

Yan Meng and Yaochu Jin (Eds.)

Bio-Inspired Self-Organizing Robotic Systems

Studies in Computational Intelligence,Volume 355

Editor-in-Chief
Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our
homepage: springer.com

Vol. 332. Jianguo Zhang, Ling Shao, Lei Zhang, and
Graeme A. Jones (Eds.)
Intelligent Video Event Analysis and Understanding, 2011
ISBN 978-3-642-17553-4

Vol. 333. Fedja Hadzic, Henry Tan, and Tharam S. Dillon
Mining of Data with Complex Structures, 2011
ISBN 978-3-642-17556-5

Vol. 334. Álvaro Herrero and Emilio Corchado (Eds.)
Mobile Hybrid Intrusion Detection, 2011
ISBN 978-3-642-18298-3

Vol. 335. Radomir S. Stankovic and Radomir S. Stankovic
From Boolean Logic to Switching Circuits and Automata, 2011
ISBN 978-3-642-11681-0

Vol. 336. Paolo Remagnino, Dorothy N. Monekosso, and
Lakhmi C. Jain (Eds.)
Innovations in Defence Support Systems – 3, 2011
ISBN 978-3-642-18277-8

Vol. 337. Sheryl Brahnam and Lakhmi C. Jain (Eds.)
Advanced Computational Intelligence Paradigms in
Healthcare 6, 2011
ISBN 978-3-642-17823-8

Vol. 338. Lakhmi C. Jain, Eugene V.Aidman, and
Canicious Abeynayake (Eds.)
Innovations in Defence Support Systems – 2, 2011
ISBN 978-3-642-17763-7

Vol. 339. Halina Kwasnicka, Lakhmi C. Jain (Eds.)
Innovations in Intelligent Image Analysis, 2010
ISBN 978-3-642-17933-4

Vol. 340. Heinrich Hussmann, Gerrit Meixner, and
Detlef Zuehlke (Eds.)
Model-Driven Development of Advanced User Interfaces, 2011
ISBN 978-3-642-14561-2

Vol. 341. Stéphane Doncieux, Nicolas Bredeche, and
Jean-Baptiste Mouret(Eds.)
New Horizons in Evolutionary Robotics, 2011
ISBN 978-3-642-18271-6

Vol. 342. Federico Montesino Pouzols, Diego R. Lopez, and
Angel Barriga Barros
Mining and Control of Network Traffic by Computational
Intelligence, 2011
ISBN 978-3-642-18083-5

Vol. 343. Kurosh Madani,António Dourado Correia,
Agostinho Rosa, and Joaquim Filipe (Eds.)
Computational Intelligence, 2011
ISBN 978-3-642-20205-6

Vol. 344.Atilla Elçi, Mamadou Tadiou Koné, and
Mehmet A. Orgun (Eds.)
Semantic Agent Systems, 2011
ISBN 978-3-642-18307-2

Vol. 345. Shi Yu, Léon-Charles Tranchevent,
Bart De Moor, and Yves Moreau
Kernel-based Data Fusion for Machine Learning, 2011
ISBN 978-3-642-19405-4

Vol. 346.Weisi Lin, Dacheng Tao, Janusz Kacprzyk, Zhu Li,
Ebroul Izquierdo, and Haohong Wang (Eds.)
Multimedia Analysis, Processing and Communications, 2011
ISBN 978-3-642-19550-1

Vol. 347. Sven Helmer,Alexandra Poulovassilis, and Fatos
Xhafa
Reasoning in Event-Based Distributed Systems, 2011
ISBN 978-3-642-19723-9

Vol. 348. Beniamino Murgante, Giuseppe Borruso, and
Alessandra Lapucci (Eds.)
Geocomputation, Sustainability and Environmental
Planning, 2011
ISBN 978-3-642-19732-1

Vol. 349.Vitor R. Carvalho
Modeling Intention in Email, 2011
ISBN 978-3-642-19955-4

Vol. 350. Thanasis Daradoumis, Santi Caballé,
Angel A. Juan, and Fatos Xhafa (Eds.)
Technology-Enhanced Systems and Tools for Collaborative
Learning Scaffolding, 2011
ISBN 978-3-642-19813-7

Vol. 351. Ngoc Thanh Nguyen, Bogdan Trawiński, and
Jason J. Jung (Eds.)
New Challenges for Intelligent Information and Database
Systems, 2011
ISBN 978-3-642-19952-3

Vol. 352. Nik Bessis and Fatos Xhafa (Eds.)
Next Generation Data Technologies for Collective
Computational Intelligence, 2011
ISBN 978-3-642-20343-5

Vol. 353. Igor Aizenberg
Complex-Valued Neural Networks with Multi-Valued
Neurons, 2011
ISBN 978-3-642-20352-7

Vol. 354. Ljupco Kocarev and Shiguo Lian (Eds.)
Chaos-Based Cryptography, 2011
ISBN 978-3-642-20541-5

Vol. 355.Yan Meng and Yaochu Jin (Eds.)
Bio-Inspired Self-Organizing Robotic Systems, 2011
ISBN 978-3-642-20759-4

Yan Meng and Yaochu Jin (Eds.)

Bio-Inspired Self-Organizing
Robotic Systems

123

Yan Meng
Department of Electrical and Computer
Engineering
Stevens Institute of Technology
Castle Point on Hudson,
Hoboken, NJ 07030
USA
E-mail: yan.meng@stevens.edu

Yaochu Jin
Department of Computing
University of Surrey
Guildford, Surrey, GU2 7XH, UK
E-mail: yaochu.jin@honda-ri.de

ISBN 978-3-642-20759-4 e-ISBN 978-3-642-20760-0

DOI 10.1007/978-3-642-20760-0

Studies in Computational Intelligence ISSN 1860-949X

Library of Congress Control Number: 2011927941

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilm or in any other
way, and storage in data banks. Duplication of this publication or parts thereof is
permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this
publication does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations and therefore
free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Robotic systems are increasingly required to work under various dynamic, unpre-
dictable, and unknown environments to accomplish various complex tasks. To ad-
dress these challenges, self-organizing swarming robots and self-reconfigurable
modular robots have been proposed. For example, emerging collective behaviors
of large-scale swarm robotic systems can provide high flexibility and adaptation to
deal with environmental changes. Self-reconfigurable modular robots can auto-
matically change the morphology of the systems to adapt to complex terrains. To
deal with more complex and demanding environments as well as task require-
ments, autonomous development of cognitive abilities together with the body plan
of robots also becomes extremely important nowadays. Compared to traditional,
preprogrammed techniques, self-organizing robotic systems are more promising in
dynamic, unknown environments, particularly in terms of robustness, self-repair,
and self-adaptation. To exhibit the above-mentioned properties, self-organizing
systems must be controlled in a distributed manner, ideally through local interac-
tions among individual simple robots without an external global control. Unfortu-
nately, design of distributed self-organizing robotic systems remains one of the
most challenging problems in robotics.

Biological systems, from macroscopic swarm systems of social insects to mi-
croscopic cellular systems, can generate robust and complex emerging global be-
haviors through relatively simple local interactions in the presence of various
kinds of uncertainty. Borrowing ideas from biological systems for developing self-
organizing robotic systems has become increasingly popular and enjoyed consid-
erable success in recent years. For example, swarm intelligence, a novel paradigm
for solving complex problems with massively parallel systems, has been inspired
by behaviors observed in social insect colonies and flocks of birds. Another self-
organizing process in biology is morphogenesis of multi-cellular organisms.
Morphogenetic approaches based on computational models of embryogeny to self-
organizing robotic systems, which are now known as morphogenetic robotics,
have shown to be very promising.

This edited book presents a collection of the most representative research work
on biological inspired self-organizing robotic systems. This book is composed of four
parts. Part I discusses bio-inspired self-organizing approaches to swarm robotic sys-
tems, such as morphogenetic approaches inspired by biological morphogenesis in
multi-cellular organisms, swarm intelligence based approaches simulating the behav-
iors of social insects (e.g., birds, honeybees), hormone-based approaches to robotic
organisms, and genetic stigmergy based communication mechanism for swarm ro-
bots. In Chapter 1, a new emerging research field in developmental robotics,
morphogenetic robotics, is introduced by Jin and Meng. The main philosophy of

VI Preface

morphogenetic robotics is to apply development principles to design the morphology
and controller of self-organizing robotic systems. The main topics belong to morpho-
genetic robotics are summarized and the relationship between morphogenetic robotics
to evolutionary robotics and epigenetic robotics are discussed. Evolutionary devel-
opmental robotics, which is a natural marriage of evolutionary and developmental ro-
botics, is envisaged. Chapter 2, contributed by Schmickl, first presents different
swarm robotic systems using controllers inspired from collective behaviors of honey-
bees and slime model aggregation. Then, a hormone-based control paradigm for
multi-modular robotic organisms is discussed. All these systems are self-organized in
a distributed manner. In Chapter 3, La and Sheng propose two flocking control algo-
rithms, namely, Multi-CoM-Shrink and Multi-CoM-Cohesion, for multi-robot target
tracking in cluttered and noisy environments inspired from flocking behaviors of
birds, bees, and fish observed in nature. The stability and scalability of the algorithms
have also been investigated theoretically. Inspired by the pheromone-based stigmergy
in ant systems, in Chapter 4, Brandoff and Sayama describe an artificial genetic stig-
mergy for indirect communications among robots in a swarm system, where swarm
robots conduct an unknown environment mapping task. In the last chapter of Part I,
Garnier,a biologist, shares his points of view on how swarm roboticsinspired from
biological self-organization in animal societies can benefit from and contribute back
to the study of collective animal behaviors.

Part II introduces several bio-inspired approaches to self-reconfigurable modular
robots. Kernbach et al., in Chapter 6, propose constrained-based self-optimization
of self-assembly of heterogeneous modular robots, which is mainly inspired
from gene regulatory networks observed in molecular organisms. Mechanical and
integration constrains of robot modules are taken into account. Inspired by the em-
bryonic development of multi-cellular organisms, hierarchical morphogenetic
approaches are presented for self-reconfiguration of two modular robots (i.e.,
Cross-Cube and Cross-Ball) by Meng and Jin in Chapter 7. This hierarchical
framework consists of three layers, where the virtual-cell based layer 1 controller is
responsible for automatically generating appropriate target configurations for ro-
bots based on environmental constraints, the gene regulatory network based layer 2
controller provides self-reconfiguration plans for modules, and the skeleton-based
layer 3 controller guides the modules to move to the target configuration with the
mechanical and connectivity constraints of modules. By using this hierarchical
morphogenetic framework, the target patterns of the robots can be automatically
generated to adapt to changing environments. In Chapter 8, Miyashita et al. first
discuss three basic research issues in self-assembling robots for manufacturing 3D
micro products, namely, assembly, dynamic, and interaction issues. Then, a case
study with passive modules (actuated by permanent magnet) and active modules
(actuated by vibration motors) has shown the segregation behaviors of modules in a
distributed manner. Entropy analysis is also provided to govern macroscopic self-
assembly systems.

Whereas Part I and Part II concentrate on the self-organizing of swarm and
modular robots, autonomous mental development of robotic systems is the main
focus of Part III. In Chapter 9, Weng presents a developmental network (DN)
based general purpose model of the brain for robotic systems. A cell-centered

Preface VII

in-place learning scheme is proposed to handle all levels of brain development and
operation based on biological genomic equivalence principles, which is automati-
cally built up from five basic brain puzzles: development, architecture, area, space
and time. The focus of this chapter is the analysis on how this model deals with
temporal contexts.

Two specific applications of self-organizing robotic systems are presented in
Part IV. Inspired by the slime mouldPhysarumpolycephalum in biological organ-
isms, Jones et al. propose physarum robots in Chapter 10, where physarum can be
considered as a smart computing material. A particle-based computational model
is proposed for physarum robots, which spontaneously generate complex oscilla-
tory patterns from simple local interactions in a distributed manner. The authors
expect that physarum robots may be used as physical instances of smart materials
for the future robotic devices. In the final chapter of the book, Chapter 11, a lay-
ered architecture is presented by Hoffmann et al. to build up self-organizing ro-
botic cells for industrial robots. In the proposed system, an organic computing
based model is employed to combine the system emergence and self-organization
properties.

We believe that this book will provide readers an up-to-date and comprehensive
view of bio-inspired self-organizing robotic systems. We hope this book will
bridge multi-disciplinary research areas such as robotics, artificial life, cognitive
sciences, systems biology, developmental biology and evolutionary computation,
thereby inspiring researchers and engineers to generate more creative ideas to fur-
ther promote this emerging and exciting research field.

We would like to thank all contributors who prepared excellent chapters for this
book. We would also like to thank Prof. JanuszKacprzyk, Editor-in-Chief of this
book series and Dr. Thomas Ditzinger from Springer for offering us the opportu-
nity to edit the book.

Yan Meng
Department of Electrical and Computer Engineering

Stevens Institute of Technology
Hoboken, NJ 07030, USA

Yaochu Jin

Department of Computing
University of Surrey

Guildford, GU2 7XH, UK

Contents

Part I: Self-Organizing Swarm Robotic Systems

Morphogenetic Robotics - An Evolutionary Developmental
Approach to Morphological and Neural Self-Organization
of Robotic Systems . 3
Yaochu Jin, Yan Meng

How to Engineer Robotic Organisms and Swarms? 25
Thomas Schmickl

Flocking Control Algorithms for Multiple Agents in
Cluttered and Noisy Environments . 53
Hung Manh La, Weihua Sheng

Genetic Stigmergy . 81
Joshua Brandoff, Hiroki Sayama

From Ants to Robots and Back: How Robotics Can
Contribute to the Study of Collective Animal Behavior 105
Simon Garnier

Part II: Self-Reconfigurable Modular Robots

On Self-Optimized Self-Assembling of Heterogeneous
Multi-robot Organisms . 123
Serge Kernbach, Benjamin Girault, Olga Kernbach

Morphogenetic Self-Reconfiguration of Modular Robots 143
Yan Meng, Yaochu Jin

X Contents

Basic Problems in Self-Assembling Robots and a Case
Study of Segregation on Tribolon Platform 173
Shuhei Miyashita, Aubery Marchel Tientcheu Ngouabeu,
Rudolf M. Füchslin, Kohei Nakajima, Christof Audretsch,
Rolf Pfeifer

Part III: Autonomous Mental Development in
Robotic Systems

Brain Like Temporal Processing . 195
Juyang Weng

Part IV: Special Applications

Towards Physarum Robots . 215
Jeff Jones, Soichiro Tsuda, Andrew Adamatzky

Developing Self-Organizing Robotic Cells Using Organic
Computing Principles . 253
Alwin Hoffmann, Florian Nafz, Andreas Schierl, Hella Seebach,
Wolfgang Reif

Author Index . 275

Part I: Self-Organizing Swarm
Robotic Systems

Morphogenetic Robotics - An Evolutionary
Developmental Approach to Morphological and
Neural Self-Organization of Robotic Systems

Yaochu Jin and Yan Meng

Abstract. Morphogenesis can be considered as a self-organizing process shaped
by natural evolution, in which two major adaptation mechanisms found in nature
are involved, namely evolution and development. The main philosophy of morpho-
genetic robotics is to apply evolutionary developmental principles to robotics for
designing self-organizing, self-reconfigurable, and self-repairable single- or multi-
robot systems. We categorize these methodologies into three areas, namely, morpho-
genetic swarm robotic systems, morphogenetic modular robots, and co-development
of body and brain of robotic systems. In this chapter, we give a brief introduction to
morphogenetic robotics. A few examples are also presented to illustrate how evolu-
tionary developmental principles can be applied to swarm robots in changing envi-
ronment. We also describe computational models for genetically driven neural and
morphological development and activity-dependent neural development. As devel-
opmental mechanisms are often shaped by evolution both in nature and simulated
systems, we suggest that evolutionary developmental robotics is a natural next step
to follow.

1 Introduction to Morphogenetic Robotics

The physical development of animals includes the processes that cause the creation
of both the body plan and nervous system, including cleavage, gastrulation, neurula-
tion, organogenesis [55]. Some living organisms, such as amphibians, also undergo
a biological process known as metamorphosis, during which both the shape and

Yaochu Jin
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
e-mail: yaochu.jin@surrey.ac.uk

Yan Meng
Department of Electrical and Computer Engineering, Stevens Institute of Technology,
Hoboken, NJ 07030, USA
e-mail: yan.meng@stevens.edu

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 3–23.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

yaochu.jin@surrey.ac.uk
yan.meng@stevens.edu

4 Y. Jin and Y. Meng

size of the organisms change [5]. The past decade has witnessed rapid technical and
theoretical advances in evolutionary developmental biology [10] (often known as
evo-devo) and systems biology in understanding molecular and cellular mechanisms
that control the biological morphogenesis. These advances have not only helped us
in understanding biological processes such as human deceases, but also provided
us new powerful tools for designing engineered systems. For example, increasing
evidence has been revealed that biological morphogenesis can be regarded as a self-
organizing and self-assembling process through cellular and molecular interactions
under the genetic and environmental control [2, 50]. In addition, biological morpho-
genesis has also shown a surprising degree of robustness [3]. Due to the attractive
properties that biological morphogenesis exhibits, much attention has been paid to
employ genetic and cellular mechanisms for designing robotic systems, in particular
for self-organizing swarm robotic systems and self-reconfigurable modular robots.
In addition, a large body of research has been performed in artificial life and robotics
to design the body plan and neural controller of robots using an evolutionary devel-
opmental approach [51, 53, 54].

In this chapter, we provide a brief introduction to morphogenetic robotics, a ter-
minology that was first coined by the authors in 2009 and reported on a wiki web-
page [17], later more formally presented in [20]. In general, morphogenetic robotics
denotes the research area dedicated to the application of genetic and cellular mech-
anisms underlying biological morphogenesis to robotics. Morphogenetic robotics
includes the following three main topics:

• Morphogenetic swarm robotic systems that deal with the self-organization of
swarm robots using genetic and cellular mechanisms [12, 13, 29, 49].

• Morphogenetic modular robots where modular robots adapt their configurations
autonomously based on the current environmental conditions using morpho-
genetic principles [34, 33, 35].

• Developmental approaches to the design of the body or body parts and its neural
controller of robots [15, 26].

Neural development may further be divided into activity-independent [18] and
activity-dependent neural development [6]. Activity-independent neural develop-
ment lays down the initial structure of the nervous system and is mainly regulated
by genetic networks, whereas activity-dependent development refines the neural
connectivity driven by neural activities. However, a clear boundary between activity-
independent and activity-dependent neural development does not exist. Recent find-
ings in neuroscience suggest that early neural development, including neuronal
proliferation, migration, differentiation axon growth and dendrite outgrowth are
more or less influenced by spontaneous neural activity. On the other hand, activity-
dependent neural plasticity involves in changes in gene expression, i.e., activity-
dependent neural development is eventually also regulated by genetic networks.

The three areas of morphogenetic robotics are not necessarily fully separated.
For example, it can happen that morphogenetic principles are applied to a hybrid of
swarm and modular robotic system, where a number of swarm robots may assem-
ble into one single “modular” robot and then dissemble into multiple single robots

Morphogenetic Robotics 5

again. Meanwhile, developmental design of the morphology and controller may be
employed for modular robots to accomplish complex tasks.

The motivation to create this new terminology is to fill the gap between develop-
mental robotics and natural development of intelligent animals. In traditional devel-
opmental robotics, often known as epigenetic robotics, attention has mainly be paid
to cognitive development and the physical development of the body plan and neural
system is often neglected.

2 Computational Modeling of Multi-cellular Morphogenesis

2.1 Biological Morphogenesis and Metamorphosis

Morphogenesis of animals can be divided into early embryonic development and
later embryonic development [9]. Early embryonic development typically involves
cleavage, gastrulation, and axis formation, while later embryonic development is
mainly responsible for the development of the nervous systems, starting with the
segregation of neural and glial cells from the ectoderm germ layer [47]. An example
of morphogenesis of nematostella vectensis is illustrated in Fig. 1.

Fig. 1 Morphogenesis of nematostella vectensis. The development stages are: Egg (A), mor-
lula (B-F), blastula (G), gastrula (H), planula (I-J), and polyp (K-L). Taken from [27].

Metamorphosis is another interesting stage of biological development. There are
two types of metamorphosis, namely, incomplete and complete metamorphosis. For
organisms underlying incomplete metamorphosis, there are three developmental
stages, in which nymphs look similar to adults. In contrast, organisms that undergo
complete metamorphosis have four developmental stages, in which the shape of the
organisms changes drastically.

2.2 Modeling of Developmental Gene Regulatory Networks

Biological morphogenesis is governed by gene regulatory networks (GRNs). To un-
derstand the genetic and cellular principles underlying morphogenesis in silico, it

6 Y. Jin and Y. Meng

is necessary to build up a mathematical model of developmental gene networks.
In recent years, much research work has been reported on computational modeling
of signal transduction and developmental genetic networks. These network models
have been employed either to reconstruct a gene regulatory sub-network in biology
based on experimental data, or to analyze the basic properties of biological genetic
networks, such as robustness and evolvability.

For describing the morphogenesis of multi-cellular organisms, the interaction be-
tween the cells and its influence on gene expression dynamics must be taken into
account. Mjolsness et al. [36] has suggested a generalized GRN model that consid-
ered diffusion of transcription factors among the cells:

dgi j

dt
= −γ jgi j +φ

[
ng

∑
l=1

W jlgil +θ j

]
+ D j∇2gi j, (1)

where gi j denotes the concentration of j-th gene product (protein) in the i-th cell.
The first term on the right-hand side of Equation (1) represents the degradation
of the protein at a rate of γ j, the second term specifies the production of protein
gi j, and the last term describes protein diffusion at a rate of D j. φ is an activation
function for the protein production, which is usually defined as a sigmoid function
φ(z) = 1/(1 + exp(−μz)). The interaction between the genes is described with an
interaction matrix W jl , the element of which can be either active (a positive value)
or repressive (a negative value). θ j is a threshold for activation of gene expression.
ng is the number of proteins.

An illustration of cell-cell interactions is provided in Fig. 2, where gene 1 of cell
1 is activated by its own protein and repressed by the protein produced by gene 1 of
cell 2 through diffusion. Similarly, gene 2 of cell 1 is activated by its own protein,
and repressed by the protein of gene 2 of cell 2 through diffusion.

3 Morphogenetic Self-Organization of Swarm Robots

3.1 Swarm Robotic Systems

A swarm robotic system consists of a number of robots. Usually, each robot has only
low computational power and limited communication capability, which therefore,
can only accomplish simple tasks. However, with a proper control mechanism, the
robots can work together to perform complex tasks. Swarm robotic systems with
a decenralized control strategy are often believed to be more flexible and robust.
Typical applications of swarm robotic systems include group transport, foraging,
shape formation, boundary coverage, urban search and rescue, and unknown en-
vironment exploration. However, designing a decentralized control algorithm for
swarm robotic systems has been a challenging task [30].

Morphogenetic Robotics 7

Fig. 2 Illustration of cell signaling in a multi-cellular system.

3.2 A Metaphor between Swarm Robotic Systems and
Multi-cellular Systems

3.2.1 The Cell-Robot Mapping

To apply genetic and cellular mechanisms in biological morphogenesis to self-
organization of swarm robots, it is necessary to establish a metaphor between a
multi-cellular system and a multi-robot system. In the metaphor, the most impor-
tant functions of a robot is mapped to concentrations of a cell. In [13, 18, 31], the
location and velocity of the robots are described by the protein concentration of a
few genes whose expression is influenced by each other. Typically, for a robot in a
three-dimensional space, three proteins are used for denoting the robot’s position,
and three for the velocity. Note, however, that the mathematical definition of the
protein concentrations standing for position and velocity of the robots do not satisfy
the exact physical relationship between position and velocity. So the speed in this
context can be seen as an internal state of the robots.

Keeping the metaphor between the cells and the robots in mind, the movement
dynamics of each robot can be described by a GRN model, where the concentration
of two proteins of type G represents the x and y position of a robot, respectively,
and that of the proteins of type P representing an internal state of the robot.

dgi,x
dt = −azi,x + mpi,x

dgi,y
dt = −azi,y + mpi,y

(2)

d pi,x
dt = −cpi,x + k f (zi,x)+ bDi,x

d pi,y
dt = −cpi,y + k f (zi,y)+ bDi,y

(3)

8 Y. Jin and Y. Meng

where i = 1,2, ...,n. and n is the total number of robots (cells) in the system. gi,x and
gi,y are the x and y position of the i-th robot, respectively, which corresponds to the
concentration of two proteins of type G. pi,x and pi,y are the concentration of two
proteins of type P, which denotes the internal state of the i-th robot along the x and y
coordinates, respectively. Di,x and Di,y are the sum of the distances between the i-th
robot and its neighbors. In the language of the multi-cellular system, it is the sum of
the concentration of protein type G diffused from neighboring cells. Mathematically,
we have:

Di,x =
Ni

∑
j=1

D j
i,x, Di,y =

Ni

∑
j=1

D j
i,y , (4)

where Ni denotes the number of neighbors of robot i, and D j
i,x and D j

i,y are the pro-
tein concentrations diffused from neighboring robot j received by robot i, which is
defined as:

D j
i,x =

(gi,x −g j,x)√
(gi,x −g j,x)2 +(gi,y −g j,y)2

, (5)

D j
i,y =

(gi,y −g j,y)√
(gi,x −g j,x)2 +(gi,y −g j,y)2

. (6)

The diffusion term in the regulatory model simulates the cell-cell signaling in
multi-cellular systems. For a swarm robotic system, this entails that each robot is
able to detect the distance to its neighboring robots, which is practical and easy to
realize.

3.2.2 Target Shape Representation Using Morphogen Gradients

In biological morphogenesis, morphogen concentration gradients control cell fate
specification and play a key role in understanding pattern formation [1]. In the
present gene regulatory model for shape formation of swarm robots, the target shape
information is also provided in terms of morphogen gradients, which is defined by fz

in Equation 3. For a two-dimensional target shape, f (zi) can be defined as follows:

f (zi,x) = 1−e−zi,x

1+e−zi,x

f (zi,y) = 1−e−zi,y

1+e−zi,y

(7)

where zi,x and zi,y are the gradients along x-axis and y-axis, respectively, of an ana-
lytic function h, which is described as:

zi,x =
∂h
∂gi,x

, zi,y =
∂h
∂gi,y

(8)

where h defines the shape the robots should form.
The map between a multi-cellular system and a multi-robot system used in this

work is provided in Fig. 3.

Morphogenetic Robotics 9

Fig. 3 A metaphor between a multi-cellular system and a multi-robot system.

3.3 From Analytic to Freeform Shape Representation

Representation of the target shape of the swarm robotic system in terms of mor-
phogen gradients is an important step in designing morphogenetic self-organizing
systems. The most straightforward way to represent a shape is to use an analytic
function. For example, if the robots are required to form a unit circle, the following
function can be used:

h = (g2
i,x + g2

i,y−1)2. (9)

There are potentially three problems with this way of shape representation. First,
the complexity of the shapes is limited. In general, analytic functions can describe
closed two-dimensional shapes only. Second, the algorithm needs a global coordi-
nate system for describing the shapes, which poses a big problem for decentralized
systems. Third, the shape can be formed only on a predefined location. To address
these issues, parametrized shape representation models, such as Bézier, B-Spline
and non-uniform rational B-Spline (NURBS) can be used [31].

A NURBS curve is defined by its order, a set of weighted control points, and a
knot vector. The control points define the shape of the curve, and the knot vector
is a set of parameters that determines where and how the control points affect the
NURBS curve. A NURBS model can represent both curve and surface in a two- or
three-dimensional Cartesian space. Let Bi,k(u) be the B-spline basis functions of the
NURBS model, where i corresponds to i-th control point, and k denotes the degree
of the basis function. In the NURBS model, a curve can be defined as a combination
of a set of piecewise rational basis functions with n+1 control points pi and the
associated weights as follows:

10 Y. Jin and Y. Meng

c(u) =
∑n

i=1 piwiBi,k(u)
∑n

i=1 piBi,k(u)
, (10)

where n is the number of control points, u is a parameter in the NURBS represen-
tation. For basis functions of degree k− 1, a NURBS curve has n + k + 1 knots ti
in a non-decreasing sequence: t0 ≤ t1 ≤ ... ≤ tn+k. The basis functions are defined
recursively as:

Bi,k(u) =
{

1, ti ≤ u ≤ ti+1

0, otherwise
(11)

where
Bi,k(u) =

u− ti
ti+k+1 − ti

Bi,k−1(u)+
ti+k −u

ti+k − ti+1
Bi+1,k−1(u). (12)

The range of the parameter is tk−1 ≤ u ≤ tk+1.
Simulation results where 17 robots are used to form a bird-flocking shape are

given in Fig. 4. The robots are randomly distributed in the area in the beginning. A
reference robot is chosen through a competition process, during which the robot that
has the maximum number of neighbors wins. Driven by the GRN-based dynamics,
the robots will then autonomously form the target shape. Snapshots showing 17
robots forming a bird-flocking shape are provided in Fig. 4. More details about this
part of the work can be found in [12].

Fig. 4 Snapshots showing the emergence of a pattern from 17 robots similar to bird flock-
ing [12]. (a) Random initialization; (b) Determination of a reference robot (denoted by a star)
through competition; (c) Emergence of the target shape.

3.4 From Predefined Target Shape to Adaptive Shape Generation

In the previous models, it is assumed that the target shape to be constructed by the
robots is known beforehand and therefore can be pre-defined. Unfortunately, this as-
sumption does not hold if the target shape must change as the environment changes.
To address this issue, a hierarchical GRN (H-GRN) network consisting of two lay-
ers has been suggested [19], as illustrated in Fig. 5. Layer 1 generates patterns in
terms of protein concentration depending on the given environment, for instance,
the location of the targets to be followed and entrapped. Layer 2 is responsible for
controlling the robot’s movement dynamics, where protein types G and P represent
the position and internal state vectors of the robots, respectively. If the patterns are

Morphogenetic Robotics 11

Fig. 5 A diagram of the H-GRN. Layer 1 is a GRN having four proteins, of which protein p
can be regulated by environmental inputs, and protein g3 is the morphogen gradient describ-
ing the pattern to be formed. Protein g3 can influence the production of both proteins G and
P, which represents the position and velocity vectors of the robots, respectively.

generated in a two-dimensional (2D) space, the vector length of G and P is two.
In a 3D space, the dimension of both position and internal state vectors is three.
Note that only protein type G can diffuse into other cells and influence the motion
dynamics of other robots. The functionality of GRN layer 2 is similar to the single
layer GRN described in the previous section.

From the above discussions, we note that the pattern generated by layer 1 plays a
similar role of morphogen gradients in biological morphogenesis. The main advan-
tage of having an additional GRN layer for pattern generation is that it enables the
system to generate a desired pattern adaptively in a changing environment, which is
impossible to achieve if the target pattern is predefined.

Note that the GRN of layer 1 is activated only when the robot detects a target or
multiple targets. Based on the position of the detected targets, a target pattern will
be generated. These robots are termed as organizing robots. Once a target pattern is
generated in organizing robots, the dynamics of the GRN of layer 2 in these robots
are then activated to guide the robots to the target pattern. The robots that do not
detect any target will follow the movement of the organizing robots until they detect
any targets by themselves. By then, they also become organizing robots: the GRN
of layer 1 will be activated, the target pattern will be generated and finally the robots
will move to the target pattern guided by the dynamics of the GRN of layer 2.

12 Y. Jin and Y. Meng

Simulations have been carried out to verify the capability of adaptive pattern
generation of the H-GRN. A few snapshots of the simulation results on adaptive
pattern generation are given in Fig. 6. In the simulation, two targets move in the
considered area. Furthermore, they can move so distantly from each other that two
separate patterns are needed. These results show that the proposed model works
properly for adaptive pattern generation without any centralized control.

Fig. 6 Snapshots of simulations showing the adaptive pattern generation when the targets to
be entrapped move.

Proof-of-concept experiments with physical robots have also been conducted. In
the experiments, two targets (e-puck mobile robots covered with a piece of yellow
paper) should be entrapped by other eight robots. This function has been achieved,
as shown in Fig. 7. After that, one of the target robots moves out the circular shape
that the eight robots have formed. This environmental change should be detected
automatically and a new pattern must be constructed. Once the new pattern is gen-
erated, the eight robots should formulate a new shape that entrap the two target
robots again. This adaptation process is shown in Fig. 8.

3.5 Intermediate Summary

Compared to existing approaches [16], the morphogenetic approach to self-
organizing swarm robotic systems has the following advantages. First, the global
behavior, i.e., the target shape in the context of pattern formation, can be embedded

Morphogenetic Robotics 13

Fig. 7 Snapshots from experimental results where two robots (covered with a piece of paper)
are trapped with another eight robots organized by the H-GRN model.

in the robot dynamics in the form of morphogen gradients. In pattern formation,
the global shape can be described using parametrized models such as a NURBS
model that can represent both analytical and free-form shapes. The GRN model can
then generate implicit local interaction rules automatically to generate the global
behavior, which can be guaranteed through a rigorous mathematical proof. Second,
the morphogenetic approach is robust to perturbations in the system and in the en-
vironment. Third, it has also shown that the morphogenetic approach can provide
a unified framework for multi-robot shape formation and boundary coverage [12],
since the representation of the target shape is independent of a specific global coor-
dination system. Last but not the least, the morphogenetic framework can generate
patterns automatically in a changing enviornment, which, to the best of our knowl-
edge, has not been reported in the literature.

4 Morphogenetic Modular Robots for Self-Organized
Reconfiguration

Self-reconfigurable modular robots consist of a number of modules and are able to
adapt their shape (configuration) by re-arranging their modules to changing environ-
ments [39]. Each module is a physical or simulated ’body’ containing a controller.

14 Y. Jin and Y. Meng

Fig. 8 Adaptation of the target pattern and reformulation of the shape to maintain the entrap-
ping of the targets.

Both physical modular robots, such as M-TRAN [38] and Molecube [40], and sim-
ulated ’animats’, such as Karl Sims’ virtual creature [51] and Framsticks [25] have
been constructed for reconfigurable robotic systems.

The connection between reconfigurable modular robots and multi-cellular organ-
isms appears more straightforward. Each unit in modular robots can be seen as a
cell, and there are similarities in control, communication and physical interactions
between cells in multi-cellular organisms and modules in modular robots. For ex-
ample, control in both modular robots and multi-cellular organisms is decentralized.
In addition, global behaviors of both modular robots and multi-cellular organisms
emerge through local interactions of the units, which include mechanic, magnetic
and electronic mechanisms in modular robots, and chemical diffusion and cellular
physical interactions such as adhesion in multi-cellular organisms. Therefore, it is
a natural idea to develop control algorithms for self-reconfigurable modular robots
using biological morphogenetic mechanisms [56, 34, 33, 35]. More details can be
found in [34, 33, 35].

As we discussed before, there is also a link between swarm robotic systems and
modular robots. This happens when individual robots in a swarm robotic system
assemble into a modular robots. Vice versa, a modular robot consisting of individual
robots can again disassembled into swarm robots.

Morphogenetic Robotics 15

5 Morphogenetic Brain-Body Co-development

5.1 A GRN Model for Neural and Morphological Development

The growth of the animat morphology is under the control of GRNs and cellular
physical interactions. Extended from the cellular growth model for structural de-
sign, GRN models for the development of a nervous system [21] and body plan [48]
of primitive animals have been proposed. In the genome of the GRN models, each
gene consists of a number of structural units (SUs) proceeded by a number of reg-
ulatory units (RUs). RUs can be activating (RU+) or repressive (RU−). When SUs
are activated, they will produce proteins either responsible for cellular behaviors
such as cell division, cell death, cell migration, and axon growth, or proteins reg-
ulating the activation of the structural units, which are also known as transcription
factors (TFs). If a TF can only regulate the genes inside the cell, it is then called an
internal TF. If a TF can also diffuse out of the cell and regulate the genes of other
cells, it is termed as an external TF. A TF can be both intracellular and intercellular.
An example of a chromosome in the cellular model for neural development is pro-
vided in Fig. 9. From the figure, we note that single or multiple RUs may regulate
the expression of a single or multiple SUs.

Whether a TF can influence an RU is dependent on the degree of match between
the affinity value of a TF and that of an RU. If the difference between the affinity
values of a TF and a RU is smaller than a predefined threshold ε , the TF can bind
to the RU to regulate. The affinity match (γi, j) between the i-th TF and j-th RU is
defined by:

γi, j = max
(
ε− ∣∣affTF

i − affRU
j

∣∣ , 0
)
. (13)

If γi, j is greater than zero and the concentration ci of the i-th TF is above a threshold
(ϑ j) defined in the j-th RU, then the i-th TF influences the j-th RU.

Thus, the activation level contributed by this RU (denoted by a j, j = 1, ...,N)
amounts to a j =∑M

i=1 |ci,−ϑ j|, where M is the number of existing TFs. The expres-
sion level of the k-th gene, that is regulated by N RUs, can be defined by

RU
+

RU RU RU RU
_ _

SU SU SU SU SU SU
++D A TFTFM M

RU

SU : Cell division SU : Cell migration

SU : Axon growth SU : Producing transacription factor
TFA

D M

+ _
 : Activating regulatory unit RU : Inhibitory regulatory unit

Fig. 9 An example of chromosome for neural development.

16 Y. Jin and Y. Meng

αk = 100
N

∑
j=1

h ja j(2s j −1), (14)

where s j ∈ (0,1) denotes the sign (positive for activating and negative for repressive)
of the j-th RU and h j is a parameter representing the strength of the j-th RU. If
αk > 0, then the k-th gene is activated and its corresponding behaviors encoded in
the SUs are performed.

A SU that produces a TF encodes all parameters related to the TF, such as the
affinity value, a decay rate Dc

i , a diffusion rate D f
i , as well as the amount of the TF

to be produced:

A = β
2

1 + e−20· f ·α −1, (15)

where f and β are both encoded in the SUTF.
A TF produced by a SU can be partly internal and partly external. To determine

how much of a produced TF is external, a percentage (pex ∈ (0,1)) is also encoded
in the corresponding gene. Thus, pexA is the amount of external TF and (1− pex)A
is that of the internal TF.

To make it easier for simulating the diffusion of TFs, cells are put in an environ-
ment that is divided into a number of grids. External TFs are put on four grid points
around the center of the cell, which undergoes first a diffusion (Eqn. 16) and then
decay process (Eqn. 17):

ui(t) = ui(t −1)+ 0.1 ·D f
i · (G ·ui(t −1)), (16)

ui(t) = min ((1−0.1 ·Dc
i)ui(t), 1), (17)

where ui is a vector of the concentrations of the i-th TF at all grid points and the
matrix G defines which grid points are adjoining.

The SUs encode cellular behaviors and the related parameters. The SU for cell
division encodes the angle of division, indicating where the daughter cell is placed.
A cell with an activated SU for cell death will die at the end of the developmental
time-step.

The above cellular model has been applied to simulate both morphological and
neural development [21, 48]. In the experiment to generate an animat like C. el-
egans, two prediffused, external TFs without decay and diffusion are deployed in
the computation area (maternal morphogen gradients). The first TF has a constant
gradient in the x-direction and the second in the y-direction. A few snapshot of the
self-stabilized cellular growth [48] is provided in Fig. 10.

5.2 Activity-Dependent Neural Development

Biological findings indicate that both the structure and connecting weights of the
neurons in the brain can change over time depending on the neuronal activities [23],
which is resulted from changes in the expression of relevant genes [7]. Based on
findings in neuroscience and systems biology, a gene regulatory network model

Morphogenetic Robotics 17

Fig. 10 Self-stabilized cellular growth under the control of a GRN model presented in [48].

is combined with the the Bienenstock, Cooper, and Munro (BCM) spiking neural
network [4] to model the synaptic and neural plasticity [32]. BCM-based spiking
neural network (SNN) is a graph with weighted, directed edges replacing synapses,
as shown in Fig.11 The weight, weight plasticity, and meta-plasticity of the spik-
ing neural network will all be regulated by the GRN, and the GRN will also be
influenced by the activity of the neurons it resides in, in a closed loop.

Fig. 11 A diagram of a BCM spiking neural network model.

18 Y. Jin and Y. Meng

To optimize the parameters of the gene regulatory network, an efficient evolution-
ary algorithm, i.e., the covariance matrix adaptation evolution strategy (CMA-ES)
[23], [24], is employed. A diagram of the whole system is provided in Fig. 12.

The evolutionary GRN-BCM model has been employed for spatiotemporal pat-
tern recognition, e.g., human behavior detection [32]. The simulation results indi-
cate that the GRN-BCM model is more powerful for spatiotemporal pattern recog-
nition than popular machine learning models such as support vector machines or
feedforward neural networks. In addition, only spatial features are used, different
from most machine learning models that require for spatiotemporal features.

Fig. 12 Illustration of the E-GRN-BCM framework, where the expression level of the GRN
regulates the plasticity parameters in the BCM neural network. Meanwhile, the gene expres-
sion level is influenced by the activity of the neurons. An evolutionary algorithm is employed
to evolve the parameters in the GRN model.

6 Towards Evolutionary Developmental Robotics
(Evo-Devo-Robo)

From the discussions in Section 1, we can see that several different but related re-
search lines exist in robotics, which in our view, can be grouped into two cate-
gories, namely, evolutionary robotics [46], including coevolutionary robotics [45]
and competitive co-evolutionary robotics [8], and developmental robotics [28], in-
cluding morphogenetic approaches to robotics discussed in this chapter. A natural
question is, what is the relationship between evolutionary robotics and developmen-
tal robotics?

Morphogenetic Robotics 19

As pointed out in [24], living systems have three main adaptation mechanisms,
i.e., learning, development and evolution. In the context of bio-inspired hardware
systems, Sipper et al [52] has provided a nice view on how to combine the three
dimensions of natural adaptation, that is, epigenesis, ontogeny, and phylogeny in
a unified framework, which is termed as the POE model. We will discuss these
mechanisms from the robotics perspective.

• Epigenesis. Epigenesis can be defined as autonomous, incremental and open-
end learning through sensori-motor adaptation, self-exploration, imitation, pre-
diction, and social interactions, which are the main topics of epigenetic robotics.
Thus, epigenetic robotics emphasizes on modeling of mental development.

• Ontogenesis / morphogenesis. Ontogenesis (ontogeny) includes cell growth, cel-
lular differentiation and morphogenesis. Considering the fact that ontogenetic
robotics has been used interchangeably with epigenetic robotics and that most
computational models of morphogenesis also include cellular differentiation, we
suggest that morphogenetic robotics be used to refer to the physical development
of the body, including the nervous system. In contrast to epigenetic robotics,
morphogenetic robotics covers the physical development of living systems.

• Phylogeny. In biology, phylogeny refers to the evolutionary relatedness of dif-
ferent species or populations. In robotics, evolution has been a powerful tool for
robotics to be adaptable to large environmental changes through genetic varia-
tions such as mutation, crossover, and gene duplication.

Obviously, research in epigenetic robotics, morphogenetic robotics and evolution-
ary robotics cannot be performed separately. First, autonomous mental develop-
ment would not have been possible without an intrinsic motivation system [42]
and genetically wired neural structures for prediction, anticipation and memory.
So far in epigenetic robotics, intrinsic motivation systems have often been pre-
defined [41]. We hypothesize that the most basic components of such intrinsic mo-
tivation systems have been endowed by evolution. Second, the body plan of the
robots are a result of morphogenetic development, on which mental development is
based through interaction with the environment. Particularly, activity-dependent and
activity-independent development of neural networks are closely coupled, which
suggests that a synergy between epigenetic robotics and morphogenetic robotics is
indispensable. Finally, development can not only bias the direction of evolution,
but also enhance evolvability [22], while learning can influence evolution [14]. For
example, it has been shown in [43], learning can attribute to genetic diversity in
changing environments, and evolution is able to find an optimal balance in allocat-
ing adaptation resources for evolution and learning [44].

Evolutionary developmental biology has revolutionized our understanding of the
morphological and neural development of living organisms [37]. In addition, the
evo-devo approach has also helped us gain deeper insights into human cognitive de-
velopment, resulting a new discipline known as evolutionary developmental
psychology [11].

20 Y. Jin and Y. Meng

To summarize, we believe that evolutionary robotics and developmental robotics,
two distinct yet complementary disciplines in robotics, should also integrate and
form a new discipline: evolutionary developmental robotics (evo-devo-robo).

7 Conclusions

This chapter introduces a morphogenetic approach to self-organizing robotic sys-
tems, which focuses on employing genetic and cellular mechanisms in biological
morphogenesis for developing self-organizing, self-reconfigurable and self-adaptive
robotic systems, covering a wide range of robotic systems such as swarm robotic
systems, modular robots and intelligent robots. While epigenetic robotics concen-
trates on the cognitive development of robotic systems, morphogenetic robotics
focuses on the growth process of the body plan and nervous system. Therefore,
we believe that morphogenetic robotics is complementary to epigenetic robotics
and fills the gap between epigenetic robotics and developmental robotics in that
developmental robotics should include both neural, morphological and cognitive
development. We also expect that we will benefit from the synergies between mor-
phogenetic and epigenetic robotics, as neural and morphological development lay
the neuro-physiological foundation for cognitive development. Finally, we advo-
cate to go from developmental robotics to evolutionary developmental robotics, thus
systematically embedding the three main adaptation mechanisms of natural intelli-
gence, i.e., evolution, development and learning, in robotic systems.

Acknowledgments

The authors would like to thank Hongliang Guo, Yuyang Zhang, Jun Yin, Matthew Conforth,
and Lisa Schramm for the illustrative examples used in this book chapter.

