these classes, then it 
is effectively a one-to-one property; that is, for any one individual, there is exactly one value for the 
property, and vice versa. In the case of identification numbers, it is usually desirable that the property 
be one-to-one, as the following challenge illustrates. 

CHALLENGE 24 
Suppose we want to assign identification numbers to students at a university. 

These numbers will be used to assign results of classes (grades), as well as billing information for the students. 
Clearly no two students should share an identification number, and neither should one student be allowed to have 
more than one identification number. How do we model this situation in RDFS-Plus? 

Solution 
Define a property hasIdentityNo that associates a number with each student so that its domain and range 
are defined by 

:hasIdentityNo rdfs:domain :Student.

:hasIdentityNo rdfs:range xsd:Integer. 


Furthermore, we can enforce the uniqueness properties by asserting that 

:hasIdentityNo rdf:type owl:FunctionalProperty.

:hasIdentityNo rdf:type owl:InverseFunctionalProperty.


Now any two students who share an identity number must be the same (since it is Inverse Functional); 
furthermore, each student can have at most one identity number (since it is Functional). 

To summarize, there are several ways we can use these properties: 
Functional Only—hasMother is a functional property only. Someone has exactly one mother, 

but many people can share the same mother. 
Inverse Functional Only—hasDiary is an inverse functional property only. A person may have 

many diaries, but it is the nature of a diary that it is not a collaborative effort; it is authored by one 
person only. 

Both Functional and Inverse Functional—taxID is both inverse functional and functional, 
since we want there to be exactly one taxID for each person and exactly one person per taxID. 

A FEW MORE CONSTRUCTS 
RDFS-Plus provides a small extension to the vocabulary beyond RDFS, but these extensions greatly 
increase the scope of applicability of the language. In the preceding examples, we have seen how these 
new features interact with the features of RDFS to provide a richer modeling environment. The 
inclusion of owl:inverseOf combines with rdfs:subClassOf by allowing us to align 
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properties that might not have been expressed in compatible ways in existing data schemas. The 
inclusion of owl:TransitiveProperty combines with rdfs:subPropertyOf in a number 
of novel combinations, as seen here, allowing us to model a variety of relationships among chains of 
individuals. 

The most applicable extensions, from a Semantic Web perspective, are those that deal with 
sameness of different individuals. sameAs, FunctionalProperty, and InverseFunctional 

Property in particular provide the OWL modeler with a means for describing how information from 
multiple sources is to be merged in a distributed web of information. 

OWL provides a few more distinctions that, although they do not provide any semantics to 
a model, provide some useful discipline and provide information that many editing tools can 
take advantage of when displaying models. For example, when displaying what value some 
property takes for some subject, should the GUI display be a link to another object or a widget for 
a particular data type? Tools that get this right seem intuitive and easy to use; tools that don’t 
seem awkward. So OWL provides a way to describe properties that can help a tool sort this 
out. This is done in OWL by distinguishing between owl:DatatypeProperty and 
owl:ObjectProperty. 

In RDF, a triple always has a resource as its subject and predicate, but it can have either another 
resource as object or it can have a data item of some XML data type. We have seen plentiful examples 
of both of these: 

ship:QEII ship:maidenVoyage “May 2, 1969”. 

mfg:Product1 mfg:Product_SKU “FB3524”. 

:AnneHathaway bio:married lit:Shakespeare.

:GraduallyMix :inSameRecipe :BeatEggs.

spr:Susanna spr:hasFather spr:WilliamShakspere. 


Most tools that deal with OWL at this time prefer to make the distinction. In this case, ship: 

maidenVoyage and mfg:Product_SKU are data type properties, while bio:married, 
inSameRecipe, and spr:hasFather are object properties. In triples, we say: 

ship:maidenVoyage rdf:type owl:DatatypeProperty.

mfg:Product_SKU rdf:type owl:DatatypeProperty.

bio:married rdf:type owl:ObjectProperty.

inSameRecipe rdf:type owl:ObjectProperty.

spr:hasFather rdf:type owl:ObjectProperty. 


Another distinction that is made in OWL is the difference between rdfs:Class and owl:Class. 
In Chapter 7 we introduced the notion of rdfs:Class as the means by which schema 

information could be represented in RDF. Since that time, we have introduced a wide array of 
“schema-like” constructs like inverse, subproperty, transitivity, and so on. OWL also provides 
a special case of rdfs:Class called owl:Class. Since OWL is based on RDFS, it was an 
easy matter to make owl:Class backward compatible with rdfs:Class by saying that 
every member of owl:Class is also a member of rdfs:Class. This statement needn’t be 
made in prose, since we can say it in RDFS. In particular, the OWL specification stipulates 
that 

owl:Class rdfs:subClassOf rdfs:Class. 



184 CHAPTER 8 RDFS-Plus 

Most tools today insist that classes used in OWL models be declared as members of 
owl: Class. In this chapter, we have left these class declarations out, since this level of detail was 
not needed for the modeling examples we provided. Implicit in the examples in this chapter, are 
statements such as 

:Food rdf:type owl:Class.

:BakedGood rdf:type owl:Class.

:Confectionary rdf:type owl:Class.

:PackagedFood rdf:type owl:Class.

:PreparedFood rdf:type owl:Class.

:ProcessedFood rdf:type owl:Class.

mfg:Product rdf:type owl:Class.

p:Product rdf:type owl:Class. 


SUMMARY 
The constructs in RDFS-Plus are a subset of the constructs in OWL. This subset provides considerable 
flexibility for modeling in the Semantic Web. In the next chapter, we will see some examples of how 
RDFS-Plus is used in some large-scale Semantic Web projects. A summary of the constructs in this set 
follow. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

rdfs:subClassOf—Members of subclass are also member of superclass. 
rdfs:subPropertyOf—Relations described by subproperty also hold for superproperty. 
rdfs:domain—The subject of a triple is classified into the domain of the predicate. 
rdfs:range—The object of a triple is classified into the range of the predicate. 

Annotation properties 

rdfs:label—No inferential semantics, printable name.

rdfs:comment—No inferential semantics, information for readers of the model.


OWL features: equality 

equivalentClass—Members of each class are also members of the other.

equivalentProperty—Relations that hold for each property also hold for the other.

sameAs—All statements about one instance hold for the other.


OWL features: property characteristics 

inverseOf—Exchange subject and object.

TransitiveProperty—Chains of relationships collapse into a single relationship.
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SymmetricProperty—A property that is its own inverse. 
FunctionalProperty—Only one value allowed (as object). 
InverseFunctionalProperty—Only one value allowed (as subject). 
ObjectProperty—Property can have resource as object. 
DatatypeProperty—Property can have data value as object. 
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We have seen a number of examples of the use of RDFS-Plus modeling for merging information from 
multiple sources in a dynamic and flexible way. In this chapter, we describe two example uses of the 
RDFS-Plus constructs. Both of these applications of RDFS-Plus have attracted considerable user 
communities in their respective fields. Both of them also make essential use of the constructs in RDFS-
Plus, though often in quite different ways. These are real modeling applications built by groups who 
originally had no technology commitment to RDFS or OWL (though both were conceived as RDF 
applications). 

In both cases, the projects are about setting up an infrastructure for a particular web community. 
The use of RDFS-Plus appears in the models that describe data in these communities, rather than in the 
everyday use in these communities. In this book, we are describing how modeling works in RDFS and 
OWL, so we focus on the community infrastructure of these projects. 

The first application is part of a major US government effort called Data.gov (http://data.gov). 
Data.gov is an effort made by the US government to publish public information. There are hundreds of 
thousands of datasets in Data.gov, of which hundreds are made available in RDF, with many more 
being converted all the time. Data.gov is a great example of the data wilderness; the published data sets 
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come from a wide variety of source formats and collection methodologies, resulting in idiosyncratic 
data representations. Data.gov shows how technologies like RDFS and SPARQL can be useful in 
dealing with this sort of data wilderness. 

The second application is called FOAF, for “Friend of a Friend.” FOAF is a project dedicated to 
creating and using machine-readable homepages that describe people, the links between them, and the 
things they create and do. It is based on RDF, but it originally made no commitment to RDFS or OWL. 

FOAF was originally based on RDF because of the inherently distributed and weblike nature of the 
project requirements. As the project evolved, there was a need to describe the relationships between 
various resources in a formal way; this led it to RDFS and then on to RDFS-Plus. 

In this chapter, we describe each of these efforts and show the use they make of the RDFS-Plus 
constructs we introduced in previous chapters. 

OPEN GOVERNMENT DATA 
In 2009, the US Government formalized a commitment to making public government data open 
and accessible, Prior to this time, it was typical for information to be published in the form of 
reports with “infographics,” visualizations like pie charts and times lines, which could be printed 
and read by human beings, but were very difficult to process by computer. Data.gov makes 
hundreds of thousands of data sets available in a variety of machine-readable formats. The met
adata for all of these data sets, and the content for more than 500 of them, were released as RDF in 
May 2010, and more are being converted now that RDF has become one of the approved 
government data formats. 

In the United Kingdom, a similar site called Data.gov.uk (http://data.gov.uk) also releases many 
government data sets directly as RDF. The United Kingdom has done significant work in linking these 
data sets to by creating standard URIs for things such as schools and roadways, as well as for many 
government agencies and functions. Many other government organizations are also releasing data 
including not just that from nations, but also from cities, states, provinces, counties, tribal entities, etc. 
A number of NGOs, particularly the World Bank and several UN units, are also releasing such data. As 
of the end of 2010, the United States and the United Kingdom were the only ones directly releasing 
data as RDF, although third parties in countries around the world are now converting data from their 
governments to RDF and making it available on the Web. 

These open government data resources are good examples of what Tim Berners-Lee calls “raw” 
data—machine-readable files from the wilderness released without any specific effort to make them 
applicable to a particular application. The advantage of “raw” data of this sort is that it can be reused in 
multiple applications created by multiple communities; but this requires some means of processing it. 
We will show an example of utilizing raw open government data by examining a particular US data set 
from Data.gov. This data set contains a listing of cases filed with the FHEO (Office of Fair Housing/ 
Equal Opportunity) about alleged violations of Title VIII of the Fair Housing Act. The act protects 
various minorities against certain kinds of discrimination in housing. 

The FHEO data (Data.gov data set #1329) are available in many formats, including RDF. The 
information in this data set looks a lot like it came from a spreadsheet (which is not surprising, as it was 
originally released in Excel and only later converted to RDF); there are about 40,000 entries that look 
like this: 

(http://data.gov.uk)
http:Data.gov
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:entry1

a dgtwc:DataEntry ;

:case_number "02-06-0270-8" ;

:color "0" ;

:disability "1" ;

:familial_status "0" ;

:filed_cases "1" ;

:filing_date "2/13/2006" ;

:national_origin "0" ;

:national_origin_hispanic "0" ;

:race "0" ;

:race_asian "0" ;

:race_asian_and_white "0" ;

:race_black_and_white "0" ;

:race_black_or_african_american "0" ;

:race_hawaiian_or_pacific_islander "0" ;

:race_native_american "0" ;

:race_native_american_and_black "0" ;

:race_native_american_and_white "0" ;

:race_other_multi_racial "0" ;

:race_white "0" ;

:religion "0" ;

:retaliation "0" ; 

:sex "0" ;

:violation_county "Kings County" ;

:violation_state "New York" . 


(We note that there is an ongoing discussion on the design of US government URIs and the repre
sentations for RDF conversions, the details above were based on the conversion status as of late 2010.) 

Note that there are several triples all with the same subject (in this case, :entry1), and with the 
same predicates about the basis, filing date, and location of the discrimination complaint. The filing 
basis (e.g., race, religion, color, etc.) is expressed with the values “0” (to indicate a factor that is not 
a basis for the complaint) and “1” (to indicate a factor that is a basis for the complaint). This somewhat 
idiosyncratic way to express the basis for the complaint is not uncommon in the data wilderness; for 
example, it may have resulted from a data entry process in which a user could put a checkmark next to 
the basis for a report. 

CHALLENGE 25: HOW CAN RDFS HELP US ORGANIZE AND PROCESS 
FHEO DATA? 

Solution 
A more flexible way to represent information of this sort is to define a class of complaints based on each factor, 
along with a class for complaints in general, like this: 

FHEO:Asian rdfs:subClassOf FHEO:Complaint .

FHEO:AsianAndWhite rdfs:subClassOf FHEO:Complaint .

FHEO:Black rdfs:subClassOf FHEO:Complaint .

FHEO:BlackAndWhite rdfs:subClassOf FHEO:Complaint . 
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FHEO:Color rdfs:subClassOf FHEO:Complaint .

FHEO:Disability rdfs:subClassOf FHEO:Complaint .

FHEO:FamilialStatus rdfs:subClassOf FHEO:Complaint .

FHEO:NationalOrigin rdfs:subClassOf FHEO:Complaint .

FHEO:Hispanic rdfs:subClassOf FHEO:Complaint .

FHEO:HPI rdfs:subClassOf FHEO:Complaint .

FHEO:NA rdfs:subClassOf FHEO:Complaint .

FHEO:NABlack rdfs:subClassOf FHEO:Complaint .

FHEO:NAWhite rdfs:subClassOf FHEO:Complaint .

FHEO:Other rdfs:subClassOf FHEO:Complaint .

FHEO:Race rdfs:subClassOf FHEO:Complaint .

FHEO:Religion rdfs:subClassOf FHEO:Complaint .

FHEO:Retaliation rdfs:subClassOf FHEO:Complaint .

FHEO:Sex rdfs:subClassOf FHEO:Complaint .

FHEO:White rdfs:subClassOf FHEO:Complaint . 


We can now express the status of :entry1 as a case of disability discrimination with the single triple. 

:entry1 a FHEO:Disability . 
Since FHEO:Disability is a subclass of FHEO:Complaint, we can infer from the type propagation 
rule that :entry1 is also a FHEO:Complaint. 

Building a model of this sort lets us describe our complaints in a concise form, but it doesn’t change our 
data—the data are still in the form of “1” and “0.” How can we transform our data, so that all the entries with a “1” 
for the property:disability become members of the class :Disability, and those with 
a “1” entry for the property :race become members of the class :Race, etc.? Each of these is easy to 
accomplish with a SPARQL CONSTRUCT of the form. 

CONSTRUCT {?e a :Disability}

WHERE {?e a dgtwc:DataEntry .


?e :disability "1" . } 

We can define nineteen of these queries, one per legally identified discrimination factor. This will construct the triple 

:entry1 a FHEO:Disability . 

as desired. 

SPARQL used in this way constitutes an inference method, just as RDFS and RDFS-Plus are 
inference methods. In contrast to RDFS and RDFS-Plus, SPARQL CONSTRUCT can be used to 
express highly customized rules about data. In this case, we used a SPARQL CONSTRUCT to define 
a rule relating the form in which we found the data, to the form we’d like it to be in. 

Describing relationships in data 
Now that we have a description of our data in classes, we can start to describe relationships in the data 
in RDFS. Let’s take a look at some relationships in this data that we could express this way. 

Consider the properties from the original data—things like :race, :national_origin, 
:religion, etc. But we also have properties like :race_asian, :race_white, 
:national_origin_hispanic. One might wonder if there is some relationship between these 
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values—for instance, is it true that all cases listed under :race_asian are (or should be) listed under 
:race as well? If so, how should we represent this? 

First, we can check the data to see if this is the case. Let’s find out if there is any case that lists Asian 
as a basis that does not also list Race as a basis. In terms of classes, we want to find members of the 
class FHEO:Asian that are not also members of the class FHEO:Race. We can do this with an ASK 
query in SPARQL: 

ASK 
{?a a FHEO:Asian .

UNSAID {?a a FHEO:Race}} 


When we evaluate this query over the RDF version of data set 1329, we get the answer false; that is, 
every case of Asian bias is also a case of racial bias. We can express a relationship like this in RDFS 
(thereby expressing our opinion that this holds not just for the data we have observed, but for all data 
yet to come) with a single triple in RDFS: 

FHEO:Asian rdfs:subClassOf FHEO:Race . 

Similar comments apply to many of the relationships in this data. We can express them all in, as 
summarized in Figure 9.1. 

FIGURE 9.1 

Relationships between types of FHEO complaint, sorted by discrinination basis. 



192 CHAPTER 9 Using RDFS-Plus in the wild 

We can verify this model against the current data, by using a SPARQL query that tests every-
subclass of FHEO:Complaint, to see whether it has any members that are not also members of its 
own parent. This query uses many of the different SPARQL constructs discussed in Chapter 5: 

SELECT (COUNT (?suball) AS ?total) (COUNT (?subonly) AS
?mismatch) ?class ?parent
WHERE {
?class rdfs:subClassOf+ FHEO:Complaint .
?class rdfs:subClassOf ?parent .
FILTER (?parent != FHEO:Complaint)
{
{?suball a ?class}
UNION
 {?subonly a ?class .

UNSAID{?subonly a ?parent}
}
}

}
GROUP BY ?class ?parent 
This query finds the subclasses of FHEO:Complaint (leaving out the direct subclasses), and 

compares each one to its own parent. The comparison is done by finding all the complaints that are 
members of the subclass, regardless of what else they might be members of (?suball), and also all 
complaints that are members of the subclass but not members of the parent class (?subonly). Finally, it 
counts up the number of matches, sorted by ?class and ?parent. The result is given in Table 9.1. The 
results show that all the subclass relationships indeed hold in the current data. 

Merging data with RDF and SPARQL 
Data set #1329 includes more data about each complaint than just its type; it also includes information 
about the location of the complaint. The data aren’t very precise—they only show it down to the level 

Table 9.1 Results of SPARQL query, checking subClassOf relationships in the FHEO model 
against current data 

Total Mismatch Class Parent 

3283 0 FHEO:Hispanic FHEO:NationalOrigin 

290 0 FHEO:Asian FHEO:Race 

33 0 FHEO:AsianAndWhite FHEO:Race 

11516 0 FHEO:Black FHEO:Race 

617 0 FHEO:BlackAndWhite FHEO:Race 

24 0 FHEO:HPI FHEO:Race 

216 0 FHEO:NA FHEO:Race 

62 0 FHEO:NABlack FHEO:Race 

37 0 FHEO:NAWhite FHEO:Race 

205 0 FHEO:Other FHEO:Race 

1148 0 FHEO:White FHEO:Race 
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of one of the many hundreds of counties found in US states. But we can take advantage of linking this 
information to other data to find out where the events took place. The data is in the form 

FHEOFiling:entry13459 a FHEO:FamilialStatus ; 

       FHEO:violation_county "Los Angeles County" ; 


FHEO:violation_state "California" . 


Suppose we have another data source that cross-references county names with their location (given 
by latitude and longitude, by street address, etc.). This sort of data is available from various address 
services (several of which will provide it in forms that can be displayed on Google map). To 
demonstrate how this works, we will use a data set at http://www.workingontologist.org/Examples/ 
chapter9/counties. These data include information in the form 

US:Los_Angeles_CountyCalifornia

a US:County ;


      rdfs:label "Los Angeles County, California" ; 

geo:lat "34.3871821"^^xsd:float ;

geo:long "-228.1122679"^^xsd:float . 


We would like to be able to cross-reference our FHEO data with these data, to find out where the 
alleged incidents occurred. Once again, we can do this with SPARQL CONSTRUCT. 

These two data sets (almost) align at the name of the county. The county geographical data are 
indexed by the full name of the county, including the name of the state (separated by a comma). The 
FHEO data include names of counties and names of states. We just need to adjust these two so that we 
can compare them. 

We already saw in Chapter 5 how we can concatenate strings together in a SPARQL query. We can 
get the combined name of the county and state from a complaint with the query 

SELECT (fn:concat (?county, ", ", ?state) AS ?countyname)
WHERE {


?complaint FHEOFiling:violation_county ?county .

?complaint FHEOFiling:violation_state ?state .


} 

If we use this query as a subquery, we can use its results to guide the search for a county by 
?countyname. 

SELECT ?county ?complaint ?lat ?long

WHERE {


{SELECT (fn:concat (?county, ", ", ?state) AS ?countyname)

WHERE {


?d FHEO:violation_county ?county .

?d FHEO:violation_state ?state . 


}

}

?county rdfs:label ?countyname .

?county a US:County .

?county geo:lat ?lat .

?county geo:long ?long


} 

http://www.workingontologist.org/Examples/
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This query gives us a cross-reference between complaints and the counties they occurred in. But the 
reason we did this cross-reference was so that we could get some geographical data from the second 
datasource, that wasn’t in the first one; we get that information from the last two triples in the graph pattern. 

We can take this example further, by sorting the results according to various criteria. For example, 
we might want to know how many complaints associated with a particular basis occurred in each 
county. The basis for a complaint is now just a class that it belongs to—so we can get that by finding the 
type of the complaint. We restrict the type to types of complaint. 

SELECT ?type (COUNT (?complaint) AS ?severity) ?countyname ?lat ?long
WHERE {

{SELECT ?type ?complaint (fn:concat (?county, ", ", ?state)
AS ?countyname)

WHERE {
?type rdfs:subClassOf+ FHEO:Complaint .
?complaint a ?type .
?complaint FHEO:violation_county ?county .
?complaint FHEO:violation_state ?state .

}

}

?c rdfs:label ?countyname .

?c a US:County .

?c geo:lat ?lat .

?c geo:long ?long .


}

GROUP BY ?type ?countyname ?lat ?long

HAVING (?severity > 300) 


This query combines many of the features of SPARQL from Chapter 5. Starting with the match of 
a complaint to a county, we also find the type of the complaint (limited only to types that are subclasses 
of FHEO:Complaint). Then, for each type/county name pair, we count the number of distinct 
complaints (as ?severity). Finally, we sort by severity, keeping those results having more than 300 
complaints. The results are shown in Table 9.2. 

These results include enough information to drive an API for displaying things on the map. If we 
choose an icon with a different size and intensity for each basis and severity, then we can put these data 
on a map as shown in Figure 9.2. 

Table 9.2 Results of query counting number of complaints per type and county 

Type Severity Countyname Lat Long 

Disability 322 New York County, New York 40.7834345 �73.9662495 

Disability 579 Los Angeles County, California 34.3871821 �118.1122679 

Disability 317 Maricopa County, Arizona 33.2917968 �112.4291464 

Familial Status 378 Los Angeles County, California 34.3871821 �118.1122679 

Race 431 Los Angeles County, California 34.3871821 �118.1122679 

Race 322 Cook County, Illinois 41.7376587 �87.6975540 

Race 339 Tarrant County, Texas 32.7732044 �97.3516558 
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This same method can be generalized to mash up more data sets. For example, any data set that uses 
county names is amenable to this same query. Mashing up multiple data sets is as easy as loading the 
new classes for the new data sets, and letting SPARQL do the rest. This approach is being used on US 
government data sets every day, providing insight into the otherwise unmanageable data. 

DATA.GOV SUMMARY 
The example mashup using data.gov shown here really represents only the tip of the iceberg of what 
has been done, and continues to be done, with open government data sets. A development community 
has generated a large number of applications using the RDF data from the United Kingdom, and in the 
United States researchers at Rensselaer Polytechnic Institute (RPI), have used this approach to produce 
a wide variety of applications using government data, several of which are highlighted on the official 
US data.gov page (See http://data.gov/semantic). The provisioning of government data as RDF makes 
it easy to mix and match data sets, producing visualizations, applications and reports that mashup 
information from multiple data sets or combine government data with other web data (Wikipedia, news 
articles, Google results, etc.), which would have been significantly harder and more expensive to do 
with pre-Semantic Web technologies. 

FIGURE 9.2 

Map display of the data in Table 9.2. 

http://data.gov/semantic)
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SPARQL plays a key technological role in all of these mashups. SPARQL provides the analyst with 
a pattern matching tool for extracting just the necessary information to drive a report or a display. Many 
of the more advanced features of SPARQL (aggregates, filters, subqueries, UNIONS, etc.) are put to 
good use in these mashup applications. (The web site http://logd.tw.rpi.edu contains a number of demo 
mashups, each linked to a page which shows the specific SPARQL queries used in producing them.) 

FOAF 
FOAF (Friend of a Friend) is a format for supporting distributed descriptions of people and their 
relationships. The name Friend of a Friend is intended to evoke the fundamental relationship that holds 
in social networks; you have direct knowledge of your own friends, but only through your network can 
you access the friends of your friends. Though the FOAF project dates back to early in the year 2000, 
and thus predated many of the most popular social networking web sites like Friendster, LinkedIn, and 
Facebook, many of the issues that FOAF was designed to deal with are at the center of the discussion of 
the social network industry ten years later: privacy, ownership, and distribution of data. FOAF began 
with a simple observation: If we are to support social networks on the Web, individuals must be able to 
take control of their own data, host it as they please, manage it using whatever tools they please, but 
still interact with other users, regardless of the choices these other users make. The most successful 
social networking sites did not take these things into account at first; now issues of privacy and data 
ownership are hot topics for any social network. FOAF is also the basis of a number of growing “open 
social” efforts that aim to allow users to integrate their own information across the many social-
networking sites and applications available on the Web. 

FOAF works in the spirit of the AAA principle: Anyone can say Anything about Any topic. In the 
case of FOAF, the topics that anyone is usually saying things about are people. Other things that are 
commonly related to what we might want to say about people, such as Organizations (that people 
belong to), Projects (that people work on), Documents (that people have created or that describe them), 
and Images (that depict people), are also included in the core FOAF description. Information about 
a single person is likely to be distributed across the Web and represented in different forms. On their 
own web page, a person is likely to list basic information about interests, current projects, and some 
images. Further information will be available only on other pages; a photoset taken at a party or 
conference could include a picture that depicts a person who has not listed that photoset in her own 
web page. A conference organizer could include information about a paper that lists its authors, even if 
the authors themselves might not have listed the paper on their own web site. A laboratory or office 
might have a page that lists all of its members. FOAF leverages the distributed nature of RDF to 
provide a distributed representation of this information. Social networking sites have begun to make 
information available in FOAF for web-scale distribution. 

Given that there are a number of social networking web sites available and that each one of them has 
a way to represent its members, information about them, and ways in which they are connected to one 
another, one could well ask why there is a need for yet another way to describe people and their social 
networks. The idea of FOAF is not to replace any of these systems but to provide a framework whereby this 
information can be distributed. Furthermore, using RDF, FOAF provides a framework that is extensible. 
Because Anyone can say Anything about Any topic, FOAF allows anyone to make novel statements about 
people, projects, and so on and to relate these statements to other statements already made. 

http://logd.tw.rpi.edu
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FOAF leverages the AAA principle as well as the distributed and extensible nature of RDF in an 
essential way. At any point in time, FOAF is a work in progress. There are vocabulary terms in FOAF 
whose semantics are defined only by natural language descriptions in the FOAF “standard.” Other 
terms have definitions defined in RDFS-Plus that relate them in a formal way to the rest of the 
description. FOAF is designed to grow in an organic fashion, starting with a few intuitive terms and 
focusing their semantics as they are used. There is no need to commit early on to a set vocabulary, since 
we can use RDFS-Plus to connect new vocabulary and old vocabulary, once we determine the desired 
relationship between them. 

FOAF provides a small number of classes and properties as its starting point; these uses some of the 
basic constructs of RDFS-Plus to maintain consistency and to implement FOAF policies for infor
mation merging. FOAF is a fairly simple system for describing people, the things they create, and the 
projects they participate in. It is primarily organized around three classes: foaf:Person, 
foaf:Group, and foaf:Document. 

People and agents 
Although FOAF is primarily about people, some of the things we want to say about people are true of 
other things as well: groups, companies, and so forth. So a foaf:Person is defined as part of 
a compact hierarchy under the general grouping of foaf:Agent: 

foaf:Person rdfs:subClassOf foaf:Agent.

foaf:Group rdfs:subClassOf foaf:Agent.

foaf:Organization rdfs:subClassOf foaf:Agent.


Many things we might say about a foaf:Person can hold for any foaf:Agent. In fact, FOAF 
is quite liberal in this regard; most of the properties we describe here for people hold for agents in 
general. Details of exactly which properties are used for which classes are available in the FOAF 
Vocabulary Specification at http://xmlns.com/foaf/0.1/. 

Names in FOAF 
Probably the most essential thing we know about a person is that person’s name. FOAF provides 
a number of vocabulary terms to describe the name of a person. Even something as simple as a person’s 
name can be quite complex. FOAF begins with a simple notion of name, which it sensibly calls 
foaf:name. 

foaf:name rdfs:domain owl:Thing.

foaf:name rdfs:subPropertyOf rdfs:label.


That is, anything in the world can have a name (including a foaf:Person), and that name is also 
used as the printable label for that thing. For a foaf:Person, the name is typically the full name of 
the person, like “William Shakespeare” or “Anne Hathaway.” 

Although the full name of a person is quite useful, parts of a person’s name are needed in 
some circumstances. foaf:firstName, foaf:givenname, foaf:family_name, and 
foaf:surname are four properties relating to names of people that are defined in FOAF. Each of 

http://xmlns.com/foaf/0.1/


198 CHAPTER 9 Using RDFS-Plus in the wild 

them has an intuitive meaning, but there are no formal semantics; the meaning is given only in prose 
descriptions and by evolving conventions of use. As FOAF evolves, it will need to encompass different 
cultures and their use of names. Does the given name always come first? Is a family name always the 
surname? How do culture-specific names (for example, the “Christian name” that is still used in some 
cultures) relate to other names? 

One of the advantages to basing FOAF on RDF is that it is not necessary to resolve all of these 
issues to begin the project of marking up data using the FOAF vocabulary. The strategy taken by FOAF 
is to begin by annotating a person’s name while providing other naming vocabulary such as surname, 
firstname, givenname, and so on. Usage patterns will dictate which of these will turn out to be useful. If 
it turns out that, say, two properties are used in exactly the same way, then this observation can be cast 
by describing the relationship in OWL. For example: 

foaf:surname owl:equivalentProperty foaf:family_name. 

Nicknames and online names 
Since FOAF is primarily used on the Web, it is expected that many of the people FOAF will be used 
to describe will be active in various Internet communities. For instance, it is likely that a FOAF 
Person will have a screen name on some online chat service. FOAF identifies foaf:aimChatID, 
foaf:icqChatID, foaf:msnChatID, and  foaf:yahooChatID currently. In the spirit of 
extensibility of FOAF, new ID properties can be added on an as-needed basis. Although some 
part of the semantics of these properties is given by their natural language descriptions (which 
connect foaf:yahooChatID to the chat service Yahoo!), FOAF also makes a formal connection 
between these properties. In particular, all of them are subproperties of a single property, 
foaf:nick: 

foaf:aimChatID rdfs:subPropertyOf foaf:nick.

foaf:icqChatID rdfs:subPropertyOf foaf:nick.

foaf:msnChatID rdfs:subPropertyOf foaf:nick.

foaf:yahooChatID rdfs:subPropertyOf foaf:nick.

foaf:jabberID rdfs:subPropertyOf foaf:nick. 


Following the rules of rdfs:subPropertyOf from Chapter 6, this means that any 
foaf:Person who is active in chat spaces is likely to have multiple values for the property 
foaf:nick—that is, to have multiple nicknames. They can, of course, have further nicknames 
as well. For instance, when William Shakespeare became active in Internet chat rooms, from a 
FOAF point of view, all those screen names are also nicknames: 

lit:Shakespeare foaf:aimChatID "Willie1564".

lit:Shakespeare foaf:msnChatID "TempestMan".

lit:Shakespeare foaf:nick "Willie1564". 

lit:Shakespeare foaf:nick "TempestMan".


Of course, we can still assert a nickname for the poet and playwright, even if he doesn’t use it as 
a screen name anywhere: 

lit:Shakespeare foaf:nick "The Bard of Avon". 
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Online persona 
The Internet provides a number of ways for a person to express himself, and FOAF is under 
constant revision to provide properties to describe these things. A person is likely to have an 
electronic mailbox, and FOAF provides a property foaf:mbox for this purpose. Many people 
maintain a number of web pages describing parts of their lives. Some have personal homepages, 
some have homepages at their workplace or school, and some may even have both. Even their 
workplaces can have homepages. FOAF uses the same strategy for these properties as it does 
for names: It provides a wide array of properties, defined informally (by natural language 
descriptions). 

foaf:homepage—relates a person to their primary homepage. This property applies to anything in 
FOAF, not just to people. 

foaf:workplaceHomepage—the homepage of the workplace of a person. Anything can have 
a homepage (even an employer), but only a foaf:Person can have a workplaceHomepage. 

foaf:workInfoHomepage—the homepage of a person at their workplace. Such a page is usually 
hosted by a person’s employer, but it is about the person’s own work there. 

foaf:schoolHomepage—the homepage of the school that a foaf:Person attended. 
As the Internet provides new means of expression, FOAF keeps up: 

foaf:weblog—the address of the weblog of a person. 
All of these properties specify instances of the class foaf:Document—that is, a web page is 

a foaf:Document, a weblog is a foaf:Document, and so on. 

Groups of people 
One of the interesting things about people is the groups they belong to. FOAF provides a class called 
foaf:Group to define these groups. A group is connected to its members via a property called, 
appropriately enough, foaf:member. A  foaf:Group is defined quite loosely; any grouping of 
people can be described this way. For instance, we could define a group called English Monarchy as 
follows: 

:English_Monarchy
a foaf:Group;
foaf:name "English Monarchy";
foaf:homepage "http://www.monarchy.com/";
foaf:member :William_I, :Henry_I, :Henry_II,

:Elizabeth_I, :Elizabeth_II. 

A group in FOAF is an individual of type foaf:Group. As such, there are a number of prop
erties that can describe it, like foaf:name (as we see here). In fact, a foaf:Group has a lot in 
common with a foaf:Person; it can have a chat ID, a nickname, an email box, a homepage, or 
even a blog. 

It is also useful to consider the members of a group as instances of a class—that is, to relate 
the instance of foaf:Group to an rdfs:Class. For this purpose, FOAF provides a link from 
a group to a class, called foaf:membershipClass. Suppose that the membership class for 
English_Monarchy is called Monarch; this connection is expressed in FOAF with the triple. 

"http://www.monarchy.com/";
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:English_Monarchy foaf:membershipClass :Monarch. 

The members of the group English_Monarchy all have type Monarch: 

:William_I a:Monarch.

:Henry_I a:Monarch.

:Henry_II a:Monarch.

:Elizabeth_I a:Monarch.

:Elizabeth_II a:Monarch.


Ideally, all of these triples should be maintained automatically; that is, any individual of type 
Monarch should appear as a member of the group English_Monarchy and every member of the 
group English_Monarchy should have Monarch as a type. This stipulation is stated explicitly as 
part of the FOAF description. We will see in Chapter 11 how to use the capabilities of OWL to build 
a model from which we can infer these triples. The distinction between the instance 
English_Monarchy and the class Monarch is a subtle one: The class Monarch is  a type in  
RDFS, and as such, it refers to schematic things about monarchs—property domains, subclasses, and 
so on. English_Monarchy, on the other hand, refers to the institution of the monarchy itself, 
which refers to things like this history of the monarchy, web pages and books about the monarchy, and 
so on. 

In our examples so far, we have kept the world of classes separate from the world of instances. The 
only relationship between an instance and a class has been the rdf:type property. The intuition 
behind foaf:membershipClass is that it indicates a class, whose instances are exactly the same 
as the members of the group. The expression of this kind of relationship, in which we sometimes 
wish to view something as an instance (e.g., English_Monarchy, an instance of the class 
foaf:Group) and sometimes as a class (e.g., the class Monarch, representing all the instances that 
are foaf:member of that group), is an example of a practice called metamodeling. We will see more 
about metamodeling when we learn about the rest of the OWL language, and we will see how we can 
use metamodeling constructs in OWL to formalize the relationship between a foaf:Group and its 
foaf:membershipClass. 

Things people make and do 
Interesting people create things. They write books, publish web pages, create works of art, found 
companies, and start organizations. FOAF provides two properties to relate people to their creations: 
foaf:made and foaf:maker. They are inverses of one another, and they relate a foaf:Agent to 
an owl:Thing as follows: 

foaf:made rdfs:domain foaf:Agent.

foaf:made rdfs:range owl:Thing.

foaf:maker rdfs:domain owl:Thing.

foaf:maker rdfs:range foaf:Agent.

foaf:made owl:inverseOf foaf:maker.


That is, anything in the describable universe is fair game for being made by some agent. Even another 
agent could have a foaf:maker! 
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If a person is an author, then he is likely to have publications to his credit. The property 
foaf:publications relates a foaf:Person to any foaf:Document published. Interest
ingly, FOAF does not specify that a person has foaf:made any of their foaf:publications. In  
the spirit of the AAA principle, if we were to decide to make such a statement, we could do so simply 
by saying 

foaf:publications rdfs:subPropertyOf foaf:made. 

Identity in FOAF 
The main goal of FOAF is to apply the AAA principle to describing networks of people; anyone can 
contribute descriptions about anyone. But this leads to a problem: It is easy enough for me to 
describe myself; I can publish a document that says whatever I wish to make known. If someone else 
wants to contribute information about me (say, for example, that the publisher of this book wants to 
add the information that I am an author), how will that person refer  to  me? Or if I have  several  
profiles on different sites that I would like to merge together, how can I link them to describe the one 
thing that is “me”? This is a key issue in social networking today—systems like OpenID provide 
naming services so that individuals can have a single identity that cuts across various social 
networks. 

The RDF approach to this question is quite simple; RDF uses URIs to denote the things it 
describes; that means that I should have a URI that denotes me, and anyone who wants to make 
a comment about me can make it using that URI. This is a simple, elegant, and standard solution to 
this problem. This is the solution that OpenID uses, and, to some extent, every social network system 
uses; a user’s screen name becomes a URI; no two users on the same system are allowed to have 
the same name, so the referent of a URI like http://www.facebook.com/#!/markzuckerberg is 
unambiguous. 

But FOAF is a distributed social networking system—can we expect people to just make up  
a URI to refer to themselves? As social networking matures, this solution is becoming more and 
more viable; in fact, for many applications, a Facebook identity counts as a shared identity for 
many other social networks as well, making it into a sort of naming authority for the Web (as is 
OpenID). But widespread as these things are, they are still not ubiquitous—one can be a very 
active Internet citizen without having a Facebook account. Certainly in the days when FOAF was 
young, these naming authorities were not in widespread use. FOAF needed a way for people to 
refer to one another that would use some part of the Internet infrastructure that was already 
ubiquitous and familiar. Is there any identifying marker that everyone on the Internet already has 
and is already familiar with? 

The clearest answer to this puzzle is email. Just about anyone who is described on the Web in any 
way at all has an email address. (Even in 2010, efforts like Webfinger take the same approach—they 
aim to take advantage of the ubiquity and familiarity of an email address to deal with identity on the 
social web). Email works quite well as an identification mechanism; it is quite rare that two people 
share the same email address. It is so rare that for the purposes of FOAF, email can serve as a unique 
identifier for people on the Web. Notice that it isn’t a problem if someone has two or more email 
addresses or if some email address is valid only for a limited period of time. All FOAF requires of 
the email address is that another person doesn’t share it (either simultaneously or later on). 

http://www.facebook.com/#!/markzuckerberg
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We can express this constraint in plain language by saying simply that two people who share the 
same email address are in fact not two distinct people at all but instead are the same person. As we have 
already seen, RDFS-Plus has a way to formalize this relationship. When a property uniquely identifies 
an individual, we say that the property is an owl:InverseFunctionalProperty. So  in FOAF,  
we can express the central role that foaf:mbox plays in identifying individuals with the single triple. 

foaf:mbox rdf:type owl:InverseFunctionalProperty. 

Once we identify foaf:mbox as an owl:InverseFunctionalProperty, we realize that 
a similar statement can be made about a number of the properties we use to describe people; it is 
unusual for two people to share a yahooChatID or an aimChatID. In fact, all of the following 
properties in FOAF are owl:InverseFunctionalProperties: 

foaf:aimChatID rdf:type owl:InverseFunctionalProperty.

foaf:homepage rdf:type owl:InverseFunctionalProperty.

foaf:icqChatID rdf:type owl:InverseFunctionalProperty.

foaf:jabberID rdf:type owl:InverseFunctionalProperty.

foaf:mbox rdf:type owl:InverseFunctionalProperty.

foaf:msnChatID rdf:type

owl:InverseFunctionalProperty.foaf:yahooChatID rdf:type

owl:InverseFunctionalProperty. 


Using the foaf:mbox (and similar properties) as identifiers of individuals solves the technical 
problem of identifying individuals by some preexisting identification, but it raises another problem: 
Publishing someone’s email address is considered a violation of privacy, since email addresses (and 
chat IDs) can be used to pester or even attack someone by sending unwanted, offensive, or 
just bulky mail. So if we want to apply the AAA principle to William Shakespeare, and we know 
that he uses the email address Shakespeare@gmail.com, we can refer to him as “the person 
with email ‘Shakespeare@gmail.com’” (using a blank node, as we did for Shakespeare’s 
inspiration): 

[foaf:mbox "Shakespeare@gmail.com "] 

When we do this, we publish his email address in plain text for information vandals to steal and use. 
This isn’t a very polite thing to do to someone we know and respect. For this reason, FOAF also offers 
an obfuscated version of foaf:mbox, called foaf:mbox_sha1sum. It indicates the result of 
applying a hashing function called SHA-1 to the email address. The SHA-1 function is publicly 
available but very difficult to reverse. To get the obfuscated string—f964f2dfd4784fe9d68a 

da960099e0b592e16a95—we apply the algorithm to Shakespeare’s email address. Now we can 
refer to him using this value: 

[foaf:mbox_sha1sum

"f964f2dfd4784fe9d68ada960099e0b592e16a95" ]


without compromising his privacy. Unfortunately, FOAF does not provide a standard way to obfuscate 
the other identifying properties such as foaf:aimChatID, foaf:yahooChatID, and so forth, 
although several proposals to update FOAF include these. 

http:Shakespeare@gmail.com
mailto:"Shakespeare@gmail.com
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It’s not what you know, it’s who you know 
The key to FOAF as a social networking system is the ability to link one person to another. FOAF 
provides a single, high-level property for this relationship, called foaf:knows. The idea behind 
foaf:knows is simple: One person knows another one, who knows more people, and so on, forming 
a network of people who know people. There isn’t a lot of inferencing going on with foaf:knows; 
the only triples defined for it are 

foaf:knows rdfs:domain foaf:Person.

foaf:knows rdfs:range foaf:Person.

that is, foaf:knows just links one foaf:Person to another. 
The lack of inferencing over foaf:knows is by design; the foaf:knows design is inten

tionally vague, to indicate some relationship between people. Such a relationship could be concluded 
informally from other information—for instance, co-authors can usually be assumed to know 
one another. And while it is usual to think that if one person knows another that the relationship 
is mutual, the FOAF designers intentionally left out the assertion of foaf:knows as an 
owl:SymmetricProperty, since there might even be some disagreement about whether one 
person knows another. Despite its vague definition, foaf:knows provides the infrastructure for 
using FOAF for social networking, as it links one person to the next and then to the next and so on. 