References

1. Ashe, H.L., Briscoe, J.: The interpretation of morphogen gradients. Development 133,
385–394 (2007)

2. Beloussov, L.V.: Integrating self-organization theory into an advanced course on mor-
phogenesis at Moscow State University. Int. J. Dev. Biol. 47, 177–181 (2003)

3. Ben-Amor, H., Cadau, S., Elena, A., Dhouailly, D., Demongeot, J.: Regulatory networks
analysis: Robustness in morphogenesis. In: 2009 Int. Conf. on Advanced Information
Networking and Application Workshops, Bradford, UK, pp. 924–928 (2009)

4. Bienenstock, E.L., Cooper, L.N., Munro, P.W.: Theory for the development of neuron
selectivity: orientation specificity and binocular interaction in visual cortex. The Journal
of Neuroscience 2(1), 32–48 (1982)

5. Bishop, C.D., Erezyilmaz, D.F., Flatt, T., Georgiou, C.D., Hadfield, M.G., Heyland, A.,
Hodin, J., Jacobs, M.W., Maslakova, S.A., Pires, A., Reitzel, A.M., Santagata, S., Tanaka,
K., Youson, J.H.: What is metamophosis? Integrative and Comparative Biology 46, 655–
661 (2006)

6. Cohen, D.J., Cicchetti, D.: Developmental Neuroscience. Wiley, Chichester (2006)

Morphogenetic Robotics 21

7. Flavell, S., Greenberg, M.E.: Signaling mechanisms linking neuronal activity to gene
expression and plasticity of the nervous system. Annual Review of Neuroscience 31,
563–590 (2008)

8. Floreano, D., Nolfi, S., Mondana, F.: Competitive co-evolutionary robotics: from theory
to practice. From Animal to Animats 5, 515–525 (1998)

9. Gilbert, S.F.: Developmental Biology. Sinauer Associates (2003)
10. Gilbert, S.F.: The morphogenesis of evolutionary developmental biology. Int. Journal of

Developmental Biology 47, 467–477 (2003)
11. Griffiths, P.E.: Evo-devo meets the mind: Towards a developmental evolutionary psy-

chology. In: Sanson, R., Brandon, R.N. (eds.) Integrating Development and Evolution.
Cambridge University Press, Cambridge (2007)

12. Guo, H., Jin, Y., Meng, Y.: A framework for self-organized multi-robot pattern forma-
tion and boundary coverage inspired from morphogenesis. ACM Transactions on Au-
tonomous and Adaptive Systems (2010) (accepted)

13. Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evo-
lutionary multi-objective optimization of a gene regulatory network. BioSystems 98(3),
193–203 (2009)

14. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex Systems 1, 495–
502 (1987)

15. Hornby, G.S., Pollack, J.B.: Creating high-level components with a generative represen-
tation for body-brain evolution. Artificial Life 8, 223–246 (2002)

16. Hsieh, M.A., Kumar, V.: Pattern generation with multiple robots. In: International Con-
ference on Robotics and Automation. IEEE Press, Los Alamitos (2006)

17. Jin, Y.: Morphogenetic robotics (2010),
http://en.wikipedia.org/wiki/˜Morphogenetic_robotics

18. Jin, Y., Guo, H., Meng, Y.: Robustness analysis and failure recovery of a bio-inspired
self-organizing multi-robot system. In: Third IEEE International Conference on Self-
Adaptive and Self-organizing Systems, pp. 154–164. IEEE Press, Los Alamitos (2009)

19. Jin, Y., Guo, H., Meng, Y.: A hierarchical gene regulatory network model for adaptive
pattern formation in changing environment. IEEE Transactions on Robotics (submitted
2011)

20. Jin, Y., Meng, Y.: Morphogenetic robotics: An emerging new field in developmental
robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Reviews and
Applications (2010) (accepted)

21. Jin, Y., Schramm, L., Sendhoff, B.: A gene regulatory model for the development of
primitive nervous systems. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP
2008. LNCS, vol. 5506, pp. 48–55. Springer, Heidelberg (2009)

22. Jin, Y., Trommler, J.: A fitness-independent evolvability measure for evolutionary devel-
opmental systems. In: IEEE Symposium on Computational Intelligence in Bioinformat-
ics and Computational Biology (2010) (accepted)

23. Kalat, J.W.: Biological Psychology. Wadsworth Publishing, Belmont (2008)
24. Kodjabachian, J., Meyer, J.-A.: Development, learning and evolution in animats. In:

From Perception to Action. IEEE Press, New York (1994)
25. Komosinski, M., Ulatowski, S.: Framsticks: Towards a simulation of a nature-like world,

creatures and evolution. In: European Conference on Artificial Life, pp. 261–265 (1999)
26. Lee, J.A., Sitte, J.: Morphogenetic evolvable hardware controllers for robot walking. In:

2nd International Symposium on Autonomous Minirobots for Research and Edutainment
(February 2003)

http://en.wikipedia.org/wiki/~Morphogenetic_robotics

22 Y. Jin and Y. Meng

27. Lee, P.N., Kumburegama, S., Marlow, H.Q., Martindale, M.Q., Wikramanayake, A.H.:
Asymmetric developmental potential along the animal-vegetal axis in the anthozoan
cnidarian, nematostella vectensis, is mediated by dishevelled. Developmental Biol-
ogy 310(1), 169–186 (2007)

28. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: A survey.
Connection Sciences 15, 151–190 (2003)

29. Mamei, M., Vasirani, M., Zambonelli, M.: Experiments in morphogenesis in swarms of
simple mobile robot. Applied Artificial Life 18, 903–919 (2004)

30. Meiner, D.: Swarm robotics algorithm: A survey. Technical report, University of Mary-
land (May 2007)

31. Meng, Y., Guo, H., Jin, Y.: A morphogenetic approach to flexible and robust shape forma-
tion for swarm robotic systems. Robotics and Autonomous Systems (2010) (submitted)

32. Meng, Y., Jin, Y., Yin, J., Conforth, M.: Human activity detection using spiking neural
networks regulated by a gene regulatory network. In: International Joint Conference on
Neural Networks, pp. 2232–2237 (2010)

33. Meng, Y., Zhang, Y., Jin, Y.: A morphogenetic approach to self-reconfigurable modular
robots using a hybrid hierarchical gene regulatory network. In: 12th International Con-
ference on the Synthesis and Simulation of Living Systems (ALIFE XII), pp. 765–772
(2010)

34. Meng, Y., Zhang, Y., Jin, Y.: Autonomous self-reconfiguration of modular robots using a
hierarchical mechanochemical mode. IEEE Computational Intelligence Magazine 6(1),
43–54 (2011)

35. Meng, Y., Zhang, Y., Sampath, A., Jin, Y., Sendhoff, B.: Cross-ball: a new morphogenetic
self-reconfigurable modular robot. In: IEEE International Conference on Robotics and
Automation (ICRA) (accepted 2011)

36. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. Journal
of Theoretical Biology 52, 429–453 (1991)

37. Müller, G.B.: Evo-devo: extending the evolutionary synthesis. Nature Review Genetics,
943–949 (2007)

38. Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system -
navigation, docking, and integration of M-TRAN. IEEE Robotics & Automation Maga-
zine 14, 56–63 (2008)

39. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robotics &Automation
Magazine, 71–78 (March 2007)

40. Mytilinaios, E., Marcus, D., Desnoyer, M., Lipson, H.: Designed and evolved blueprints
for physical artificial life. In: Ninth Int. Conf. Artificial Life (ALIFE IX), pp. 15–20
(2004)

41. Oudeyer, P.-Y., Kaplan, F.: How can we define intrinsic motivation? In: Proceedings of
the 8th International Conference on Epigenetic Robotics. LUCS, Brighton (2008)

42. Oudeyer, P.-Y., Kaplan, F., Hafner, V.V.: Intrinsic motivation systems for autonomous
mental development. IEEE Transactions on Evolutionary Computation 11(1), 265–286
(2007)

43. Paenke, I., Branke, J., Jin, Y.: On the influence of phenotype plasticity on genotype di-
versity. In: 2007 IEEE Symposium on Foundations of Computational Intelligence, pp.
33–40. IEEE Press, Los Alamitos (2007)

44. Paenke, I., Jin, Y., Branke, J.: Balancing population and individual level of adaptation in
changing environments. Adaptive Behavior 17(2), 153–174 (2009)

45. Pollack, J., Lipson, H., Funes, P., Ficici, S., Hornby, G.: Coevolutionary robotics. In:
Evolvable Hardware, pp. 208–216 (1999)

46. Nolfi, S., Floreano, D.: Evolutionary Robotics. The MIT Press, Cambridge (2004)

Morphogenetic Robotics 23

47. Sanes, D.H., Reh, T.A., Harris, W.A.: Development of Nervous Systems, 2nd edn. Aca-
demic Press, London (2006)

48. Schramm, L., Jin, Y., Sendhoff, B.: Emerged coupling of motor control and morpholog-
ical development in evolution of multi-cellular animates. In: 10th European Conference
on Artificial Life (2009)

49. Shen, W., Will, P., Galstyan, A.: Hormone-inspired self-organization and distributed con-
trol of robotic swarms. Autonomous Robots 17, 93–105 (2004)

50. Simons, K., Karsenti, E., St Johnston, D., Wijer, C., Swarminathan, S. (eds.): Self-
Organization and Morphogenesis in Biological Systems, Schloss Ringberg, Tegersee,
Germany (December 2006)

51. Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1 (1994)
52. Sipper, M., Sanchez, E., mange, D., Tomassini, M., Perez-Uribe, A., Stuffer, A.: A phylo-

genetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE Trans-
actions on Evolutionary Computation 1(1), 83–97 (1997)

53. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life,
93–130 (2003)

54. Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and con-
trollers for physically simulated creatures. Artificial Life 7(1), 77–87 (2001)

55. Wolpert, L.: Principles of Development. Oxford University Press, Oxford (2002)
56. Yu, C.-H., Haller, K., Ingber, D., Nagpal, R.: Morpho: A self-deformable modular robot

inspired by cellular structure. In: Proceedings of the 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 3571–3578. IEEE Press, Los Alamitos
(2008)

How to Engineer Robotic Organisms and
Swarms?�

Bio-Inspiration, Bio-Mimicry, and Artificial Evolution
in Embodied Self-Organized Systems

Thomas Schmickl

Abstract. In large-scale systems composed of autonomous embodied agents (e.g.,
robots), unpredictability of events, sensor noise and actuator imperfection pose sig-
nificant challanges to the designers of control software. If such systems tend to self-
organize, emergent phenomena prevent classical engineering approaches per se. In
recent years, the Artificial Life Lab at the University of Graz has investigated a vari-
ety of methods to synthesize such control algorithms used in multi-modular robotics
and in swarm robotics. These methods either translate mechanisms directly from bi-
ology to the engineering domain (bio-mimicry, bio-inspiration) or generates such
controllers through artificial evolution from scratch. In this article I first discuss dis-
tributed control algorithms, which determine the collective behavior of autonomous
robotic swarms. These algorithms are derived from collective behavior of honeybees
and from slime mold aggregation. One of these algorithms is inspired by inter-adult
food exchange in honeybees (’trophallaxis’) another one from chemical signaling
in slime molds. In addition to the control of robot swarms, control paradigms for
multi-modular robotic organisms are presented, which are again based on simulated
fluid exchange (hormones) among compartments of robotic organisms. In both do-
mains –swarms and organisms– the control system is self-organized and consists of
many homeostatic sub-systems which adapt to each other on the individual (mod-
ule) and on the collective level (organism, swarm). Additionally, I discuss the im-
portance of distributed feedback networks, as well as the benefits and drawbacks of
bio-inspiration and bio-mimicry in collective robotics.

Thomas Schmickl
Artificial Life Lab of the Department for Zoology, Karl-Franzens University Graz,
Universitä”tsplatz 2, 8010 Graz, Austria
e-mail: thomas.schmickl@uni-graz.at
� This work is supported by the following grants: EU-IST-FET ‘SYMBRION’, no. 216342;

EU-ICT ‘REPLICATOR’, no. 216240; EU-IST FET ‘I-SWARM’, no. 507006; FWF
(Austrian Science Fund), no. P19478-B16.

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 25–52.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

thomas.schmickl@uni-graz.at

26 T. Schmickl

1 Introduction

Even though much progress was made in the field of robotic engineering in the past,
it is still a challenging task to develop control software for robots that are aimed to
work in heterogeneous, dynamic, and sometimes even unpredictable environments.
This challenge is even harder whenever the aim is to control not only one singular
robotic unit but several – sometimes even masses – of robot modules.

The field of collective robotics can be roughly split into two domains: (1)
Swarm robotics: Robotic modules are fully autonomous in control and in their phys-
ical connectedness. (2) Multi-modular robotics and reconfigurable robotics: Robotic
modules are physically coupled. I think that systems of both domains can be seen as
being quite similar. It is just the degree of (physical) connectedness between mod-
ules that differs between systems of these two domains. Thus I interpret a swarm as
being a ‘very loosely coupled’ variant of an organism, or, in other words, I call an
organism to be a very tightly connected swarm of modules. In the work of the Arti-
ficial Life Lab in Graz (Austria), we draw bio-inspiration from natural swarm sys-
tems and from simple multi-cellular organisms. The basic principles that govern the
self-organization of the natural systems are then translated into algorithms that pro-
duce comparable self-organization in robotic systems. However, as the ‘substrate’
changes significantly, this translational step has to carefully consider the capabilities
and constraints of the technical target systems. In figure 1 the potential ‘flows of in-
spiration’ between biological research domains and engineering research domains,
which are relevant for my work group’s research paradigm, are depicted.

Within the community of biology-interested engineers, the term ‘bio-mimicry’
and ‘bio-inspiration’ are used very often synonymously. I think there is significant
difference between these two research fields: In bio-inspiration, a mechanism is im-
ported from the biological source of inspiration to the technical target system. Very
often, the biological mechanism is either a chemical or a behavioural mechanism,
which is converted into a sort of algorithm that reflects the key aspects of the inspi-
ration. Prominent examples are genetic algorithms & evolution strategies [22, 12],
particle swarm optimization [14] or ant colony optimization [7]. Although these al-
gorithmic methodologies clearly reflect key features of the biological counterpart,
they are very abstract, disembodied and do not incorporate any biological constraints
into the technical world. Thus they act similar to the biological counterpart but they
do not look similar to it. In contrast to that, ‘bio-mimicry’ is a field of research where
the engineer tries to copy the look of biological systems as closely as possible. For
example, the walking of a modern humanoid robot might look similar to a human’s
walk, but it is achieved by servo motors, hydraulics and similar mechanisms, which
do not at all resemble the biological mechanisms associated with walking. Thus, in
‘bio-mimicry’, products look similar to biological examples but act in a different
way. However, there are many examples that aim for approach an engineering prob-
lem from both sides, thus which exploit ‘bio-inspiration’ and and ‘bio-mimicry’ in
parallel. I consider these approaches to be typical Artificial Life approaches, as the
estimative product of such an approach will be in-discriminable from a living or-
ganism: It will act and look like a natural organism. The re-creation of life forms

How to Engineer Robotic Organisms and Swarms? 27

Fig. 1 Biological sources of inspiration for swarm robotic and for multi-modular robotics
organisms. The arrows indicate how knowledge in one domain could potentially influence
research on another domain. (b) ‘Volvox’, by Dr. Ralf Wagner, reprinted from the ‘wikimedia
commons’ library.

is a fundamental goal of Artificial Life, thus 100% successful ‘bio-inspiration’ and
‘bio-mimicry’ might lead to a technical singularity: the first artificially created life
form.

In the article at hand, I give a short overview how such systems, robotic swarms
and robotic organisms, can be controlled in a bio-inspired way, that means that con-
trol software is written that functionally resembles a known control mechanism in
a comparable natural system. Of course, abstraction is needed to achieve this con-
version from the natural domain to the artificial. This is a critical issue, because the
more the control mechanism gets abstracted the lower is the linkage between the
natural system and the artificial one. This means that high abstraction prevents in-
spiration of further biological research, converting the potential symbiosis between
biology and engineering into a rather parasitic relationship. To prevent our research
to be such a one-way street of knowledge-flow, we keep on our biological research
even after the moment of bio-inspiration. By performing in parallel ‘bio-mimicry’
kind of research, our work group tries to transfer engineering success back into
biologically relevant research topics.

Another approach to generate control software for robotic swarms and robot or-
ganisms is open-ended evolution. In this approach, which is frequently used in my
lab for the projects SYMBRION and REPLICATOR [16, 38, 23], we use a bio-
inspired pluri-potent (maybe also Turing-complete) control system which is sub-
ject to artificial evolution algorithms. This represents a three-fold combination of

28 T. Schmickl

bio-inspiration in parallel: Morphology, control (physiology) and selection are well
known domains in biology and are important aspects in our way to automatically
generate controllers, body shapes and interaction patterns of robots. In the article at
hand, both of my major scientific approaches mentioned above are described exem-
plary in two case studies.

In a final discussion, I review the relative positions of the methods and projects
described in this article in the ‘bio-inspiration/bio-mimicry’ feature space, thus I
discuss how close these research tracks have approached the fundamental techno-
logical singularity of artificial life.

2 Bio-Inspiration and Bio-Mimicry in Swarm Robotics

2.1 Bio-Inspiration

The aim of bio-inspiration is to find solutions to a problem by looking at comparable
natural systems where natural selection has already favored genetic, morphologic or
physiologic variants of organisms that are able to solve the particular problem. As
described above, in my interpretation the aim of bio-inspiration is not to produce a
technological copy of these biological systems. Instead, the aim of bio-inspiration is
to understand why and how the focal biological system works in an efficient manner.
After these questions are answered, a mechanism is developed that is efficient in the
technical entity in a comparable way, following similar sets of governing rules. In
my work group, we perform laboratory experiments with those animals that we
take as source of inspiration. In those experiments we find out the key components
of the natural solution to identify all relevant mechanisms. Afterwards, these key
mechanisms are abstracted and analyzed in mathematical models and simulation
studies to identify a suitable simplified model of the actual task and of the nature-
inspired solution. Based on these models, a robot controller and a suitable robot
arena setup are constructed, which is the major ‘translational process’ to convert
the algorithmic core of the observed natural mechanism into a robot algorithm. For
additional studies, a model and a simulation tool that depicts the robotic setup is
constructed, which allows parameter optimization and evolutionary computation on
the robotic system. At this point in time, the investigated task is scientifically studied
on various levels and with various tool sets: real animal experiments and robotic
experiments, simulation of biological entities and of the robotic system.

Initially, the bio-inspired robotic system is usually able to produce qualitatively
similar behaviors as the natural system. However, we usually observe lowered
efficiency or unwanted side-effects in the robots’ collective behaviors, as a straight-
forward translation of behaviors and mechanisms from the biological to the tech-
nical domain will always be sub-optimal. To compensate for this, we perform
additional experiments, modeling and computational parameter optimization. In
some cases, the biological system is not studied in our lab. This is the case when the
interesting behavioral mechanisms in the natural system are already well researched
and well described in existing literature.

How to Engineer Robotic Organisms and Swarms? 29

Based on biological inspiration, we have developed a set of bio-inspired control
algorithms for swarm robotics: vector-based algorithm [40], slime-mould-inspired
algorithm [26], trophallaxis-inspired algorithm [30, 27], and the BEECLUST al-
gorithm [31]. These algorithms are described in the following to demonstrate the
different levels of detail at which nature can inspire robotic algorithms.

2.1.1 A Benchmark Scenario for Swarm Algorithms

To compare algorithms and to tune the performance of swarm algorithms, it is
important to develop realistic benchmark scenarios. During the EU IST-FET FP6
project I-Swarm, two types of robots were designed: The small three-legged I-
Swarm robot, communicating with four LEDs pointing into 4 directions (inter-beam
angle 90◦) and the Jasmine robot (2 wheels, 6 LEDs for communication at an angle
of 60◦). The I-swarm robot is able to pick up small dust particles with an electro-
static lever and also the Jasmine robot was initially planned to be equipped with an
magnetic gripper. Having these two hardware platforms in mind, we developed a
scenario which can be best described by a collective approach to foraging: forag-
ing for dirt, which means collective cleaning. The swarm of autonomous robots is
distributed randomly in the arena, all robots start unloaded. In the arena, there are
designated ’dump’ regions, where individually collected particles should be dropped
by robots. These particles are deposited initially in designated ’dirt’ regions, which
have to be discovered by the robots. This is a hard task, as the robots have no sen-
sors that can report dirt or dump from a distance, they just can observe the arena
floor located directly below themselves. Moreover, communication to other robots
as well as obstacle detection, is also restricted to a short distance around the robots
(1-2 robot diameters).

The collective tasks are: The robots have to explore the arena collectively in
an efficient manner. After some robots have found the dirt areas, they have to re-
cruit other robots to these places and –simultaneously– pick up dirt particles and
carry them to the dump region in an efficient manner. This involves a sort of ’find-
the-shortest-path’ task which should be solved collectively. This scenario has the
advantage that efficiency measures are obvious, e.g.: How many particles are deliv-
ered by x robots within a period of y time steps? The ’difficulty’ of this collective
task can be adjusted by increasing the distance between dirt and dump areas or by
placing obstacles in the way. Using this benchmark, we were able to compare dif-
ferent swarm algorithms. In addition, it allowed us to investigate important swarm
properties, for example, the critical minimum swarm density.

In the following, I describe 4 different swarm algorithms, beginning with the
communication-extensive and rather technical ’vector-based’ strategy. This strategy
has little bio-inspiration and is more or less a classical engineering approach to
the posed set of problems. The second algorithm is the ’trophallaxis-inspired’ al-
gorithm, which still requires a lot of communication (several float numbers), which
is inspired by social-insect inter-adult feedings. The third algorithm is the ’slime-
mold’ algorithm, which has lower requirements concerning communication, as
only one-bit signals have to be exchanged. Finally, the ’BEECLUST’ algorithms is

30 T. Schmickl

described. This algorithm is almost communication-less. However, as no more trail
formation of robots can be observed in swarms using this algorithm, it was inves-
tigated in an aggregation scenario which is just a subset of the above-described
cleaning scenario.

2.1.2 Vector-Based Algorithm

The first algorithm we investigated is called ’vector-based algorithm’, because it is
based on inter-robot communication of vector information and on collective vector
summarization. It was analyzed in several publications [40, 6], and will be shortly
summarized in the following. Using this algorithm, a robot that found a target (dirt
or dump) by chance in its random exploration mode turns on a binary signal that
indicates the location of the target to nearby other robots. These robots, which now
can calculate the angle between their current heading and the signaling robot, turn on
another binary signal and send this angular information to other robots nearby. The
vector calculation of other robots is made possible as the sending robots, which send
the message through their LEDs, encode also the direction of the sending LED into
the message. This way, the receiving robot can assume the relative heading of the
other robot and the communicated angle between the heading of the sending robot
and the foraging target. By vector addition, this interpreted information is passed
throughout the swarm, ideally telling all robots their bearing towards the target.

As can be seen in figure 2a, simulations predict trail formation of swarm robots
that transport particles from dirt areas to dump areas. Using this benchmarks, we
analyzed also the impact of swarm size (density) onto important efficiency mea-
sures of the swarm (see figure 2b). However, we realized many shortcomings of this
algorithm: As soon as we implemented noise into robot-to-robot communication

Fig. 2 (a) Emerging transportation trails in the cleaning scenario. Loaded robots (black
boxes) carry their particles on the shortest path from the dirt areas (dark grey floor) to the
central dump area (light grey floor). Unloaded robots (grey boxes) help in navigation through
vector communication. (b) Analysis of the dependency of several efficiency measures on the
swarm density. We clearly found an optimal density (size) of the robot swarm. Reprinted
from [6].

How to Engineer Robotic Organisms and Swarms? 31

and angular measurements, the errors due to this noise were summed up and finally
impaired the swarms from performing well. Another shortcoming of this algorithm
was that we observed that the communicated vectors were always pointing directly
towards the foraging targets, even when obstacles blocked the way. This impaired
the robots from circumventing such obstacles. A third shortcoming was that old,
thus outdated, information never leaves the system, which prevents the swarm from
reacting to environmental changes. First we tried to fix these issues by additionally
using hop-counts for determining the ’age’ of communicated vectors and allowed
the robots to accept only these information that were newer than the information
they already carried. But even with these improvements, the performance and ro-
bustness of the swarm behavior was not of the desired quality. Thus, we started to
look for swarm algorithms which are more robust to noise and which require less
communication bandwidth. As natural selection shaped natural systems into effi-
cient and robust configurations, we aimed for increasing the level of bio-inspiration,
as can be seen by the algorithms described in the following.

2.1.3 Trophallaxis-Inspired Algorithm

In contrast to the vector-based strategy, the next algorithm does not require any
’vector’-calculations which can lead to an aggregation of calculation errors (due
to noise) within the swarm. It requires less computational power of the robots and
requires the communication of two floating point numbers as ’messages’ between
neighboring robots. The trophallaxis-based algorithm uses the mechanisms found in
of bee-to-bee nectar feedings to regulate the behavior of a robot swarm. It is used to
generate a distributed map and this way it is also some kind of collective perception
of the swarm. In this distributed algorithm the agents can generate a shared gradient
map by adding and consuming virtual nectar volumes to their internal memory. This
shared gradient map is then locally used by agents for target oriented navigation. In
the cleaning scenario, which resembles social insects’ foraging task, one source of
virtual nectar is a place with dirt particles which should be picked up by the agents
and dropped off at a dump. The dump is another source for a different sort of vir-
tual nectar. Like honeybees, the agents also consume a small part of their virtual
nectar loads when moving, which results in decay of old information. Nectar is also
shared with neighbors, like social insects do in ’trophallaxis’. From these locally
executed rules, two gradients emerge within the swarm, one pointing towards the
dirt particles, the other one pointing towards the dump. Fig. 3 shows a visualization
of the shared collective maps. In the depicted scenario, we placed walls in the en-
vironment, which blocked robot movement and also robot communication. This is
clearly reflected in the shared map.

The trophallaxis-inspired algorithm is based on three important features: (1)
Positive feedback (gradient & uphill movement of agents) recruits the robots to
their targets. (2) Negative feedback (consumption of nectar) prevents overcrowding
and removes outdated information from the system. (3) ’Trophallaxis’-like com-
munication leads to diffusion of information within the swarm, allowing collective
adaptation to environmental fluctuations by modulating the emergent gradient map.

32 T. Schmickl

Basically, the shared gradient map dynamically encodes those local steady-states
that are established in a homeostatic way by the individual agents’ behaviors and
by their interactions with local neighbors and with the environment. Thus, multi-
level distributed and behavior-based homeostasis is a key component of this swarm
algorithm.

Fig. 3 Simulation of a robot swarm using the throphallaxis-inspired algorithm. a) Screenshot
of the cleaning scenario arena setup: Robots (red) try to find the shortest path from the two
places with dirt particles (blue) to the central dump (yellow). The path is blocked by 2 walls
(gray). b) Top view of the emerged gradient pointing towards the dump. c) Side view of
the same gradient from the left side. d) Side view of the same gradient from the right side.
Reprinted from [30].

2.1.4 Slime Mold Algorithm

The slime-mold algorithm [26] is an algorithm that reduces the amount of required
communication but still produces collective behaviors comparable to the two algo-
rithms described above. It is inspired by the collective aggregation of amoebas of
the slime mold species dictyostelium discoideum. In this algorithm, robots emit sig-
nals whenever they locate themselves either on the dirt area or on the dump area by
chance due to the basic random motion that all uninformed robots perform in all of
our swarm algorithms. This binary signal can be perceived by local neighbors which
in turn emit a similar signal and then switch to a pause mode (= refractory period)
for some time in which they do not respond to any signals. The emerging chain reac-
tion is well known from many examples in nature, usually referred to as ’excitable
media’. In slime mold, amoebas that want to aggregate emit a chemical stimulus
frequently, fireflies emit light signals and even in soccer stadiums, ’Laola’-waves

How to Engineer Robotic Organisms and Swarms? 33

are produced by similar mechanisms. In our robot swarm, blinking wave propa-
gation throughout the swarm can be observed, leading to pulsating waves emitted
from dirt areas and dump areas. Depending on whether individual robots are cur-
rently loaded or unloaded, they turn their heading against the dirt-originating wave
or against the dump-originating wave, thus they are guided towards their foraging
targets. It is known from other domains that such waves yield interesting properties:
They automatically circumvent barriers/obstacles and they annihilate each other as
soon as such waves collide, which allows interesting systems: If there are multiple
ways from the origin to the target, a consistent wave propagation occurs only on
the shortest path, as all longer path will encounter colliding waves and thus wave
annihilation. This allowed our robotic swarm to always find the shortest path from
dirt to dump, as it is shown in figure 4.

Fig. 4 Simulation of a robot swarm using the slime-mould-inspired algorithm showing the
cumulative paths of loaded robots from the dirt area in lower left corner of the arena to the
dump area in the upper right corner of the arena. (a) First the swarm selects the shortest
path through the central door in the barrier, only a small fraction of the swarm chooses the
second door which allows a slightly longer way from dirt to dump. (b) After the central door
was closed, the swarm automatically selects the lower door which offers now the shortest
path. (c) After this door was closed too, the swarm chooses the only remaining longest path.
Reprinted from [26].

2.1.5 BEECLUST Algorithm

However, all algorithms described above rely heavily on communication, which is
sometimes hard to establish in bigger swarms. Therefore, we developed another
swarm algorithm which works almost without explicit communication and which
was also inspired by honeybee behavior.

The swarm algorithm ‘BEECLUST’ is inspired by the aggregation behavior of
young honeybees and resulted in an very simple, yet robust and flexible aggregation
algorithm for robot swarms. The idea for this algorithm originates from the obser-
vation of young honeybees in the beehive where the freshly emerged honeybees
have a preferred temperature of approx. 36 ˚ C [11]. These young bees tend to locate
themselves in a collective way in the warmest central areas of the hive. Experiments
with single young honeybees in a temperature gradient (approx. 30 ˚ C - 36 ˚ C)
showed that most bees cannot locate themselves in the warmest zone permanently.
Instead, most of them wander around aimlessly and frequently leave warm areas
soon after they have encountered them (see Fig. 5a). Thus, a ‘swarm effect’ seems

34 T. Schmickl

to be responsible for the bees’ well-functioning collective temperature-finding be-
havior. Further experiments with a specialized arena offered insight to this behavior
[15]: Single honeybees usually wandered around in the arena randomly but stopped
when colliding with another bee and then waited at this place for a duration that
correlated with the temperature at this place. Low temperatures resulted in a short
waiting-time of the bee, whereas warmer temperatures resulted in longer waiting-
times. Thus, clusters of bees formed all over the arena, but in the warmer zone these
clusters lasted longer than in colder zones. Finally all clusters merged into one big
cluster near the global temperature optimum (Fig. 5b-d).

Fig. 5 Experiment with bees in a specialized arena. a) A single bee does not find the 36 ˚ C
temperature optimum to the left, indicated by the red arrow. b) Initial state of an experiment
with 64 bees. The 36 ˚ C (global) optimum is to the left, indicated by the red arrow. The
32 ˚ C sub-optimum is to the right. c) Bees collectively clustered at the optimum. d) After the
36 ˚ C optimum to the left was switched off, the bees were able to re-decide and cluster at the
new 32 ˚ C (global) optimum to the right, indicated by the red arrow. Ambient temperature:
approx. 30 ˚ C.

How to Engineer Robotic Organisms and Swarms? 35

This behavior of the young honeybees was then abstracted into an algorithm
(called ‘BEECLUST algorithm’) and analyzed in a multi-agent simulation. Sim-
ulations showed that this algorithm is not only able to aggregate robots at a zone of
interest, but is also able to enable the swarm to differentiate between zones of dif-
ferent qualities. Furthermore, it also allows the swarm to adapt to quality changes
of the target zones.

The BEECLUST algorithm works as described by the following rules that are
executed one after another in the microprocessors of the autonomous robots or in
the executing loops of other (non-embodied) types of agents:

1. All agents move in straight lines and constantly check for collisions.
2. If they sense a collision, they stop.
3. If the collision happened with an obstacle which is not another agent, the agent

turns around and continues with step 1.
4. If the collision happened with another agent, the focal agent measures the local

quality of the environment. The higher the quality is, the longer it waits at this
spot.

5. After the waiting period is over, the agent continues with step 1.

After the simulation studies, the BEECLUST algorithm was ported to swarm
robots and adapted for light spot finding behavior with Jasmine robots [13]. In these
experiments, the temperature gradient that we used in bee experiments was replaced
by light gradients, as the Jasmine robot has a luminance sensor but no temperature
sensor. These experiments posed very low requirements for the robots’ hardware, as
they only need to be able to avoid collisions, to discern other robots from obstacles
or walls and to measure the local luminance.

In our experiments robot swarms executing BEECLUST show a collective be-
havior that is very similar to the behaviour of swarms of young honeybees [31]: The
robots are able to optimally distribute themselves in the arena, resulting in more
robots clustering at a brighter light spot and fewer robots clustering at a dimmed
light spot. Moreover, the robots were able to quickly redistribute themselves after
these different light spots changed places (see Fig. 6).

2.2 Evolutionary Adaptation of Swarm Algorithms

Swarms of robots that run a bio-inspired algorithm usually show a qualitatively sim-
ilar, but quantitatively different behavior compared to the natural swarm systems
that acted as a source of inspiration. We use evolutionary computation techniques to
significantly optimize our swarm algorithms [27]. In these studies, the key param-
eters of the swarm (swarm density, robot speed, collision-avoidance distances, . . .)
were modulated by an evolution strategy [22], whereby the whole swarm of robots
was the unit of selection. Thus, we tested populations of swarms in a competitive
scenario, one swarm against each other.

36 T. Schmickl

Fig. 6 Photographs of an experiment with real swarm robots using the BEECLUST algo-
rithm. The red arrows indicate the global optimum. Reprinted from [31].

2.3 Bio-Mimicry

In contrast to bio-inspiration, the process of bio-mimicry shapes a technical entity
(algorithm, robot) in a way that it resembles the biological counterpart. Although
it looks like the biological organism (from the outside) it does not necessarily have
to use the same internal mechanisms. However, in most cases this means that the
interface to the outer world (for example sensors and actuators) closely resemble
the biological source of inspiration. This can be important for understanding real
organisms, because bio-mimicry forces the engineer or scientist to ‘see the world
through the eyes of the biological organism’. Even though inside mechanisms can
differ from biology, they are fed with data similar to the data a biological organism
might perceive and, in case of bio-mimetic actuation, motion-principles have to be
finally transformed into patterns that are close to those observed in biology.

2.3.1 Bio-Mimicry of the BEECLUST Algorithm

In addition to abstract models and light-finding Jasmine swarms, we want to inves-
tigate the BEECLUST-algorithm also in real temperature fields, which is the kind
of stimulus that mainly drives honeybee aggregation in nature. Therefore we de-
signed an add-on for the Hemisson robot (Fig. 7) which allows such a robot to nav-
igate in such a temperature gradient. This add-on consists of a set of temperature
sensors that are mounted on two artificial antennae, similar to the configuration of

How to Engineer Robotic Organisms and Swarms? 37

temperature sensors in honeybees. We called these robots ‘Thermobots’. In contrast
to light, heat has different physical characteristics concerning the diffusion of heat
in the air, the stability of the gradient and the time delay of the measurement, thus
we expect this task to be more challenging than aggregation in a light gradient.

Fig. 7 Thermobot: The robot ‘Hemisson’ with additional antennae which hold the sensors
that measure local temperature.

Experiments with three robots in a temperature gradient field showed that robots
executing the swarm intelligent BEECLUST algorithm have a higher success rate
compared to a standard gradient ascent algorithm. We expect that working with
an even bigger swarm will further increase the success rate for the BEECLUST-
algorithm, due to the fact that more robots lead to more collisions and so more
measurements are taken.

2.3.2 Bio-Mimicking Ant Pheromone Trails

Ants use pheromone trails in order to navigate efficiently between potential food
sources and the nest. We investigate this behavior in the ANTBOTS project [18].
There have been several approaches to model the pheromone trail laying and fol-
lowing of ants using robots:

By means of chemical sensors and alcohol-depositing robots [25]. This is a very
realistic imitation of the pheromone-based trails of ants. However, the chemical sen-
sors used in this setup and the combination of robotics and substances such as alco-
hol have been shown to be very unreliable and not very practical.

Drawing lines onto the floor using pen and paper [37]. In this scenario each robot
is equipped with a pen, with which it is able to draw solid thin lines onto the ground.
Although a decay of these trails is archived by using a special kind of disappearing

38 T. Schmickl

ink, the trails laid by these robots remain thin in comparison to the robots. This does
not provide a close analogy to the biologically inspired behavior of ants.

Laying trails of heat [24]. This method promises an extremely flexible way to
model the foraging behavior of ants by laying trails of residual heat onto normal
surfaces such as carpets or tiles. One problem is that the electrical generation of heat
is not possible even on bigger mobile robots because of constraints in battery power.
The researchers stored heat in the form of paraffin wax to lay trails instead. This
presents an additional difficulty for experimental use and dynamically adjusting the
strength of the trail is not possible.

Using robot-tracking and a projector setup, in which each robot is able to lay
trails by being tracked using a camera suspended above the arena [9]. A computer
superimposes ‘virtual pheromones’ by projecting them onto the arena floor. This
system does not present a fully autonomous way for the robots to lay and follow
trails, and a a central unit, an external computer, is needed. However, this system
provides a very flexible way to modify parameters of the pheromones, such as decay
and diffusion.

Emitting ultraviolet light onto a phosphorescent paint, and thus laying luminous
green trails on the arena floor. This method of modeling ant trails has been published
for use in an artistical context [1]. In this setup, the arena floor is coated with a
special phosphorescent glow-paint that glows in the dark for several minutes after
being stimulated by an external UV light source. By attaching UV-LEDs to the
mobile robots, they can leave glowing trails on the ground. The idea is that because
of the constant decay in brightness, the green glow that emanates from the floor
can be seen as an analogy to the evaporating pheromones ants utilize in their trail
following.

For our ‘ANTBOTS’ we have extended the approach of using phosphorescent
paint for the emulation of pheromone streets. In our experimental setup we use the
e-puck robot developed at the EPFL Lausanne [2] with two add-on boards to allow
for trail laying and navigation to a light source outside of the arena. By emitting
ultraviolet light onto the arena floor, robots are able to lay trails on the arena floor.
Trail following is achieved using the on-board camera of the e-puck robot. In order
to navigate back to the nest we use six photodiodes to measure the light intensity
from a light source in a corner of the arena (sun compass and sun).

We have conducted several experiments with a single robot in order to test the
feasibility of our setup using repeated trail laying and following cycles with a single
robot. In these experiments we placed transparent plastic enclosures with red and
blue LEDs in the arena, representing nest and food source respectively. The robots
task was to navigate back and forth between the two target zones on its own trail
repeatedly. The results show that our newly developed sensors are reliable enough
for the robot to navigate to the two spots for longer periods of time with a distance
of about 1.3m (Fig. 8).

In addition to these single robot trials we have developed a multi-agent simula-
tion closely resembling our experimental setup in order to test if the efficiency is
enhanced when the robots have the ability to lay trails on the arena floor versus a

How to Engineer Robotic Organisms and Swarms? 39

Fig. 8 Photograph showing the trail laid by the robot in a 1m×1m arena and a distance of
1.3m between food (top-right) and nest (bottom-left). The robot is on its way back from the
food source pointing towards the nest and is following its own line.

Fig. 9 Efficiency measurements for 4 different simulation runs. Top-left shows 4 robots, top-
right 6, bottom-left 8, bottom-right 12. Solid lines are with pheromones turned on, dashed
lines represent runs without pheromones. The plots show the sum of units of food delivered
to the nest. The efficiency of the agents that could utilize the pheromone trails is greatly
increased.

40 T. Schmickl

‘normal’ arena without phosphorescent paint. Our results show that in this simula-
tion the efficiency is greatly enhanced with the use of trails (Fig. 9).

In the future we plan to do experiments with multiple robots in order to fully
emulate the ant foraging behavior with autonomous robots in real life. Figure 10
shows a contrived photograph of how this could look like.

Fig. 10 Contrived photograph of how the glowing floor and our sensors should be used in
the future. Two robots leave the nest to search for food, the remaining robots navigate to and
from the nest around an obstacle.

3 Evolving Self-Organized Control Structures for Robotic
Organisms

In the precious section we have discussed the trophallaxis-inspired algorithm and the
BEECLUST algorithm. While the capabilities of the trophallaxis-inspired algorithm
were impressive in simulation studies (see Fig. 3) it was found to be difficult to
implement in a real robotic swarm due to the immense communication interference
of nearest-neighbor-communication in such systems (e.g., sound or IR-light).

However, in robotic organisms, where the modules are closely connected to each
other, communication between modules is less defective and also the bandwidth
is usually much higher. Thus, for robotic organisms, we want to explore again the
potential of a network of homeostatic sub units which all interact autonomously
and which generate collective information (maps, waves, . . .) on the organism level.
In addition, the system should not be hand-coded per se, it should represent an

How to Engineer Robotic Organisms and Swarms? 41

(almost) open-ended dynamical system which can encode many processes in par-
allel. Again looking into comparable counterparts in nature, we found that signal
processing in unicellular organisms and the homeostatic hormone control in multi-
cellular organisms provide a good model for such an open-ended system.

To allow evolutionary computation operators to act on the configuration of such
robotic organisms, the parametrization of the underlying dynamical system was
encoded into a data-structure called ‘genome’ of the organism, which is subject
to selection, mutation and inheritance. We named our control system Artificial
Homeostatic Hormone Systems (AHHS), basically defined and investigated in
[10, 29, 28, 36].

3.1 AHHS for Robot Control

In AHHS, a physiological model depicts the inner space of the robot and this model
is controlling the robot’s behaviors: Sensors trigger hormone excretions, which in-
crease hormone concentrations in the robot’s virtual inner body. These hormones
diffuse, integrate, decay, interact and finally, affect actuators. The virtual inner body
is partitioned into several compartments, whereas each compartment is associated
with a specific part of the real robot’s body to facilitate the emergence of complex
behaviors. Each sensor and actuator is associated with one of these compartments.
Thus, we achieve a kind of embodiment [21] that enforces an appropriate spatio-
temporal context.

The principle functionality of AHHS is based on homeostatic processes that are
interrupted by dynamic sensory stimuli. The hormone concentrations of an AHHS
are initially set to zero. Once the system is started, an initial intrinsic dynamics is
instantiated. Hormone concentrations increase and hormones begin to interact. This
happens even without any initial sensor input. From a system theoretic point of view,
the system undergoes a transient until an equilibrium, or preciser, an attractor (fixed
point, oscillation, or even a chaotic attractor) is reached. This can be interpreted
as homeostasis. Once the sensors report non-zero input the current equilibrium is
disturbed. A new equilibrium associated to the current sensor input is pursued and
finally reached, if the sensor input was constant for long enough. Typically each
robot module will execute a copy of a common controller. These controllers com-
municate implicitly via hormones that diffuse from module to module.

The AHHS is implemented by a system of ordinary differential equations (which
are discretized in the microprocessor). Hence, the execution of an AHHS controller
is mathematically interpreted as the numerical forward integration in time of an
initial value problem with time-variant disturbances (sensor inputs).

An important issue in evolutionary robotics and multi-modular robotics is to
achieve systems with high evolvability, that is, fast synthesis of controllers by ar-
tificial evolution. A good model for understanding the underlying processes of this
evolution is the concept of fitness landscapes. The fitness landscape of a controller
synthesis scenario is defined by the mapping from the high-dimensional space of
features, that describe the controller, to the actual fitness value that is obtained by

42 T. Schmickl

(a) 3 modules

(b) 5 modules

Fig. 11 Example benchmark scenario of ‘gait learning’ in modular robotics. In both config-
urations, an AHHS evolved that moved the robot efficiently within several tens generations.

executing the controller and observing the resulting behavior. The shape of such
landscapes is defined by a variety of influences, such as the robot’s task, robot’s
hardware, its environment, the used mutation operators, and the controller design it-
self. The leading design concept of AHHS is to generate smooth fitness landscapes,
that is, there is a high causality of the mutation operator (small changes in the con-
troller result in small changes of the behavior). Several effects, for example the
trade-off between evolvability and an increase of the search space, are investigated
currently.

First studies of the AHHS in the context of multi-modular robotics and compar-
isons to other controller approaches have been made [10, 29]. One of the bench-
marks was the so-called ‘gait learning’ in modular robotics (see Fig. 11). One of the
results, that was reported in [10], is shown in Fig. 12. It shows a comparison of the
best fitness obtained by artificial evolution for N = 12 independent runs per con-
troller approach. The superiority of AHHS over a simple artificial neural network
approach is significant.

How to Engineer Robotic Organisms and Swarms? 43

AHHS2 complex ANN complex0.
0

0.
5

1.
0

1.
5 ∗

fit
ne

ss
Fig. 12 Comparison between the AHHS controller and a simple artificial neural network for
a gait learning task with three modules (N = 12) [10].

3.2 Comparison of AHHS to Other Controller Types

The controller described above was analyzed concerning its evolvability and adapt-
ability. As a first benchmark test a scenario was chosen in which a maze had to
be explored: A robot controlled by the AHHS was put in a simulated 2D-arena
and evolutionary runs were performed. Behavior which resulted in moving around
in the arena was rewarded with good fitness values. The population in the evolu-
tionary runs consisted of 100 individuals and evolution took 500 generations. For
comparison these evolutionary runs were repeated for the same task with standard
types of artificial neural network (ANN) controllers. The results revealed that max-
imum and average fitness gained by the two the controller families did not differ
after having evolved for 500 generations. Additional analyses on the time needed to
evolve satisfying behavior (75% of the overall maximum fitness) were performed.
Those studies revealed that after 20 to 30 generations this value was reached by both
controller families and the observed behavior was a kind of wall following behav-
ior (Fig.13). Interestingly, the behavior between the two controller families differed
significantly qualitatively. In contrast to the ANN controller the AHHS steered the
robot in straight lines and very smooth curves (see Fig.13(a)).

(a) AHHS (b) ANN

Fig. 13 Trajectory of the best evolved individual of (a) AHHS and (b) ANN controller in an
“exploring the maze” scenario.

44 T. Schmickl

4 Evolutionary Shaping of Network Topology of Controllers to
Body Shapes

Neural networks are a state-of-the-art technology in evolutionary robotics. ([8]).
One advantage is that they are easy to mutate and quite powerful and efficient in
a computational sense. In contrast to out-of-the-box ANNs, living organisms show
highly structured neural networks, often split up into brains and ganglia. Often,
regular patterns of such ganglia are found, for example in a ventral nerve cord.
In such structured networks, specific ganglia (densely clustered aggregations of
neural cells) can specialize on specific local tasks, for example coordinating the
motion of a nearby limb. An engineering approach to generate such patterns of ar-
tificial neural networks is Hyperneat [34], an extension of Neat [35], which was
used successfully in several applications [5, 4]. To enhance our evolutionary robotic
systems, we aim for a similar pattern-generating system which is inspired by the
growth process of multi-cellular organisms (see Fig. 14). To achieve this, we devel-
oped of virtual embryogenesis (VE) to generate various topologies autonomously
and dynamically [39, 16]. The main idea of VE is the simulation of EvoDevo-like
processes [3]. These processes are observable in nature during the developmental
phase of multicellular lifeforms e.g. Drosophila m. [19]. EvoDevo-inspired pro-
cesses will allow us to evolve network patterns and multi-modular robot shapes
in parallel (see Fig. 15(b)), thus expecting a joint evaluation of controller and corre-
sponding body shape.

The embryo developed by VE (see Fig. 14(b)) consists of many individual
cells. The virtual embryogenetical growth process is controlled again by a genome
(see Fig. 15). There is high similarity between the rule-set of AHHS and VE,
which is also reflected by high similarities in the genome syntax and grammar.
In VE the genome encodes the reactions of a cell to different concentrations of

(a) Robot shape (b) Shape of evolved embryo (c) Shape of resulting ANN

Fig. 14 Evolution of structured ANNs. (a): The robot’s given shape, which is part of the
fitness-function of the artificial evolutionary process. (b): Evolved shape of the virtual embryo
which constructs the ANN network topology. (c): Example of one ANN topology, grown in
this embryo.

How to Engineer Robotic Organisms and Swarms? 45

(a) Genome (b) Multi-modular robot

Fig. 15 a): Evolved genome structure that controls the growth process of the embryo shown
in Fig. 14b. Each gene of this genome is able to produce proteins, which in turn can activate
other genes, produce morphogens, change the receptivity of the cell for morphogens, or build
neural links to other cells. Genes and proteins are indicated by geometrical shapes. Interac-
tions of proteins and genes are indicated by arrows. b): Formation of a multi-modular robot
using VE in a simulation environment. In contrast to the VE mentioned above, the cellular du-
plication process is realized by docking robotic modules to the robotic organism. Blue boxes
indicate docked robotic modules that are part of a multicellular robotic organism. Brown
boxes indicate robotic modules, that are available for the docking process. Green patches
indicate positions where a ”free” robotic module can dock the robotic organism. Left subfig-
ure: start of the process. The robotic organism consists of a single module, which waits for an
other module to dock. Middle subfigure: A robotic module docks, the robotic organism now
consists of 2 modules. Right subfigure: Body-formation in progress. Several modules have
already docked together.

morphogens (virtual chemical substances diffusing throughout the embryo, emitted
by the cells), which could be compared to the flow of hormones in AHHS. Each cell
of an embryo has the same genome during the whole embryogenetical process. The
genome is not changed during the life-time of the cell. Offspring-cells have the same
properties as their ancestor-cells, so that tissue specialization can emerge. Fig. 14
exemplary shows one target robotic organism, the evolved embryo and the ANN
topology grown by this virtual embryo. Evolution operates on the genome only,
which is depicted in Fig. 15, which also indicates the feedbacks that exist between
gene products. It is important to understand this feedback network to understand the
evolutionary path that can be observed during evolution. This understanding links
back to biological research were similar ways of thought are current topics of state-
of-the-art research. AHHS and VE are both derived from biology in a classical bio-
inspired way to solve engineering problems. However, both models can additionally
fertilize new understanding and novel research also in the biological domain, as the
course of evolution in the development of our robotic organisms might well resem-
ble the ‘how?’ and the ‘why?’ of their natural counterparts’ evolution.

46 T. Schmickl

5 Discussion

As was shown throughout the previous sections, bio-inspiration, bio-mimicry and
artificial evolution are clearly promising candidates for methods to generate control
software for collective robotics. In my research, this was demonstrated for both
types of collective robotics (swarms and organisms of robots).

From a pure engineering perspective it is not an issue whether or not biological
research draws benefit from bio-inspired robotics, as long as enough progress in
robotic control is made. However, maybe because I am trained as a biologist, I think
bio-robotics may provide symbiosis for biologists and robotic engineers.

I try to achieve this symbiosis by a two-fold approach: On the one hand my lab
performs comparable research scenarios with robots and with animals in parallel,
thus allowing two groups of researchers to influence each other. This happens, for
example, whenever one research group inspires the other for performing a new ex-
perimental setup. On the other hand, we generate ‘bio-mimicking’ robots that are
driven by nature-derived ‘bio-inspired’ control software that further supports such
a potential scientific symbiosis. In addition, we follow another method of joint re-
search which is abstract (macroscopic) modeling. By generating such models we can
excavate the ‘algorithmic core’ of both the natural system and the freshly emerged
bio-inspired robotic system. This way, a process of abstraction and generalization
allows us to draw new scientific insights of the similarities and intrinsic causations
within and between both systems.

In most of our approaches we use a network of positive and negative feedbacks
and delays to govern the behavior of the collective system (swarm or organism). Es-
pecially in the trophallaxis-inspired algorithm, but also in AHHS and VE, a major
component is behavior-based, distributed, multi-level homeostasis in which every
single module and the collective system are both designed as autonomous homeo-
static systems. Similar concepts for collective robotics were suggested in [32] for
robot organisms and in [33] for swarm systems. Although significant differences
exist, our approach of AHHS and VE has similarities to [33], which are subject to
evolutionary adaptation as was shown in [20]. AHHS and VE also have aspects that
can be interpreted as gene regulatory networks (GRN), as they were investigated in
[17]. In AHHS and VE, these GRN-like functionality is acting locally and is closely
bound to the shape of the robot (or of the simulated physics of the virtual embryo),
thus our research paradigm contains significant aspects of embodiment, as it is dis-
cussed in [21].

As pointed out in the introduction section, I see important differences between the
approach of ‘bio-inspiration’ and ‘bio-mimicry’. Bio-inspiration means deduction
of mechanisms and/or functionality from biological sources of inspiration which
can be converted significantly to work in a technical application in a similar way.
For example wing shapes of airplanes are in fact inspired by wings of birds, but
concerning their embodiment significant differences are obvious: Wings of birds
are bendable, are made of a stiff skeleton with several joints and are covered by

How to Engineer Robotic Organisms and Swarms? 47

very light and soft feathers. In contrast, wings of airplanes are solid without feather-
like structures, they have no joints and their basic skeleton is of median stiffness.
Thus they act (function) similar to some birds wings, but they do not look and feel
similar.

The approach of bio-mimicry is more about producing technical entities that look
and feel like living organisms but are internally exploiting totally different mecha-
nisms. Prominent examples are humanoid robots, toy robots (dogs, dinosaurs, . . .),
and scarecrows.

In figure 16 I depict a feature space that spans along two axes: The top axis
indicates the level of bio-inspiration while the right axis indicates the level of bio-
mimicry. In the lower left corner (B), we see classical technical entities like cars, cell
phones, computers and satellites which incorporate mainly non-bioinspired mecha-
nisms and which also do not resemble biological organisms very much. In the upper
left corner (A) we see typical forms of bio-mimicry, which look similar to living or-
ganisms but are based on classical technical mechanisms. In the lower right corner,
we find bio-inspired algorithms. They are strongly inspired by mechanisms found

Fig. 16 Bio-inspiration/bio-mimicry feature space. Top axis: level of bio-inspiration. Techni-
cal applications that use nature-like mechanisms are locate towards the right side of this axis.
Right axis: Level of bio-mimicry. The closer a technical entity resembles a biological coun-
terpart, the higher it is located on this axis. S: The ALife singularity, indicating the highest
simultaneous level of bio-inspiration and bio-mimicry. Technological products located at this
point are indiscriminable form natural organisms from inside (mechanisms) and from outside
(bio-mimicry). For discussion of the examples located in this graph see text. Picture source:
wikimedia commons.

48 T. Schmickl

in nature but, as they are computer algorithms, they have a totally different physical
nature (bits). Also wings of airplanes could probably be grouped here.

In the upper right corner, we find the field of ALife research, which tries to
achieve the creation of life-like structures and mechanisms, thus it tries to maxi-
mize both aspects in this feature-space. In the very-most upper right corner, we find
the before-mentioned ALife singularity which is reached as soon as one succeeded
in producing a robot that achieves the highest level along both axes: Such an entity
would be indiscriminable from a natural organism.

As is shown in this figure, the work of my lab is approaching the Alife cor-
ner step-by-step. While earlier robotic algorithms (trophallaxis-algorithm, slime
mold algorithms, BEECLUST in multi agent simulation or in non-bio-mimicking
robots) are quite distant from the ALife area, newer research (e.g., SYMBRION,
thermobots, antbots) are getting much closer to the upper right corner. However,
our projects are still not located quite deep inside of the ALife field, telling us that
we are still quite far away from recreating living organisms. The reason for this is
also shown in figure 16: It shows two shaded fields along both axis. These fields
indicate a sort of ‘no-access’ area. I think that a certain degree of bio-inspiration
is unachievable without a high degree of bio-mimicry and vice versa. This means
that for a technical entity to resemble a living organism’s mechanisms, also form
and material have to be adapted in a well adjusted manner to support – or even to
allow – these mechanisms. Only specific forms and materials allow for nature-near
functionality and mechanisms.

I realized this important role of embodiment in various cases in our work: When-
ever we found a (swarm-)intelligent behavior by observation of animals, we trans-
lated it into a well-working computer model and algorithm. But as soon as these
mechanisms were implemented on real embodied agents (robots), we encountered
significant drops in performance. At this point, there are two ways to go: On the
one hand, it is possible to adapt the mechanisms (algorithms) in a way that they fit
better to the new form of embodiment. This is done in my lab by exploiting artificial
evolution. This adaptation increases the performance of the technical system signif-
icantly, but does not bring the system closer to the upper right corner (S) in figure
16, as it does not increase the level of bio-mimicry. On the other hand, it is possible
to alter the form of embodiment, what is to increase the degree of bio-mimicry. This
step involves hardware engineering and the testing of new materials. Although this
way is more time consuming and more resource-intensive as the first one, it brings
the system closer to or deeper into the field of artificial life.

For swarm intelligent systems, embodiment is an important challenge and op-
portunity [21]. Many algorithms that work perfectly in non-embodied systems, like
optimization algorithms [22, 12, 7] show significantly lowered efficiency as soon
as they are executed by embodied agents. Also, many macroscopic models (ODE,
PDE) which basically treat entities as volumeless points in space are not sufficient
to derive microscopic behavioral rules (algorithms) necessary for swarms or organ-
isms of embodied autonomous agents (robots). Frequently agent collisions, forces
applied by one agent to another, and other forms of physical interferences tend to

How to Engineer Robotic Organisms and Swarms? 49

inhibit algorithms from functioning well in real-world embodied systems. For ex-
ample, our antbots still have problems with collision handling on their ant trails
which do not appear in well known ODE models of ant pheromone trails. The more
the antbots algorithm is extended with collision handling procedures the further
the overall antbots’ algorithm deviates from mechanisms described in these ODE
models.

However, the existance of physics does not only pose problems to the field of
bio-inspired/bio-mimicking robotics. Exploitation of physical phenomena provides
also an important opportunity for engineering such collective systems: Emergent
phenomena of self-organized systems can be exploited by optimization procedures
like artificial evolution, exhibiting collective behaviors and solutions that are un-
reachable in abstract models, because one of the major components of such mecha-
nisms is missing there in most cases: physics. Physical properties and mechanisms
based on physical interactions can provide functionality that replaces algorithmic
mechanisms that are executed by software. In my opinion, each embodied agent ex-
ecutes a sort of ‘master-algorithm’ which is the summarization of the sensor system,
the software algorithm (incl. BIOS, operating system, hardware-abstraction layers
and middleware), the actuators, the physics of the agents and all physical interac-
tion with the environment (including all other agents). If one of these components
is altered, the ‘master-algorithm’ is altered. Also here, emergent phenomena arise
from the interplay of sub-components, again suggesting a favouring of evolutionary
approaches over engineering approaches, as emergence is still not engineerable.

Finally in this discussion, I want to point out a major shortcoming of our current
mechatronic systems in the field of bio-inpired/bio-mimicking robotics: Reproduc-
tion. In figure 16, the path towards the ALife singularity becomes more and more
narrow due to the converging two ‘non-access’ areas. One essential functionality
of living systems is the ability to reproduce. While this is not a problem in non-
embodied systems (e.g. genetic algorithms [12] or evolution strategies [22]), real-
world replication of embodied autonomous agents is currently not achievable in
mechatronics. To achieve embodied replication, material science has to bring new
techniques and materials to the field of robotics and ALife research has to solve
many replicator-related problems that would allow for autonomous replication on
such a level. Currently, many researchers are discussing this issue (personal com-
munication), pushing the ALife field more towards research with bacteria or even
bio-molecules. In these systems, the issue of replication is already solved by nature,
thus scientific progress in such research will not improve our understanding in how
larger embodied compounds can be made replicating. Thus, as the robots’ basic goal
is to serve and assist humans in dangerous, unpleasant or boring tasks, progress in
larger scale robotics (at least cm-range) is still a desirable challenge to tackle. Such
demands will not be satisfied by altering bacteria or molecules, as they cannot ex-
ecute most of the real-world jobs robots are thought to perform. In conclusion, I
think that ALife research with mechatronic devices should be continued with high
intensity, of course in parallel with further and novel research in self-organizing,
evolving and complexity-generating life forms.

50 T. Schmickl

References

1. Blow, M.: ‘stigmergy’: Biologically-inspired robotic art. In: Proceedings of the Sympo-
sium on Robotics, Mechatronics and Animatronics in the Creative and Entertainment
Industries and Arts, pp. 1–8 (2005)

2. Bonani, M., Raemy, X., Pugh, J., Mondana, F., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J.-C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education
in engineering. In: Proc. of the 9th Conference on Autnomous Robot Systems and Com-
petitions, vol. 1, pp. 59–65 (2009)

3. Carrol, S.B.: Endless Forms Most Beautiful: The New Science of Evo Devo. W. W.
Norton, New York (2006)

4. Clune, J., Beckmann, B., Ofria, C., Pennock, R.: Evolving coordinated quadruped gaits
with the hyperneat generative encoding. In: Proceedings of the IEEE Congress on Evo-
lutionary Computing Special Section on Evolutionary Robotics, Trondheim, Norway
(2009)

5. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped
gaits with the hyperneat generative encoding. In: Proceedings of the 2009 IEEE Congress
on Evolutionary Computation (CEC), IEEE, New York (2009)

6. Corradi, P., Schmickl, T., Scholz, O., Menciassi, A., Dario, P.: Optical networking in
a swarm of microrobots. Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering 3(2), 107–119 (2009)

7. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)
8. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: From architectures to learning.

Evolutionary Intelligence 1, 47–62 (2008)
9. Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone land:

An experimental setup for the study of ant-like robots. In: Swarm Intelligence Sympo-
sium, SIS 2007, pp. 37–44. IEEE, New York (2007)

10. Hamann, H., Stradner, J., Schmickl, T., Crailsheim, K.: A hormone-based controller
for evolutionary multi-modular robotics: From single modules to gait learning. In: Pro-
ceedings of the IEEE Congress on Evolutionary Computation (CEC 2010), pp. 244–251
(2010)

11. Heran, H.: Untersuchungen über den Termperatursinn der Honigbiene (Apis mellifica)
unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme. Zeitschrift
für vergleichende Physiologie 34, 179–206 (1952)

12. Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann
Arbor (1975)

13. Jasmine. Swarm robot - project website (2010), http://www.swarmrobot.org/
14. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings IEEE Interna-

tional Conference on Neural Networks, vol. 4 (1995)
15. Kernbach, S., Thenius, R., Kornienko, O., Schmickl, T.: Re-embodiment of honeybee

aggregation behavior in an artificial micro-robotic swarm. Adaptive Behavior 17, 237–
259 (2009)

16. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptabil-
ity, Evolution. Springer, Heidelberg (2010)

17. Mattiussi, C., Floreano, D.: Analog genetic encoding for the evolution of circuits and
networks. IEEE Transactions on evolutionary computation 11, 596–607 (2007)

http://www.swarmrobot.org/

How to Engineer Robotic Organisms and Swarms? 51

18. Mayet, R., Roberz, J., Schmickl, T., Crailsheim, K.: Antbots: A feasible visual emula-
tion of pheromone trails for swarm robots. In: Dorigo, M., Birattari, M., Di Caro, G.A.,
Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E.,
Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 84–94. Springer, Hei-
delberg (2010)

19. Meinhardt, H., Gierer, A.: Pattern formation by local self-activation and lateral inhibi-
tion. Bioessays 22, 753–760 (2000)

20. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technol-
ogy of Self-Organizing Machines. MIT Press, Cambridge (2004)

21. Pfeiffer, R., Bongard, J.C.: How the Body Shapes the Way We Think. MIT Press, Cam-
bridge (2006)

22. Rechenberg, I.: Evolutionsstrategie 1994. Frommann Holzboog (1994)
23. REPLICATOR. Project website (2010), http://www.replicators.eu
24. Russell, R.A.: Heat trails as short-lived navigational markers for mobile robots. In: Pro-

ceedings of International Conference on Robotics and Automation, 1997, vol. 4, pp.
3534–3539 (1997)

25. Russell, R.A.: Ant trails – an example for robots to follow? In: Proceedings of IEEE In-
ternational Conference on Robotics and Automation, 1999, vol. 4, pp. 2698–2703 (1999)

26. Schmickl, T., Crailsheim, K.: A Navigation Algorithm for Swarm Robotics Inspired by
Slime Mold Aggregation. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SAB 2006
Ws 2007. LNCS, vol. 4433, pp. 1–13. Springer, Heidelberg (2007)

27. Schmickl, T., Crailsheim, K.: Trophallaxis within a robotic swarm: bio-inspired commu-
nication among robots in a swarm. Autonomous Robots 25(1-2), 171–188 (2008)

28. Schmickl, T., Crailsheim, K.: Modelling a hormone-based robot controller. In: 6th Vi-
enna International Conference on Mathematical Modelling, MATHMOD 2009 (2009)

29. Schmickl, T., Hamann, H., Stradner, J., Crailsheim, K.: Hormone-based control for
multi-modular robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot Organ-
isms: Reliability, Adaptability, Evolution. Springer, Heidelberg (2010)

30. Schmickl, T., Möslinger, C., Thenius, R., Crailsheim, K.: Individual adaptation allows
collective path-finding in a robotic swarm. International Journal of Factory Automation,
Robotics and Soft Computing 4, 102–108 (2007)

31. Schmickl, T., Thenius, R., Möslinger, C., Radspieler, G., Kernbach, S., Crailsheim,
K.: Get in touch: Cooperative decision making based on robot-to-robot collisions. Au-
tonomous Agents and Multi-Agent Systems 18(1), 133–155 (2008)

32. Shen, W.-M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and dis-
tributed control for CONRO self-reconfigurable robots. IEEE Trans. on Robotics and
Automation 18(5), 700–712 (2002)

33. Shen, W.-M., Will, P., Galstyan, A., Chuong, C.-M.: Hormone-inspired self-organization
and distributed control of robotic swarms. Autonomous Robots 17, 93–105 (2004)

34. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving
large-scale neural networks. Artificial Life 15(2), 185–212 (2009)

35. Stanley, K.O., Miikkulainen, R.: Competitive coevolution through evolutionary complex-
ification. Journal of Artificial Intelligence Research 21(1), 63–100 (2004)

36. Stradner, J., Hamann, H., Schmickl, T., Thenius, R., Crailsheim, K.: Evolving a novel
bio-inspired controller in reconfigurable robots. In: 10th European Conference on Artifi-
cial Life (ECAL 2009). LNCS, Springer, Heidelberg (2010)

http://www.replicators.eu

52 T. Schmickl

37. Svennebring, J., Koenig, S.: Building terrain-covering ant robots: A feasibility study.
Autonomous Robots 16(3), 313–332 (2004)

38. SYMBRION. Project website (2010), http://www.symbrion.eu
39. Thenius, R., Schmickl, T., Crailsheim, K.: Novel concept of modelling embryology for

structuring an artificial neural network. In: Troch, I., Breitenecker, F. (eds.) Proceedings
of the MATHMOD (2009)

40. Valdastri, P., Corradi, P., Menciassi, A., Schmickl, T., Crailsheim, K., Seyfried, J., Dario,
P.: Micromanipulation, communication and swarm intelligence issues in a swarm micro-
robotic platform. Robotics and Autonomous Systems 54, 789–804 (2006)

http://www.symbrion.eu

Flocking Control Algorithms for Multiple
Agents in Cluttered and Noisy Environments

Hung Manh La and Weihua Sheng

Abstract. Birds, bees, and fish often flock together in groups based on local in-
formation. Inspired by this natural phenomenon, flocking control algorithms are
designed to coordinate the activities of multiple agents in cluttered and noisy en-
vironments, respectively. First, to allow agents to track and observe a target better
in cluttered environments, an adaptive flocking control algorithm is proposed. With
this algorithm, all agents can track the target better and maintain a similar forma-
tion and connectivity. Second, to deal with noisy measurements we proposed two
flocking control algorithms, Multi-CoM-Shrink and Multi-CoM-Cohesion. Based on
these algorithms, all agents can form a network and maintain connectivity, even
with noisy measurements. We also investigate the stability and scalability of our
algorithms. Simulations and real experiments are conducted to demonstrate the
effectiveness of the proposed approach.

Keywords: Flocking control, multi-agent systems, mobile sensor networks.

1 Introduction

Flocking is a natural phenomenon in which a number of agents move together and
interact with each other. In nature, schools of fish, birds, ants, and bees, etc. demon-
strate the phenomena of flocking. Flocking control for multiple mobile agents has
been studied in recent years [1, 2], and it is designed based on three basic flocking

Hung Manh La
The School of Electrical and Computer Engineering, Oklahoma State University,
Stillwater, OK 74078, USA
e-mail: hung.la@okstate.edu

Weihua Sheng
The School of Electrical and Computer Engineering, Oklahoma State University,
Stillwater, OK 74078, USA
e-mail: weihua.sheng@okstate.edu

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 53–79.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

hung.la@okstate.edu
weihua.sheng@okstate.edu

54 H.M. La and W. Sheng

rules proposed by Reynolds [3]: flock centering , collision avoidance, and velocity
matching. The problems of flocking have also attracted many researchers in physics
[4], mathematics [5], biology [6] and especially in control science in recent years
[1, 2, 7].

Flocking control has wide applications in mobile robots and mobile sensor net-
works. Early work on flocking control includes [1, 2]. Tanner et al. [1] studied the
stability properties of a system of multiple mobile agents with double integrator
dynamics in the case of fixed and dynamic topologies. However, in their work the
target tracking problem and sensing errors are not considered. In the context of tar-
get tracking Olfati-Saber [2] proposed the theoretical framework for the design and
analysis of distributed flocking algorithms, which solve the flocking problem in free
space and in the presence of obstacles. Based on his flocking control algorithms,
all agents can flock together and track the target quite well in free space. However,
the target tracking performance is not satisfactory in the obstacle space. Moreover,
every agent is assumed to know the position and velocity of the target precisely. To
relax this assumption, he developed a distributed Kalman filter in [8] for each agent
to estimate the target’s position. Due to the measurement errors, the target tracking
performance is not very good. In addition, there is another assumption in his flock-
ing algorithm [2, 8] that all agents need the information of the target to maintain
the cohesion or avoid the fragmentation. To deal with this situation, an extension of
the flocking control algorithm in [2] with a virtual leader in the case of a minority
of informed agents and varying velocity of the virtual leader was presented in [7].
However, their work does not consider the tracking problems in cluttered and noisy
environments.

In this paper we propose three new flocking control algorithms to deal with more
realistic environments. The main differences between our algorithms and those of
the above related work are listed below.

1. In cluttered environments, the agents usually get stuck behind the obstacles and
sometimes can not follow the target [2]. To handle this problem we present a new
algorithm to flocking control of multi-agent systems to track a moving target while
avoiding obstacles. The main motivation of this algorithm is to make the agents flock
together in an adaptive and distributed fashion. In this way the agents can track the
moving target better and maintain connectivity in cluttered environments where the
normal flocking control algorithms [2, 7, 8] have poor tracking performance and
connectivity loss.

2. In real flocking control environments, noise handling is always an important
issue since the noise usually causes broken network or connectivity loss. This prob-
lem exists in most of the previous work on flocking control [1, 2, 7, 8]. To make
the flocking control more applicable in real applications we consider the effect of
position and velocity measurement errors of the agent itself, the agent’s neighbors
and the target. None of the flocking control algorithms in the above related work
considers this noise issue. We propose two flocking control algorithms, Multi-CoM-
Shrink and Multi-CoM-Cohesion, which are based on the extensions of the Multi-
CoM flocking control algorithm in our previous work [9]. Our algorithms allow the
flocks to preserve connectivity, avoid collision, and follow the target in such noisy

Flocking Control Algorithms for Multiple Agents 55

environments. We demonstrate that by applying our algorithms the agents can flock
together in the presence of noise with better performances such as connectivity and
tracking performance.

The rest of this paper is organized as follows. In the next section we present the
background of flocking control and the problem formulation. Section 3 describes
the adaptive flocking control algorithm for tracking and observing a moving target
in noise-free environments. Section 4 presents flocking control algorithms, Multi-
CoM-Shrink and Multi-CoM-Cohesion, for tracking a moving target in noisy envi-
ronments. Section 5 shows the main results on stability analysis of flocking control
in both noise-free and noisy environments. Section 6 demonstrates the experimental
results. Finally, Section 7 concludes this paper.

2 Flocking Backgrounds and Problem Formulation

In this section we present the flocking control background and the problems in ex-
isting flocking control algorithms.

We consider n agents moving in an m (m = 2,3) dimensional Euclidean space.
The dynamic equations of each agent are described as:{

q̇i = pi

ṗi = ui, i = 1,2, ...,n.
(1)

here qi, pi ∈ Rm are the position and velocity of node i, respectively, and ui is the
control input of agent i.

To describe the topology of flocks we consider a dynamic graph G consisting
of a vertex set ϑ = {1,2...,n} and an edge set E ⊆ {(i, j) : i, j ∈ ϑ , j �= i}. In this
topology each vertex denotes one member of the flock, and each edge denotes the
communication link between two members.

We know that during the movement of agents, the relative distance between them
may change, hence the neighbors of each agent also change. Therefore, we can
define a neighborhood set of agent i as follows:

Nα
i =

{
j ∈ ϑ : ‖q j −qi‖ ≤ r, ϑ = {1,2, ...,n} , j �= i

}
, (2)

here r is an active range (radius of neighborhood circle in the case of two dimen-
sions, m = 2, or radius of neighborhood sphere in the case of three dimensions,
m = 3), and ‖.‖ is the Euclidean distance. The superscript α indicates the actual
neighbors (α neighborhood agents) of agent i that is used to distinguish with virtual
neighbors (β neighborhood agents) in the case of obstacle avoidance discussed later.

The geometry of flocks is modeled by an α-lattice [2] that meets the following
condition:

‖q j −qi‖ = d, j ∈ Nα
i , (3)

here d is a positive constant indicating the distance between agent i and its neigh-
bor j. However, at singular configuration (qi = q j) the collective potential used to
construct the geometry of flocks is not differentiable. Therefore, the set of algebraic

56 H.M. La and W. Sheng

constrains in (3) is rewritten in term of σ - norm [2] as follows:

‖q j −qi‖σ = dα , j ∈ Nα
i , (4)

here the constraint dα = ‖d‖σ with d = r/kc, where kc is the scaling factor. The σ
- norm, ‖.‖σ , of a vector is a map Rm =⇒ R+ defined as

‖z‖σ =
1
ε
[
√

1 + ε‖z‖2−1], (5)

here ε > 0. Unlike the Euclidean norm ‖z‖, which is not differentiable at z = 0, the
σ - norm ‖z‖σ , is differentiable every where. This property allows to construct a
smooth collective potential function for agents.

The flocking control law in [2] controls all agents to form an α-lattice configura-
tion. This algorithm consists of three components as follows:

ui = f αi + f βi + f γi . (6)

The first component of (6) f αi , which consists of a gradient-based component and
a consensus component (more details about these components see [10], [11], [12]),
is used to regulate the potentials (repulsive or attractive forces) and the velocity
among agents.

f αi = cα1 ∑
j∈Nα

i

φα (‖q j −qi‖σ)ni j + cα2 ∑
j∈Nα

i

ai j(q)(p j − pi), (7)

where cα1 and cα2 are positive constants, and each term in (7) is computed as follows
[2]:

1. The action function φα(z) that vanishes for all z ≥ rα with rα = ‖r‖σ is defined
as follows:

φα (z) = ρh(z/rα)φ(z−dα) (8)

with the uneven sigmoidal function φ(z) defined as φ(z) = 0.5[(a + b)σ1(z + c)+
(a−b)], here σ1(z) = z/

√
1 + z2 (z is an arbitrary variable), and parameters 0 < a ≤

b, c = |a−b|/√4ab to guarantee φ(0) = 0. The bump function ρh(z) with h ∈ (0,1)
is

ρh(z) =

⎧⎨
⎩

1, z ∈ [0,h)
0.5[1 + cos(π(z−h

1−h))], z ∈ [h,1)
0, otherwise.

(9)

2. The vector along the line connecting qi to q j is

ni j = (q j −qi)/
√

1 + ε‖q j −qi‖2. (10)

3. The elements ai j(q) of the adjacency matrix [ai j(q)] are defined as

ai j(q) =
{
ρh(‖q j −qi‖σ/rα), i f j �= i
0, i f j = i.

(11)

Flocking Control Algorithms for Multiple Agents 57

Fig. 1 Smooth pairwise potential functionΨα (‖q j −qi‖σ).

The pairwise attractive/repulsive potentialΨα(z) is defined as:

Ψα(z)) =
∫ z

dα
φα (s)ds, (12)

and this function is illustrated in Figure 1.
Then we have the smooth collective potential function in the following form

Vα(q) =
1
2∑i ∑j �=i

Ψα(‖q j −qi‖σ). (13)

The second component of Equation (6) f βi is used to control the mobile agents to
avoid obstacles,

f βi = cβ1 ∑
k∈Nβ

i

φβ (‖q̂i,k −qi‖σ)n̂i,k + cβ2 ∑
k∈Nβ

i

bi,k(q)(p̂i,k − pi) (14)

where cβ1 and cβ2 are positive constants, and the set of β neighbors (virtual neigh-
bors) of agent i at time t with k obstacles is

Nβ
i (t) =

{
k ∈ ϑβ : ‖q̂i,k −qi‖ ≤ r

′
,ϑβ = {1,2, ...,k}

}
(15)

here r
′

is selected to be less than r, in our simulations r
′
= 0.6r. ϑβ is a set of

obstacles. q̂i,k, p̂i,k are the position and velocity of agent i projecting on the obstacle
k, respectively. The virtual neighbors are used to generate the repulsive force to push
the agents away from the obstacles.

Similar to vector ni j defined in Equation (10), vector n̂i,k is defined as

n̂i,k = (q̂i,k −qi)/
√

1 + ε‖q̂i,k −qi‖2. (16)

58 H.M. La and W. Sheng

The elements bi,k(q) of the adjacency matrix [bi,k(q)] are defined as

bi,k(q) = ρh(|q̂i,k −qi‖σ/dβ) (17)

where dβ = ‖r
′ ‖σ .

The repulsive action function of β neighbors is defined as

φβ (z) = ρh(z/dβ)(σ1(z−dβ)−1). (18)

The third component of (6) f γi is a distributed navigational feedback.

f γi = −cγ1(qi −qγ)− cγ2(pi − pγ) (19)

where cγ1 and cγ2 are positive constants, and the γ - agent (qγ , pγ) is the virtual leader
(more information of virtual leader, see [13]) defined as follows{

q̇γ = pγ
ṗγ = fγ (qγ , pγ)

(20)

Finally, the Olfati-Saber flocking control algorithm [2] is proposed as:

ui = cα1 ∑
j∈Nα

i

φα(‖q j −qi‖σ)ni j + cα2 ∑
j∈Nα

i

ai j(q)(p j − pi)

+cβ1 ∑
k∈Nβ

i

φβ (‖q̂i,k −qi‖σ)n̂i,k + cβ2 ∑
k∈Nβ

i

bi,k(q)(p̂i,k − pi)

−cγ1(qi −qγ)− cγ2(pi − pγ). (21)

Observing the algorithm (21), we see that in cluttered environments or obstacles
spaces:

• It is hard for the agents to follow the target because of repulsive forces generated
from the obstacles.

• The tracking performance is not good.
• The agents sometimes get stuck around the obstacles.
• The network sometimes gets broken.

In addition, this algorithm works under the following assumptions:

• Each agent can sense its own position and velocity precisely (without noises).
• Each agent can obtain its neighbor’s position and velocity via sensing or com-

munication precisely.
• Each agent can sense the target position and velocity precisely.

However, in reality these assumptions are not valid because sensing errors always
exist. Motivated by these observations we will study how to design distributed flock-
ing control algorithms which can still perform well when the agents are in cluttered
environments, and the measurements are affected by noises.

Flocking Control Algorithms for Multiple Agents 59

3 Adaptive Flocking Control for Tracking a Moving Target

We consider the γ agent as the moving target. Hence, we slightly modify the flocking
control algorithm (21) as

ui = cα1 ∑
j∈Nα

i

φα(‖q j −qi‖σ)ni j + cα2 ∑
j∈Nα

i

ai j(q)(p j − pi)

+cβ1 ∑
k∈Nβ

i

φβ (‖q̂i,k −qi‖σ)n̂i,k + cβ2 ∑
k∈Nβ

i

bi,k(q)(p̂i,k − pi)

−ct
1(qi −qt)− ct

2(pi − pt), (22)

here qt and pt are the position and velocity of the moving target, respectively, and
ct

1, ct
2 are positive constants. In this control algorithm, we assume that each agent

has the ability to sense the position and velocity of the moving target.

Fig. 2 Illustration of the adaptive flocking control.

The problem here is how to cooperatively control the size of the network in an
adaptive and decentralized fashion in order to maintain the network’s connectiv-
ity, similar formation and tracking performance in the presence of obstacles. One
example of such flocking control is illustrated in Figure 2.

To control the size of the network, we need to control the set of algebraic con-
straints in Equation (4), which means that if we want the size of the network to be
smaller to pass the narrow space then dα should be smaller. This raises the question
of how small the size of network should be reduced and how to control the size in a
decentralized and dynamic fashion.

To control the constraint dα one possible method is to use the knowledge of
obstacle obtained by any agent in the network, which will broadcast a new dα to
all other agents. However, it is difficult for a single agent to learn the size of the
passage due to its limited sensing range. To overcome this problem we propose a

60 H.M. La and W. Sheng

method based on the repulsive force, ∑
k∈Nβ

i
φβ (‖q̂i,k −qi‖σ), which is generated by

the β -agent (virtual agent) projected on the obstacles. If any agent in the network
gets this repulsive force it will shrink its own dαi . If this repulsive force is big (agent
is close to obstacle(s)) dαi will be further reduced. Then, in order to maintain the
neighborhood (topology) the active range of each agent is re-designed. To achieve
an agreement on the relative distance and active range among agents, a consensus or
a local average update algorithm is proposed. Furthermore, to keep the connectivity
each agent maintains with an adaptive weight of attractive force from the target
and an adaptive weight of interaction force from its neighbors so that the network
reduces or recovers the size gradually. That is, if an agent has weak connection to
the network it should have a big weight of attraction force to the target and a small
weight of interaction force from its neighbors.

Firstly, we control the set of algebraic constraints as

‖q j −qi‖σ = dαi , j ∈ Nα
i , (23)

and let each agent have its own dαi , which is designed as

dαi =

⎧⎨
⎩

dα , i f ∑
k∈Nβ

i
φβ (‖q̂i,k −qi‖σ) = 0

dα

∑
k∈N

β
i
|φβ (‖q̂i,k−qi‖σ)|+1 , otherwise. (24)

From Equation (24) we see that if the repulsive force generated from the obsta-
cles ∑

k∈Nβ
i
φβ (‖q̂i,k −qi‖σ) = 0 or Nβ

i = /0 (empty set) then the agent will keep its

original dα . When the agent senses the obstacles it reduces its own dαi , and the value
of dαi depends on the repulsive force that the agent gets from obstacles.

In order to control the size of network each agent needs its own rαi that relates to

dαi as follows: rαi = ‖kcd‖σ with ‖d‖σ = dαi or d =
√

(εdαi +1)2−1
ε . Explicitly, rαi is

computed as in Equation (25).

rαi =

⎧⎨
⎩

rα , i f ∑
k∈Nβ

i
φβ (‖q̂i,k −qi‖σ) = 0

1
ε [
√

k2
c

(εdαi +1)2−1
ε + 1−1], otherwise.

(25)

Similar to computing rαi , ri is computed as

ri =

⎧⎨
⎩

r, i f ∑
k∈Nβ

i
φβ (‖q̂i,k −qi‖σ) = 0√

1
ε [(εrαi + 1)2 −1], otherwise.

(26)

It should be pointed out that the active range ri is different from the physical com-
munication range. The active range is the range that each agent decides its neighbors
to talk with, but the physical communication range is the range defined by the RF
module. This implies that even a robot can communicate with many other robots in
the network, it will only talk (interact) with robots in its active range. That is why we

Flocking Control Algorithms for Multiple Agents 61

want to control the active range of each robot in order to reduce the communication
and maintain the similar formation when the network shrinks.

To achieve an agreement on dαi , rαi and ri among agents in the connected network
we use the following update algorithm based on the local averages for dαi , rαi and
ri, respectively: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dαi = 1

|Nα
i |+1 ∑

|Nα
i ∪i|

j=1 dαj

rαi = 1
|Nα

i |+1 ∑
|Nα

i |∪i
j=1 rαj

ri = 1
|Nα

i |+1 ∑
|Nα

i ∪i|
j=1 r j,

(27)

here |Nα
i | is the number of neighbors of agent i, and |Nα

i ∪ i| is the inclusive set of
agent i and its neighbors.

The coefficients of the interaction forces (cα1 , cα2), (cβ1 , cβ2) and attractive force
(ct

1, ct
2) which deliver desired swarm-like behaviour are used to adjust the weight

of interaction forces and attractive force. The pair (cα1 , cα2) is used to adjust the
attractive/repulsive forces among agent i and its actual neighbors (α-agent), and the
pair (cβ1 , cβ2) is used to adjust the repulsive forces among agent i and its virtual
neighbors (β -agent) that is generated from agent i when it sees the obstacles, and
the pair (ct

1, ct
2) is used to adjust the attractive forces between agent i and its target.

The bigger ct
1 and ct

2 the faster convergence to the target. However if ct
1 and ct

2 are
too big the center of mass (CoM) as defined in Equation (28){

q = 1
n ∑

n
i=1 qi

p = 1
n ∑

n
i=1 pi

(28)

oscillates around the target, and the formation of network is not guaranteed.
From the above analysis we see that these adaptive weights allow the network to

reduce and recover the size gradually. They also allow the network to maintain the
connectivity in obstacle space. Therefore, we let each agent have its own weight of
the interaction forces as in Equation (29)

cα1 (i) =

{
cα1 , i f |Nα

i | ≥ 3

cα
′

1 , i f |Nα
i | < 3,

(29)

here cα
′

1 < cα1 , cα2 (i) = 2
√

cα1 (i), and i = 1,2, ...,n.
In addition, we let each agent have its own weight of the attractive force to the

target as in Equation (30)

ct
1(i) =

{
ct

1, i f |Nα
i | ≥ 3

ct
′

1 , i f |Nα
i | < 3,

(30)

here ct
′

1 > ct
1, ct

2(i) = 2
√

ct
1(i), and i = 1,2, ...,n.

In the α-lattice configuration if the agent has less than 3 neighbors it is consid-
ered as having a weak connection to the network. This means that this agent is on

62 H.M. La and W. Sheng

the border of network, or far from the target hence it should have bigger weight
of attractive force from its target and smaller weight of interaction forces from its
neighbors to get closer to the target. This design also has the benefit of making the
whole network track the target faster.

Now, the neighborhood of agent i (N
′α
i), the new adjacency matrix a

′
i j(q) and the

new action function φ ′
α(z) are redefined as follows:

N
′α
i =

{
j ∈ ϑ : ‖q j −qi‖ ≤ ri, ϑ = {1,2, ...,n} , j �= i

}
; (31)

a
′
i j(q) =

{
ρh(‖q j −qi‖σ/rαi), i f j �= i
0, i f j = i;

(32)

φ
′
α (‖q j −qi‖σ) = ρh(‖q j −qi‖σ/rαi)φ(‖q j −qi‖σ −dαi). (33)

Finally, the adaptive flocking control law for dynamic target tracking is

ui = cα1 (i) ∑
j∈N

′α
i

φ
′
α (‖q j −qi‖σ)ni j + cα2 (i) ∑

j∈N
′α
i

a
′
i j(q)(p j − pi)

+cβ1 ∑
k∈Nβ

i

φβ (‖q̂i,k −qi‖σ)n̂i,k + cβ2 ∑
k∈Nβ

i

bi,k(q)(p̂i,k − pi)

−ct
1(i)(qi −qt)− ct

2(i)(pi − pt). (34)

4 Flocking Control for Multiple Agents in Noisy Environments

The above flocking control algorithms are designed under the following assump-
tions: each agent can sense the position and velocity of itself, the neighbors and the
target precisely. However, in reality these assumptions are not valid because sensing
always has noise. Motivated by this observation we study how to design distributed
flocking control algorithms which can still perform well when the measurements
are corrupted by noises.

In this section we are going to design two algorithms in noisy environments.
The first one is the Multi-CoM-Shrink flocking control algorithm. The main idea
of this algorithm is to shrink the size of the network in oder to keep the connec-
tivity. The second one is the Multi-CoM-Cohesion flocking control algorithm, and
its main idea is based on the position and velocity cohesion feedbacks to create the
strong cohesion between the agent and the network. Both algorithms are based on
the Multi-CoM flocking control algorithm presented in our previous work [9]. The
Multi-CoM flocking control algorithm is shown below

ui = cα1 ∑
j∈Nα

i

φα (‖q j −qi‖σ)ni j + cα2 ∑
j∈Nα

i

ai j(q)(p j − pi)

−ct
1(qi −qt)− ct

2(pi − pt)− cl
1(qi −qt)− cl

2(pi − pt), (35)

Flocking Control Algorithms for Multiple Agents 63

here cl
1 and cl

2 are positive constants. qi and pi are the local average of position and
velocity, respectively for each agent i defined as:⎧⎨

⎩
qi = 1

|Nα
i |+1 ∑

|Nα
i ∪i|

j=1 q j

pi = 1
|Nα

i |+1 ∑
|Nα

i ∪i|
j=1 p j.

(36)

In this control algorithm, the first two terms are used to control the formation (α-
lattice configuration) and to allow agents to avoid collision [2]. The terms −ct

1(qi −
qt)− ct

2(pi − pt) and −cl
1(qi −qt)− cl

2(pi − pt) allow each agent and its neighbors
to closely follow the target [9].

4.1 Multi-CoM-Shrink Algorithm

Assume that the estimates of the position and velocity of agent i are: q̂i = qi + ε i
q

and p̂i = pi + ε i
p, where ε i

q and ε i
p are the position and velocity measurement errors,

respectively. Then we have:
q̂i− q̂ j = qi−q j +ε i j

q ; p̂i− p̂ j = pi− p j +ε i j
p , here ε i j

q = ε i
q−ε j

q and ε i j
p = ε i

p−ε j
p.

Similarly, the estimates of the position and velocity of the target are: q̂t = qt + εt
q

and p̂t = pt +εt
p, where εt

q and εt
p are the position and velocity measurement errors,

respectively. Then we have:
q̂i− q̂t = qi−qt +ε it

q ; p̂i− p̂t = pi− pt +ε it
p , here ε it

q = ε i
q −εt

q and ε it
p = ε i

p −εt
p.

If all noises are bounded, one possible method to maintain connectivity in noisy
environments is to shrink the size of the network. We assume that the noise ε i

q satis-
fies ‖ε i

q‖ ≤ rw as shown in Figure 3.
Let us denote da = ‖qi −q j‖ to be the actual distance between agent i and agent

j. Then to maintain the connectivity and no collision among agents we need

0 < da ≤ r. (37)

Agent 2

Agent 1

Active range r

Noise radius rw

da

Fig. 3 Agent 2 is considered as a neighbor of agent 1 because the estimated distance d̂a is
less than the active range r.

64 H.M. La and W. Sheng

Denote d̂a to be the estimate of the actual distance da, then we have

d̂a = ‖q̂i − q̂ j‖ ≤ ‖qi −q j‖+‖ε i j
q ‖. (38)

Since ‖ε i
q‖ ≤ rw we have ‖ε i j

q ‖ ≤ 2rw, and we obtain

‖qi −q j‖−2rw ≤ d̂a ≤ ‖qi −q j‖+ 2rw. (39)

With ‖qi −q j‖ = da we have

da −2rw ≤ d̂a ≤ da + 2rw, (40)

or,
d̂a −2rw ≤ da ≤ d̂a + 2rw. (41)

Since the control algorithm (22) guarantees that d̂a converges to the desired distance
d. Then from (41) we obtain

d −2rw ≤ da ≤ d + 2rw. (42)

From (37) and (42) we should have{
d −2rw > 0
d + 2rw ≤ r.

(43)

Hence from (43) we obtain d to be

2rw < d ≤ r−2rw. (44)

Equation (44) shows that we need to design the distance d within the range (2rw, r−
2rw] to maintain connectivity and no collision among agents. However if we select d
to be smaller than r−2rw then each agent will have more neighbors than necessary.
Hence, we choose d = r−2rw.

Now, from (5) we obtain dαnew as

dαnew = ‖d‖σ =
1
ε
[
√

1 + ε(r−2rw)2 −1]. (45)

From (8) we obtain a new action function φnew
α (‖q̂ j − q̂i‖σ) as follows:

φnew
α (‖q̂ j − q̂i‖σ) = ρh(‖q̂ j − q̂i‖σ/rα)φ(‖q̂ j − q̂i‖σ −dαnew). (46)

From (36) we have the local average of position and velocity for each agent i, q̂i and
p̂i with noise computed as ⎧⎨

⎩
q̂i = 1

|Nα
i |+1 ∑

|Nα
i ∪i|

j=1 q̂ j

p̂i = 1
|Nα

i |+1 ∑
|Nα

i ∪i|
j=1 p̂ j,

(47)

Flocking Control Algorithms for Multiple Agents 65

From (10) and (11) we obtain n̂i j and âi j(q) as

n̂i j = (q̂ j − q̂i)/
√

1 + ε‖q̂ j − q̂i‖2 (48)

âi j(q) =
{
ρh(‖q̂ j − q̂i‖σ/rα), i f j �= i
0, i f j = i,

(49)

Now, we propose a Multi-CoM-Shrink algorithm with dαnew as

ui = cα1 ∑
j∈Nα

i

φnew
α (‖q̂ j − q̂i‖σ)n̂i j + cα2 ∑

j∈Nα
i

âi j(q)(p̂ j − p̂i)

−ct
1(q̂i − q̂t)− ct

2(p̂i − p̂t)− cl
1(q̂i − q̂t)− cl

2(p̂i − p̂t). (50)

4.2 Multi-CoM-Cohesion Algorithm

In this subsection we describe the Multi-CoM-Cohesion algorithm. The main idea of
the Multi-CoM-Cohesion algorithm is that each agent should have a strong cohesion
to the network so that the connectivity is maintained. In order to do that we introduce
local position and velocity cohesion feedbacks to each agent.