FACEBOOK’S OPEN GRAPH PROTOCOL 
FOAF may have been around the longest, but the largest social network to date is Facebook. Facebook 
began life, as other social network sites did, as a world unto itself—things were in Facebook, or they 
weren’t. Facebook didn’t include Web pages that were outside its own network. One of the ways 
Facebook has addressed this was the 2010 adoption of the Open Graph Protocol (OGP), which allows 
it to integrate with other web sites in new ways. 

The first and most obvious manifestation of the OGP is an extension of a Facebook facility called 
“like.” Every Facebook resource has a distinctive button on it called “like”; when a user clicks that 
button, that page goes into their profile as something they like. Their contacts can see that they like this, 
and they can opt to receive any updates about the thing they “like.” Facebook “like” is a very simple 
way for a user to customize their profile to reflect their own personality. 

The problem with “like” was that you could only “like” a page on Facebook. If you read a news 
story at a major newspaper or saw a concert listing that you wanted to “like,” there was no way to do it. 
The Facebook OGP expanded the coverage of Facebook to include pages that weren’t already part of 
Facebook. The OGP in effect moved Facebook one step toward being a global linked data network. 
The linkages aren’t profound—just people saying that they “like” something—but the OGP is an 
innovative move toward a linked web of data. 

To make this work, Facebook had to make it easy for someone to put information on a web page— 
any web page—that would allow Facebook to treat this page as something someone could point to 
(“like”) in the Facebook network. To make this happen, they had to overcome two obstacles: First, they 
needed a language in which web page authors could describe their pages to Facebook, and they needed 
a way for this information to be embedded in the web page itself. (Facebook has produced a number of 
different ways of putting “like” buttons on pages, not just OGP.) 
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The OGP model 
The Facebook Open Graph Protocol includes a very simple model that allows web page authors to 
describe the multiple things their web pages describe, in such a way that someone could “like” them in 
Facebook. The sorts of things that someone might want to describe include Sports, Businesses (bars, 
restaurants, etc.), People (actors, musicians, authors, etc.), Places, Products, and Web sites. A non-
normative version of the OGP model in RDFS simply lists about two dozen of these types of things one 
might want to describe in OGP. 

OGP also defines a number of properties that one can use to describe the things one might like. 
There are properties that describe location (either with place names, like “Palo Alto, California,” or 
with coordinates like latitude and longitude), properties for display purposes (like an image that 
depicts the thing), contact information (e.g., phone number, email, fax number), and identifiers (e.g., 
UPC, ISBN or URL). The OGP model doesn’t map these properties to the classes, e.g., to say that it is 
a person or a business that has a phone number, or a book that has an ISBN number, etc. It simply 
provides the types (Classes) and properties. 

OGP has been criticized for being insular and uncooperative because it did not adopt existing 
standards for all these things. FOAF already has properties for contacting and identifying people; the 
W3C already has a standard for geospatial models that includes properties for latitude and longitude. 
Other existing or emerging standards refer to just about any of the types or properties used by OGP. But 
OGP defined brand new ones. Doesn’t this contribute to the confusion of the Web, having just one 
more standard? 

It should be obvious to you by now that this criticism is based on a misunderstanding of the 
Semantic Web. The Non-Unique Naming Assumption admits that in a distributed system, this sort of 
thing will happen—different people will come up with new names for the same old things. We can’t 
try to get everyone to agree to use the same names—there are legitimate reasons why they want their 
own names. In the case of Facebook, their user tests showed that content managers were not happy 
with having to remember names from multiple sources—to remember, for instance, that it was 
foaf:mbox, but geo:lat and sioc:Site etc.; they wanted their vocabulary all in a single 
namespace, so that they just had to remember a few dozen words, and they could describe their 
content. 

The Semantic Web solution to this is to allow all of these models to coexist on the Web. We can 
have og:email (where “og:” is the namespace prefix for the OGP) alongside foaf:mbox, and  
og:latitude as well as geo:lat. The Semantic Web does not require that either of these systems 
prevail over the other; the two can coexist. OGP can keep its single namespace for content managers who 
don’t want to be bothered with multiple names, while FOAF, the W3C, and any other organization can 
maintain their own models. Since everything is an RDF resource, we can specify how they relate using 
RDFS-Plus. 

The OGP RDFS model expresses these relationships as follows: 

og:latitude rdfs:seeAlso geo:lat .

og:email rdfs:seeAlso foaf:mbox .


We could find fault in this model’s lack of specificity, using rdfs:seeAlso instead 
of something more expressive, like owl:equivalentProperty from RDFS-Plus. Using 
owl:equivalentProperty would make it clear that anything that FOAF calls an mbox is 
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something that OGP would call an email, and vice versa. Using rdfs:seeAlso makes no such 
commitment—it simply indicates a resource in FOAF that we should look at, if we are interested in 
knowing more about og:email. But for the purposes of linking OGP with other ontologies, 
rdfs:seeAlso does what is needed. 

Embedding OGP in a web page 
A web page author can describe what their page is about using the simple OGP model, but they still 
have to publish that information somehow. The easiest way to do this is to embed the description right 
in the web page itself. This solution lets the web page author maintain a single page on a particular 
subject, putting all the necessary information into that page. 

Facebook uses a simplified version of RDFa to encode OGP data in a web page. As with the 
vocabulary itself, user tests showed that embedding information in the web page had to be very simple. 
In particular, the web page author shouldn’t have to face a lot of decisions about how to do it. 

The solution was to put all the OGP data into HTML tags in the page header. For example, 
workingontologist.org, the web page for this book, has the following information in its header:

 <meta property="og:type" content="book"/>
<meta property="og:url" content="http://www.workingontologist.com/"/>
<meta property="og:image"

content="http://covers.elsevier.com/165_FW/9780123735560.jpg"/>
<meta property="og:site_name" content="Working Ontologist"/> 

This tells Facebook that this site is about a book that it is called Working Ontologist, that it is 
available at the URL http://workingontologist.org/, and provides a link to a picture of the cover. All the 
words that begin with og: in this snippet are from the OGP model, as is the type “book.” This provides 
Facebook all it needs to put a “like” button on the page, so that Facebook users can follow any updates 
that happen. We suggest you go to the web page right now, click on this button, and see what happens. 

SUMMARY 
OGP and FOAF demonstrate how fairly simple sets of modeling constructs can be used to create 
extensible, distributed information networks. They both take advantage of the distributed nature of 
RDF to allow extension to a network of information to be distributed across the Web. 

FOAF takes something of an evolutionary approach to information extension. Many concepts have 
a broad number of terms (like the several variants of “name” that we examined). FOAF can be extended 
as new features are needed. For instance, foaf:weblog was not as important before blogging 
became fashionable, but has now surpassed the more classical foaf:homepage in importance. 

OGP is arguably the most successful Semantic Web model ever; less than a year after its intro
duction, its use on the Web is becoming pervasive—as of late 2010 about 10–15% of the like buttons 
on the Web used the RDFa approach. With every Yahoo! shopping page, New York Times article, CNN 
news story, etc., having a “like” button, with at least four triples per button, it is difficult to estimate just 
how many RDF triples are generated from OGP use. Its success is certainly due in some degree to the 
enormous success of Facebook itself, but it is also due to the commitment to simplicity that the 

http:workingontologist.org
http://workingontologist.org/
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Facebook OGP made in its design. OGP includes only a couple dozen simple types along with about 
the same number of properties. 

OGP is also a clear example of the principles of the Semantic Web at work. There are already many 
number of models about social networking out there—FOAF being just one example. On the Web, we 
can’t expect everyone to agree on any one of these. Different applications have differing needs. 
Facebook identified a strong need for simplicity, so it re-invented several notions already available in 
other places. But that doesn’t mean that OGP creates just another impenetrable silo of information; 
even at its inception, its connection to these other systems was built-in to its model, in a machine-
readable, queryable way. OGP, from the outset, is part of a network of descriptive metadata for entities 
in social networks. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

Data.gov—Project to make US government spending data available in RDF.

FOAF—Namespace for a system of representation of social network information; short for “friend

of a friend.”

Metamodeling—Generally speaking, the craft of building a model that describes another model.

A specific example is the practice of representing a class in a model as an individual member of

another class. FOAF does this explicitly with the foaf:membershipClass property that

links an individual of type foaf:Group to the class of all members of the group.

RDFa—a system for embedding RDF data in a web page.

OGP—the Open Graph Protocol that lets Facebook users link to pages outside of Facebook.
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SIMPLE KNOWLEDGE ORGANIZATION SYSTEM (SKOS) 
SKOS (the Simple Knowledge Organization System) is a W3C Recommendation that provides 
a means for representing knowledge organization systems (including controlled vocabularies, thesauri, 
taxonomies, and folksonomies) in a distributed and linkable way. Knowledge Organization Systems 
have been around for a long time, most formally as part of Library Science, but means for representing 
and exchanging them in a computer network have not. 

Given the existence of several thesaurus standards, one could well wonder why people found it 
necessary to create another one. The key differentiator between SKOS and existing thesaurus standards 
is its basis in the Semantic Web. Unlike existing standards, SKOS was designed from the start to allow 
modelers to create modular knowledge organizations that can be reused and referenced across the Web. 
SKOS was not designed to replace any thesaurus standard but in fact to augment them by bringing the 
distributed nature of the Semantic Web to thesauri and controlled vocabularies. Toward this end, it was 
also a design goal of SKOS that it be possible to map any thesaurus standards to SKOS in a fairly 
straightforward way. 

As an example of using SKOS, for many years, the United Nations Food and Agriculture Orga
nization has maintained a thesaurus called AGROVOC for organizing documents about agriculture. 
Figure 10.1 shows a sample from the SKOS publication of AGROVOC. The diagram shows six 
concepts, which are related to one another by various properties that are defined in the SKOS Core. 
Data properties are shown within the boxes corresponding to the concepts. As we shall see, each of 
these properties is defined in relation to other properties, so certain useful inferences can be made. 

207 
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FIGURE 10.1 

Sample concepts from AGROVOC. 

The same information from Figure 10.1 is shown as triples in Turtle here: 

agrovoc:c_4397

a skos:Concept ;

skos:prefLabel "Bétail"@fr , "Livestock"@en ;

skos:altLabel "Animal stock"@en , "Farm animals"@en . 


agrovoc:c_2746
a skos:Concept ;
skos:prefLabel "Brebis"@fr , "Ewes"@en ;

  skos:altLabel "Gimmers"@en , "Antenaise"@fr , "Ewe hoggs"@en . 

agrovoc:c_4163

a skos:Concept ;

skos:prefLabel "Agneau"@fr , "Lambs"@en . 


agrovoc:c_6443

a skos:Concept ;

skos:prefLabel "Bélier"@fr , "Rams"@en ;

skos:altLabel "Tups"@en . 
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agrovoc:c_8369
a skos:Concept ;

  skos:prefLabel "Wethers"@en , "Mouton"@fr ; 
  skos:altLabel "Wether hoggs"@en , "Hoggets"@en ; 
  skos:scopeNote "Ovin mâle castré"@fr , "Castrated male 
sheep"@en . 

agrovoc:c_7030
a skos:Concept ;
skos:prefLabel "Sheep"@en , "Ovin"@fr ;

  skos:altLabel "Ovis aries"@en , "Ovis aries"@fr ; 
skos:broader agrovoc:c_4397 ;

  skos:narrower agrovoc:c_2746, agrovoc:c_6443, agrovoc:c_8369, 
agrovoc:c_4163 . 
First, let’s look at internationalization. SKOS is maintained by the UN in several languages, 

including English and French; each concept has labels in multiple languages. None of these languages 
can take precedence over any other—so the UN uses numbers instead of names as the basis of the 
URI’s for resources in AGROVOC. The human readable names are given as strings associated with the 
concepts in a variety of ways. Strings in Turtle optionally include a language tag (taken from the XML 
standard) to indicate the language they are written in—in this fragment, we have retained labels in 
English (“en”) and French (“fr”). 

Next, let’s look more closely at those strings, and how labels are managed in SKOS. As we have seen 
before, there is already a label resource defined in RDFS: rdfs:label. Although rdfs:label has 
no formal semantics defined (that is, there are no inferences that concern rdfs:label), it does have 
the informal meaning that it is something that can be used as the printable or human readable name of 
a resource. SKOS provides a more detailed notion of a concept’s label, in accordance with usual 
thesaurus practice. In particular, it defines three different kinds of labels: a preferred label, an alternative 
label, and a hidden label. These are defined in SKOS with the following triples: 

skos:prefLabel
a rdf:Property;
rdfs:label "preferred label"@en;
rdfs:subPropertyOf rdfs:label.

skos:altLabel 
a rdf:Property;
rdfs:label "alternative label"@en;
rdfs:subPropertyOf rdfs:label.

skos:hiddenLabel 
a rdf:Property;
rdfs:label "hidden label"@en;
rdfs:subPropertyOf rdfs:label. 

The SKOS definition includes a number of other triples defining these properties, but we will 
concentrate on these for this description. 

Notice that each property has an rdfs:label, which provides a human readable version of 
the name of each resource. Furthermore, each of these properties is declared to be of type 
rdf:Property. Finally, each of these is declared to be a subproperty of rdfs:label. What does 
this mean in terms of RDFS-Plus? 
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As we have already seen, rdfs:subPropertyOf propagates triples from the subproperty to the 
superproperty. In the first case, from any triple using skos:prefLabel as a predicate, we can infer 
the same triple with rdfs:label as a predicate instead. The same is true for skos:altLabel and 
skos:hiddenLabel; in particular, in our AGROVOC example, we can infer (among many others) 
the following triples: 

agrovoc:c_7030 rdfs:label "Sheep"@en . 

agrovoc:c_7030 rdfs:label "Ovin"@fr . 


That is, every SKOS label shows up as an rdfs:label. In AGROVOC, more than one value for 
rdfs:label can be inferred. This is perfectly legal in RDFS-Plus (after all, rdfs:label is not an 
owl:FunctionalProperty), even though it is a challenge to know how to display such 
a resource, if it has multiple print names. 

SKOS uses this same pattern for many of the properties it defines; for each of them, the sort of 
inference it supports is similar. So for the seven documentation properties in SKOS, six of them are 
subproperties of the seventh, thus: 

skos:definition rdfs:subPropertyOf skos:note.

skos:scopeNote rdfs:subPropertyOf skos:note.

skos:example rdfs:subPropertyOf skos:note.

skos:historyNote rdfs:subPropertyOf skos:note.

skos:editorialNote rdfs:subPropertyOf skos:note.

skos:changeNote rdfs:subPropertyOf skos:note. 


SEMANTIC RELATIONS IN SKOS 
SKOS defines several “semantic relations,” properties that relate concepts to one another, corre
sponding to familiar terms like broader, narrower, and related from thesaurus standards. But SKOS 
includes subtle variants of these properties, and models their relationships to one another. Figure 10.2 
shows the semantic relations in SKOS, and how they are related. 

The most familiar relations in this diagram are skos:broader, skos:narrower, and 
skos:related, which correspond to familiar thesaurus relations BT, NT, and RT, respectively. Two 
of them, skos:broader and skos:narrower (which are mutual inverses), are subproperties of 
transitive properties, skos:broaderTransitive and skos:narrowerTransitive (see 
Chapter 8 for Mutual Inverses), respectively. This is a familiar pattern we have seen already in 
Challenges 17 and 18 in Chapter 8. In those challenges, we maintained consistent versions of a rela
tionship, one transitive and one not transitive (or, more accurately speaking, not necessarily transitive). 
These challenges defined a simple design pattern to solve this problem, in which one property (not 
defined to be transitive) is a subproperty of another that is defined to be transitive. We see two 
occurrences of this pattern in the SKOS property tree, once each for broader and narrower. 

Let’s see how these uses of the transitive superproperty pattern, along with the inverses in the 
SKOS property tree, work together in the AGROVOC thesaurus. 

First, since skos:narrower is an inverse of skos:broader, we can make the following 
inferences about AGROVOC concepts in Figure 10.1. 
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FIGURE 10.2 

SKOS structure of Semantic Relations. Single arrows in the diagram refer to rdfs:subPropertyOf 

relationships; double arrows are owl:inverseOf relationships. 

agrovoc:c_4397 skos:narrower agrovoc:c_7030 . 

agrovoc:c_2746 skos:broader agrovoc:c_7030 . 

agrovoc:c_4163 skos:broader agrovoc:c_7030 . 

agrovoc:c_6443 skos:broader agrovoc:c_7030 . 

agrovoc:c_8369 skos:broader agrovoc:c_7030 . 


Furthermore, since skos:narrower and skos:broader are subproperties of skos: 

narrowerTransitive and skos:broaderTransitivec, respectively, we can infer that 
these things are also related with the transitive versions of broader and narrower: 

agrovoc:c_4397 skos:narrowerTransitive agrovoc:c_7030 . 

agrovoc:c_2746 skos:broaderTransitive agrovoc:c_7030 . 

agrovoc:c_4163 skos:broaderTransitive agrovoc:c_7030 . 

agrovoc:c_6443 skos:broaderTransitive agrovoc:c_7030 . 

agrovoc:c_8369 skos:broaderTransitive agrovoc:c_7030 . 

agrovoc:c_7030 skos:narrowerTransitive agrovoc:c_4397. 

agrovoc:c_7030 skos:broaderTransitive agrovoc:c_2746 . 

agrovoc:c_7030 skos:broaderTransitive agrovoc:c_4163. 

agrovoc:c_7030 skos:broaderTransitive agrovoc:c_6443. 

agrovoc:c_7030 skos:broaderTransitive agrovoc:c_8369. 


and that every concept in this sample is narrowerTransitive than the item at the “top” of the 
tree, agrovoc:c_4397 (“Livestock”): 

agrovoc:c_4397 skos:narrowerTransitive agrovoc:c_7030.

agrovoc:c_4397 skos:narrowerTransitive agrovoc:c_2746.

agrovoc:c_4397 skos:narrowerTransitive agrovoc:c_4163. 

agrovoc:c_4397 skos:narrowerTransitive agrovoc:c_6443.

agrovoc:c_4397 skos:narrowerTransitive agrovoc:c_7030. 
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Similar triples can be inferred (swapping subject for object, as usual) for the inverse property, 
skos:broaderTransitive. 

In the case of skos:related, it is not defined as owl:TransitiveProperty, so we cannot 
make inferences about chains of related items. Thus, in AGROVOC, Meat is related to Meat Animals 
is related to Turtles is related to Aquatic Animals is related to Mollusca is related to Mother of Pearl, 
but it isn’t a surprise that Meat isn’t related to Mother of Pearl. However, skos:related is an 
owl:SymmetricProperty which means that since “Mother of Pearl” (c_4951) is related to 
“Decorative uses” (c_2149), that c_2149 is related to c_4951. 

Meaning of semantic relations 
It is no accident that there is a considerable similarity between the definitions in SKOS of 
skos:narrower and skos:broader and the definition of rdfs:subClassOf and 
superClassOf (which is not defined in the RDFS standard). These pairs of properties are intended 
for modeling hierarchies. In both cases, it is desirable that the hierarchies could be traversed either 
“upward” or “downward.” In both cases, transitivity of the relationship is important. In the case of 
RDF, the transitive nature of subClassof is represented directly. SKOS uses a more sophisticated 
model, in which the user of the model can decide if they want to use a transitive notion of broader or 
narrower, or not. 

There is one definition for subClassOf that has no corresponding condition in SKOS. In RDFS, 
the type propagation rule holds. 

CONSTRUCT {?x rdf:type ?C}
WHERE {?x rdf:type ?B.

?B rdfs:subClassOf ?C . } 

Because of this rule, there is no confusion about the interpretation of rdfs:subClassOf. This 
rule makes it clear that C has more members (or at least, just as many) as B; that is, C is the more 
encompassing of the two classes. 

Since we have no such rule in SKOS, there is the possibility for confusion; when we say 

agrovoc:c_7030 skos:broader agrovoc:c_4397. 

should we read this (in English) as “c_7030 (Sheep) has broader term c_4397 (Livestock),” or 
should we read it as “c_4397 (Livestock) is broader than c_7030 (Sheep)”? There is nothing in 
the formal SKOS model to tell us which is which. The relationship is expressed informally in the 
annotations on skos:broader and skos:narrower; that is, the labels “has broader” and “has 
narrower” respectively indicate that the former interpretation is the intended one—Sheep has broader 
term Livestock. It is important to keep this in mind when reading the SKOS examples that follow in 
this book, where we will see triples like 

:Sheep skos:broader :Livestock. 
For many people, this interpretation of broader is backward from what they expect. 
If there were an inference-based definition of the semantics of skos:broader (as there is, for 

example, for rdfs:subClassOf), then the intended direction of this statement would be explicit. 
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There would be no need to rely on the interpretation of examples (like this one for Sheep and 
Livestock) to communicate which way the terms are intended to be used. 

SKOS and linked vocabularies 
One of the main advantages of SKOS is that it allows vocabularies to be linked. Controlled vocabu
laries and thesauri predate the age of the computer. Many vocabularies were developed before there 
was any idea of representing them on a computing platform, not to mention in a networked setting. 
Vocabularies with this sort of heritage have been developed to be stand-alone vocabularies, providing 
their own viewpoint on what words to use to describe some domain. 

In a world of computer networks, it is now common for vocabularies to interact. A collection of 
content organized using one vocabulary is presented to the same audience as a collection using another 
vocabulary. The vocabularies themselves become linked information resources. 

SKOS is uniquely suited for this purpose. Since SKOS is represented in RDF, every term has 
a unique identifier (its URI), which can be referenced on the Web. This makes it possible to make 
statements about how a term in one vocabulary relates to a term in another. 

SKOS provides a handful of matching properties exactly for this purpose: 

skos:exactMatch 

skos:narrowMatch 

skos:broadMatch 

skos:closeMatch 


The relationship between these properties and other SKOS properties is shown in Figure 10.2. 
The idea of these mapping relations is that we can express relationships between terms in different 

vocabularies. We have already seen the AGROVOC concept c_7030 (“Sheep”). In the United States, 
the National Agriculture Library (NAL) has its own vocabulary, that includes a term NAL:38846 

(“sheep”). What is the relationship between these two concepts? On the face of it, we might suspect 
them to be the same. We can express this as 

NAL:38846 skos:exactMatch AGROVOC:c_7030 . 
The property skos:exactMatch doesn’t have any inference-based semantics. To be more 

precise, there are no triples that we can infer from an exactMatch that will help us to understand 
what it means. It does, however, have a conventional meaning, that the two terms can be used inter
changeably across a wide range of information retrieval applications. 

While we might believe that these two terms are interchangeable, someone else might disagree, and 
believe that the USDA has a more specific notion of sheep than the United Nations does. This situation 
can also be expressed in SKOS, as 

NAL:38846 skos:broadMatch AGROVOC:c_7030 . 
Someone else might not be willing to make such a commitment, and instead only believes that the 

two variants of the word “sheep” can be used interchangeably in a few information retrieval settings. 
They can express this in SKOS by saying 

NAL:38846 skos:closeMatch AGROVOC:c_7030 . 
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Finally, someone might want to relate a term in one vocabulary to another, but not want to imply 
that they are referring to the same thing. For instance, someone might want to record the fact that the 
NAL concept for “mutton” (NAL:51747) is related to the AGROVOC notion of “Sheep.” There is no 
implication that these are the same thing, but there is some relationship. When searching for content 
about mutton, it makes sense for an information retrieval system to notify the searcher that there could 
be relevant content indexed under Sheep. This can be said in SKOS as 

NAL:51747 skos:relatedMatch AGROVOC:c_7030 . 
Unlike the meanings of words like subClassOf, sameAs, inverseOf, etc., in RDFS-Plus, the 

meanings of the words in SKOS have much less inference-based semantics. Their meaning is largely 
conventional, referring to how they should be treated by an information retrieval system. 

But the SKOS standard is not mute about how these terms relate to one another, and in fact SKOS 
uses RDFS-Plus to define those relationships. As we have seen in Figure 10.2, these properties 
participate in an elaborate subProperty structure. We have already seen how this structure relates 
skos:broader to skos:broaderTransitive. It also relates the matching properties to one 
another, and to the other SKOS properties. 

In particular, we might wonder when we should use skos:broadMatch and when we 
should just use skos:broader. Informally,  broadMatch is intended when mapping one 
vocabulary to another; we are stating that two terms that were defined separately are, nevertheless, 
related. But will we miss out on something, if we don’t also state that they are related by 
skos:broader? 

A quick look at Figure 10.2 can put our worries to rest. We see from the figure that 

skos:broadMatch rdfs:subPropertyOf skos:broader . 
This makes the situation clear—when we assert that a term has a broadMatch with another term, 

we have also implied that it is simply broader. The SKOS model makes it clear that we may infer that 
all our matches are also related by skos:broader. In short, we aren’t missing out on anything by 
simply using broadMatch. 

Similar comments apply to closeMatch and exactMatch; if we were to assert that the NAL 
notion of Sheep is an exactMatch to the AGROVOC notion of Sheep, we could also infer that they 
are also a closeMatch; this is because (again, as shown in Figure 10.2), 

skos:exactMatch rdfs:subPropertyOf skos:closeMatch . 
In particular, if an information retrieval system were to use skos:closeMatch as a means 

by which it determined which terms to cross-reference, it would catch all the exact matches as 
well. 

CONCEPT SCHEMES 
SKOS includes the notion of a Concept Scheme. A concept scheme is a largely informal collection of 
concepts, corresponding roughly to a particular thesaurus or knowledge organization system. While 
concept schemes have little formal definition, they are useful for conveying the intention of the 
publisher of one or more thesauri. Common practice for using concept schemes is mixed. Some 
authorities (e.g., AGROVOC) publish their whole vocabulary as a single concept scheme. Others (e.g., 
the Library of Congress) publish each of their vocabularies using a separate concept scheme 
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corresponding in part to different licensing controls on the different vocabularies. The National 
Agriculture Library uses several concept schemes, one for each highest-level heading. 

A concept scheme can be seen as a set of concepts. There are no conditions that membership 
in a concept scheme be related in any way to the semantic relations, skos:broader, 
skos:narrower, or  skos:related; a concept can be in one concept scheme while its broader 
and narrower concepts are in another. Concepts are related to a concept scheme by the properties 
skos:inScheme, skos:hasTopConcept, and skos:topConceptOf. 

Concepts in a concept scheme are related to the scheme using skos:inScheme. So the two 
concepts NAL:38846 (“sheep”) and AGROVOC:c_7030 (“Sheep”) we used in an earlier example 
are in a different concept scheme, as follows: 

AGROVOC:c_7030 skos:inScheme <http://www.fao.org/aos/agrovoc>. 

NAL:38846 skos:inScheme NAL:S . 


We, of course, knew that these concepts were maintained by different authorities because of their 
differing URIs. The explicit statement of inclusion in a concept scheme makes this relationship explicit 
and queryable with SPARQL. 

A concept scheme can also have one or more distinguished concepts called Top Concepts. The 
semantic relations skos:broader and skos:narrower define a tree structure of concepts. It is 
possible to find the top of such a tree structure with a SPARQL query, but it is convenient 
to indicate it with a special property. This is the purpose of skos:hasTopConcept and 
skos:topConceptOf. Two triples describe the relationship between top concepts and other 
members of a concept scheme: 

skos:topConceptOf rdfs:subPropertyOf skos:inScheme .

skos:topConceptOf owl:inverseOf skos:hasTopConcept . 

As a result of these two triples, the top concept of a scheme must also be in that scheme, and the 

properties topConceptOf and hasTopConcept are inverses. 

Managing SKOS concept schemes 
Common practice for using these properties is varied; some vocabularies don’t use them at all (leaving 
membership in the concept scheme implicit). Others use inScheme but make no indication of top 
concepts. Among those that indicate top concepts, some use hasTopConcept and others use 
topConceptOf. 

All of these practices are acceptable according to the SKOS standard, but having so many 
acceptable practices, while making the job of the thesaurus writer easy, makes it more difficult for 
the consumer of a vocabulary to find his or her way around. In a move toward normalizing thesaurus 
presentation in SKOS, we will offer the following recommended practice for using concept schemes: 

1.	 Align concept schemes to your own governance practice. In particular, use one concept scheme per 
vocabulary that is controlled by a single work process. 

2.	 Propagate membership in concept schemes across skos:broader and skos:narrower. That  
is, the inference given by the following SPARQL CONSTRUCT should be valid: 

CONSTRUCT {?c skos:inScheme ?S }
WHERE {?a skos:inScheme ?S .

?a skos:broader ?c .} 

<http://www.fao.org/aos/agrovoc>
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A similar rule holds for skos:narrower. 

3.	 Use skos:broadMatch (resp. skos:narrowMatch, skos:exactMatch, 
skos:closeMatch) only to map concepts that are in different concept schemes. 

4.	 Indicate the top of all skos:broader trees with skos:hasTopConcept. Do not indicate any 
concepts internal to the tree as top concepts. 

5.	 Keep the number of top concepts in any single concept scheme small (i.e., fewer than a half 
dozen) 

These guidelines are intended to provide some coherence to SKOS presentation, but are not 
normative in any way. They are motivated by experiences made while reading vocabularies prepared 
by a variety of authorities. While there may be good reasons to break any of these rules, keeping to 
them ensures that thesaurus presentations are not surprising (e.g., keeping concepts in a single scheme 
together in the same broader/narrower tree), and that it is easy for someone searching a vocabulary to 
know where to start (by indicating the top concept). Some of them are just common sense (e.g., not 
indicating internal nodes as “top” concepts), while others are somewhat arbitrary (e.g., why stipulate 
hasTopConcept instead of topConceptOf?). 

The existence of concept schemes provides an example of the motivation for having the property 
skos:exactMatch, even in light of the extant and very similar property owl:sameAs. The 
semantics of owl:sameAs state that any two resources that are sameAs one another are inter
changeable in every statement. This means that if two concepts were sameAs one another, then they 
would necessarily be in the same concept scheme. Since concept schemes reflect authority and work 
process, this is clearly not appropriate. The property exactMatch makes much less commitment to 
interchangeability of concepts, indicating only that one concept act like the other in information 
retrieval settings. 

SKOS INTEGRITY 
While many things in SKOS are not formally defined by inferences it does include a number of 
integrity conditions that can be applied to any SKOS model to verify that it conforms to the standard. 
These conditions are normative, in that a model that violates them cannot be said to be conformant to 
the standard. There are 46 such conditions on the core SKOS ontology. We will not cover all of them in 
this book, but by examining a few of them, we hope to convey the basic idea of how SKOS is intended 
to be used. 

Many of the constraints can be (and are) expressed in RDFS. In fact, all of the relationships shown 
in Figure 10.2 are part of the SKOS constraints, along with domain/range information such as: 

skos:inScheme rdfs:range skos:ConceptScheme .

skos:semanticRelation rdfs:domain skos:Concept.

skos:semanticRelation rdfs:range skos:Concept. 


That is, if something is in a scheme, then the thing it is in a skos:ConceptScheme. Any two 
things related by any semantic relation (that includes broader, narrower, related, and all the 
matching relations) are both members of the class skos:Concept. 
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Other constraints are most easily represented in SPARQL. We can use an ASK query to specify 
Boolean conditions in SPARQL; thus we can specify a condition that evaluates as true if there is 
a violation of the constraint. For instance, one constraint says that a resource has no more than one 
value of skos:prefLabel per language tag. This can be expressed in SPARQL as 

ASK 
WHERE {?c skos:prefLabel ?l1 .

?c skos:prefLabel ?l2 .
FILTER (lang (?l1) = lang (?l2))
FILTER (?l1 != ?l2)

} 

This query uses the function lang(?x) that returns the language tag for a string (“en” for English, 
“fr” for French, and so on). If the language tag matches for two different strings (i.e., they don’t 
match), then we have a violation of the constraint. 

Certain properties are constrained to be disjoint, e.g., skos:related and 
skos:broaderTransitive. That is, if two concepts are related, one cannot have the other as 
a broader term. This can be expressed in SPARQL as 

ASK 
WHERE {?a skos:related ?b .

?a skos:broader* ?b } 
That is, it is a violation if ?a and ?b are related, and one is broader (transitive) than the other. 
In general, the integrity constraints in SKOS guarantee that a vocabulary is orderly, in a manner 

conducive to its use (and re-use) in information retrieval settings. It wouldn’t do for a single concept to 
have two preferred labels in the same language, and once you know that one concept is broader than 
another, there is no need to shortcut this by making them related concepts as well. 

SKOS IN ACTION 
SKOS is a great example of what we have in mind when we call something “a model on the Semantic 
Web”; it models particular standards for how to represent thesauri in a Web-oriented way that 
encourages linking and reuse. We have seen what this model says about terms and concepts in 
a thesaurus and how they can relate to one another. But how is SKOS itself being used? What do we 
gain by representing a thesaurus in SKOS? 

Utilization of the SKOS standard has grown dramatically since the W3C made it a Recommen
dation (second version in 2008). In addition to AGROVOC and the US National Agriculture library, 
many large-scale thesauri have been published in SKOS, including the Library of Congress Subject 
Headings, the West Key Numbering System, and EUROVOC, as well as a multitude of smaller scale 
vocabularies. 

What has driven the popularity of SKOS? There are a number of factors involved. 
First is its simplicity. The initial “S” in SKOS stands for “Simple,” and the committee succeeded in 

large part in making it simple. This means that vocabularies represented in just about any other 
vocabulary system can be translated to SKOS without a lot of effort. The basic SKOS relationships 
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(broader, narrower, related) and classes (Concept, ConceptScheme) do a good job of capturing what is 
essential in vocabularies. 

Second is the ease with which a vocabulary can be transformed from other systems into SKOS. For 
the most part, if it is possible to query an existing vocabulary for broader, narrower, and related terms, 
then the vocabulary can be converted directly into SKOS. Simply record the outcome of that query as 
a triple: 

?narrow skos:broader ?broad . 
The simplicity of this process has enabled a cottage industry of SKOS conversions. It is not 

uncommon to see vocabularies that have been traditionally presented in spreadsheets, XML, databases 
and other storage formats published in SKOS. 

A closely related factor is that until SKOS, there was no de jure standard way to represent 
a vocabulary in digital form. This is a surprising state of affairs, brought about in part by the dominance 
of many proprietary digital vocabulary forms, and the failure of non-proprietary forms to gain the 
stamp of approval of a major standards body. While there are many thesaurus standards supported by 
groups like ISO and NISO, these standards did not include normative recommendations for how to 
store a thesaurus in digital form. 

The final factor is more subtle. Translation of a vocabulary into SKOS involves selecting a globally 
unique identifier for each concept. In practice, this is not a difficult thing to do (most thesauri already 
have some locally unique identifier anyway; e.g., the West Key Numbering System has its key 
numbers; the Library of Congress Subject Headings have their own identifiers). But translation into 
SKOS turns these locally unique identifiers into globally unique identifiers. This provides a great 
advantage when relating vocabularies to one another. As organizations merge and as information is 
published on a worldwide scale, it becomes more and more necessary to be able to link one vocabulary 
to another. This Web-enabled aspect of vocabulary management is something that older thesaurus 
standards (developed pre-Web) were not designed to support. 

The case of AGROVOC and the NAL vocabulary illustrates this advantage. Shortly after the 
introduction of SKOS, the United Nations pursued a project to map these two thesauri together. The 
project needed a representation that would allow for terms from the two sources to be distinguished 
from one another. For example, the AGROVOC word for “Groundwater” and the NAL word for 
“groundwater” must be managed separately, but it also must be possible to represent the relationship 
between them. The point of the project was to compare and manage proposed relationships between 
them—is the AGROVOC notion of “Groundwater” the same as the NAL notion of “groundwater”? Or 
is it broader? Or narrower? Or just closely related? Whatever conclusion tone proposes, it is necessary 
to be able to talk about the AGROVOC term and the NAL term in the same statement. The translation 
of terms into URIs makes it possible to relate these things with a single triple, e.g., 

NAL:11571 skos:broadMatch AGROVOC:c_3391 . 

SUMMARY 
SKOS demonstrates how a fairly simple set of modeling constructs can be used to create extensible, 
distributed information networks. SKOS takes advantage of the distributed nature of RDF to allow 
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extension to a network of information to be distributed across the web. It relies on the inferencing 
structure of RDFS-Plus to add completeness to their information structure. 

SKOS vocabularies provide a cornerstone for linking information on the web. In order for two 
information sources to integrate, they have to have some common ground. Controlled vocabularies are 
the best candidate for such common ground. Publishing vocabularies in SKOS allows the concepts 
they define to be referenced on a global scale. 

Controlled vocabularies are everywhere—not just in high-profile places like the United Nations or 
the Library of Congress. Anything that has a standard, official name can be used in a controlled 
vocabulary. Names of universities, stock symbols of companies, place names, names of months, all of 
these things are controlled vocabularies. Many of them have been published in SKOS, and many more 
are under way. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

Controlled Vocabulary—A set of terms providing common reference for linked information

systems.

SKOS—Namespace for a system of representation for information management. SKOS stands for

“Simple Knowledge Organization System.”

AGROVOC—The United Nations agriculture vocabulary, see http://aims.fao.org/website/

AGROVOC-Thesaurus.

NAL—the National Agriculture Library, see http://agclass.nal.usda.gov/.


http://aims.fao.org/website/
http://agclass.nal.usda.gov/
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In previous chapters, we saw how RDFS-Plus as a modeling system provides considerable support for 
distributed information and federation of information. Simple constructs in RDFS-Plus can be 
combined in various ways to match properties, classes, and individuals. In the previous chapter, we 
saw this utility applied to knowledge organization (SKOS). In this chapter, we present the modeling 
capabilities of OWL that go beyond RDFS-Plus. 

The OWL Recommendation is now in version 2.0, which extends the capabilities of OWL 1.0 with 
a number of new modeling constructs, but does not change the fundamental principles of how OWL 
works. Most of the modeling patterns in this book are valid in both OWL 1.0 as well as OWL 2.0; when 
something is specifically only available in OWL 2.0, we will indicate it explicitly. 

We begin our presentation of OWL with a treatment of owl:Restriction. This single 
construct enhances the representational power of OWL by allowing us to describe classes in terms of 
other things we have already modeled. As we shall see, this opens up whole new vistas in modeling 
capabilities. 

RESTRICTIONS 
Suppose we have defined in RDFS a class we call Base ballTeam, with a particular subclass 
called MajorLeagueTeam, and another class we call BaseballPlayer. The roster for any 
particular season would be represented as a property playsFor that relates a BaseballPlayer 

to a BaseballTeam. Certain players are special in that they play for a MajorLeagueTeam. 
We’d like to define that class and call it MajorLeaguePlayer (presented here as Major League 
Players, to avoid confusion). If we are interested in the fiscal side of baseball, we could also be 
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interested in the class of Agents who represent Major League Players, and then the bank accounts 
controlled by the Agents who represent Major League Players and so on. 

One of the great powers of the Semantic Web is that information that has been specified by one 
person in one context can be reused either by that person or by others in different contexts. There is no 
expectation that the same source who defined the roster of players will be the one that defines the role 
of the agents or of the bank accounts. If we want to use information from multiple sources together, we 
need a way to express concepts from one context in terms of concepts from the other. In OWL, this is 
achieved by having a facility with which we can describe new classes in terms of classes that have 
already been defined. This facility can also be used to model more complex constructs than the ones 
we’ve discussed so far. 

We have already seen how to define simple classes and relationships between them in RDFS and 
OWL, but none of the constructs we have seen so far can create descriptions of the sort we want in our 
Major League Baseball Player example. This is done in OWL using a language construct called 
a Restriction. 

Consider the case of a MajorLeaguePlayer. We informally defined a MajorLeague 

Player as someone who plays on a MajorLeagueTeam. The intuition behind the name 
Restriction is that membership in the class MajorLeaguePlayer is restricted to those 
things that play for a MajorLeagueTeam. Since  a  Restriction is a special case of 
a Class, we will sometimes refer to a Restriction as a Restriction Class just to make that 
point clear. 

More generally, a Restriction in OWL is a Class defined by describing the individuals it 
contains. This simple idea forms the basis for extension of models in OWL: If you can describe a set of 
individuals in terms of known classes, then you can use that description to define a new class. Since this 
new class is now also an existing class, it can be used to describe individuals for inclusion in a new 
class, and so on. We will return to the baseball player example later in this chapter, but first we need to 
learn more about the use of restriction classes. 

EXAMPLE Questions and Answers 

To start with, we will use a running example of managing questions and answers, as if we were modeling 
a quiz, examination, or questionnaire. This is a fairly simple area that nevertheless illustrates a wide variety of 
uses of restriction classes in OWL. 

Informally, a questionnaire consists of a number of questions, each of which has a number of possible 
answers. A question includes string data for the text of the question, whereas an answer includes string data 
for the text of the answer. In contrast to a quiz or examination, there are typically no “right” answers in 
a questionnaire. In questionnaires, quizzes, and examinations, the selection of certain answers may preclude 
the posing of other questions. 

This basic structure for questionnaires can be represented by classes and properties in OWL. Any 
particular questionnaire is then represented by a set of individual questions, answers, and concepts and 
particular relationships between them. 

The basic schema for the questionnaire is as follows and is shown diagrammatically in Figure 11.1. 
Throughout  the example, we will use  the namespace  q: to refer to elements that relate to question
naires in general, and the namespace d: to refer to the elements of the particular example 
questionnaire. 
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rdfs:domain 
rdfs:domain 

rdfs:domain 

owl:inverseOf 

rdfs:range 

q:Question q:Answer 

q:questionText q:answerText 

q:hasOption 

q:OptionOf 

FIGURE 11.1 

Question, answer, and the properties that describe them. 

q:Answer a owl:Class.

q:Question a owl:Class.

q:optionOf a owl:ObjectProperty;


rdfs:domain q:Answer;

rdfs:range q:Question;

owl:inverseOf q:hasOption.


q:hasOption a owl:ObjectProperty.
q:answerText a owl:DatatypeProperty;


rdfs:domain q:Answer;

rdfs:range xsd:string.


q:questionText a owl:FunctionalProperty,
owl:DatatypeProperty;


rdfs:domain q:Question;

rdfs:range xsd:string. 


A particular questionnaire will have questions and answers. For now, we will start with a simple 
questionnaire that might be part of the screening for the helpdesk of a cable television and Internet 
provider: 

• What system are you having trouble with? 
• Possible answers (3): Cable TV, High-Speed Internet, Both 

• What television symptom(s) are you seeing? 

• Possible answers (4): No Picture, No Sound, Tiling, Bad Reception. 

This is shown as follows and graphically in Figure 11.2. 

d:WhatProblem a q:Question;

q:hasOption d:STV, d:SInternet, d:SBoth;

q:questionText "What system are you having trouble

with?".


d:STV a q:Answer;

q:answerText "Cable TV".


d:SInternet a q:Answer;

q:answerText "High-speed Internet".


d:SBoth a q:Answer; 
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(a) d:WhatProblem 

d:SInternetd:STV 

d:hasOption d:hasOption d:hasOption 

q:questionText = What system are you... 

q:answerText = High-speed Internetq:answerText = Cable TV 
d:SBoth 

q:answerText = Both 

(b) d:TVsymptom 

d:TVSreception 

q:hasOption 

q:hasOption q:hasOption 

q:hasOption 

q:questionText = What television symp... 

q:answerText = Bad reception 

d:TVSTiling d:TVSnothing 

q:answerText = Tiling q:answerText = No Picture 

q:answerText = No Sound 

d:TVSnosound 

FIGURE 11.2 

Some particular questions and their answers. 

q:answerText "Both".
d:TVsymptom a q:Question;


q:questionText "What television symptoms are you

having?";

q:hasOption d:TVSnothing, d:TVSnosound, d:TVStiling,


d:TVSreception.

d:TVSnothing a q:Answer;


q:answerText "No Picture".

d:TVSnosound a q:Answer;


q:answerText "No Sound". 

d:TVStiling a q:Answer;


q:answerText "Tiling".

d:TVSreception a q:Answer;


q:answerText "Bad reception". 

Consider an application for managing a questionnaire in a web portal. This application performs a query 

against this combined data to determine what question(s) to ask next. Then for each question, it presents the 
text of the question itself and the text of each answer, with a select widget (e.g., radio button) next to it. We 
haven’t yet defined enough information for such an application to work, and we have made no provisions to 
determine which questions to ask before any others or how to record answers to the questions. We start with 
the latter. 
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We first define a new property hasSelectedOption, a subproperty of hasOption: 

q:hasSelectedOption a owl:ObjectProperty;

rdfs:subPropertyOf q:hasOption.


When the user who is taking a questionnaire answers a question, a new triple will be entered to indicate that 
a particular option for that question has been selected. That is, if the user selects “Cable TV” from the options 
of the first question d:WhatProblem, then the application will add the triple 

d:WhatProblem q:hasSelectedOption d:STV. 
to the triple store. Notice that there is no need to remove any triples from the triple store; the original 
d:hasOption relationship between d:WhatProblem and d:STV still holds. As we develop the 
example, the model will provide ever-increasing guidance for how the selection of questions will be done. 

Adding “restrictions” 

The language construct in OWL for creating new class descriptions based on descriptions of the pros
pective members of a class is called the restriction (owl:Restriction). An owl:Restriction 

is a special kind of class (i.e., owl:Restriction is an rdfs:subClassOf owl:Class). 
A restriction is a class that is defined by a description of its members in terms of existing properties and 
classes. 

In OWL, as in RDF, the AAA slogan holds: Anyone can say Anything about Any topic. Hence, the 
class of all things in owl (owl:Thing) is unrestricted. A Restriction is defined by providing some 
description that limits (or restricts) the kinds of things that can be said about a member of the class. So if 
we have a property orbitsAround, it is perfectly legitimate to say that anything orbitsAround 

anything else. If we restrict the value of orbitsAround by saying that its object must be TheSun, 
then we have defined the class of all things that orbit around the sun (i.e., our solar system). 

Kinds of restrictions 

OWL provides a number of kinds of restrictions, three of which are owl:allValuesFrom, 
owl:someValuesFrom, and owl:hasValue. Each describes how the new class is constrained by 
the possible asserted values of properties. 

Additionally, a restriction class in OWL is defined by the keyword owl:onProperty. This  
specifies what property is to be used in the definition of the restriction class. For example, the restriction 
defining the objects that orbit around the sun will use owl:onProperty orbitsAround, whereas  
the restriction defining major league players will use owl:onProperty playsFor. 

A restriction is a special kind of a class, so it has individual members just like any class. 
Membership in a restriction class must satisfy the conditions specified by the kind of restriction 
(owl:allValuesFrom, owl:someValuesFrom, or  owl:hasValue), as well as the 
onProperty specification. 

owl:someValuesFrom 
owl:someValuesFrom is used to produce a restriction of the form “All individuals for which at 
least one value of the property P comes from class C.” In other words, one could define the class 
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AllStarPlayer as “All individuals for which at least one value of the property playsFor comes 
from the class AllStarTeam.” This is what the restriction looks like: 

[a owl:Restriction;
owl:onProperty :playsFor;
owl:someValuesFrom :AllStarTeam] 

Notice the use of the [ . ] notation. As a reminder from Chapter 3, this refers to an anonymous node (a 
bnode) described by the properties listed here; that is, this refers to a single bnode, which is the 
subject of three triples, one per line (separated by semicolons). 

The restriction class defined in this way refers to exactly the class of individuals that satisfy these 
conditions on playsFor and AllStarTeam. In particular, if an individual actually has some 
value from the class AllStarTeam for the property playsFor, then it is a member of this 
restriction class. Note that this restriction class, unlike those we’ve learned about in earlier chapters, 
has no specific name associated with it. It is defined by the properties of the restriction (i.e., 
restrictions on the members of the class) and thus it is sometimes referred to in the literature as an 
“unnamed class.” 

EXAMPLE Answered Questions 

In the questionnaire example, we addressed the issue of recording answers to questions by 
defining a property hasOption that relates a question to answer options and a subproperty 
hasSelectedOption to indicate those answers that have been selected by the individual who is taking 
the questionnaire. Now we want to address the problem of selecting which question to ask. 

There are a number of considerations that go into such a selection, but one of them is that (under most 
circumstances) we do not want to ask a question for which we already have an answer. This suggests a class of 
questions that have already been answered. We will define the set of AnsweredQuestions in terms of 
the properties we have already defined. Informally, an answered question is any question that has a selected 
option. 

An answered question is one that has some value from the class Answer for the property 
hasSelectedOption. This can be defined as follows: 

q:AnsweredQuestion owl:equivalentClass
[a owl:Restriction;

owl:onProperty q:hasSelectedOption;
owl:someValuesFrom q:Answer ]. 

Since 

d:WhatProblem q:hasSelectedOption d:STV. 

and 

d:STV a q:Answer. 
are asserted triples, the individual d:WhatProblem satisfies the conditions defined by the restriction 
class. That is, there is at least one value (someValue) for the property hasSelectedOption that is 
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in the class Answer. Individuals that satisfy the conditions specified by a restriction class are inferred to 
be members of it. This inference can be represented as follows: 

d:WhatProblem a [a owl:Restriction; 

owl:onProperty q:hasSelectedOption; 

owl:someValuesFrom q:Answer] 


and, thus, according to the semantics of equivalentClass, 

d:WhatProblem a q:AnsweredQuestion. 

These definitions and inferences are shown in Figure 11.3. 

owl:allValuesFrom 
owl:allValuesFrom is used to produce a restriction class of the form “the individuals for which 
all values of the property P come from class C.” This restriction looks like the following: 

[a owl:Restriction;

owl:onProperty P;

owl:allValuesFrom C] 


The restriction class defined in this way refers to exactly the class of individuals that satisfy 
these conditions on P and C. If an individual x is  a  member of this  allValuesFrom 

restriction, a number of conclusions can follow, one for each triple describing x with property 
P. In particular, every value of property P for individual x is inferred to be in class C. So,  
if individual MyFavoriteAllStarTeam (a member of the class BaseballTeam) is  
a member of the restriction class defined by owl:onProperty hasPlayer and 

q:hasSelectedOption 

owl:onProperty 

owl:equivalentClass 

q:answerText = Cable TV 

rdf:type 

rdf:type rdf:type 

owl:someValuesFrom 

q:hasSelectedOption 

q:Answer 

q:SelectedAnswer 

q:hasSelectedOption some q:AnswerE 

q:AnsweredQuestion 

q:answerText=What system are you... 
d:WhatProblem d:STV 

FIGURE 11.3 

Definition of q:AnsweredQuestion and the resulting inferences for d:WhatProblem. Since 
d:WhatProblem has something (d:STV) of type q:Answer on property q:hasSelectedOption, 
it is inferred (dotted line) to be a member of AnsweredQuestion. 
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owl:allValuesFrom StarPlayer, then every player on MyFavoriteAllStarTeam 

is a StarPlayer. So,  if  MyFavoriteAllStarTeam hasPlayer Kaneda and 
MyFavoriteAllStarTeam hasPlayer Gonzales, then both Kaneda and Gonzales 

must be of type StarPlayer. 
There is a subtle difference between someValuesFrom and allValuesFrom. Since  

someValuesFrom is defined as a restriction class such that there is at least one member of a class 
with a particular property, then it implies that there must be such a member. On the other hand, 
allValuesFrom technically means “if there are any members, then they all must have this 
property.” This latter does not imply that there are any members. This will be more important in later 
chapters. 

EXAMPLE Question Dependencies 

In our questionnaire example, we might want to ask certain questions only after particular answers have been 
given. To accomplish this, we begin by defining the class of all selected answers, based on the property 
hasSelectedOption we have already defined. We can borrow a technique from Chapter 7 to do this. 
First, we define a class for the selected answers: 

q:SelectedAnswer a owl:Class;

rdfs:subClassOf q:Answer. 


We want to ensure that any option that has been selected will appear in this class. This can be done easily by 
asserting that 

q:hasSelectedOption rdfs:range q:SelectedAnswer. 

This ensures that any value V that appears as the object of a triple of the form 

? q:hasSelectedOption V. 

is a member of the class SelectedAnswer. In particular, since we have asserted that 

d:WhatProblem q:hasSelectedOption d:STV. 

we can infer that 

d:STV a q:SelectedAnswer. 

Now that we have defined the class of selected answers, we describe the questions that can be asked 
only after those answers have been given. We introduce a new class called EnabledQuestion; only 
questions that also have type EnabledQuestion are actually available to be asked: 

q:EnabledQuestion a owl:Class. 

When an answer is selected, we want to infer that certain dependent questions become members of 
EnabledQuestion. This can be done with a restriction, owl:allValuesFrom. 

http:StarPlayer.So
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To begin, each answer potentially makes certain questions available for asking. We define 
a property called enablesCandidate for this relationship. In particular, we say that an answer 
enables a question if selecting that answer causes the system to consider that question as a candidate 
for the next question to ask: 

q:enablesCandidate a owl:ObjectProperty;

rdfs:domain q:Answer;

rdfs:range q:Question. 


In our example, we only want to ask a question about television problems if the answer to the first 
question indicates that there is a television problem: 

d:STV q:enablesCandidate d:TVsymptom.

d:SBoth q:enablesCandidate d:TVsymptom. 


That is, if the answer to the first question, “What system are you having trouble with?,” is either 
“Cable TV” or “Both,” then we want to be able to ask the question “What television symptoms are you 
having?” 

The following owl:allValuesFrom restriction does just that: It defines the class of things all of 
whose values for d:enablesCandidate come from the class d:EnabledQuestion: 

[a owl:Restriction;
owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion] 

Which answers should enforce this property? We only want this for the answers that have been 
selected. How do we determine which answers have been selected? So far, we only have the property 
hasSelectedOption to indicate them. That is, for any member of SelectedAnswer, we want 
it to also be a member of this restriction class. This is exactly what the relation rdfs:subClassOf 

does for us: 

q:SelectedAnswer rdfs:subClassOf
[a owl:Restriction;

owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion]. 

That is, a selected answer is a subclass of the unnamed restriction class. 
Let’s watch how this works, step by step. When the user selects the answer “Cable TV” for the first 

question, the type of d:STV is asserted to be SelectedAnswer, like the preceding. 

d:STV a q:SelectedAnswer. 

However, because of the rdfs:subClassOf relation, d:STV is a member of the restriction 
class, that is, it has the restriction as its type: 

d:STV a 
[a owl:Restriction; 

owl:onProperty q:enablesCandidate; 
owl:allValuesFrom q:EnabledQuestion]. 
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Any individual who is a member of this restriction necessarily satisfies the allValuesFrom 

condition; that is, any individual that it is related to by 
d:enablesCandidate must be a member of d:EnabledQuestion. Since 

d:STV q:enablesCandidate d:TVsymptom. 
we can infer that 

d:TVsymptom a q:EnabledQuestion. 

as desired. Finally, since we have also asserted the same information for the answer d:SBoth, 

d:SBoth q:enablesCandidate d:TVsymptom. 

We can see this inference and the triples that led to it in Figure 11.4. Restrictions are shown in the 
figures using a shorthand called the Manchester Syntax (named after its development at the University 
of Manchester). The shorthand summarizes a restriction using the keywords all, some, and 
value to indicate the restriction types owl:allValuesFrom, owl:someValuesFrom, and 

q:EnabledQuestion 

q:enablesCandidate 

owl:onProperty 

rdfs:subClassOf 

rdf:type 

rdfs:subClassOf 

rdf:type rdf:type 

owl:allValuesFrom 

q:enablesCandidate all q:EnabledQuestionA 

q:enablesCandidate 

q:SelectedAnswer 

q:answerText = Both 

q:Answer 

q:enablesCandidate 

q:answerText = Cable TV 
d:STV 

q:answerText = What television symp... 

d:TVsymptom 

d:SBoth 

FIGURE 11.4 

d:STV enablesCandidate TVSymptom, but it is also a member of a restriction on the property 

enablesCandidate, stipulating that all values must come from the class q:EnabledQuestion. We  

can therefore infer that d:TVSymptom has type q:EnabledQuestion. 
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d:WhatProblem

q:questionText = What system are you...


q:hasOption

q:hasOption
q:hasOption


d:SInternet

d:SBoth q:answerText = High-speed Internet


q:answerText = Both


d:STV

q:answerText = Cable TV


q:enablesCandidate q:enablesCandidate


d:InternetSymptom


q:enablesCandidate q:enablesCandidate


d:TVsymptom

q:answerText = What television symp...


FIGURE 11.5 

Questions and the answers that enable them. 

owl:hasValue, respectively. The restriction property (indicated in triples by owl:onProperty) 
is printed before the keyword, and the target class (or individual, in the case of owl:hasValue) 
is printed after the keyword. We see an example of an owl:allValuesFrom restriction in 
Figure 11.4. It is important to note that this is only a shorthand; all the information needed for 
inferences is expressed in RDF triples. 

Since SBoth also enables the candidate TVSymptom, the same conclusion will be drawn if the 
user answers “Both” to the first question. If we were to extend the example with another question about 
Internet symptoms d:InternetSymptom, then we could express all the dependencies in this short 
questionnaire as follows: 

d:STV q:enablesCandidate d:TVsymptom.

d:SBoth q:enablesCandidate d:TVsymptom.

d:SBoth q:enablesCandidate d:InternetSymptom.

d:SInternet q:enablesCandidate d:InternetSymptom. 

The dependency tree is shown graphically in Figure 11.5. 

EXAMPLE Prerequisites 

In the previous example, we supposed that when we answered one question, it made all of its dependent 
questions eligible for asking. Another way questions are related to one another in a questionnaire is 
a prerequisite. If a question has a number of prerequisites, all of them must be answered appropriately for the 
question to be eligible. 
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Consider the following triples that define a section of a questionnaire: 

d:NeighborsToo a q:Question;

q:hasOption d:NTY, d:NTN, d:NTDK;

q:questionText "Are other customers in your building

also experiencing problems?".


d:NTY a q:Answer;

q:answerText "Yes, my neighbors are experiencing the

same problem.".


d:NTN a q:Answer;

q:answerText "No, my neighbors are not experiencing

the same problem.".


d:NTDK a q:Answer;

q:answerText "I don’t know.". 


This question makes sense only if the current customer lives in a building with other customers and is ex
periencing a technical problem. That is, this question depends on the answers to two more questions, shown 
following. The answer to the first question (d:othersinbuilding) should be d:OYes, and the answer 
to the second question (d:whatissue) should be d:PTech: 

d:othersinbuilding

a q:Question;

q:hasOption d:ONo, d:OYes;

q:questionText


"Do you live in a multi-unit dwelling with

other customers?". 


d:OYes a q:Answer;

q:answerText "Yes.".


d:ONo a q:Answer;

q:answerText "No.".


d:whatIssue

a q:Question;

q:hasOption d:PBilling, d:PNew, d:PCancel,

d:PTech;

q:questionText


"What can customer service help you with

today?".


d:PBilling a q:Answer;

q:answerText "Billing question.".


d:PNew a q:Answer;

q:answerText "New account".


d:PCancel a q:Answer;

q:answerText "Cancel account".


d:PTech a q:Answer;

q:answerText "Technical difficulty". 


A graphic version of these questions can be seen in Figure 11.6. 
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(a) 

q:questionText = Do you live in a mul... 
d:Othersinbuilding 

(b) 

(c) 

q:answerText = Yes. 
d:Oyes 

q:answerText = No. 
d:ONo 

q:hasO
ption 

q:hasOption 

d:whatIssue 

q:h
asO

pti
on 

q:hasOpti
on 

q:hasOption 

q:hasOption 

q:questionText = What can customer se... 

q:answer = New account 
d:PNew 

q:answerText = Billing question. 

d:PBilling 

q:answerText = Cancel account 
d:PCancel 

q:answerText = Technical difficulty 
d:PTech 

q:questionText = Are other customers... 
d:NeighborsToo 

q:answerText = No, my neighbors ar... 

q:hasOption 

q:hasOption 

q:has
Optio

n 

d:NTDK 

d:NTN 

q:answerText = Yes, my neighbors ar... 
d:NTY 

q:answerText = I don’t Know...


FIGURE 11.6 

Questions about neighbors have two prerequisite questions. 
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CHALLENGE 26 
How can we model the relationship between d:NeighborsToo, d:whatIssue, and 
d:othersinbuilding so that we will only ask d:NeighborsToo when we have appropriate 
answers to both d:whatIssue and d:othersinbuilding? 

We introduce a new property q:hasPrerequisite that will relate a question to its prerequisites: 

q:hasPrerequisite

rdfs:domain q:Question;

rdfs:range q:Answer. 


We can indicate the relationship between the questions using this property: 

d:NeighborsToo q:hasPrerequisite d:PTech, d:OYes. 

This prerequisite structure is shown in graphical form in Figure 11.7. 

Now we want to say that we will infer something is a d:EnabledQuestion if all of its prerequisite 
answers are selected. We begin by asserting that 

q:questionText = What can customer se... 

d:whatIssue 

q:hasPrerequisite 

q:hasOption q:hasOption 

q:hasOption 

q:hasPrerequisite 

d:NeighborsToo 

q:questionText = Are other customers... 

q:questionText = Technical difficulty 

d:PTech 

q:answerText = No, my neighbors ar... 

d:NTN 

q:answerText = Yes, my neighbors ar... 

q:answerText = I don’t know. 

d:NTY 

d:NTDK 

q:questionText = Do you live in a mul... 

d:othersinbuilding 

q:hasOption 

d:OYes 

q:answerText = Yes. 

q:hasOption 

FIGURE 11.7 

Some questions and their prerequisites. 
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[a owl:Restriction;
owl:onProperty q:hasPrerequisite;
owl:allValuesFrom q:SelectedAnswer]
rdfs:subClassOf q:EnabledQuestion. 

Notice that we can use the restriction class just as we could any other class in OWL, so in this case we have said 
that the restriction is a subclass of another class. Any question that satisfies the restriction will be inferred to be 
a member of d:EnabledQuestion by this subclass relation. But how can we infer that something satisfies 
this restriction? 

For an individual ?x to satisfy this restriction, we must know that every time there is a triple of the form 

?x hasPrerequisite ?y. 

?y must be a member of the class d:SelectedAnswer. But by the Open World assumption, we don’t know 
if there might be another triple of this form for which ?y is not a member of d:SelectedAnswer. Given the 
Open World assumption, how can we ever know that all prerequisites have been met? 

The rest of this challenge will have to wait until we discuss the various methods by which we can 
(partially) close the world in OWL. The basic idea is that if we can say how many prerequisites 
a question has, then we can know when all of them have been selected. If we know that a question has 
only one prerequisite, and we find one that it is satisfied, then it must be the one. If we know that 
a question has no prerequisites at all, then we can determine that it is an EnabledQuestion without 
having to check for any SelectedAnswers at all. 

owl:hasValue 
The third kind of restriction in OWL is called owl:hasValue. As in the other two restrictions, it acts 
on a particular property as specified by owl:onProperty. It is used to produce a restriction whose 
description is of the form “All individuals that have the value A for the property P” and looks as follows: 

[a owl:Restriction;
owl:onProperty P;
owl:hasValue A] 

Formally, the hasValue restriction is just a special case of the someValuesFrom restriction, in 
which the class C happens to be a singleton set {A}. 

Although it is “just” a special case, owl:hasValue has been identified in the OWL standard in 
its own right because it is a very common and useful modeling form. It effectively turns specific 
instance descriptions into class descriptions. For example, “The set of all planets orbiting the sun” and 
“The set of all baseball teams in Japan” are defined using hasValue restrictions. 

EXAMPLE Priority Questions 

Suppose that in our questionnaire, we assign priority levels to our questions. First we define a class of priority 
levels and particular individuals that define the priorities in the questionnaire: 

q:PriorityLevel a owl:Class.

q:High a q:PriorityLevel.

q:Medium a q:PriorityLevel.

q:Low a q:PriorityLevel. 
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Then we define a property that we will use to specify the priority level of a question: 

q:hasPriority

rdfs:range q:PriorityLevel. 


We have defined the range of q:hasPriority but not its domain. After all, we might want to set 
priorities for any number of different sorts of things, not just questions. We can use owl:hasValue 

to define the class of high-priority items: 

q:HighPriorityItem owl:equivalentClass
[a owl:Restriction;


owl:onProperty q:hasPriority;

owl:hasValue q:High]. 


These triples are shown graphically in Figure 11.8. Note that where before we defined subclasses and 
superclasses of a restriction class, here we use owl:equivalentClass to specify that these classes 
are the same. So we have created a named class (q:HighPriorityItem) that is the same as the 
unnamed restriction class, and we can use this named class if we want to make other assertions or to 
further restrict the class. 

We can describe Medium and Low priority questions in the same manner: 

q:MediumPriorityItem owl:equivalentClass
[a owl:Restriction;


owl:onProperty q:hasPriority;

owl:hasValue q:Medium ].


q:LowPriorityItem owl:equivalentClass
[a owl:Restriction;


owl:onProperty q:hasPriority;

owl:hasValue q:Low ]. 


If we assert the priority level of a question, such as the following: 

d:WhatProblem q:hasPriority q:High.

d:InternetSymptom q:hasPriority q:Low. 


then we can infer the membership of these questions in their respective classes: 

d:WhatProblem a q:HighPriorityItem. 

d:InternetSymptom a q:LowPriorityItem. 


We can also use owl:hasValue to work “the other way around.” Suppose we assert that 
d:TVsymptom is in the class HighPriorityItem: 

d:TVsymptom a q:HighPriorityItem. 

Then by the semantics of owl:equivalentClass, we can infer that d:TVsymptom is a member 
of the restriction class and must be bound by its stipulations. Thus, we can infer that 

d:TVsymptom q:hasPriority q:High. 
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q:High 

owl:equivalentClass 

q:hasPriority 

q:hasPriority has q:High∋ 

q:HighPriorityItem≡ 

owl:hasValue 
owl:onProperty 

FIGURE 11.8 

Definition of a HighPriorityItem as anything that has value High for the hasPriority property. 

Notice that there is no stipulation in this definition to say that a HighPriorityItem must be 
a question; after all, we might set priorities for things other than questions. The only way we know that 
d:TVsymptom is a q:Question is that we already asserted that fact. In the next chapter, we will 
see how to use set operations to make definitions that combine restrictions with other classes. 

CHALLENGE PROBLEMS 
As we saw in the previous examples, the class constructors in OWL can be combined in a wide variety 
of powerful ways. In this section, we present a series of challenges that can be addressed using these 
OWL constructs. Often the application of the construct is quite simple; however, we have chosen these 
challenge problems because of their relevance to modeling problems that we have seen in real 
modeling projects. 

Local restriction of ranges 

We have already seen how rdfs:domain and rdfs:range can be used to classify data according 
to how it is used. But in more elaborate modeling situations, a finer granularity of domain and range 
inferences is needed. Consider the following example of describing a vegetarian diet: 

:Person a owl:Class. 

:Food a owl:Class. 

:eats rdfs:domain :Person. 

:eats rdfs:range :Food. 
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From these triples and the following instance data 

:Maverick :eats :Steak. 
we can conclude two things: 

:Maverick a:Person. 

:Steak a:Food. 


The former is implied by the domain information, and the latter by the range information. 
Suppose we want to define a variety of diets in more detail. What would this mean? First, let’s 

suppose that we have a particular kind of person, called a Vegetarian, and the kind of food that 
a Vegetarian eats, which we will call simply VegetarianFood, as subclasses of Person and 
Food, respectively: 

:Vegetarian a owl:Class;

rdfs:subClassOf :Person. 


:VegetarianFood a owl:Class;

rdfs:subClassOf :Food. 


Suppose further that we say 

:Jen a:Vegetarian;

:eats :Marzipan. 


We would like to be able to infer that 

:Marzipan a:VegetarianFood. 

but not make the corresponding inference for Maverick’s steak until someone asserts that he, too, is 
a vegetarian. 

CHALLENGE 27 
It is tempting to represent this with more domain and range statements—thus: 

:eats rdfs:domain :Vegetarian.

:eats rdfs:range :VegetarianFood. 

But given the meaning of rdfs:domain and rdfs:range, we can draw inferences from these triples 

that we do not intend. In particular, we can infer 

:Maverick a :Vegetarian. 

:Steak a :VegetarianFood. 


which would come as a surprise both to Maverick and the vegetarians of the world. 

How can the relationship between vegetarians and vegetarian food be correctly modeled with the use of the 
owl:Restriction? 

Solution 
We can define the set of things that only eat VegetarianFood using a restriction, 
owl:allValuesFrom; we can then assert that any Vegetarian satisfies this condition using 
rdfs:subClassOf. Together, it looks like this: 



Challenge problems 239 

:Vegetarian rdfs:subClassOf
[a owl:Restriction;


owl:onProperty :eats;

owl:allValuesFrom :VegetarianFood]. 


Let’s see how it works. Since 

:Jen a:Vegetarian. 
we can conclude that 

:Jen a [a owl:Restriction; 

owl:onProperty :eats; 


owl:allValuesFrom :VegetarianFood]. 


Combined with the fact that 

:Jen :eats :Marzipan. 

we can conclude that 

:Marzipan a:VegetarianFood. 

as desired. How does Maverick fare now? We won’t say that he is a Vegetarian but only, as we have 
stated already, that he is a Person. That’s where the inference ends; there is no stated relationship between 
Maverick and Vegetarian, so there is nothing on which to base an inference. Maverick’s steak 
remains simply a Food, not a VegetarianFood. 

The entire model and inferences are shown in Figure 11.9. 

Challenge: filtering data based on explicit type 

We have seen how tabular data can be used in RDF by considering each row to be an individual, the 
column names as properties, and the values in the table as values. We saw sample data in Table 3.12, 
which we repeat on page 240 as Table 11.1. Some sample triples from these data are shown in 
Table 11.2. 

Each row from the original table appears in Table 11.2 as an individual in the RDF version. Each of 
these individuals has the same type—namely, mfg:Product—from the name of the table. These 
data include only a limited number of possible values for the “Product_Line” field, and they are 
known in advance (e.g., “Paper machine,” “Feedback line,” “Safety Valve,” etc.). 

A more elaborate way to import this information would be to still have one individual per row in the 
original table but to have rows with different types depending on the value of the Product Line column. 
For example, the following triples (among others) would be imported: 

mfg:Product1 rdf:type ns:Paper_machine.

mfg:Product4 rdf:type ns:Feedback_line.

mfg:Product7 rdf:type ns:Monitor.

mfg:Product9 rdf:type ns:SafetyValve. 
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Person Food 

rdf:type 

rdf:type 

rdf:type 

rdf:type 

rdfs:subClassOf rd
fs
:s
ub
Cl
as
sO
f 

rdfs:subClassOf

owl:allValuesFrom 

eats 

Vegetarian 

VegetarianFood 

Jen Marzipan 

eats 

eats all VegetarianFood∀ 

Definition of a vegetarian as a restriction on what the person eats. 

Table 11.1 Typical Tabular Data for RDF Import 

Product 

Product Line 

Paper machine 

Paper machine 

Paper machine 

Feedback line 

Feedback line 

Active sensor 

Safety valve 

Safety valve 

Maverick
 Steak

eats


FIGURE 11.9 

Model Manufacture 
ID Number Division Location SKU Available 

1 ZX-3 Manufacturing
 Sacramento FB3524 23

support 

ZX-3P Manufacturing Sacramento KD5243 4

support 

ZX-3S Manufacturing Sacramento IL4028 34

support 

B-1430 Control engineering Elizabeth KS4520 23


B-1430X Control engineering Elizabeth CL5934 14


B-1431 Control engineering Seoul KK3945 0 

DBB-12 Accessories Monitor Hong Kong ND5520 100


SP-1234 Safety Cleveland HI4554 4


SPX-1234 Safety Cleveland OP5333 14


3 

4 

5 

6 

7 

8 

9 
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Table 11.2 Sample Triples 

Subject Predicate Object 

mfg:Product1 rdf:type mfg:Product 

mfg:Product1 mfg:Product_ID 1 

mfg:Product1 mfg:Product_ModelNo ZX-3 

mfg:Product1 mfg:Product_Division Manufacturing support 

mfg:Product1 mfg:Product_Product_Line Paper machine 

mfg:Product1 mfg:Product_Manufacture_Location Sacramento 

mfg:Product1 mfg:Product_SKU FB3524 

mfg:Product1 mfg:Product_Available 23 

mfg:Product2 rdf:type mfg:Product 

mfg:Product2 mfg:Product_ID 2 

mfg:Product2 mfg:Product_ModelNo ZX-3P 

mfg:Product2 mfg:Product_Division Manufacturing support 

mfg:Product2 mfg:Product_Product_Line Paper machine 

mfg:Product2 mfg:Product_Manufacture_Location Sacramento 

mfg:Product2 mfg:Product_SKU KD5243 

mfg:Product2 mfg:Proudct_Available 4 

mfg:Product3 rdf:type mfg:Product 

mfg:Product4 rdf:type mfg:Product 

mfg:Product5 rdf:type mfg:Product . 

This is a common situation when actually importing information from a table. It is quite common 
for type information to appear as a particular column in the table. If we use a single method for 
importing tables, all the rows become individuals of the same type. A software-intensive solution 
would be to write a more elaborate import mechanism that allows a user to specify which column 
should specify the type. A model-based solution would use a model in OWL and an inference engine to 
solve the same problem. 

CHALLENGE 28 
Build a model in OWL so we can infer the type information for each individual, based on the value in the “Product 
Line” field but using just the simple imported triples described in Chapter 3. 

Solution 
Since the classes of which the rows will be members (i.e., the product lines) are already known, we first define 
those classes: 

ns:Paper_Machine rdf:type owl:Class.

ns:Feedback_Line rdf:type owl:Class.

ns:Active_Sensor rdf:type owl:Class.

ns:Monitor rdf:type owl:Class.

ns:Safety_Valve rdf:type owl:Class. 
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Each of these classes must include just those individuals with the appropriate value for the property 
mfg:Product_Product_Line. The class constructor that achieves this uses an owl:hasValue 
restriction, as follows: 

ns:Paper_Machine owl:equivalentClass
[a owl:Restriction;


owl:onProperty mfg:Product_Product_Line

owl:hasValue "Paper machine"]. 


ns:Feedback_Line owl:equivalentClass
[a owl:Restriction;


owl:onProperty mfg:Product_Product_Line

owl:hasValue "Feedback line"]. 


ns:Active_Sensor owl:equivalentClass
[a owl:Restriction;


owl:onProperty mfg:Product_Product_Line

owl:hasValue "Active sensor"]. 


ns:Monitor owl:equivalentClass
[a owl:Restriction;


owl:onProperty mfg:Product_Product_Line

owl:hasValue "Monitor"]. 


ns:Safety_Valve owl:equivalentClass
[a owl:Restriction;


owl:onProperty mfg:Product_Product_Line

owl:hasValue "Safety Valve"]. 


Each of these definitions draws inferences as desired. Consider mfg:Product1 (“ZX-3”), for which the triple 

mfg:Product1 mfg:Product_Product_Line "Paper machine". 

has been imported from the table. The first triple ensures that mfg:Product1 satisfies the conditions of the 
restriction for Paper_Machine. Hence, 

mfg:Product1 rdf:type [a owl:Restriction; 

owl:onProperty mfg:Product_Product_Line 

owl:hasValue "Paper machine" ]. 


can be inferred. Since this restriction is equivalent to the definition for mfg: Paper_Machine, we have 

mfg:Product1 rdf:type mfg:Paper_Machine. 

as desired. 
Furthermore, this definition maintains coherence of the data, even if it came from a source other than the 

imported table. Suppose that a new product is defined according to the following RDF: 

os:ProductA rdf:type mfg:Paper_Machine. 

The semantics of owl:equivalentClass means that all members of mfg:Paper_ Machine are 
also members of the restriction. In particular, 



Challenge problems 243 

os:ProductA rdf:type [a owl:Restriction; 

owl:onProperty mfg:Product_Product_Line 

owl:hasValue "Paper Machine" ]. 


Finally, because of the semantics of the restriction, we can infer 

os:ProductA mfg:Product_Product_Line "Paper Machine". 

The end result of this construct is that regardless of how product information is brought into the system, it is rep
resented both in terms of rdf:type and mfg:Product_Product_Line consistently. 

CHALLENGE 29: Relating Classes and Individuals 
OWL and RDFS provide considerable modeling power when talking about classes. In RDFS, we can say that all the 
members of one class are members of another. In OWL, we can say things about all the members of a class—for 
example, that they all have the value “Paper_Machine” on the property Product_Product_Line. We  
can use these powerful ways to relate classes to one another to describe individuals as well. When we combine 
these together, we can express rules about how individuals relate to one another. 

We will consider an example from software system management. Suppose we have a policy that says that all of 
our desktop applications must conform to a particular piece of legislation, the Americans with Disabilities Act of 
1990. How can we express this in RDFS and OWL? 

Figure 11.10 shows the model graphically. First we define the set of desktop applications. A desktop appli
cation is something that runs on the desktop—so we model this with a restriction on the property runsOn, that it 
has the value Desktop. This is shown in the top of the figure. This is a typical pattern for relating a set of things 
to an individual; we defined the set of things that run on the desktop to the individual desktop using a single 
hasValue restriction. 

In the bottom of the figure, we use this pattern again, but this time we relate the set of applications that comply 
with the Americans with Disabilities Act of 1990 (ADA90) with the ADA90 itself, again using a hasValue 
restriction. 

By building these classes in this way, we can use the modeling power of OWL and RDFS to express more 
complex relationship. How do we say that all the desktop applications must conform to the ADA90? We see this in 
the middle of the diagram—we make one restriction a subset of the other. The figure shows a sample inference— 
The desktop supports MSExcel, which means that MSExcel runs on the desktop (since these two properties are 
inverses). This, in turn, means that MSExcel is a desktop application. But we have asserted that 

:DesktopApplication rdfs:subClassOf :ConformantApplication . 
This means that MSExcel must also be a conformant application. But conformant applications conform to the 
ADA90; as a member of this class, MSExcel must conform to this as well. This means that we can infer 

:MSExcel :conformsTo :ADA90 . 

This usage of owl:hasValue is so important that we view it as a design pattern, and give it 
a name—the Class-Individual Mirror pattern. The implementation of the pattern is simple—it is 
a single hasValue restriction on some property. The interpretation of it is that we are describing the 
relationship of an individual to a set—this is the set of all things that relate to this individual in a certain 
way. We will see the importance of this pattern for metamodeling in Chapter 15. 
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FIGURE 11.10 

The Americans with Disabilities Act of 1990 as expressed in RDFS and OWL. 

Challenge: relationship transfer in FOAF 

When mapping from one model to another, or even when specifying how one part of a model relates to 
another, it is not uncommon to make a statement of the form “Everything related to A by property p should 
also be related to B but by property q.” Some examples are “Everyone who plays for the All Star team is 
governed by the league’s contract” and “Every work in the Collected Works of Shakespeare was written by 
Shakespeare.” We refer to this kind of mapping as relationship transfer, since it involves 
transferring individuals in a relationship with one entity to another relationship with another entity. This 
situation arises in FOAF with groups of people. Recall that FOAF provides two ways to describe members 
of a group: the foaf:member relation, which relates an individual member G of foaf:Group to the 
individuals who are in that group, and that same group G, which is related to an owl:Class by the 
foaf:membershipClass property. We take an example from the life of Shakespeare to illustrate this. 

Suppose we define a foaf:Group for Shakespeares_Children, as follows: 

b:Shakespeares_Children
a foaf:Group;

foaf:name "Shakespeare’s Children";
foaf:member b:Susanna, b:Judith, b:Hamnet;
foaf:membershipClass b:ChildOfShakespeare. 
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FIGURE 11.11 

Inferences based on membershipClass in FOAF. FOAF specifies that the following rule should hold. 

b:ChildOfShakespeare a owl:Class.
IF 

b:Shakespeares_Children foaf:member ?x
THEN 
?x rdfs:type b:ChildOfShakespeare. 

Figure 11.11 shows graphically the result of this rule in the case of Shakespeare’s family. The 
fine lines represent asserted triples, and the three bold lines represent the triples that are to be 
inferred. 

CHALLENGE 30 
How can we get the inferences shown in Figure 11.11 by using only the constructs from OWL (i.e., without special-
purpose rules)? 

Solution 
The solution parallels the solution for relationship transfer in SKOS, but in this case, the relationship we are 
transferring to is rdf:type. We begin as we did in that example—by defining an inverse of foaf:member: 

b:memberOf owl:inverseOf foaf:member. 
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Now we can define ChildOfShakespeare to be (equivalent to) the class of all individuals who are 
b:memberOf b:Shakespeares_Children, using an owl:hasValue restriction: 

b:ChildOfShakespeare

a owl:Class;

rdfs:label "Child of Shakespeare";

owl:equivalentClass


[a owl:Restriction;

owl:hasValue b:Shakespeares_Children;

owl:onProperty b:memberOf

].


Let’s follow the progression of Shakespeare’s children through this inference. From Figure 11.11, we begin 
with three triples: 

b:Shakespeares_Children foaf:member b:Hamnet.

b:Shakespeares_Children foaf:member b:Judith.

b:Shakespeares_Children foaf:member b:Susanna. 


By the semantics of owl:inverseOf, we can infer 

b:Hamnet b:memberOf b:Shakespeares_Children. 

b:Judith b:memberOf b:Shakespeares_Children. 

b:Susanna b:memberOf b:Shakespeares_Children. 


Therefore, all three are also members of the restriction defined previously, so we can conclude that 

b:Hamnet rdf:type b:ChildOfShakespeare. 

b:Judith rdf:type b:ChildOfShakespeare. 

b:Susanna rdf:type b:ChildOfShakespeare. 


Following similar reasoning, we can also turn this inference around backward; if we instead assert that 

b:Hamnet rdf:type b:ChildOfShakespeare.

b:Judith rdf:type b:ChildOfShakespeare.

b:Susanna rdf:type b:ChildOfShakespeare. 


we can infer that 

b:Shakespeares_Children foaf:member b:Hamnet. 

b:Shakespeares_Children foaf:member b:Judith. 

b:Shakespeares_Children foaf:member b:Susanna. 


ALTERNATIVE DESCRIPTIONS OF RESTRICTIONS 
In this book, we describe OWL and its semantics with respect to the interpretation of OWL as RDF 
triples as defined in the W3C OWL documents. Other characterizations have been used during the 
history of OWL and even appear in user interfaces of some tools. Each characterization uses its own 
vocabulary to describe exactly the same things. In this section we review some of the most common 
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languages you will encounter when discussing OWL restrictions and classes, and we also provide 
a recommendation for best-practice terminology. 