Before presenting the algorithm, we have the following definitions:
dil = qi −qi is the relative distance between node i and its local average of posi-

tion;
vil = pi− pi is the relative velocity between node i and its local average of veloc-

ity;
However, because agent i senses its own position and velocity with noise, hence

the estimates d̂il and v̂il are also corrupted by noise (ε i
d ,ε

i
v) as:

{
d̂il = q̂i − q̂i = qi + ε i

q − (qi + ε i
q) = dil + ε i

d
v̂il = p̂i − p̂i = pi + ε i

p − (pi + ε i
p) = vil + ε i

v,
(51)

here ε i
d = ε i

q − ε i
q with ε i

q = 1
|Nα

i |+1 ∑
|Nα

i ∪i|
i=1 ε i

q,

and ε i
v = ε i

p − ε i
p with ε i

p = 1
|Nα

i |+1 ∑
|Nα

i ∪i|
i=1 ε i

p.

Based on the above definitions, we design a distributed flocking control law,
Multi-CoM-Cohesion , in noisy environments as:

ui = cα1 ∑
j∈Nα

i

φα (‖q̂ j − q̂i‖σ)n̂i j + cα2 ∑
j∈Nα

i

âi j(q)(p̂ j − p̂i)

−cposd̂il − cvev̂il

−ct
1(q̂i − q̂t)− ct

2(p̂i − p̂t)− cl
1(q̂i − q̂t)− cl

2(p̂i − p̂t), (52)

here d̂il, v̂il are the estimates of dil and vil , respectively, and cpos and cve are posi-
tive constants. The terms −cposd̂il and −cvev̂il are called local position and velocity

66 H.M. La and W. Sheng

cohesion feedbacks, respectively. The role of these negative feedbacks is to maintain
position and velocity cohesions. This means that each agent tries to stay close to the
local average of position and minimize the velocity mismatch between its velocity
and the local average of velocity in noisy environments.

In this algorithm, to make it simpler in the stability analysis provided later we
dropped the obstacle avoidance term. However, in real applications, to allow each
agent to avoid both static and dynamic obstacles we only need to add the second
component (14) to the control algorithm (52). In general, this component does not
affect the properties of the global stability of the whole system.

5 Stability Analysis

5.1 Stability Analysis of Adaptive Flocking

By applying the control law (34), the CoM (defined in Equation (28)) of positions
and velocities of all mobile agents in the network will exponentially converge to the
target in both free space and obstacle space. In addition, the formation (collision
free and velocity matching among mobile agents) will maintain in the process of the
target tracking.

Let us consider adaptive flocking control in free space and obstacle space, re-
spectively.

Case 1 (Free space): In free space, ∑
k∈Nβ

i
φβ (‖q̂i,k − qi‖σ) = 0, hence we can

rewrite the control law (34) by ignoring constants cνη (for ∀η = 1,2 and ν = α,β)
as follows:

ui = − ∑
j∈Nα

i

∇qiψα(‖q j −qi‖σ)+ ∑
j∈Nα

i

ai j(q)(p j − pi)

−ct
1(qi −qt)− ct

2(pi − pt) (53)

where ψα(z) =
∫ z

dα φα (s)ds is the pairwise attractive/repulsive potential function.
From (53), by considering the symmetry of pair (ψα ,a(q)) we can obtain the average
of control law u as follows:

u = −ct
1(q−qt)− ct

2(p− pt). (54)

Equation (54) implies that{
q̇ = p
ṗ = −ct

1(q−qt)− ct
2(p− pt).

(55)

The solution of (55) indicates that the CoM of positions and velocities exponen-
tially converge to those of the target.

The formation (collision-free and velocity matching among mobile agents) is
maintained in the free space tracking because the gradient-based term and the con-
sensus term are considered in this situation (more details please see [2]).

Flocking Control Algorithms for Multiple Agents 67

Case 2 (Obstacle space): In the obstacle space dαi is designed to be reduced
when each agent senses the obstacles. Therefore, when the agent network has to
pass through the narrow space between two obstacles its size will shrink gradually,
and when the network already passed this narrow space it grows back to the original
size gradually. This reduces the impact of the obstacle on the network hence the
speed of agents can be maintained, or the CoM keeps tracking the target. Also, the
connectivity and similar formation can be maintained in this scenario.

5.2 Stability Analysis of Flocking in Noisy Environments

Before analyzing the stability of the flocking control algorithm, Multi-CoM-
Cohesion, we build the error dynamic model of the flocking system in noisy
environments in the next subsection.

5.2.1 Error Dynamic Model

To study the stability properties, we have the error dynamics of the system given as
follows: {

ḋig = vig

v̇ig = ui − 1
n ∑

n
j=1 u j = ui −u, i = 1,2, ...,n.

(56)

here u = 1
n ∑

n
j=1 u j.

We have following definitions:
dig = qi − q is the relative distance between node i and its global average of

position;
vig = pi − p is the relative velocity between node i and its global average of

velocity;
Then we have the following relations:

dil = qi −qi = dig + q− 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

q j

= dig + q− 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

(d jg + q) = dig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

d jg. (57)

Then similar to dil , vil is obtained as follows:

vil = vig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

v jg. (58)

The estimates of the local average of position and velocity, respectively in (47) is
rewritten as

q̂i = qi −dig +
1

|Nα
i |+ 1

|Nα
i ∪i|
∑
j=1

d jg + ε i
q. (59)

68 H.M. La and W. Sheng

p̂i = pi − vig +
1

|Nα
i |+ 1

|Nα
i ∪i|
∑
j=1

v jg + ε i
p. (60)

Now, we can rewrite the control law (52) with considering (51), (59) and (60):

ui = cα1 ∑
j∈Nα

i

φα (‖q̂ j − q̂i‖σ)n̂i j + cα2 ∑
j∈Nα

i

âi j(q)(p̂ j − p̂i)

+(cl
1 − cpos)(dig − 1

|Nα
i |+ 1

|Nα
i ∪i|
∑
j=1

d jg)+ (cl
2 − cve)(vig − 1

|Nα
i |+ 1

|Nα
i ∪i|
∑
j=1

v jg)

−(ct
1 + cl

1)(qi −qt)− (ct
2 + cl

2)(pi − pt)− cposε i
d − cveε i

v − cl
1ε

i
q − cl

2ε
i
p

−(ct
1 + cl

1)ε
it
q − (ct

2 + cl
2)ε

it
p (61)

The average of control law for composite system is

u =
cα1
n

n

∑
i=1

[∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j]+
cα2
n

n

∑
i=1

[∑
j∈Nα

i

âi j(q)(p̂ j − p̂i)]

+(
cl

1 − cpos

n
)

n

∑
i=1

(dig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

d jg)

+(
cl

2 − cve

n
)

n

∑
i=1

(vig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

v jg)

−(
ct

1 + cl
1

n
)

n

∑
i=1

(qi −qt)− (
ct

2 + cl
2

n
)

n

∑
i=1

(pi − pt)

−1
n

n

∑
i=1

[cposε i
d + cveε i

v + cl
1ε

i
q + cl

2ε
i
p +(ct

1 + cl
1)ε

it
q +(ct

2 + cl
2)ε

it
p] (62)

Substitute ui in (61) and u in (62) into (56) we obtain:

v̇ig = cα1 ∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j − cα1
n

n

∑
i=1

[∑
j∈Nα

i

φα (‖q̂ j − q̂i‖σ)n̂i j]

+cα2 ∑
j∈Nα

i

âi j(q)(p̂ j − p̂i)− cα2
n

n

∑
i=1

[∑
j∈Nα

i

âi j(q)(p̂ j − p̂i)]

−(
cl

1 − cpos

|Nα
i |+ 1

)
|Nα

i ∪i|
∑
j=1

d jg − (
cl

2 − cve

|Nα
i |+ 1

)
|Nα

i ∪i|
∑
j=1

v jg

−(
cl

1 − cpos

n
)

n

∑
i=1

(dig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

d jg)

−(
cl

2 − cve

n
)

n

∑
i=1

(vig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

v jg)

Flocking Control Algorithms for Multiple Agents 69

−(cpos− cl
1)dig − (cve − cl

2)vig − (ct
1 + cl

1)dig − (ct
2 + cl

2)vig

−cposε i
d − cveε i

v − cl
1ε

i
q − cl

2ε
i
p − (ct

1 + cl
1)ε

it
q − (ct

2 + cl
2)ε

it
p

+
1
n

n

∑
i=1

[cposε i
d + cveε i

v + cl
1ε

i
q + cl

2ε
i
p +(ct

1 + cl
1)ε

it
q +(ct

2 + cl
2)ε

it
p]

= −(ct
1 + cpos)dig − (ct

2 + cve)vig +Φi +Ωi(V)+ ζi, (63)

where

Φi = cα1 ∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j − cα1
n

n

∑
i=1

[∑
j∈Nα

i

φα(‖q̂ j − q̂i‖σ)n̂i j]

+cα2 ∑
j∈Nα

i

âi j(q)(p̂ j − pi)− cα2
n

n

∑
i=1

[∑
j∈Nα

i

âi j(q)(p̂ j − pi)];

Ωi(V) = −(
cl

1 − cpos

|Nα
i |+ 1

)
|Nα

i ∪i|
∑
j=1

d jg − (
cl

2 − cve

|Nα
i |+ 1

)
|Nα

i ∪i|
∑
j=1

v jg

−(
cl

1 − cpos

n
)

n

∑
i=1

(dig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

d jg)

−(
cl

2 − cve

n
)

n

∑
i=1

(vig − 1
|Nα

i |+ 1

|Nα
i ∪i|
∑
j=1

v jg);

ζi =
1
n

n

∑
i=1

[cposε i
d + cveε i

v + cl
1ε

i
p + cl

2ε
i
p +(ct

1 + cl
1)ε

it
q +(ct

2 + cl
2)ε

it
p]

−[cposε i
d + cveε i

v + cl
1ε

i
q + cl

2ε
i
p +(ct

1 + cl
1)ε

it
q +(ct

2 + cl
2)ε

it
p]

here, we define Vi = [dig vig]T and V = [V1, V2, ..., Vn]T .
Rewrite (63) in state space representation[

ḋig

v̇ig

]
=

[
0 I

−k1I −k2I

][
dig

vig

]
+
[

0
I

]
(Φi +Ωi(V)+ ζi), (64)

here k1 = (ct
1 + cpos), k2 = (ct

2 + cve), and I is an m x m identity matrix.
Then we can rewrite (64) as

V̇i =
[

0 I
−k1I −k2I

]
Vi +

[
0
I

]
(Φi +Ωi(V)+ ζi) (65)

Let the matrix Ai =
[

0 I
−k1I −k2I

]
, then we have the characteristic equation as:

70 H.M. La and W. Sheng

det(λ I−Ai) = (λ 2 + k2λ + k1)m = 0. (66)

Since k1 > 0, k2 > 0, and if k2 < 2
√

k1 then all roots of the characteristic equation
(66) have negative real parts (Re(λi) < 0).

5.2.2 Stability Analysis of the Multi-CoM-Cohesion algorithm

In this subsection we will analyze the stability of the flocking control algorithm,
Multi-CoM-Cohesion, in noisy environments based on the Lyapunov approach.

We assume that the errors of sensing position and velocity have linear relationship
with the magnitude of the state of the error system. That is because two agents are
far away from each other, the sensing errors will usually increase. Hence, we have{ ‖ε i

d(t)‖ ≤ ci
ed1

‖Vi(t)‖+ ci
ed2‖ε i

v(t)‖ ≤ ci
ev1

‖Vi(t)‖+ ci
ev2

, i = 1,2, ...,n.
(67)

We also assume that the noise ε it
q and ε it

p on the target tracking terms (negative
feedbacks) are bounded as{ ‖ε it

q (t)‖ ≤ ci
eq

‖ε it
p (t)‖ ≤ ci

ep, i = 1,2, ...,n,
(68)

and the noise ε i
q and ε i

p on the estimates of local average of position and velocity
are bounded as { ‖ε i

q(t)‖ ≤ ci
eq

‖ε i
p(t)‖ ≤ ci

ep, i = 1,2, ...,n.
(69)

here ci
eq = 1

|Nα
i |+1 ∑

|Nα
i ∪i|

i=1 ci
eq, and ci

ep = 1
|Nα

i |+1 ∑
|Nα

i ∪i|
i=1 ci

ep.

Theorem 1. Consider a system of n mobile agents with dynamics (1) and controlled
by (52), and all noise are bounded by (67), (68) and (69) . Let

c1
pv =

(cpos + 1)2 + c2
ve

2cposcve
+

√
(

cpos + c2
ve −1

2cposcve
)2 +

1
c2

pos
,

and if

cposc
i
ed1

+ cveci
ev1

≤ 1
c1

pv
,

and the parameters are such that

m

∑
j=1

2c1
pv[

√
(cl

1 − cpos)2 +(cl
2 − cve)2 − 1

n (cposci
ed1

+ cveci
ev1

)]

(1− εi)[1− c1
pv(cposci

ed1
+ cveci

ev1
)]

< 1,

here 0 < εi < 1 for ∀i, then the trajectories of (65) are bounded.

Flocking Control Algorithms for Multiple Agents 71

Proof. To study the stability of the error dynamics (65), one possible choice is to
choose the Lyapunov function for each agent as

Li(Vi) = V T
i PVi, (70)

here P = PT is a 2m x 2m positive-definite matrix (P > 0). Then, the Lyapunov
function for the composite system is

L(V) =
n

∑
i=1

V T
i PVi.

From (70) we have
L̇i(Vi) = V T

i PV̇i + V̇ T
i PVi. (71)

Then, substitute V̇i in (65) into (71) we obtain

L̇i(Vi) = V T
i (PAi + AT

i P)Vi + 2VT
i PB(Φi +Ωi(V)+ ζi)

= −V T
i CVi + 2V T

i PB(Φi +Ωi(V)+ ζi),

here B =
[

0
I

]
, and C = −(PAi + AT

i P).

The remaining part of this proof is to show L̇i(Vi) < 0. The detailed proof of
L̇i(Vi) < 0 is similar to that in the reference [14].

6 Experimental Results

In this section we are going to test our proposed algorithms, adaptive flocking con-
trol (34), Multi-CoM-Shrink (50), and Multi-CoM-Cohesion (52). Then we compare
our algorithms with the existing one (22) in terms of network connectivity, forma-
tion and tracking performance. First we discuss how to evaluate the connectivity of
the network in the next subsection.

6.1 Connectivity Evaluation

To evaluate the network connectivity maintenance, first we know that the link (con-
nectivity) between node i and node j is maintained if the distance between them
0 < ‖qi−q j‖ ≤ r. Otherwise this link is considered broken. Then for graph connec-
tivity: a dynamic graph G(ϑ ,E) is connected at time t if there exists a path between
any two vertices.

To analyze the connectivity of the network we define a connectivity matrix [ci j(t)]
as follows:

[ci j(t)] =
{

1, i f j ∈ Nα
i (t), i �= j

0, i f j /∈ Nα
i (t), i �= j

and cii = 0.

72 H.M. La and W. Sheng

Since the rank of the Laplacian [2] of a connected graph [ci j(t)] of order n is at
most (n− 1) or rank([ci j(t)]) ≤ (n− 1), the relative connectivity of a network at
time t is defined as C(t) = 1

n−1 rank([ci j(t)]).
If 0 ≤C(t) < 1 the network is broken, and if C(t) = 1 the network is connected.

Based on this metric we can evaluate the network connectivity in our proposed flock-
ing control algorithms.

6.2 Adaptive Flocking Results in Cluttered Environments

The parameters used in the simulation and experiment of the adaptive flocking are
specified as follows:

- Parameters of flocking in simulation: number of agents = 50 (randomly dis-
tributed in the box of 100x100 size); a = b = 5; the active range r = 8.5; the
desired distance d = 7; ε = 0.1 for the σ -norm; h = 0.2 for the bump functions
(φα(z), φ ′

α(z)); h = 0.9 for the bump function (φβ (z)).
Parameters of target movement for simulation: The target moves in the line tra-

jectory: qt = [100 + 130t, t]T .
- Parameters of flocking in experiment:
number of agents = 7 (randomly distributed); a = b = 5; d = 1100mm; the scaling

factor kc = 1.2; the active range r = kc ∗ d; ε = 0.1 for the σ -norm; h = 0.2 for the
bump functions (φα(z), φ ′

α(z)); h = 0.9 for the bump function (φβ (z)).
Parameters of target movement for experiment: The virtual target moves in the

line trajectory: qt = [230 + t, −3000 + 130t]T.
- Experimental setup: In this experiment we use 7 Rovio robots [15] that have

omni-directional motion capability. Basically, these robots can freely move in 6 di-
rections. The dynamic model of the Rovio robot can be approximated by Equation
(1). However, the localization accuracy of the Rovio robot is low, and the robot does
not has any sensing device to sense the pose (position and velocity) of its neighbors
or the obstacles. Hence we use a VICON motion capture system setup [16] in our
lab (Figure 4) that includes 12 infrared cameras to track moving objects. This track-
ing system can provide the location and velocity of each moving object with high
accuracy.

Figures 5 represents the results of moving target (red/dark line) tracking in the
line trajectory using the existing flocking control algorithm (21). Figure 6 repre-
sents the results of moving target tracking in the line trajectory using the adaptive
flocking control algorithm (34). Figure 7 shows the results of velocity matching
among agents (a, a’), connectivity (b, b’) and error positions between the CoM
(black/darker line) and the target (tracking performance) (c, c’) of both flocking
control algorithms (34) and (22), respectively. To compare these algorithms we
use the same initial state (position and velocity) of mobile agents. By comparing
these figures we see that by applying the adaptive flocking control algorithm (34)
the connectivity, similar formation and tracking performance are maintained when
the network passes through the narrow space between two obstacles (two red/dark
circles) while the existing flocking control algorithm (22) could not handle these

Flocking Control Algorithms for Multiple Agents 73

Infrared Cameras (1-12)

Rigid body of 7 Rovio Robots

Rigid body of 2 obstacles

Fig. 4 Experimental setup.

0 100 200 300 400 500 600
-200

-150

-100

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500
-200

-150

-100

-50

0

50

100

150

200

0 50 100 150 200 250 300 350 400 450 500
-200

-150

-100

-50

0

50

100

150

200

Fig. 5 Snapshots of the mobile agent network (a) when the mobile agents form a network, (b)
when the mobile agents avoid obstacles, (c) when the mobile agents get stuck in the narrow
space between two obstacles. These results are obtained by using algorithm (22).

220 230 240 250 260 270

-20

-15

-10

-5

0

5

10

15

20

25

100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

325 330 335 340 345 350 355 360 365

-20

-15

-10

-5

0

5

10

15

20

385 390 395 400 405 410 415 420 425 430 435

-25

-20

-15

-10

-5

0

5

10

15

20

100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

250 300 350 400 450 500 550 600

-150

-100

-50

0

50

100

150

535 540 545 550 555 560 565 570 575

-15

-10

-5

0

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

365 370 375 380 385 390

-8

-6

-4

-2

0

2

4

6

8

10

12

100 150 200 250 300 350 400 450

-150

-100

-50

0

50

100

150

��� ��������

�
��
�
�
�
�
�

���� ��������

�
��
�
�
�
�
�

���� ��������

�
��
�
�
�
�
�

���� ��������

�
��
�
�
�
�
�

���� ��������

�
��
�
�
�
�
�

���� ��������

�
��
�
�
�
�
�

��� ��������

�
��
�
�
�
�
�

��� ��������

�
��
�
�
�
�
�

��� ��������

�
��
�
�
�
�
�

��� ��������

�
��
�
�
�
�
�

Fig. 6 Snapshots of the mobile agent network (a) when the mobile agents form a network,
(b, c) when the mobile agent network shrinks to avoid obstacles, (d) when the mobile agents
successfully passed through the narrow space between two obstacles, (e) when the mobile
agents recover the original size. (a’, b’, c’, d’, e’) are closer look of (a, b, c, d, e), respectively.
These results are obtained by using our adaptive flocking control algorithm (34).

74 H.M. La and W. Sheng

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

0 200 400 600 800 1000 1200 1400 1600 1800
0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.2

0.4

0.6

0.8

1

Fig. 7 Velocity matching among agents, connectivity, and error of positions between the
CoM and the moving target in (a, b, c), respectively using our adaptive flocking control algo-
rithm (34), (a’, b’, c’) using the algorithm (22).

a) b) c)

f) e) d)

7 robots have to sink the size of the

network to pass through the narrow

space between two obstacles

Fig. 8 Snapshots of adaptive flocking control with 7 Rovio robots using our adaptive flock-
ing control algorithm (34). (a) 7 robots are randomly distributed. (b) 7 robots form a lattice
formation. (c) 7 robots begin to shrink the size of the network. (d) 7 robots pass through the
narrow space between 2 obstacles. (e) 7 robots begin to recover the size of the network. (f) 7
robots completely recover the size of the network.

Flocking Control Algorithms for Multiple Agents 75

-1000 -500 0 500 1000 1500
-5000

0

5000

-1000 -500 0 500 1000 1500
-5000

0

5000

-1000 -500 0 500 1000 1500
-5000

0

5000

-1000 -500 0 500 1000 1500
-5000

0

5000

-1000 -500 0 500 1000 1500
-5000

0

5000

-1000 -500 0 500 1000 1500
-5000

0

5000

-1000 -500 0 500 1000 1500
-5000

0

5000

X (mm)

Y
 (
m

m
)

real trajectory

simulation trajectory

real trajectory

simulation trajectory

real trajectory

simulation trajectory

real trajectory

simulation trajectory

real trajectory
simulation trajectory

real trajectory

simulation trajectory

real trajectory

simulation trajectory

-1000 -500 0 500 1000 1500
-4000

-3000

-2000

-1000

0

1000

2000

3000

X (mm)

Y
 (
m

m
)

Fig. 9 Trajectories of 7 robots are obtained by using the adaptive flocking control algorithm
(34).

problems. In Figures 6 when the network enters the small gap between two obsta-
cles its size is shrunk gradually in order to pass this space, then the network size
grows back gradually when it passed. Therefore the connectivity and similar forma-
tion are maintained.

Figure 8 shows the snapshots (a to f) of the experiment result for 7 Rovio robots
using our adaptive flocking algorithm (34). The results look similar with the simu-
lation result in Figure 6. Figure 9 (Left) shows the trajectories of 7 robots in simu-
lation, and Figure 9 (Right) compares the trajectories of 7 robots in both simulation
and experiment.

6.3 Flocking Results in Noisy Environments

The parameters used in this simulation are specified as follows:
- Parameters of flocking: number of agents = 50 (randomly distributed in the

square area of 120 x 120 size); a = b = 5; the active range r = 19; ε = 0.1 for the σ -
norm; h = 0.2 for the bump functions (φnew

α (z),φα (z)); h = 0.9 for the bump function
(φβ (z)). The desired distance for the algorithms (22) and Multi-CoM-Cohesion, d =
16. For the Multi-CoM-Shrink algorithm, rw = 3.4, hence d = r − 2rw = 19− 2×
3.4 = 12.2.

- Parameters of target movement:
Case 1: The target moves in a sine wave trajectory: qt = [50+50t, 295−50sin(t)]T

with 0 ≤ t ≤ 6.

76 H.M. La and W. Sheng

0 20 40 60 80 100 120
100

120

140

160

180

200

220

x (pos)

y
(p

os
)

100 150 200 250 300 350 400
150

200

250

300

350

400

 X (POS)

Y
 (P

O
S

)

50 100 150 200 250

150

200

250

300

350

400

X (POS)

Y
 (

P
O

S
)

0 20 40 60 80 100 120

100

150

200

250

300

350

400

X (POS)

Y
 (

P
O

S
)

20 40 60 80 100 120

150

200

250

300

350

X (POS)

Y
 (

P
O

S
)

50 100 150 200 250

200

250

300

350

400

450

X (POS)

Y
 (

P
O

S
)

100 150 200 250 300 350

200

250

300

350

400

X (POS)

Y
 (
P

O
S

)

0 20 40 60 80 100 120
100

120

140

160

180

200

220

x (pos)

y
(p

os
)

0 20 40 60 80 100 120
100

120

140

160

180

200

220

x (pos)

y
(p

os
)

100 150 200 250 300 350

200

250

300

350

400

X (POS)

Y
 (

P
O

S
)

50 100 150 200 250

200

250

300

350

400

X (POS)

Y
 (

P
O

S
)

10 20 30 40 50 60 70 80 90 100 110
150

200

250

300

350

400

X (POS)

Y
 (

P
O

S
)

Fig. 10 Snapshots of agents when they are randomly distributed (a, e, i), and when they form
a network and track a target (red/dark line) moving in a sine wave trajectory (b, c, d; f, g, h;
j, k, l), where (a, b, c, d) are for the algorithm (22), (e, f, g, h) are for the Multi-CoM-Shrink
algorithm, and (i, j, k, l) are for the Multi-CoM-Cohesion algorithm.

Case 2: The target moves in a circle trajectory: qt = [310− 160cos(t), 255 +
160sin(t)]T with 0 ≤ t ≤ 4.

- The noise used in the simulation is Gaussian with zero mean and a variance
of 1.

Figures 10 and 11 show the results of of the moving target (red/dark line) tracking
in the sine wave and circle trajectories, respectively in noisy environments for three
algorithms, (22), Multi-CoM-Shrink and Multi-CoM-Cohesion. Especially, Figures
10(a, b, c, d) and 11(a, b, c, d) are for the flocking control algorithm (22). Figures
10(e, f, g, h) and 11(e, f, g, h) are for the proposed flocking control algorithm Multi-
CoM-Shrink. Figures 10(i, j, k, l) and 11(i, j, k, l) are for the proposed flocking
control algorithm Multi-CoM-Cohesion .

To compare our proposed flocking control algorithms, Multi-CoM-Shrink and
Multi-CoM-Cohesion with the existing flocking algorithm (22), we use the same
initial state (position and velocity) of the mobile agents. Figure 12 shows the results
of the tracking performance and the connectivity, respectively: (a, c) are for the
flocking control algorithm (22), (b, d) are for the Multi-CoM-Shrink flocking control
algorithm, and (e, f) are for the Multi-CoM-Cohesion flocking control algorithm.
Comparing the results in these figures we clearly see that:

Flocking Control Algorithms for Multiple Agents 77

100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

X (POS)

Y
 (

P
O

S
)

160 180 200 220 240 260 280 300 320

250

300

350

400

450

X (POS)

Y
 (P

O
S

)

120 130 140 150 160 170 180 190 200

220

240

260

280

300

320

340

360

X (POS)

Y
 (

P
O

S
)

0 20 40 60 80 100 120
100

120

140

160

180

200

220

x (pos)

y
(p

os
)

40 60 80 100 120 140 160 180 200 220
150

200

250

300

350

X (POS)

Y
 (

P
O

S
)

140 160 180 200 220 240 260 280 300 320 340

250

300

350

400

450

500

X (POS)

Y
 (P

O
S

)

100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

X (POS)

Y
 (
P

O
S

)

0 20 40 60 80 100 120
100

120

140

160

180

200

220

x (pos)

y
(p

os
)

0 20 40 60 80 100 120
100

120

140

160

180

200

220

x (pos)

y
(p

os
)

110 120 130 140 150 160 170 180 190 200

200

220

240

260

280

300

320

340

360

X (POS)

Y
 (P

O
S

)

150 200 250 300

260

280

300

320

340

360

380

400

420

440

460

X (POS)

Y
 (
P

O
S

)

100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

X (POS)

Y
 (P

O
S

)

Fig. 11 Snapshots of agents when they are randomly distributed (a, e, i), and when they form
a network and track a target (red/dark line) moving in a circle trajectory (b, c, d; f, g, h; j,
k, l), where (a, b, c, d) are for the algorithm (22), (e, f, g, h) are for the Multi-CoM-Shrink
algorithm, and (i, j, k, l) are for the Multi-CoM-Cohesion algorithm.

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

for circle trajectory

for sine wave trajectory

Iterations

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

for circle trajectory

for sine wave trajectory

Iterations

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

for circle trajectory

for sine wav e trajectory

Iterations

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

for circle trajectory

for sine wav e trajectory

Iterations

200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

1.2

for circle trajectory

for sine wave trajectory

Iterations

200 400 600 800 1000 1200 1400
0

20

40

60

80

100

120

140

for circle trajectory

for sine wave trajectory

Iterations

Fig. 12 The tracking performance results (error between the CoM and target positions):
(a) is for the algorithm(22), (b) is for the Multi-CoM-Shrink algorithm, and (c) is for the
Multi-CoM-Cohesion algorithm. The connectivity is evaluated by the C(t) value: (d) is for
the algorithm (22), (e) is for the Multi-CoM-Shrink algorithm, and (f) is for the Multi-CoM-
Cohesion algorithm.

78 H.M. La and W. Sheng

• For the flocking control algorithm (22): The tracking performance has big er-
rors, and it makes the target out of the center of the network. In addition, the
connectivity is lost, or the network is broken (C(t) < 1).

• For the Multi-CoM-Cohesion algorithm: The tracking performance has small er-
rors. In addition, the agents can quickly form a network (only five iterations) and
then maintain connectivity (C(t) = 1).

• For the Multi-CoM-Shrink algorithm: The tracking performance also has small
errors, and the connectivity is maintained after six iterations. However, the size
of the network is smaller than that of the Multi-CoM-Cohesion flocking control
algorithm, and each agent has more neighbors because each agent tries to reduce
the distance to its neighbor in order to keep connection to them.

For more details about these results please see some video files and their summary
of these results which are available at our ASCC Lab’s website.

htt p : //ascc.okstate.edu/pro jectshung.html

7 Conclusion and Future Work

In this paper, we considered the problem of controlling a group of mobile agents
to track a target in cluttered and noisy environments, respectively. First, an adap-
tive flocking control algorithm is designed to enable mobile agents to track and
observe the moving target more effectively in cluttered environments while main-
taining their similar formation and connectivity. This means that all mobile agents
in the network can surround the target closely which will allow them to observe the
target easily for recognition purposes. Second, in noisy environments, two flocking
control algorithms, Multi-CoM-Shrink and Multi-CoM-Cohesion, are proposed. In
the Multi-CoM-Shrink algorithm our approach is to shrink the size of the network
by reducing the distance among agents. In the Multi-CoM-Cohesion algorithm our
approach integrates local position and velocity cohesion feedbacks in oder to deal
with the noise. The stability of the Multi-CoM-Cohesion algorithm is investigated
based on the Lyapunov approach. Also, the network connectivity preservation is im-
proved, and collision avoidance among agents is guaranteed in both cluttered and
noisy environments.

References

1. Tanner, H.G., Jadbabai, A., Pappas, G.J.: Flocking in fixed and switching networks. IEEE
Transactions on Automatic Control 52(5), 863–868 (2007)

2. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

3. Reynolds, C.: Flocks, birds, and schools: A distributed behavioral model. In: Com-
puter Graphics, ACM SIGGRAPH 1987 Conference Proceedings, Anaheim California,
vol. 21(4), pp. 25–34 (1987)

4. Levine, H., Rappel, W.J., Cohen, I.: Self-organization in systems of self-propelled parti-
cles. Phys. Review. E. 63, 017101–017104 (2000)

Flocking Control Algorithms for Multiple Agents 79

5. Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A.: Mutual interactions, potentials,
and individual distance in a social aggregation. J. Math. Biol 47, 353–389 (2003)

6. Couzin, I.D., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective memory and
spatial sorting in animal groups. J. Theor. Biol 218, 1–11 (2002)

7. Su, H., Wang, X., Lin, Z.: Flocking of multi–agents with a virtual leader. IEEE Transac-
tions on Automatic Control 54(2), 293–307 (2009)

8. Olfati-Saber, R.: Distributed tracking for mobile sensor networks with information driven
mobility. In: Proceedings of the 2007 American Control Conference, pp. 4606–4612
(2007)

9. La, H.M., Sheng, W.: Flocking control of a mobile sensor network to track and observe
a moving target. In: Proceedings of the 2009 IEEE International Conference on Robotics
and Automation (2009)

10. Ogren, P., Fiorelli, E., Leonard, N.E.: Cooperative control of mobile sensor networks:
Adaptive gradient climbing in a distributed environment. IEEE Transactions on Auto-
matic Control 49(8), 1292–1302 (2006)

11. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switch-
ing topology and time–delays. IEEE Transactions on Automatic Control 49(9), 1520–
1533 (2004)

12. Olfati-Saber, R., Alex Fax, J., Murray, R.M.: Consensus and cooperative in networked
multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)

13. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials, and coordinated control
of groups. In: Proceedings of the 40th IEEE Conference on Decision and Control, pp.
2968–2973 (2001)

14. Liu, Y., Passino, K.M.: Stable social foraging swarms in a noisy environment. IEEE
Transactions on Automatic Control 49(1), 30–44 (2004)

15. Rovio robot, http://www.wowwee.com/en/support/rovio
16. VICON motion system, http://www.vicon.com/

http://www.wowwee.com/en/support/rovio
http://www.vicon.com/

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 81–103.
springerlink.com © Springer-Verlag Berlin Heidelberg 2011

Genetic Stigmergy

Joshua Brandoff and Hiroki Sayama*

Stigmergy has long been studied and recognized as an effective system for self-
organization among social insects. Through the use of chemical agents known as
pheromones, insect colonies are capable of complex collective behavior often be-
yond the scope of an individual agent. In an effort to develop human-made sys-
tems with the same robustness, scientists have created artificial analogues of
pheromone-based stigmergy, but these systems often suffer from scalability and
complexity issues due to the problems associated with mimicking the physics of
pheromone diffusion. In this chapter, an alternative stigmergic framework called
‘Genetic Stigmergy’ is introduced. Using this framework, agents can indirectly
share entire behavioral algorithms instead of pheromone traces that are limited in
information content. The genetic constructs used in this framework allow for new
avenues of research, including real-time evolution and adaptation of agents to
complex environments. Experiments are performed using genetic stigmergy as an
indirect communication framework for a simulated swarm of robots tasked with
mapping an unknown environment. The robots are able to share their behavioral
genes through environmentally distributed Radio-Frequency Identification cards.
It was found that robots using a schema encouraging them to adopt lesser used be-
havioral genes (corresponding with novelty in exploration strategies) can gener-
ally cover more of an environment than agents who randomly switch their genes,
warranting further research to develop its potential.

1 Background: Stigmergy in Natural and Social Systems

Originally described by Pierre Huber in 1810 (Holldobler and Wilson, 2009) and
named by Pierre-Paul Grassé in 1959 (White, 2005), stigmergy is a system of

*Joshua Brandoff
Museum of Mathematics
e-mail: brandoff@momath.org

Hiroki Sayama
Collective Dynamics of Complex Systems Research Group
Binghamton University, State University of New York
e-mail: sayama@binghamton.edu

82 J. Brandoff and H. Sayama

coordination whereby collective action is achieved through indirect interactions
between agents via modifications to their local environment. Unlike many pres-
ently engineered human-made systems, stigmergic systems are able to self-
organize through simple local interactions and without the guidance of a central
coordinator. Stigmergy relies upon a number of interacting feedback loops that de-
fine how agents and their environment change as a result of interaction (Figure 1).

Each agent possesses internal and external states, with the former invisible to
the perception of other agents. Agents are able to perceive and modify their envi-
ronment through a (usually) small number of sensors and actuators. Guiding the
agent is a controller program that modifies an agent’s actions depending on the
sensed local environment and the agent’s internal state. In addition, the controller
program itself may be guided by a separate program that changes the agent’s in-
teraction dynamics themselves as a function of time or other internal information.

Fig. 1 Flow-chart describing the feedback loops in a stigmergic process (based on figure in
Parunak (2006a), p. 164).

In nature, stigmergy is most visible in social insects, which have graced the

Earth for at least 50 million years. More than 90% of the signals used in commu-
nication by these insects are through chemicals called pheromones, which can
trigger various behaviors in other insects of the same species depending on their
type and intensity (Holldobler and Wilson, 2009). Through the process of natural
selection, these insects gained the ability to create simple “algorithms” that can
use pheromone traces to collectively achieve beneficial actions. These collective
actions are “satisficial” rather than optimal in nature. The term “satisficing” is de-
fined as the achievement of an adequate or satisfactory outcome rather than the
best possible outcome (Simon, 1956). In nature, it is usually impossible to acquire
the amount of information necessary to achieve a globally optimal solution (i.e.
finding the best food source in the entire forest as opposed to one that is “good
enough”). Social insects have evolved stigmergic communication to find the most
efficient way to complete a task rather than the best way.

The stunning amount of organization possible through pheromonal stigmergy
means colonies of social insects can act as a type of superorganism, a term
often used by evolutionary biologist E.O. Wilson (Holldobler and Wilson, 2009)

Genetic Stigmergy 83

to describe the emergence of complex collective behavior at a higher scale than
that of an individual organism. Up until Grassé’s formal introduction of stig-
mergy, this kind of collective behavior was thought impossible without the guid-
ance of a central controller. It has since attracted the interest of scientists who
wish to learn how local stimuli like pheromones are “organized in space and time
to ensure the emergence of a coherent adaptive structure and to explain how social
insects could act independently yet respond to stimuli provided through the com-
mon medium of the environment of the colony” (White, 2005).

While stigmergy is apparent in organisms as diverse as bacteria, slime-molds,
and fish (White, 2005), ants have emerged as a primary species of study. Ants
have a set of internal “algorithms” that allow them to modify their local environ-
ments based on what is immediately apparent (mostly through the use of phero-
mones) (Holldobler and Wilson, 2009), such as the dead bodies of their kin. Ant
species Lasius niger and Pheidole pallidula are known for building cemeteries
through the use of pheromonal stigmergy. If dead ants are initially scattered ran-
domly throughout an environment, their living relatives will “smell” them and
start clustering them together (Dorigo, Bonabeau & Theraulaz, 2000). These clus-
ters emerge because of positive and negative feedback loops, which are intrinsic
parts of any stigmergic process (Holland & Melhuish, 1999; White, 2005). An ant
will tend to put more bodies where bodies already exist because the collective
“smell” of larger clusters attracts the living ants. Such clustering indicates that
small differences in the initial concentration of pheromones can be amplified over
time. Another example of this is seen with ant foraging (Holldobler and Wilson,
2009). While initially the search for food sources is somewhat random, phero-
mone “trails” left by ants returning from good sources will be reinforced as other
ants join to take their share. The stronger the pheromone trail gets, the more ants
follow it until the pathways to less plentiful resources diminish and disappear.

Like ants, termites can use similar “winner-takes-all” stigmergic processes to
build nests. Termites may initially deposit pheromone-impregnated soil pellets
randomly, but the probability of depositing another mud ball in a given location
increases with the sensed presence of other mud balls and associated pheromones
(Backers, Holland & Deneubourg, 1994; Dorigo, Bonabeau & Theraulaz, 2000).
Eventually, mud columns emerge that are further altered through stigmergic proc-
esses resulting from the interaction of various concentrations of chemical phero-
mones, water vapor and carbon dioxide.

Wasps and bees use a combination of pheromones and vision to build complex
nests out of hexagonal modules. They can recognize elements of nest construction
in process and then, using a small number of internal rules, augment the existing
“construction site” in a given way. For instance, Theraulaz et. al. found that with
nest building in bees, the probability of adding a cell to a three-wall site is about
ten times higher than the case of a two-wall site (Theraulaz & Bonabeau, 1999).
After one insect leaves, another can come take its place and make another adjust-
ment using the same internal algorithm with a slightly different local environment.
Through the collective interaction of hundreds or thousands of wasps or bees, a
full nest structure can emerge.

84 J. Brandoff and H. Sayama

Stigmergic processes are by no means limited to social insects; examples of
stigmergy exist in the human world as well. Holland and Melhuish describe a sim-
ple example where several drivers are attempting to negotiate a muddy track. If
one car finds the mud in an area on the track too deep, his deep trail marks will act
as a sign that alerts other conscientious drivers to avoid that area (Holland & Mel-
huish, 1999). More refined examples include social networking services like
Wikipedia and YouTube, where consumer posts change the “environment of in-
terest” around a piece of media which may, in turn, attract the attention of other
users (Parunak, 2006a). Presently, scientists and engineers are continuing to de-
sign and develop engineered systems that mimic the dynamics of successful stig-
mergic systems seen in nature. By focusing on the collective actions of relatively
identical classes of agents, they hope to remove the need for processes to be per-
formed by highly specialized (and costly) agents and increase robustness to sys-
tem failure in more mission-critical applications.

2 Related Work on Artificial Stigmergy

In recent years, stigmergic frameworks have been applied to everything from the
routing of data in mobile telecom (Roth & Wicker, 2003) and Peer-to-Peer net-
works (Mamei and Zambonelli, 2005), to data mining (Ramos & Abraham, 2004)
and even the development of military swarm robots (White, 2005). The dynamics
of these systems are often closely modeled after the physics of pheromone disper-
sal seen in termites and ants. Agents in these systems can deposit different types
of “virtual pheromones” in their local environments which can be physical, simu-
lated, or even network constructs (White & Salehi-Abari, 2008) where pheromone
concentrations can be assigned to nodes or edges. Just like real pheromones, these
virtual analogues can be programmed to decay over time. Agents themselves can
be programmed to deposit these pheromones at varying rates and increase or de-
crease their sensitivities depending on the nature of the application or desired
interaction between agents (Parunak, 2006b).

Entire classes of ant algorithms have been created to use simulated pheromones
and ant-like agents to solve distributed optimization and control problems such as
vehicle routing, network routing and graph coloring. Ant algorithms are especially
adept at addressing Traveling Salesman problems (TSP) where an agent has to
find a closed tour of minimal length while hitting every city or node in a network.
Ant System (AS), Ant Colony Optimization (ACO) (Dorigo, Bonabeau & Therau-
laz, 2000) and Ant-Based Control (ABC) (White, 2005) are just a few of the many
types of ant algorithms created to address TSP where virtual ants leave an artifi-
cial pheromone trail on the edges that they have crossed once they finish a tour.
These pheromones increase the likelihood that other ants will follow the trail and
find a destination. Pheromone evaporation is employed to lessen the influence of
initial trails (when there is no existing pheromone to influence decision-making)
and to allow the system to forget trails that prove ineffective. In one application
where an ABC scheme is used for routing calls in a telephone network, “older”
virtual agents are even programmed to leave less pheromone over time if it
takes them longer to get to their destination (White, 2005). The group size and

Genetic Stigmergy 85

pheromone dispersion must also be programmed carefully to prevent an over-
whelming amount of pheromone to be deposited along paths. These algorithms
often produce more optimal paths in TSP-systems than those found using general-
purpose algorithms like evolutionary computation or simulated annealing.

Other stigmergic frameworks, such as Ulieru et. al’s functional Stigmergic Medi-
cal Diagnostic System (SMDS) (Ulieru & Unland, 2006) can be applied to problems
that don’t fall in the same class as TSP. SMDS is designed to get more accurate
medical diagnoses through collective intelligence, rather than relying on the limited
or biased perception of one agent (or doctor). First, a request for diagnosis is placed
on a virtual blackboard environment where different virtual “diagnosing agents”
(specialized for certain classes of ailments) can decide to make an attempt at classi-
fying the problem if it is in their sphere of expertise. If one agent positively comes to
a conclusion, its decision is registered in a tree-like format on the blackboard. Other
agents, with more specific expertise in that diagnosis class, can then come, examine
the existing tree and see if they should tag onto the diagnosis hierarchy (if their own
pheromone type is similar enough to the one on a given branch of the tree). The fin-
ished diagnosis tree can then be used for more correct medical care.

In the physical realm, swarm robotics has been a prominent test bed for stigmergic
frameworks since indirect communication can help ameliorate problems with inter-
ference. With swarm robotics, many small agents with limited processing capabilities
can interact to achieve beneficial collective behavior. While attempts have been made
to use real pheromones in these systems (Wagner, Lindenbaum & Bruckstein, 1999),
much research involves the use of virtual pheromones distributed in a physical me-
dium, such as Radio-Frequency Identification (RFID) cards or tags. Robots can read
and write information to these objects and the information they create can be read or
changed later by other robots or humans (Mamei, Quaglieri & Zambonelli, 2006;
Mamei & Zambonelli, 2007). Most RFID-robotic research focuses on using the cards
as a means of localizing objects in the environment (Kim & Chong, 2007, Mamei,
Quaglieri & Zambonelli, 2006; Mamei & Zambonelli, 2005; Mamei & Zambonelli,
2007; Milella, Cicirelli & Distante, 2008; Patil et. al., 2008) or tracking the location
or pose of the robot itself (Bekkali, Sanson & Matsumoto, 2007; Chen et. al., 2007;
Howard, Parker & Sukhatme, 2006; Lee & Lee, 2006; Roussos et. al., 2007) or some
combination thereof using SLAM (Simultaneous Localization and Mapping) tech-
niques (Kleiner & Dornhege, 2007; Kleiner, Prediger & Nebel, 2006), where passive
RFID tags are used by robots to build a “map” of a volatile environment and use it to
orient themselves or find human victims (Carbone, Finzi & Orlandini, 2008). In other
mapping applications, virtual pheromones are used to prevent trajectory overlap by
individual robots (Mamei & Zambonelli, 2007) in an attempt to increase perform-
ance. Much of this work focuses on decreasing localization error through statistical
techniques like Kalman filtering (Bekkali, Sanson & Matsumoto, 2007), fuzzy infer-
ence techniques (Milela, Cicirelli & Distante, 2008) or even through the use of multi-
ple directional RFID antennas (Kim & Chong, 2007).