The semantics of rdfs:subClassOf and owl:equivalentClass are quite easy to char
acterize in terms of the inferences that hold 

X rdfs:subClassOf Y. 
can be understood as a simple IF/THEN relation; if something is a member of X, then it is also 
a member of Y. 

X owl:equivalentClass Y. 
can be understood as an IF and only IF relation, that is two IF/THEN relations, one going each way; if 
something is a member of X, then it is also a member of Y, and vice versa. 

These relations remain unchanged in the case where X and/or Y are restrictions. We can see these 
relationships with examples taken from the solar system. Consider two classes: one is a named class 
SolarBody, which we’ll call class A for purposes of this discussion. The other is the unnamed class 
defined by a restriction onProperty orbits that it hasValue TheSun, which we’ll call class B. We  
can say that all solar bodies orbit the sun by asserting 

A rdfs:subClassOf B. 
In other words, if something is a solar body, then it orbits the sun. 

Other terms are used in the literature for this situation. For example, it is sometimes described by 
saying that “orbiting the sun is a necessary condition for SolarBody.” The intuition behind this 
description is that if you know that something is a SolarBody, then it is necessarily the case that it 
orbits the sun. Since such a description of the class SolarBody describes the class but does not 
provide a complete characterization of it (that is, you cannot determine from this description that 
something is a member of SolarBody), then this situation is also sometimes denoted by saying that 
“orbiting the sun is a partial definition for the class SolarBody.” 

If, on the other hand, we say that solar bodies are the same as the set of things that orbit the sun, we 
can express this in OWL compactly as 

A owl:equivalentClass B. 

Now we can make inferences in both directions: If something orbits the sun, then it is 
a SolarBody, and if it is a SolarBody, then it orbits the sun. This situation is sometimes char
acterized by saying that “orbiting the sun is a necessary and sufficient condition for SolarBody.” 
The intuition behind this description is that if you know something is a SolarBody, then it is 
necessarily the case that it orbits the sun. But furthermore, if you want to determine that something is 
a SolarBody, it is sufficient to establish that it orbits the sun. Furthermore, since such a description 
does fully characterize the class SolarBody, this situation is also sometimes denoted by saying that 
“orbiting the sun is a complete definition for the class SolarBody.” 

Finally, if we say that all things that orbit the sun are solar bodies, we can express this compactly in 
OWL as 

B rdfs:subClassOf A. 
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That is, if something orbits the sun, then it is a SolarBody. Given the usage of the words 
necessary and sufficient, one could be excused for believing that in this situation one would say that 
“orbiting the sun is a sufficient condition for SolarBody.” However, it is not common practice to use 
the word sufficient in this way. Despite the obvious utility of such a statement from a modeling 
perspective and its simplicity in terms of OWL (it is no more complex than a partial or complete 
definition), there is no term corresponding to partial or complete for this situation. 

Because of the incomplete and inconsistent way the words partial, complete, sufficient, and 
necessary have been traditionally used to describe OWL, we strongly discourage their use 
and recommend instead the simpler and consistent use of the OWL terms rdfs:subClassOf and 
owl:equivalentClass. 

SUMMARY 
A key functionality of OWL is the ability to define restriction classes. The unnamed classes are defined 
based on restrictions on the values for particular properties of the class. Using this mechanism, OWL 
can be used to model situations in which the members of a particular class must have certain prop
erties. In RDFS, the domain and range restrictions can allow us to make inferences about all the 
members of a class (such as playsFor relating a baseball player to a team). In OWL, one can use 
restriction statements to differentiate the case between something that applies to all members of a class 
versus some members, and even to insist on a particular value for a specific property of all members of 
a class. 

When restrictions are used in combination with the constructs of RDFS (especially 
rdfs:subPropertyOf and rdfs:subClassOf), and when they are cascaded with one another 
(restrictions referring to other restrictions), they can be used to model complex relationships between 
properties, classes, and individuals. The advantage of modeling relationships in this way (over informal 
specification) is that interactions of multiple specifications can be understood and even processed 
automatically. 

OWL also provides other kinds of restrictions that can be placed on the members of a class using 
other kinds of onProperty restrictions. We discuss these in the next chapter. 

Fundamental concepts 

The following fundamental concepts were introduced in this chapter. 

owl:Restriction—The building block in OWL that describes classes by restricting the values

allowed for certain properties.

owl:hasValue—A type of restriction that refers to a single value for a property.

owl:someValuesFrom—A type of restriction that refers to a set from which some value for

a property must come.

owl:allValuesFrom—A type of restriction that refers to a set from which all values for

a property must come.

owl:onProperty—A link from a restriction to the property it restricts.
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Restrictions provide a concise way to describe a class of individuals in terms of the properties we 
know that describe the individuals themselves. As we saw in the previous chapter, we can use this 
construct to define notions like Vegetarian (describing someone in terms of the type of food that 
they eat), to sift information from a table (describing something according to a value of one 
property), and to manage groups of people or terms (describe something based on its membership 
in a group). The restrictions defined in Chapter 11 are powerful methods for defining classes of 
individuals. 

In this chapter, we see that OWL augments this capability with a full set theory language, including 
intersections, unions, and complements. These can be used to combine restrictions together (e.g., the 
set of planets that go around the sun and have at least one moon) or to combine the classes we use to 
define restrictions (a Vegetarian is someone who eats food that is not Meat). This combination provides 
a potent system for making very detailed descriptions of information. 

249
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OWL also includes restrictions that refer to cardinalities—that is, referring to the number of 
distinct values for a particular property some individual has. So we can describe “the set of planets that 
have at least three moons” or “the teams that contain more than one all-star player.” Reasoning with 
cardinalities in OWL is surprisingly subtle. Perhaps we shouldn’t be surprised that it is difficult to 
count how many distinct things there are when one thing might have more than one name (i.e., more 
than one URI), and we never know when someone might tell us about a new thing we didn’t know 
about before. These are the main reasons why cardinality inferencing in OWL is quite conservative in 
the conclusions it can draw. 

UNIONS AND INTERSECTIONS 
We begin with the basic logical combinations, which are familiar from set theory. OWL provides 
a facility for defining new classes as unions and intersections of previously defined classes. All set 
operations can be used on any class definition at all in OWL, including named classes and 
restrictions. This allows OWL to express a wide variety of combinations of classes and conditions. 
The semantics for the constructors as one would expect, matching the set operations of the same 
name. 

Syntactically, they use the list constructs of RDF, as follows: 

U1 a owl:Class;
owl:unionOf (ns:A ns:B...).

I1 a owl:Class;
owl:intersectionOf (ns:A ns:B...). 

The union of two or more classes includes the members of all those classes combined; the inter
section includes the members that belong to every one of the classes. 

The intersection of two (or more) classes is a new class; this can be represented in OWL/RDF 
by either naming that class (as just shown) or by defining an anonymous class (an individual of 
type owl:Class), which is defined to be the intersection of other classes using the property 
owl:intersectionOf (likewise owl:unionOf). An anonymous class of this sort can be used 
again in a model by naming using owl:equivalentClass, as follows: 

bb:MajorLeagueBaseballPlayer owl:equivalentClass

[a owl:Class;


owl:intersectionOf 

(bb:MajorLeagueMember bb:Player bb:BaseballEmployee)]. 


Although the semantics of intersectionOf and unionOf are straightforward, they have 
a particular application to Semantic Web modeling when used in conjunction with restrictions. 

Natural language descriptions of restrictions often have a notion of intersection built in. “All 
planets orbiting the sun” is actually the intersection of all things that orbit the sun (hasValue 

restriction) and all planets. The set of major league baseball players is the intersection of the things that 
play on a major league team (someValuesFrom restriction) and baseball players. Intersections work 
just as well on restrictions as they do on named classes; we can define these things directly using 
intersections: 
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:SolarPlanet a owl:Class;
owl:intersectionOf (


:Planet 

[a owl:Restriction;

owl:onProperty :orbits;
owl:hasValue :TheSun 

]).
:MajorLeagueBaseballPlayer a owl:Class;

owl:intersectionOf (

:BaseballPlayer

[a owl:Restriction;

owl:onProperty :playsFor;
owl:someValuesFrom :MajorLeagueTeam

]). 

EXAMPLE High-Priority Candidate Questions 

In the previous chapter, we defined a class of candidate questions based on dependencies of selected 
answers, and we defined priorities for the questions themselves. We will use the set constructors to combine 
these two to form a class of candidate questions of a particular priority. An application that asks questions and 
records answers using this construct would only ask high-priority questions that have been enabled by 
answers given so far. 

First, let’s revisit the description of SelectedAnswer that classifies dependent questions as 
EnabledQuestion: 

q:SelectedAnswer rdfs:subClassOf
[a owl:Restriction;
owl:onProperty q:enablesCandidate;
owl:allValuesFrom q:EnabledQuestion]. 

We now want to define a class of questions that we are ready to ask, based on two criteria: First, if they have 
been enabled by the description above and, second, if they are high priority. This is done with an 
intersectionOf contstructor: 

q:CandidateQuestion owl:equivalentClass

[a owl:Class;

owl:intersectionOf 


(q:EnabledQuestion q:HighPriorityQuestion)]. 

With this description of q:CandidateQuestion, only questions with value q:High for the property 

q:hasPriority can become candidates. 
Alternately, we could make a more relaxed description for candidate questions that include medium-

priority questions: 

q:CandidateQuestion owl:equivalentClass

[a owl:intersectionOf


(q:EnabledQuestion

[a owl:unionOf


(q:HighPriorityQuestion

q:MediumPriorityQuestion)])]. 
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Closing the world 
A key to understanding how set operations and counting works in OWL is the impact of the Open 
World Assumption. Not only does it make counting difficult, but even the notion of set complement is 
subtle when you assume that a new fact can be discovered at any time. Who’s to say that something 
isn’t a member of a class when the very next statement might assert that it actually is? Fortunately, 
there are ways in OWL to assert that certain parts of the world are closed; in such situations, inferences 
having to do with complements or counting become much clearer. 

Consider, for example, the following bit of dialogue: 

RIMBAUD: I saw a James Dean movie last night. 

ROCKY: Was it Giant?

RIMBAUD: No. 

ROCKY: Was it East of Eden?

RIMBAUD: No. 

ROCKY: James Dean only made three movies; it must have been Rebel Without a Cause.

RIMBAUD: Yes, it was.


This sort of inference relies on the fact that James Dean made only three movies. In light of the 
open world assumption, how can we make such a claim? After all, in an open world, someone could 
come along at any time and tell us about a fourth James Dean movie. We will use the example of James 
Dean’s movies to illustrate how OWL provides a controlled means for modeling closed aspects of the 
world. 

Enumerating sets with owl:oneOf 
In the James Dean example, it wasn’t necessary that we reject the open world assumption completely. 
We simply needed to know that for a particular class (James Dean movies), all of its members are 
known. When one is in a position to enumerate the members of a class, a number of inferences can 
follow. 

OWL allows us to enumerate the members of a class using a construct called owl:oneOf, as  
shown here: 

ss:SolarPlanet rdf:type owl:Class;

owl:oneOf (ss:Mercury ss:Venus ss:Earth ss:Mars


ss:Jupiter ss:Saturn ss:Uranus ss:Neptune).


The class SolarPlanet is related via the property owl:oneOf to a list of the members of the 
class. Informally, the meaning of this is that the class SolarPlanet contains these eight individuals 
and no others. owl:oneOf places a limit on the AAA slogan. When we say that a class is made up of 
exactly these items, nobody else can say that there is another distinct item that is a member of that 
class. Thus, owl:oneOf should be used with care and only in situations in which the definition of the 
class is not likely to change—or at least not change very often. In the case of the solar planets, this 
didn’t change for 50 years. We can probably expect that it won’t change again for quite a while. 

Although owl:oneOf places a limitation on the AAA slogan and Open World assumption, it 
places no limitation on the Nonunique Naming assumption. That is, owl:oneOf makes no claim 
about whether, say, Mercury might be the same as Venus. 
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When combined with owl:someValuesFrom, owl:oneOf provides a generalization of 
owl:hasValue. Whereas owl:hasValue specifies a single value that a property can take, 
owl:someValuesFrom combined with owl:oneOf specifies a distinct set of values that 
a property can take. 

CHALLENGE 31 
In the dialogue with Rimbaud, Rocky used the fact that James Dean made only three movies to help determine 
what movie Rimbaud had seen. How do we represent this in OWL? 

Solution 
Since James Dean has been dead for more than 50 years, it seems a sad but safe bet that he won’t be making any 
more movies. We can therefore express the class of James Dean movies using owl:oneOf as follows: 

:JamesDeanMovie a owl:Class;

owl:oneOf (:Giant :EastOfEden :Rebel). 


Informally, this states that the class JamesDeanMovie is made up of only Giant, EastOfEden, and 
Rebel. What is the formal meaning of owl:oneOf? As usual, we define the meaning of a construct in terms 
of the inferences that can be drawn from it. In the case of owl:oneOf, there are a number of inferences that we 
can draw. 

First, we can infer that each instance listed in owl:oneOf is indeed a member of the class. From our 
assertion about :JamesDeanMovie, we can infer that each of these things is a James Dean movie: 

:Giant rdf:type :JamesDeanMovie. 

:EastOfEden rdf:type :JamesDeanMovie. 

:Rebel rdf:type :JamesDeanMovie. 


The meaning of owl:oneOf goes further than simply asserting the members of a class; it also 
asserts that these are the only members of this class. In terms of inferences, this means that if we assert 
that some new thing is a member of the class, then it must be owl:sameAs one of the members listed 
in the owl:oneOf list. In our James Dean example, if someone were to introduce a new member of the 
class—say: 

:RimbaudsMovie rdf:type :JamesDeanMovie. 
then we can infer that Rebel must be owl:sameAs one of the other movies already mentioned. 

This inference differs from the inferences that we have seen so far. Up to this point, we were able to 
express inferences in terms of new triples that can be inferred. In this case, the inference tells us that 
some triple from a small set holds, but we don’t know which one. We can’t assert any new triples, and 
we can’t respond to a query any differently. 

How do we turn this kind of inference into something from which we assert a triple? If we 
compare where we are now with the conversation between Rocky and Rimbaud, we are right at 
the point where Rocky has heard from Rimbaud that he saw a James Dean movie. Rocky doesn’t 
know which movie he has seen, but because of his background knowledge, he knows that it was 
one of three movies. How does Rocky proceed? He eliminates candidates until he can conclude 
which one it is. To do this in OWL, we must be able to say that some individual is not the same 
as another. 
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Differentiating individuals with owl:differentFrom 
There’s an old joke about the three major influences on the price of a piece of real estate: location, 
location, and location. The joke is, of course, that when you promised to name three influences, 
any reasonable listener expects you to give three different influences. Because of the nonunique 
naming assumption in the Semantic Web, we have to be explicit about these things and name 
things that are, in fact, different from one another. OWL provides owl:differentFrom for 
this. Its use is quite simple: To assert that one resource is different from another requires a single 
triple: 

ss:Earth owl:differentFrom ss:Mars. 

Informally, this triple means that we can rely on the fact that ss:Earth and ss:Mars refer 
to different resources when making arguments by counting or by elimination. Formally, 
owl:differentFrom supports a number of inferences when used in conjunction with other 
constructs like owl:cardinality and owl: oneOf, as we shall  see.  

CHALLENGE 32 
Use OWL to model the dialogue between Rocky and Rimbaud so that OWL can draw the same inference that Rocky 
did—namely, that Rimbaud saw Rebel Without a Cause. 

Solution 
At the beginning of the dialogue, Rocky knows that the movie Rimbaud saw was one of the three movies: 
EastOfEden, Giant, or  Rebel. We have already shown how to represent this using owl:oneOf. But 
he doesn’t know which one. He can make a guess: Perhaps it was Giant. If he is right, we can simply assert that 

:RimbaudsMovie owl:sameAs :Giant. 

But what if (as was the case in the dialogue) he was wrong, and Rimbaud didn’t see Giant? We express this 
in OWL, using owl:differentFrom, as follows: 

:RimbaudsMovie owl:differentFrom :Giant. 

This narrows things down a bit, but we still don’t know whether Rimbaud saw East of Eden or Rebel Without 
a Cause. So Rocky tries again: Was the movie East of Eden? When the answer is negative, we have another 
owl: different From triple: 

:RimbaudsMovie owl:differentFrom :EastOfEden. 

Now we are in the position that Rocky was in at the end of the dialogue; we know that there are just three James 
Dean movies, and we know that Rimbaud did not see Giant or East of Eden. Just as Rocky was able to conclude that 
Rimbaud saw Rebel Without a Cause, the semantics of owl:oneOf and owl:differentFrom allow us 
to infer that 

:RimbaudsMovie owl:sameAs :Rebel. 

We can see these assertions and the inference in Figure 12.1. 
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[JamesDean:EastOfEden, 
JamesDean:Giant, 
JamesDean:Rebel] 

Rimbauds movie 

JamesDean:JamesDeanMovie 

owl:oneOf 

owl:differentFrom 

owl:differentFrom 

owl:sameAs 

rdf:type 

rdf:type 

rdf:type 
rdf:type 

FIGURE 12.1 

Rimbauld’s movie is neither Giant nor East of Eden, so we infer that it is Rebel Without a Cause. 

DIFFERENTIATING MULTIPLE INDIVIDUALS 
The nonunique naming assumption allowed us to use a new resource—RimbaudsMovie—to 
stand in for an indeterminate movie. With appropriate use of modeling constructs, we were able to 
get inferences about which movie it actually was, using owl:sameAs to indicate the answer. The 
nonunique naming assumption applies to all resources. For instance, even though we intuitively 
know that ss:Earth and ss:Mars do not refer to the same thing, we need to state that in 
our model. We did this before using owl:differentFrom. We also want to say that ss:Earth 

is different from ss:Jupiter and ss:Venus, ss:Venus is different from ss:Mars, and  
so on. 

To simplify the specification of lists of items, all of which are different from one another, OWL 
provides owl:AllDifferent and owl:distinctMembers—two constructs. Using these, 
we will specify that a list of individuals is distinct from one another. The list of items is specified 
as an RDF list. We specify that this list should be treated as a set of mutually different individuals 
by referring to it in a triple using owl:distinctMembers as a predicate. The domain of 
owl:distinctMembers is owl:AllDifferent. 

It is customary for the subject of an owl:distinctMembers triple to be a bnode, so the 
statement that all eight planets are mutually distinct would be expressed in N3 as 

[a owl:AllDifferent;
owl:distinctMembers (ss:Mercury


ss:Venus 

ss:Earth 

ss:Mars 

ss:Jupiter

ss:Saturn 

ss:Uranus 

ss:Neptune)]. 
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Formally, this is the same as asserting the 28 owl:differentFrom triples, one for each pair of 
individuals in the list. In the case of James Dean’s movies, we can assert that the three movies are 
distinct in the same way: 

[a owl:AllDifferent;
owl:distinctMembers (:EastOfEden

:Giant 
:Rebel)]. 

The view of this bit of N3 in terms of triples is shown in Figure 12.2. The movies are referenced in 
an RDF list (using rdf:first and rdf:rest to chain the entities together). For longer lists (like 
the planets), the chain continues for each entity in the list. 

Earlier we saw that the class JamesDeanMovie was defined using owl:oneOf to indicate that 
these are the only James Dean movies in existence. Now we have gone on to say that additionally these 
three movies are distinct. It is quite common to use owl:oneOf and owl:AllDifferent together 
in this way to say that a class is made up of an enumerated list of distinct elements. 

AllDifferent 

<bnode> 

East of Eden 

Giant 

Rebel Without a Causenil 

[JamesDean:Rebel] 

[JamesDean:EastOfEden, 
JamesDean:Giant, 
JamesDean:Rebel] 

[JamesDean:Giant, 
JamesDean:Rebel] 

rdf:type 

rdf:rest 

rdf:rest 

rdf:rest 

rdf:first 

rdf:first 

rdf:first 

owl:disinctMembers 

FIGURE 12.2 

Using owl:AllDifferent and owl:distinctMembers to indicate that the three James Dean 
movies are distinct. The movies are referred to in an RDF list. 
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CARDINALITY 
So far, we have seen restrictions that define classes based on the presence of certain values for given 
properties. OWL allows a much finer-grained way to define classes, based on the number of distinct 
values a property takes. Such a restriction is called a  cardinality restriction. This seemingly simple 
idea turns out to have surprising subtlety when modeling in OWL. Cardinality restrictions allow us to 
express constraints on the number of individuals that can be related to a member of the restriction 
class. For example, a baseball team has exactly nine (distinct) players. A person has two (biological) 
parents. Cardinality restrictions can be used to define sets of particular interest, like the set of one-act 
plays or the set of books that are printed in more than one volume. 

The syntax for a cardinality restriction is similar to that for the other restrictions we have already 
seen. Here is the restriction that defines the class of things that have exactly nine players: 

[a owl:Restriction;
owl:onProperty :hasPlayer;
owl:cardinality 9] 

Of course, instead of 9, we could have any nonnegative integer. We can also use cardinality restrictions 
to specify upper and lower bounds: 

[a owl:Restriction;
owl:onProperty :hasPlayer;
owl:minCardinality 10] 

and 

[a owl:Restriction;
owl:onProperty :hasPlayer;
owl:maxCardinality 2] 

These specify the set of things that have at least 10 players and at most 2 players, respectively. 
Specifying that the owl:cardinality is restricted to n is the same as saying that both the 
owl:minCardinality and owl:maxCardinality are restricted to the same value n. Cardi
nality refers to the number of distinct values a property has; it therefore interacts closely with the 
nonunique naming assumption and owl:differentFrom. 

The semantics of cardinality restrictions are similar to those of other restrictions. If we can prove that 
an individual has exactly (respectively at least, at most) n distinct values for the property P, then it is 
a member of the corresponding owl:cardinality (respectively owl:minCardinality, 
owl:maxCardinality) restriction. So a rugby union team (with 15 players) and a soccer team 
(with 11) are both members of the restriction class with minimum cardinality 10; a bridge team 
(with two players) is not, though it is a member of the restriction class with max cardinality 2. 

Similarly, if we assert that something is a member of an owl:cardinality restriction, then it 
must have exactly n distinct values for the property P. So if we define a baseball team to be a subclass 
of the restriction class with exact cardinality 9, we can conclude that a baseball team has exactly 
nine (distinct) players. Similar conclusions follow from restrictions on minimum and maximum 
cardinality. We will demonstrate the use of cardinality restrictions through a series of challenge 
problems based on the James Dean example. 
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CHALLENGE 33 
Rocky and Rimbaud continue their conversation. 

RIMBAUD: Do you own any James Dean movies? 

ROCKY: They are the only ones I own. 

RIMBAUD: Then I guess you don’t own very many movies! No more than three. 


Model these facts in OWL so that Rimbaud’s conclusion follows from the OWL semantics. 

Solution 
First we model Rocky’s statement that he owns only James Dean movies. We will need a property called 
ownsMovie to indicate that someone owns a movie: 

:ownsMovie a owl:ObjectProperty. 

In OWL, we make general statements about an individual by asserting that the individual is a member of a restriction 
class. So we can say that Rocky owns only James Dean movies by using the owl:allValuesFrom 
restriction from Chapter 9: 

:JamesDeanExclusive owl:equivalentClass
[a owl:Restriction;
owl:onProperty :ownsMovie;
owl:allValuesFrom :JamesDeanMovie].

:Rocky a:JamesDeanExclusive. 

Rocky is a member of the class JamesDeanExclusive, which is the class of things for which all the values 
of ownsMovie come from the class JamesDeanMovie. 

How can we model Rimbaud’s conclusion? We define the class of things that don’t own many movies (where by 
“not many,” we mean at most three) as follows: 

:FewMovieOwner owl:equivalentClass
[a owl:Restriction;
owl:onProperty:ownsMovie;
owl:maxCardinality 3]. 

Now Rimbaud’s conclusion can be formulated as a triple: 

:Rocky a:FewMovieOwner. 

This triple can be inferred from the model because all the values of the property ownsMovie 

for Rocky come from the class JamesDeanMovie, and there are only three of them, and 
they are all distinct, so Rocky can own at most three movies. This inference is shown in 
Figure 12.3. 
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Rocky 

JamesDeanExclusive 

JamesDeanMovie 

FewMovieOwner 

ownsMovie max 3≤ownsMovie all JamesDeanMovie

A 

ownsMovie 

rdf:type rdf:type 

owl:equivalentClass owl:equivalentClass 

owl:onProperty 
owl:onProperty 

owl:allVauesFrom 

FIGURE 12.3 

We asserted that Rocky is a JamesDeanExclusive; we infer that he owns only a few movies. 

CHALLENGE 34 
Model this situation and conclusion in OWL. 

RIMBAUD: How many movies do you own, then? 

ROCKY: Three.

RIMBAUD: That’s all of them; so you must own the one I saw last night, Rebel Without a Cause.


ThreeMovieOwner≡ JamesDeanExclusive≡ 

JamesDeanMovie≡ 

ownsMovie all JamesDeanMovie∀ownsMovie exactly 3≡ 

[EastOfEden, 
Giant, 
Rebel] 

ownsMovie 

ownsMo
vie 

ownsMovieownsMovie 

rdf:type 

owl:equivalentClassowl:equivalentClass 

owl:onProperty owl:onProperty 
owl:allValuesFrom 

owl:oneOf 

rdf:type 

FIGURE 12.4 

Rocky owns three movies, and he owns only James Dean movies, so he must own each of them. 
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Solution 
We assert that Rocky owns exactly three movies by asserting that he is a member of an owl:cardinality 
restriction class for “the set of things that own exactly three movies”: 

:ThreeMovieOwner owl:equivalentClass
[a owl:Restriction;

owl:onProperty :ownsMovie;

owl:cardinality 3].


:Rocky a:ThreeMovieOwner. 
Since Rocky owns exactly three distinct movies, and all of his movies are members of JamesDeanMovie, 
and there are just three different JamesDeanMovies, he must own each of them. In particular, we can 
infer 

:Rocky :ownsMovie :Rebel. 

These assertions and inferences can be seen in Figure 12.4. 

Qualified cardinality (OWL 2.0) 
Cardinality restrictions in OWL allow us to say how many distinct values a property can have for 
any given subject. Other restrictions tell us about the classes of which those values can or must be 
members. But these restrictions work independently of one another; we cannot say how many 
values from a particular class a particular subject can have. A simple example of qualified cardi
nality is a model of a hand: A hand has five fingers, one of which is a thumb. 

Qualified cardinalities may seem like a needless modeling detail, and, in fact, a large number of 
models get by quite fine without them. But models that want to take advantage of detailed cardinality 
information often find themselves in need of such detailed modeling. This happens especially when 
modeling the structure of complex objects. 

For example, when modeling an automobile, it might be useful to say that a properly 
equipped automobile includes five tires, four of which must be regular road-worthy tires and 
a fifth that is a designated spare tire which might not have all the properties of a regular tire. 
Structural models of this sort often make extensive use of qualified cardinalities. Qualified 
cardinalities also will require syntactic extensions to OWL; in this case, however, they do work 
within the decidability constraints of OWL DL and thus they are likely to be added in a future 
version of OWL. 

In our James Dean example, we can make use of qualified cardinality to say that while a movie can 
have any number of stars, a James Dean movie must have exactly one star who is James Dean. This is 
accomplished with a slight generalization of the form for cardinality: 

:JamesDeanMovie rdfs:subClassOf 
[ a owl:Restriction ;

owl:onClass :JDPerson ;
owl:onProperty :stars ;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger

] .
:JDPerson a owl:Class ; owl:oneOf (:JamesDean) . 
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JDPerson is the singleton class that includes only James Dean; the qualified cardinality 
restriction looks just like a cardinality restriction, but includes the reference (via owl:onClass) to  
:JDPerson. The same conditions from non-unique naming and the open world assumption hold for 
qualified cardinalities as for any others; in this example, we could infer that 

:EastOfEden :stars :JamesDean . 

This is because :EastOfEden is a James Dean movie, and hence stars exactly one member 
of the class :JDPerson. There is only one member of that class, so :EastOfEden must star him. 
The qualified cardinality restrictions include all of the variants of normal cardinality restrictions, 
that is, owl:maxQualifiedCardinality and owl:minQualifiedCardinality. 

Small cardinality limits 
OWL provides the facility to use any natural number as a cardinality. We have seen how this provides 
an inference engine with the information needed to determine membership in a class based on counting 
the number of distinct individuals that satisfy some condition. The particular restrictions of cardi
nalities to the small numbers 0 and 1 have special modeling utility. 

minCardinality 1: The restriction of the minCardinality to 1 indicates the set of 
individuals for which some value for the specified property is required. The Restriction 
onProperty ownsMovie minCardinality 1 explicitly specifies the set of individuals 
who own at least one movie. 
maxCardinality 1: The restriction of maxCardinalilty to 1 specifies that a value is 
unique (but need not exist). The restriction onProperty ownsMovie maxCardinality 1 

explicitly specifies the set of individuals who own at most one movie—in other words, they 
have limited themselves to a single movie. 
minCardinality 0: The restriction of the minCardinality to 0 describes a set of 
individuals for which the presence of a value for the onProperty is optional. In the semantics 
of OWL, this is superfluous (since properties are always optional anyway), but the explicit 
assertion that something is optional can be useful for model readability. The restriction 
onProperty ownsMovie minCardinality 0 explicitly specifies the set of individuals for 
which owning a movie is optional. 
maxCardinality 0: The restriction of the maxCardinality to 0 indicates the set 
of individuals for which no value for the specified property is allowed. The restriction 
onProperty ownsMovie maxCardinality 0 explicitly specifies the set of individuals 
who own no movies. 

These four special cases of cardinality are closely related. minCardinality 1 and 
maxCardinality 0 form a partition of minCardinality 0; that is,  minCardinality 1 

and maxCardinality 0 are disjoint from one another, they are both subclasses of 
minCardinality 0, and together (minCardinality 1 union maxCardinality 0) they  
make up all of minCardinality 0 (which is equivalent to owl:Thing, the  class of all  
individuals). 
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SET COMPLEMENT 
The complement of a set is the set of all things not in that set. The same definition applies to classes 
in OWL. The complement of a class is another class whose members are all the things not in the 
complemented class. Since a complement applies to a single class, we can define it using a single 
triple: 

ex:ClassA owl:complementOf ex:ClassB. 

Although set complements seem quite straightforward, they can easily be misused, and OWL (like any 
formal system) can be quite unforgiving in such situations. 

For example, we might be tempted to say that minor league players are the complement of major league 
players (asserting that there are just these two types of players and that nobody can be both). 

bb:MinorLeaguePlayer owl:complementOf bb:MajorLeaguePlayer. 

From this description, all of the players who are not bb:MajorLeaguePlayers will be included in 
bb:MinorLeaguePlayer. However, the complement class includes everything that is not in the 
referred class, so in addition to hopeful rookies, the class bb:MinorLeaguePlayer includes 
managers, fans, and indeed anything else in the universe, like movies or planets. 

To avoid such a situation, common practice is not to refer to complementary classes directly. 
Instead, it is common practice to combine complement with intersection. 

bb:MinorLeaguePlayer owl:intersectionOf

([ a owl:Class;


owl:complementOf bb:MajorLeaguePlayer]

bb:Player). 


That is, a MinorLeaguePlayer is a player who is not a MajorLeaguePlayer. 
Thus, members of bb:MinorLeaguePlayer include only members of the class bb:Player 

but does not include players that are included in bb:MajorLeaguePlayer. This is much 
closer to the natural meaning suggested by the name. This definition makes use of a bnode to specify 
an anonymous class. There is no need to name the class that is the complement of 
bb:MajorLeaguePlayer, so it is specified anonymously using the bnode notation “[ a 

owl:Class.].” 

CHALLENGE 35 
Rocky’s friend Paul joins in the discussion. 

PAUL: Are you talking about James Dean? I love him! I have all his movies.

RIMBAUD: But you aren’t obsessive, are you? I mean, you have other movies, too, don’t you?

ROCKY: I’m not obsessive!

PAUL: Of course, I have some movies that aren’t James Dean movies.

ROCKY: You must have at least four movies then!


Model this situation and conclusion in OWL. 
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Solution 
For this challenge, we need to have an inverse for ownsMovie: 

:ownedBy owl:inverseOf :ownsMovie. 
We can define the class of all the movies that Paul owns as follows: 

:PaulsMovie a owl:Class;

owl:intersectionOf 


([ a owl:Restriction;

owl:onProperty :ownedBy;

owl:hasValue :Paul]

:Movie). 


Paul says that he owns every James Dean movie—that is, every JamesDeanMovie is a PaulsMovie 
(but possibly not vice versa), so we assert 

:JamesDeanMovie rdfs:subClassOf :PaulsMovie. 
Paul claims to own other movies, too. We can express that by saying 

:Paul a [a owl:Restriction;

owl:onProperty :ownsMovie;

owl:someValuesFrom 


[owl:complementOf :JamesDeanMovie]]. 
Let’s look at this one in some detail. 

[owl:complementOf :JamesDeanMovie] 
is an anonymous class (bnode) that includes everything that is not a James Dean movie. 

[a owl:Restriction;

owl:onProperty :ownsMovie;

owl:someValuesFrom [owl:complementOf :JamesDeanMovie]] 


is an anonymous class (bnode) of all the things that have some value for owns Movie that isn’t a James Dean 
movie. We claim that Paul is such a thing. 

Finally, we define the class of people who own four or more movies, using 

owl:minCardinality.

:ManyMovieOwner

owl:equivalentClass


[a owl:Restriction;

owl:onProperty :ownsMovie;

owl:minCardinality 4]. 


Now, Paul owns all of James Dean’s movies (all three of them) and at least one that isn’t a James Dean movie. 
That makes (at least) four in all; so we can infer that Paul qualifies as a member of ManyMovieOwner. 

:Paul rdf:type :ManyMovieOwner. 

These assertions and conclusion can be seen in Figure 12.5. 
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FIGURE 12.5 

Paul owns every James Dean movie, and he owns some others, so he owns at least four movies. 

DISJOINT SETS 
We have seen how we can use owl:complementOf to describe the class that includes all the 
individuals that are not in some class. A related idea is that two sets have no individual in common. 
When this happens, we say that the sets are disjoint, and we represent this situation in OWL using 
owl:disjointWith, as follows: 

:Man owl:disjointWith :Woman.

:Meat owl:disjointWith :Fruit.

:Fish owl:disjointWith :Fowl. 


For any members of disjoint classes, we can infer that they are owl:differentFrom one 
another—for instance, we might assert that 

:Irene a:Woman.

:Ralph a:Man. 


we can infer that 

:Irene owl:differentFrom :Ralph. 

This simple idea can have powerful ramifications when combined with other constructs in OWL, as 
we can see in the following challenge problems. 
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CHALLENGE 36 
Our moviegoers continue their conversation: 

PAUL: I am a big movie fan. Not only do I own all the James Dean movies, but I also have 
movies with Judy Garland, Tom Cruise, Dame Judi Dench, and Antonio Banderas! 


ROCKY: You must own at least seven movies!

PAUL: How do you know that? 

ROCKY: Because none of those people played in movies together! 


Model this situation and conclusion in OWL. 

Solution 
How do we express, in OWL, that Paul owns a Judy Garland movie? We assert that Paul is a member of the class of 
things that own Judy Garland movies. Thus, the statements that Paul has made about the movies he owns can be 
modeled in OWL using an owl:someValuesFrom restriction for each one: 

:Paul a [a owl:Restriction;

owl:onProperty :ownsMovie;

owl:someValuesFrom :JudyGarlandMovie].


:Paul a [a owl:Restriction;

owl:onProperty :ownsMovie;

owl:someValuesFrom :JudiDenchMovie].


:Paul a [ a owl:Restriction;

owl:onProperty :ownsMovie;

owl:someValuesFrom :TomCruiseMovie].


:Paul a [ a owl:Restriction;

owl:onProperty :ownsMovie;

owl:someValuesFrom :AntonioBanderasMovie]. 


We can define the set of people who own seven or more movies using owl:minCardinality: 

:SevenMovieOwner a owl:Restriction;

owl:onProperty ownsMovie;

owl:minCardinality 7. 


How do we know that Paul is a member of this class? As Rocky points out in the dialogue, we don’t know until we 
know that all the sets of movies he mentioned are disjoint. That is, we need to know 

JamesDeanMovie owl:disjointWith JudyGarlandMovie.

JamesDeanMovie owl:disjointWith TomCruiseMovie.

JamesDeanMovie owl:disjointWith JudiDenchMovie.

JamesDeanMovie owl:disjointWith AntonioBanderasMovie.

JudyGarlandMovie owl:disjointWith TomCruiseMovie.

JudyGarlandMovie owl:disjointWith JudiDenchMovie.

JudyGarlandMovie owl:disjointWith AntonioBanderasMovie.

TomCruiseMovie owl:disjointWith JudiDenchMovie.

TomCruiseMovie owl:disjointWith AntonioBanderasMovie.

JudiDenchMovie owl:disjointWith AntonioBanderasMovie. 

Now we know that Paul has three James Dean movies and at least one movie from each of the other actors 

named here. Furthermore, none of these movies appears twice, since all of the sets are disjoint. An inference 
engine can confirm that Rocky is justified in counting to seven movies, and 

:Paul a :SevenMovieOwner. 
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∃ owsMovie some JudiDenchMovie 

∃ ownsMovie some JudyGarlandMovie 

∃ ownsMovie some AntonioBanderasMovie 

∃ ownsMovie some TomCruiseMovie 
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FIGURE 12.6 

Paul owns three James Dean movies (Figure 12.5), plus one each from other actors, making seven (or more) 
in total. 

These assertions and inferences can be seen in Figure 12.6. 
Notice how owl:someValuesFrom interacts with cardinality; each restriction of 

someValuesFrom guarantees the existence of one value for the specified property. When 
these values are known to be distinct, we can count (at least) one per someValuesFrom restriction. 

Just as we had owl:AllDifferent as a way to specify that several individuals are mutually 
distinct, we could have something like owl:AllDisjoint to indicate that a set of classes is 
mutually disjoint. As it happens, the OWL standard did not include such a construct, though some 
proposals for extensions to OWL include such a facility. 

PREREQUISITES REVISITED 
We have already explored how prerequisites can be modeled in OWL using owl:allValuesFrom. 
At that point, we had a problem with the Open World Assumption—namely, how can we tell that all 
prerequisites have been satisfied if we have to assume that someone can come along and set new 
prerequisites at any time? We’ll use prerequisites to demonstrate a number of ways we can close the 
world. 

As a reminder from Chapter 11, we modeled the fact that something that has all its prerequisites 
satisfied (i.e., selected) is an EnabledQuestion as follows: 

q:hasPrerequisite a owl:ObjectProperty.
[a owl:Restriction;
owl:onProperty hasPrerequisite;
owl:allValuesFrom q:SelectedAnswer]

rdfs:subClassOf q:EnabledQuestion. 

If something satisfies the restriction (all its values are members of SelectedAnswer), then it is 
also a member of EnabledQuestion. 
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No prerequisites 
Let’s start with the simple situation in which we know that there are no prerequisites at all. If 
something has no prerequisites, then there are no conditions to be checked, so it should be an 
EnabledQuestion. How can we know that something has no prerequisites? 

We can assert the number of distinct values that an individual has for some property by using the 
cardinality restrictions. In particular, if we say that 

c:WhatProblem a [a owl:Restriction;

owl:onProperty q:hasPrerequisite;

owl:cardinality 0]. 


Then we know that there are no triples of the form 

c:WhatProblem q:hasPrerequisite?. 

That is, WhatProblem has no prerequisites. Therefore it satisfies the restriction 

c:WhatProblem a [a owl:Restriction;

owl:onProperty hasPrerequisite;

owl:allValuesFrom q:SelectedAnswer ]. 


hence 

c:WhatProblem a q:EnabledQuestion. 

The interpretation of owl:allValuesFrom in such a situation—that is, when we know that there are no 
values from the indicated class (or even no values at all!) can be a bit confusing. If there are no values at all, 
how can all of them be members of some class? The correct way to think about owl:allValuesFrom is 
as something that sets prerequisites, regardless of the name of the restricted property. Let’s take a simple 
example: If a person has no children, then all of his or her children are boys. 

First we define the set of people all of whose children are boys, with an allValuesFrom 

restriction: 

:ParentOfBoysOnly owl:equivalentClass
[a owl:Restriction;

owl:onProperty :hasChild;

owl:allValuesFrom :Boy]. 


How do we decide about membership in this class? Each triple with predicate hasChild places 
a prerequisite for its subject to be a member of the class. So the triple 

:ElizabethII :hasChild :Charles. 

places a prerequisite for ElizabethII to be a member of ParentOfBoysOnly—namely, that 
Charles must be a Boy. In this case, the prerequisite is satisfied. 

But even though this prerequisite is satisfied, we still can’t infer that ElizabethII is a member 
of ParentOfBoysOnly. In order to make such an inference, all prerequisites must be satisfied. 
Because of the Open World Assumption, there might be more facts about Elizabeth that we weren’t 
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aware of, that is, there might be more prerequisites we have to satisfy. In particular, if we come to 
learn that 

:ElizabethII :hasChild :Anne. 

we will have a prerequisite that isn’t satisfied, so we won’t be able to infer that ElizabethII is 
a member of ParentOfBoysOnly. The Open World Assumption means that there might always be 
another prerequisite that we didn’t know about. 

In general, it is difficult to  infer that someone  is a  member of a class like  ParentOfBoysOnly, 
which is defined as an  allValuesFrom restriction. How can we ever know, in the face of the Open 
World Assumption, that all prerequisites have been satisfied? One way is if we assert that there is 
none. For instance, Elizabeth’s ancestor, ElizabethI, was famous for having died childless. 
We can assert this in OWL by asserting her membership in a restriction class of cardinality 0, 
thus: 

:ElizabethI a [a owl:Restriction;
owl:onProperty :hasChild;
owl:cardinality 0]. 