Other collective robotics applications, such as construction, have a decreased em-
phasis on pheromone manipulation but still make use of the spatial sorting and cluster-
ing seen in the building of termite nests and bee hives (Holland & Melhuish, 1999). A
physical nest building implementation was designed where robots were programmed

86 J. Brandoff and H. Sayama

to grip thin circular “pucks” and drop them into clusters (Backers, Holland & Deneub-
ourg, 1994). In this instance, robots essentially ignore each other and only focus on
manipulation of local pucks. Interactions in such construction environments can be
made more complex by giving the building materials themselves the ability to “talk
back” to the robots that are handling them (Werfel & Nagpal, 2006). This is potentially
useful in situations where the system must be guided towards a specific structural lay-
out. For other situations where certain classes of structures are more desirably than
others, researchers such as Bonabeau et. al. attempt to use genetic algorithms to under-
stand which agent instructions produce “better” structures (based on a pre-defined fit-
ness) and what those instructions have in common (Bonabeau et. al., 2000).

As has already been established, the primary benefit of a pheromone-based
stigmergic framework is robustness. If individual agents fail, their “traces” or lo-
cal information will often still be left behind in the environment and not immedi-
ately lost (White, 2005), giving the system time to adapt. In addition, no matter
how large or dynamic an environment gets, because agents only interact locally
they are not overwhelmed (Parunak, 2006a). No agent necessarily needs a global
picture because they can work very effectively in parallel to produce a collective
behavior (Ramos & Merelo, 2004).

As reviewed above, the robustness of pheromone-based stigmergy in nature has
encouraged many researchers to design analogous frameworks in man-made systems.
Unfortunately, many of these researchers fall victim to the biomimicry version of
“not being able to see the forest for the trees”. Efforts to artificially mimic the physics
of pheromone diffusion has led to new classes of problems needing to be solved, such
as error minimization (Herianto, Sakakibara, & Kurabayashi, 2007; Parunak, 2006b)
and the management of “autocatalytic snowball effects” (Dorigo, Bonabeau &
Theraulaz, 2000), where, due to runaway feedback processes, virtual pheromones
concentrate or diffuse too quickly for proper behaviors or structures to emerge. The
cost of true-to-nature artificial analogues of pheromonal stigmergy may be the very
robustness they were designed to sustain. If the scientific community instead takes a
step back and uses nature as a guide instead of a blueprint, it can open the door for
more creative stigmergic frameworks. Thus, researchers may be better served by fo-
cusing less on stigmergy as it exists in nature and more on stigmergy “as it could be.”

Stigmergy “as it could be” means developing stigmergic frameworks that are
inspired by, but do not currently exist in, nature. It is an attempt to reap the bene-
fits associated with natural stigmergy without replicating its constraints. Natural
stigmergy evolved in the context of the natural world, not in the world of artifi-
cially created systems. Thus, it is reasonable to conclude that the most robust or
effective forms of stigmergy for a given human-made system may only conceptu-
ally resemble their natural cousins.

3 Proposed Framework

In this chapter, we propose one possible man-made alternative that combines ele-
ments of natural stigmergy with the information constructs used in genetic evolution.
The goal of this hybridized framework—called “genetic stigmergy”—is to encapsu-
late behaviors in a fully portable, gene-based fashion that frees them from the identity

Genetic Stigmergy 87

of an individual agent. Such a framework allows for a degree of collective adaptabil-
ity impossible in natural stigmergy, artificial or otherwise, and thus its potential de-
serves to be explored.

We define genetic stigmergy as an indirect communication framework where
agent behavioral algorithms—represented as collections of virtual “genes”—can
be shared, in part or whole, via an external medium (Figure 2). The discretization
of algorithms into spatially distributable genes provides a uniform “currency” that
agents can use to quickly swap in behaviors that are found to be locally adaptive
by other agents. This “hot swapping” allows for real-time optimization of collec-
tive behavior without prior knowledge of an environment. Genetic stigmergy dif-
fers from pheromonal stigmergy in that the information exchange is not limited by
the paradigm of chemical physics and the problems associated with its mimicry. In
addition, the genetic information exchanged is more complex than a simple trace
or marker and lends itself very easily to evolutionary manipulation.

Fig. 2 Schematic illustration of conventional stigmergy (top) and genetic stigmergy (bottom).

88 J. Brandoff and H. Sayama

An agent may write its own genes to the external medium (heredity), potentially
with some minor changes added to them at small probability (allowing for varia-
tion). When another agent accesses genes from the medium, it may adopt the genes
as its own code (allowing for selection) at another probability that may depend on
the “openness” of the previous genes as well as the quality of the new genes written
in the medium. Through artificial analogs of heredity, variation and selection, it is
possible to include evolutionary processes in a genetic stigmergy framework through
such techniques as genetic algorithms or evolutionary programming.

The framework may also be implemented in such a fashion that no restrictions
will be imposed on evolvable agent behavior. In such an open-ended system, it is
expected that “selfish” individual behaviors that are good at spreading within a
population but inconsistent with collective interest may emerge and thereby re-
duce the collective performance of the population. The removal of non-
cooperative phenotypes may be achieved by specifically programming the proto-
cols to remove them from the swarm, or by implicitly suppressing the spread of
non-cooperative phenotypes through evolutionary means. External thresholds may
also be applied that limit when an agent has access to locally-stored information,
or when an agent can use accessed information to modify its own algorithms.

Genetic stigmergy stands apart from other forms of artificial stigmergy by mov-
ing away from “stigmergy as it is” in nature to “stigmergy as it could be.” Much
of the present research in artificial stigmergy focuses on mimicking the mechanics
of pheromonal communication (Dorigo, Bonabeau & Theraulaz, 2000; Herianto,
Sakakibara, & Kurabayashi, 2007; Parunak, 2006b; Wagner, Lindenbaum &
Bruckstein, 1999). While artificial, pheromonal-based stigmergy has the benefit of
being modeled after a natural process with millions of years of evolution behind it,
researchers often get bogged down in attempts to mimic the physics of pheromone
deposition and diffusion, sometimes adding unnecessary complexity to the system.
In addition, genetic stigmergy potentially allows for greater persistence of agent
states and thus greater robustness. If an individual agent learns a unique way of
solving a problem, it can deposit its entire behavioral algorithm (or a representa-
tion of it) for other agents to use if it is lost or destroyed.

4 Experiments

Here we present preliminary experimental results to explore the efficacy of ge-
netic stigmergy in the context of a swarm robotics application. A specific scenario
we adopt in the experiments is the collective task achievement by swarm robots
that communicate with each other indirectly via Radio-Frequency Identification
(RFID) cards distributed in the environment.

4.1 Experimental Scenario

The recent development of economical, high-capacity RFID cards has opened up a
new opportunity for stigmergy. Through these cards, robotic agents can dynami-
cally exchange complex logical information, such as a genetic code that controls

Genetic Stigmergy 89

their behavioral rules. Dynamic, real-time modification of agents’ behavioral
“genes” may increase the adaptability of a swarm to a complex system, which is
useful for tasks such as collective exploration of an unknown environment. Cer-
tain behaviors may be more adaptive in various areas of an environment (i.e. bet-
ter at navigating the area more quickly). Using genetic stigmergy, robotic agents
do not have to communicate with each other directly and would not need compli-
cated algorithms to manage the physics of pheromone diffusion. RFID cards can
be distributed throughout an environment for robots to record their genetic codes.

The goal of the experiments is to demonstrate that the genetic stigmergy
framework will provide improvements in a swarm’s mapping performance beyond
those arising from the random switching of genes. Robots are assumed to carry a
multi-locus chromosome where genes at each locus control a robot’s reaction to
different types of external stimuli. Multiple alleles of the genes at each locus allow
for much greater diversity in the robot’s response to a specific type of stimuli than
was possible in the single-gene experiments reported earlier (Brandoff & Sayama,
2009). RFID cards densely distributed over a space are able to record the fre-
quency of genes deposited to them. Different implementations of genetic stig-
mergy are tested where robots are encouraged to adopt (“Majority Seeking”) or
avoid (“Minority Seeking”) frequently used genes or randomize their chromo-
some. In addition, the robustness of genetic stigmergy is demonstrated by explor-
ing the different implementations in environments of varying complexity and
through the usage of “accessibility windows” that control when a robot can access
the genetic information on a card.

4.2 Simulation Platform

For the experiments, a flexible simulation platform is designed using the Python
programming language to quickly and effectively examine the swarm’s explora-
tion behavior in environments of varying complexity. The generated virtual envi-
ronment is composed of OPEN-ROBOTS, open-source RFID-capable mobile
robots designed by Abe Howell’s Robotics (Howell, 2008), as well as RFID cards
and a to-scale environment within which the robots interact (Figure 3). By using
the Python-based platform on a multiple-CPU system, four simulations can be run
at up to 3600x real-time with different parameter settings.

Robots and obstacles are represented as circular constructs with appropriate
radii (7.25 cm for robots, approximately corresponding with their physical coun-
terparts). When visual confirmation is needed to confirm that an algorithm is
working properly, the freely available VPython package is incorporated into the
simulator. For aesthetic purposes, obstacles and robots are given arbitrary height
values (Figure 3). A robot will register the existence of an obstacle if its “sensor
circumference” (a radius of 18.5 cm beyond its virtual embodiment) overlaps with
the circumference of a given obstacle or a robot or passes beyond the boundary of
the environment. Collisions with RFID cards are calculated by testing to see if the
robot’s center is within the perimeter of a given card.

90 J. Brandoff and H. Sayama

4.3 Experimental Setup

Because the environments of the simulations are meant to mimic homes or facto-
ries with dense, non-overlapping grids of RFID cards in the floor, approximate
coverage is determined by counting the total number of RFID cards the swarm in-
teracts with. For all experiments, a swarm of 10 robots are initialized with ran-
domized initial positions in the lower left corner of a square (also see Figure 3), 54
square-meter environment filled with a grid of 6,840 RFID cards (approximately
130 cards per square-meter or 12 cards per square-foot).

Every environment also contains a total of 10 square-meters of obstacles. How
this allotment is divided is controlled by a control parameter that sets the maxi-
mum possible radius for a given obstacle. The radius of a newly generated obsta-
cle is determined by choosing a number from a uniform distribution between zero
and the “max radius” parameter: “R”. If R is low, many more obstacles are needed
to reach the allotted overall obstacle area. If R is high, fewer obstacles are needed
to reach this allotment. Experiments are performed using R values ranging from
1.0 meter to 2.0 meters in increments of 0.2 meters. Some examples are shown in
Figure 4.

All objects are placed in open areas inside the environment and do not overlap
with other objects are barriers. Robots must be spaced such that their “sensor
circumference” does not overlap with those of other robots. These random initiali-
zations are to prevent any anomalies that would arise from any given static
environment.

Fig. 3 An “aerial view” of 10 swarm robots (in yellow) exploring a randomly generated vir-
tual environment with a dense grid of RFID cards embedded in the floor. The blue cylin-
ders are obstacles and RFID cards change color depending on their current state.

Genetic Stigmergy 91

Fig. 4 Examples of environments with R values between 0.2 meters (left) and 2 meters
(right). Environments with smaller R values are considered complex to navigate, while en-
vironments with larger R values are considered simple.

Robots carry a chromosome with three loci, each containing a gene that con-

trols the robot’s reaction to environmental stimuli (see Table 1). The first locus
contains genes that control how a robot reacts when it senses a potential collision
with another robot. The second locus contains genes that control how a robot re-
acts to potential collisions with a static obstacle or the environmental boundaries.
The third locus controls how a robot behaves when it does not sense any obstacles
or other robots in its vicinity. Alleles can be combined in 128 different ways, giv-
ing the robot much more algorithmic flexibility than in the single-gene experi-
ments (Brandoff & Sayama, 2009). At the beginning of each simulation, all ten of
the robots are initiated with chromosome (1,1,0). The resulting phenotype causes
the robots to rotate away from other robots and obstacles, but to otherwise move
forward. This chromosome encourages the robots to spread out across the envi-
ronment instead of staying clumped up in the corner.

The RFID grid acts as a distributed counter system that records the number of
times cards have been hit by robots and what genes each robot was carrying.
Every time a robot is within range of an RFID card, the RFID card will increment
its ‘hit’ counter and counters corresponding to the individual alleles the robot is
carrying. Over time, the RFID card will generate a tally of locally used allele fre-
quencies. Whether a robot can access the information on a card depends upon ac-
cessibility windows, another control parameter. These windows are implemented
to prevent a robot from adopting new genes too rapidly and essentially “jittering”
in place by instantaneously switching behaviors. As indicated by Figure 5, a robot
can only modify its chromosome based on the RFID card’s information when the
card’s hit counter is within a “hit window” defined by the experimenter. Depend-
ing on the experiment, a window can open after between 1 and 9 hits and can
close after between 2 and 10 hits. Figure 6 describes the interaction algorithm be-
tween robots and RFID cards. While robots can only access information within a
given window, they can “reset” the cards global hit counter to zero after the acces-
sibility window has closed.

92 J. Brandoff and H. Sayama

Table 1 Breakdown of the chromosomal structure controlling each robot’s behavior and the
potential genes that control behaviors in specific situations. Note that robots move and ro-
tate in discrete increments, 9.2 cm and 92.1 degrees respectively (the maximum distance a
physical OPEN-ROBOT could move or rotate in a single second).

Allele
Locus 1
(Reactions to
robots)

Locus 2
(Reactions to
Obstacles)

Locus 3
(Reactions to Open
Space)

0 Rotate towards robot
Rotate towards
obstacle

Move forwards once

1 Rotate away from
robot

Rotate away from
obstacle

Move backwards
once

2 Back away from
robot

Back away from
obstacle

Move forwards twice
and rotate left

3 Randomly choose
between rotating
towards, away or
backing away from
robot

Randomly choose
between rotating
towards, away or
backing away from
obstacle

Move forwards twice
and rotate right

4 Move backwards
twice and rotate left

5 Move backwards
twice and rotate right

6 Randomly choose
between rotating left,
right or moving
forwards once

7 Randomly choose
between rotating left,
right or moving
backwards once

Fig. 5 Access to RFID cards is controlled by virtual “hit counters” stored on the card.
Depending on the number of hits, an RFID card can cycle between one of several different
accessible or inaccessible states (and colors).

Genetic Stigmergy 93

To determine the most efficacious implementation of the genetic stigmergy
framework, four robot-RFID card interaction paradigms are tested: “Minority Seek-
ing”, “Majority Seeking”, “Randomization” and “No Threshold”. The “Minority”
and “No Threshold” paradigms both encourage robots to adopt the genes least fre-
quently recorded to a card, but the “Minority” paradigm restricts card access to a
given accessibility window. “Majority Seeking” and “Randomization” also use ac-
cessibility windows but “Majority Seeking” encourages robots to adopt the genes
most frequently recorded to a card, while “Randomization” forces the robots to ran-
domize their genes (and ignore the information on a card). The effectiveness of each
paradigm is tested by performing a series of 30 Monte Carlo simulations for each
experimental setting. Simulations are performed at 3600x real-time, so a simulated
hour-long trial takes less than one real second.

Fig. 6 Flowchart describing interaction between a robot and an RFID card in a single en-
counter event under the “Minority Seeking” interaction paradigm, where a robot adopts the
least used combination of behavior genes based on the information available on the card.
Here, the “accessibility window” refers to the card hit thresholds within which a robot can
access the genetic information stored on the RFID card.

4.4 Results

Results are summarized in Figure 7, in which the performance of the “Minority
Seeking”, “Majority Seeking”, “Randomization” and “No Threshold” paradigms

94 J. Brandoff and H. Sayama

are compared using a fixed accessibility window of 5 to 10 card hits for values of
R from 1.0 meters to 2.0 meters. The “Majority Seeking” and “No Threshold”
paradigms produce dismal performance, while the “Minority Seeking” and “Ran-
domization” paradigms achieve the highest average performance. Table 2 shows
that, with the exception of R = 1.6 meters, the “Minority” paradigm is the best per-
forming implementation (though their performance differences did not reach a sta-
tistically significant level for most cases).

Closer examination of the “Minority Seeking” paradigm allows for a greater un-
derstanding of how it influences robot behaviors over the course of a simulation and
compares to the “Randomization” paradigm. Figures 8(a)-(c) provide tentative evi-
dence that the swarm is collectively reacting to plateaus in the acquisition of “newly
found cards” by increasing the rate at which they diversify their behavior and then
decreasing it when the plateaus are overcome. In plot (a), for example, card discov-
ery plateaus around t = 40 s until t=50 when the rate of behavioral change increases.
Eventually, the rate of new card discovery increases as well, out of a plateau.

Fig. 7 Relative average performance (% floor coverage) of different implementations of
genetic stigmergy with varying obstacle size R. Each value is an average of 30 independent
runs. All implementations use accessibility windows of 5-10 hits, except for the “No
Threshold” which allows robots to immediately use genetic information on the RFID cards.

Table 2 Average percentage of cards covered for each R. The highest coverage values for
each R are in bold red lettering. The p-values of one-sided mean difference tests between
coverage results of the Minority Seeking and Randomization conditions are also provided.

R (m) 1.0 1.2 1.4 1.6 1.8 2.0
Minority Seeking 56.0 60.5 61.6 61.9 63.5 64.8
Randomization 55.7 57.3 60.2 62.2 62.0 62.4
One-sided p-value .435 .042* .160 .420 .213 .084

Majority 3.9 8.0 5.4 4.3 6.1 4.7
No Threshold 5.3 2.1 4.1 5.5 2.4 3.5

(m)

Genetic Stigmergy 95

 (a)

(b)

(c)

Fig. 8 Time-series plots of the cumulative number of changes in robot behaviors and the
cumulative number of cards discovered by robots over 100 seconds at accessibility window
5-10 and R = 1.0 (a), 1.6 (b) and 2.0 (c) meters. Plateaus in accumulation are visible at
various time scales where the rate of card discovery or behavioral change slows down. The
“Behavioral Changes” curve is blue and the “Cards Discovered” curve is purple.

96 J. Brandoff and H. Sayama

Fig. 9 Average gene usage for all robots at locus 1 (controlling reactions to other robots) for
entire simulation (1 hour). Selected R values 1.2, 1.4 and 2.0 are used with accessibility
windows of 5-10. Colors correspond to the four different possible alleles such that red indi-
cates “rotate towards”, green indicates “rotate away”, orange indicates “back away” and
blue indicates “random reaction”.

Genetic Stigmergy 97

Fig. 10 Average gene usage for all robots at locus 2 (controlling reactions to static obsta-
cles) for entire simulation (1 hour). Selected R values 1.2, 1.4 and 2.0 are used with acces-
sibility windows of 5-10. Colors correspond to the four different possible alleles such that
red indicates “rotate towards”, green indicates “rotate away”, orange indicates “back away”
and blue indicates “random reaction”.

98 J. Brandoff and H. Sayama

Fig. 11 Average gene usage for all robots at locus 3 (controlling motions when no obsta-
cles/robots) for the entire simulation (1 hour). Selected R values 1.2, 1.4 and 2.0 are used
with accessibility windows of 5-10. Colors correspond to the eight different possible alleles
such that red, green, blue, cyan, yellow, orange, pink, and purple correspond to “move for-
wards”, “move backwards”, “move forwards twice and rotate left”, “move forwards twice
and rotate right”, “move backwards twice and rotate left”, “move backwards twice and ro-
tate right”, “random rotate or forwards motion”, and “random rotate or backwards motion”
respectively (see from bottom up).

Genetic Stigmergy 99

Figures 9, 10 and 11 all show the average gene usage for all robots at each locus
averaged at each second of the overall simulation. The values R = 1.2 and 2.0 meters
are used because at these values, the “Minority Seeking” paradigm outperforms the
“Randomization” paradigm by the largest margins (3.2% and 2.4% respectively).
The value R = 1.4 meters is used as an intermediary value for continuity. The ini-
tialization of all robots with the (1,1,0) chromosome (causing them to rotate away
from other robots and obstacles and move outwards), appears to skew the initial al-
lele distribution on all loci. The patterns of allele distribution at each locus act as
signatures that help differentiate the “Minority Seeking” paradigm from the “Ran-
domization” paradigm, where the alleles are always uniformly distributed regardless
of initial conditions.

5 Discussion

Among the four paradigms tested in the experiments, the “Minority-Seeking”
paradigm encourages local diversity of genetic material, while the “Majority-
Seeking” paradigm encourages a “winner-takes-all” course of events. The “Major-
ity-Seeking” paradigm produces poor coverage results on average, while the
“Minority-Seeking” paradigm and “Randomization paradigm” produce similarly
high coverage rates.

Figure 8 demonstrates that the “Minority Seeking” paradigm (unlike the “Ran-
domization” paradigm) allows robots to collectively react to plateaus in new card
discovery by more rapidly modifying their genes. However, while the plateaus de-
scribed in the results are promising, further experimentation is necessary to
determine the existence and strength of any casual relationship present. Also, due
to the variance in robot positions, environmental complexity and environmental
layout, the scale of plateaus may vary widely over time and space. This may make
causal confirmation more difficult.

Figures 9, 10 and 11 help explain why the “Minority Seeking” paradigm out-
performs the “Randomization” paradigm. At loci 1 and 2 (Figures 9 and 10),
which control how robots react to other robots and obstacles, there appears to be
an initial bulge of gene usage associated with the “back away” behavior. This may
indicate that the “back away” behavior is useful in finding new RFID cards in the
beginning of a simulation (preventing robots from avoiding the gene). After some
time, the distribution settles so that all genes are more-or-less equally represented
among the swarm at any given time. At locus 3 (Figure 11), the “move forwards”
and “move backwards” genes are initially represented somewhat more than other
alleles. Later, the allele distribution also settles, but the “move forwards” gene
maintains a relatively larger presence in the swarm.

In the “Randomization” paradigm, the haphazard shuffling of genes would, on
average, produce an allele distribution such that all genes were represented
equally. In the “Minority Seeking” paradigm, this even distribution only appears
that the end of the simulations. Even then, the distribution is often slightly skewed
in favor of effective genes (such as “move forwards”). The fact that the “Minority
Seeking” paradigm allows for adaptive genes to be “over-represented” in the allele

100 J. Brandoff and H. Sayama

distribution is likely the reason why it slightly outperforms the “Randomization”
paradigm.

While the genetic stigmergy framework appears promising, several potential
flaws or confounding errors in the experimental design must be considered. In the
experiments, the order in which robots acknowledge sensor readings indicating
obstacles may affect their overall motion. The construction of the simulated envi-
ronments themselves may pose an issue. The fact that many RFID cards are hid-
den under obstacles or locked away in permanently inaccessible regions (in the
highly complex environments) may skew coverage results. Also, the uniformity of
the obstacles (all where circular) and consistently square environment shape may
not be fully representative of environments in the real world.

In an effort to more convincingly demonstrate the potential of genetic stig-
mergy, the framework must be thoroughly examined in the context of other sim-
pler and more complex techniques to determine its true usefulness in practical ap-
plications. More advanced techniques may affect better performance at the cost of
increased time and effort spent developing individual learning processes. How-
ever, this cost-benefit compromise may change depending on the environment and
local constraints placed on the system. In addition, a more robust testing of genetic
stigmergy under a unified experimental framework is necessary. Future experi-
ments should run multiple Monte Carlo simulations for all algorithm paradigms,
varying the density of RFID cards (from very sparse to highly dense) and varying
environmental sizes with different arrangements and shapes of obstacles. Only by
thoroughly testing each parameter in a consistent fashion can it be determined
which parameter(s) is/are most important in the successful implementation of ge-
netic stigmergy. Also, aside from space filling, it is likely there are other engineer-
ing applications where genetic stigmergy can more clearly differentiate itself from
other techniques. Other application possibilities should be thoroughly explored to
determine what is genetic stigmergy’s “killer application”.

Potential improvements to the system include time-stamping the genetic informa-
tion deposited to RFID cards or “smarter” RFID cards that can exchange informa-
tion locally with other RFID cards to help coordinate robots (similar to Werfel &
Nagpal, 2006, where blocks and robots can communicate). In addition, allowing for
multiple simultaneous accessibility windows in different areas of the map depending
on local need (as in Dorigo, Bonabeau & Theraulaz, 2000) may help if, and only if,
the swarm can autonomously determine the proper thresholds on the fly. Allowing
for genetic evolution within the robotic swarm may help in this regard. Through the
introduction of such operators as mutation, novelty can be introduced to the system
that helps robots discover more adaptive behavior or ways of interacting with the
environment.

Individualized manipulation of accessibility windows through the use of evolu-
tionary operators may be the most important factor in significantly improving the
performance of genetic stigmergy. The importance of thresholds has already been
thoroughly examined by Dorigo and Bonabeau (Dorigo, Bonabeau & Theraulaz,
2000), who note that simple threshold models have limitations due to their fixed
nature and are only valid over short-time scales. In the longer term (perhaps as a
function of time), accessibility windows should change and differentiate to allow

Genetic Stigmergy 101

for agent specialization. Future work will determine if such mutability of thresh-
olds is feasible or realistic.

6 Conclusion

Genetic stigmergy holds great promise as an alternative to pheromonal-based arti-
ficial stigmergy for the achievement of collective action through self-organization.
Unlike pheromonal-based stigmergy, genetic stigmergy is not mired in unneces-
sary complications due to attempts to mimic chemical diffusion. Preliminary ex-
perimentation indicates that genetic stigmergy may be an effective tool in such
fields as swarm robotics, but much theoretical work remains to be done to demon-
strate this framework’s robustness in robotics and elsewhere. In addition, the im-
plementation of behavior meta-rules to control agent access to local information
appears necessary to direct a swarm’s emergent behavior to useful ends. These in-
teraction restrictions are even more important in a system where agents can evolve
their behaviors in real-time. Future work and further experimentation will address
these issues and help develop genetic stigmergy into a viable platform for decen-
tralized communication.

To acquire the underlying code for the simulations in this chapter, please con-
tact Joshua Brandoff at josh.brandoff@gmail.com.

References

Howell, A.: Abe Howell’s Robotics (2008), http://www.abotics.com
Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: stigmergy

and collective robotics. In: Artificial Life IV, pp. 181–189. MIT Press, Cambridge
(1994)

Bekkali, A., Sanson, H., Matsumoto, M.: RFID indoor positioning based on probabilistic
RFID map and Kalman filtering. In: WIMOB 2007: Proceedings of the Third IEEE In-
ternational Conference on Wireless and Mobile Computing, Networking and Communi-
cations, p. 21. IEEE, Washington, DC, USA (2007)

Bonabeau, E., Silvain, G., Snyers, D., Kuntz, P., Theraulaz, G.: Three- dimensional archi-
tectures grown by simple “stigmergic” agents. BioSystems 56, 13–32 (2000)

Brandoff, J., Sayama, H.: Cultural transmission in robotic swarms through RFID cards. In:
Proceedings of the Second IEEE Symposium on Artificial Life (IEEE- CI-ALIFE 2009),
pp. 171–178. IEEE, Nashville (2009)

Carbone, A., Finzi, A., Orlandini, A.: Model-based control architecture for atten-tive robots
in rescue scenarios. Autonomous Robots 24(1), 87–120 (2008)

Chen, P.Y., Chen, W.T., Wu, C.H., Tseng, Y.C., Huang, C.F.: A group tour guide system
with RFIDs and wireless sensor networks. In: IPSN 2007: Proceedings of the 6th Inter-
national Conference on Information Processing in Sensor Networks, pp. 561–562.
ACM, New York (2007)

Dorigo, M., Bonabeau, E., Theraulaz, G.: Ant algorithms and stigmergy. Future Generation
Computer Systems 16(9), 851–871 (2000)

Herianto, S.T., Kurabayashi, D.: Artificial pheromone system using RFID for navigation of
autonomous robots. Journal of Bionic Engineering 4(4), 245–253 (2007)

102 J. Brandoff and H. Sayama

Holland, O., Melhuish, C.: Stigmergy, self-organisation, and sorting in collective robotics.
Artificial Life 5(2), 173–202 (1999)

Holldobler, B., Wilson, E.O.: Superorganism: The Beauty, Elegance and Strange-ness of
Insect Societies. W.W. Norton & Company, Inc., New York (2009)

Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogene-ous mobile
robot team: exploration, mapping, deployment and detection. International Journal of
Robotics Research 25(5-6), 431–447 (2006)

Kim, M., Chong, N.Y.: RFID-based mobile robot guidance to a stationary target. Mecha-
tronics 17(4–5), 217–229 (2007)

Kleiner, A., Dornhege, C.: Real-time localization and elevation mapping within urban
search and rescue scenarios: field reports. Journal of Field Robotics 24(8-9), 723–745
(2007)

Kleiner, A., Prediger, J., Nebel, B.: RFID technology-based exploration and SLAM for
search and rescue. In: Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), Beijing, China, pp. 4054–4059.

Lee, H.J., Lee, M.C.: Localization of mobile robot based on radio frequency identification
devices. In: SICE-ICASE International Joint Conference, pp. 5934–5939 (2006)

Li, J., Poulton, G., James, G.: Agent-Based Distributed Energy Management. In: Orgun,
M.A., Thornton, J. (eds.) AI 2007. LNCS (LNAI), vol. 4830, pp. 569–578. Springer,
Heidelberg (2007)

Mamei, M., Quaglieri, R., Zambonelli, F.: Making tuple spaces physical with RFID tags.
In: SAC 2006: Proceedings of the ACM Symposium on Applied Computing, pp. 434–
439. ACM, New York (2006)

Mamei, M., Zambonelli, F.: Physical deployment of digital pheromones through RFID
technology. In: AAMAS 2005: Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, pp. 1353–1354. ACM, New York
(2005)

Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with RFID tags. ACM
Transactions on Autonomous and Adaptive Systems 2(2), 4 (2007)

Milella, A., Cicirelli, G., Distante, A.: RFID-assisted mobile robot system for mapping and
surveillance of indoor environments. Industrial Robot 35(2), 143–152 (2008)

Parunak, H.V.D.: A survey of environments and mechanisms for human-human stigmergy.
In: Environments for Multi-Agent Systems II, vol. 3830, pp. 163–186 (2006a)

Parunak, H.V.D.: Evolving swarm agents in real time. In: Genetic Programming Theory
and Practice III, ch. 2, pp. 15–32 (2006b)

Patil, A., Munson, J., Wood, D., Cole, A.: Bluebot: Asset tracking via robotic lo-cation
crawling. Computer Communications 31(6), 1067–1077 (2008)

Ramos, V., Abraham, A.: Evolving a stigmergic self-organized data-mining (2004),
http://arxiv.org/abs/cs.AI/0403001

Ramos, V., Merelo, J.J.: Self-organized stigmergic document maps: environment as a
mechanism for context learning (2004), http://arxiv.org/abs/cs.AI/0412075

Roth, M., Wicker, S.: Termite: ad-hoc networking with stigmergy. In: Global Tele-
communications Conference, GLOBECOM 2003, vol. (5), pp. 2937–2941. IEEE, Los
Alamitos (2003)

Roussos, G., Papadogkonas, D., Taylor, J., Airantzis, D., Levene, M., Zoumboulakis, M.:
Shared memories: a trail-based coordination server for robot teams. In: RoboComm
2007: Proceedings of the 1st International Conference on Robot Communication and
Coordination, pp. 1–4. IEEE Press, Piscataway (2007)

Genetic Stigmergy 103

Simon, H.A.: Rational choice and the structure of the environment. Psychological Re-
view 63(2), 129–138 (1956)

Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artificial Life 5(2), 97–116
(1999)

Ulieru, M., Unland, R.: A Stigmergic approach to medical diagnostics. In: MAS*BIOMED
2006: Second International Workshop on Multi-Agent Systems for Medicine, Computa-
tional Biology and Bioinformatics, pp. 87–103. AAMAS, Hakodate (2006)

Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-robots using
evaporating traces. IEEE Transactions on Robotics and Automation 15, 918–933 (1999)

Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intelligent Sys-
tems 21(2), 20–28 (2006)

White, T.: Expert assessment of stigmergy: a report for the Department of National De-
fence. Technical report A382144. Department of Computer Science. Carleton Univer-
sity, Ottawa, ON, Canada (2005)

White, T., Salehi-Abari, A.: A swarm-based crossover operator for genetic programming.
In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computa-
tion. ACM Press, New York (2008)

From Ants to Robots and Back: How Robotics
Can Contribute to the Study of Collective
Animal Behavior

Simon Garnier

Abstract. Swarm robotics has developed partly from biological discoveries that
have been made on the organization of animal societies during the last thirty years.
In this article, I review some of the ways robotics contributes in return to the study
of collective animal behavior. I argue that robotics can bring significant improve-
ments in this field, from a technical, conceptual and educational point of view. I
base my discussion on five observations I have made while collaborating with com-
puter scientists: robots require a complete specification; robots are physical entities;
robots implement new technologies; robots can be inadvertent sources of biological
inspiration; and robots are ”cool” gadgets.

1 Introduction

Swarm robotics is a scientific discipline that emerged during the 90’s at the intersec-
tion between two research fields: collective robotics and swarm intelligence. From
collective robotics, swarm robotics gets the challenges. Its main goal is to design
control algorithms to coordinate the activity of several robots simultaneously. Ide-
ally, this coordination should lead to the achievement of a global task that a single
robot could not perform alone, at least in a reasonable amount of time [16, 31, 85].
From swarm intelligence, swarm robotics gets the coordination principles that can
serve as a basis to design the aforementioned algorithms. These principles empha-
size local communications, distributed control and self-organization to generate col-
lective behaviors that can be very complex, or solve problems that are far beyond
the cognitive abilities of the individual robots [9, 53].

Historically, swarm intelligence, and hence swarm robotics, is born from and
partly fed by insightful studies about the organization of animal groups, and in

Simon Garnier
Department of Ecology and Evolutionary Biology, Princeton University,
Princeton, NJ 08544, USA
e-mail: sgarnier@princeton.edu

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 105–120.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

sgarnier@princeton.edu

106 S. Garnier

particular insects societies [9, 14]. Insect colonies, ranging from a few animals to
millions of individuals, display fascinating behaviors that combine efficiency with
both flexibility and robustness [14]. From the traffic management on a foraging net-
work [20, 29, 12, 80], to the building of efficient structures [10, 11, 62, 76, 78],
along with the dynamic task allocation between workers [6, 75, 24, 43], examples
of complex and sophisticated behaviors are numerous and diverse among social
insects [8, 14, 26].

From the early works in the 80’s to the most recent advances [14, 38], the coor-
dination mechanisms used by social animals, and social insects in particular, have
proved to be a valuable source of inspiration to solve various complex problems
[9, 32, 33, 49]. Among the most common tasks that can be solved by bio-inspired
robotics swarms (see Fig. 1), one can find the aggregation of robots [40] or of ob-
jects [5], the collective sorting of items [58], the dispersion of robots [71], the col-
laborative exploration of an environment [18], the localization of a target [47], the
collaborative transport of objects [15], the collective selection of a place [37], the
unsupervized allocation of tasks [54] and the coordination of displacements [67].
If today most of the studies on artificial swarm intelligent systems are less closely
related to a biological model as it was in the past [57, 72], the major role played by
biological discoveries to the emergence and the development of the field is largely
acknowledged [9].

Fig. 1 Examples of swarm behaviors achieved with groups of robots. (a) Aggregation of
objects [5]. (b) Sorting of objects [58]. (c) Dispersion of robots [71]. (d) Collaborative explo-
ration of an environment [18]. (e) Localization of a target [47]. (f) Collaborative transport of
objects [15].

The inverse statement, that robotics contributed to new discoveries about the
functioning of animal societies, is however less common. As a biologist, I worked
these last seven years with computer scientists in various laboratories. They most of

From Ants to Robots and Back 107

the time expressed a high interest when I was talking about my biological studies.
But speaking of these robotics collaborations with biologists did not always receive
the same warm welcome. The criticisms targeted mostly the interest of robotics
studies for producing new biological knowledge. They are often seen as over sim-
plified version of animal experiments, or as slow and inconvenient alternatives to
mathematical modelling and computer simulations. Robots are perceived as“cool”
gadgets, but not as useful tools to study collective behaviors in social animals.

In this article, I discuss several arguments that support the interest of robotics for
the study of social organization in biology. These arguments are based on a brief
review of the literature on robotics and collective animal behavior, and on my own
experience at the frontier between these two fields. My discussion is focused on five
particular points that can provide biologists with new tools and new insights to in-
vestigate animal sociality. First, robots require a complete specification and, as in
animals, their behavior strongly depends on the way they perceive and process in-
formation. Second, robots are physical entities that can interact with the real world,
and hence with animals. Third, robots implements new technologies that can im-
prove the collection of behavioral data. Fourth, robots can be source of biological
questions as they adapt bio-inspired algorithms to their constraints and goals. And
finally, robots are indeed “cool” gadgets that attract the attention of people.

2 Why Can Robots Be Useful for the Study of Social Behaviors?

2.1 Robots Require a Complete Specification

The study of collective behaviors in large animal groups makes a significant use
of computer simulations and mathematical modelling [14]. Amé et al. [1], for in-
stance, used a mean field modelling approach to explore collective decision making
and choice optimality in the cockroach Blattella germanica. Couzin and Franks [20]
studied traffic organization in the army ant Eciton burchelli using individual based
computer simulations. More recently, the development of GPU computing drove
simulations of complex biological systems to another scale [21], with the possibil-
ity to simulate millions of interacting virtual animals, as in Guttal et al. [45] for
instance.

These methods are very efficient to understand the link that exists between the
activities of individual animals and the global behavior of the group. They mostly
rely on a probabilistic description of the animals’ individual behaviors. As such they
are a simplified description of the characteristics of the animals and of the environ-
ment where they live. Besides the obvious gains in performance and mathematical
tractability these simplifications introduce, they are also useful to generalize to other
species the coordination principles found in a particular one.

One could argue that such a reduced description would, however, skip over the
differences between species that are peculiar products of their evolution and of their

108 S. Garnier

interactions with the environment. Argentine ants Linepithema humile and leaf cut-
ter ant Atta colombica both use pheromones to establish trails between their nest
and food sources. But while leaf cutter ants stick to a few long lasting trails leading
to permanent food sources, Argentine ants rather establish temporary trails that are
more adapted to their opportunistic foraging behavior [48]. The general behavior of
these two species is the same (laying and following a trail), but slight variations in
the pheromone composition, the accuracy to follow the trail [25] or the distribution
of resources [23] in the environment are sufficient to generate striking differences.
Similarly, it has been shown in bird flock models that changing the way neighbors
are taken into account can have a high impact on the stability of the flock. Using
topological relationships has been proved to be more efficient in this respect than
using geometrical ones [4]. Thus by reducing an animal to a point for instance, and
its perceptual apparatus to a circle around him, we somehow put aside the fact that
the behavior of an animal is not the product of a simple finite state machine, but a
more complex outcome of a perceptual, cognitive and locomotor activity [59, 26].

Today’s biology emphasizes an integrative view of nature [13, 51]. The function-
ing of a cell, an organ or an organism are now observed in relation to higher and
lower levels of organization. A cell is integrated in a tissue, which is integrated in
an organ, which is integrated in an organism, and so on. And each event that affects
one of these levels of organization can potentially cascade to the others. The same
integrative view can be apply to the study of animal behavior. In this integrative
perspective, robotics could play an important role. Because a robot has to be com-
pletely specified to work properly, it forces biologists to think about social behaviors
in relation to individual skills of the animal. Several studies have already made use
of robots to investigate the link between the individual behavior and the perceptual,
cognitive and motor abilities of an animal (see for a review [82, 83, 84]). Ayers
and Witting [2], for instance, have designed a robotics model of the American lob-
ster Homarus americanus, including both biomechanical and neurological aspects
of the animal. As another example, the Psikharpax project [60] aims at developing a
robotics rat which sensory-motor equipment and neural control architecture imitate
those of real rats. This integrative approach remains to be further extended toward
the social level [3], where the exact nature of the social information perceived by an
animal is not well understood.

2.2 Robots Are Physical Entities

Robots are not virtual. They are physical entities, and as such they interact with
a real environment. This quality, that no simulation or mathematical model will
ever have, allows their integration in experiments with real animals. In the 90’s and
early 2000’s, the collaboration between biologists and computer scientists led to
several groundbreaking works with human operated robots. For instance, Michelsen
et al. [61] used an electromechanical device imitating the well known bee waggle
dance. They studied the critical parts of this dance that are essential for the bee to
communicate the position of a food source. Similar approaches have been used by

From Ants to Robots and Back 109

Böhlen [7] and Fernandez-Juricic [34] to study social communication in birds, and
by Reaney et al. [68] to look at courtship signals that females take into account to
choose a male in the crab Uca mjoebergi.

More recently, the use of reactive robots has opened new perspectives in the
study of social behaviors. These new devices are able to adapt their behavior to the
behavior of the animals they are interacting with. Varying the rules of interaction in
the robot and observing the changes in the behavior of the animals is an interesting
solution to systematically explore the social repertoire of the species under study.
Moreover, these devices proved to be able to control the behavior of an animal
group (see Fig. 2). They can act as reactive repellents (as a sheepdog would) [79] or,
camouflaged appropriately, as fake conspecifics that the animals in the group would
follow [46].

Fig. 2 Example of an experiment mixing animals (here cockroaches Periplaneta americana)
and robots (here Insbots [74]). Reprinted from [46]

The use of robots in animal experiments is by far the most acknowledged and
direct contribution of robotics to the study of social behaviors. In some way, they
are modern and sophisticated versions of the lures used, for instance, by Tinbergen
from the early 50s [77]. Maybe because of this historical connection, the use of
robots as advanced lures has been largely accepted in the behavioral biology com-
munity, while pure robotics experiments often fail to convince it of their biological
relevance.

2.3 Robots Implements New Technologies

When studying the behavior of an animal, gathering data, processing them and gen-
erating models from them can be a long lasting job. When it comes to studying the

110 S. Garnier

behavior of multiple individuals at once, and to identifying all the interactions be-
tween them, the task may seem overwhelming. But as claimed by Balch et al. [3],
computer scientists can offer their help on these tasks. In particular, they have at
their disposal technical advances likely to facilitate the collection of the large sets
of data required in the study of collective animal behavior.

Among them, computer vision algorithms have led to the development of vari-
ous softwares that automate several tasks in recording behavior. Two of these tasks
that are particularly time consuming are animal tracking and behavior labeling. Sev-
eral solutions already existed to track the movement of one individual or to recog-
nize its behaviors [81, 64, 65]. But the development of collective robotics led them
to a new level, with the ability to track dozens of animals at the same time and
to automatically labels all the concurrent interactions between them [19, 3] (see
Fig. 3). Even in conditions where an accurate tracking is not possible (as, for in-
stance, in large schools of fish or in dense ant trails), optic flow techniques used in
robotics to estimate distances [36, 44, 28, 70] provide a precise estimation of the
global displacement of animals in groups (data unpublished).

Fig. 3 Example of a versatile tracking software, Swistrack [19], that can track both robots
and animals in the same experiment. Source: http://disal.epfl.ch/research/current/leurre/
movies/collectivedecision.avi

Another example of devices to collect data about animal behavior comes from
the introduction of Radio Frequency Identification (RFID) tags in robotics. These
tags allow the development of multi-robot coordination systems where they are used
to detect and store robot traffic data, as ants would lay and follow a pheromone trail
in the wild [56, 55]. This technology is now slowly showing its potential in the

From Ants to Robots and Back 111

study of collective animal behaviors. Attached to the back of insects, RFID tags
allow biologists to precisely detect when an individual enter or exit an area in an
experimental environment. This technique has so far been successfully applied to
the study of social behaviors in ants [69], bumblebees [66] and paper wasps [73].

Biologists have mastered the art of observing and describing nature in details. But
they often lack information about recent technological advances that may simplify
their work. Thanks to their high technological competences, computer scientists are
therefore likely to fill this gap and to provide new tools to answer questions about
social behaviors in animals.

2.4 Robots Can Be Sources of Biological Questions

Natural systems are prolific sources of inspiration for computer scientists. Animal
societies are no exception and there exists numerous examples of artificial systems
inspired from collective animal behaviors [32, 9, 33]. Among them, ant colony op-
timization algorithms [27], particle swarm optimization algorithms [50] and bee
algorithms [49] are probably the most famous. In each of these cases, engineers
started by finding an equivalence between a question they wanted to solve and the
computational properties of a biological system. Then, they adapted the mechanism
at the origin of these biological properties to the constraints of the artificial system
they were working on. During this adaptation phase, they introduced modifications
to the original mechanism that may be seen as inadvertent questions addressed to
biologists.

One example of these inadvertent questions can be found in the Ant Colony Op-
timization (ACO) framework. This optimization system, used to solve the travelling
salesman problem for instance or the routing of information in communication net-
works, is inspired from the route selection mechanism discovered in ants. Virtual
ants move across a network of interconnected nodes and search a route between
two or more of these nodes. Each time an ant finds one of the possible routes, it
lays along its path a virtual pheromone that fades with time and whose intensity is
inversely proportional to the travelling time required to connect the nodes. When a
virtual ant travels within the network and reaches a node, it chooses the next segment
to follow in the network according to two parameters: the amount of pheromone on
each segment and a heuristic weight that represents the intrinsic desirability of each
segment. The higher the values for a segment, the more likely the ant is to choose it.
While the amount of pheromone drives the collective choice of the colony through
an amplification process, the heuristic weighting has been introduced in the algo-
rithm to reduce the probability for the colony to select a loop. This addition greatly
improves the efficiency of ant algorithms in selecting the shortest paths between two
or more nodes in a network [27].

This practical consideration raises a very interesting issue in biology: do real
ants use an equivalent of this heuristic component when moving within their trans-
port networks, namely their underground nests or their foraging trails? We investi-
gated this question in a recent work with Argentine ants [39, 42]. We observed the

112 S. Garnier

Fig. 4 Simulation results of ants foraging in a network of pheromone trails whose bifurca-
tion geometry is mostly symmetrical during foodbound trips and mostly asymmetrical during
nestbound trips. When ant choice at a bifurcation is biased by the bifurcation geometry, the
overall foraging efficiency grows three times faster than in the absence of a behavioral bias.
This efficiency gain is explained by the lower probability to select a loop in the network, a
result similar to the one obtained with the introduction of the heuristic value in ACO algo-
rithms. Adapted from [39]

individual behavior of ants while crossing symmetrical and asymmetrical bifurca-
tions in gallery networks. In the absence of orientation cues, ants crossing a sym-
metrical bifurcation selected equally either branch that followed the bifurcation.
On the other hand, 2/3 of the ants reaching an asymmetrical bifurcation chose the
branch that deviates the least from their current heading. We studied with computer
simulations the consequences of this latter bias on the pheromone-based collective
path selection ability of ants. We simulated colonies of ants foraging within a trail
network, the bifurcations of which mimicked those found in natural trail networks
(mostly symmetrical during foodbound trips and mostly asymmetrical during nest-
bound trips). The simulation results show that the foraging efficiency of the colony
is more than three times higher (see Fig. 4) after only 15 minutes when the choice
of the ants was biased at asymmetrical bifurcations. This result can be mainly ex-
plained by the smallest probability for biased ants to select a loop in the network, as
predicted by the ACO framework.