Now we know that there are no prerequisites on ElizabethI, so we can infer 

:ElizabethI a :ParentOfBoysOnly. 

We effectively used the cardinality restriction to close the world, at least in the case of Elizabeth’s 
children. 

Many people find this result counterintuitive—that someone with no children would have 
all of their children be boys. This conclusion is much more intuitive if you think of 
owl:allValuesFrom as working with prerequisites; it is intuitive to say that something that has 
no prerequisites is satisfied. In the semantics of OWL, this is the appropriate interpretation of 
owl:allValuesFrom. 

Counting prerequisites 
Another way to determine that something has satisfied all of its prerequisites is to count how many of 
them there are. Just as we have done with counting James Dean movies, we can count prerequisites. 
Suppose we know that something has exactly one prerequisite: 

c:TvSymptom a [a owl:Restriction;
owl:onProperty hasPrerequisite;
owl:cardinality 1 ]. 

and that, furthermore, we actually know one prerequisite, and its type: 

c:TvSymptom q: hasPrerequisite d:STV.

d:STV a q:SelectedAnswer. 
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We know that one of the prerequisites is a member of the class q:SelectedAnswer. We also 
know that there aren’t any others (since the cardinality says there is just one of them). So we know that 
all of the prerequisites are members of the class q:SelectedAnswer: 

c:TVSymptom a [a owl:Restriction; 

owl:onProperty hasPrerequisite; 

owl:allValuesFrom q:SelectedAnswer]. 


Just as in the James Dean examples, we can make inferences from larger counts if we know that all the 
entities are different. If we know, for example, that 

c:TVTurnedOn a [a owl:Restriction;

owl:onProperty hasPrerequisite;

owl:cardinality 2].


c:TVTurnedOn q:hasPrerequisite c:TVSnothing.

c:TVTurnedOn q:hasPrerequisite c:STVSnosound.

c:TVSnothing owl:differentFrom c:STVSnosound.

c:TVSnothing a q:SelectedAnswer.

c:STVSnosound a q:SelectedAnswer. 


we can infer that 

c:TVTurnedOn a [a owl:Restriction; 

owl:onProperty hasPrerequisite; 

owl:allValuesFrom q:SelectedAnswer]. 


since there are only two prerequisites, and we know which two they are. 

Guarantees of existence 
The issue of prerequisites revealed a subtlety in the interpretation of owl:allValuesFrom—namely, 
that the membership of an individual A in an allValuesFrom restriction on property P does not 
guarantee that any triple of the form 

A P ?. 

exists at all. What should be the corresponding situation in the case of someValuesFrom? That is, if 
we say that an individual A is a member of a restriction onProperty P someValuesFrom another 
class C, should we insist that there is some triple of this form? 

A P ?. 

The interpretation of someValuesFrom is that we do know that there is a pair of triples of the 
form 

A P X. 

X rdf:type C.
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Evidently, if we have both of these triples, then we certainly have a triple of the desired form. That is, 
in contrast to allValuesFrom, someValuesFrom does guarantee that some value is given for the 
specified property. 

The case for hasValue is even more evident than that for someValuesFrom. Not only does 
hasValue guarantee that there is such a triple, but it even specifies exactly what it is. That is, if A is 
a member of the restriction onProperty P hasValue X, we can infer the triple 

A P X . 

CONTRADICTIONS


CHALLENGE 37 
Model this situation and conclusion in OWL. 

ROCKY: You’re a Judy Garland fan? I have a couple of her movies, too! 
RIMBAUD: Wait a minute! That can’t be right! You said that you own only James Dean movies,

 and now you say you have a Judy Garland movie. They weren’t in any movie together! 

Solution 
This solution requires us to introduce a new aspect of inferencing in OWL. The simplest form of inferencing 
we have seen was where we inferred new triples based on asserted ones. With the more advanced notions 
beyond RDFS-Plus, we saw how some inferences could not themselves be represented as triples but could result in 
new triples when combined with other assertions. But in this example, there are no new triples to be inferred at all. 

Rimbaud does not make any new assertions about Rocky. Instead, he brings into question the validity of 
something that Rocky has asserted. In OWL terms, we say that Rimbaud has found a contradiction in what Rocky 
has said. 

In this case, the contradiction arose because Rocky has made the following statements: 

:JamesDeanExclusive owl:equivalentClass
[a owl:Restriction;
owl:onProperty :ownsMovie;
owl:allValuesFrom :JamesDeanMovie].

:Rockya JamesDeanExclusive.
:Rocky a [a owl:Restriction;

owl:onProperty :ownsMovie;
owl:someValuesFrom :JudyGarlandMovie].

:JudyGarlandMovie owl:disjointWith :JamesDeanMovie. 

The owl:someValuesFrom restriction guarantees that Rocky owns some Judy Garland movie (though 
we don’t know which one), and the owl:allValuesFrom restriction tells us that this movie must also be 
a James Dean movie. Although such a movie would have undoubtedly been very popular, unfortunately we also 
know from the owl:disjointWith triple that there is no such movie; somewhere in this model there is 
a contradiction. 

These assertions are shown in Figure 12.7; no inferences are shown, since the model contains 
a contradiction. 
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ownsMovie some JudyGarlandMovie∃ JamesDeanExclusive≡ 

JamesDeanMovie≡ 

Judy Garland movie≡ ownsMovie all JamesDeanMovie∀ 

rdf:type 

owl:someValuesFrom owl:equivalentClass 

owl:allValuesFromowl:disjointWith 

rdf:type 

FIGURE 12.7 

All of Rocky’s films are James Dean films, but some of them are Judy Garland films. 

The OWL semantics can tell us that there is a contradiction in this example, but it cannot tell us 
which assertion is wrong. The validity of an assertion has nothing to do with the OWL standard or its 
semantics; it has to do with the domain that is being modeled. Did Rocky lie about owning only 
James Dean movies? Or is he lying now about owning Judy Garland movies? Or, perhaps we are 
mistaken, and there is a Judy Garland/James Dean collaboration out there that nobody knows about 
(that is, we were mistaken when we said that these two classes were disjoint). There is no way to 
know which of these statements is incorrect. But OWL can tell us that their combination results in 
a contradiction. 

The notion of contradiction gets to the heart of what we mean by modeling. A model is 
a description of the world and can be mistaken; that is, the model may not actually correspond to the 
actual state of affairs. The tools that surround OWL models help us to determine the nature of our 
models. If they are logically inconsistent, then we know that either our model is defective or our 
understanding of how it relates to the world is mistaken. 

UNSATISFIABLE CLASSES 
A contradiction arises when the assertions that have been made simply cannot all be true. There is 
a fundamental disagreement in the asserted statements. A similar situation can arise when we define 
a class in an inconsistent way. A slight variation on the previous example shows how this can happen. 
First, suppose we define the class of people who own Judy Garland movies that Rocky claims to be 
a member of: 

:JudyGarlandMovieOwner owl:equivalentClass
[a owl:Restriction;
owl:onProperty :ownsMovie;
owl:someValuesFrom :JudyGarlandMovie]. 
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Now, instead of claiming that Rocky is a member of both this class and JamesDeanExclusive, 
let’s define the class of such people: 

:JDJG owl:intersectionOf 

(:JudyGarlandMovieOwner :JamesDeanExclusive).


Rocky has claimed to be a member of this class; this claim led to a contradiction. 
We can define this class without asserting that Rocky is a member of it. Although this does not lead 

to a contradiction, the same argument that showed that Rocky cannot (consistently) be a member of 
this class can be used to show that nothing can be a member of this class, or that this class is empty. 
When we can prove that a class is empty, we say that the class itself is unsatisfiable. Although 
a contradiction indicates that some statement in the model is in conflict with others, an unsatisfiable 
class simply means that there can be no individuals who are members of that class. Of course, if we go 
on to assert that some individual is a member of an unsatisfiable class (as Rocky did, when he claimed 
to be a member of JDJG), and then the model contains a contradiction. 

Figure 12.8 shows these assertions and the conclusions that follow. JDJG is a subclass of both 
JudyGarlandMovieOwner and JamesDeanExclusive, since it is defined as the intersection 
of these two classes. But it is also inferred to be subclass of owl:Nothing. This indicates in OWL 
that it can have no members, since owl:Nothing is the class that corresponds to the empty set. 

Propagation of unsatisfiable classes 
Once a model contains an unsatisfiable class, it is easy for other class definitions to be unsatisfiable as 
well. Here are a few of the simpler ways in which this can happen: 

subclass: A subclass of an unsatisfiable class is itself unsatisfiable. If the subclass could (without 
contradiction) have an individual member, then so could the superclass. 
someValuesFrom: A restriction (on any property) with owl:someValuesFrom an unsatisfiable 
class is itself unsatisfiable, since owl:someValuesFrom requires that there be some value that 
the property can indicate. 

owl:Nothing 

≡ JDJG 

≡ JudyGarlandMovieOwner ≡ JamesDeanExclusive 
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FIGURE 12.8 

JDJG is the intersection of people who only own James Dean movies and people who own Judy Garland movies. 
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domain and range: If a property has an unsatisfiable domain or range, then the property becomes

basically unusable. Any someValuesFrom restriction on that property is unsatisfiable. If any triple

is asserted using that property as predicate, then the model results in a contradiction.

intersection of disjoints: The owl:intersectionOf two disjoint classes is unsatisfiable.

The intersection of any class with an unsatisfiable class is unsatisfiable.


Some operations do not propagate unsatisfiable classes; the union of an unsatisfiable class and 
another class can be satisfiable. A restriction owl:allValuesFrom an unsatisfiable class can 
still be satisfiable (but none of its members can have any value for the property specified by 
owl:onProperty in the restriction). 

These rules seem intuitive enough in isolation; their usefulness in modeling comes in during analysis of 
the results of an inference engine. Many inference engines will report on unsatisfiable classes, but in the 
face of several such classes, it can be difficult to tell just what is going on. Although some engines have 
tools to assist the modeler in tracking this, the use of these tools requires some understanding of how 
unsatisfiable classes can arise. This short list is not exhaustive, but it covers most of the common cases. 

INFERRING CLASS RELATIONSHIPS 
In the previous discussion, most of the inferences we drew were about individuals: Wenger is an 
Analyst, Jupiter is a Solar Planet, Kaneda is a Star Player, or Shakespeare married Anne Hathaway. In 
this chapter, we have begun to draw conclusions about classes—for example, JDJG is unsatisfiable. 
OWL allows us to draw a wide range of conclusions about classes. We can, in some circumstances, 
infer that one class is a subclass of another or that a class is the domain (or range) of a property. There 
are countless possibilities for how this can happen, but there are a few common patterns that are worth 
calling out. We’ll return to our descriptions of baseball teams for examples: 

Intersection and subclass: The intersection of two (or more) classes is a subclass of each 
intersected class. If AllStarBaseballTeam is the intersection of AllStarTeam and 
BaseballTeam, then it is also rdfs:subClassOf each of those classes. 
Union and subclass: The union of two (or more) classes is a superclass of each united class. 
If JBallTeam is the union of PacificLeagueTeam and CentralLeagueTeam, then 
PacificLeagueTeam and CentralLeagueTeam are both rdfs:subClassOf 

JBallTeam. 
Complement and subclass: Complement reverses the order of subclass. For example, if 
AllStarBaseballTeam is a subclass of BaseballTeam, then the complement of 
BaseballTeam is a subclass of the complement of AllStarBaseballTeam. 
Subclass propagation through restriction: The subclass relationships propagate through 
restrictions. If AllStarBaseballTeam is a subclass of BaseballTeam, then the restriction 
(on any property—say, playsFor) owl:allValuesFrom AllStarBaseballTeam is 
a subclass of the restriction (on the same property playsFor) owl:allValuesFrom 

BaseballTeam. If we call the first restriction AllStarBaseballPlayer and the second 
restriction BaseballPlayer (both are reasonable names for these restrictions), then this 
pattern says that AllStarBaseballPlayer is a subclass of BaseballPlayer. The same 
propagation principle holds for any property and also for owl:someValuesFrom. If  
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AllStarBaseballTeam is a subclass of BaseballTeam, then the restriction on property 
playsFor some values from AllStarBaseballTeam is a subclass of the restriction on 
property playsFor some values from BaseballTeam. 
hasValue, someValuesFrom, and subClassOf: Propagation for owl:has 

Value works a bit differently from the way it works for owl:allValuesFrom or 
owl:someValuesFrom, since  owl:hasValue refers to an individual, not a class. 
Suppose that the individual TokyoGiants is  a member of class  BaseballTeam; the  
restriction on property playsFor owl:hasValue TokyoGiants is a subclass of the 
restriction on property playsFor owl:someValuesFrom BaseballTeam. 
Relative cardinalities: Subclass relations between cardinality restrictions arise from the usual 
rules of arithmetic on whole numbers. For example, if a ViableBaseballTeam must have at 
least nine players on its roster (owl:minCardinality9), and a FullBaseballTeam has 
exactly 10 players on the roster (owl:cardinality10), then FullBaseballTeam is 
a subclass of ViableBaseballTeam. 
owl:someValuesFrom and owl:minCardinality: If we say that something has some 
value from a particular class, then we can infer that it has at least one such value. So if 
BaseballTeam has some pitcher (i.e., BaseballTeam is a subclass of the restriction 
owl:onProperty hasPlayer owl:someValuesFrom Pitcher), we can infer that 
it has at least one pitcher (i.e., BaseballTeam is a subclass of the restriction 
owl:onProperty hasPlayer owl:minCardinality 1). Note that the same conclusion 
does not hold for owl:allValuesFrom; in short, someValuesFrom guarantees that there 
is some value; allValuesFrom makes no such guarantee. 

The ability in OWL to infer class relationships is a severe departure from Object-Oriented modeling. In OO 
modeling, the class structure forms the backbone of the model’s organization. All instances are created as members 
of some class, and their behavior is specified by the class structure. Changes to the class structure have far-reaching 
impact on the behavior of the system. In OWL, it is possible for the class structure to change as more information is 
learned about classes or individuals. 

These aspects of OWL are not the result of whimsical decisions on the part of the OWL designers; they are a direct 
consequences of the basic assumptions about the Web—that is, the AAA slogan, the Open World nature of the Web, 
and the fact that names on the Web are not unique. A strict data model (like an object model) is useful when there is 
top-down governance of the system (as is the case when building a software system), but it doesn’t work in an open, 
free system like the Web. Our understanding of the structure of knowledge will change as we discover more things— 
we cannot escape that! OWL at least provides a consistent and systematic way to understand those changes. 

The logic underlying OWL goes beyond these propagation rules and encompasses inferences about 
subclasses regarding cardinalities. The technical details of the logic are beyond the scope of this book. 
In short, any class relationship that can be proven to hold, based on the semantics of restrictions, 
unions, intersections, and so on, will be inferred. The propagation patterns presented here don’t cover 
all the possible class relationship inferences, but they are the most common patterns that appear in 
semantic models. 

The ability in OWL to infer class relationships enables a style of modeling in which subclass 
relationships are rarely asserted directly. Instead, relationships between classes are described in terms 
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Table 12.1 Overview of Entities in the Baseball Model 

AllStarBaseballPlayer ≡ playsFor some AllStarBaseballTeam 

AllStarBaseballTeam ≡ BaseballTeam ∩ AllStarTeam 

AllStarPl ayer ≡ playsFor some AllStarTeam 

AllStarTeam ⊆ Employs some AllStarPlayer 

BaseballPlayer ≡ playsFor some BaseballTeam 

BaseballTeam ⊆ Employs some BaseballPlayer 

JBallTeam ≡ PacificLeagueTeam ∪ CentralLeagueTeam 
⊆ BaseballTeam 

CarpPlayer ≡ playsFor hasValue Carp (the Carp is the name of the 
baseball team from Hiroshima) 

CentralLeagueTeam ≡ oneOf Carp, Giants, BayStars, Tigers, Dragons, 
Swallows 

PacificLeagueTeam ≡ oneOf Lions, Hawks, Fighters, BlueWave, 
Buffaloes, Marines 

Player domain of playsFor 

Team range of playsFor 

playsFor inverse of Employs 

of unions, intersections, complements, and restrictions, and the inference engine determines the class 
structure. If more information is learned about a particular class or individual, then more class structure 
can be inferred. Subclass relationships are asserted only in that the members of one class are included 
in another. 

The baseball model demonstrates this principle at work—we summarize the statements about 
baseball players and their teams in Table 12.1. 

In Table 12.1, we write h if the class in the left column is defined as equivalent to the expression in the 
right column, and 4 if the class is a subclass of the expression in the right column. Notice that the only 
direct subclass assertion (i.e., one class is a subclass of another) is for JBallTeam, which is asserted to be 
a subclass  of  BaseballTeam. All other assertions in the model either refer to logical combinations 
(intersections or unions) or to restrictions. Thus, the class tree as asserted is shown in Figure 12.9. 

We can infer a number of subclass relationships from the definitions of the model in Table 12.1 and 
the subclass inferencing patterns we have seen. 

�	 Since AllStarBaseballTeam is the intersection of BaseballTeam and AllStarTeam, 
then AllStarBaseballTeam is a subclass of BaseballTeam and AllStarTeam. 

�	 Both AllStarBaseballPlayer and AllStarPlayer are someValuesFrom restrictions 
on the same property, playsFor, referencing AllStarBaseballTeam and AllStarTeam, 
respectively. The fact that AllStarBaseballTeam is a subclass of AllStarTeam can 
be propagated, so we can infer that AllStarBaseballPlayer is a subclass of 
AllStarPlayer. Similar reasoning allows us to infer that AllStarBaseballPlayer is 
a subclass of BaseballPlayer. 

�	 Since JBallTeam is the union of PacificLeagueTeam and CentralLeagueTeam, we  can  
conclude that PacificLeagueTeam and CentralLeagueTeam are subclasses of JBallTeam. 
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≡ AllStarBaseballPlayer 

≡ AllStarBaseballTeam 

≡ AllStarPlayer 

AllStarTeam 

≡ BaseballPlayer 
BaseballTeam 
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≡ CarpPlayer 
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≡ owl:Nothing 

PacificLeagueTeam 

≡ 

owl:Thing 

Player 

Team 

FIGURE 12.9 

Class tree for the baseball ontology, as asserted. 

�	 Since the Hiroshima Carp is a CentralLeague team, it is also a JBallTeam and thus 
a BaseballTeam. A  CarpPlayer is a hasValue restriction on the Carp; thus, we can 
infer that CarpPlayer is a subclass of BaseballPlayer. 

�	 The domain of playsFor is also used to make class inferences. Since AllStarPlayer is 
equivalent to the someValuesFrom restriction onProperty playsFor, any individual 
member of AllStarPlayer playsFor some team. But the domain of playsFor is 
Player, so that individual must also be a Player. We have just shown that any 
AllStarPlayer must be a Player; thus, AllStarPlayer is a subclass of Player. 

�	 Even the range information gets into the act; since an AllStarTeam employs some 
AllStarPlayer, and since employs is the inverse of playsFor, that means that some 
person playsFor any AllStarTeam. But the range of playsFor is Team, so  
AllStarTeam must be a Team, as well. 

We can see the inferred class structure in Figure 12.10. Notice that every class is involved in some 
class inferencing pattern so that in contrast to the asserted model, the inferred model has considerable 
depth to its class tree. 

REASONING WITH INDIVIDUALS AND WITH CLASSES 
From an RDF perspective, inferencing about individuals and inferencing about classes is very similar. 
In both cases, new triples are added to the model based on the triples that were asserted. From 
a modeling perspective, the two kinds of reasoning are very different. One of them draws specific 
conclusions about individuals in a data stream, while the other draws general conclusions about classes 
of individuals. These two kinds of reasoning are sometimes called A-box reasoning (for individuals) 
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FIGURE 12.10 

Inferred structure of the baseball model. 

and T-box reasoning (for classes). The curious names A-box and T-box are historical and no longer 
have any relevance. 

The utility of reasoning about individuals in a Semantic Web context is clear, and we have seen 
a number of examples of it throughout this book. We inferred things about the wife of Shakespeare, 
which movies belong to which people, and what terms are broader than others. All of these things are 
examples of reasoning about an individual. Information specified in one information source is 
transformed according to a model for use in another context. Mappings from one context to the next 
are specified using constructs like rdfs:subClassOf, rdfs:subPropertyOf, and various 
owl:Restrictions. Data can then be transformed and processed according to these models and 
the inferences specified in the RDFS and OWL standards for each of them. 

The utility of reasoning about classes is more subtle. It can take place in the absence of any data 
at all! Class reasoning determines the relationships between classes of individuals. It determines 
how data are related in general. In advance of seeing any data about the Pacific League, we can 
determine that any team in that league is a baseball team. There is no need to process all the 
particular teams, or indeed any of them. We can guarantee that this is the case. Even if new teams 
join the league, we know that this will still be true. In this sense, class reasoning is similar to 
a compilation of the model. Whereas individual reasoning processes particular data items as input, 
Class reasoning determines general relationships among data and records those relationships with 
rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, or  rdfs:range. Once these 
general relationships have been inferred, processing of individual data can be done much more 
easily. 

When we use individual and class reasoning together in a single system, we have a powerful 
system that smoothly integrates general reasoning with specific data transformations. This allows us 
to smoothly manage information based on whatever information we come across, generic or 
specific. 
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SUMMARY 
At each level of our exposition of the Semantic Web languages from RDF to RDFS to the various levels 
of OWL, we have introduced new notions of how to understand a model. For RDF, the fundamental 
aspect of the model had to do with data sharing and federation. RDF answers the question “How do I 
get all the information I know about a single thing in one place?” For RDFS, we introduced the notion 
of inference, answering the question “Given that I know certain things about my data, what else can I 
figure out?” RDFS-Plus and the basic use of OWL gave us more comprehensive capabilities to infer 
new information from old. As we move on to the advanced features OWL, we are still working within 
the paradigm of inferencing as the source of meaning of our models, but we expand the sort of 
inferencing we can make to include inferences not just about our data but also about the model itself. 

Up to this point, we could, for the most part, ignore the ramifications of the Open World Assumption 
of the Semantic Web. With the advanced constructs of OWL, where we can draw conclusions based on 
arguments of enumeration and elimination (as well as arguments based on properties and types, as we 
did with RDFS and RDFS-Plus), the impact of the open world becomes more apparent. 

Armed with the concepts and constructs OWL from this chapter, we are now in a position to 
examine some more comprehensive OWL models. We can see how a modeler can use the constructs of 
OWL to describe how data from different sources will be federated on the Semantic Web. Just as we 
saw for RDFS-Plus, a model can mediate information from sources that have not yet been examined. 
Advanced OWL provides more powerful and complete ways to make this happen. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

owl:unionOf, owl:intersectionOf, owl:complementOf—Basic set operations 
applied to classes. Each of these is used to create a new class, based on the specified set 
operation applied to one or more defined classes. 
Open World Assumption—This idea was introduced in Chapter 1, but strategies for closing the 
world for certain purposes were introduced here. 
owl:oneOf—Specifies that a class consists just of the listed members. 
owl:differentFrom—Specifies that one individual is not owl:sameAs another. This is 
particularly useful when making counting arguments. 
owl:disjointWith—Specifies that two classes cannot share a member. This is often used as 
a sort of wholesale version of owl:differentFrom. 
owl:cardinality, owl:minCardinality, owl:maxCardinality—Cardinality 
specifies information about the number of distinct values for some property. Combined with 
owl:oneOf, owl:differentFrom, owl:disjointWith, and so on, it can be the basis 
of inferences based on counting the number of values for a property. 
Contradiction—With the advanced constructs of OWL, it is possible for a model to express 
a contradiction—that is, for a model to be logically inconsistent. 
Satisfiability (unsatisfiability)—With the advanced constructs of OWL, it is possible to infer that 
a class can have no members, so such a class is unsatisfiable. 
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A comprehensive listing of ontologies in the wild is impossible, just as a complete listing of all web 
pages is impossible. New ontologies and open data sets on the Semantic Web are showing up every 
day. In Chapter 9, we got a glimpse of the data sets that make up the data.gov project, and we saw how 
data based on FOAF and OGP are scattered all over the Web. In selecting ontologies for this chapter, 
we had to leave some favorite projects behind. 

We ended up with three examples. These examples were chosen for this chapter because of their 
advanced use modeling features beyond RDFS-Plus, and how widespread their impact has been. 

The first is called Good Relations (GR for short). GR allows businesses to make very detailed 
descriptions of their offerings on the marketplace. GR is similar to the OGP model described in 
Chapter 9 in that it provides a controlled vocabulary that can be used by Web content providers to mark 
up web pages. It differs from OGP in that it has a great deal more structure—business offerings come 
in all shapes and sizes and have a lot of details describing them. 

The second is called Quantities/Units/Dimensions/Types, or  QUDT for short. It addresses an 
obvious problem that must be solved in any attempt to align quantitative data, that is, data from 
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multiple sources will be expressed in different units. In order to integrate data, it is necessary to be able 
to determine whether two quantities are commensurate (that’s where the dimensions come in), and if 
so, how to convert from one system to another (that’s where the units come in). 

The third ontology is actually a whole collection of ontologies that are collectively known as the 
Open Biological and Biomedical Ontologies (OBO). As the name implies, this is a set of ontologies 
about biological and biomedical information. In contrast to Good Relations, which is a small 
vocabulary for describing information on the Web, OBO includes massive amounts of data about 
biomedicine and biology, including genome information, catalogs of known cancer genes, and 
biochemistry data. 

THE GOOD RELATIONS ONTOLOGY 
The Good Relations ontology (GR) was developed by Martin Hepp of the E-Business and Web 
Science Research Group at the Universitaet der Bundeswehr Muenchen. Like OGP, it has been 
used to annotate a large number of web pages. Within a year of its release, already tens of 
thousands of web pages were annotated in RDFa using GR. These annotations have been used by 
search engines (Yahoo! and Google, in particular) for Search Engine Optimization; the more 
completely a product can be described, the more highly it can be trusted to be an appropriate 
match for a search engine query. The use of GR for annotating product web pages at Best Buy and 
overstock.com resulted in web pages that were ranked more highly in search results than much 
more established pages. But Good Relations can do more than simply give pages a higher rank— 
Google uses Good Relations data to enhance the information it gives about a product in response to 
a search. Figure 13.1 shows search results for a product, with and without Good Relations markup. 
The page with Good Relations markup provides much more information to lead a potential buyer 
to the product. 

How does GR allow someone to make such detailed descriptions of their business? While GR is 
relatively simple (in comparison, say, to OBO), there is more to it than can be covered in this case 
study. The interested reader is encouraged to see more of the GR at http://purl.org/goodrelations/ for 
a full and current description of the ontology. We will cover just enough of the GR ontology to see how 
it is used to describe products for Search Engine Optimization. 

FIGURE 13.1 

Google search results for the same product, without (top) and with (bottom) GR markup. 

http://purl.org/goodrelations/
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GR provides a way to express that a company is making an offer of a product or a service. This is 
expressed in three classes in GR: 

gr:BusinessEntity a owl:Class .

gr:Offering a owl:Class .

gr:ProductOrService a owl:Class .

gr:offers


a owl:ObjectProperty ;

rdfs:domain gr:BusinessEntity ;

rdfs:range gr:Offering .


gr:includes

a owl:ObjectProperty ;

rdfs:domain gr:Offering ;

rdfs:range gr:ProductOrService . 


This provides the basic framework of how a business offering is described in GR. GR provides many 
ways to enhance a description of an offering, based on these three things. We’ll illustrate how this works 
with a real example of a business that uses GR and RDFa on its web site to enhance Search Engine 
Optimization. 

EXAMPLE Plush Beauty Bar 

The Plush Beauty Bar in West Hollywood has used RDFa to mark up its web site, http://plushbeautybar.com/, 
using the Good Relations ontology. We will use their markup as an example of the use of GR. The particular 
information in this example is for educational purposes only, and does not correspond to any real offerings by 
the Plush Beauty Bar. In this exposition, we will use the namespace prefix plush: for all resources defined by 
Plush Beauty Bar. 

The Plush description begins with the business entity itself, the PlushBeautyBar. It offers several services, 
including a basic manicure (shiny buff or polish): 

plush:Business a gr:BusinessEntity ;

gr:offers plush:Offering_1 ;

gr:offers plush:Offering_2 ;

gr:offers plush:Offering_3 .


plush:Offering_1 rdfs:label "NAIL SERVICES (shiny buff or polish)" . 

GR allows Plush to specify what kind of client they are advertising to—is this a Business-to-Business 
shop or a Business-to-Consumer shop? A nail salon is of course the latter—they are selling to individuals 
who want to buy a service. GR includes a property called gr:eligibleCustomerTypes for this. Its 
range is a class called BusinessEntityType, that includes a handful of predefined business entities 
that Plush can choose from: 

gr:eligibleCustomerType a owl:ObjectProperty ;

rdfs:domain gr:Offering ;

rdfs:range gr:BusinessEntityType .


gr:Business a gr:BusinessEntityType .

gr:Enduser a gr:BusinessEntityType .

gr:PublicInstitution a gr:BusinessEntityType .

gr:Reseller a gr:BusinessEntityType . 


http://plushbeautybar.com/
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Plush expresses its desired end customer as a selection from these business entity types: 

plush:Offering_1 gr:eligibleCustomerType gr:Enduser . 
In a similar fashion, GR provides predefined classes of business functions, payment methods, delivery 

methods, warranty scopes, etc., along with corresponding properties. Plus uses some of these to describe its 
offering as well: 

plush:Offering_1

gr:acceptedPaymentMethods


gr:Cash , gr:Discover , gr:VISA , gr:MasterCard;

gr:hasBusinessFunction gr:ProvideService . 


Plush’s services come at a price, of course, and GR allows Plush to describe these, as well. This poses 
a modeling problem—if we were to define a property called, say, :cost, that related an offering to 
a number, we could specify the amount of the price, but in business we need to know more about the 
cost than just the number, we need to know currency as well. This means that we have to put 
some more information on the cost relationship between the offering and its price. This is an example of 
reification from Chapter 3, and GR solves it by defining a class called a UnitPriceSpecification 
for the full description of a price. We’ll see how Plush uses this to describe the price of their manicure: 

plush:Offering_1 gr:hasPriceSpecification plush:PriceSpec_1 .
plush:PriceSpec_1 a gr:UnitPriceSpecification ;


gr:hasCurrency "USD""^^xsd:string ;

gr:hasCurrencyValue "19"^^xsd:float ;

gr:hasUnitOfMeasurement "C62" . 


This says that the manicure offering has a price, which is $19 (US). The unit of measure is worth 
looking at, since units of measure play a key role in commerce. GR uses the United Nations standard 
called UNECE for referring to measurement units; “C62” is the unit for “by the job.” If instead Plush 
were charging by the hour, the unit would be the UNECE unit for hour, “HUR.” 

This offering is for a particular service; we have seen the price, the methods of payment, the kinds of 
customer, but we haven’t yet talked about the service itself. An offering can include several services, but 
in this case, the offering includes just one—the basic manicure. This is stated simply as: 

plush:Offering_1 gr:includes plush:Service_1 .

plush:Service_1 a gr:ProductOrService ;


rdfs:label "NAIL SERVICES: Manicure" . 

The information Plush expresses about its manicure offering is shown in Figure 13.2. 
We can query this structure of this sort to answer questions like, “Show me the services for individual 

customers (i.e., end users) that cost less than $20” with SPARQL as follows: 

SELECT ?service 
WHERE {?o a gr:Offering ;


gr:eligibleCustomerTypes gr:EndUser ;

  gr:includes ?s ;


   gr:hasPriceSpecification ?ps .

?ps gr:hasCurrencyValue ?v;

gr:hasCurrency "USD" .

?s rdfs:label ?service .

FILTER (?v < 20)

} 
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FIGURE 13.2 

Information about Plush’s manicure offering, shown in graph form. 

The results will list all the services in that price range; a regular search engine can filter those based on 
keywords, to focus on the particular service desired. 

INFERENCING IN THE GOOD RELATIONS ONTOLOGY 
Suppose that in addition to its manicure services, Plush were to offer a massage service, priced by the 
hour. If we wanted to describe a one-and-a-half-hour massage session, the notion of includes would 
have to be reified, just as we did for the price. GR provides a means to do this, by introducing the 
notion of a TypeAndQuantityNode: 

plush:Offering_2 a gr:Offering ;

gr:includesObject plush:Quantity_2 .


plush:Quantity_2 a gr:TypeAndQuantityNode ;

gr:typeOfGood plush:Service_2 ;

gr:hasUnitOfMeasurement "HUR" ;

gr:amountOfThisGood "1.5"^^xsd:float . 


plush:Service_2 a gr:ProductOrService ;

rdfs:label "Relaxing Massage" . 


This model differs from the description of the manicure in two ways; first, it includes the inter
mediate entity Quantity_1 that allows us to make multiple statements about the massage service; in 
particular, that it lasts for 1.5 hours. The second difference is that the property used to connect the 
offering to the (reified) service description is includesObject (whereas it was includes in 
the manicure example). This is how GR indicates the reified relationship, by using the property 
includesObject to indicate the service. 

This method for representing services by the hour (or any other good that is sold in some units) is 
expressive and consistent, but it does pose a problem when it comes to querying a Good Relations data 
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set. If we represent massages as we have done here, and manicures as we did in the previous example, 
we can’t query both structures using just the query we used for manicures—we will need a query that 
knows how to work with both ways of representing services. 

One solution to this would be to retire the simple representation of services—the one that uses the 
predicate includes, that we used for the manicure—in favor of the more expressive representation 
using includesObject. This is certainly possible—we could represent the manicure as being 
a service, measured “by the job,” i.e., unit “C62,” where the amount is 1. Then the manicure repre
sentation would look like 

plush:Offering_1 a gr:Offering ;

gr:includesObject plush:Quantity_1 .


plush:Quantity_1 a gr:TypeAndQuantityNode ;

gr:typeOfGood plush:Service_1 ;

gr:hasUnitOfMeasurement "C62" ;

gr:amountOfThisGood = "1" .


plush:Service_1 a gr:ProductOrService ;

rdfs:label "NAIL SERVICES: Manicure " . 


But this is a lot of work to go through, in comparison to the much simpler representation we are 
already using, i.e., 

plush:Offering_1 gr:includes plus:Service_1 . 

Do we really have to abandon this simple representation, and go for the more complex one? 
Good Relations includes a number of “Optional Axioms”—these are rules that apply to the 

Good Relations ontology, but are not expressed in the OWL representation of Good Relations. They 
are described on the Good Relations web site both in plain English, as well as in SPARQL.1 One of 
these rules is designed exactly for this case. A simplified version of the rule can be expressed in 
SPARQL as 

CONSTRUCT {

?o gr:includesObject _:n .

_:n rdf:type gr:TypeAndQuantityNode.

_:n gr:amountOfThisGood "1.0"^^xsd:float.

_:n gr:hasUnitOfMeasurement "C62"^^xsd:string.

_:n gr:typeOfGood ?p.}

WHERE 
{

?o rdf:type gr:Offering.

?o gr:includes ?p. } 


That is, if an offering gr:includes something, then construct a TypeAndQuantityNode 

with units “C62” (“by the job”) and amount 1—building in the reified structure. Figure 13.3 shows the 
result of constructing these triples for the manicure example. 

1http://www.ebusiness-unibw.org/wiki/GoodRelationsOptionalAxiomsAndLinks 
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FIGURE 13.3 

Offering_1 after inferencing; the reified object has been constructed from the asserted includes triple. 

COMPOSING FILES 
The Optional Axioms of Good Relations are not represented as part of the published GR ontology. The 
reason for this is that most of the optional axioms cannot be expressed in OWL, and the GR authors 
want GR to be an OWL ontology. But these rules can be expressed in languages that go beyond OWL. 
We want to leave the published GR ontology “pure” OWL, while having the non-OWL parts in another 
file. Most software languages have features for managing modularity of this sort, and OWL is no 
exception; it has language features for modularizing semantic models. These language features have 
no semantics for the model (they allow no new triples to be inferred), but they help us, as humans, to 
organize a model in a modular way. 

owl:Ontology 
OWL provides a built-in class whose members correspond to modular parts of a semantic model. It is 
customary for the URI of an Ontology to correspond to the URL of the file on the Web where the 
ontology is stored. This makes use of a slightly different syntax in Turtle than we have used so far. It is 
possible to spell out a URI by enclosing it in angle brackets: 

<http://www.workingontologist.com/Examples/ch14/shakespeare.owl>

a owl:Ontology. 


<http://www.workingontologist.com/Examples/ch14/shakespeare.owl>
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Unlike the other constructs in OWL, the meaning of membership in owl:Ontology is not given 
by inference. In fact, one could say that it has no formal meaning at all. Informally, a member of 
owl:Ontology corresponds to a set of RDF triples. The set of triples such a resource corresponds to 
can be found by de-referencing its URI (as a URL), which is expected (informally) to resolve to an 
RDF data set (e.g., an RDF file). Formally, there is no connection in the model between an instance of 
owl:Ontology and the triples to which it corresponds. 

Although such an individual has no significance from the point of view of model semantics, it can 
be quite useful when specifying modularity of semantic models. The primary way to specify modu
larity is with the property owl:imports. 

owl:imports 
This is a property that connects two instances of the class owl:Ontology. Just as is the case with 
owl:Ontology itself, no inferences are drawn based on owl:imports. But the meaning in terms 
of modularity of models is clear: When any system loads triples from the file corresponding to an 
instance of owl:Ontology, it can also find any file corresponding to an imported ontology and load 
that as well. This load can, in turn, trigger further imports, which trigger further loads, and so on. There 
is no need to worry about the situation in which there is a circuit of imports (e.g., GR imports OGP 
imports FOAF imports GR). A simple policy of taking no action when a file is imported for a second 
time will guarantee that no vicious loops will occur. The resulting set of triples is the union of all triples 
in all imported files. 

In the case of GR, we can separate its rules out into a separate file, and have that file import the GR 
ontology. If someone just wants the “pure OWL” GR ontology, they can import it from its base URI, 
http://purl.org/goodrelations/v1. If someone else wants the GR ontology together with its (non-OWL) 
rules, they can import http://WorkingOntologist.org/Examples/Chapter13/GROptionalAxioms, which 
expresses these rules in a non-OWL rules language called SPIN, found at spinrdf.org. 

<http://WorkingOntologist.org/Examples/Chapter13/GROptional Axioms>
rdf:type owl:Ontology ;
owl:imports <http://purl.org/goodrelations/v1> ;
owl:imports <http://spinrdf.org/spin> . 

SPIN is a very simple, SPARQL-based rules language that works by linking classes in an ontology 
to SPARQL CONSTRUCT queries. To express one of the optional axioms in SPIN, we simply assert 
a triple that relates a query to the relevant class. The axiom we saw in the previous section applied to 
offerings, so we associate the query that defines the rule with the gr:Offering class as follows: 

gr:Offering spin:rule
"CONSTRUCT {
?o gr:includesObject _:n .
_:n rdf:type gr:TypeAndQuantityNode.
_:n gr:amountOfThisGood "1.0"^^xsd:float.
_:n gr:hasUnitOfMeasurement "C62"^^xsd:string.
_:n gr:typeOfGood ?p.}

WHERE
 {

?o rdf:type gr:Offering.

?o gr:includes ?p. } " 


http://purl.org/goodrelations/v1
http://WorkingOntologist.org/Examples/Chapter13/GROptionalAxioms
http:spinrdf.org
<http://WorkingOntologist.org/Examples/Chapter13/GROptional
<http://purl.org/goodrelations/v1>
<http://spinrdf.org/spin>
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In this example, we have represented the query associated with gr:Offering as a string; SPIN 
also includes a way to represent the query in RDF that is often more convenient for storage, but is not 
as convenient for reading in a book. Associating a rule (in the form of a CONSTRUCT query) with 
a class allows us to specify the scope of each of the rules, and to express them in a familiar language. 
Like Good Relations itself, there is a lot more to SPIN, and the interested reader is referred to http:// 
spinrdf.org/. 

SUMMARY 
The Good Relations ontology provides a way in which Web content providers can mark up their 
web pages to describe business offerings. Like OGP, its designers have made a commitment to 
simplicity. But as GR is more ambitious than OGP, it provides a good deal more sophistication in 
the model for providing structured descriptions of goods and services. GR both provides standards 
of reference for describing business entities (like gr:EndUser and gr:ProvideService), as 
well as referring to other standards (like the UN/CEFACT codes for units of measure). As such, it is 
a good Semantic Web citizen, providing linkages to familiar vocabularies as well as contributing its 
own. 

To date, Good Relations has been used for Search Engine Optimization, with considerable impact. 
But the real value to having structured data is to support true semantic search, whereby a customer can 
be very specific about what they are searching for, and have some confidence that if it exists, then it can 
be found. Good Relations has made great strides in this direction, by achieving structured markup in 
tens of thousands of sites. 

QUANTITIES, UNITS, AND DIMENSIONS 
As part of the Constellation Program, NASA developed an ontology to deal with units of measure. The 
utility of controlling references to units in science and engineering has been understood for centuries, 
and there are several standard systems of units; there is the US Customary set of units (with things like 
miles, feet, and degrees Fahrenheit), the international system (“SI”) that includes meters, kilograms, 
and Kelvins. NASA built an ontology of Quantities, Units, and Dimensions (QUDT)2 to capture and 
manage this information. 

What is the purpose of such an ontology? In contrast to OGP and Good Relations, which provide 
vocabularies that assist web page developers in marking up their pages, QUDT cuts across many 
domains. It was designed for science and engineering, but it has applicability in any setting where 
information can be expressed in different units. We have already seen an application for units in the 
Good Relations ontology—it is important to know how a service is measured—by the hour, by the 
minute, or by the job. 

QUDT serves three major purposes in the Semantic Web. First, it provides a global reference for 
units. If one information source says that some product is measured in pounds, and another source 

2QUDT also includes information about Types, which is beyond the scope of this treatment. 
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says that its service is provided in pounds, how do we know that they are making reference to the 
same notion of pound (there is more than one)? QUDT provides a URI for the notion of pound 
(with information to distinguish it from other units with the same common name), so that such 
references can be made unambiguously. QUDT is not alone in providing this service; as we have 
already seen with Good Relations, UN/CEFACT also provides a canonical set of codes for 
unambiguously identifying units. QUDT connects to the UN/CEFACT codes with the property 
qudt:uneceCommonCode. 

The second purpose that QUDT serves is to provide conversion services. If two information sources 
provide information in terms of pounds, and we use something like UN/CEFACTor QUDT to determine 
that they are the same notion of pound, then we can compare the offerings. But what if one of them offers 
a product measured in pounds, and the other in kilograms? There are a few things that have to happen 
before we can compare the offerings. First, we have to understand whether it is even possible to compare 
pounds and kilograms (are they “commensurate” values). If they are, then we need to convert values 
from one unit to the other. QUDT offers both of these services. These services are useful in science and 
engineering settings, but also in more common settings like the commercial applications of Good 
Relations. 

The third purpose that QUDT serves is mostly focused on engineering settings, where it is often 
important to verify the dimensions of certain quantities. One way to check for errors in a formula is to 
check the dimensions of the components of a formula; only quantities with the same dimensions may 
be added to one another or compared to one another; for example, it makes no sense to add kilograms 
and centimeters or to compare seconds to feet. A simple check for correct dimensions can turn up 
errors, even in quite complex formulas. QUDT includes a comprehensive model of dimensions, cross-
referenced with units, which enables dimension-based calculations. The simplest application of this 
facility is for units conversion—it makes no sense to convert from one unit to another, if the units don’t 
have the same dimension. The formula to convert from meters to feet, 1m ¼ 3.28 ft, can be checked for 
dimensional correctness—do meters and feet have the same dimension? Yes, they do; both are 
measures of length. 

We will explore just enough of the QUDT ontology to show how it supports these three 
functions. The QUDT ontology supports this functionality through a careful separation of Quanti
ties, Units, and Dimensions. In some sense, there is nothing new about this separation; treatment of 
these things has been ongoing in science and engineering for centuries. QUDT makes it refer
enceable on the Web and actionable. Further information about QUDT can be found at its web site, 
QUDT.org. 

A Quantity is some measurable property. A Quantity Kind is, appropriately enough, the kind of 
thing one can measure—familiar quantity kinds are length, time, mass, and force, etc. A Unit is 
a standard of measurement for a particular quantity kind. A foot is a unit for measuring length; 
a second is a unit for measuring time. It is common to have several units for a single kind; feet, inches, 
kilometers, Angstroms, light-years, and furlongs are all measures for length. 

QUDT uses the Local Restriction of Range pattern described in Chapter 11; that is, it uses 
owl:allValuesFrom to restrict the possible values for a property. The relationship between 
qudt:Unit and qudt:QuantityKind is called qudt:quantityKind (note the naming 
convention; qudt:quantityKind begins with a lower-case letter, and hence is a property; 
qudt:QuantityKind begins with an upper-case letter and is a class). The restriction on this 
relationship is defined as 

http:QUDT.org
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qudt:Unit a owl:Class ;

rdfs:subClassOf 


[ a owl:Restriction ;
owl:allValuesFrom qudt:QuantityKind ;
owl:onProperty qudt:quantityKind

] .

qudt:quantityKind a owl:ObjectProperty .

qudt:QuantityKind a owl:Class . 


As an example of units and quantity, let's have a look at feet and length: 

vocab-units:Foot a qudt:Unit ;

qudt:quantityKind vocab-quantities:Length . 


As an example of units and quantity, let’s have a look at feet and length: 

vocab-units:Foot a qudt:Unit ;

qudt:quantityKind vocab-quantities:Length . 


Following along as in the example of this pattern from Chapter 11, from these triples we can infer 
that 

vocab-quantities:Length a qudt:QuantityKind . 

QUDT includes a comprehensive list of units and quantities from many fields of science, 
including mechanics, thermodynamics, chemistry, informatics, and biology. It organizes its name-
spaces in a modular way—as we saw in this example, resources that describe how units work (like 
the resources qudt:QuantityKind and qudt:Unit) are in the qudt: namespace, while 
particular quantities and units (like vocab-quantities:Length and vocab-units:Foot) 
are in namespaces whose names begin with vocab-. These resources are so named because together 
they form controlled vocabularies; one for quantities and one for units. These resources resolve the 
first function of the QUDT vocabulary, that is, they provide unambiguous reference URIs for all the 
units and quantities in QUDT. 

CONVERTING UNITS WITH QUDT 
QUDT includes information that can be used to convert measurements from one unit to another. This is 
a workhorse for merging quantitative information on the Semantic Web. Conversions can be within the 
same system of units (meters to kilometers, seconds to hours, feet to miles) or crossing between 
systems (miles to kilometers, degrees Fahrenheit to degrees Centigrade). In order for such a conversion 
to make sense, the units must be commensurate—that is, they measure the same kind of thing. Miles 
and kilometers are both measurements of length, so it makes sense to consider a conversion between 
the two. Seconds and degrees Fahrenheit do not measure the same thing; it is not meaningful to convert 
from one to another. 
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{ 

Usually we can tell if two units are commensurate if they measure the same quantity kind, but in 
some cases, certain different quantity kinds are in fact commensurate. These are important situations, 
in that they usually reflect a deep connection between different scientific domains. For example, the 
law of Conservation of Energy states that energy is preserved in an interaction—but energy can take 
many forms, including thermal energy (heat), potential energy, kinetic energy, and others. Measure
ments of all these kinds are commensurate. QUDT represents this situation with a tree structure using 
a property called qudt:generalization. In particular, 

vocab-quantities:KineticEnergy
qudt:generalization vocab-quantities:EnergyAndWork .

vocab-quantities:PotentialEnergy
qudt:generalization vocab-quantities:EnergyAndWork .

vocab-quantities:ThermalEnergy
qudt:generalization vocab-quantities:EnergyAndWork . 

This means that we can query for whether two units are commensurate with the following SPARQL 
query:

ASK WHERE {
?arg1 qudt:quantityKind ?kind1 .
?arg2 qudt:quantityKind ?kind2 .
?kind1 qudt:generalization* ?kind .
?kind2 qudt:generalization* ?kind . 

That is, ?arg1 and ?arg2 are commensurate, if their associated quantity kinds are related to 
a common ancestor in the qudt:generalization tree. Recall that qudt:generalization* 

will match zero or more repeated occurrences of qudt:generalization, so  that if  ?kind1 and ?kind2 
are the same thing (e.g,. Length), they will match; this means that the query will return true for ?arg1 
bound to vocab-units:Foot and ?arg2 bound to vocab-units:Meters. It will also return true 
for vocab-quantities:PotentialEnergy and vocab-quantities:ThermalEnergy, 
because they both have a common generalization, vocab-quantities:EnergyAndWork. 

Once we have determined that two units are commensurate, we can set about converting measure
ments in one unit to the other. Each unit includes two properties—qudt:conversionMultiplier 

and qudt:conversionOffset. As their names suggest, these provide conversion multipliers and 
offsets for each unit. For each dimension, there is a base unit for which the multiplier is 1 and the offset 0. 
It isn’t important to know what the base unit is, in order to convert from one unit to the other. For 
example, to convert ten kilometers to miles, we can use the query 

SELECT  (((((10.0 * ?M1) + ?O1) - ?O2) / ?M2) AS ?value)

WHERE {


unit:Kilometer qudt:conversionMultiplier ?M1 ;

qudt:conversionOffset ?O1 .


unit:MileInternational qudt:conversionMultiplier ?M2 ;

qudt:conversionOffset ?O2 .


}

Answer: 6.2137119223733395 

QUDT includes over five hundred conversion factors, enabling thousands of such conversions. 
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Using QUDT conversions 
We can express these conversions in a SPARQL query, but this isn’t available as an inference. That is, 
if we have some quantity specified in miles, we can’t always count on an inference engine to express 
that value in kilometers. Calculations of this sort are the sort of things that one usually puts into an 
application program. SPIN is an example of how to do this. SPIN is a proposal for a way to work with 
SPARQL in a programmatic way. Earlier in Chapter 6 we saw how SPIN could be used to attach 
queries to an ontology. Here we see another application of SPIN. The query we used to convert 
kilometers to miles required us to put the information about the conversion into the query; the number 
to be converted (10.0), the source unit (kilometer), and the target unit (mile). If we want to do another 
conversion, we would need another query, very similar in form, but with a different measurement and 
different designations of units. Far more convenient would be to parameterize the query, making it 
effectively into a function definition. The generalized query, using variables ?arg1, ?arg2, etc., for the 
function arguments, looks like 

SELECT  (((((?arg1 * ?M1) + ?O1) - ?O2) / ?M2) AS ?value)
WHERE {

?arg2 qudt:conversionMultiplier ?M1 ;
qudt:conversionOffset ?O1 .

?arg3 qudt:conversionMultiplier ?M2 ;
qudt:conversionOffset ?O2 .

} 

SPIN allows such queries to be given names, which themselves are resources in RDF. If we 
give this query the name qudtspin:convert, then we could write the 10 kilometer query 
simply as 

SELECT (qudtspin:convert(10.0, unit:Kilometer, unit:MileInternational)
AS ?value)

WHERE {} 

The function call to qudtspin:convert is doing all the work—there is nothing in the 
WHERE clause to match at all!  
The conversion of 32 degrees Fahrenheit to Centigrade looks very similar: 

SELECT (qudtspin:convert(32.0, unit:DegreeFahrenheit, unit:DegreeCelsius)
AS ?value)

WHERE {}
Answer: 0.0 

CHALLENGE 38: COMPARISON SHOPPING WITH GOOD RELATIONS 
Now that we can use QUDT to convert values from one unit to another, we can apply this to Good Relations data for 
purposes of comparison shopping. 

At the end of the Good Relations section, we had an example of a massage service. Let’s add some pricing 
information to it—a single one-and-a-half-hour session costs US$80.00. 

http:US$80.00
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plush:Offering_2 a gr:Offering ;

gr:hasPriceSpecification plush:PriceSpec_2 ;

gr:includesObject plush:Quantity_2 .


plush:Quantity_2 a gr:TypeAndQuantityNode ;

gr:typeOfGood plush:Service_2 ;

gr:hasUnitOfMeasurement "HUR" ;

gr:amountOfThisGood "1.5"^^xsd:float . 


plush:Service_2 a gr:ProductOrService ;

rdfs:label "Relaxing Massage" .


plush:PriceSpec_2 a gr:UnitPriceSpecification ;

gr:hasCurrency "USD"^^xsd:string ;

gr:hasCurrencyValue "80.00"^^xsd:float . 


Down the street from Plush, a competing day spa has its own offer—a fifteen-minute chair massage, for the 
busy person-on-the-go: 

dayspa:Offering_3 a gr:Offering ;

gr:hasPriceSpecification dayspa:PriceSpec_3 ;

gr:includesObject dayspa:Quantity_3 .


dayspa:Quantity_3 a gr:TypeAndQuantityNode ;

gr:typeOfGood dayspa:Service_3 ;

gr:hasUnitOfMeasurement "MIN"^^xsd:string ;

gr:amountOfThisGood "15"^^xsd:float . 


dayspa:Service_3 a gr:ProductOrService ;

rdfs:label "Chair Massage" .


dayspa:PriceSpec_3 a gr:UnitPriceSpecification ;

gr:hasCurrency "USD"^^xsd:string ;

gr:hasCurrencyValue "15.00"^^xsd:float . 


Suppose we want to compare these two offerings in terms of their price per minute of services. All the 
information is there—one of them costs $15 for 15 minutes, the other is $80 for an hour and a half. But to make 
the comparison, we have to convert the amounts into the same units. 

We can do this by combining Good Relations with QUDT. First, we want to query the Good Relations data to find 
out all the things we need to know to make the comparison. We can do this simply by generalizing the common data 
form into a query: 

SELECT *

WHERE {

?offering a gr:Offering ;


gr:hasPriceSpecification ?pricespec;
gr:includesObject ?quantity .

?quantity a gr:TypeAndQuantityNode ;

gr:typeOfGood ?service ;

gr:hasUnitOfMeasurement ?UNunit ;

gr:amountOfThisGood ?amt . 


?service a gr:ProductOrService ;

rdfs:label ?servicename . 


?pricespec
a gr:UnitPriceSpecification ;

gr:hasCurrency ?currency ;

gr:hasCurrencyValue ?price .


} 
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The graph pattern (the part after the keyword WHERE) corresponds line per line to the data, with all the values 
that the two examples don’t have in common turned into variables. We have chosen names for the 
variables that indicate their role in the graph; for example, ?pricespec is a UnitPriceSpecification; ? 
UNunit is the designator for the units, using the United Nations UNECE standard (as is common practice with 
Good Relations). 

We want to be able to use the conversion capabilities of QUDT on this information, so we need to link our Good 
Relations results to QUDT. The linkage point is, of course, the units. But Good Relations doesn’t reference QUDT 
units directly—it references UNECE units. Fortunately, QUDT also references the UNECE units, with a property 
called qudt:uneceCommonCode. We can get the QUDT units by matching a triple using this property: 

?qudtunit qudt:uneceCommonCode ?UNunit . 

Now we are in a position to compute a comparable cost rate in price per minute. The choice of “minutes” here 
is somewhat arbitrary—we could have as easily chosen any other time unit, like seconds or hours. Now that 
we know what units (?qudtunit) the amount (?amt) is in, we can convert it to minutes using 
qudtspin:convert: 

qudtspin:convert (?amt, ?qudtunit, unit:MinuteTime) 

We can compute the cost per minute by dividing ?price by this. The final query is 

SELECT ?servicename ?currency

((?price/qudtspin:convert(?amt, ?qudtunit,


unit:MinuteTime))AS ?cost_per_min )
WHERE {
?offering a gr:Offering ;

gr:hasPriceSpecification ?pricespec;

gr:includesObject ?quantity .


?quantity a gr:TypeAndQuantityNode ;

gr:typeOfGood ?service ;

gr:hasUnitOfMeasurement ?UNunit ;

gr:amountOfThisGood ?amt . 


?service a gr:ProductOrService ;

rdfs:label ?servicename . 


?pricespec

a gr:UnitPriceSpecification ;

gr:hasCurrency ?currency ;

gr:hasCurrencyValue ?price .


?qudtunit qudt:uneceCommonCode ?UNunit . 

} ORDER BY ( ?cost_per_min )

Answer: 

servicename currency cost_per_min 

Relaxing Massage USD 0.88 

Chair Massage USD 1.0 

We have given the quotient of price per minute the name ?cost_per_min, and sorted from lowest cost to 
highest. The result shows that the Relaxing Massage is the better value per minute. 
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This example shows a number of features of the role that models play in linking data sources. 
The structure of the Good Relations ontology gave us a consistent way to represent offerings, 
prices, amounts, and units of competing businesses. QUDT provides useful services (units 
conversions) for computations over these data. But as often happens in the data wilderness, these 
two models were not designed to connect. In particular, the Good Relations model does not use 
QUDT as its unambiguous reference for units. Fortunately, there is a common reference shared by 
QUDT and Good Relations—namely, the United Nations UNECE unit names standard. Since they 
both share a reference to UNECE, the connection can be made (with  a single triple  in the  graph  
pattern!). The result is a price comparison based on published information, from a single query over 
the combined data sets. 

DIMENSION CHECKING IN QUDT 
There are a lot of services that an engineer or scientist could ask of a system of units; many of these go 
by the name dimensional analysis. Whole books have been written on the subject; we can barely 
scratch the surface of this topic here (therefore, see the Further Reading section at the conclusion of the 
book). We will illustrate enough of the QUDT ontology to show how it can support certain basic 
operations in dimensional analysis. 

The basic idea of dimensional analysis is that a quantity has a signature that tells how it relates to 
basic quantities like length, time, and mass. QUDT defines eight base quantities of this sort, but in this 
exposition, we will focus on these three. A compound quantity has a signature in these basic quantities. 
For example, the compound quantity velocity is defined as a ratio between distance and time; this 
means that its signature in terms of length, time, and mass is length/time. The signature can be written 
as a vector, with one vector component for each base unit, and the magnitude of the vector in that 
component being the exponent of the base quantity in the formula for the compound quantity. If we 
write our vectors in the order [length, mass, time] then the vector for velocity is [1, 0, �1]. The vector 
for any base quantity will have magnitude 1 in exactly one place; so the vector for mass is [0, 1, 0]. 
Acceleration is given as a quotient of velocity by time; so its vector is [1, 0, �2]. 

This vector is called the dimensionality of a compound unit. These vectors can be used to check the 
validity of a scientific or engineering formula. For example, one of the basic laws of motion is given by 
the formula F ¼ ma, or Force equals the product of mass times acceleration. Only quantities with 
identical dimensionality can be meaningfully compared, so this formula makes sense only if the 
dimensionality of Force is the same as the dimensionality of the product of mass and acceleration. The 
dimensionality of Force is given by the expression ml=t2, that is, mass times length divided by time 
twice. The dimensionality of acceleration is given as l=t2, or length divided by time twice, and mass is 
given simply by m. So we can check the dimensionality of F ¼ ma by replacing each term with its 
dimensions, i.e., ml=t2 ¼ m$ðl=t2Þ. Since the dimensions on both sides are the same, the formula has 
been verified to pass the test of dimensionality. It is important to note that this kind of simple 
dimensional analysis can uncover certain formulas that are incorrect; a correct dimensional analysis 
does not guarantee that the formula doesn’t have some other problems with it. 

In terms of dimension vectors, we can do the same calculation using vectors. The dimension vector 
for Force is [1, 1, �2]. The vector for mass is [0, 1, 0] and the vector for acceleration is [1, 0, �2]. The 
formula is verified if the vectors add up; that is, if the vector for mass plus the vector for acceleration 



Dimension checking in QUDT 295 

FIGURE 13.4 

Dimensional structure in QUDT to support analysis of F ¼ ma (time dimension) 

equals the vector for force. We add vectors element by element, and verify that indeed [0, 1, 0] þ
[1, 0, �2] ¼ [1, 1, �2], verifying that the dimensions of the formula are identical. 

QUDT supports dimensional analysis by representing over 200 dimensions, cross-referenced with 
corresponding quantities. Figure 13.4 shows the structure in QUDT needed to support this sort of 
analysis. We will go through each piece in turn. 

First, there is the System of Quantities. QUDT includes eight different systems of quantities, 
including the standard international (“metric”) system (SI, shown in the figure) as well as several 
variants of the CGS (centimeter-gram-second) and the US Customary system (with inches, yards, 
miles, pounds, etc.). A system of quantities defines the dimensions that can be measured in that system. 
Each system typically has dozens of dimensions associated with it. In the figure, we see three 
dimensions associated with the SI system of quantities—one for mass (Dimension_SI_M), one for 
length over time twice (Dimension_SI_LT-2) and one for length times mass over time twice 
(Dimension_SI_LMT-2). The naming convention for these dimensions includes the name of the 
system (SI) followed by the dimensions in the order length, mass, time, each followed by a number 
indicating the exponent for that dimension. These names are not used by any query mechanism—they 
are only used for humans to read the dimension names. 

Since the names are only there for humans to read, if we want to query for the dimension vector for 
any of these, we need to represent their dimensional vectors in triples. This is shown in Figure 13.5 for 
Dimension_SI_LMT-2; for each of the three basis vectors, there is a one-dimensional vector. The 
magnitude of the vector is given by the property vectorMagnitude (its value is a floating point 
number, since fractional exponents are possible for certain units). The base quantity itself (mass, 
length, time) is given by the property baseElement. 

We can see all of this come together in Figure 13-5 for the time dimension; we have our three 
quantities, Mass, LinearAcceleration and Force. Each of these is referenced by a particular 
dimension expression – m for mass, l=t2 for linear acceleration, and ml=t2 for force. Each of these, in 
turn, is related to several base vectors. The figure shows the vector for time, with coefficient zero for 
mass (since the vector for mass has a zero in the time place), coefficient �2 for linear acceleration 
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FIGURE 13.5 

QUDT dimensional breakdown of ml/t2 

(since the vector for linear acceleration has a �2 in the time place), and also a coefficient �2 for force 
(since the vector for force also has a �2 in the time place). From the information in Figure 13.4, we are 
in a position to verify (for the time dimension, anyway) that the formula F ¼ ma is correct from 
a dimensional point of view, by noticing that the time coefficient for mass (0) plus that for linear 
acceleration (�2) equals the coefficient for force (�2); 0 þ ð�2Þ ¼ �2. 

How can we write a SPARQL query to verify this calculation? First, let’s have a look at some of the 
information from Figure 13.4 rendered verbatim in Turtle:

 quantity:SystemOfQuantities_SI qudt:systemDimension dim:Dimension_SI_M .

dim:Dimension_SI_M qudt:referenceQuantity quantity:Mass .

dim:Dimension_SI_M qudt:dimensionVector dim:Vector_T0 .

dim:Vector_T0 qudt:vectorMagnitude "0.0"^^xsd:float . 

dim:Vector_T0 qudt:basisElement quantity:Time . 


We can use these triples to form a query that will tell us the magnitude of the time dimension for the 
quantity mass by putting in variables at the appropriate places: 

SELECT ?MassMagnitude
WHERE {
quantity:SystemOfQuantities_SI qudt:systemDimension ?dim .
?dim qudt:referenceQuantity quantity:Mass .
?dim qudt:dimensionVector ?vector .
?vector qudt:vectorMagnitude ?MassMagnitude .
?vector qudt:basisElement quantity:Time .

}
Answer: 0.0 

We can verify the correctness of the dimensionality of F ¼ ma by repeating this pattern three times, 
once each for mass, acceleration and force. If we filter with the formula (?MassMagnitude þ
?AccMagnitude !¼ ?ForceMagnitude), we will eliminate those dimensions for which the vectors 
don’t add up. 
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If we replace quantity:Time with another variable (?base), we can repeat this calculation for 
every vector base. We will need to list out those bases; QUDT provides this list as the class 
qudt:VectorBase. Finally, the dimension analysis matches exactly if there is no dimension for 
which it fails. We accomplish this in SPARQL by putting the check for a failure into a subquery, and 
then checking for no failures using the SPARQL keyword NOT EXISTS. If there does not exist 
a failure, then the query returns true. The complete query that checks the dimensions of F ¼ ma is 
shown here. It returns true, since the dimensions do check out. 

ASK WHERE 

{

 NOT EXISTS {


SELECT * 

WHERE { ?base a qudt:VectorBase .


quantity:SystemOfQuantities_SI qudt:systemDimension ?dim1 .

?dim1 qudt:referenceQuantity quantity:Mass .

?dim1 qudt:dimensionVector ?vector1 .

?vector1 qudt:vectorMagnitude ?MassMagnitude .

?vector1 qudt:basisElement ?base .

quantity:SystemOfQuantities_SI qudt:systemDimension ?dim2 .

?dim2 qudt:referenceQuantity quantity:LinearAcceleration .

?dim2 qudt:dimensionVector ?vector2 .

?vector2 qudt:vectorMagnitude ?AccMagnitude .

?vector2 qudt:basisElement ?base.

quantity:SystemOfQuantities_SI qudt:systemDimension ?dim3 .

?dim3 qudt:referenceQuantity quantity:Force .

?dim3 qudt:dimensionVector ?vector3 .

?vector3 qudt:vectorMagnitude ?ForceMagnitude .

?vector3 qudt:basisElement ?base.


FILTER (?MassMagnitude + ?AccMagnitude != ?ForceMagnitude)
} } } 

The real test of a query like this is to try it on formulas that do not check out. Indeed, if we replace 
e.g,. Mass with Time or Force with Energy in this query, the result is false, since those dimensions do 
not add up. 

While it is easy enough to build up a query like this from identical pieces, reading and 
maintaining them can become unwieldy. Since large parts of the query are repetitive, this is 
a great opportunity to define the repeating parts as SPIN functions. It is beyond the scope of this 
book to work out all the dimensional analysis queries using SPIN—but the same approach used 
to generate this query has been used to create SPIN functions for checking the dimensionality of 
formulas. Details of this approach can be found at http://qudt.org/. 

SUMMARY 
QUDT is an elaborate ontology, but not a very large one. It includes a few dozen classes and 
several hundred units, quantities, and vectors. But it expresses subtle distinctions that are 
important for providing services with units. It accomplishes the three major goals we laid out at 

http://qudt.org/
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the beginning of this section; it provides a global reference (URI) for comprehensive systems of 
units, it provides a means for converting from any unit to any commensurate unit, and it provides 
enough information to perform dimensional analysis on any of over 200 units that it defines. It 
accomplishes this with a careful separation of entities—quantities, units and dimensions, as well 
as a comprehensive catalog of information about the conventional units used throughout history 
and around the world. 

BIOLOGICAL ONTOLOGIES 
Ontologies in one form or another have been a mainstay of biological and life sciences for decades 
(one could even say for centuries). In recent years, there has been an explosion of biological infor
mation, along with a corresponding interest in ontologies to help organize that information. In this “in 
the wild” study, we make no attempt to provide a comprehensive catalog of biological ontologies. We 
will instead concentrate by example on the modeling aspects of biomedical ontologies and their use in 
the Semantic Web. 

Just as was the case with QUDT, the biological ontologies serve many purposes on the Semantic Web. 
First, they provide unambiguous references to biological concepts. This is particularly important when 
there are tens of thousands of relevant concepts, including information about genes, diseases, chemicals, 
and organisms, etc. Having unambiguous names of this sort is essential for organizing information 
generated in different laboratories. Unambiguous terms of this sort are essential for locating publica
tions—if a researcher suspects something interesting about a particular gene, indexing the vast corpus of 
biological publications for appropriate material is considerably enhanced by unambiguous names. 

A closely related function has to do with the observation that in any global endeavor, many people 
will have already come up with naming schemes for these things—there are already multiple naming 
schemes for proteins, chemicals, and other biological entities. A key role of many of the biological 
ontologies is to provide a sort of Rosetta Stone to link these vocabularies together. The Semantic Web 
is a particularly suitable infrastructure for this sort of interoperation of vocabularies. 

A more involved use of a biological ontology is for solving elaborate search problems, where the 
search relies on massive amounts of detailed knowledge about a technical domain (like chemistry, 
genomics, and proteomics). This places much more stringent requirements on an ontology. Many of 
the ontologies published today have sufficient detail to satisfy these requirements. 

In this exposition, we will use an ontology called the Chemical Entities of Biological Interest 
(CHEBI, for short). CHEBI is being developed and maintained by the European Bioinformatics Insti
tute, and contains information about over 20,000 chemical compounds. It is published as part of the 
Open Biological and Biomedical Ontologies Foundry (OBO Foundry), a sort of wiki space for collecting 
science-based ontologies. The OBO Foundry publishes ontologies in a number of forms including OWL. 
OBO Foundry OWL ontologies use certain ontology design patterns that we will examine in detail. 

CHEBI AS UNAMBIGUOUS REFERENCE 
CHEBI provides a URI identifier for every chemical it defines, and hence serves as a global reference 
for those chemicals. But CHEBI is not the only resource that identifies chemicals—many other 
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resources do this as well. These other resources do not necessarily share CHEBI’s focus on chemicals 
of biological interest, but there is still considerable overlap. For this reason, CHEBI includes several 
cross-references for each chemical it defines. For example, the herbicide glyphosate (better known by 
its trade name, Roundup) is represented in CHEBI as 

chebi:CHEBI_27744

 rdfs:label "glyphosate"@en ;

oboInOwl:hasDbXref 


[ a oboInOwl:DbXref ;

rdfs:label "ChemIDplus:1071-83-6"


] ;

oboInOwl:hasDbXref 


[ a oboInOwl:DbXref ;

rdfs:label "KEGG_COMPOUND:1071-83-6"


 ] ;

oboInOwl:hasDbXref 


[ a oboInOwl:DbXref ;

rdfs:label "Beilstein:2045054"


 ] ;

oboInOwl:hasDbXref 


[ a oboInOwl:DbXref ;

rdfs:label "MSDchem:GPJ"


 ] ;

oboInOwl:hasDbXref 


[ a oboInOwl:DbXref ;

rdfs:label "Gmelin:279222"


 ] . 


Glyphosate has identifying number 27744 in CHEBI, which is actually represented as the URI 
Chebi:CHEBI_27744. Every entity in CHEBI is assigned a number like this. While this policy 
makes the URIs difficult to read, it makes them easier to use in a multi-lingual setting or, as in this 
case, in a setting in which multiple names could be preferred by different groups. In defining cross-
references to other chemical identification systems, CHEBI makes ample use of reification 
(Chapter 3). Each cross-reference is an individual member of the class oboInOwl:DbXref, with 
a label that indicates the details of the reference. In the example, we see references to several other 
authorities, with names given in the references (ChemIDPlus, Kegg, etc.). The DbXref is reified to 
allow other information to accompany the cross reference as available, e.g., a pointer to the governing 
body, effective dates, etc. This structure allows CHEBI to act as a sort of translation service among 
these other resources, for the chemicals that it describes. 

CHEBI FOR COMPLEX SEARCH 
A good deal of the complexity of the CHEBI ontology lies in the connections between the 
chemicals. It is typical of OBO ontologies to include complex interrelationships between the entities 
they define. CHEBI makes a particularly good pedagogical example of OBO style because of its 
relatively small size (only 20,000 concepts) and the small number of relationships between the 
chemicals it records. 
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Using our example chemical glyphosate, the fact that it is an herbicide is represented in CHEBI as 

chebi:CHEBI_24527
 a owl:Class ;
rdfs:label "herbicide"@en .

chebi:CHEBI_27744
 a owl:Class ;
rdfs:label "glyphosate"@en ;
rdfs:subClassOf 

[ a owl:Restriction ;
owl:onProperty obo:has_role ;
owl:someValuesFrom chebi:CHEBI_24527 

] ; 

The first thing to notice in this style of modeling is that every concept is represented in OWL as 
an owl:Class; the chemical “glyphosate” (Chebi:CHEBI_27744) as well as the role 
“herbicide” (Chebi:CHEBI_24527) are both classes. These two classes are related to one 
another as shown; glyphosate is a subclass of an owl:Restriction (as defined in Chapter 11), 
where that restriction is on the property obo:has_role, and stipulates that this property takes 
at least one value from (owl:someValuesFrom) the class herbicide. Notice that the 
property obo:has_role comes from OBO namespace; OBO Foundry defines dozens of prop
erties that are useful for describing biological entities. CHEBI uses less than a dozen of them that 
have relevance to its domain of biochemistry. In addition to obo:has_role seen in this example, 
CHEBI uses obo:has_part (for constituent chemicals), and several chemistry-specific 
properties like obo:is_conjugate_acid_of, obo:is_conjugate_base_of, and 
obo:has_parent_hydride. The pattern we see here with “has role” and “herbicide” is 
repeated in CHEBI about 12,000 times, to relate various chemicals to their components, conjugate 
acids and bases, parent hydrides, etc. This pattern is typical of OBO ontologies and is used 
thousands of times in OBO Foundry. 

Since this pattern is being used to reflect the fact that glyphosate has the role of herbicide, one 
might well wonder why this wasn’t represented simply with a single triple 

chebi:CHEBI_27733 obo:has_role chebi:CHEBI_24527 . 

As usual, the answer to a question like this lies in the inferencing. What inferences can we draw 
from this pattern? 

To see the answer to this, we need to view glyphosate in a larger context. Figure 13.6 shows some of 
the context of glyphosate in CHEBI. 

CHEBI goes into considerable detail about classifications of chemicals. We see in this figure the 
information about glyphosate’s role as an herbicide (center). It is a subclass of a restriction on the 
property has role that takes some value from the class herbicide. But we have further context about 
herbicide, in particular that it is a subclass of pesticide. We also see that glyphosate is a subclass, 
through a long chain of intermediaries, of two more restrictions, which stipulate that for has part it 
takes some value from phosphorus, and that for has parent hydride, it takes some value from 
ammonia. 
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FIGURE 13.6 

Excerpt from CHEBI, showing information about glyphosate. All concepts are shown with labels (e.g., “gly

phosate”) instead of CHEBI URIs (e.g., Chebi:CHEBI:27744). 

Given these facts, we can use the inference mechanism of OWL to answer some useful 
questions. Suppose we are interested in pesticides containing phosphorus that have ammonia as 
a parent hydride. Figure 13.6, along with an understanding of the meaning of the modeling words 
rdfs:subClassOf, owl:someValuesFrom, and owl:onProperty tells us that glyphosate 
is such a chemical. But how, specifically, can we find this (or any other such chemical), based on this 
model? 

First, we define (in OWL) the class of things we are seeking, that is, the intersection of things 
that have role pesticide, have part phosphorus, and have parent hydride ammonia. This is done with 
an intersection of three restrictions. (In RDF, we have to use the CHEBI URIs to refer to concepts; 
for reference, we have included the corresponding names of the concepts pesticide, ammonia and 
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phosphorus in comments indicate with a hash (#) on each line where they occur.) Here’s how that 
looks: 

:MyChemical a owl:Class ;
rdfs:label "My chemical" ;
owl:intersectionOf (

[ a owl:Restriction ;
owl:onProperty obo:has_role ;
owl:someValuesFrom chebi:CHEBI_25944 ] # pesticide

[ a owl:Restriction ;
owl:onProperty obo:has_parent_hydride ;
owl:someValuesFrom chebi:CHEBI_16134 ] # ammonia

[ a owl:Restriction ;
owl:onProperty obo:has_part ;
owl:someValuesFrom chebi:CHEBI_28659 ] # phosphorus

) . 

Now if we run OWL inferences, we infer that 

chebi:CHEBI_27733 rdfs:subclassOf :MyChemical . 

That is, glyphosate is a match for the given specifications. The OWL semantics took care of all the 
complexity of Figure 13.6, including the chain of named classes that glyphosate is a subclass of, as 
well as the subclass chain between its stated role herbicide and the required role pesticide. The 
definition of the requirements didn’t include any reference to any of these things—that was included in 
the CHEBI model and the OWL semantics. 

It is also worth noting what inferences we cannot draw from the CHEBI model as shown 
in Figure 13.6. If, for example, we have a sample chemical in our lab, and our experiments 
show that it contains phosphorus as a part, and has ammonia as a parent hydride, this allows us 
to infer its membership in the two corresponding restrictions at the top of Figure 13.6. But 
this does not allow us to infer anything about the relationship of our sample to glyphosate. 
CHEBI is useful for searching for chemicals among those classified within it, not for identifying 
samples. 

These examples provide some motivation for why the authors of CHEBI chose to define the 
herbicide role of glyophosate as a relationship between classes using someValuesFrom, rather 
than simply stating it as an explicit fact in a single triple. 

chebi:CHEBI_27733 obo:has_role chebi:CHEBI_24527 . 

By modeling this relationship with classes and someValuesFrom, they embedded the class 
glyphosate in a more comprehensive model that includes relevant facts, for example, facts about 
the relations between pesticides and herbicides. This allows the model (along with the OWL 
semantics) to do a lot of the work of question answering (for certain questions) about the entities 
in the model. The model encodes information in a  way that a human questioner need not  be  
aware of. 
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CHALLENGE 39: EXPRESSING CHEBI IN SKOS 
The power of a model like CHEBI to respond flexibly to queries like this one comes at a price—the model itself is 
complex; for example, the relationship between glyphosate and herbicide is given by a pattern including 
a particular kind of restriction. Earlier, we asked why this couldn’t have been represented simply with a single triple 

chebi:CHEBI_27733 obo:has_role chebi:CHEBI_24527 . 
In this challenge, we will examine how CHEBI could be represented in SKOS, and how we could satisfy the 

same information extraction needs outlined above, using that representation. 
In the case of CHEBI, it is a simple matter to convert all the information about subclasses and restrictions 

into SKOS following this line of reasoning. Each class in CHEBI becomes a SKOS concept, each 
rdfs:subClassOf relationship becomes skos:broader, and each owl:someValuesFrom 
restriction becomes a direct reference. Figure 13.7 shows the same information from Figure 13-6, but transformed 
into SKOS in this way. 

In many ways, Figure 13.7 is simpler than Figure 13.6; the fact that glyphosate has role herbicide is repre
sented as a single triple, as is the fact that an organic amino compound has parent hydride ammonia. The inclusion 
relationships that were expressed as subClassof are now expressed as broader. But how would we query 
this structure to find an answer to the same question we asked earlier—“find the pesticides containing phosphorus 
that have ammonia as a parent hydride”? We can find these using SPARQL as follows: 

SELECT ?result 
WHERE {

?result skos:broader* ?concept1 .
?concept1 obo:has_parent_hydride ?concept2 .
?concept2 skos:broader* chebi:CHEBI_16134 . # ammonia
?result skos:broader* ?concept3 .
?concept3 obo:has_part ?concept4 .
?concept4 skos:broader* chebi:CHEBI_28659 . # phosphorus
?result skos:broader* ?concept5 .
?concept5 obo:has_role ?concept6 .
?concept6 skos:broader* chebi:CHEBI_25944 . # pesticide

} 

This gives the same result as the OWL inference, namely that glyphosate satisfies all of these criteria. The 
representation is simpler, but the query is more complex. In particular, the query writer must take responsibility for 
all of the transitive relationships, using skos:broader* at each point, and making sure that it appears at 
every point in the query. This is a common trade-off in representation—does the model do more work, with a more 
involved representation, or does the query do more work, matching the correct information? The contrast between 
the OWL version of CHEBI and the SKOS version shows this; in OWL, certain queries can be done very easily, 
allowing the structure of the model to do all the work. But the structure is less suited to other queries (“Identify this 
sample”). The model does more of the work for the queries it was designed for, but its increased complexity can 
make other applications more complex. 

The transformation from OWL into SKOS shown here was straightforward, because CHEBI uses a single pattern 
(using owl:someValuesFrom) to relate one concept to another. Some models use more complex pattern 
in OWL to relate concepts. For instance, one of the OBO Foundry ontologies is a thesaurus of cancer entities 
maintained by the National Cancer Institute (NCI). The NCI thesaurus includes disease descriptions (with far too 
much technical detail to include here) in which a disease is characterized by several syndromes—that is, 
a particular disease is indicated by a certain set of symptoms or another set of symptoms or another set of 
symptoms and so on. Complicated combinations of unions and intersections can be done in OWL in a standard 
way; the translation to SKOS of such things is not straightforward. An OWL inference engine will treat all such 
definitions in a consistent and correct manner. 
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FIGURE 13.7 

CHEBI concepts from Figure 13.6 shown in SKOS. The standard SKOS property skos:broader is shown 

here as “has broader.” 

SUMMARY 
The three ontologies discussed in this chapter, Good Relations, QUDT, and OBO Foundry ontologies, 
cover the spectrum from ontologies that include almost no data at all (Good Relations) to ontologies 
that include very large amounts of richly interconnected data (OBO). They all supply, to varying 
extents, the basic capabilities of the Semantic Web of sharing information in a coherent way across 
multiple systems. 

Good Relations is the smallest of the ontologies described here. Its main goal in the Semantic Web 
is to provide a framework in which information can be shared—a vocabulary that different suppliers 
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can use to describe their offerings. The data in Good Relations aren’t in the ontology at all; it is 
distributed across the Web. OBO Foundry ontologies, in contrast, are much, much larger, and include 
large amounts of data about biology, medicine, life sciences, etc. There are complex questions that can 
be answered, using OBO as a data resource. QUDT sits in the middle; it contains a good deal of data 
(conversion factors, relationships between dimensions and units, etc.), but its main purpose is to 
provide connection between other data sets; two data sources that both use Good Relations might still 
fail to be interoperable because of mismatch of units; QUDT provides enhanced interoperability in 
these cases. All three of these ontologies play the basic role in the Semantic Web of providing globally 
unambiguous names for standard entities—they differ only in the details of how these relationships can 
be used. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

owl:imports—Allows one ontology to refer explicitly to another. Triples from the imported

ontology are available for inferencing in the importing ontology.

Ontology Design Patterns—Repeated modeling idioms that provide coherence and unity to a large

model.

Good Relations—Ontology for representing and sharing information about commerce on the Web.

QUDT—Quantities, Units, Dimensions Types. Ontology of engineering units

OBO—Open Biological and Biomedical Ontologies. A collection of ontologies with relevance to

the life sciences.

CHEBI—Chemical of Biological Interests. An example ontology from OBO relating to

biochemistry.
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In preceding chapters, we reviewed the constructs from RDF, RDFS, and OWL that go into a good 
model. We provided examples of successful models from a number of different backgrounds. Even 
after reaching this point, the prospect of creating a new model from scratch can seem daunting. Where 
should you begin? How do you tell a good model from a bad one? 

Unlike the examples in the previous chapters, many of the examples in this chapter should not be 
used as templates or examples of good practice in building your own models. We indicate these 
examples with the label “antipattern” to indicate patterns that should not be emulated in your 
models. 

GETTING STARTED 
Often the first step of a journey is the most difficult one. How can you start the construction of 
a useful semantic model? Broadly speaking, there are three ways to get started, and the first 
comes directly from the nature of a web. Why build something if it is already available on the 
Web? One of the easiest ways to begin a modeling project is to find models on the Web that suit 
your needs. The second way is to leverage information assets that already have value for your 
organization. 

It is not uncommon for an organization to have schemas, controlled vocabularies, thesauri, or 
other information organization artifacts that can provide an excellent source of vetted information 
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for a semantic model. The third way is to engineer a model from scratch. In this case, certain 
standard engineering practices apply, including the development of requirements definitions and test 
cases. 

Regardless of the manner in which a model was acquired, you must answer this question: Is this 
model, or some part of it, useful for my purposes? This poses two issues for the modeler: How do I 
express my intended purpose for a model? How do I determine whether a model satisfies some 
purpose? 