From Ants to Robots and Back 113

This example is not strictly speaking coming from the robotics field. But it illus-
trates nicely how current research on artificial multi-agent systems, where collective
robotics pertains, can loop back to biology. It should encourage biologists to monitor
more carefully this field where unexpected questions can emerge about the nature
of collective animal behaviors.

2.5 Robots Are “Cool” Gadgets

Popularizing science discoveries and concepts is among the everyday tasks of a
scientist. Spreading scientific information can be done, for instance, in the form of a
lecture given at a university, an article in a general public review, an appearance in a
radio or television show, or a demonstration in a science fair or museum. The latter is
by far my favorite, since it allows the scientists and the audience to interact directly.
However, for a scientist working with animals, this type of event can quickly turn
into a nightmare. Ethical and practical questions inherent to the use of animals often
limit the demonstration to the display of a poster or a video. Furthermore animals are
not machines that execute tasks on command and, as a consequence, demonstration
may be restricted to one or two replications a day.

On the contrary, robots are not subject to ethical restrictions and, provided that
their battery is charged, they can work at any time of the day. Moreover, they share
with animals the ability to trigger empathy in human observers, as attested by the
increasing development of so-called “robot pets”. They are therefore an ideal plat-
form to explain concepts in animal behavior, when animals themselves cannot be
used.

With this purpose in mind (among others), I designed with my colleagues an ex-
perimental platform that could demonstrate with robots the mechanism used by ants
to select a route to a resource [41]. These insects lay and follow a pheromone trail
on their way to or from a resource [48]. Initially, several trails can be formed and
amplified by the successive deposits of ants travelling along them. A competition
between the amplification processes on each trail often leads to the selection of one
of them by the colony, in general the shorter one [14]. This mechanism of selec-
tion can be hard to demonstrate to an audience, mostly because ant pheromones are
invisible. In our robotics platform, we therefore replace this chemical signal with a
visual one, each pheromone drop being simulated by a spot of blue light projected on
the ground (see Fig. 5). These spots could accumulate and evaporate, as pheromone
drops would, and eventually form a trail. Our robots were equipped with two light
sensors that mimicked ant antennae and could follow the trail by simply turning
toward the sensor receiving the more light. With this setup, we could reproduce sev-
eral classical and recent results of the literature (data unpublished), as the selection
of the shortest route among two available [22], the ability to redirect a part of the
traffic on another route when the main one is overcrowded [29, 30], or the role of the
geometry of network bifurcations on the foraging efficiency [39]. More importantly,
we could also perform several explanatory demonstrations of these phenomenons to
officials, primary and high school classes and TV crews visiting the laboratory [52].

114 S. Garnier

Fig. 5 Robots Alice [17] following a light trail. Adapted from [41]

If the interest of using such robotics experiments to generate new knowledge can
be discussed (strictly speaking, our experiments confirmed previously published re-
sults), the attractive power that robots exert on human beings, and in particular on
children, makes them interesting tools to explain the mechanisms underlying col-
lective behaviors in animals. They are therefore excellent ambassadors to promote
this field of research.

3 Conclusions

For thirty years, biologists and computer scientists have investigated coordination
mechanisms that allow individuals to perform collectively a task that could not be
achieved by a single one. This question is of particular importance for biologists,
since it concerns the origins and the functioning of sociality in animals and human
beings. For computer scientists, these mechanisms are involved in numerous com-
plex problems ranging from optimization to distributed control. In several occasions,
innovative solutions to these problems came from biological observations of animal
societies. In this article, I tried to show how computer science, and robotics in partic-
ular, can reciprocally be useful to biologists that study collective animal behaviors.

From Ants to Robots and Back 115

Through the development of new tools, computer scientists can facilitate the col-
lection of biological data (section 2.3) or propose original solutions to interact with
animals (section 2.2). But their contribution to the study of collective animal behav-
iors can be more than a practical and technical help. They can also participate to the
development of new ideas and concepts in biology. Robots are integrated platforms,
and as such their behavior is the product of their perceptive, cognitive and motor ca-
pabilities, in relation with their environment. Therefore, they are interesting systems
to combine the different levels of organization that shape collective behaviors (sec-
tion 2.1). Moreover, improvements that engineers bring to bio-inspired solutions
can echo through out the biological world (section 2.4). Finally, the entertaining
and engaging character of robots, associated with the total control of their behavior,
transform them in interesting instruments for educational purposes.

As it has occurred in the past, it is highly probable that biologists and computer
scientists will collaborate in the future. However, the nature of these collaborations
may be different. In the 90’s, when a biologist and a computer scientist were talking
about collective behaviors, their objective was most likely to develop new applica-
tions and algorithms from biological observations. Today, such a collaboration has
an increasing probability to be dedicated to a biological problem instead, as shown
by the success of recent projects [37, 46, 35, 63].

Acknowledgments

The author would like to thank Jennifer K. Peterson and Alexandre Campo for kindly review-
ing this manuscript. Simon Garnier is currently at Princeton University were he is supported
by a Fyssen grant and a Searle Scholar grant (on the behalf of Professor Iain Couzin). His
work cited in this paper was performed while he was at the University of Toulouse (France)
and was partly supported by an European community grant given to the Leurre project under
the Information Society Technologies Programme (1998-2002), contract FET-OPEN-IST-
2001-35506 of the Future and Emerging Technologies arm, by the Programme Cognitique
from the French Ministry of Scientific Research and by a research grant from the French
Ministry of Education, Research and Technology.

References

1. Amé, J.M., Halloy, J., Rivault, C., Detrain, C., Deneubourg, J.L.: Collegial decision mak-
ing based on social amplification leads to optimal group formation. Proceedings of the
National Academy of Sciences of the United States of America 103(15), 5835–5840
(2006), doi:10.1073/pnas.0507877103

2. Ayers, J., Witting, J.: Biomimetic approaches to the control of underwater walking ma-
chines. Philosophical transactions. Series A, Mathematical, physical, and engineering
sciences 365(1850), 273–295 (2007), doi:10.1098/rsta.2006.1910

3. Balch, T., Dellaert, F., Feldman, A., Guillory, A., Isbell, C., Khan, Z., Pratt, S., Stein,
A., Wilde, H.: How Multirobot Systems Research Will Accelerate Our Understand-
ing of Social Animal Behavior. Proceedings of the IEEE 94(7), 1445–1463 (2006),
doi:10.1109/JPROC.2006.876969

116 S. Garnier

4. Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I.,
Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Inter-
action ruling animal collective behavior depends on topological rather than metric dis-
tance: evidence from a field study. Proceedings of the National Academy of Sciences of
the United States of America 105(4), 1232–1237 (2008), doi:10.1073/pnas.0711437105

5. Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: Stig-
mergy and collective robotics, pp. 181–189. MIT Press, Cambridge (1994)

6. Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Annual Review
of Entomology 46(1), 413–440 (2001), doi:10.1146/annurev.ento.46.1.413

7. Böhlen, M.: A robot in a cage. In: Proceedings of IEEE International Symposium on
Computational Intelligence in Robotics and Automation. Monterey, CA (1999)

8. Bonabeau, E.: Self-organization in social insects. Trends in Ecology & Evolution 12(5),
188–193 (1997), doi:10.1016/S0169-5347(97)01048-3

9. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial
systems. Oxford University Press, USA (1999)

10. Buhl, J., Deneubourg, J.L., Grimal, A., Theraulaz, G.: Self-organized digging ac-
tivity in ant colonies. Behavioral Ecology and Sociobiology 58(1), 9–17 (2005),
doi:10.1007/s00265-004-0906-2

11. Buhl, J., Gautrais, J., Solé, R.V., Kuntz, P., Valverde, S., Deneubourg, J.L., Theraulaz,
G.: Efficiency and robustness in ant networks of galleries. The European Physical Journal
B 42(1), 123–129 (2004), doi:10.1140/epjb/e2004-00364-9

12. Burd, M.: Ecological consequences of traffic organisation in ant societies. Phys-
ica A: Statistical Mechanics and its Applications 372(1), 124–131 (2006),
doi:10.1016/j.physa.2006.05.004

13. Cain, C.J., Conte, D.A., Garcia-Ojeda, M.E., Daglio, L.G., Johnson, L., Lau, E.H., Mani-
lay, J.O., Phillips, J.B., Rogers, N.S., Stolberg, N.S., Swift, H.F., Dawson, M.N.: INTE-
GRATIVE BIOLOGY: What Systems Biology Is (Not, Yet). Science 320(5879), 1013a–
1014a (2008), doi:10.1126/science.1157405

14. Camazine, S.: Self-organization in biological systems. Princeton University Press,
Princeton (2001)

15. Campo, A., Nouyan, S., Birattari, M., Groß, R., Dorigo, M.: Negotiation of Goal
Direction for Cooperative Transport, pp. 191–202. Springer, Heidelberg (2006),
doi:10.1007/11839088 17

16. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: Antecedents and
directions. Autonomous Robots 4(1), 7–27 (1997)

17. Caprari, G., Siegwart, R.: Mobile micro-robots ready to use: Alice. In: IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pp. 3295–3300. IEEE, Los
Alamitos (2005)

18. Correll, N., Martinoli, A.: Robust Distributed Coverage using a Swarm of Miniature
Robots. In: Proceedings 2007 IEEE International Conference on Robotics and Automa-
tion, pp. 379–384. IEEE, Los Alamitos (2007), doi:10.1109/ROBOT.2007.363816

19. Correll, N., Sempo, G., De Meneses, Y., Halloy, J., Deneubourg, J.I., Martinoli, A.:
SwisTrack: A Tracking Tool for Multi-Unit Robotic and Biological Systems. In: 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2185–2191
(2006), doi:10.1109/IROS.2006.282558

20. Couzin, I.D., Franks, N.R.: Self-organized lane formation and optimized traffic flow in
army ants. Proceedings of The Royal Society Biological sciences 270(1511), 139–146
(2003), doi:10.1098/rspb.2002.2210

21. Dematté, L., Prandi, D.: GPU computing for systems biology. Briefings in Bioinformat-
ics 11(3), 323–333 (2010), doi:10.1093/bib/bbq006

From Ants to Robots and Back 117

22. Deneubourg, J.L., Goss, S.: Collective patterns and decision making. Ethology, ecology
and Evolution 1(4), 295–311 (1989)

23. Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.M.: The blind leading the blind: Mod-
eling chemically mediated army ant raid patterns. Journal of Insect Behavior 2(5), 719–
725 (1989), doi:10.1007/BF01065789

24. Deneubourg, J.L., Goss, S., Pasteels, J.M., Fresneau, D., Lachaud, J.P.: Self-organization
mechanisms in ant societies (II): Learning in foraging and division of labor. Experientia
Supplementum 54, 177–196 (1987)

25. Deneubourg, J.L., Pasteels, J.M., Verhaeghe, J.C.: Probabilistic behaviour in ants:
A strategy of errors? Journal of Theoretical Biology 105(2), 259–271 (1983),
doi:10.1016/S0022-5193(83)80007-1

26. Detrain, C., Deneubourg, J.L.: Self-organized structures in a superorganism: do ants ”be-
have” like molecules? 3(3), 162–187 (2006), doi:10.1016/j.plrev.2006.07.001

27. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
28. Duchon, A., Warren, W., Kaelbling, L.: Ecological Robotics: Controlling Behavior with

Optic Flow. In: Proceedings of the seventeenth annual conference of the Cognitive Sci-
ence Society, p. 164. Lawrence Erlbaum, Pittsburgh (1995)

29. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.L.: Optimal traffic or-
ganization in ants under crowded conditions. Nature 428(6978), 70–73 (2004),
doi:10.1038/nature02344.1

30. Dussutour, A., Nicolis, S., Deneubourg, J.L., Fourcassié, V.: Collective decisions in ants
when foraging under crowded conditions. Behavioral Ecology and Sociobiology 61(1),
17–30 (2006), doi:10.1007/s00265-006-0233-x

31. Dutta, I., Bogobowicz, A.D., Gu, J.J.: Collective robotics - a survey of control and com-
munication techniques. In: Proceedings International Conference on Intelligent Mecha-
tronics and Automation, pp. 505–510 (2004)

32. Eberhart, R.C., Shi, Y., Kennedy, J.: Swarm Intelligence. Morgan Kaufmann, San Fran-
cisco (2001)

33. Engelbrecht, A.: Fundamentals of computational swarm intelligence. Wiley, New York
(2005)

34. Fernandez-Juricic, E., Gilak, N., McDonald, J.C., Pithia, P., Valcarcel, A.: A dynamic
method to study the transmission of social foraging information in flocks using robots.
Animal Behaviour 71, 901–911 (2006), doi:10.1016/j.anbehav.2005.09.008

35. Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary Conditions for the Emer-
gence of Communication in Robots. Current Biology 17(6), 514–519 (2007)

36. Franceschini, N., Pichon, J.M., Blanes, C., Brady, J.M.: From Insect Vision to Robot
Vision [and Discussion]. Philosophical Transactions of the Royal Society B: Biological
Sciences 337(1281), 283–294 (1992), doi:10.1098/rstb.1992.0106

37. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-Organized Aggrega-
tion Triggers Collective Decision Making in a Group of Cockroach-Like Robots. Adap-
tive Behavior 17(2), 109–133 (2009), doi:10.1177/1059712309103430

38. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence.
Swarm Intelligence 1(1), 3–31 (2007), doi:10.1007/s11721-007-0004-y

39. Garnier, S., Guérécheau, A., Combe, M., Fourcassié, V., Theraulaz, G.: Path selection
and foraging efficiency in Argentine ant transport networks. Behavioral Ecology and
Sociobiology 63(8), 1167–1179 (2009), doi:10.1007/s00265-009-0741-6

40. Garnier, S., Jost, C., Gautrais, J., Asadpour, M., Caprari, G., Jeanson, R., Grimal, A.,
Theraulaz, G.: The embodiment of cockroach aggregation behavior in a group of micro-
robots. Artificial Life 14(4), 387–408 (2008)

118 S. Garnier

41. Garnier, S., Tâche, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in Pheromone Land:
An Experimental Setup for the Study of Ant-like Robots. In: IEEE Swarm Intelligence
Symposium, SIS 2007, pp. 37–44 (2007)

42. Gerbier, G., Garnier, S., Rieu, C., Theraulaz, G., Fourcassié, V.: Are ants sensi-
tive to the geometry of tunnel bifurcation? Animal Cognition 11(4), 637–642 (2008),
doi:10.1007/s10071-008-0153-4

43. Gordon, D.M.: The organization of work in social insect colonies. Nature 380(6570),
121–124 (1996), doi:10.1038/380121a0

44. Green, W.E., Oh, P.Y., Sevcik, K., Barrows, G.: Autonomous Landing for Indoor Flying
Robots Using Optic Flow. In: ASME International Mechanical Engineering Congress,
vol. 2, pp. 1347–1352. ASME, Washington (2003)

45. Guttal, V., Couzin, I.D.: Social interactions, information use, and the evolution of collec-
tive migration. Proceedings of the National Academy of Sciences of the United States of
America, 1–6 (2010) (in press), doi:10.1073/pnas.1006874107

46. Halloy, J., Sempo, G., Caprari, G., Rivault, C., Asadpour, M., Tâche, F., Said, I.,
Durier, V., Canonge, S., Amé, J.M., Detrain, C., Correll, N., Martinoli, A., Mondada,
F., Siegwart, R., Deneubourg, J.L.: Social Integration of Robots into Groups of Cock-
roaches to Control Self-Organized Choices. Science 318(5853), 1155–1158 (2007),
doi:10.1126/science.1144259

47. Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sen-
sors Journal 2(3), 260–271 (2002), doi:10.1109/JSEN.2002.800682

48. Hölldobler, B., Wilson, E.O.: The ants. Belknap Press of Harvard University Press, Cam-
bridge (1990)

49. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. 31(1-
4), 61–85 (2009), doi:10.1007/s10462-009-9127-4

50. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995 -
International Conference on Neural Networks, pp. 1942–1948. IEEE, Piscataway (1948),
doi:10.1109/ICNN.1995.488968

51. Kitano, H.: Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002),
doi:10.1126/science.1069492

52. Kneser, J.: Collective Minds: The Intelligence of Swarms (2009)
53. Kube, C.R., Zhang, H.: Collective Robotics: From Social Insects to Robots. Adaptive

Behavior 2(2), 189–218 (1993), doi:10.1177/105971239300200204
54. Labella, T.H., Dorigo, M., Deneubourg, J.L.: Division of Labor in a Group of Robots

Inspired by Ants’ Foraging Behavior. ACM Transactions on Autonomous and Adaptive
Systems 1(1), 4–25 (2006)

55. Mamei, M., Zambonelli, F.: Spreading pheromones in everyday environments through
RFID technology. In: 2nd IEEE Symposium on Swarm Intelligence, pp. 281–288. Cite-
seer (2005)

56. Mamei, M., Zambonelli, F.: Pervasive pheromone-based interaction with RFID
tags. ACM Transactions on Autonomous and Adaptive Systems 2(2), 4–es (2007),
doi:10.1145/1242060.1242061

57. Martinoli, A.: Collective Complexity out of Individual Simplicity. Artificial Life 7(3),
315–319 (2001)

58. Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: Multi-object clustering
using minimalist robots, pp. 543–552. Springer, Heidelberg (2001), doi:10.1007/3-540-
44811-X 62

59. Menzel, R., Giurfa, M.: Cognitive architecture of a mini-brain: the honeybee. 5(2), 62–
71 (2001)

From Ants to Robots and Back 119

60. Meyer, J., Guillot, A., Girard, B., Khamassi, M., Pirim, P., Berthoz, A.: The Psikharpax
project: towards building an artificial rat. Robotics and Autonomous Systems 50(4), 211–
223 (2005), doi:10.1016/j.robot.2004.09.018

61. Michelsen, A., Andersen, B.B., Storm, J., Kirchner, W.H., Lindauer, M.: How honeybees
perceive communication dances, studied by means of a mechanical model. Behavioral
Ecology and Sociobiology 30(3), 143–150 (1992), doi:10.1007/BF00166696

62. Mikheyev, A.S., Tschinkel, W.R.: Nest architecture of the ant Formica pallide-
fulva: structure, costs and rules of excavation. Insectes Sociaux 51(1), 30–36 (2004),
doi:10.1007/s00040-003-0703-3

63. Mitri, S., Floreano, D., Keller, L.: The evolution of information suppression
in communicating robots with conflicting interests. Proceedings of the National
Academy of Sciences of the United States of America 106(37), 15786–15790 (2009),
doi:10.1073/pnas.0903152106

64. Noldus, L.P.J.J., Spink, A.J., Tegelenbosch, R.A.: EthoVision: a versatile video tracking
system for automation of behavioral experiments. Behavior Research Methods, Instru-
ments, & Computers 33(3), 398–414 (2001)

65. Noldus, L.P.J.J., Trienes, R.J.H., Hendriksen, A.H.M., Jansen, H., Jansen, R.G.: The
Observer Video-Pro: New software for the collection, management, and presentation of
time-structured data from videotapes and digital media files. Behavior Research Meth-
ods, Instruments, & Computers 32(1), 197–206 (2000)

66. Ohashi, K., D’Souza, D., Thomson, J.: An automated system for tracking and identi-
fying individual nectar foragers at multiple feeders. Behavioral Ecology and Sociobiol-
ogy 64(5), 891–897 (2010)

67. Pugh, J., Martinoli, A.: Small-scale robot formation movement using a simple on-board
relative positioning system. In: Proceedings of the International Symposium on Experi-
mental Robotics (2006)

68. Reaney, L.T., Sims, R.A., Sims, S.W.M., Jennions, M.D., Backwell, P.R.Y.: Experiments
with robots explain synchronized courtship in fiddler crabs. Current Biology 18(2), R62–
R63 (2008)

69. Robinson, E.J.H., Richardson, T.O., Sendova-Franks, A.B., Feinerman, O., Franks, N.R.:
Radio tagging reveals the roles of corpulence, experience and social information in
ant decision making. Behavioral Ecology and Sociobiology 63(5), 627–636 (2008),
doi:10.1007/s00265-008-0696-z

70. Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft au-
tomatic guidance. Robotics and Autonomous Systems 50(4), 177–194 (2005),
doi:10.1016/j.robot.2004.09.016

71. Schwager, M., McLurkin, J., Rus, D.: Distributed coverage control with sensory feed-
back for networked robots, p. 49. The MIT Press, Cambridge (2007)

72. Sharkey, A.J.C.: Swarm robotics and minimalism. Connection Science 19(3), 245–260
(2007), doi:10.1080/09540090701584970

73. Sumner, S., Lucas, E., Barker, J., Isaac, N.: Radio-Tagging Technology Reveals Extreme
Nest-Drifting Behavior in a Eusocial Insect. Current Biology 17(2), 140–145 (2007),
doi:10.1016/j.cub.2006.11.064

74. Tâche, F., Asadpour, M., Caprari, G., Karlen, W., Siegwart, R.: Perception and be-
havior of InsBot: Robot-Animal interaction issues. In: IEEE International Conference
on Robotics and Biomimetics - ROBIO, pp. 517–522. IEEE, Los Alamitos (2005),
doi:10.1109/ROBIO.2005.246321

75. Theraulaz, G., Bonabeau, E., Deneubourg, J.L.: Response threshold reinforcements and
division of labour in insect societies. Proceedings of the Royal Society B: Biological
Sciences 265(1393), 327–332 (1998), doi:10.1098/rspb.1998.0299

120 S. Garnier

76. Theraulaz, G., Gautrais, J., Camazine, S., Deneubourg, J.L.: The formation of spatial
patterns in social insects: from simple behaviours to complex structures. Philosophi-
cal transactions. Series A, Mathematical, physical, and engineering sciences 361(1807),
1263–1282 (2003), doi:10.1098/rsta.2003.1198

77. Tinbergen, N., Perdeck, A.: On the Stimulus Situation Releasing the Begging Response
in the Newly Hatched Herring Gull Chick (Larus Argentatus Argentatus Pont.). Be-
haviour 3(1), 1–39 (1951), doi:10.1163/156853951X00197

78. Tschinkel, W.R.: Subterranean ant nests: trace fossils past and future? Palaeogeogra-
phy, Palaeoclimatology, Palaeoecology 192(1-4), 321–333 (2003), doi:10.1016/S0031-
0182(02)00690-9

79. Vaughan, R., Stumpter, N., Henderson, J., Frost, A., Cameron, S.: Experiments in auto-
matic flock control. Robotics and Autonomous Systems 31, 109–117 (2000)

80. Vittori, K., Talbot, G., Gautrais, J., Fourcassié, V., Araújo, A.F.R., Theraulaz, G.: Path
efficiency of ant foraging trails in an artificial network. Journal of Theoretical Biol-
ogy 239(4), 507–515 (2006), doi:10.1016/j.jtbi.2005.08.017

81. Vrinten, D.H., Hamers, F.F.T.: ’CatWalk’ automated quantitative gait analysis as a novel
method to assess mechanical allodynia in the rat; a comparison with von Frey testing.
Pain 102(1-2), 203–209 (2003)

82. Webb, B.: What does robotics offer animal behaviour? Animal Behaviour 60, 545–558
(2000), doi:10.1006/anbe.2000.1514

83. Webb, B.: Can robots make good models of biological behaviour? Behavioral and Brain
Sciences 24(06), 1033–1050 (2001), doi:10.1017/S0140525X01000127

84. Webb, B.: Using robots to understand animal behavior, vol. 38, ch.1, pp. 1–58. Academic
Press, London (2008), doi:10.1016/S(X)65-3454(08)00001-6

85. Yan, Y., Tang, Z.: Control Architecture for Autonomous Multi-Robot System: Survey
and Analysis. In: International Conference on Intelligent Computation Technology and
Automation, USA, vol. 4, pp. 376–379. IEEE Computer Society Press, Los Alamitos
(2009)

Part II: Self-Reconfigurable
Modular Robots

On Self-Optimized Self-Assembling of
Heterogeneous Multi-robot Organisms

Serge Kernbach, Benjamin Girault, and Olga Kernbach

Abstract. This chapter is devoted to a bio-inspired self-assembling of heteroge-
neous robot modules into specific topological configurations. The approach involves
several algorithmic inspirations from biological regulatory networks for achiev-
ing environmental dependability and considers constraint-based optimization tech-
niques for finding optimal connections between heterogeneous modules. Scalability
and locality of sensor information are addressed.

1 Introduction

Self-assembling is an important process, where a disordered set of existing com-
ponents aggregates into a well-ordered structure by following simple assembling
rules [1]. Such a process takes place on macro- or micro- levels without external
guidance by utilizing several self-organizing mechanisms. A great source of inspi-
ration for self-assembling algorithms is a molecular self-assembling, which appears
in forms of e.g. crystals, colloids, or self-assembled monolayers [2]. Macroscopic
self-assembling is primarily related to a robot research, where robot modules aggre-
gate into complex topological structures to achieve a flexible functionality [3].

A substantial difference between micro- and macro- self-assembling consists
in the size and capabilities of components as well as in the appearing prob-
lems and challenges. On the micro-level such components are molecules utiliz-
ing chemical bounding forces, whereas on the macro-level, components are robot
modules, capable of docking with each other [4]. These modules can have very
simple form [5], or possess several cognitive features, such as sensing, objects
detection/recognition, actuation, communication and others [6]. Microscopic and

Serge Kernbach · Benjamin Girault · Olga Kernbach
Institute of Parallel and Distributed Systems, University of Stuttgart,
Universitätstr. 38, 70569 Stuttgart, Germany
e-mail: {serge.kernbach,giraulbn,

olga.kernbach}@ipvs.uni-stuttgart.de

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 123–141.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

124 S. Kernbach, B. Girault, and O. Kernbach

macroscopic self-assembling targets also different objectives. When self-assembling
on the micro-level is normally a large-scale phenomenon appearing as a uniform
structural pattern [7], on the macro-level we are interested primarily in creating
dedicated low-scale structures with a desired functionality. Typically, these struc-
tures are aggregated robots, which demonstrate locomotive functionality in a legged,
clambering or rolling form [8].

Despite differences, micro- and macro- self-assembling shares also several com-
mon problems. One of them is a recruitment of new elements for assembling, where
we can find several bio- and chemo- inspired works [9] leading to an efficient re-
cruitment strategy [10]. However, the major effort on both levels is related to a
guided self-assembling [11]: formation into a desired final form and, as a conse-
quence, a need of multiple optimization steps, required to obtain such a form. Arti-
ficial programmability and self-optimization can be addressed in several ways: we
used here some ideas from gene regulatory networks [12] and its multiple algo-
rithmic inspirations, e.g. [13], [14]. Another interesting scientific challenge is the
distribution of self-regulating mechanisms and integration of multiple constraints,
appearing during the assembling process.

This chapter is based on the previous works [15], [16] and extends them towards
two-steps optimization, which happen during the expression of high-level topolog-
ical descriptions into a concrete configuration and an assembling of modules into
this configuration. Sec. 2 gives a common pictures of self-assembling procedure
and discusses main optimization steps. Sec. 3 introduces several constraints, which
appear during robot-robot assembling, and Sec. 4 considers constraint-optimization
approach. In Sec. 5 we focus on specific tasks such as grouping, or scaling of topolo-
gies. Finally, Sec. 6 demonstrates some results and Sec. 7 concludes this work.

2 General Self-Assembling Scenario

Problems of robot self-assembling and self-disassembling are well-known in recon-
figurable robotics, see e.g. [17] or [18]. Here several high- and low- dimensional
approaches [15],[19] are distinguished. To be more strong in definitions, we define
self-assembling as a process, where robot modules Ri establish multiple bilateral
connections Rk : Rp (denoted as docking between modules Rk and Rp, see Fig. 1(a)),
which step by step lead finally to an appearance of the topology Φ .

Each topology Φ has some macroscopic functionality; more exactly, each par-
ticular connection Rk : Rp introduces a degree of freedom (DoF) ϕi. As shown in
Fig. 1(b), each connection between modules introduces only one DoF; by a combi-
nation of all DoF, an organism is capable of a collective movement. We express in-
teractions between all ϕi as a macroscopic functionality F of an artificial organism.
Figs. 1(c) and 1(d) provide two examples of such rotating and wheeled macroscopic
functionalities. The relationship between Φ and F is complex and depends not only
on the involved DoFs, but also on the environment. We discuss these issues in the
second comment below.

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 125

(a) (b)

(c) (d)

Fig. 1 (a) Examples of a bilateral connection Rk : Rp; (b) Several 1DoF connections produce
a macroscopic locomotion; (c,d) Two examples of macroscopic functionalities, achieved by
many robot modules.

The process of self-assembling can be split on different steps, which are sketched
in Fig. 2. Firstly, different types of robot modules Ri and other objects (such as
energy “cubes”) are placed on the arena, see Fig. 2(a). In this stage all robots exist
in the so-called swarm mode, i.e. as independent robots. On the second step, they
select from possible existing topologies a small subset ΦS, which is optimal for
given environment conditions. Such modules, which are needed for these topologies,
group in some area of arena, see Fig. 2(b). This grouping approach is described
in Sec. 5.1. After this first optimization, robots perform the second optimization,
where a set of ΦS is reduced to one Φ . Robots take into account the number of
modules in the aggregation site, their capabilities and availability for the desired
functionality F . Finally, the chosen modules queue up in a right spatial order for
docking, Fig. 2(c), and dock into an organism Φ , see Fig. 2(d). Here, robots utilize
different recruitment approaches, e.g. [10], to add a robot into an existing topology.
After docking, all robot modules exist in the so-called organism mode, i.e. they are
co-dependent on each other.

The general scenario, shown in Fig. 2, indicates only the main stages during the
real robot self-assembling. We have to make two comments for this scenario.

1. On-line/Off-line issue. The first comment is related to the way of how to ob-
tain the final topology Φ . This approach originates from [15] and consists in the
following idea. The set of pre-generated building blocks for patterns {Φ} can be
maximized so that to cover the most functionally useful behaviors in different pre-
dictable environmental situations. For example, this can be performed by off-line

126 S. Kernbach, B. Girault, and O. Kernbach

(a) (b)

(c) (d)

Fig. 2 Different envisaged steps of the self-assembling scenario. (a) Initial stage – all robots
are irregularly distributed on the arena; (b) Approaching of the selection modules for docking;
(c) Ordering of modules in 2D disconnected form; (d) Docking of modules on 2D grid into
an assembled organism and collective actuation into 3D state.

evolutionary simulation, by utilizing bio-inspired mechanisms from insect or ani-
mals, and in general is done in advance. These patterns can structurally be perturbed
by a few modules on-line depending on the environment. This perturbation creates
some deviation in the expected functionality and behavior, which can be handled
by different on-line adaptive mechanisms. This finally reduces the set {Φ} to some
Φ1, Φ2, ..., Φm, which makes sense in a concrete environment. We will denote this
smaller subset as ΦS. Thus, the problem of finding a specific solution is narrowed
down to the problem of optimizing a deviation from one of the pre-generated pat-
terns, for which all controlling mechanisms exist. Since a linear optimization is very
fast, for example, the linear sum assignment problem is of O(n3) complexity [20],
this approach can be run on-board and on-line.

2. Topology, Functionality and Environment. In general, the degrees of free-
dom ϕi between robots Rk : Rp depend on both Rk and Rp, i.e., we can encounter
the situation when both Rk, Rp are relevant, one of them is relevant and none of
them are relevant, see more in [16]. Moreover, a common functionality F of an
organism is determined by interactions between all ϕi. It is hardly possible to say
in advance which functionality can be useful or not for a particular environment.
There are two possibilities to explore a usefulness of functionalities: performing

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 127

on/off-boar simulation and by trial-and-error approach with different topologies in
real environment. Both have advantages and drawbacks and are used for finding Φ .
Essential scientific challenge here represents a programmability of self-assembling
and its dependability on environment (constraints of robots). We need to find a bal-
ance between desirability (design goals) of topologies and capabilities to adapt to
fluctuations of environment.

Thus, the self-assembling requires two-steps optimization:

• Environment-dependable generation of topologies from {Φ} to ΦS. We can de-
note this process as expression of topology from some general building-blocks-
like description (by analogy with gene expression process) into a set of topolo-
gies with desired functional properties. Example of such approach is discussed
in [15], where we defined a set of operators and basic elements for a generation
of topologies.

• On the second step, ΦS is optimized taking into account a current situation in
terms of the number of robots in the assembling area, availability for docking,
structure of local environment, assembling dynamics (for example amount of
collisions) and other conditions. As a result, robots firstly produce a final topol-
ogy Φ , and secondly start a docking approach.

These two steps are demonstrated in Fig. 3. The whole approach consists of three
functional parts (F1−F3) and three descriptive parts (D1−D3). Each functional
part represents in fact a controller, running on-board of a robot module. It takes
as input a corresponding description, executes all necessary activities and gener-
ates an output description. After this, the control over the robot(s) is passed to the
next controller. Thus, descriptions D1−D3 are interfaces between controllers and
controllers themselves work to some extent as operators over D1−D3. The main
ideas of F1 and F3 controllers are already represented in [15] and [10], further we
concentrate on the F2 optimization controller and introduce it in more detail.

description of

basic building

blocks and their

connections

“Expression”

(generation) of

current topologies

from building

blocks

One or a few

topologies

for self-assembling

Optimization:

- movement

- kinematics

- functionality

Recruitment-

-based

docking

environment environment

assignment

plan

not successful, (partial) disassembling

robot’s constraints

design goals

(desirable functionality)

robot’s

constraints

F1. Self-regulating

controller

D2. Topologies

description

D3. Assignment

description

F2. Optimization

controller

F3.Recruitment

controller

Topology

manager,

macro-

-locmotion

scenario

D1. “Genetic”

description

Fig. 3 General sketch of the self-assembling scenario.

128 S. Kernbach, B. Girault, and O. Kernbach

3 Optimization Controller: Transition from ΦS into Φ and the
Role of Constraints

The self-assembling on the stage of optimization controller aims at several tasks:
grouping of robots, identification and collection of constraints, selection of topolo-
gies, which satisfy these constraints, and finally a generation of one concrete topol-
ogyΦ from a set of possible topologiesΦS. This is done in several ways. Firstly,ΦS

is compared with the current situation. For example, when other robots are already
building some structure, this structure has a higher priority in the decision process.
When there are no such structures, a robot compares current positions of known
robots in order to decide which pattern is the most suitable for this configuration or
which pattern is the most suitable for the given surface. When a pattern is selected,
a robot solves the constrained assignment problem in order to determine a position
in this pattern, where it goes to dock.

Secondly, when a robot decides about one of the patterns in ΦS, it is not con-
strained by this pattern, a robot can perturb the pattern φi by templates. This can
happen only in two following cases. In the first case, the pattern, generated for n
robots, already has n robots. The n + 1 robot, joining to this organism, starts build-
ing a new scalability core. For example, when an organism with n robots has four
legs, the n + 1 robot can start building additional legs. In the second case, based on
observation in the environment, a robot can estimate a need of specific perturba-
tions, e.g. to make legs longer to overstep some obstacles. However, the difficulty is
that other robots may not know about this initiative and the whole pattern become
desynchronized. Solution of this problem involves more communication between
robots, as suggested in [15].

RR R

R

R

R

R

R R

2

2

2

1 1

:

:

:

: :

:

:

:

: :

R

R

R

R

R

R R14 3

2

2

5

2

1 3

5

6

5

6

1

4 1

Fig. 4 Topology of an organism, Rk : Rp :
x is a connection placeholder.

A topology Φ of an organism is repre-
sented by the connection placeholder Rk :
Rp and DoF functionality in this connec-
tion. For example in Fig 4, six modules are
shown, this topology is described by five
connection placeholders. In each Rk : Rp : x,
the last ”x” denotes the DoF: 1 means con-
nection sidewards, 2 means forwards (there
are only two ways to connect two modules
R1 and R2). The generation of the mapping
between robots and connection placehold-
ers represents a classical constrained as-
signment problem. Choosing a partner Ri

for docking, i.e. the generation of xi
l ↔ x j

k is
independent of each other. It underlies sev-
eral requirements: firstly it should satisfy
local constraints υi, secondly, each xi

l ↔ x j
k

pair has an associated local cost, and finally,
the whole appearing topology has its own
global costs.

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 129

1. Connectivity Constraints. As mentioned, there are multiple constraints, im-
posed on connectivity, kinematic properties, heterogeneity and others. Generally,
the connectivity means the number of elements, connected to each of modules. For
example, the central element of the cross has the connectivity 4 (modules connected
from each side). Connectivity constrains the number of connections and can be ef-
fectively utilized in a description of topologies. When ci is the connectivity of the
i-element, where i goes from 1 to n (n is the number of robots in the topology; in
contrast N is a total number of robots), the topologyΦ can be described as n+1 set
(c1,c2, ...,cn,ct), ct is a total number of connections in the topology with n robots.
In general case, max. of ci is equal to the maximal connectivity of the platform.
All ci are re-ordered from cmax to cmin so that the first element c is always that one,
which has a maximal degree of connectivity. The topology Φ can be described as

Φ = {cmax,cmax−1...,cmin+1,cmin,ct},ci ∈ {1,2,3,4}. (1)

The description, defined by (1) has different topological properties, see more
in [16]. Generally, there are basic topologies, which are unique, provided the topol-
ogy is coherent (coherent topology = no disconnected nodes). To eliminate discon-
nected topologies, a coherency constraint has to be integrated into Constraint Sat-
isfaction Problem (CSP) and the Constraint Optimization Problem (COP) solver.
Basic topologies can be perturbed by one or several modules, this increases n and
ct . Such perturbed topologies are not unique. One of possible ways to deal with
perturbed topologies is indicated in [15].

2. Kinematic Constraints. Topology Φ defined by (1) creates connections,
which are invariant to robot’s IDs. To integrate kinematics into topology, Φ should
be supplemented with a functional description: it means to involve the desired de-
grees of freedom ϕi for a particular connection. Since each node has max. four con-
nections (i.e. in general case different ϕi), the functional topology should include all
of them. We use the agreement, that when only one ϕ is specified for a connectivity,
it means ϕi = ϕ . Now we can generalize Φ from (1):

Φ = ((cmax : {ϕ}max),(cmax−1 : {ϕ}max−1), ...,(cmin : {ϕ}min),ct) (2)

Thus, ϕ defines a kinematic constraint imposed on a Rk : Rp link. To be more
formal, we introduce several following properties.

Definition 1 (Functional Constraint). A constraint ϕ is a functional constraint if
it verifies:

ϕ = ((T1,D1),(T2,D2)) (3)

with Ti the type of the module i and Di the type of the dock of module i participating
in the link, module 1 being the module having the constraint and module 2 being
the other module.

From the viewpoint of functional constraints, the topology Φ can be then defined
as:

Φ = ((c1,(ϕ1,1, . . . ,ϕ1,c1)), . . . ,(cn,(ϕn,1, . . . ,ϕn,cn))) (4)

130 S. Kernbach, B. Girault, and O. Kernbach

The variable (see description of the CSP approach in Sec. 4) whose value is true
means that there is a link between the nodes, and if its value is false, then there is no
such a link. The cost of the link is the cost of docking for two nodes if no dynami-
cal obstacles were present in the environment. The constraints are the tricky part of
this optimization step. First, we want an acyclic connected topology, which means a
topology without loops. Such a topology is achieved when the two following prop-
erties hold:

Property 1 (Connected Topology Characterization). A topology of n nodes is con-
nected if and only if every subset of i ≤ � n

2� nodes has at least one link involving
one of its node to one node of the complementary subset of nodes in the group.

Property 2 (Acyclic Connected Graph Characterization). A connected topology is
acyclic if and only if it has exactly n−1 links between two nodes.

Such a topology is indeed a tree. Writing the constraints for the LP solver from
those two properties is now easy and straightforward. There will be one constraint
per subset of i ≤ � n

2�, and one constraint to check that the topology is acyclic. Thus,
the topology generated is ensured to be a single tree.

Finally, we include the functional constraints. To do that we need to split the
whole optimization process in two phases: the Constraint Satisfaction and the Con-
straint Optimization Problems. CSP consists of the running LP solver giving an
assignation of the constraints to the nodes. We suppose that this assignation is valid,
i.e., the type of node is compatible with the type constraints. Then we add a con-
straint ensuring that there are enough links satisfying functional constraints. For
instance, if the node i needs to dock to at least NA of type A and NB of type B, then
there will be two more constraints verifying that the number of links to the node i
of type A (resp. B) is greater of equal to NA (resp. NB).

3. Local costs. Robots have different on-board capabilities to measure distances
between robots, their orientation, relative rotation and other parameters [21]. More-
over, as shown in Fig. 5(a), robots can measure distance not only to direct neighbors,
but also to any visible object/robot. However, the further away the robots are, the
less accurate is the measurement. Moreover, not visible robots, see Fig. 5(b), are not
included into the local cost matrices.

The measured distance Si, j between Ri and R j is one of the local costs for dock-
ing: the closer Ri and R j are to each other, the “cheaper” is their docking xi

l ↔ x j
k.

Other costs of xi
l ↔ x j

k are the distance cost αSi− j
l−k, rotation cost βSi

rot , cost of “be-
ing hidden” Si

k−hid , where α,β are coefficients. The cost Si
k−hid is the price for the

robot Ri of not-knowing the situation around Ri. For example, when the costs of
connection between x1

1 ↔ x2
1 are S1−2

1−1 = αS1−2
1−2 + βS2

rot + S2
1−hid. More generally,

local costs can include also any other factors, which determine a value of a partic-
ular connection. All local costs between all xi

l ↔ x j
k are collected in the local costs

matrix S.

Since morphogenesis is distributed and egocentric, the generations of xi
l ↔ x j

k

and x j
k ↔ xi

l are asymmetric, i.e. from the viewpoint of the module Ri a cost of

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 131

S

S

S

S

S

1,2

2,3

1,5

1,3

1,4

(a) (b)

Fig. 5 (a) Local costs, from the viewpoint of a robot; (b) Global view, where some robots
are not visible.

connection between Ri and R j may be different than the connection between R j and
Ri from the viewpoint of the module R j. This leads to the effect, that the robot Ri

knows precisely only its local costs, all other costs can be estimated only roughly.
4. Global costs. Issue of global costs represents a crucial point. In general, it

means how good the whole organism fits the environment and can be expressed as
velocity of motion, energy consumption, weight and any other global factor for a
specific environment. Normally, it requires multiple tests with different configura-
tions and is very expensive or even impossible for on-line estimation in real situa-
tions. Therefore the proposal is to use a set of different a-priori-tested topologies,
whose global costs for different environments are known. During experiments, de-
pending on availability of tools and sensed environment, robots have to agree in
which configuration they should collectively work.

4 Constraint-Based Optimization

The problem of constraint-based optimization can be formulated in two different
ways, as described in [15] and [16]. The first approach, shown in Fig. 6(a), considers
a classical assignment for each IDi →Ri, where IDi and a robot’s ID and Ri is a label
of a robot in a topology. In the following table we display horizontally costs of all
possible permutations between IDi → R j and vertically the connections Ri → R j

from the Fig. 6(a). The cost matrix (example of costs) takes the following form

1 : 2 1 : 3 1 : 4 1 : 5 1 : 6 2 : 3 2 : 4 2 : 5 2 : 6 3 : 4 3 : 5 3 : 6 4 : 5 4 : 6 5 : 6
1 : 2 35 40 80 36 30 41 42 31 32 20 55 23 60 21 32
2 : 3 35 40 80 36 30 41 42 31 32 20 55 23 60 21 32
2 : 4 35 40 80 36 30 41 42 31 32 20 55 23 60 21 32
4 : 5 35 40 80 36 30 41 42 31 32 20 55 23 60 21 32
5 : 6 35 40 80 36 30 41 42 31 32 20 55 23 60 21 32

(5)

132 S. Kernbach, B. Girault, and O. Kernbach

R

R
R

R

R

R

R

R

R

RR

R

1

1

2

5

6

4

3

2

3

6
5

4

(a)

R
R

R
R

S

SS

1

2

3

4

1,2

1,3
1,4

(b)

Fig. 6 Example of the assembling problem. (a) Approach based on the assignment for each
IDi → Ri; (b) Approach based in the linear program for the objective function Θ with si, j ,
shown are connections only to R1.

where the assignment should satisfy

CID2→R2 =
4

∑
i

4

∑
j

Si, j = 3. (6)

The constraint (6) is a degree of connectivity for the main core element R2. The
problem, shown in Fig. 6(a), can be formulated as e.g. quadratic assignment prob-
lem (QAP), see e.g.[22] or as constraint-satisfaction problem (CSP) and constraint-
optimization problem (COP), see e.g. [23]. Since QAP is a NP hard problem, we
will solve this in the CSP+COP way. Solving the assignment problem, taking into
account (6) for all elements, we receive the following assignment matrix

1 : 2 1 : 3 1 : 4 1 : 5 1 : 6 2 : 3 2 : 4 2 : 5 2 : 6 3 : 4 3 : 5 3 : 6 4 : 5 4 : 6 5 : 6
1 : 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 : 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
2 : 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
4 : 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
5 : 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(7)

This approach has two essential drawbacks: need of robot’s ID and large matrices
(5),(7). Thus, this approach was improved in [16] and has the following form. First
of all, we need to define the objective function Θ , which is specified by si, see
Fig. 6(b) (here only R1 is shown). When n robots are involved into some topology
Φ , the variables x represent all possible bilateral connections between there robots.
The vector of variables has m components:

m =
n!

(n−2)!2!
. (8)

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 133

There are several differentΘ , in the experiments we used

si = fi(Rk : Rp) = D(Rk : Rp)+ F(Rk : Rp),k, p = 1, ...,n;k �= p, i = 1, ...,m (9)

where D(Rk : Rp) is a distance between neighbor Rk and Rp, F(Rk : Rp) satisfaction
of functional constraints (0 when satisfied or > maxD(Rk : Rp) not satisfied); all
of them are estimated only to locally visible robots Rk and Rp. The optimization is
formulated as a linear program (LP), which optimize the linear objective function
Θ = sT x, where s is the vector of costs and x =(x1,x2, ...xm)T is a vector of variables,
which are bounded by 0 and 1. LP is constrained as follows

Ax = b, xi ∈ {0, ...,1}, (10)

where A is a matrix and b is a vector of numerical coefficients, which form m linear
equations (in general case inequalities). In this form it is known as integer program.
Finally, by solving (10), all variables xi take ”0” or ”1” so that to optimize sT x. Now
A and b in (10) have to be defined; they reflect the connectivity constraints of the
corresponding topology. For the topology shown in Figs. 4 and 6, this leads to the
following linear problem

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cmax

cmax−1

cmax−2

cmin+2

cmin+1

cmin

ct

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, or b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2
2
1
1
1
5
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

As mentioned, all ci are disconnected from robots, i.e. we have to map the set of ci

to all possible combinations between these robots

(cmax,cmax−1, ...,cmin) → Permutation(R1,R2, ...,Rn). (12)

Since the number of permutations is equal to n!, computational power of the most
of microprocessors allows computation for n below 10 closely to real time. This
is more than enough for a large diversity of cores, complex topologies are created
through scalability. Since variable xi points to connections between robots, defined
by (12), the vector b is equal to the set of ci in the order from cmax to cmin and the
matrix A creates corresponding placeholders. There are several comments to this
approach.

1. All topologies have a list of associated constraints ϒ such as a total N of robots
or requirement on heterogeneous modules. Moreover, each topology has a list of
global costs: consumed energy, velocity of motion on a normal surface, geom-
etry of concave and convex obstacle treatable with this topology or a possible
geometry of docking elements.

134 S. Kernbach, B. Girault, and O. Kernbach

2. Before start self-assembling, robots check whether N of available robots match
the set of possible topologies. For instance, when there are topologies requir-
ing {15,17,22,25} robots and there is only 20 available robots, they can self-
assemble only into first two topologies.

3. Several topologies require tools or specialized robots. Robots should check avail-
ability of these specialized robots and correspondingly limit the set of possible
topologies.

4. Self-assembling starts from the core element with the highest degree of connec-
tivity. When such a core element is already built, robots consider the next element
with the lower degree of connectivity and so on, until the whole structure is as-
sembled.

5. When the selected topology is already partially assembled, and more free robots
arrived to the assembling place, robots can decide instead of disassembling and
new assembling to create a new core in the already assembled structure. Prereq-
uisite is that the topology can be scaled up in the number of cores.

5 Grouping and Scaling Approaches

The CSP/COP-based optimization approach, described the previous section, is a
distributed and decentralized process that each module in the assembling area per-
forms. It cannot be described as a single task to achieve, the whole approach depends
on interactions between modules and particular optimization processes running on-
board. In this section we focus on two other tasks, which precede or follow the
CSP/COP optimization: grouping and scalability approaches for different cases of
N > n.

5.1 Grouping Approach

Grouping is required for the case when the number of available robots N is larger
than the number of required modules n in a topology. Thus, for N > n we need
to choose the modules that will participate in the aggregation. The first idea is to
choose the n nearest modules. This strategy works for topologies without any con-
straints on the type of modules, however can fail in other cases. Consequently, we
need firstly to consider the type of modules in the neighborhood, and secondly, if a
neighbor belongs to the already finished topology, it has to be removed from the list
of available robots. Moreover, robots can have internal constraints that make some
actions more difficult than others. For example, non-holonomic robots will not be
able to move laterally, straight forward movement is cheaper than moving in any
other direction. Hence, distances between A and B, from the point of view of A will
be the complexity of A to reach B.

To perform grouping, a simple function selecting iteratively each nearest neigh-
bor can be considered. However, this can lead to a non-optimal solution. To perform
the grouping optimization, an application of LP solver is more suited. Each neigh-
bor has assigned a Boolean value by the LP solver: true if and only if the module

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 135

is selected to be part of the group. The objective function is the sums of distances
(as described in the previous sections) between the calling module and the selected
modules of the neighborhood. The involved constraints are the number of modules
selected (equal to the number of modules in the topology) and the type constraints
(there is at least as much robot of a given type as required by the topology type
constraints).

5.2 Scaling Approach

There are two general cases, where we need to consider a scalability of self-
assembling. Firstly, we frequently encounter the situation, when the number of avail-
able robots N is larger than the number of robots in the topology n. Here there are
several strategies, which are considered below. Secondly, the topology with n robots
can join to another topology of m robots; in this case the scalability represents the
generating problem for n + m topology. Such problem can be solved by morphing
algorithms when basic hardware modules are able for this functionality. In our case,
we solve the problem of n + m topologies by a disassembling of one topology and
an assembling of free robots into another one.

As mentioned, in the first case, there are several possibilities to scale N in the
relation to n:

(1) for N = xn,x = 1,2,3, ..., the topology with n robots can be replicated x times.
Each of these new topologies is an independent structure. This is the simplest form
of scalability, which can be denoted as the behavioral scalability.

(2) x topologies from the previous case can join into one common structure. This
is typically segmented body construction, where n robots within one segment are
repeated x times. This is the structural scalability.

(3) the robots from N mod n > 0 cannot create a new topology. These robots are
still useful for the already existing topology, as e.g. energy reserve, so these robots
can perturb the topology Φ , this is the perturbational scalability.

(4) finally, N mod n > 0 robots are not aggregating with any other structures, they
build a ”reserve” for e.g. self-repairing.

The experiments performed in [16] and here indicated that a combination of the
(1) and (4) strategies is the most useful approach for creating multiple artificial
organisms. All results described in Sec. 6 utilize this strategy. For the cases (2) and
(3) we need to recalculate kinematic constraints. For this we need to perform hybrid
topological-kinematic techniques, which are described e.g. in [24].

6 Implementation and Results

We performed several series of experiments with real robots and in simulation. The
implementation on the real platform was intended to test computational properties as
well as to estimate the level of distortion in creating the objective functionΘ . Since
currently there are not enough robots for testing scalability, several experiments
are performed in simulation, which is done in AnyLogic. For implementation of

136 S. Kernbach, B. Girault, and O. Kernbach

LP solver for CSP, we used lp solve 5.5 routine (see lpsolve.sourceforge.net) of
Mixed Integer Linear Programming solver (C++ version is used for real robots, Java
version is used for simulation). Robots use Blackfin double core as the main CPU (in
each module) with 64 Mb SDRAM on board. The robot arena was approximately
50x larger than the size of the robot. For measuring the time of experiments, we
use the notion of ”iteration of the autonomy cycle”. This is an internal value of
robots and allows estimating the running time more precisely to the steps of the
CSP/COP approach (and not to the motion of the robot). Tests are performed with
two topologies: ”T”-like form shown in Fig. 4 and a snake. These topologies are
used also for scalability tests. Additionally to experiments presented in [15], [16],
we explored here different strategies for a grouping approach and its impact on a
performance, and measured a performance of self-assembling at different scaling
parameters.

Fig. 7 Ordering phase of the self-assembling approach. Five robots approached each other
and moved into right spatial positions for creating a topology shown in Fig. 2(d). During this
approach, a massive collision avoidance behavior can be observed.

Grouping approach. As mentioned in Sec. 5.1, grouping is a necessary step be-
fore self-assembling. It allows selecting the appropriate n robots from the swarm of
N robots for building a topology. Implementing a grouping strategy, we encounter
several difficulties. First of all, robots are not always visible to each other, see
Fig. 7, i.e., estimation of the most closest robots to a group is in many situations not
possible.

In the implemented strategy, we add a robot into a group when it is visible at
least to one robot which already included into a group. Assigning to a group is
performed by the ”first visible, first served” principle. When a robot receives an
invitation to join to a group, and can confirm or reject it. When no other invitation
is accepted, a robot confirms its intention to join to the group and moves towards a
visible inviting robot. When a robot approached the group closely enough, it starts
CSP/COP procedure and waits a resolution of the assignment problem. After this, it
moves to the right spatial position (the ordering phase).

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 137

To evaluate performance of this strategy, we used two other approaches: a candi-
date for joining a group was selected randomly based on WiFi connection (i.e. no
position information), and the ideal case when only the closest robot was invited
to join a group (by using global information). In Fig. 8 we plot the performance of
the self-assembling with the neighbor-based grouping strategy and with a random
grouping. In Figs. 8(a), 8(b) the performance is estimated as the sum of distances si

between all robots of a group, whereas Figs. 8(c), 8(d) demonstrate the performance
as the sum of distances si between all robots. Fig. 8(d) shows the ideal case with the
closest neighbors. We can see that selection of robots for grouping has an impact on
the assembling strategy. In many performed experiments it reduces the approach-
ing time on 30%-50% and makes the ordering phase more early. In ideal case the
ordering phase starts almost immediately after the start of experiments.

The second series of experiment was performed to investigate the scalability per-
formance of the self-assembling strategy. The idea of this experiment originates

S
u

m
 o

f
s
 o

v
e

r
a

ll
 g

ro
u

p
s

iterations

ordering phase

i

(a)

S
u

m
 o

f
s
 o

v
e

r
a

ll
 g

ro
u

p
s

iterations

ordering

phase

i

(b)

S
u
m

 o
f
s
 o

v
e
r

a
ll
 r

o
b
o
ts

iterations

random grouping

grouping

i

(c)

S
u

m
 o

f
s
 o

v
e

r
a

ll
 r

o
b

o
ts

ordering phase

iterations

grouping phase

i

(d)

Fig. 8 Different grouping strategies, n = 5, N = 25. (a) Grouping of locally visible robots
to the each other, shown is the sum of all distances between the robots in each group; (b)
Random grouping, all robots are equally distributed on the arena, shown is the sum of all
distances between the robots in each group; (c) Comparison between both strategies, shown
is the sum of si over all robots; (d) Ideal grouping strategy, shown is the sum of si over all
robots.

138 S. Kernbach, B. Girault, and O. Kernbach

from [16], where we proposed to increase a connectivity of robots. It is achieved
by movement of all robots to a specific point on the arena (it was a right, upper
corner, which can be approached by using a compass information). When all robots
are closely enough to each other, they can perform a faster grouping, creation of
cost matrices and ordering. The encountered problem was that robots massively in-
creased a number of collisions and this slowed down the performance. Moreover,
the more robots are participated in the experiment the higher was the number of
collision, and the slower was the assembling. In Fig. 9 we investigated the number
of collisions for different grouping strategies and for different N of robots. We en-
countered that the collision behavior has two well observable phases: the low-slope
phase during the grouping and the high-slope phase during the ordering. The slope
of the ordering phase is almost the same at all strategies, and is independent of the
number of modules. This can be explained by the Fig. 7, where we can see that the
ordering causes strongly local collision avoidance behavior and so is independent of

N
 o

f
c
o

ll
is

io
n

s

iterations

start of

ordering phase

gro
upin

g, R
=m

ax

rand. grouping, R=5

ra
nd. g

ro
upin

g, R
=10

ra
nd. g

ro
upin

g, R
=m

ax

(a)

N
 o

f
c
o
ll
is

io
n
s

iterations

N=5

N=10

N=15

N=20

N=25

N=30

(b)

N
 o

f
c
o
ll
is

io
n
s

iterations

(c)

Fig. 9 Scalability performance as a number of collisions over the running time of an exper-
iment, R is the sensing radius, R = max.: a robot can observe the whole arena, R = 5,10: a
robot can observe a range of 5 and 10 body lengths. (a) Scalability in relation to different
grouping strategies and different visibility radii; (b) The strategy with random grouping and
with the minimal sensing radius, shown are N of collisions for different N of robots; (d) The
strategy with neighbor grouping, shown are N of collisions for different N of robots.

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 139

the total number of modules. However, different grouping strategies have different
collision performance. As it follows from Fig. 9(c), the neighbor-based grouping
has the best scalability properties (it is almost independent of N), whereas as the
random-based strategies, especially with limited sensing radius, has a worse per-
formance when increasing the number of robots. This behavior we observed also
during earlier experiments. Thus, the best scalability strategy is to increase the level
of locality not only for all robots during the aggregation, but also to increase the
level of locality for the grouping phase.

7 Conclusion

This chapter is devoted to a self-assembling strategy, which utilizes generating and
optimizing approaches, known in biological regulatory networks. We primarily fo-
cused here on the optimization controller, which narrows down the set of generated
topologies to a particular description of connections between modules and performs
local optimization defined by the objective function. This function takes into ac-
count connectivity and functional constraints, local and several global costs. Due
to flexibility of costs and constraints, this approach is very useful for modules with
different geometry and functionality, i.e. for heterogeneous reconfigurable robots.

For experimental part we mainly worked on the grouping strategies and scalabil-
ity performance for different such strategies and different N. These experiments are
additional to the already published results. We estimated that neighbor-based group-
ing, even not optimal in a global sense, can provide shorter aggregation time due
to spatial optimization process. Non-optimality of spatial grouping is substantially
limited by the capabilities to detect a neighbor robot. To improve the performance,
we suggested increasing the level of locality by pre-aggregating all robots into a
specific area of the robot arena. In the previous experiments, this strategy created
multiple bottlenecks due to massive collision avoidance behavior among robots. In
the improved approach, when a local grouping is selected, the pre-aggregated self-
assembling is well scalable to different N, tested for n = 5 and N between 5 and 30.

For further works, we would like to verify these tests for the topologies shown in
Fig. 2 with three different types of robots. It is also of interest to investigate the influ-
ence of environmental conditions for very simple robots (like chemical molecules)
and to estimate whether it is possible to transfer results from macroscopic to a
microscopic self-assembly.

References

1. Ariga, K., Hill, J.P., Lee, M.V., Vinu, A., Charvet, R., Acharya, S.: Challenges and break-
throughs in recent research on self-assembly. Science and Technology of Advanced Ma-
terials 9(1), 014109 (2008)

2. Whitesides, G.M., Kriebel, J.K., Love, J.C.: Molecular engineering of surfaces using
self-assembled monolayers. Science Progress 88, 17–48(32) (2005)

140 S. Kernbach, B. Girault, and O. Kernbach

3. Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptabil-
ity, Evolution. Springer, Heidelberg (2010)

4. Chiang, C.-J., Chirikjian, G.: Modular robot motion planning using similarity metrics.
Auton. Robots 10(1), 91–106 (2001)

5. Miyashita, S., Hadorn, M., Hotz, P.E.: Water floating self-assembling agents. In: Nguyen,
N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI),
vol. 4496, pp. 665–674. Springer, Heidelberg (2007)

6. Castano, A., Shen, W.-M., Will, P.: Conro: Towards deployable robots with inter-robots
metamorphic capabilities. Journal of Autonomous Robots 8, 309–324 (2000)

7. Samori, P., Francke, V., Müllen, K., Rabe, J.P.: Self-assembly of a conjugated polymer:
From molecular rods to a nanoribbon architecture with molecular dimensions. Chemistry
- A European Journal 5, 2312–2317 (1999)

8. Kernbach, S.: Towards application of collective robotics in industrial environment. In:
Rigatos, G. (ed.) Industrial Systems: Modelling, Automation and Adaptive Behaviour,
pp. 18–49. IGI Global (2010)

9. Yu, C.-H., Haller, K., Ingber, D., Nagpal, R.: Morpho: A self-deformable modular robot
inspired by cellular structure. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2008, pp. 3571–3578 (2008)

10. Liu, W., Winfield, A.F.T.: Autonomous morphogenesis in self-assembling robots using
IR-based sensing and local communications. In: Dorigo, M., Birattari, M., Di Caro, G.A.,
Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E.,
Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 107–118. Springer,
Heidelberg (2010)

11. Huie, J.C.: Guided molecular self-assembly: a review of recent efforts. Smart Materials
and Structures 12(2), 264 (2003),
http://stacks.iop.org/0964-1726/12/i=2/a=315

12. Davidson, E.H.: The Regulatory Genome: Gene Regulatory Networks In Development
And Evolution. Academic Press, London (2006)

13. Jacob, C., Burleigh, I.: Genetic programming inside a cell. In: Genetic Programming
Theory and Practice III, vol. 9, pp. 191–206. Springer, Heidelberg (2005)

14. Banzhaf, W.: On evolutionary design, embodiment, and artificial regulatory networks.
In: Iida, F., Pfeifer, R., Steels, L., Kuniyoshi, Y. (eds.) Embodied Artificial Intelligence.
LNCS (LNAI), vol. 3139, pp. 284–292. Springer, Heidelberg (2004)

15. Kernbach, S.: From robot swarm to artificial organisms: Self-organization of structures,
adaptivity and self-development. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-Robot
Organisms: Reliability, Adaptability, Evolution, pp. 5–25. Springer, Heidelberg (2010)

16. Kernbach, S.: Heterogeneous self-assembling based on constraint satisfaction problem.
In: Martinoli, A., Mondada, F. (eds.) 10th International Symposium on Distributed Au-
tonomous Robotics Systems. Springer Tracts in Advanced Robotics. Springer, Heidel-
berg (2011)

17. Salemi, B., Shen, W.-M.: Distributed behavior collaboration for self-reconfigurable
robots. In: Proc. of the IEEE International Conference on Robotics and Automation
(ICRA-2004), New Orleans, USA, pp. 4178–4183 (2004)

18. Lau, H.Y.K., Ko, A.W.Y., Lau, T.L.: The design of a representation and analysis method
for modular self-reconfigurable robots. Robot. Comput.-Integr. Manuf. 24(2), 258–269
(2008)

19. Castano, A., Will, P.: Representing and discovering the configuration of CONRO robots.
In: Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA-2001), vol. 4, pp. 3503–
3509. IEEE, Los Alamitos (2001)

http://stacks.iop.org/0964-1726/12/i=2/a=315

On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms 141

20. Burkard, R., Dell’Amico, M., Martello, S. (eds.): Assignment Problems. Society for In-
dustrial and Applied Mathematics (2009)

21. Kernbach, S., Meister, E., Scholz, O., Humza, R., Liedke, J., Ricotti, L., Jemai, J., Havlik,
J., Liu, W.: Evolutionary robotics: The next-generation-platform for on-line and on-board
artificial evolution. In: Tyrrell, A. (ed.) Proc. of the IEEE Congress on Evolutionary
Computation (IEEE CEC-2009). IEEE Press, Trondheim (2009)

22. Loiola, E., de Abreu, N.M., Boaventura-Netto, P., Hahn, P., Querido, T.: A survey for
the quadratic assignment problem. European Journal of Operational Research 176(2),
657–690 (2007)

23. Kornienko, S., Kornienko, O., Priese, J.: Application of multi-agent planning to the as-
signment problem. Computers in Industry 54(3), 273–290 (2004)

24. Kernbach, S., Meister, E., Schlachter, F., Kernbach, O.: Adaptation and self-adaptation
of developmental multi-robot systems. International Journal On Advances in Intelligent
Systems 3(1,2), 121–140 (2010)

Morphogenetic Self-Reconfiguration of
Modular Robots

Yan Meng and Yaochu Jin

Abstract. It is still a challenging problem to self-reconfigure modular robots
to different morphologies to adapt to dynamic environments. To tackle this
problem, a new computational framework inspired from biological morpho-
genesis is suggested in this chapter. First, we introduce two reconfigurable
modular robots, Cross-Cube and Cross-Ball, which are developed for var-
ious complex pattern reconfigurations using the pro-posed morphogenetic
approach. Then, a hierarchical morphogenetic self-reconfiguration model is
presented for both Cross-Cube and Cross-Ball. In this hierarchical model,
the layer 1 controller is responsible for the adaptive pattern generation based
on the current environmental constraints and the task requirements in hands.
The layer 2 controller automatically generates target configurations to guides
the modules to converge into the target pattern. Both the layer 1 and layer 2
controllers are generic and can in principle be applied to other reconfigurable
modular robots. The controller in layer 3 is hardware dependent that mainly
deals with the physical constraints of module movements. This hierarchical
morphogenetic model is applied to each module of the reconfigurable modu-
lar robot in a distributed manner, where each module makes its configuration
movements only based on its local sensory information and shares information
with its local neighboring modules. Extensive simulation results have demon-
strated the feasibility and efficiency of the proposed module design as well
as the corresponding hierarchical morphogenetic model for both Cross-Cube
and Cross-Ball modular robots to construct various configurations.

Yan Meng
Department of Electrical and Computer Engineering,
Stevens Institute of Technology, Hoboken, NJ 07030, USA
e-mail: yan.meng@stevens.edu

Yaochu Jin
Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
e-mail: yaochu.jin@surrey.ac.uk

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 143–171.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

yan.meng@stevens.edu
yaochu.jin@surrey.ac.uk

144 Y. Meng and Y. Jin

1 Introduction

Reconfigurable modular (RM) robots are modular robots with a variable
morphology, where they are able to deliberately change their own shape by
reorganizing the connectivity of their modules to adapt to new environments,
perform new tasks, or recover from damages. Each module is an indepen-
dent unit that is able to connect it to or disconnect it from other units to
form various structures/patterns dynamically. Compared with conventional
robotic systems, RM robots are potentially more robust and more adaptive
under dynamic environments.

Generally, the mechanical design of RM robots can be classified as chain-
based and lattice-based. Chain-based RM robots [11, 34, 29, 26] consist
of modules which are connected in serial chains to form line, tree or loop
structures, which are scalable and easy in motion planning. However, it is
hard for chain-based RM robots to build arbitrary complex 3D patterns. To
address this is-sue, lattice-based RM robots [32, 3, 37, 8] have been pro-
posed, where modules are aligned in discrete grid lattices in space and can
build up complex 3D patterns. As a result, the control and motion-planning
for lattice-based RM robots become more complicated. In addition, some
hybrid RM robots have been developed by combining the advantages of both
types of RM robots, such as ATRON [13], M-TRAN II [14], M-TRAN III
[15], and SUPERBOT [25], which aim to provide more complex and flexible
morphologies. However, it is difficult for most available RM robots to build
arbitrary complex configurations due to mechanical constraints of hardware
modules.

Self-organization and self-repairing are critical for the success of RM
robots. Usually, reconfiguration occurs for purposes of locomotion, manip-
ulation, or for the creation of stable static structures. Self-organization of
RM robots is especially challenging as it involves coordinating the move-
ment of a possibly large number of modules while enforcing motion con-
straints imposed by their physical design. Some centralized reconfiguration
mechanisms have been proposed for various RM robots [23, 35, 36, 6]. How-
ever, RM robots using centralized approaches for predefined patterns are
very vulnerable to system failures/malfunctions and non-scalable to more
complex and large-scale systems. To address this issue, some decentralized
methods [20, 24, 12, 31] have been proposed, where each module in a RM
robot makes its own movement decision without a centralized controller. To
further improve the self-organization capability, some researchers turn their
attentions to biological systems for inspirations. Fukuda et al. [7] first pro-
posed an optimal structure decision method for a distributed CEBOT (cell
structured robot) system based on the cell structures for static and mobile-
based manipulators. Shen et al. [28] proposed a hormone-inspired adaptive
communication protocol and adaptive distributed control protocol to allow
modules to use hormone-like messages to accomplish locomotion and self-
reconfiguration. An artificial homeostatic hormone systems was proposed in

Morphogenetic Self-Reconfiguration of Modular Robots 145

[27] for the self-reconfiguration of robotic organisms, where the parameteri-
zation of the underlying dynamical system was encoded into a ”genome” of
the organism which is subject to selection through evolutionary algorithms.
A cellular automata approach was developed in [30] for self-reconfiguration
of a modular robot.

However, most of these approaches need some predefined rules to recon-
figure into a limited set of predefined patterns. To our knowledge, very few
of the current RM robots can automatically reorganize their structures to
adapt to different environments based on their online sensory information.
Although self-organization is believed to be the most important feature of
RM robots, the ability to adapt their configurations autonomously to envi-
ronmental changes largely re-mains to be demonstrated. To address this issue,
we start to study the morphogenesis procedure in multi-cellular organisms.
Morphogenesis is the biological process that causes an organism to develop
its shapes. During the morphogenesis, genes in each cell are expressed, re-
sulting in various cellular functions. The expression of the genes is regulated
by their own protein products as well as proteins produced by other genes in
the same cell or neighboring cells through intracellular and intercellular dif-
fusion, forming a complex gene regulatory network (GRN). This underlying
GRN plays critical rules in the organism morphogenesis.

The connection between RM robots and multi-cellular organisms is straight-
forward. Each unit in a RM robot can be treated as a cell, and there exist
analogies in control, communication and physical interactions between cells in
a multi-cellular organism and modules in a RM robot. For example, control
in both RM robots and multi-cellular organisms are decentralized. In addi-
tion, global behaviors of both RM robots and multi-cellular organisms emerge
through local interactions of the units, which include mechanic, magnetic and
electronic mechanisms in RM robots, and chemical diffusion and cellular phys-
ical interactions such as adhesion in multi-cellular organisms.

Therefore, inspired by the embryonic development of multi-cellular organ-
isms [33], morphogenetic self-reconfiguration of two RM robots, namely,
Cross-Cube [16, 17] and Cross-Ball [18], are proposed in this chapter using
underlying principles of biological morphogenesis. The mechanical designs
of both Cross-Cube and Cross-Ball RM robots belong to the hybrid RM
robots, which combine the features of both chain-based and lattice-based
RM robots. And a hierarchical morphogenetic model is proposed for the self-
reconfiguration of both Cross-Cube and Cross-Ball RM robots. Generally
speaking, the layer 1 controller is the pat-tern generation layer, which aims
to generate appropriate patterns for RM robots to adapt to the current en-
vironment and the tasks in hands. Layer 2 controller is a gene regulatory
network (GRN) based controller, which automatically produce reconfigura-
tion plans for modules to converge to the target patterns generated from
layer 1. This two-layer model is enough for the Cross-Cube RM robots due
to the high flexibility of the module movements in Cross-Cube. However, the
mechanical and electrical design of Cross-Cube is very complex and hard to

146 Y. Meng and Y. Jin

be implemented in physical prototype. Therefore, we improve the design of
Cross-Cube and develop a new RM robot, called Cross-Ball. Compared with
Cross-Cube, the complexity of the mechanical and electrical design of the
Cross-Ball is significantly decreased at the cost of losing some flexibility of
module movements of Cross-Ball. Therefore, an additional layer 3 controller
is required for Cross-Ball to deal with the physical constraints of module
movements.

The major contributions of the proposed morphogenetic self-reconfiguration
of RM robots are listed as follows. (1) Due to the high flexibility of module
movements of both Cross-Cube and Cross-Ball RM robots, various complex
pat-terns can be constructed using these two RM robots. (2) With the pro-
posed hierarchical morphogenetic model, both RM robots can automatically
self-reconfigure their modules to appropriate patterns to adapt to dynamic en-
vironments based on onboard sensory information of RM robots. So far, very
few of the existing RM robots have such self-reconfiguration capability. (3) The
proposed hierarchicalmorphogenetic model is executed on each module of both
RM robots in a distributed manner, where each module makes its own decisions
based on its local perceptions by itself and its immediate neighboring modules.
In this manner, both RM robots are very robust to system failures or malfunc-
tions and can self-repair themselves automatically. The rest of the chapter is
organized as follows. First, a brief introduction of multi-cellular morphogen-
esis is presented in Section 2. A generic hierarchical morphogenetic model is
introduced in Section 3. The hardware designs and corresponding hierarchical
morphogenetic models for Cross-Cube and Cross-Ball RM robots are described
in Section 4 and Section 5, respectively, as well as the experimental results of
each RM robot. Section 6 gives the conclusion and future work.

2 Multi-cellular Morphogenesis

Morphogenesis is one fundamental biological process in developmental biol-
ogy that guides an organism to develop its body plan. Multi-cellular morpho-
genesis is under the control of gene regulatory networks (GRN). When a gene
is expressed, information stored in the genome is transcribed into mRNA and
then translated into proteins. Some of these proteins are transcription factors
that can regulate the expression of their own or other genes, thus resulting in
a complex network of interacting genes termed as a GRN. To understand the
emergent morphology resulting from the interactions of genes in a regulatory
network, reconstruction of gene regulatory pathways using a computational
model has become popular in systems biology [1]. A large number of compu-
tational models for GRNs have been suggested [5, 4], which can largely be
divided into discrete models, such as random Boolean networks and Marko-
vian models, and continuous models, such as ordinary differential equations
and partial differential equations. Sometimes, GRN models also distinguish

Morphogenetic Self-Reconfiguration of Modular Robots 147

them-selves as deterministic models and stochastic models according to their
ability to describe stochasticity in gene expression.

3 A Generic Hierarchical Morphogenetic Model

Inspired by the mechanisms of biological morphogenesis, a generic hierarchi-
cal morphogenetic model is proposed, which in principle can be applied to
various RM robots for self-reconfiguration in dynamic environments. First,
the target pat-tern that a RM robot needs to form can be generated automat-
ically based on the current environments and the task requirements, which is
the layer 1 controller of the hierarchical model. Then, the layer 2 controller
is required to automatically generate self-reconfiguration plans to guide each
module in a RM robot to con-verge to the target pattern generated by the
layer 1 controller. Then, based on different mechanical design and physi-
cal constraints of module movements of RM robots, different motion control
methods are needed to move the modules to their destination positions in
the target pattern by following the self-reconfiguration plan provided by the
layer 2 controller. Fig. 1 shows the block diagram of this hierarchical mor-
phogenetic model. Due to different hardware design and physical constraints
of modules, different RM robots may need to develop different hierarchical
controllers for each layer, but they all share the same fundamental control
architecture described in Fig. 1.

4 Self-Reconfiguration of Cross-Cube RM Robots

4.1 Hardware Design of Cross-Cube

Cross-Cube is a RM robot we developed in a robot simulator using a real
time physics engine PhysX [16]. Each module in a Cross-Cube robot is
a cubical structure having its own computing and communication resource
and actuation capability. Each module can perceive its local environment
and communicate with its neighboring modules using on-board sensors. Each
Cross-Cube module consists of a core and a shell as shown in Fig. 2. The core
is a cube with six universal joints. Their default heading directions are bot-
tom, up, right, left, front, and back, respectively. Each joint can be attached
to or detached from the joints of its neighbor modules. The axis of each joint
can be actively rotated, extended, and returned to its default direction. Ba-
sic module movements include rotating, climbing, and parallel movements.
Fig. 2 illustrates a rotating movement of two modules. Parallel movement
means that a module moves to a next position which is parallel to its cur-
rent position. Climbing movement means that a module moves to a diagonal
neighboring position. Please refer to [16] for the detailed mechanical design
of Cross-Ball and its motion capabilities.

148 Y. Meng and Y. Jin

Fig. 1 The flowchart of the proposed hierarchial morphogenetic controller for each
module in a RM robot

4.2 A Hybrid Hierarchical Model

Based on the generic hierarchical morphogenetic model described in Fig. 1,
a hybrid hierarchical model was proposed for the Cross-Cube RM robot in
our previous work [16], where the layer 1 controller is a rule-based method
to generate the target pattern. The rules are described in terms of a look-
up-table. The layer 2 controller is a GRN-based controller to reconfigure
the modules to the target pattern automatically. Since there is no physical
constraint in module movements of the Cross-Cube modules, specific motion
controller is not needed for Cross-Cube RM robots. Therefore, we only focus
on the controllers of the first two layers here.

Morphogenetic Self-Reconfiguration of Modular Robots 149

Fig. 2 Mechanical demonstration of the Cross-Cube module. (a) The joints; (b)
The locks on the boundaries of the modules. (c) Rotation and extension of the
joints of the modules.

4.2.1 A Rule-Based Method for Layer 1 Controller

Initially, a number of basic configurations for different environments can be
represented in a look-up-table for a given mission. Table 1 lists one definition
of a vehicle pattern using a look-up-table. In the table, x, y, and z are 3D
coordinates of grid positions, MG denotes morphogen value and PID stands
for position identification. The target pattern is defined by the morphogen
values on grid positions.

Table 1 Definition of a vehicle pattern.

Positions (x, y, z, MG, PID) Joints (PID1, PID2, RD)

(0, 0, 0, 10, 0) (1, 0, 3, 10, 10) (0, 1, 0)

(1, 0, 0, 10, 1) (2, 0, 3, 10, 11) (2, 3, 1)

(2, 0, 0, 10,2) (0, 0, 4, 10,12) (6, 7, 0)

(3, 0, 0, 10, 3) (1, 0, 4, 10, 13) (8, 9, 1)

(1, 0, 1, 10, 4) (2, 0, 4, 10, 14) (12, 13, 0)

(2, 0, 1, 10, 5) (3, 0, 4, 10, 15) (14, 15, 1)

(0, 0, 2, 10, 6) (0, 0, 1, -1, 16)

(1, 0, 2, 10, 7) (3, 0, 1, -1, 17)

(2, 0, 2, 10, 8) (0, 0, 3, -1, 18)

(3, 0, 2, 10, 9) (3, 0, 3, -1, 19)

Adaptation to environmental changes is of paramount importance in RM
robots. A mechanism is needed to define and modify the target pattern of
a RM robot adaptively to respond to environmental changes based on local
sensory feedback. For such tasks, it is assumed that each module is equipped
with a sensor to detect the distance between the module and obstacle in the
environment. Once a module receives such sensory feedback, this information

150 Y. Meng and Y. Jin

will be passed on to its neighbors through local communication. In this way,
a global change in configuration can be achieved. Therefore, a rule-based
controller is developed to address this adaptation issue. It is assumed that
initially all robot modules know the heading direction of the vehicle pattern.
When a robot needs to traverse a path whose width is narrower than that of
the robot, the width of the front row will be first adapted to fit in the path.
The remaining rows of the vehicle will be adapted row by row in a decentral-
ized manner through local communication among modules. The basic rules
for this procedure can be summarized as follows:

• Rule 1: Once a module in the front row detects obstacle(s), it passes this
information through local communication to its neighboring modules until
all the modules are reset to ‘unstable’ state for initialization. Refer to the
next subsection for the finite state machine of modules.

• Rule 2: If some modules in the first row detect an obstacle, they will make
a decision on whether the robot needs to reconfigure itself to avoid the
obstacle. If yes, these modules will estimate how many modules need to be
removed and this information is passed to other modules in the same row
through local communication. Therefore, the morphogen values of these
need-to-remove positions are set up as negative values while others as
positive values.

• Rule3: After the GRN-based pattern formation controller (will be dis-
cussed next) finishes the reorganization of the modules in one row, the
states of these modules are set to be ‘stable’.

• Rule 4: If a row of a vehicle pattern is filled in by stable modules, these
modules set the morphogen values for the position of its next row to be
positive.

• Rule 5: The pattern generation procedure stops when all the modules
change to the ‘stable’ state.

This rule-based approach will allow the modular robots to adapt its con-
figurations to the current environmental constraints.

4.2.2 A GRN-Based Method for Layer 2 Controller

Once the target pattern is initialized in a look-up-table and adapted differ-
ent patterns to respond to the environmental changes based on the above
rule-based method, the next step is to configure the Cross-Cube modules to
converge to the target pattern. By setting any single module as the origin,
all other modules can figure out their relative positions to this origin eas-
ily through local communications. Based on the relative positions and the
information on the target pattern, each module can produce different types
of proteins to attract other modules to fill in its neighboring positions with

Morphogenetic Self-Reconfiguration of Modular Robots 151

positive morphogen values, or repel its neighbor modules from positions with
negative morphgen values.

Finite State Machine of Modules. The finite state machine of a Cross-Cube
module is shown in Fig. 3, where each module has five different states, namely,
‘stable’, ‘unstable’, ‘attracting’, ‘repelling’, and ‘repelled’. The ‘stable’ state
is the final state of the module. The “attracting” state means the module is
attracting other modules to fill in some of its neighboring grids. The ‘unsta-
ble’ state means the module can respond to attractions. The ‘repelling’ state
means the module is repelling unwanted neighboring modules away. The ‘re-
pelled’ state means that the module responds to repelling requests and move
away from the current grid.

Fig. 3 The finiate state machine of a Cross-Cube module.

When an ‘unstable’ module arrives at the destination grid, it changes its
state to “stable” (arrow a). When a ‘stable’ module has neighboring grids
need to be filled, it will change its state to ‘attracting’ (arrow b) to attract
‘unstable’ modules to fill in those grids. Once those neighboring grids are
occupied, the ‘attracting’ module returns to the ‘stable’ state (arrow c). A
‘stable’ module may also give up its current position to fill in a grid with
higher morphogen value in the pattern by turning its state to ‘unstable’
(arrow d).

A ‘repelling’ module repels unwanted neighbor modules from their current
positions by setting their states to ‘repelled’(arrow g). Then the ‘repelled’
module moves away from its current position, and switches its state to ‘un-
stable’ (arrow h). A module can be triggered to the ‘repelling’ state in two

152 Y. Meng and Y. Jin

situations. The first one is when a ‘stable’ module finds out that some of its
neighboring modules need to be removed (with a negative morphogen value),
it changes its state to ‘repelling’ (arrow e)and switches the state of those
neighbors to ‘repelled’ (arrow g). When all the ‘repelled’ modules have left,
the ‘repelling’ module returns to the ‘stable’ state (arrow j). The second sit-
uation is when a deadlock happens, where a moving module is blocked by its
neighboring modules. To resolve this deadlock, the blocked module switches
its state to ‘repelling’ (arrow f), and attempts to change the state of all
its neighbors to be ‘repelled’ (arrow g). This removes some of its neighbor-
ing modules to make room for the blocked module to move away. Then the
‘repelling’ module returns to the ‘repelled’ state (arrow i). To prevent the
deadlock situations, the repellent states always have a higher priority than
the attracting states.

The state transitions of each module are controlled by a GRN model,
which has two gene-protein pairs: an attracting gene-protein pair (gA, pA)
and a repelling gene-protein pair (gp, pp).

Gene-Protein Pair for Attraction. The attracting gene-protein pair (gA, pA)
is used to control the transitions between ‘attracting’, ‘stable’ and ‘unstable’
states in Fig. 3 based on the morphogen values of the target pattern generated
by layer 1. Initially, all modules are set as ‘unstable’. After they are initialized
with the target pattern and the relative position information to the origin,
modules that are located in the grids with a positive morphogen value become
‘stable’. A ‘stable’ module initializes the gene expression level of its attracting
gene gA to zero.

Basically the expression level of gA affects the state of the module as
follows:

state =

⎧⎨
⎩

’unstable’ if gA < GA L

’stable’ if GA L < gA < GA H

’attracting’ if gA > GA H

(1)

where GA L is a negative threshold and GA H is a positive threshold.
Each ‘stable’ module generates attracting protein pA for all the empty

neighboring grids with a positive morphogen value. The local generated pA

and received pA from other modules will regulate the expression level of gA.
When gA is higher than GA H , the state changes to ‘attracting’, and the
attracting protein pA is diffused to other modules. pA is defined as

pij
A = k1 · mpj (2)

where pij
A is the concentration of attracting protein generated by module i

for its neighbor grid j. k1 is the discount rate of pij
A over distance, which is a

defined as 0.8 in experiments. mpj is the morphogen value of grid j.

Morphogenetic Self-Reconfiguration of Modular Robots 153

The gene expression level of the attracting gene gA(t) is defined by:

dgi
A(t)
dt

= −k2 · gi
A(t) + k3 ·

pij
A∑
j

−k4 ·
prec

A∑
k

(3)

where gi
A(t) is the gene expression level of modular robot i. The first term in

Eqn.(3) means that gi
A(t) decays over time.

∑
j

pij
A represents the sum of all

the generated attracting proteins by robot module i for its empty neighboring
grids. The more proteins the module generates for its empty neighboring grid,
the higher the gA expression level it will have, which means it will have a
higher possibility to change its state from ‘stable’ to ‘attracting’.

∑
k

prec
A is

the sum of the protein concentrations received from other modules by robot
module i. The module may turn to ‘unstable’ if other modules have stronger
attractions so that gA(t) is reduced to a value less than GA L. Unstable
modules choose to fill in the attracting grid with the highest PA from all the
received attracting proteins. k2, k3, and k4 are constant coefficients.

Gene-Protein Pair for Repelling. The ‘repelling’ and ‘repelled’ states are con-
trolled by the repelling gene-protein pair (gP , pP). A ‘repelling’ module gen-
erates pP and diffuses it to the neighboring modules that need to be repelled.
The repellent protein pP is defined as a positive constant. Each module has
a gene gP whose expression level decides the state transition to “repelled”
state. The gene expression level of gP is initialized as 0 and can be regulated
by pP through Eqn.(4)

dgi
P (t)
dt

= −k5 · gi
P (t) − k6 ·

∑
prec

p (4)

state of grid i = repelled when gi
P < −mpi (5)

where gi
P (t) is the gene expression level of the repellent gene at time t. prec

P

is the concentration of the received repellent protein. mpi is the morphogen
value of the current grid. k5 and k6 are constant coefficients. The first item
in Eqn.(4) denotes that gp(t) decays over time.

∑
prec

P indicates the sum of
all pP received by module i from its immediate neighbors. gP is reduced with
more received pP . Eqn.(4) indicates that modules with a lower morphogen
value are more likely to be repelled.

4.2.3 Experimental Results

To evaluate the efficiency and robustness of the proposed hybrid ap-
proach to the self-reconfiguration of Cross-Cube RM robots, several case
studies have been conducted in a robot simulator. This simulator is
used to simulate the behaviors and interaction of Cross-Cube RM robots
with a physical world using C++ and the PhysX engine from nVidia

154 Y. Meng and Y. Jin

(http://en.wikipedia.org/wiki/PhysX). In the following experiments, the sys-
tem parameters are setup as follows: k1 = 0.7, k2 = 1, k3 = 1, k4 = 0.5,
k5 = 2, GA L = −1, GA H = 1, GP L = −2, Cij

P = 0.7. Protein concentration
decays to 80% of its previous level when it diffuses into a neighbor module.

To evaluate the performance of the GRN-based controller for pattern for-
mation layer, first, we can predefine a fixed target pattern using a look-up
table as shown in Table 1. Based on this predefined target pattern, the mod-
ules of Cross-Cube need to autonomously configure themselves to form the
target pattern using the GRN-based layer 2 controller. A set of snapshots
of this pattern formation procedure in the experiment is depicted in Fig. 4.
From Fig. 4, we can see that the Cross-Cube can automatically form a given
target pattern through self-reconfiguration using the proposed GRN-based
controller.

Fig. 4 Autonomous reconfiguration of a Cross-Cube RM robot from a rectangle
to a vehicle using the hybrid hierarchical model.

To evaluate the self-repairing performance of the GRN-based layer 2 con-
troller, another experiment is conducted here. First, the look-up table of the
target pattern (i.e., a vehicle patter here) for robot modules is predefined.
When the vehicle is moving, an “explosion” occurs and some functional mod-
ules are blown away. The backup modules then move to fill in the damaged
modules. Fig. 5 shows a snapshot of this self-repairing procedure using the
proposed hierarchical framework on Cross-Cube modules. This experiment
demonstrates that the proposed approach is efficient for self-repair of a mod-
ular robot in the presence of some failed modules.

To verify the efficiency and robustness of the rule-based controller for pat-
tern generation, an adaptive vehicle pattern is constructed automatically us-
ing the proposed hybrid hierarchical model. During the pattern generation
process, the positive morphogen value is set as 10 and the negative morphogen
value is -10. A set of snapshots showing the adaptation of the vehicle pattern
to environmental changes is provided in Fig. 6. First, the pattern generation
controller generates a vehicle pattern based on the width of path it needs
to traverse using the rule-based method. As the vehicle moves forward, a
narrower path is detected. Consequently, a new vehicle pattern that can fit

Morphogenetic Self-Reconfiguration of Modular Robots 155

in this narrower tunnel is generated. Then steps are detected in front of the
robot, new target patterns are dynamically generated to allow the robots to
climb the steps, and eventually a new vehicle pattern is generated to con-
tinue its locomotion task after finishing the climbing. During this procedure,
the GRN-based controller for pattern formation layer would automatically
reconfigure the modules to form the new target patterns.

Fig. 5 A set of snapshots of the self-repairing of CrossCube using the GRN-based
controller. (a) A vehicle pattern is formed. (b) The vehicle pattern moves forward.
(c) Some modules are blown off when the explosion happens. (d) The failed part
is filled up by the backup modules. (e) The vehicle is repaired. (f) The repaired
vehicle continues moving.

4.2.4 Intermediate Summary

In this hybrid hierarchical model for the self-reconfiguration of Cross-Cube
RM robots, layer 1 controller defines the target pattern of the modular robots
in a look-up-table and adapts the target pattern using a rule-based method,
while layer 2 controller organizes the modules autonomously to achieve the
target pattern. The major limitation of this hybrid hierarchical model is that
the target pattern has to be predefined in a look-up-table, and the current
design of the first layer is a heuristic rule-based method, which can only
generate some simple patterns and is hard to generate various patterns for

156 Y. Meng and Y. Jin

Fig. 6 A set of snapshots demonstrating a series of reconfigurable processes during
locomotion and climbing. The robot first adapted its width to the narrow path, then
changed its configuration for climbing up a step, and finally reconfigured itself into
a vehicle again to move forward.

dynamic environments. To address this issue, we proposed a new hierarchical
mechanochemical model in [17], which will be discussed next.

4.3 The Hierarchical Morphogenetic Model

4.3.1 Layer 1 Controller: A Mechanochemical Model

Morphogenesis of multi-cellular systems provides a nice example in which self-
organizing pattern formation is realized through cell-cell and cell-environment
interactions. One cellular environment is a complex mixture of nonliving ma-
terial that makes up the extracellular matrix (ECM) [21, 22] . In biological
systems, the ECM is the extracellular part of animal tissue secreted by the
cells that usually provides structural support to the cells. Meanwhile, the
shape of ECM is also affected by the behaviors of the cells through the in-
teractions between ECM and cells. The interaction dynamics between cells
and the ECM can be described by a morphogenetic mechanochemical model
proposed by Murray et al. [22]. In this model, the simultaneous development
of pattern formation and morphogenesis is a closed-loop system where the ex-
tracellular matrix (ECM) can be treated as environmental constraints, which
is therefore well suited for constructing layer 1 in a hierarchical morpho-
genetic model. Therefore, a virtual-cell (v-cell) based approach is developed

Morphogenetic Self-Reconfiguration of Modular Robots 157

to transfer continuous biological systems to discrete robotic systems. The
basic hypothesis and assumptions of this approach are listed as follows:

• There are three basic components in this model: v-cells, ECM, and environ-
ment (including task requirements and local environmental constraints).
At the beginning, a predefined number of v-cells start to proliferate from a
fixed grid. V-cells can proliferate, interact with other v-cells, and diffuse in
a 3D space. The ECM and environment provide constraints on the v-cell
behaviors.