Know what you want 
How can we express our intentions for the purpose of a model? In the case where we are engineering 
a model from scratch, we can express requirements for the model we are creating. One common 
practice for semantic models usually starts with the notion of “competency questions.” Begin the 
modeling process by determining what questions the model will need to answer. Then construct the 
model so that these questions can be answered, and, to the extent possible, model no further than 
necessary to answer them. 

Although competency questions provide a reasonable start for specifying the purpose of a model, 
they have some limitations in the context of modeling in the Semantic Web. The first drawback is that 
for models that have been found on the Web, or for other information artifacts that we have used as 
a basis for a new model, competency questions typically will not have been provided. It is not 
uncommon for a modeler to find themselves in a position of determining what a model can do, based 
simply on an examination of the model. 

A more serious limitation stems from the observation that a model in the Semantic Web goes 
beyond the usual role of an engineered artifact with system requirements. On the Semantic Web, it 
is expected that a model will be merged with other information, often from unanticipated sources. 
This means that the design of a semantic model must not only respond to known requirements 
(represented with competency questions) but also express a range of variation that anticipates to 
some extent the organization of the information with which it might be merged. 

Although this seems like an impossible task (and in its full generality, of course, it is 
impossible to anticipate all the uses to which a model might be applied), there are some simple 
applications of it, in light of the other guidelines. You model ShakespeareanWork as a class 
not only when you have a corresponding competency question (e.g., “What are the works of 
Shakespeare?”) but also whenever you anticipate that someone else might be interested in that 
competency question. You model ShakespeareanWork as a subclass of ElizabethanWork 

not just in the case when you have a competency question of that form (e.g., “What are all the 
kinds of Elizabethan works?”) but also if you anticipate that someone might be interested in 
Shakespearean works and someone else might be interested in Elizabethan works, and you want 
the answers to both questions to be consistent (i.e., each ShakespeareanWork is also an 
ElizabethanWork). 

This idea gets to the crux of how modeling in the Semantic Web differs from many other engineering 
modeling practices. Not only do you have to model for a particular engineering setting but for a variety 
of anticipated settings, as well. We have already seen examples of how this acts as a driving force behind 
our models in the wild. OBO ontologies are structured as they are, not primarily because a single 
stakeholder needs to understand the organization of the terminology of the life sciences, but because 
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members of a community of stakeholders with different goals need answers to a variety of questions, 
which must all be answered consistently. 

Say what you mean, mean what you say 
The March Hare in Alice in Wonderland challenged Alice to say what she means and mean what she 
says. This is good advice for anyone building a model as well; the model is a set of statements that we 
ought to stand behind, and a modeling language gives us a way to make those statements. When we 
make a statement, we should mean it. If we have something to say, we should find a way to express it in 
a modeling language. We can only do this, if we have a way of knowing what statements in a modeling 
language mean. It is fine to talk about stakeholders, variation, and competency questions, but even 
when we do have a specific understanding of the intent of a model, how can we even determine 
whether the model, as constructed, meets that intention? 

We can appeal to the intuition behind the names of classes and properties, but this is problematic 
for a number of reasons. First is the issue known as “wishful naming.” Just because someone has 
named a class ElizabethanWork doesn’t mean that it will contain all or even any works that 
might deserve that name. Second is the issue of precision. Just what did the modeler mean by 
ElizabethanWork? Is it a work created by Queen Elizabeth or one that was created during her 
reign? Or perhaps it is a work created by one of a number of prominent literary figures (the 
ElizabethanAuthors), whose names we can list once and for all. To determine whether a model 
satisfies some intent, we need an objective way to know what a model means and, in the case of 
competency questions, how a model can answer questions. 

There are two ways a Semantic Web model answers questions. The first is comparable to the way 
a database answers questions: by having the appropriate data indexed in a way that can be directly 
accessed to answer the question. If we answer the question “What are the Elizabethan literary works?” 
this way, we would do so by having a class called, say, ElizabethanWork and maintain a list of 
works as members of that class. 

This method for answering questions is fundamental to data management; at some point, we have 
to trust that we have some data that are correct or that are at least correct enough for our purposes. The 
special challenge of semantic modeling comes when we need to model for variability. How do we 
make sure that our answer to the question “What are the Shakespearean works?” is consistent with the 
answer to “What are the Elizabethan works?” (and how does this relate to the answer to the question 
“Who are the Elizabethan authors?”). This brings us to the second way a semantic model can answer 
questions: through the use of inferencing. 

We can determine a model’s answer to a particular question (or query) through an analysis of 
inferencing. What triples can we infer based on the triples that have already been asserted? This gives 
us more power to say what we mean and mean what we say. What do I mean when I refer to a 
ShakespeareanWork? If I mean that every ShakespeareanWork is an ElizabethanWork, 
then I should say that ShakespeareanWork is a subclass of ElizabethanWork. If  
furthermore I mean that an ElizabethanWork is one that was created or performed by an 
ElizabethanAuthor and that Shakespeare is one of these authors, then I say by building 
a model that entails the corresponding inferences (e.g., using owl:someValuesFrom). Infer
encing is the way I can tell whether what I have said is what I mean—do the inferences the model 
entrails reflect the relationships between concepts that I mean to express? 
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MODELING FOR REUSE 
One of the principal drivers in the creation of a semantic model is that it will be used by someone other 
than its designer in a new context that was not fully anticipated. If you are designing a model, you must 
consider the challenges the people using your model might face. How can you make this job easier for 
them? 

Insightful names versus wishful names 
When you are reusing a model that you found on the Web, you’d like to know the intent of the various 
components of the model (classes, properties, individuals). The support that a model provides for 
question answering is given formally by the inferences that the model entails. As far as an inference 
engine is concerned, entities in the model could have any name at all, like G0001 or Node97. But 
names of this sort are of little help when perusing a model to determine whether it can satisfy your own 
goals. Putting the shoe on the other foot, when you build a model, you are also selecting names for 
those who will want to link to your model and need to know what is in it, as well as for those, including 
yourself at a later date, who may have to maintain or extend the model. There’s a fine line between 
good naming and wishful thinking, but keeping in mind that your model will be “read” by others is 
always good practice. 

A closely related issue to naming is the use of annotations like rdfs:label, rdfs:comment, 
and rdfs:seeAlso. Even if you choose a name for a resource that you understand, and even one 
that is understood by the community you participate in, there could well be another community who 
will find that usage meaningless or even misleading. We have seen an example of this before with 
skos:broader. For someone with a background in thesaurus management, it is understood that 
skos:broader is used to connect a narrow term to a broader term, such as: 

:cheese skos:broader :dairy. 

That is, skos:broader should be read as “has broader term.” Other readers might expect 
this to be read “cheese is broader than dairy,” and they would either be confused by the use of 
skos:broader or, worse, would misuse it in their own models. Judicious use of rdfs:label 

can alleviate this issue, as follows: 

skos:broader rdfs:label "has broader". 

In addition to the selection of meaningful names and quality naming, some simple conventions can 
contribute to the understandability of a model. The conventions listed next have grown up as de facto 
standard ways to name entities on the Semantic Web and are followed by the W3C itself as well as 
throughout this book. 

Name resources in CamelCase: CamelCase is the name given to the style of naming in 
which multiword names are written without any spaces but with each word written in 
uppercase. We see this convention in action in W3C names like rdfs:subClassOf and 
owl:InverseFunctionalProperty. 
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Start class names with capital letters: We see this convention in the W3C class names 
owl:Restriction and owl:Class. 
Start property names with lowercase letters: We see this convention in the W3C property names 
rdfs:subClassOf and owl:inverseOf. Notice that except for the first letter, these names 
are written in CamelCase. 
Start individual names with capital letters: We see this convention at work in the 
lit:Shakespeare and ship:Berengaria examples in this book. 
Name classes with singular nouns: We see this convention in the W3C class names 
owl:DatatypeProperty and owl:SymmetricProperty and in the examples in this 
book: lit:Playwright. 

Keeping track of classes and individuals 
One of the greatest challenges when designing a semantic model is determining when something 
should be modeled as a class and when it should be modeled as an individual. This issue arises 
especially when considering a model for reuse because of the distributed nature of a semantic model. 
Since a semantic model must respond to competency questions coming from different stakeholders, it 
is quite possible that one work practice has a tradition of considering something to be a class, whereas 
another is accustomed to thinking of it as an instance. 

As a simple example, consider the idea of an endangered species. For the field zoologists who are 
tracking the number of breeding pairs in the world (and in cases where the numbers are very small, give 
them all names), the species is a class whose members are the individual animals they are tracking. For 
the administrator in the federal agency that lists endangered species, the species is an instance to be put 
in a list (i.e., asserted as a member of the class of endangered species) or removed from that list. The 
designer of a single model who wants to answer competency questions from both of these stakeholder 
communities is faced with something of a challenge. This situation can often be modeled effectively 
using the Class-Individual Mirror pattern in Chapter 11. 

Another source of difficulty arises from the flexibility of human language when talking about 
classes and instances. We can say that Shakespeare is an Elizabethan author or that a poem is 
a literary work. In the first sentence, we are probably talking about the individual called Shakespeare 
and his membership in a particular class of authors. In the second, we are probably talking about how 
one class of things (poems) relates to another (literary works). Both of these sentences use the words 
“is a(n)” to describe these very different sorts of relationships. In natural languages, we don’t have to 
be specific about which relationships we mean. This is a drawback of using competency questions in 
natural language: The question “What are the types of literary works?” could be interpreted as 
a request for the individuals who are members of the class LiteraryWork, or it could be asking for  
the subclasses (types) of the class LiteraryWork. Either way of modeling this could be 
considered a response to the question. 

Although there is no hard and fast rule for determining whether something should be modeled as 
an instance or a class, some general guidelines can help organize the process. The first is based on the 
simple observation that classes can be seen as sets of instances. If something is modeled as a class, 
then there should at least be a possibility that the class might have instances. If you cannot imagine 
what instances would be members of a proposed class, then it is a strong indication that it should not 
be modeled as a class at all. For example, according to this guideline it is unlikely that we should use 
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a class to refer to the literary figure known as Shakespeare. After all, given that we usually under
stand that we are talking about a unique literary figure, what could possibly be the instances of the 
class Shakespeare? If there is none, then Shakespeare should properly be modeled as an 
instance. 

If you can imagine instances for the class, it is a good idea to name the class in such a way that the 
nature of those instances is clear. There are some classes having to do with Shakespeare that one might 
want to define. For example, the works of the bard, including 38 plays, 254 sonnets, 5 long poems, and 
so on could be a class of interest to some stakeholder. In such a case, the name of the class should not 
simply be Shakespeare but instead something like ShakespeareanWork. Considerable 
confusion can be avoided in the design phase by first determining what is to be modeled (the bard 
himself, his works, his family, etc.), then deciding if this should be a class or an instance, and then 
finally selecting a name that reflects this decision. 

The second guideline has to do with the properties that describe the thing to be modeled. Do you 
know (or could you know) specific values for those properties or just in general that there is some 
value? For instance, we know in general that a play has an author, a first performance date, and one or 
more protagonists, but we know specifically about The Tempest that it was written by William 
Shakespeare, was performed in 1611, and has the protagonist Prospero. In this case, The Tempest 
should be modeled as an instance, and Play should be modeled as a class. Furthermore, The Tempest is 
a member of that class. 

Model testing 
Once we have assembled a model—either from designed components, reused components, or 
components translated from some other source—how can we test it? In the case where we have 
competency questions, we can start by making sure it answers those. More important, in the distributed 
setting of the Semantic Web, we can determine (by analyzing the inferences that the model entails) 
whether it maintains consistent answers to possible competency questions from multiple sources. We 
can also determine test cases for the model. This is particularly important when reusing a model. How 
does the model perform (i.e., what inferences can we draw from it?) when it is faced with information 
that is not explicitly in the scope of its design? In the analysis to follow, we will refer generally to 
model tests—ways you can determine if the model satisfies its intent. 

COMMON MODELING ERRORS 
In light of the AAA slogan (Anybody can say Anything about Any topic), we can’t say that anything is 
really a modeling error. In our experience teaching modeling to scientists, engineers, content 
managers, and project managers, we have come across a handful of modeling practices that may be 
counterproductive for the reuse goals of a semantic model. We can’t say that the models are strictly 
erroneous, but we can say that they do not accomplish the desired goals of sharing information about 
a structured domain with other stakeholders. 

We have seen each of the antipatterns described in the following in a number of models. Here, we 
describe each one in turn and outline its drawbacks in terms of the modeling guidelines just given. We 
have given each of them a pejorative (and a rather fanciful) name as a reminder that these are 
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antipatterns—common pitfalls of beginning modelers. Whenever possible, we will also indicate good 
practices that can replace the antipattern, depending on a variety of possible desired intents for the 
model. 

Rampant classism (antipattern) 
A common reaction to the difficult distinction between classes and instances is simply to define 
everything as a class. This solution is encouraged by most modeling tools, since the creation of classes 
is usually the first primitive operation that a user learns. The temptation is to begin by creating a class 
with the name of an important, central concept and then extend it by creating more classes whose 
names indicate concepts that are related to the original. This practice is also common when a model 
has been created by automatic means from some other knowledge organization source, like 
a thesaurus. A thesaurus makes much less commitment about the relationship between terms than does 
a semantic model between classes or between classes and individuals. 

As an example, someone modeling Shakespeare and his works might begin by defining a class 
called Shakespeare and classes called Plays, Poems, Poets, Playwrights, and 
TheTempest. Then, define a property (an owl:ObjectProperty) called wrote and assert that 
Shakespeare wrote all of these things by asserting triples like the following: 

:Playwrights :wrote :Plays.

:Poets :wrote :Poems. 

:Shakespeare :wrote :Plays.

:ModernPlays rdfs:subClassOf :Plays.

:ElizabethanPlays rdfs:subClassOf :Plays.

:Shakespeare :wrote :TheTempest.

:Shakespeare :wrote :Poems. 


and perhaps even 

:TheTempest rdfs:subClassOf :Plays. 

This seems to makes sense because, after all, TheTempest will show up next to Plays in just 
about any ontology display tool. The resulting model is shown in Figure 14.1. 

Given the AAA slogan, we really can’t say that anything in this set of triples is “wrong.” After all, 
anyone can assert these triples. But we can start by noting that it does not follow the simple syntactic 
conventions in that the class names are plurals. 

This model reflects a style typical of beginning modelers. The triples seem to translate into 
a sensible sentence in English: “Shakespeare wrote poems”; “Shakespeare wrote The Tempest.” If you 
render rdfs:subClassOf in English as is a, then you have “The Tempest is a plays,” which aside 
from the plural at the end, is a reasonable sentence in English. How can we evaluate whether this model 
satisfies the intent of the modeler or of someone who might want to reuse this model? We’ll consider 
some tests that can tell us what this model might be useful for. 

Let’s start with some simple competency questions. This model can certainly answer questions of 
the form “Who wrote The Tempest?” The answer is available directly in the model. It can also answer 
questions like “What type of thing writes plays? What type of thing writes poems?” Again, these 
answers are represented directly in the model. 
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FIGURE 14.1 

Sample model displaying rampant classism. Every node in this model has rdf:type owl: Class. 

Suppose we want to go beyond mere questions and evaluate how the model organizes different 
points of view. It seems on the face of it that a model like this should be able to make sure that the 
answer to a question like “What type of thing wrote Elizabethan plays?” would at the very least include 
the class of playwrights, since playwrights are things that wrote plays and Elizabethan plays are plays. 
Can this model support this condition? Let’s look at the relevant triples and see what inferences can be 
drawn: 

:Playwrights a owl:Class;

:wrote :Plays.


:ElizabethanPlays rdfs:subClassOf :Plays. 


None of the inference patterns we have learned for OWL or RDFS applies here. In particular, there 
is no inference of the form 

:Playwrights :wrote :ElizabethanPlays. 

Another test criterion that this model might be expected to pass is whether it can distinguish 
between plays and types of plays. We do have some plays and types of plays in this model: The Tempest 
is a play, and Elizabethan play and modern play are types of plays. The model cannot distinguish 
between these two cases. Any query that returns The Tempest (as a play) will also return modern plays. 
Any query that returns Elizabethan play (as a type of play) will also return The Tempest. The model has 
not made enough distinctions to be responsive to this criterion. 

If we think about these statements in terms of the interpretation of classes as sets, none of these 
results should come as a surprise. In this model, playwrights and plays are sets. The statement 
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“Playwrights wrote plays” makes no statements about individual playwrights or plays; it makes 
a statement about the sets. 

But sets don’t write anything, whereas playwrights and poets do. This statement, when made about 
sets, is nonsense. The OWL inference semantics bear this out: The statement has no meaning, so no 
inferences can be drawn. TheTempest is modeled here as a class, even though there is no way to 
imagine what its instances might be; it is a play, not a set. Plays are written by people (and have 
opening dates, etc.), sets do not. 

Similar comments can be made about a statement like “Poets wrote poems.” If triples like: 

:Poets :wrote :Poems. 

aren’t meaningful, how should we render the intuition reflected by the sentence “Poets wrote poems”? 
This consideration goes beyond the simple sort of specification that we can get from competency 
questions. We could respond to questions like “Which people are poets?” or “Which things are 
poems?” with any model that includes these two classes. If we want the answers to these two questions 
to have some sort of consistency between them, then we have to decide just what relationship between 
poems and poets we want to represent. 

We might want to enforce the condition “If someone is a poet, and he wrote something, then it is 
a poem.” When we consider the statement in this form, it makes more sense (and a more readable 
model) if we follow the convention that names classes with singular nouns (“a poet,” “a poem”) rather 
than plurals (poets, poems). 

We have already seen an example of how to represent a statement of this form. If something is an 
AllStarTeam, then all of its players are members of StarPlayer. Following that example, we 
can represent this same thing about poets and poems as follows: 

:Poet rdfs:subClassOf [a owl:Restriction;
owl:onProperty :wrote;
owl:allValuesFrom :Poem]. 

If we specify an instance of poet—say, Homer—and something he wrote—say, The Iliad—then we 
can infer that The Iliad is a poem, thus: 

:Homer :wrote :TheIliad. 

:Homer a :Poet.

:TheIliad a :Poem.


This definition may work fine for Homer, but what happens if we press the boundaries of the model 
a bit and see what inferences it can make about someone like Shakespeare: 

:Shakespeare :wrote :TheTempest.

:Shakespeare a :Poet.

:TheTempest a :Poem.


The conclusion that The Tempest is a poem is unexpected. Since it is common for poets to write 
things that don’t happen to be poems, probably this isn’t what we really mean by “Poets wrote poems.” 
This is an example of a powerful method for determining the scope of applicability of a model. If you 
can devise a test that might challenge some of the assumptions in the model (in this case, the 
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assumption that nobody can be both a poet and a playwright), then you can determine something about 
its boundaries. 

What other results might we expect from the statement “Poets wrote poems”? We might expect that 
if someone is a poet, then they must have written at least one poem. (We have already seen a number of 
examples of this using owl:someValuesFrom.) In this case, this definition looks like this: 

:Poet rdfs:subClassOf [a owl:Restriction;
owl:onProperty :wrote;
owl:someValuesFrom :Poem]. 

The inferences we can draw from this statement are subtle. For instance, from the following fact 
about Homer 

:Homer a :Poet. 
we can infer that he wrote something that is a poem, though we can’t necessarily identify what it is. 

When we say, “Poets wrote poems,” we might expect something even stronger: that having written 
a poem is exactly what it means to be a poet. Not only does being a poet mean that you have written 
a poem, but also, if you have written a poem, then you are a poet. We can make inferences of this sort 
by using owl:equivalentClass as follows: 

:Poet owl:equivalentClass [a owl:Restriction;
owl:onProperty :wrote;
owl:someValuesFrom :Poem]. 

Now we can infer that Homer is a poet from the poem that he wrote 

:Homer :wrote :TheIliad.

:TheIliad a :Poem.

:Homer a :Poet.


In general, linking one class to another with an object property (as in Poets wrote poems in this 
example) does not support any inferences at all. There is no inference that propagates properties 
associated with a class to its instances, or to its subclasses, or to its superclasses. The only inferences 
that apply to object properties are those (like the inferences having to do with rdfs:domain and 
rdfs:range, or inferences from an owl:Restriction) that assume that the subject and object 
(Shakespeare and poems in this case) are instances, not classes. 

This illustrates a powerful feature of OWL as a modeling language. The constructs of OWL make 
very specific statements about what the model means, based on the inference standard. A sentence like 
“Poets wrote poems” may have some ambiguity in natural language, but the representation in OWL is 
much more specific. The modeler has to decide just what they mean by a statement like “Poets wrote 
poems,” but OWL allows these distinctions to be represented in a clear way. 

Exclusivity (antipattern) 
The rules of RDFS inferencing say that the members of a subclass are necessarily members of 
a superclass. The fallacy of exclusivity is to assume that the only candidates for membership in 
a subclass are those things that are already known to be members of the superclass. 
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Let’s take a simple example. Suppose we have a class called City and a subclass called 
OceanPort, to indicate a particular kind of city 

:OceanPort rdfs:subClassOf :City. 

We might have a number of members of the class City, for example: 

:Paris a :City.

:Zurich a :City.

:SanDiego a :City. 


According to the AAA assumption, any of these entities could be an OceanPort, as could any 
other entity we know about—even things we don’t yet know are cities, like New York or Rio de 
Janeiro. In fact, since Anyone can say Anything about Any topic, someone might assert that France or 
The Moon is an OceanPort. From the semantics of RDFS, we would then infer that France or The 
Moon are cities. 

In a model that commits the error of exclusivity, we assume that because OceanPort is 
a subclass of City, the only candidates for OceanPort are those things we know to be cities, 
which so far are just Paris, Zurich, and San Diego. To see how the exclusivity fallacy causes 
modeling problems, let’s suppose we are interested in answering the question “What are the cities 
that connect to an ocean?” We could propose a model to respond to this competency question as 
follows: 

:OceanPort rdfs:subClassof :City.

:OceanPort owl:equivalentClass


[a owl:Restriction;

owl:onProperty :connectsTo;

owl:someValuesFrom :Ocean]. 


These triples are shown graphically in Figure 14.2. 
This model commits the fallacy of exclusivity; if we assume that only cities can be ocean 

ports, then we can answer the question by querying the members of the class OceanPort. But  
let’s push the boundaries of this model. What inferences does it draw from some boundary 
instances that might violate some assumptions in the model? In particular, what if we consider 

City 

owl:equivalentClass 

rds:subClassOf 

connectsTo some Ocean

E OceanPort 

FIGURE 14.2 

Erroneous definition of OceanPort as a city that connects to an Ocean. 
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something that is not a city but still connects to an ocean? Suppose we have the following facts in 
our data set: 

:Zurich :connectsTo :RiverLimmat. 

:Zurich :locatedIn :Switzerland. 

:Switzerland :borders :France. 

:Paris :connectsTo :LaSeine. 

:Paris :locatedIn :France. 

:France :connectsTo :Mediterranean. 

:France :connectsTo :AtlanticOcean. 

:SanDiego :connectsTo :PacificOcean.

:AtlanticOcean a :Ocean. 

:PacificOcean a :Ocean. 


and so on. 
From what we know about SanDiego and the PacificOcean, we can conclude that 

SanDiego is an OceanPort, as expected 

:SanDiego :connectsTo :PacificOcean.

:PacificOcean a :Ocean. 

:SanDiego a :OceanPort.


Furthermore, since 

:OceanPort rdfs:subClassOf :City. 

we can conclude that 

:SanDiego a :City. 

So far, so good, but let’s see what happens when we look at France. 

:France :connectsTo :AtlanticOcean. 

:AtlanticOcean a :Ocean 


Therefore, we can conclude that 

:France a :OceanPort. 

and furthermore, 

:France a :City. 

This is not what we intended by this model, and it does not respond correctly to the question. The 
flaw in this inference came because of the assumption that only things known to be cities can be ocean 
ports, but according to the AAA assumption, anything can be an ocean port unless we say otherwise. 

This fallacy is more a violation of the AAA slogan than any consideration of subclassing itself. The 
fallacy stems from assumptions that are valid in other modeling paradigms. For many modeling 
systems (like object-oriented programming systems, library catalogs, product taxonomies, etc.) a large 
part of the modeling process is the way items are placed into classes. This process is usually done by 

hand and is called categorization or cataloging. The usual way to think about such a system is that 
something is placed intentionally into a class because someone made a decision that it belongs there. 
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≡ OceanPort 
owl:equivalentClass 

owl:intersectionOf 

City 

[connectsTo some Ocean, 
City] 

(connectsTo some Ocean) and 
City 

rdfs:sutClassOf 

FIGURE 14.3 

Correct model for an OceanPort as a City that also connects to an Ocean. 

The interpretation of a subclass in this situation is that it is a refinement of the class. If someone wants 
to make a more specific characterization of some item, then they can catalog it into a subclass instead 
of a class. 

If this construct does not correctly answer this competency question, what model will? We want 
something to become a member of OceanPort just if it is both a City and it connects to an Ocean. 
We do this with an intersection as shown in Figure 14.3. 

Now that we have defined an OceanPort as the intersection of City and a restriction, we can infer 
that OceanPort is a subclass of City. Furthermore, only individuals that are known to be cities are 
candidates formembership in OceanPort, so anomalies like the previous one forFrance cannot happen. 

The Class Exclusivity fallacy is a common error for anyone who has experience with any of 
a number of different modeling paradigms. Semantic Web modeling takes the AAA assumption more 
seriously than any other common modeling system. Fortunately, the error is easily remedied by using 
the intersection pattern shown in Figure 14.3. 

Objectification (antipattern) 
One common source of modeling errors is attempting to build a Semantic Web model that has the same 
meaning and behavior as an object system. Object systems, however, are not intended to work in the 
context of the three Semantic Web assumptions: AAA, Open World, and Nonunique Naming. In many 
cases, these differences in assumptions about the modeling context result in basic clashes of modeling 
interpretation. 

A fundamental example of this kind of clash can be found in examining the role of a class in 
a model. In object modeling, a class is basically a template from which an instance is stamped. It 
makes little or no sense to speak of multiple classes (stamped out of two templates?) or of having 
a property that isn’t in the class (where do you put it if there wasn’t a slot in the template for it?). 

In Semantic Web models, the AAA and the Open World assumptions are incompatible with this 
notion of a class. Properties in Semantic Web models exist independently of any class, and because of 
the AAA slogan, they can be used to describe any individual at all, regardless of which classes it 
belongs to. Classes are seen as sets, so membership in multiple classes is commonplace. 
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Let’s consider a simple but illustrative example of how the intent of an object model is incom
patible with modeling in the Semantic Web. Suppose an object model is intended to reflect the notion 
that a person has exactly two parents who are also people. These are the requirements an object model 
must satisfy: 

1.	 A value for the property hasParent can be specified only for members of the Person class. 
2.	 We will recognize as a mistake the situation in which only one value for hasParent is specified 

for a single person. 
3.	 We recognize as a mistake the situation in which more than two values for hasParent are 

specified for a single person. 

Before we even look at an OWL model that attempts to satisfy these conditions, we can make 
some observations about the requirements themselves. In particular, many of these requirements 
are at odds with the fundamental assumptions of Semantic Web modeling, as described by the 
AAA, Open World, and Nonunique Naming assumptions. Let’s look at the requirements in 
turn. 

Requirement 1 is at odds with the AAA slogan. The AAA slogan tells us that we cannot keep 
anyone from asserting a property of anything, so we can’t enforce the condition that hasParent can 
only be specified for particular individuals. The Open World assumption complicates the situation 
even further: Since the next thing we learn about a resource could be that its type is Person, we can’t 
even tell for sure whether something actually is a person. 

Requirement 2 is at odds with the Semantic Web assumptions. In this case, the Open World 
assumption again causes problems. Just because we have not asserted a second parent for any indi
vidual does not mean that one doesn’t exist. The very next Semantic Web page we see might give us 
this information. Thus, regardless of how we model this in OWL, there cannot be a contradiction in the 
case where too few parents have been specified. 

Requirement 3 is not directly at odds with the Semantic Web assumptions, but the Nonunique 
Naming assumption makes this requirement problematic. We can indeed say that there should be just 
two parents, so if more than two parents are specified, a contradiction can be detected. This will only 
happen in the case where we know that all the (three or more) parents are distinct, using a construct like 
owl:differentFrom, owl:allDifferent, or  owl:disjointWith. 

The discrepancy between these requirements and an OWL model doesn’t depend on the details of 
any particular model but on the assumptions behind the OWL language itself. An object model is 
designed for a very different purpose from an OWL model, and the difference is manifest in many 
ways in these requirements. 

Despite this mismatch, it is fairly common practice to attempt to model these requirements in 
OWL. Here, we outline one such attempt and evaluate the inference results that the model entails. 
Consider the following model, which is a fairly common translation of an OO model that satisfies these 
requirements into OWL: 

:Person a owl:Class. 
:hasParent rdfs:domain :Person. 
:hasParent rdfs:range :Person.
[a owl:Restriction;
owl:onProperty :hasParent;
owl:Cardinality 2] 
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This model was created by translating parts of an object model directly into OWL, as follows: 

1.	 When a property is defined for a class in an OO model, that class is listed as the domain of the 
property in OWL. The type of the property in the OO model is specified as the range in OWL. 

2.	 Cardinality limitations in the object model are represented by defining a restriction class in 
OWL. 

We have already seen that this model cannot satisfy the requirements as stated. How far off are we? 
What inference does this model support? What inferences does it not support? 

According to the stated intent of this model, if we assert just the following fact: 

:Willem :hasParent :Beatrix. 

The model should signal an error, since only a Person can have a parent, and we have not asserted 
that Willem is a Person. If we fix this by asserting that 

:Willem a :Person. 

then the model should still indicate an error; after all, Willem must have two parents, not just one. If 
we also assert more parents for Willem: 

:Willem :hasParent :Claus. 

:Willem :hasParent :TheQueen. 


then the model should again signal an error, since now Willem has three parents rather than two. 
Now let’s see what inferences can actually be made from these assertions according to the inference 

patterns of OWL. From the very first statement 

:Willem :hasParent :Beatrix. 

along with the rdfs:domain information, we can infer that 

:Willem a :Person. 

That is, there is no need to assert that Willem is a Person before we can assert who his parent is. 
This behavior is at odds with the first intent; that is, we allowed Willem to have a parent, even though 
we did not know that Willem was a person. 

What about the cardinality restriction? What can we infer from that? Three issues come 
into play with this. The first is the Open World assumption. Since we don’t know whether 
Willem might have another parent, who simply has not yet been specified, we cannot draw any 
inference about Willem’s membership in the restriction. In fact, even if we assert just one more 
parent for Willem (along with Beatrix, bringing the total of asserted parents to exactly two) 
that 

:Willem :hasParent :Claus. 

we still do not know that Willem really does have exactly two parents. After all, there might be yet 
a third parent of Willem whom we just haven’t heard about. That’s the Open World assumption. 
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The second issue has to do with unique naming. Suppose we now also assert that 

:Willem :hasParent :TheQueen. 

Surely, we can now infer that Willem cannot satisfy the restriction, since we know of three 
parents, right? Even if there are more parents lurking out there (according to the Open World 
assumption), we can never get back down to just two. Or can we? 

The Nonunique Naming assumption says that until we know otherwise, we can’t assume that two 
different names refer to different individuals. In particular, the two names TheQueen and Beatrix 

could (and in fact, do) refer to the same individual. So even though we have named three parents for 
Willem, we still haven’t disqualified him from being a member of the restriction. We haven’t named 
three distinct parents for Willem. 

The third issue transcends all the arguments about whether Willem does or does not satisfy the 
cardinality restriction. Look closely at the definition of the restriction: It is defined, as usual, as 
a bnode. But the bnode is not connected to any other named class in any way. That is, the restriction is 
not owl:equivalentClass to any other class, nor is it rdfs:subClassOf any other class (or 
vice versa). 

What does this mean for inferences involving this restriction? On the one hand, even if we were to 
establish that Willem satisfies the restriction, still no further inferences could be made. Further 
inferences would have to be based on the connection of the restriction to some other class, but there 
is no such connection. On the other hand, if we could independently establish that Willem is 
a member of the restriction, then we could possibly draw some conclusions based on that. Since the 
restriction is not connected to any other class, there is no independent way to establish Willem’s 
membership in the restriction class. Either way, we can draw no new inferences from this restriction. 
The AAA slogan keeps us from saying that this model is “wrong,” but we can safely say that it does 
not support the inferences that were intended by the modeler. Unlike the case of the other anti-
patterns, we are not in a position to “fix” this model; the requirements of the model are simply at odds 
with the assumptions of modeling in the Semantic Web. 

Creeping conceptualization (antipattern) 
In most engineered systems, designing for reuse is enhanced by keeping things simple. In software 
coding, for example, the best APIs try to minimize the numbers of calls they provide. In physical 
systems, the number of connections is minimized, and most common building materials aim for 
a minimally constraining design so as to maximize the ways they can be combined. On the Semantic 
Web, the same idea should apply, but all too often the idea of “design for reuse” gets confused with 
“say everything you can.” Thus, for example, when we include ShakespeareanWork and 
ElizabethanWork in our model, we are tempted to further assert that ElizabethanWork is 
a subclass of Work, which is a subclass of IntangibleEntity. 

Of course, having included IntangibleEntity, you will want to include TangibleEntity 

and some examples of those and some properties of those examples and, well, ad infinitum. After all, 
you might think that modeling for reuse is best done by anticipating everything that someone might 
want to use your model for, and thus the more you include the better. This is a mistake because the 
more you put in, the more you restrict someone else’s ability to extend your model instead of just use it 
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as is. Reuse is best done, as in other systems, by designing to maximize future combination with other 
things, not to restrict it. 

This kind of creeping conceptualization may seem like an odd thing to have to worry about. After 
all, isn’t it a lot of extra work to create more classes? Economists tell us that people minimize the 
amount of unrewarded work they do. However, in practice, it often turns out that knowing when to stop 
modeling is harder than deciding where to start. As humans, we tend to have huge connected networks 
of concepts, and as you define one class, you often think immediately of another you’d “naturally” 
want to link it to. This is an extremely natural tendency, and even the best modelers find it very difficult 
to know when to finish, but this way lies madness. 

A relatively easy way to tell if you are going too far in your creation of concepts is to check classes 
to see if they have properties associated with them, and especially if there are restricted properties. If 
so, then you are likely saying something useful about them, and they may be included. If you are 
including data (instances) in your model, then any class that has an instance is likely to be a good class. 
On the other hand, when you see lots of empty classes, especially arranged in a subclass hierarchy, then 
you are probably creating classes just in case someone might want to do something with them in the 
future, and that is usually a mistake. The famous acronym KISS (Keep It Simple, Stupid) is well worth 
keeping in mind when designing Web ontologies. 

SUMMARY 
The basic assumptions behind the Semantic Web—the AAA, Open World, and Nonunique Naming 
assumptions—place very specific restrictions on the modeling language. The structure of RDF is in the 
form of statements with familiar grammatical constructs like subject, predicate, and object. The structure 
of OWL includes familiar concepts like class, subClassOf, and  property. But the meaning of 
a model is given by the inference rules of OWL, which incorporate the assumptions of the Semantic 
Web. How can you tell if you have built a useful model, one that conforms to these assumptions? 
The answer is by making sure that the inferences it supports are useful and meaningful. 

According to the AAA slogan, we cannot say that any of the practices in this chapter are “errors” 
because Anyone can say Anything about Any topic. All of these models are valid expressions in RDF/ 
OWL, but they are erroneous in the sense that they do not accomplish what the modeler intended by 
creating them. In each case, the mismatch can be revealed through careful examination of the infer
ences that the model entails. In some cases (like the objectification error), the requirements themselves 
are inconsistent with the Semantic Web assumptions. In other cases (like the exclusivity error), the 
requirements are quite consistent with the Semantic Web assumptions and can be modeled easily with 
a simple pattern. 

Fundamental concepts 
The following concepts were introduced or elaborated in this chapter. 

The Semantic Web Assumptions—AAA (Anyone can say Anything about Any topic), Open-
World, and Nonunique Naming. 
Inferencing—In OWL, inferencing is tuned to respect the Semantic Web assumptions. This results 
in subtleties that can be misleading to a novice modeler. 
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Competency Questions—Questions that scope the requirements for a model.

Modeling for Variability—The requirement (characteristic of Semantic Web modeling) that

a model describe variation as well as commonality.

Modeling for Reuse—The craft of designing a model for uses that cannot be fully anticipated.

Wishful Naming—The tendency for a modeler to believe that a resource signifies more than the

formal semantics of the model warrants, purely on the basis of the resource’s name.

Model Testing—A process by which the boundaries of a model are stressed to determine the nature

of the boundaries of the inferences it can entail.
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The examples in Chapters 9 and 13 have shown applications of Semantic Web, and the role that models 
play in those applications. In some cases (e.g., OGP), a very simple model was used to mediate large 
amounts of data. In other cases (e.g., QUDT and CHEBI), the models were very involved, and a lot of 
the value came from the complexity of the model itself. A large portion of applications on the Semantic 
Web can be achieved using the modeling facilities that have been presented in the book so far. But 
there are occasions where these modeling constructs are insufficient, and more advanced capabilities 
are required. Many of these have been included in version 2 of the OWL standard. We have already 
seen (in Chapter 12) some of the advanced counting facilities from OWL 2, and we will outline some 
of the more fundamental new capabilities here, but the OWL 2 standard is rich in modeling constructs 
that go beyond the scope of this book. First and foremost, we will provide some of the background you 
will need to search through the OWL standard documents yourself to explore its rich landscape. 

OWL 2 was designed to be fully backward compatible with version 1.0. That means that any valid 
OWL 1.0 model is also a valid model in OWL 2. But more importantly, it means that all the styles of 
modeling that we learned for OWL 1.0 are still valid for OWL 2. The new constructs in OWL 2 can be 
used in conjuction with all the models you’ve seen in the book so far. 

In Chapter 8, we introduced a subset of OWL that we called RDFS-Plus. There are a number of 
reasons why someone might define a subset of a language like OWL. In the case of RDFS-Plus, we 
were interested in a subset of the language that has considerable utility for semantic modeling but does 
not place a large burden on either a modeler or someone trying to understand a model. OWL 2 also 
includes a precise description of four subsets of the OWL language (each of them richer than RDFS-
Plus) identified for various practical technological reasons, often having to do with how OWL relates 
to other technology. The four subsets are called OWL 2 EL, OWL 2 QL, OWL 2 RL, and OWL 2 DL. 

325 
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We will describe each subset and the rationale for why it has been identified and named; the details of 
each subset are given in the OWL specification.1 

OWL SUBSETS AND MODELING PHILOSOPHY 
Normally, when we refer to different subsets of a language, we can list the language structures in one 
subset that are not found in the other. For instance, RDFS has rdfs:domain, rdfs:range, 
rdfs:subPropertyOf, and so on, whereas RDFS-Plus has all of those, plus some new language 
features like owl:inverseOf and owl:TransitiveProperty. We can define how these two 
languages are similar or different, based on which language terms are available in each one. 

In the case of the OWL 2 subsets, the situation is more subtle. Each subset uses the same set of 
modeling constructs. That is, if we were to list all the properties and classes that make up (say) OWL 
EL and then compile the full list for all of OWL, the lists would be exactly the same. In fact, it would 
be the list of OWL features that you have been reading about in this book. Everything you have learned 
so far applies equally well to each OWL subset. 

So what is the difference? Why is it important to identify subsets of a language, if they have the 
same constructs and the same meanings? The distinction between these the subsets of OWL are 
motivated in part by a difference in the basic philosophy of why one builds models for the Semantic 
Web. We will outline these two basic philosophies—one in which the emphasis is placed on having 
provable models and one in which the emphasis is placed on making executable models. We examine 
each in turn, along with the intuitions that motivate them. 

Provable models 
An important motivation for formal modeling (as opposed to informal modeling) is to be precise about 
what our models mean. In the context of the Semantic Web, this tells us precisely and without doubt 
when concepts from two different sources refer to the same thing. Does my notion of a James Dean 
movie correspond to yours? A formal description can help us determine whether or not this is the case. 
My definition of a “James Dean movie” is one that stars James Dean, but your definition of a “James 
Dean movie” might be movies about James Dean or movies with the words James Dean in the title. 
How can we tell if we have the name “James Dean movie” as the only indication of these definitions? 
A formal model makes these distinctions clearer. Then it becomes a simple matter of automation to 
decide whether two classes are the same, if one subsumes the other, or if they are unrelated. 

It is this aspect of modeling that motivates a logical definition of OWL. Each construct in OWL is 
a statement in a formal logic. The particular logical system of OWL DL is called Description Logic. 
As the name suggests, Description Logic is a logical system with which formal descriptions of classes, 
individuals, and the relationships between them can be made. The inferences in OWL that have 
formed the basis of the bulk of this book are formally defined by a model theory based on Description 
Logic. 

Using logic as the foundation of a modeling language makes perfect sense; we can draw upon 
decades, or even centuries, of development work in logical formalism. The properties of various 

1Details of the OWL 2 standard can be found at http://www.w3.org/2004/OWL. 

http://www.w3.org/2004/OWL
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logical structures are well understood. Logic provides a framework for defining all of the inferences 
that our modeling language will need. But there is one fly in the ointment: In a computational setting, 
we would like our logic to be processed automatically by a computer. Specifically, we want a computer 
to be able to determine all of the inferences that any given model entails. So, if we want to be able to 
automatically determine whether my notion of a James Dean movie is exactly the same as yours, we 
must show the set of all facts that are true in one are true in the others, and all facts untrue are untrue. 

It is at this point that the details of the logic become important. What does it mean for our modeling 
formalism if we base it on a logic for which this kind of automation cannot, in principle, exist? That is, 
what happens if we can’t exactly determine whether my notion of a James Dean movie is the same as 
yours? If we view this sort of provable connection as essential to the nature of modeling, then we have 
failed. We simply cannot tolerate a logic in which this kind of question cannot be answered by 
automated means in some finite amount of time. 

In the study of formal logic, this question is called decidability. Formally, a system is decidable if 
there exists an effective method such that for every formula in the system the method is capable of 
deciding whether the formula is valid (is a theorem) in the system or not. If not, then the system is 
undecidable. It is not our intention in this book to go into any detail about the mathematical notion of 
decidability, but a few comments on its relevance for modeling are in order. 

The first thing to understand about decidability is also the most surprising: how easy it is for 
a formal system to be undecidable. Given the formal nature of logic, it might seem that, with enough 
patience and engineering, a program could be developed to correctly and completely process any 
formal logic. One of the most influential theorems that established the importance of the notion of 
decidability shows that even very simple logical systems (basically, any system that can do ordinary 
integer arithmetic) are undecidable. In fact, it is actually quite challenging to come up with a logical 
system that can represent anything useful that is also decidable. 

This bit of tightrope walking is the impetus behind the OWL DL subset. OWL DL is based on 
a particular decidable Description Logic. This means that it is possible to design an algorithm that can 
take as input any model expressed in OWL DL and determine which classes are equivalent to other 
classes, which classes are subclasses of other classes, and which individuals are members of which 
classes. 

The most commonly used algorithm for this problem is called the Tableau Algorithm. It works 
basically by keeping track of all the possible relations between classes, ruling out those that are 
inconsistent with the logical statements made in the model. The Tableau Algorithm is guaranteed to 
find all entailments of a model in OWL DL in a finite (but possibly quite long!) time. Furthermore, it is 
possible to determine automatically whether a model is in fact in OWL DL so that a program can even 
signal when the guarantees cannot be met. 

Modeling in OWL DL supports the intuition that a model must be clear, unambiguous, and 
machine-processable. The Tableau Algorithm provides the machinery by which a computer system 
can make determinations about equivalence of classes. 

Executable models 
A different motivation for modeling in the Semantic Web is to form an integrated picture of some sort 
of domain by federating information from multiple sources. If one source provides information about 
the places where hotel chains have hotels and another describes what hotels appear at a particular 
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place, a formal model can tell us that we can merge these two sources together by treating them as 
inverses of one another. The model provides a recipe for adding new information to incomplete 
information so it can be federated with other sources. 

Seen from this point of view, a model is similar to a program. It provides a concise description of 
how data can be transformed for use in other situations. What is the impact of decidability in such 
a situation? Standard programming languages like FORTRAN and Java are undecidable in this sense. 
The undecidability of these languages is often demonstration with reference to the Halting Problem. It 
is impossible in principle to write a computer program that can take another arbitrary computer 
program as input, along with input for that program, and determine whether that program will halt on 
that input. Even though these languages are undecidable, they have proven nevertheless to be useful 
engineering languages. How can we write programs in these languages if we can’t automatically 
determine their correctness or, in some sense, even their meaning? The answer to this question in these 
cases is what programming is all about. Even though it is not possible in general to determine whether 
any program will terminate, it is usually possible to determine that some particular program will 
terminate and, indeed, with what answer. The skill of engineering good computer programs is to write 
programs that not only will terminate on all input but will actually perform well on particularly 
interesting input. 

Seen from this point of view, decidability is not a primary concern. Models are engineered in much 
the same way as programs. If a model behaves poorly in some situation, then an engineer debugs the 
model until it performs correctly. Since we are not concerned with decidability, we don’t need the 
guarantee that any algorithm will find all possible inferences. This opens up the choice of processor for 
OWL to a much wider range of technologies, including rule systems, datalog engines, databases, and 
even SPARQL. 

It’s also the case that, in many Web applications, the size of data sets we would like to analyze are 
quite huge, dynamic, or not well organized. The question could be asked as to whether one needs 
a 100 percent correct model to analyze data that are themselves scraped from the Web by some 
heuristic program that is not perfect. On the Web, people use Google because it can find good answers 
a lot of the time, even if it can’t find perfect answers all the time. Some Semantic Web systems are 
targeted at this rough-and-tumble Web application space, and thus provable correctness, as opposed to 
efficient computation, may not be a key goal. 

This executable style of modeling is the primary motivation behind some of the OWL subsets. 
The meaning of a modeling construct in one of these subsets is given in much the same way as the 
meaning of a construct in a programming language. Just as the meaning of a statement in a proce
dural programming language is given by the operation(s) that a machine will carry out when 
executing that statement, the meaning of an executable model is given by the operation(s) that 
a program (i.e., an inference engine) carries out when processing the model. Information federation 
is accomplished because the model describes how information can be transformed into a uniform 
structure. 

OWL 2 MODELING CAPABILITIES 
A comprehensive list of the advanced modeling capabilities supported by OWL 2 is beyond the scope 
of this book, but we describe some of the most important ones here. 
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Metamodeling 
Metamodeling is the name commonly given to the practice of using a model to describe another model 
as an instance. One feature of metamodeling is that it must be possible to assign properties to classes in 
the model. This practice causes a problem in OWL 1.0, since OWL 1.0 disallowed treating classes as if 
they were individuals in this way. 

One motivation for metamodeling is that a model often needs to play more than one role in an 
application: A particular concept should be viewed as a class in one role but as an instance in another 
role. If we are modeling animals, we might say that BaldEagle is an endangered species, thereby 
referencing BaldEagle as an individual. In another application, we could view BaldEagle as 
a class, whose members are the particular eagles in the zoo. Similarly, wine connoisseurs speak of 
individual wines in terms of vintage. For them, the vintage is an individual, but for a wine merchant 
who is calculating how many bottles he has sold, the bottles themselves are individual members of the 
class that are indicated by the vintage. 

We have already seen some example of this kind of metamodeling in this book. In Chapter 9, we 
saw how a foaf:Group is an individual that corresponds to a class of all the members of the group. 
In Chapter 11, we saw this in the Class-Individual Mirror pattern. 

Another purpose of metamodeling is to imitate capabilities of other modeling systems (like object-
oriented modeling) in which the value for some property can be specified for all members of a class at 
once. The overloading of a resource to refer both to an individual (the species BaldEagle) and 
a class (the set BaldEagle) is allowed in OWL 2 through a process known as punning. 

While punning is allowed in the OWL 2 standard, we recommend against its use for metamodeling. 
There really is a difference between a species and the set of animals of that species; there is 
a difference between the desktop and the applications that run on it. The relationship between a bottle 
of wine and its vintage is different from the relationship between an eagle and its species, and these 
distinctions could be important to someone who wants to reuse a model. Keeping them distinct in the 
first place will often enhance the model’s utility. 

In particular, we recommend the use of the Class-Individual Mirror pattern from Chapter 11 for 
metamodeling. In that example, the relationship between the desktop and the application was clear 
(runsOn), as was the relationship between the ADA90 and the applications (conformsTo). When 
modeling a class like BaldEagle, we recommend determining just what the relationship is 
between a particular eagle and the class (hasSpecies), or the particular bottle and the vintage 
(hasVintage). Just as in our example of the desktop applications conforming to the ADA90, this 
allows the model to relate these properties to others—for example, modeling hasSpecies 

explicitly allows the model to relate it to other properties like hasGenus or hasPhylum. 
Modeling hasVintage explicitly allows the model to express relationships to other properties like 
madeInYear. 

Multipart properties 
In RDFS, we have seen how properties can relate to one another using rdfs:subPropertyOf. 
This establishes a hierarchy of properties: Any relations that hold lower in the hierarchy also hold 
higher in the hierarchy. There are other ways in which properties can relate to one another. A common 
example is the notion of uncle: A is the uncle of B only if A is the brother of someone who is the parent 
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of B. This is called a multipart property—that is, the property uncle is made up of two parts (in order): 
parent and brother. We have already seen how to define relationships of this sort using SPARQL in 
Chapter 5. 

When multipart properties are used with other RDFS and OWL constructs, they provide some 
powerful modeling facilities. For instance, we can model the constraint “A child should have the same 
species as its parent” by stating that the multipart predicate made up of hasParent followed by 
hasSpecies (denoted as :hasParent þ :hasSpecies) is  rdfs:subPropertyOf has 

Species. Let’s see how this works. Suppose we have the following triples: 

:Elsie :hasParent :Lulu. 

:Lulu :hasSpecies :Cow. 


Now we can infer 

:Elsie :hasParent + :hasSpecies :Cow. 

But since the multipart predicate :hasParent þ :hasSpecies is an rdfs:subPropertyOf 

:hasSpecies, we can infer that 

:Elsie :hasSpecies :Cow. 

One reason that multipart predicates were not included in OWL 1.0 was that they were thought 
to cause undecidability. Recently, however, it has been shown that under certain conditions it is 
possible to represent multipart properties in OWL in such a way that they do not endanger 
decidability. The multipart predicate feature in OWL 2.0 has been designed to guarantee 
decidability. 

Multiple inverse functional properties 
Inverse functional properties can be used to determine the identity of individuals based on the values of 
the properties that describe them. If two people share the same social security number, then we can 
infer that they are actually the same person. This kind of unique identifier is indispensable when 
merging information from multiple sources. 

Unfortunately, anyone who has done a lot of such integration knows that this kind of merging only 
scrapes the surface of what needs to be done. Far more common is the situation in which some 
combination of properties implies the identity of two or more individuals. For instance, two people 
residing at the same residence with the same first and last names should be considered to be the same 
person. Two people born in the same hospital on the same day and at the same time of day should be 
considered to be the same person. Examples of this kind of multiple identifiers are much easier to come 
by than single identifiers, as required for an InverseFunctionalProperty. 

OWL 2 introduces the notion of owl:hasKey for this situation. By analogy to how a relational 
database can declare multiple primary keys for a table, a set of properties can be associated with a class 
through owl:hasKey. Two members of the class are considered to be the same (owl:sameAs) if  
they have the same values for all the identified keys. If we were to define keys :firstName, 
:lastName, and :address for the class :Person, then two people would be considered the same 
whenever all of these properties match. 
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To further complicate matters, in many information federation situations, it is often the case that 
even these combinations of properties cannot guarantee the identity of the individuals. Two people at 
the same address with the same name are very likely to be the same person (but not for certain— 
a father could live with his son of the same name). OWL has no facility to deal with uncertainty, so 
there is no way to express this sort of information. 

OWL 2 profiles 
OWL 2 includes one major infrastructural change from OWL 1.0 in the introduction of several profiles 
of the language. The profiles were motivated by the observation that certain technologies can process 
certain subsets of OWL conveniently. If one has already made a commitement to such a technology, it 
is natural to ask just what subset is supported by that technology. 

There are four subsets of OWL that have been named and identified. 
OWL 2 DL. Decidability can be a key driver for model development. In such circumstances, it is 

desirable to have as expressive a language as possible, while still being decidable. OWL 2 DL is the 
largest subset of OWL that retains this feature. It includes all forms of restrictions, combined with all 
of the RDFS forms. It is a superset of the next three profiles. It can be processed faithfully by the 
tableau algorithm. 

OWL 2 QL. Many semantic applications leverage information in relational databases, and need to 
be built on top of these systems. Such applications fit the profile of typical database applications, in 
which a fairly simple schema describes the structure of massive amounts of data, and fast responses to 
queries over that data set are required. OWL 2 QL is the subset of OWL for which this is possible. 
Queries against an OWL 2 QL ontology and corresponding data can be rewritten faithfully into SQL, 
the query language of relational databases. 

OWL 2 EL. Many ontologies in the life sciences follow the pattern of the OBO Foundry 
ontologies described in Chapter 13; they include a large number of classes that are defined primarily 
using someValuesFrom restrictions. It is difficult to process ontologies of this size using an 
unconstrained tableau algorithm. The OWL 2 EL profile was designed for just this case. It walks the 
line between expressive power and known optimizations for querying such structures. OWL 2 EL 
allows someValuesFrom restrictions to be used, so the OBO Foundry ontologies fit within its 
limitations. But it is restricted enough that fast algorithms are known for processing large ontologies, 
up to and surpassing the size of the OBO Foundry ontologies. 

OWL 2 RL. Many OWL processors work by using rules-based technology to define OWL pro
cessing. In this book, we have often used SPARQL to illustrate the inference rules that define certain 
constructs in OWL and RDFS. Used in this way, SPARQL is an example of such a rule processor. 
Rules processors have been around about as long as relational databases, in the form of systems like 
Prolog and Business Rules engines. OWL 2 RL defines the subset of OWL that can be faithfully 
processed by such rule systems. Having identified this subset, it is possible to encode the rules for 
OWL 2 RL in each rule system. This exercise has already been done for the W3C Rules Interchange 
Format (RIF2, see below), as well as many proprietary rules processors. Many variants of encodings of 
OWL 2 RL into SPARQL have been done as well. 

2http://www.w3.org/TR/rif-overview/ 



332 CHAPTER 15 Expert modeling in OWL 

It is important to keep in mind that all of the OWL subsets use the very same resources in their 
models—there is no separate namespace for any profile. That means that any model in any profile can 
be interpreted as a model in any other—subject to the restrictions of that profile. In this way, all the 
profiles are interoperable at the RDF level. 

Rules 
Even with the capabilities added in OWL 2, there are still some limits to the expressivity of OWL. 
Some of these limitations are best addressed, for the purposes of data management, using rules, and 
thus the development of a rules language for the Web has been developed in the form of the Rules 
Interchange Format (RIF). 

Rule-based systems have a venerable tradition starting in the days of Expert Systems and are in 
common use in business logic applications to this day. A number of useful algorithms for processing 
data with rules have been known for many years, and many of them have been made very efficient. 

Many of the issues with OWL presented in this chapter can be addressed with rules. Multipart 
properties (like the definition of uncle) are easily expressed in rules. Multiple inverse functional 
properties can be expressed in rules as well. There are even a number of approaches to reasoning with 
uncertainty in rules. Many of these have considerable research and practical examples behind them, 
making uncertainty in rules a relatively well-understood issue. 

Given all these virtues of rules and rule-based systems, why don’t they play a bigger role in 
modeling on the Semantic Web than they do? In fact, one could even ask why there is a need for 
a modeling language like OWL when there is a mature, well-understood rules technology that already 
exists. One could even ask this question in greater generality. Why aren’t more software systems in 
general written in rules? 

We cannot treat this issue in full detail in this book, but we can outline the answer as it relates to 
OWL and the Semantic Web. One of the lessons learned from the history of rule-based systems is that 
software engineering in such systems is more difficult than it is in modular, procedural languages. 
Although it is unclear whether or not this is an essential feature of rule-based systems, it is undeniable 
that rule-based programmers have not achieved the levels of productivity of their more conventional 
counterparts. This has particular ramifications in the Semantic Web. One defense for using an OWL 
subset other than OWL 2 DL was that the software engineering discipline makes the notion of 
decidability basically irrelevant for model design. In the case of rule-based systems, software engi
neering cannot provide this same support. Unconstrained rule-based systems are just as undecidable as 
general-purpose languages like FORTRAN and Java. 

Is there a way to get the best of both worlds? Could a Web-oriented rules language integrate well 
with OWL? Indeed they can, and this is exactly what we are seeing in the development of things like 
OWL 2 RL and RIF. Together, they provide a framework that is consistent with OWL, as well as with 
broader rule-based technology. 

SUMMARY 
OWL should be considered a living language, growing in the context of the ways it is being used on the 
Web and in commerce. As shortcomings in the language are identified, the system grows to 
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accommodate them. Sometimes that growth takes the form of additional constructs in the language 
(e.g., multipart properties), sometimes as connections to other systems (rules), and sometimes progress 
in a language comes in the form of specifying subsets of the language. 

Fundamental concepts 
The following fundamental concepts were introduced in this chapter. 

OWL—Web Ontology Language, including all constructs in this book and more.

OWL 2 DL—Subset of OWL restricted to ensure decidability; all constructs allowed but with

certain restrictions on their use.

OWL 2 EL—Subset of OWL restricted to improve computational complexity.

OWL 2 RL—Subset of OWL restricted to be compatible with Rules processors.

OWL 2 QL—Subset of OWL restricted to be compatible with database queries.

RIF—The Rule Interchange Format, standard format in the Semantic Web for interoperability of

rule-based systems.

Metamodeling—Models that describe models, usually requires that classes be treated as

individuals.

Multipart properties—Daisy-chain composition of properties.

Multiple Inverse Functional Properties—Uniquely identify an individual based on matching

values for several properties.
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CHAPTER 

Conclusions 16 
For those readers who are accustomed to various sorts of knowledge modeling, the Semantic Web 
looks familiar. The notions of classes, subclasses, properties, and instances have been the mainstay of 
knowledge modeling and object systems modeling for decades. It is not uncommon to hear a veteran of 
one of these technologies look at the Semantic Web and mutter, “Same old, same old,” indicating that 
there is nothing new going on here and that everything in the Semantic Web has already been done 
under some other name elsewhere. 

As the old saying goes, “There is nothing new under the sun,” and to the extent that the saying is 
correct, so are these folks when they speak of the Semantic Web. The modeling structures we have 
examined in this book do have a strong connection to a heritage of knowledge modeling languages. 
But there is something new that has come along since the early days of expert systems and object-
oriented programming; something that has had a far more revolutionizing effect on culture, business, 
commerce, education, and society than any expert system designer ever dreamed of. It is something so 
revolutionary that it is often compared in cultural significance to the invention of the printing press. 
That something new is the World Wide Web. 

The Semantic Web is the application of advanced technologies that have been used in the context of 
artificial intelligence, expert systems and business rules execution in the context of a World Wide Web 
of information. The Semantic Web is not simply an application running on the Web somewhere; it is 
a part of the very infrastructure of the Web. It isn’t on the Web; it is the Web. 

Why is this important? What is it that is so special about the Web? Why has it been so successful, 
more so than just about any computer system that has come before it? 

In the early days of the commercial Web, there was a television ad for a search engine. In the ad, 
a woman driving a stylish sports car is pulled over by traffic policeman for speeding.As he prepares to cite 
her, she outlines for himall the statistics about error rates in thevariousmachines usedby traffic policemen 
for detecting speeding. He is clearly thrown off his game and unsure of how to continue to cite her. She 
adds personal insult by quoting the statistics of prolonged exposure to traffic radar machines on sperm 
count. The slogan “Knowledge is Power” scrolls over the screen, alongwith the nameof the search engine. 

What lesson can we learn from ads like this? This kind of advertising made a break from television 
advertising that had come before. Knowledge was seen not as nerdy or academic but useful in everyday 
life—and even sexy. Or at least it is if you have the right knowledge at the right time. The Web differed 
from information systems that preceded it by bringing information from many sources—indeed, 
sources from around the world—to one’s fingertips. In comparison to Hypercard stacks that had been 
around for decades, the Web was an open system. Anyone in the world could contribute, and everyone 
could benefit from that contribution. Having all that information available was more important than 
how well a small amount of information was organized. 

The Semantic Web differs from expert systems in pretty much the same way. Compared to the 
knowledge representations systems that were developed in the context of expert systems, OWL is quite 
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primitive. But this is appropriate for a Web language. The power of the Semantic Web comes from the 
Web aspect. Even a primitive knowledge modeling language can yield impressive results when it uses 
information from sources from around the world. In expert systems terms, the goals of the Semantic 
Web are also modest. The idea of an expert system was that it could behave in a problem-solving 
setting with a performance that would qualify as expert-level if a human were to accomplish it. What 
we learned from the World Wide Web (and the story of the woman beating the speeding ticket) is that 
typically people don’t want machines to behave like experts; they want to have access to information 
so they can exhibit expert performance at just the right time. As we saw in the ad, the World Wide Web 
was successful early on in making this happen, as long as someone is willing to read the relevant 
web pages, digest the information, and sift out what he or she needs. 

The Semantic Web takes this idea one step further. The Web is effective at bringing any single 
resource to the attention of a Web user, but if the information the user needs is not represented in 
a single place, the job of integration rests with the user. The Semantic Web doesn’t use expert system 
technology to replicate the behavior of an expert; it uses expert system technology to gather infor
mation so an individual can have integrated access to the web of information. 

Being part of the Web infrastructure is no simple matter. On the Web, any reference is a global 
reference. The issue of managing global names for anything we want to talk about is a fundamental 
Web issue, not just a Semantic Web issue. The Semantic Web uses the notion of a URI as the globally 
resolvable reference to a resource as a way of taking advantage of the web infrastructure. Most 
programming and modeling languages have a mechanism whereby names can be organized into spaces 
(so that you and I can use the same name in different ways but still keep them straight when our 
systems have to interface). 

With the World Wide Web, the notion of a name in a namespace must be global in the entire Web. 
The URI is the Web-standard mechanism to do this; hence, the Semantic Web uses the URI for global 
namespace identification. Using this approach allows the Semantic Web to borrow the modularity of 
the World Wide Web. Two models that were developed in isolation can be merged simply by referring 
to resources in both of them in the same statement. Since the names are always maintained as global 
identifiers, there is no ad hoc need to integrate identifiers each time; the system for global identity is 
part of the infrastructure. 

An important contributor to the success of the World Wide Web is its openness. Anyone can 
contribute to the body of information, including people who, for one reason or another, might publish 
information that someone else would consider misleading, objectionable, or just incorrect. At first 
blush, a chaotic free-for-all of this sort seems insane. How could it ever be useful? The success of the 
Web in general (and information archiving sites like Wikipedia in particular) has shown that there is 
sufficient incentive to publish quality data to make the overall Web a useful and even essential structure. 

This openness has serious ramifications in the Semantic Web, which go beyond considerations that 
were important for technologies like expert systems. One of the reasons why the Web was more 
successful than Hypercard was because the Web infrastructure was resilient to missing or broken links 
(the “404 Error”). The Semantic Web must be resilient in a similar way. Thus, inferencing in the 
Semantic Web must be done very conservatively, according to the Open World assumption. At any 
time, new information could become available that could undermine conclusions that have already 
been made, and our inference policy must be robust in such situations. 

In the World Wide Web, the openness of the system presents a potential problem. How does the 
heroine of the search engine commercial know that the information she has found about radar-based 
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speed detection devices is correct? She might have learned it from a trusted source (say, a government 
study on these devices), or she might have cross-referenced the information with other sources until 
she had enough corroborating evidence to be certain. Or perhaps she doesn’t really care if it is correct 
but only that she can convince the traffic cop that it is. Trust of information on the Web is done with 
a healthy dose of skepticism but in the same way as trust in other media like newspapers, books, and 
magazine articles. 

In the case of the Semantic Web, trust issues are more subtle. Information from the Semantic Web is 
an amalgam of information from multiple sources. How do we judge our trust in such a result even if we 
know about all the sources? To some extent, the same principles apply.We can trust entities that we know 
or have experience with, and we can trust entities that have gone through some process of authorization 
and authentication. When we combine information, we must also understand the impact that each 
information source has on the outcome and what risk we are taking if we cannot trust that source. These 
important issues for understanding the reliability of the Semantic Web are still a subject of research. 

In this book, we examined the modeling aspects of the Semantic Web: How do you represent 
information in such a way that it is responsive to a web environment? The basic principles underlying 
the Semantic Web—the AAA slogan, the Nonunique Naming assumption, and the Open World 
assumption—are constraints placed on a representation system if it wants to function as the foundation 
of a World Wide Web of information. These constraints have led to the main design decisions for the 
Semantic Web languages of RDF, RDFS, and OWL. 

There is more to a web than just the information and how it is modeled. At some point, this 
information must be stored in a computer, accessed by end users, and transmitted across an infor
mation network. Furthermore, no triple store, and no inference engine, will ever be able to scale to the 
size of the World Wide Semantic Web. This is clearly impossible, since the Web itself grows 
continually. In the light of this observation, how can the World Wide Semantic Web ever come to pass? 

The applications we discussed in this book demonstrate how a modest amount of information, 
represented flexibly so that it can be merged in novel ways, provides a new dynamic for information 
distribution and sharing. SKOS allows thesaurus managers around the globe to share, connect, and 
compare terminology. QUDT aligns multiple applications so that their measurable quantities can be 
combined and compared. OBO Ontologies coordinate efforts of independent life sciences researchers 
around the globe. 

How is it possible to get the benefit of a global network of data if no machine is powerful enough to 
store, inference over, and query the whole network? As we have seen, it isn’t necessary that a Semantic 
Web application be able to access and merge every page on the Web at once. The Semantic Web is 
useful as long as an application can access and merge any web page. Since we can’t hold all the 
Semantic Web pages in one store at once, we have to proceed with the understanding that there could 
always be more information that we don’t have access to at any one point. This is why the Open World 
assumption is central to the infrastructure of the Semantic Web. 

This book is about modeling in the context of the Semantic Web. What role does a model play in 
the big vision? The World Wide Web that we see every day is made up primarily of documents, which 
are read and digested by people browsing the Web. But behind many of these web pages, there are 
databases that contain far more information than is actually displayed on a page. To make all this 
information available as a global, integrated whole, we need a way to specify how information in one 
place relates to information somewhere else. Models on the Semantic Web play the role of the 
intermediaries that describe the relationships among information from various sources. 
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Look at the cover of this book. An engineering handbook for aquifers provides information about 
conduits, ducts, and channels sufficient to inform an engineer about the pieces of a dynamic fluid 
system that can control a series of waterways like these. The handbook won’t give final designs, but 
it will provide insight about how the pieces can be fit together to accomplish certain engineering goals. 
A creative engineer can use this information to construct a dynamic flow system for his own needs. 

So is the case with this book. The standard languages of RDF, RDFS, and OWL provide the 
framework for the pieces an engineer can use to build a model with dynamic behavior. Particular 
constructs like subClassOf and subPropertyOf provide mechanisms for specifying how 
information flows through the model. More advanced constructions like owl:Restriction 

provide ways to specify complex relations between other parts of the model. The examples from the 
“in the wild” chapters show how these pieces have been assembled by working ontologists into 
complex dynamic models that achieve particular goals. This is the craft of modeling in the Semantic 
Web—combining the building blocks in useful ways to create a dynamic system through which the 
data of the Semantic Web can flow. 



APPENDIX 

Frequently asked questions 

Throughout this book, we have presented examples of modeling patterns, issues, and challenge 
problems to describe various modeling tasks. In the course of the text, the issues are organized in 
pedagogical order, starting with the simplest RDFS constructs and moving up to more advanced OWL 
constructs. Now that you have finished the book, you are familiar with all of these constructs. 

This appendix references all the modeling examples through the kinds of modeling questions they 
answer. It is organized (as much as you can call it “organization”) in the form of a FAQ—a list of 
questions, with pointers for where to find the answers. 

FAQ Challenge Discussion 

How can I represent tabular data in RDF? 1, p. 40 p. 29 

Construct: rdf:type 22, p. 176 p. 38 

How can I transform data using SPARQL? 2, p. 91 

How can SPARQL be used to describe other forms of p. 115 
reasoning? 

How do I represent IF/THEN logic in RDFS or OWL? 5, p. 139 p. 114 

Construct: rdfs:subClassOf p. 128 

How do I combine two properties into one more general 6, p. 139 p. 128 
property? 

Construct: rdfs:subPropertyOf 

How can I say that two properties are used exactly the 7, p. 140 p. 172 
same way? 

Construct: rdfs:subPropertyOf, 
owl:equivalentClass 

How do I merge individuals from multiple data sources 8, p. 141 p. 133 
into a single class? 

Construct: rdfs:subClassOf 

How can I use another property instead of rdfs:label 9, p. 141 p. 133 
to indicate the display name of a class or individual? p. 139 

Construct: rdfs:subPropertyOf 

How can I filter information based on a value for one or 10, p. 143 p. 237 
more properties? 

Construct: owl:hasValue 

How can I filter information based on how it 11, p. 143 pp. 130, 139, 
is used? 145, 221, 237 

Construct: rdfs:domain, rdfs:range, 
owl:someValuesFrom, owl:allValuesFrom 

(Continued) 
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FAQ Challenge Discussion 

How can I merge information from two sources that are 13, p. 157 pp. 133, 156, 
organized differently? 159 

Construct: rdfs:subPropertyOf, 15, p. 160 

owl:inverseOf 16, p. 161 

How do I resolve differences in opinion about how 17, p.162 p. 150 
properties should be used? 18, p. 164 

How do I compute ancestors or descendants? 19, p. 166 

Construct: rdfs:subPropertyOf, 

owl:TransitiveProperty 

How can I manage process diagrams in OWL? 19, p. 166 p. 150 

Construct: rdfs:subPropertyOf, 20, p. 167 

owl:TransitiveProperty 21, p. 169 

How do I merge information from multiple sources? 22, p. 176 p. 175 

Construct: owl:FunctionalProperty, 23, p. 180 

owl:InverseFunctionalProperty, 24, p. 182 
owl:sameAs 

How do we model prerequisites? 25, p. 189 p. 221 

Construct: owl:allValuesFrom p. 266 

How do I do classic knowledge representation in OWL? 27, p. 238 p. 237 

Construct: owl:allValuesFrom, 

rdfs:subClassOf 

How can I import a single database table as multiple 28, p. 241 p. 237 
classes? 

Construct: owl:hasValue 

How do I organize information in a taxonomic hierarchy? 5, p. 139 p. 114 

Construct: rdfs:subClassOf p. 128 

How do I approximate set union/intersection with 8, p. 141 p. 133 
subclasses? 

Construct: rdfs:subClassOf 

How do I approximate property union/intersection with p. 133 
subproperties? 

Construct: rdfs:subPropertyOf 

How do I approximate set intersection with domains and p. 146 
ranges? 

Construct: rdfs:domain, rdfs:range 

When are two things “the same” in the Semantic Web? 28, p. 241 170 

Construct: owl:sameAs, 7, p. 140 
owl:equivalentClass, 

owl:equivalentProperty 

SPARQL CONSTRUCT 3, p. 94 

How do I filter out items for which certain data are 12, p. 144 p. 139 
missing? 

Construct: rdfs:domain, rdfs:range 
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FAQ Challenge Discussion 

How do I determine when two things are the same? 

Construct: owl:FunctionalProperty, 23, p. 180 p. 178 
owl:InverseFunctionalProperty 

How do I select individuals based on their relationship to p. 221 
a particular individual—for example, “the HIGH-priority 
questions”? 

Construct: owl:hasValue 

How do I express statements like “The players on a team” p. 250 
or “The planets around the sun” in OWL? 

Construct: owl:unionOf, 
owl:intersectionOf 

How do I transfer information represented by one property 
to another—for example, “The children of Shakespeare 30, p. 245 p. 244 
are members of his family”? 

Construct: owl:hasValue, 
owl:equivalentClass, rdfs:subClassOf 

I can’t decide if something is a class or an individual. What 29, p. 243 
do I do? 

Construct: owl:hasValue, rdfs:subClassOf 

How can I assert that I know all the planets? Or all the p. 252 
movies with James Dean? How do I suspend the Open 
World assumption for a certain class? 

Construct: owl:oneOf 

How can OWL come to conclusions by process of 31, p. 253 p. 257 
elimination? 

Construct: owl:oneOf, owl:differentFrom, 
owl:cardinality 

Can an OWL reasoner count? 33, p. 258 

Construct: owl:cardinality, 34, p. 259 
owl:disjointWith 

35, p. 262 

36, p. 265 

37, p. 270 p. 264 

How can SPARQL be used for reasoning? p. 89 

Construct: SPARQL CONSTRUCT p. 86 

SPIN (SPARQL Inferencing Notation pp. 116, 286 

How is the Semantic Web used in familiar web sites? 

Facebook OGP p. 203 

Google Rich Snippets and Good Relations p. 280 

RDFa pp. 55, 53 

Data.gov p. 187 

Can I do quantitative calculations in the Semantic Web? 35, p. 262 

QUDT p. 287 

How are SKOS and OWL related? 36, p. 265 

What is an OBO ontology, and how do I query it? p. 298 

How do I find problems in my model? 33, p. 258 pp. 258, 312 
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Further reading 

In this book we focused on modeling in the Semantic Web: how to use the standards and technology to 
build models that will assist in the interoperation of information in a Web setting. In this reading list, 
we include pointers to other treatments of issues relating to the Semantic Web, including history, 
methodology, mathematical theory, business applications, and criticisms of the entire approach. This 
list is intended to be a starting point for the interested reader and does not claim to be comprehensive. 

In addition to the references provided here, a number of tutorials on RDF, RDFS, OWL, and related 
Semantic Web technologies can be found at http://www.w3.org/2001/sw/BestPractices/Tutorials. 
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A 
AAA slogan, 6–7, 8, 11, 18, 22, 29, 49, 133, 312, 313, 317,


318–319


in FOAF, 196, 197, 201


objectification errors and, 320


in OWL, 225, 252

Agents, in FOAF, 197


AGROVOC, 207, 208f, 209, 210–211, 212, 213,


218, 219


All star players example, see Baseball example


Alternative descriptions, of restrictions, 246–248


Americans with Disabilities Act of 1990 (ADA90), 243


Annotation, OWL, 305


Application architecture, 51


for database application, 56, 57f 

for RDF application, 57f

Application interface, 52, 60


Asserted triples, 118, 123


in catalogue model, 119f, 120f


see also Triples


B 
Baseball example


class relationships inferences, 273, 275t, 276f, 277f


restrictions, 221–222, 227–228


set union, 136

Bindings, SPARQL, 81, 84


Biological ontologies, 298


see also Ontology(ies)

Blank nodes, 47, 50


C 
Cached inferencing, 121


see also Inferencing

CamelCase naming


resources in, 310


for URIs, 36

Capital letters, for names, 311


Cardinality(ies), 250, 257, 260


limits, small, 261


qualified, 260


see also Restrictions

Categorization, 318–319 

Chemical Entities of Biological Interest (CHEBI)


for complex search, 299, 301f


in SKOS, expressing, 303


as unambiguous reference, 298

Class(es)


equivalent, 170


and individuals, relating, 245


managing identifiers for, 359


in object-oriented programming, 19, 114, 115


reasoning with, 276


relationships, inferring, 273


tracking, 311


unsatisfiable, 271, 272f, 278


propagation of, 272


variation in, 18


see also Subclasses

Class-Individual Mirror pattern, 243, 311, 329


Closed world, 11, 252


Commonality, in modeling, 18–19, 25


Community tagging, 15, 16


infrastructure of, 15–16

Competency questions, 308, 324


Complement set, 262, 264f


Concept scheme, 214


managing, 215

Connected data, 3


Contradiction, in OWL, 270, 271f, 278


Controlled Vocabulary, 213, 219


see also Vocabulary

Converters, 53, 60


Creeping conceptualization, 322


Cross-referencing files, 150


D 
Data distribution, 28, 28t, 29f, 31t, 32f


Data federation, 58


Data integration, instance-level, 140


Data standards, of RDF stores, 55


Data structure versus query structure,


in SPARQL, 73


Data typing based on use, 142, 142t


Data wilderness, 7, 12


Data.gov, 187–188, 195, 206


Database schema, 126


Dbpedia, 7–8


dc:creator property, 138


dc:title, 54–55, 54t


Decidability, 327


Description Logic, 331


Disjoint sets, 264


see also Sets

Distributed web of data, 6


Documentation, model, 151


Dwarf planet, 9, 10, 18


see also Planet 
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E 
Equivalence, of RDFS-Plus, 170


classes, 170


merging data from different databases, 175, 176t, 177t


properties, 172


same individuals, 173

Errors, in modeling, 312


creeping conceptualization, 322


exclusivity, 316, 317f, 319f


managing identifiers for classes, 359


objectification, 319


rampant classism, 313, 314f

Exclusivity errors, 316, 317f, 319f


Executable models, 328


Explanation, models for, 17


Expressivity, in modeling, 22, 23f, 25


F 
Fair Housing Act, 188


FHEO (Office of Fair Housing/Equal Opportunity), 188


Filtering data


based on explicit type, 239, 240t, 241, 241t


undefined, 144

Filters, SPARQL, 81, 95


FOAF (Friend of a Friend) format, 187–188, 196, 206


AAA slogan in, 196, 197, 201


defined, 196


groups of people, 199


identity in, 201


linking, 203


names in, 197


nicknames and online names, 198


online persona, 199


people and agents in, 197


relationship transfer in, 244


things people make and do, 200

Formalism, modeling, 17, 18


Formality, in modeling, 16, 25


Frequently Asked Questions (FAQs), 14


Friend of a Friend format, see FOAF (Friend of a Friend)

format


Functional properties, of RDFS-Plus, 148


combining inverse and, 182


inverse, 179–181


G 
Good Relations ontology (GR), 279, 280–283, 287


composing files, 285


Google, 280, 280f


inferencing in, 283, 285f


versus QUDT, comparison shopping, 291, 294


see also Ontology(ies)


Graphs, 49


in SPARQL, 67, 68f, 70, 75f


for tabular data, 43f


for triples, 31, 32f, 35f

Groups of people, in FOAF, 199


H 
Halting Problem, 328


Higher-order relationships, in RDF, 42


High-priority candidate questions, 251b


Human communication, modeling for, 14


I

Identifiers, in RDF namespace, 38, 38t, 39t


Identity, in FOAF, 201


Implementation inheritance, 117


see also Inheritance

Individuals


and classes, relating, 239


differentiating, 254, 283


equivalent, 173


multiple individuals, differentiating, 255


reasoning with, 276–277


tracking, 311

Inference engine, 118, 123


Inference rules, 118, 123


Inference-based semantics, virtues of, 116


Inferencing, 17–18, 113, 123


asserted triples versus inferred triples, 118, 119b


cached, 121


in Good Relations ontology, 283, 285f


just in time, 121


in OWL, 309, 323


in semantic web, 114


in smart web applications, 117, 117f


in SPARQL, 115


as specification, 121


timing of, 121


virtues of, 116

Inferred triples, 118, 123, 129


in catalogue model, 120f


see also Triples

Informality, in modeling, 15,16, 25


Infrastructure, for smart applications, 3


Inheritance, in OOP, 133


implementation, 117


interface, 117


multiple, 117

Insightful naming, 310


see also Names and namespaces


Instance-level data integration, 140


InterCap convention, for URIs, 36
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Interface inheritance, 117


see also Inheritance

International Astronomical Union (IAU)


planet, definition of, 19

Internet Movie DataBase (IMDB), 7


Interoperability, of RDF stores, 55


Intersections, 319


in OWL, 250


property, 135


set, 133

Inverse functional properties, of RDFS-Plus, 179–181


Inverse properties, of RDFS-Plus, 154–156


J 
Just in time inferencing, 121


see also Inferencing


K 
Knowledge discovery, RDFS and, 145


L 
Language


OWL, see OWL (Web Ontology Language)


query, 65


RDF schema, see RDF schema language


SPARQL, see SPARQL (SPARQL Protocol And RDF

Query Language)


Layers, variation and, 20


Legislation, 15


Levels of expressivity, 22, 23f, 25


LinkedMDB (Linked Movie DataBase), 87–88


copying excerpt of, by SPARQL, 97


to record sameness in LinkedMDB, 98


recording sameness in, by SPARQL, 98

Linking, in FOAF, 203


Local restriction of ranges, 237, 239


Logical operations, see Intersection; Unions

Lowercase letters, for names, 311


M 
Mediating variability, modeling for, 18


Merging data, 49


from different databases, 175, 176t,


177t


library records, 137


from multiple sources, 32


with RDF and SPARQL, 192


for variability, 20, 22

Metamodeling , 200, 206, 329, 333


see also Model(s/ing)


Microformats, 53


Model(s/ing), 13, 25


documentation, 151


errors, see Errors, in modeling


explanation, 17


expressivity in, 22, 23f, 25


for human communication, 14


for mediating variability, 18


metamodeling, 200, 206, 329, 333


prediction, 17


for reuse, 324


testing, 312, 324


for variability, 324


variation in classes, 18


variation and layers, 20

Multipart properties, 330, 333


Multiple domains/ranges, modeling with, 146


Multiple inheritance, 117


see also Inheritance

Multiple inverse functional properties, 330, 333


N 
Names and namespaces, 50


in FOAF, 197


identifiers in, 38, 38t, 39t


insightful, 310


standard, 37


in URIs, 33t, 37t


wishful, 309, 310, 324

Naming question words, in SPARQL, 70


National Agriculture Library (NAL), 213, 214–215, 219


Network effect, 7, 8, 12, 18


Nicknames, in FOAF, 198


Nonmodeling properties, in RDFS, 150


Nonunique Naming assumption, 9, 12, 204


with classes, 252


with differentiation, 254


objectification errors and, 320

N-Triples, 44, 50


see also Triples


O 
Objectification errors, 319


Object-Oriented Programming (OOP)


class diagrams, 126


classes in, 19, 113, 114, 115, 117


inheritance in, 117, 133

One-to-one property, 182


Ontology(ies), 1, 279


biological, 298


Design Patterns, 305


Good Relations, 279, 280, 287


composing files, 285
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inferencing in, 283, 285f 
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converting units with, 289–290 

dimension checking in, 294–297, 295f, 296f 

versus Good Relations, comparison shopping, 291, 294 

Local Restriction of Range pattern, 288–289 

purpose of, 279, 280 

Quantity Kind, 286, 288, 289 
Open Biological and Biomedical Ontologies (OBO), 280 

see also Ontology(ies) 
Open Biological and Biomedical Ontologies Foundry (OBO 
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in web page, embedding, 205 
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class relationships, inferring, 273 

classes, reasoning with, 276–277 

closing the world, 252 
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expert modeling in, 325 

filtering data based on explicit type, 239, 240t, 
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rule Interchange Format (RIF), 332, 333 

sets 

complement, 262, 264f 

disjoint, 264 
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unions, 250 
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no, 267
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Quantity Kind, 288, 289
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SKOS, see SKOS (Simple Knowledge Organization 

System)
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Satisfiable classes, 278 

Schema, querying for, in SPARQL, 78 
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skos:narrower property, 210–211, 212, 215 

skos:narrowerTransitive property, 210, 211 
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6, 49


Unions
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defined, 2


dumb, 2


semantic, 1


smart, 2
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