• Each discrete grid can contain multiple v-cells. The v-cells can only move
to the grids that are either occupied by modules, or empty grids that are
the modules’ immediate neighbors. By following these rules, the v-cells
will not move to the grids that are occupied by obstacles or disconnected
from the robot system.

• Each grid is associated with one ECM value, which is determined by the
density of v-cells of the immediate neighboring grids. If more than one
ECM value is generated on the same grid by v-cells from different grids,
the final ECM value is the sum of all the generated ECM values.

Based on the above assumptions, a new mechanochemical model for self-
organization of modular robots is developed. As shown in Fig. 7, the v-
cells (red dots) can move freely in the modules of a modular robot and their
neighboring discrete grids, while the ECM and task requirements can produce
environmental and task constraints to the behavior of the v-cells.

Fig. 7 The virtual-cell based mechanochemical model at a macro-level view.

158 Y. Meng and Y. Jin

The density of the v-cells and the ECM value in a grid can be defined as
follows:

dni

dt
= r · ni(N − ni) − d · Ki · Mi − a · ρi

ni + ρi
+

∑
k

nrec
k (6)

dρi

dt
= −b · ni

ni + ρi
+ e ·

∑
j

fji(nj) (7)

where ni and ρirepresent the density of the v-cells and the ECM value in
grid i, respectively. The first term in Eqn.(6) denotes the proliferation rate
of the v-cells, where N is the predefined maximum number of v-cells allowed
in the grid, and (r · N) is the maximum value of linear proliferation rate of
the v-cells in the grid. The proliferation rate of the v-cells will be expedited
when the local density of v-cells is low, and will be reduced when the density
of v-cells approaches to N .

Ki · Mi denotes the random dispersal of the v-cells, which depends on
a dispersal control vector Ki and a density gradient vector Mi for grid
i. Since v-cells are allowed to move only to their immediate neighbors, v-
cells can have up to 6 directions to move to: up, down, left, right, for-
ward and backward. The dispersal control vector Ki is defined as Ki =[
kup

i , kdown
i , kleft

i , kright
i , kforward

i , kbackward
i

]
, where each element of Ki rep-

resents the dispersal rate for each direction. A higher dispersal rate means a
faster dispersal of v-cells in that direction.

The third item in Eqn.(6) describes how the density of v-cells is decreased
by the ECM value on the same grid.

∑
k

nrec
k denotes the total densities of

v-cells received by grid i from all the neighboring grids. r, d, and a are
predefined constants.

Eqn.(7) describes the dynamics of the ECM value. The first item of Eqn.(7)
describes how the density of local v-cells suppresses the ECM value. The
higher the density of v-cells, the more the ECM value is reduced. The second
item in Eqn.(7) denotes the process how the ECM value is generated in grid
ibased on the sum of densities of v-cells of neighboring grids. fji(nj) is the
generated ECM value on grid i by grid j, where nj is v-cell density in grid j.

The detailed rules of fji(nj) depends on the target pattern. Here, we use
a vehicle-like pattern as an example to explain how to define fji(nj). This
definition will be used for the case study 1 in the following experiments.
We first provide the following design guidelines for the vehicle-like patterns.
(1)The chassis of a vehicle pattern is normally designed as a rectangle. The
total width of the vehicle is denoted by W = xmax − xmin + 1, where xmax

and xmin are the rightmost and leftmost positions of the vehicle pattern. (2)
Wheel modules are needed on the left and right boundary of the chassis, and
cannot be immediate neighbors, otherwise they cannot rotate freely. (3) The

Morphogenetic Self-Reconfiguration of Modular Robots 159

target pattern should be built from bottom up. Only when the bottom floor
is filled up and there are still modules left, the top floor will be filled.

To optimize the chemical pattern formation using the mechanochemical
model, the covariance matrix adaption evolution strategy (CMA-ES) [10] is
employed for tuning the parameters of fji(nj) in the model. CMA-ES is a
stochastic, iterative optimization method belonging to the class of evolution-
ary algorithms. For example, in the vehicle-like pattern, the parameters to
be tuned are: the width of the vehicle W and ECMup. Based on different
target patterns, different fji(nj) is applied. Therefore, different parameters
will be tuned by CMA-ES.

The final target pattern is determined by the morphogen value in each
grid. V-cells tend to flow to the grids with lower ECM values. Therefore, the
morphogen value mpi of grid i can be defined as the difference between the
density of v-cells and the ECM value in each grid as mpi = ni − ρi − zi,
where zi is a threshold which is determined by (ni − ρi) so that all the grids
with positive morphogen values belong to the target pattern, and others have
negative morphogen values. A higher value of morphogen value indicates a
higher priority for the grid to be filled by a module. This mechanochemical
process stops when the number of the grids with positive morphogen values
reaches the number of the available robot modules.

Both v-cells and ECM are virtual objects which don’t physically exist.
They are represented by variables which are stored in the memory of each
module and can be exchanged between the neighboring modules through
diffusion. For those grids occupied by modules, the density of v-cells and
ECM value are estimated by the hosting modules. For those empty grids
where no module exists, the density of v-cells and ECM values are maintained
by neighboring modules in a distributed way. Please be noted that only those
empty grids which are immediate neighbors of the modules will be considered
here.

4.3.2 Layer 2 Controller: A GRN-Based Model

As described above, the target pattern of a RM robot is defined by morphogen
values associated to the grids in the target pattern. To place the modules
in the grids with positive morphogen value and keep grids with negative
morphogen value empty, a local coordinate system must be built up. This can
be achieved by setting an arbitrary module to be the origin of the coordinate
system [9], and thus all other modules can figure out their relative positions
to the module on the origin through local communications. With the help of
relative positions and the morphogen values of grids in the target pattern,
each module can decide: (1) if attracting proteins should be produced to
attract other modules to fill in its neighboring grids, or (2) if repelling proteins
should be produced to remove neighboring modules, or (3) if the module
should respond to the attraction and repellence requests sent out by other
modules. Thus, the reconfiguration of the modular robot is controlled through

160 Y. Meng and Y. Jin

changing the state of the individual modules. The basic model of the layer
2 controller is similar to the one used in the hybrid controller we discussed
before. Therefore, we skip this part here.

4.3.3 Experimental Results

To evaluate the efficiency and robustness of the proposed hierarchical mor-
phogenetic model for the self-reconfiguration of Cross-Cube RM robots, sev-
eral case studies have been conducted in the same robot simulator we dis-
cussed before. In the following experiments, the system parameters of the
hierarchical model are set up as follows. The parameters of the GRN model
in layer 2 are: k2 = 0.7, k3 = 1, k4 = 1, k5 = 0.5, k6 = 2, GA L = −1,
GA H = 1, and GP L = −2. The parameters of the model in layer 1 are:
r = 0.005, N = 200, d = 1, a = 0.05, b = 20 and e = 1. For case study 3,
the CMA-ES method is employed to evolve the pattern parameters in the
mechanochemical model to achieve optimal pattern formation.

First, a vehicle pattern in an open space is generated using the proposed
hierarchical morphogenetic model. The parameters in f(ci) are defined as
follows: The parameters in f(ci) are: xmin = 0, xmax = 4, ECMup = 100,
ECMwheel = n ∗ 100, where n is the density of v-cells in input position.
The pattern threshold Z is set to 170. The robots are distributed in a 4x6
rectangle. Since there is no environmental constraints in an open space, a
one-floor vehicle pattern will be generated, which matches the guidelines of
the vehicle-like pattern design. The ECM valued generated by the v-cells
on the left and the right boarders can be used to generate the wheels. The
generated ECM value by a wheel slows down the diffusion of the v-cells into
the wheel’s neighboring grids. As a result, no two wheel modules can be
immediate neighbors so that wheels can freely rotate. A set of snapshots of
this experiment are shown in Fig. 8.

Second case study is to verify if the hierarchical morphogenetic model
can self-reconfigure the Cross-Cube RM robots to adapt to environmental
changes. More specifically, we want to show that a Cross-Cube RM can climb
stairs by changing its pattern autonomously. The starting grid of the robot is
initialized with 4000 v-cells and the robot is distributed in a 3x3 square. First,
in order to trigger the robot to move forward, a forward “force” is applied
on v-cells. To update the density of v-cells in each grid, this forward “force”
can be obtained from

∑
k

nrec
k in Eqn.6. Second, we need to define fji(nj)

for climbing patterns. Since we want the pattern to be able to move forward
and climb up the stairs, diffusion direction of v-cells should be forward and
up while keeping the width of current pattern. Therefore, if grid j is at the
leftmost or rightmost position of the pattern, fji(nj) = 100 ∗ nj , where i
can be the left or right grid of j. Third, since the robot has to climb up on
the stairs, the moving-up action of the v-cells should be encouraged and the
moving-down should be restricted. Therefore the dispersal control vector is

Morphogenetic Self-Reconfiguration of Modular Robots 161

Fig. 8 A set of snapshots of a vehicle pattern generation of a modular robot in an
open space.

defined as kup
i = 1, kdown

i = 0, kleft
i = 0.5, kright

i = 0.5, kforward
i = 0.7,

and kbackward
i = 0.7.

Fig. 9 A set of snapshots demonstrating the reconfigurable processes in the stair-
climbing case using the proposed hierarchical model.

162 Y. Meng and Y. Jin

A set of snapshots showing the adaptation of the vehicle pattern to envi-
ronmental changes is shown in Fig. 9. The black cubes are ‘unstable’ modules.
When the stairs in the environment are detected in front of the robot, new tar-
get patterns are automatically generated to allow the robots to climb stairs.
The v-cells first flow to an intermediate grid (not yet the target grid) using
the layer 1 controller, then the modules move to the positions controlled by
the layer 2 model. These two processes interleave until the target pattern is
realized or the robot successfully climbs over up stairs.

Third case study is to let a Cross-Cube RM robot to traverse a dynamic
environment. To optimize the pattern design of the modular robot for a
locomotion task, the CMA-ES is applied to evolve the pattern parameters of
fji(nj), which include the width of the robot (W) and ECMup. Here, for a
locomotion pattern, the fitness function of the CMA-ES method is defined
as the travel distance within a certain time period. The longer the robot can
travel within a certain time period, the better the current pattern is for the
locomotion task. We set λ = 20, μ = 5 and σ = 50. The parameters of the
best evolved vehicle-like pattern are: W = 3 and ECMup =201. Fig. 10 shows
a set of snapshots of the self-adaption procedure of a Cross-Cube RM robot
to adapt to a changing environment, where the robot dynamically changes
its pattern when a narrower passage is detected.

Fig. 10 A set of snapshots demonstrating a series of reconfigurable processes dur-
ing locomotion in a changing environment where the robot adapted its width to a
narrow path.

Morphogenetic Self-Reconfiguration of Modular Robots 163

4.3.4 Intermediate Summary

Cross-Cube can provide very flexible configuration capability. However, the
mechanical and electrical design of Cross-Cube is relatively complex to build
up the physical prototype. To reduce the design complexity of Cross-Cube
while providing good enough flexibility and individual mobility of single
module, recently, we improved our mechanical and electrical design of the
Cross-Cube and proposed a new RM robot, called Cross-Ball [18] , and also
developed the corresponding hierarchical morphogenetic model for the self-
reconfiguration of the Cross-Ball RM robots, which will be discussed next.

5 Self-Reconfiguration of Cross-Ball RM Robots

5.1 Hardware Design of Cross-Ball Module

The proposed Cross-Ball module, as shown in Fig. 11, is a sphere with 3-inch
diameter. The module is in a ball shape to allow individual mobility and to be
more spatial efficient during self-reconfiguration process. It consists of three
main components: an arm system in the middle and two halves of a sphere
at sides. The two sphere halves can rotate according to the arm system.
Six genderless attachment mechanisms are equipped on the six orthogonal
directions. Details will be given later. Please refer to [18] for the detailed
mechanical design of Cross-Ball and its motion capabilities.

Using the rotary arm and side clasp, a module is able to conduct three
types of self-reconfiguration motions: rotating, parallel and diagonal move-
ments. In the following part of the paper, we will call the main rotary arm
as “thread”. The thread could have three poses: perpendicular to x, y and z
axis, respectively.

In the rotating movement, a module can connect its arm to a neighbor’s
side clasp or arm. Then the module disconnects all its stationary attachments
and rotates the main arm clasp. In this way, the whole body will rotate
because the other side of the arm has been fixed by the neighboring module.
For parallel movement, a module moves to one of its neighboring positions,
as shown in Fig. 12(a)-(b). In this movement, two more modules involved
besides the moving module, which are called supporting modules. Diagonal
movement means a module moves into a neighboring position in the diagonal
direction, as shown in Fig. 12(c)-(d).

Based on previous discussion, the Cross-Ball module can rotate, move to
parallel positions and diagonal positions along any axis given proper support-
ing modules. The degree of freedom (DOF) of Cross-Ball is 6. The dimension
of a module’s connector is 6 due to the stationary attachments. As the mod-
ule is in a ball shape, the number of cubic space that a module can hold is 1
because it only occupies one cubic space. In general, Cross-Ball can provide
competitive reconfiguration capability with Cross-Cube, meanwhile reduces
the design complexity significantly.

164 Y. Meng and Y. Jin

Fig. 11 (a) The proposed Cross-Ball module. Grey part is the rotary arm system
with main arm and two clasps. There are also two clasps on the sides of the module.
(b) The half model with the wheel extended.

Fig. 12 (a) Before the parallel movement; (b) After the parallel movement. (c)
The diagonal movement. The target module is rotated by the arm of the bottom
module. Before the diagonal movement; (d) After the diagonal movement.

5.2 The Hierarchical Morphogenetic Model for
Self-Reconfiguration

Similar to the Cross-Cube RM robots, a decentralized hierarchical morpho-
genetic model is proposed for the self-reconfiguration of the Cross-Ball RM
robots. However, the hierarchical model for Cross-Ball robots has three layers
instead of two layers. The layer 1 controller is a morphogenesis based pattern
generator, which is responsible to generate proper target pattern based on
the global goal of the current task and the sensory feedback of modules. The
layer 2 controller is a GRN-based self-reconfiguration planner, which gen-
erates movement decisions for individual module to converge to the target
pattern. The layer 3 controller is needed for Cross-Ball robots due to the
physical constraints of module movements of Cross-Ball modules, which is
responsible for the module motion control.

The layer 1 and layer 2 controllers are genetic and in principle can be ap-
plied to any RM robots. Therefore, the mechanochemical model for the layer

Morphogenetic Self-Reconfiguration of Modular Robots 165

1 controller and the GRN-based model for the layer 2 controller proposed for
the Cross-Cube RM robots in [17] can be applied directly to the Cross-Ball
RM robots. Here, we only focus on the layer 3 controller for the Cross-Ball
RM robots.

5.3 Layer 3 Controller: Motion Controller

For Cross-Ball modules, thread configurations are the key to implement the
rotating, parallel movement and diagonal movements. During the modules’
reconfiguration, their relative positions also change accordingly, which may
cause the further movements cannot be implemented due to the lack of proper
supporting modules. It is hard to develop comprehensive self-reconfiguration
motion controllers for a RM robot due to motion constraints of the modules.
Therefore, meta-module based approaches have been introduced in some RM
robots [2, 19], where a meta-module is formed up by several SR modules
and has less motion constraints than any individual module. Meanwhile, the
meta-module enlarges granularity of a RM robot. However, in order to mini-
mize the system granularity and better integrate with the layer 1 and layer 2
controllers, we proposed a skeleton-based algorithm for the layer 3 controller
to solve mechanical constraints. First, we define module S as a skeleton mod-
ule if there are 3 adjacent modules that can form up a meta-module with
S. Skeleton module S can freely configure its own thread and support the
movements of other modules. Fig. 13 shows one example of the meta-module.

The basic idea of the layer 3 controller is to evaluate the self-reconfiguration
plan generated from the layer 2 controller and maximize the scale of skele-
ton modules during self-reconfiguration process. The evaluation criterions in-
clude: (1) Skeleton modules will not move if there is non-skeleton “unstable”
modules at the current moment; (2) If there is no non-skeleton module, only
the skeleton modules with the least number of neighbors will move;(3) For
non-skeleton modules and modules who are about to turn to a non-skeleton
module by missing neighbors, by priority they should (a) touch the thread
to a skeleton module; (b) touch its thread to the thread of a non-skeleton
module; or (c) touch its thread to a non-skeleton module. The movements
that satisfy all these rules will be executed. Otherwise, they will be ignored.
The flow chart of the layer 3 controller is shown in Fig. 14.

By introducing skeleton modules and allowing modules to work in groups
(skeleton group and non-skeleton group), a module can easily decide whether
to move, and how to choose and move with supporting modules. In other
words, the skeleton-based layer 3 controller can significantly reduce the com-
plexity of searching process on the module movement plan. From the system
level point of view, by introducing the layer 3 controller, both the layer 1
and layer 2 controllers can be well integrated with the customized hardware
design of Cross-Ball and its corresponding locomotion capabilities.

166 Y. Meng and Y. Jin

Fig. 13 One meta-module of a Cross-Ball RM robot. (a) The upper right module
connects its main arm to the module on the left, disconnects all stationary attach-
ments, and rotates the main arm clasp to change the pose of thread. (b) Reconnect
the stationary attachments to finish thread pose adjustment. (c) The module con-
nects its main arm to the module below, disconnect stationary attachments, and
rotate the main arm clasp to change the pose of thread. (d) Reconnect station-
ary attachments to finish thread adjustment. All the process is reversible so the
meta-module can freely adjust the pose of thread.

Fig. 14 The flow chart of the layer 3 motion controller.

5.4 Experimental Results

To demonstrate the self-reconfiguration of Cross-Ball RM robots using three-
layer morphogenetic controllers, we conduct another experiment where 27
Cross-Ball modules can automatically transform from a snake pattern to a
human-like legged pattern. Some snapshots of this self-reconfiguration proce-
dure are shown in Fig. 15(a)-(d). Initially, the space cubes in the human-like

Morphogenetic Self-Reconfiguration of Modular Robots 167

legged pattern are set as non-ECM cubes in the layer 1 controller. Then all
modules in the non-ECM cubes are initialized with 500 v-cells, as shown in
Fig. 15(a). The modules with darker color have more number of v-cells than
those with lighter color. When the system starts, the v-cells diffuse to non-
ECM cubes so that more space cubes are inserted in the target pattern, as
shown in Fig. 15(b). In Fig. 15(b), some modules are relocated into spaces
cubes with more v-cells. Therefore, their color becomes darker. Eventually,
a human-like legged pattern (see Fig. 15(c)-(d)) is constructed. Then, the
human-like legged pattern is reconstructed to a vehicle-like 4 legged pattern
with some cargo space on the top. The modules at the end of legs can ro-
tate as wheels for a vehicle-like pattern. Some snapshots of this procedure
are shown in Fig. 15(e)-(h). From Fig. 15, we can see that the proposed
3-layer hierarchical morphogenetic framework can efficiently self-reconfigure
the Cross-Ball RM robots to various complex patterns.

Fig. 15 Snapshots of self-reconfiguration from a snake pattern to a human-like
legged pattern (a)-(d), and from a human-like legged pattern to a vehicle-like 4
legged pattern (e)-(f) using the Cross-Ball modules and the proposed 3-layer hier-
archical morphogenetic framework.

6 Conclusions

In this chapter, we introduced two new RM robots: Cross-Cube and Cross-
Ball. Then we presented a hierarchical morphogenetic approach for the
self-reconfiguration of modular robots, which is inspired by multi-cellular
morphogenesis. Such a hierarchical structure makes it possible to separate the
control mechanisms for defining a target configuration from those for realizing

168 Y. Meng and Y. Jin

it, similar to biological gene regulatory networks. In response to environmen-
tal changes, layer 1 is able to define appropriate target pattern to adapt
to new environments, based on which layer 2 generates self-reconfiguration
plans for modules to achieve the desired patterns. Depending on the physical
constraints of the module movements, layer 3 is dedicated to dealing with
physical constraints of module movements so that the target patterns can be
eventually achieved. In other words, both layer 1 and layer 2 are generic and
in principle can be applied to various RM robots, whereas the controller in
layer 3 is hardware specific. Different modular robots require different layer
3 controllers. With more physical constraints of the module movements, the
controller in layer 3 becomes more complex.

In the rule-based models for RM robots, heuristic rules have to be prede-
fined to predict all possible situations in the environments, which is impossible
in dynamic environments and not flexible enough to adapt to various envi-
ronmental changes. By contrast, the hierarchical morphogenetic model can
self-organize modules autonomously based on the sensory feedback from the
environment and can adapt its patterns to environmental changes without a
centralized control.

Cross-Cube modular robots can provide very high-level flexibility for mod-
ule movements without any physical constraints of module movements, there-
fore, only layer 1 and layer 2 controllers are required for Cross-Cube RM
robots for self-reconfigurations. However, the hardware design of Cross-Cube
is complex and hard to be implemented in physical prototype. By decreasing
the design complexity of the Cross-Cube robot, we proposed a Cross-Ball RM
robot, which has simpler hardware design than that of Cross-Cube, but can
provide good enough flexibility for module movements. To deal with the phys-
ical constraints of module movements of the Cross-Ball modules, a layer 3
controller is added. Furthermore, the independent mobile capability of Cross-
Ball module can not only provide more flexibility for the self-reconfiguration,
but also provides great potential to be naturally integrated into swarm robotic
systems, where each Cross-Ball module can be either used as a module in a
RM robot or an individual robot in a swarm robot system.

There are still some unresolved issues in the current hierarchical mor-
phogenetic framework. First, the layer 1 and layer 2 controllers need to be
simplified to improve the overall control efficiency of the self-reconfiguration.
Second, although layer 3 controller works in a decentralized manner, it still
depends on some global information (a module may have to collect position
information from all other modules). This may increase the communication
and computational costs when the size of modules increases. Third, although
the current design of Cross-Ball works in the embodied simulation environ-
ment, we still need to build up the physical prototype of the Cross-Ball to
further verify the design efficiency and evaluate the proposed hierarchical
morphogenetic framework for RM robots. We will investigate all these issues
in our future work.

Morphogenetic Self-Reconfiguration of Modular Robots 169

Acknowledgments

This project is partially supported by Honda Research Institute Europe GmbH,
63073 Offenbach/Main, Germany. The authors would also like to thank Yuyang
Zhang for the illustrative examples used in this book chapter.

References

1. Alon, U.: Network motifs: theory and experimental approaches. Nature Review
Genetics 8, 450–461 (2007)

2. Brandt, D., Christensen, D.J.: A new meta-module for controlling large sheets
of atron modules. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2375–2380 (2007)

3. Butler, Z., Fitch, R., Rus, D.: Distributed control for unit-compressible robots:
goal-recognition, locomotion, and splitting. IEEE/ASME Transactions on
Mechatronics 7(4), 418–430 (2002)

4. DeJong, H.: Modeling and simulation of genetic regulatory systems: A literature
review. Journal of Computational Biology 9, 67–103 (2002)

5. Endy, D., Brent, R.: Modeling cellular behavior. Nature 409, 391–395 (2001)
6. Fitch, R., Butler, Z.: Million module march: Scalable locomotion for large self-

reconfiguring robots. The International Journal of Robotics Research 27(3-4),
331–343 (2008)

7. Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self-organizing robots based
on cell structures - cebot. In: IEEE/RSJ Int. Conf.on Intelligent Robots and
Systems, pp. 145–150 (1988)

8. Gilpin, K., Kotay, K., Rus, D., Vasilescu, I.: Miche: Modular shape formation by
self-disassembly. The International Journal of Robotics Research 27, 345–372
(2008)

9. Guo, H., Meng, Y., Jin, Y.: A uniform framework for self-organized multi-robot
pattern formation and boundary coverage inspired from morphogenesis. ACM
Trans. on Autonomous and Adaptive Systems (2003) (accepted)

10. Hansen, N., Muller, S.D., Kououtsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (cma-es).
Evolutionary Computation 11, 1–18 (2003)

11. Hiroshi, U., Hiroshi, S., Tetsuji, Y., Yoshiaki, O., Saburo, M., Ryoichi, H.,
Jun, M.: Ground testbed of reconfigurable brachiating space robot. Advanced
robot 14, 355–358 (2000)

12. Hou, F., Shen, W.-M.: Distributed, dynamic, and autonomous reconfiguration
planning for chain-type self-reconfigurable robots. In: IEEE International Con-
ference on Robotics and Automation, pp. 3135–3140 (2008)

13. Jorgensen, M.W., Ostergaard, E.H., Lund, H.H.: Modular atron: modules for a
self-reconfigurable robot. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 2, pp. 2068–2073 (2004)

14. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S., Murata, S.:
Distributed adaptive locomotion by a modular robotic system, m-tran ii. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3,
pp. 2370–2377 (2004)

170 Y. Meng and Y. Jin

15. Kurokawa, H., Tomita, K., Kamimura, A., Kokaji, S., Hasuo, T., Murata, S.:
Distributed self-reconfiguration of m-tran iii modular. The International Jour-
nal of Robotics Research 27, 373–386 (2008)

16. Meng, Y., Zhang, Y., Jin, Y.: A morphogenetic approach to self-reconfigurable
modular robots using a hybrid hierarchical gene regulatory network. In: 12th
International Conference on the Synthesis and Simulation of Living Systems,
ALIFE XII (2010)

17. Meng, Y., Zhang, Y., Jin, Y.: Autonomous self-reconfiguration of modular
robots by evolving a hierarchical mechanochemical model. IEEE Computa-
tional Intelligence Magazine 6(1), 43–54 (2011)

18. Meng, Y., Zhang, Y., Sampath, A., Jin, Y., Sendhoff, B.: Cross-ball: A new
morphogenetic self-reconfigurable modular robot. In: IEEE/RSJ International
Conference on Robotics and Automation (2011)

19. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robotics and Au-
tomation Magazine 14(1), 71–78 (2007)

20. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Sokaji, S.:
M-tran: Self-reconfigurable modular robotic system. IEEE/ASME transactions
on mechatronics 7(4) (2002)

21. Murray, J.D.: Modelling biological pattern formation in embryology. ISI Atlas
of Science: Animal and Plant Sciences 1, 270–274 (1988)

22. Murray, J.D., Maini, P.K.: Mechanochemical models for generating biological
pattern and form in development. Physics Reports 2, 59–84 (1988)

23. Nguyen, A., Guibas, L., Yim, M.: Controlled module density helps reconfig-
uration planning. In: Workshop on the Algorithmic Foundations of Robotics
(2000)

24. Rosa, M., Goldstein, S., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpt-
ing via hole motion: Motion planning in lattice-constrained modular robots. In:
Proc. IEEE Int’l Conf. on Robotics and Automation (2006)

25. Salemi, B., Moll, M., Shen, W.-M.: Superbot: A deployable, multi-functional,
and modular self-reconfigurable robotic system. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3636–3641 (2006)

26. Sastra, J., Chitta, S., Yim, M.: Dynamic rolling for a modular loop robot (2006)
27. Schmickl, T., Hamann, H., Stradner, J., Crailsheim, K.: Hormone-based control

for multi-modular robotics. In: Levi, P., Kernbach, S. (eds.) Symbiotic Multi-
Robot Organisms: Reliability, Adaptability, Evolution. Springer, Heidelberg
(2010)

28. Shen, W.-M., Kirivokon, M., Chiu, H., Everist, J., Rubenstein, M., Venkatesh,
J.: Multimode locomotion for reconfigurable robots. Autonomous Robots 20(2),
165–177 (2006)

29. Shen, W.-M., Salemi, B., Will, P.: Hormone-inspired adaptive communication
and distributed control for conro self-reconfigurable robots. IEEE Transactions
on Robotics and Automation 18(5), 700–712 (2002)

30. Stoy, K., Nagpal, R.: Self-reconfiguration using directed growth. In: Alami, R.,
Chatila, R., AsamaLevi, H. (eds.) Distributed Autonomous Robotic Systems,
vol. 6, pp. 3–12. Springer, Japan (2007)

31. Terada, Y., Murata, S.: Automatic modular assembly system and its dis-
tributed control. The International Journal of Robotics Research 27(3-4), 445–
462 (2008)

32. Unsal, C., Killiccote, H., Kholsa, P.K.: A modular self-reconfigurable bipartite
robotic system: Implementation and motion planning. Autonomous Robots 10,
23–40 (2001)

Morphogenetic Self-Reconfiguration of Modular Robots 171

33. Wolpert, L.: Principles of Development. Oxford Unviersity Press, Oxford (2002)
34. Yim, M., Duff, D.G., Roufas, K.D.: Polybot: a modular reconfigurable robot.

In: IEEE International Conference on Robotics and Automation, vol. 1, pp.
514–520 (2000)

35. Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.:
A motion planning method for a self-reconfigurable modular robot. In: Pro-
ceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 590–597 (2001)

36. Zhang, Y., Fromeherz, M., Crawford, L., Shang, Y.: A general constraint-based
control framework with examples in modular self-reconfigurable robots. In:
Proc. of IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems (2002)

37. Zykov, V., Mytilinaios, E., Desnoyer, M., Lipson, H.: Evolved and designed self-
reproducing modular robotics. IEEE Transactions on Robotics 23(2), 308–319
(2007)

Basic Problems in Self-Assembling Robots and a
Case Study of Segregation on Tribolon Platform

Shuhei Miyashita, Aubery Marchel Tientcheu Ngouabeu, Rudolf M. Füchslin,
Kohei Nakajima, Christof Audretsch, and Rolf Pfeifer

Abstract. It has been a quite while since people realized that self-assembly tech-
nique may be a strong method to manufacture 3D micro products. In this con-
tribution, we investigate some major concerns about realizing such a small sized
robot. First we introduce the concept of self-assembly and introduce examples both
from nature and artificial products. Followed by the main problems in self-assembly
which can be seen in various scales, we classify them into four groups - (A) as-
sembly constraint issues, (B) stochastic motion issues, (C) interactions on physical
property issues, and (D) engineering issues. Then we show a segregation effect with
our developed platform as an example of self-organizing behavior achieved in a
distributed manner.

1 Self-assembly

One of the major features of biological systems is that the activities on the molecu-
lar level are realized in a decentralized fashion, namely, without any central control.
One aspect of this phenomenon is self-assembly, defined by Whitesides et al. as the
autonomous organization of components into patterns or structures without human
intervention [37]1. Such a new composition method has large potential in manufac-
turing 3D micro products, where a pick-and-place style fabrication method is still
the major approach taken.

Shuhei Miyashita · Aubery Marchel Tientcheu Ngouabeu · Rudolf M. Füchslin ·
Kohei Nakajima · Christof Audretsch · Rolf Pfeifer
Artificial Intelligence Laboratory Zurich,
University of Zurich, Andreasstrasse 15, 8050 Zurich
e-mail: miya@ifi.uzh.ch

1 Note the notion self-assembly does not only contain instance of decentralized functionality.

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 173–191.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

miya@ifi.uzh.ch

174 S. Miyashita et al.

1.1 Self-assembly in Nature

The instances of self-assembly can be widely found in nature – snow flakes, in
which the composing atoms form ordered lattices through the attractive/repulsive
interaction forces, employs self-assembly for its spontaneous crystallization. The
shapes are commonly hexagonal, but the details of the patterns vary depending on
the environmental conditions, such as humidity or temperature. The crystallization
begins with a “core” - often a spec of dust in the air - allowing other floating atoms
to connect to the seed. Once the atoms connect to the crystal, they change their con-
formations, exposing the other connection sites, allowing further atoms to attach. In
other words, information of the connections is conveyed to external atoms. The sys-
tem is conservative in terms of energy dispersion, that is, once an atom connects to
the cluster and changes the form, it preserves the energy and sustains the formation
by means of a hydrogen bond, unless the temperature rises and breaks the bond.

Lately, this kind of automatic assembly has been brought to attention as the dif-
ficulty of manufacturing small sized robots starts to be a limiting factor. Now many
researchers believe it sounds reasonable to consider self-assembly as a promis-
ing tool to be put into practice for the realization of life like machines (e.g.
self-repairable machines). However, despite nature’s efficiency and precision in
assembling supramolecular and mesoscopic structures, most of the attempts on ar-
tificial self-assembly components still remain a challenging assignment.

1.2 From Self-assembling Blocks to Self-assembling Robots

Progressive experiments on artificial self-replication were conducted by Lionel and
Roger Penrose half a century ago [27], where a provoking mechanical model of nat-
ural self-replication in a stochastic environment was presented. Followed by spec-
ulations about the clustering patterns of passive elements, focusing on the role of
shape on template and components matching [10], and on their time evolution [18].
A series of studies were conducted by the group of Whitesides; for the realization
of positional coordinate of molecule-mimetic chemistry [7, 6, 17, 38], circuit func-
tionality [13, 5, 4], reversible aggregation [22], folding structure [3], rotation of
magnets [16], rotation of rotors [15]. Similarly, numerous research effort has been
devoted to the investigation of morphology [31]. Artificial chemicals that can form
in several ways, such as polymers and dimers, depending on the temperature of the
system were demonstrated in [8]. Different aggregation patterns with various sizes
of components were shown in [39]. An intelligent self-assembling block which can
represent multiple states by the units’ rotational angle was designed by [34]. The
system can physically conduct XOR calculation on a 2D plane.

Currently, there is a growing interest in realizing self-reconfigurable robots rely-
ing on stochastic self-assembly. White et al. studied two systems in which the mod-
ules binding preferences are coded in a program executed by an on-board microcon-
troller, and thus can easily reconfigure the structure [35]. The modules are initially
unpowered and passive, but once they bind to a seed module connected to a power
supply, they become active. Griffith et al. studied a system of template-replicating

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 175

modules [14]. They used modules of the same type, which are programmable and
can store distinct states. The system demonstrated the self-replication of a five mod-
ules polymer. Each module executed a finite-state machine. Klavins et al. examined
the problems of designing a grammar that causes modules to assemble into desired
products, of predicting the time complexity of such processes, and of predicting
(and optimizing) the yield of such processes [20]. Emergent self-propulsion mecha-
nisms were investigated by Ishiguro et al. [19]. In Ant-inspired robotics, the interest
in self-organization has been driven by the observations of the same phenomena in
ant colonies, in particular the brood sorting by Temnothorax [30]. Wilson et al. [21]
created an algorithm to realize two colors annular sorting which used differential
pull-back distances for different object types. By discriminating between three puck
types, the robots could drop the first type of object on colliding with another puck,
drop the second object type after pulling back a short distance and drop the third
puck type after pulling back a further distance.

2 Major Concerns in Self-assembly

In this section, we outline the problems of self-assembling systems with respect to
the scaling behavior of underlying principles.

2.1 The Forward Problem and the Backward Problem

In self-assembly, the problem to derive the final configuration from a given set
of components/environments is called the forward problem [26]2. Conversely, the
problem of designing components for a targeted configuration is called the back-
ward problem. In this “reverse engineering” process, also known as one of the cen-
tral problems in self-assembly, the designer has to start from the final structure and
decompose it.

Several aspects of both, the forward and the backward problem, show strong
dependence on the length scale of the system. A necessary condition for the pre-
diction of the result of a self-assembly process is a detailed knowledge about the
morphology of the components. And this knowledge is easier to get the larger the
components are3. In contrast to cm-sized components, a molecule usually has many
degrees of freedom and therefore the morphology and consequently the interaction
between components are not always known with sufficient precision.

Similar considerations hold for the backward problem, and, from an engineering
perspective, to an even higher degree. Given an object O for which one wants to
design a self-assembly process. There are many possibilities to divide a large O into
components. The smaller O, the more constraints with respect to the production of

2 The game Tetris R© is known as NP-hard problem [12]. Also it may be useful to mention
that some situations in self-assembly resemble the Knapsack problem, which is also known
as NP-complete problem.

3 This does not only refer to shape but also to other features of morphology, such as elasticity
and degrees of freedom.

176 S. Miyashita et al.

? ?

a) b)

Fig. 1 (a) The backward problem. (b) the forward problem.

the components have to be considered: On the molecular scale, chemical synthesis
set narrow limits to what can be accomplished.

We recognize three main problems centering around self-assembly: namely, the
issues entailed in (A) assembly, (B) Dynamics, and (C) interactions. The explana-
tions for each problem follow.

(C) Interaction issues

(B) Dynamics issues

(A) Assembly issues

F
F

Fig. 2 Three main issues centering around self-assembly.

2.2 (A) Assembly

The first issues are properties of assembling processes.

2.2.1 The Mismatch Problem (Error)

In self-assembly, an assembly error (or wrong attachment) is induced when the sys-
tem converges to a energetically local minimum through interactions between com-
ponents, mainly due to the low encoding accuracy of bonding sites (Figure 3).

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 177

Fig. 3 The mismatch problem (Error).

There are two main strategies for solving the problem; increasing encoding ac-
curacy of bond matching while regulating the agitation level of the system, and im-
plementing internal states to components. Insights from molecular biology remind
us of the importance of the fertile encoding capability to attain the adequate bond-
ing affinity level for maintaining connections of molecular bonding; they exploit
non-covalent bonds (hydrogen bonds, ionic bonds, and van der Waals attractions)
as interaction forces and somehow achieve an amazing specificity in docking with
other selected molecules4. The agitation level can be regulated by means of temper-
ature or kinetic turbulence magnitudes.

From an engineering perspective, the scaling behavior of the mismatch problem
exhibits an interesting feature. The relative easiness of the backward problem en-
ables one to construct highly specific, literal plug-and-socket connection sites on
the cm scale.

Molecules, on the other hand, may well be highly flexible (having many degrees
of freedom) and, agitated by thermal motion, “sample” their configuration space at
a rapid pace. Because of this, e.g. two complementary DNA strands just have be
brought in close proximity: If they match, they will eventually bind. Such a “fast
configuration sampling” is not possible above the molecular scale. One of the rea-
sons for this is that whereas mechanical structures wear off, molecules don’t: A
molecular “joint” can be bended infinitely many times (as long as the bond doesn’t
break, it is in all respects as good as a newly formed one). It is the micro-to (sub-
)millimeter scale, at which molecular bonding (and corresponding recognition) is
not strong enough anymore, whereas mechanical plug-and-socket connection mech-
anisms are still hard to produce.

The mismatch problem is a fundamental problem in nature. The replication pro-
cesses of DNA is greatly assisted by self-repair functionalities of enzymes.

2.2.2 The Topological Dead End Problem (Steric Hindrance)

This problem occurs when components assemble in an undesired sequential order.
The targeted structure is therefore unreachable, since some earlier assembled com-
ponents block the way (Figure 4).

4 The trick of proteins distributing bonding sites around the body, and changes the morphol-
ogy to pose another bonding site reminds us of the importance of internal states, which
enables the component to feature different properties.

178 S. Miyashita et al.

Fig. 4 The topological dead end problem (Steric hindrance).

To solve this problem at scales where the benefits of molecular mechanical flex-
ibility cannot anymore be harvested, the components should reflect the presence of
its neighbors e.g. as the internal states. Yet in practice the amount of expressible
internal states is limited due to the limited space in a component, leading to a risk
of misrecognition by other components.

The unreachable problem can occur irrespective of the heterogeneous/
homogeneous level of a system.

2.2.3 The Parallel Yield Problem (Incompletion Problem)

The problem of producing a desired configuration in large quantities (while avoid-
ing incomplete assemblies) by homogeneous system is known as the parallel yield
problem and has been studied in the context of biological and non-biological self-
assembling systems [18]5. Here, we term the problem that specifically occurs when
components assemble in a right manner, however do not complete the targeted final
structure, for combinatorial reasons (Figure 5; we assume the circular sector com-
ponents connect side-by-side). This is because many assembly processes proceed in
parallel and components are used in earlier more likely reactions of other assembly
processes since reactions leading to the complement of the end product are more
unlikely than the preceding reactions. This means that the self-assembly of many
products is started but rarely fulfilled. In other words, the likelihood to accomplish
the desired end product declines with the rise of the ratio between the likelihood of
the earlier and the later reaction.

One approach to improve this problem is, therefore, controlling the system so that
the later stages’ reactions to be more likely to happen than the early stages. This can
be handled by implementing internal states in a component, so that the component
behaves differently as a reaction takes place.

Another solution is increasing the heterogeneity of the system, such that in ex-
treme, a product consists of a set of totally different components. Yet a certain

5 Hosokawa called it “yield problem”, while we term it the parallel yield problem to avoid
confusion.

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 179

Fig. 5 The parallel yield problem (Incompletion problem).

disadvantage of heterogeneity increase is, as described above, that leads to the
heightened likelihood of mismatching.

2.3 (B) Dynamics

Self-assembly is commonly believed to range from molecular to cosmological
scales. However, it is also agreeable that few examples of self-assembly exist in
our human living scales (cm−m). The second concern is about stochasticity, which
varies to different scales.

2.3.1 Reynolds Number

Biological systems in the nm−μm scale often show unique behaviors that cannot be
observed in larger scales. This is mostly due to the influence of viscosity, which in-
creasingly becomes dominant with decreasing length scales. The Reynolds number
ℜ represents a ratio between viscous forces and inertial forces [28];

ℜ≡ inertial forces
viscous forces

≈ avρ
η

=
av
ν

. (1)

where a is radius of a particle, v is its speed, μ is fluid viscosity, and ρ is fluid
density. The kinematic viscosity ν is approx. 10−2cm2/sec for water.

The size of 1cm is a critical size for self-assembling systems. For objects in water
at the mm scale, viscosity is as important as inertia (the Reynolds number, that is,
the ratio of inertial forces and viscous forces, is ≈ 1). It follows that objects smaller
than that size are affected more by viscous forces whereas larger objects are affected
more by inertial forces. For objects on the order of 1μm or less, such as bacteria,
exploiting an environmental diffusion is a more effective way of locomotion than ac-
tive propulsion (e.g., swimming bacteria are slower than diffusing molecules [24]).
Good thought-provoking suggestions about the life at low Reynolds number are in-
troduced in [28]. The author states the efficiency of creatures in small scale (μm)
such as E. coli to use diffusion through their environment to change their position,
rather than self-propelling. Whitesides implies the mechanical system in nanoscale
would be different from that in micro scale, and one should learn more from biolog-
ical systems [36].

180 S. Miyashita et al.

The time for transporting anything a distance l by stirring, is about l/v. Whereas,
for transport by diffusion, it is l2/D, where D is the diffusion coefficient in cm2/sec
[28]. Namely in the micro scale,

time for transport by stirring: l
v

time for transport by diffusion: l2

D ,

and the ratio of these two (termed stirring number; §) is

§ ≡ time for transport by stirring
time for transport by diffusion

=
lv
D

≈ 10−2 (2)

which shows the efficiency of diffusion on a small scale.

2.3.2 Navier-Stokes

Incompressible flow of the Navier-Stoks equation is

ρ
∂v
∂ t

+ρ(v ·∇)v = −∇P+η∇2v (3)

where P is the pressure. Ignoring the term of inertia, and considering the large η it
can be transformed as

∇P = η∇2v. (4)

It is known that the motions which are that invariant under time reversal does not
induce a tow movement.

2.3.3 Diffusion Equation

Consider a particle that exists at x = 0 at t = 0. The positioning probability (ρ(x, t))
of x follows the diffusion equation:

∂ρ
∂ t

= D
∂ 2ρ
∂x2 (5)

where D is a diffusion constant.
Considering the initial condition ρ(x,0) = δ (x), and taking that the ρ satisfies

the following normalized condition∫ ∞

−∞
ρ(x, t)dx = 1, (6)

we obtain

ρ(x,t) =
1√

4πDt
exp

(
− x2

4Dt

)
, (7)

which obeys the Gaussian distribution.

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 181

The mean-square displacement 〈x2〉 can be derived as

〈x2〉 =
∫ ∞

−∞
x2ρ(x, t)dx = 2Dt ∝ t, (8)

where D = kBT
ζ , kB is the Boltzmann constant and ζ is a friction coefficient.

In our scale, where the viscosity is negligible, using agitation for traveling is a
good tactic. Whereas in the molecular scale, Brownian motion enables the speedy
spacial transitions. It is in the intermediate scale (μm), where those tactics lose
validity because of the high viscosity and relatively small momentum.

2.4 (C) Interaction

The third concern is about physical interactions among components. The scalability
of physical interaction mechanisms – especially electrostatic and magnetic – are
well examined in [11, 1]. Here we briefly describe the basics of these two physical
quantities.

2.4.1 Electrostatic Interactions

Given that an electric charge qi exists. The electric field E created by this charge is

E =
qi

4πε0

r̂
|r|2 . (9)

where ε0 is the electric permittivity of free space.
The force Fji that electric charge q j receives is given by

F = q2E (10)

=
q1q2

4πε0

r̂
|r|2 . (11)

Therefore the decay of force over space is identical regardless of the scales.

2.4.2 Magnetism

We consider the magnets as dipoles with a magnetic moment m. The magnetic po-
tential φ j(r) at a position r due to the magnetic moment m j is given by

φ j(r) =
μ0

4π
m j · r̂

r2 (12)

where μ0 = 4π×10−7T m/A is the permeability of free space, and r̂ ≡ r/|r| assum-
ing that |r| = r is much larger than the size of the magnet. The magnetic flux of the
dipole is then given by

Bj = −∇φ j (13)

182 S. Miyashita et al.

and the magnetic potential energy Ui j acquired by a second dipole mi placed in the
field of m j is given by

Ui j = −mi ·B j. (14)

Then, the force between the two dipoles is found by differentiating (14) with respect
to r.

Fi j = (mi ·∇)B j (15)

τ i j = mi ×Bj (16)

We can determine the total potential energy of the system as

Utotal =
1
2 ∑

i, j i�= j

Ui j. (17)

2.5 The Engineering Issues - Actuator Battery Connector
Bottleneck

For modular systems smaller than a few cm, there are three fundamental problems
that still await a solution. These problems relate to actuator, battery (or power in
general), and connector technology. When designing systems where a high quantity
of components of small size is desired, solutions for these problems are of par-
ticular relevance. First, actuation endows the parts with the ability to move and
re-configure. A common solution is to use electrical servo motors. These actua-
tors, however, are typically big and heavy. Other means of actuation have also been
proposed, e.g. pneumatic actuators. Although they are lightweight, they require a
source of compressed air (e.g. a compressor). The second problem is concerned
with providing power to the actuator(s). A typical solution is to use batteries. Bat-
teries, however, are problematic, because they are only able to provide power for
a limited amount of time. Furthermore, their initial charge may vary which leads
to heterogeneously actuated components. Another popular solution involves prop-
agating current through the binding locations. Unfortunately, this solution has the
drawback that the alignment of the connecting points has to be very precise. In ad-
dition, such components can not segregate from the main structure which prohibits
this way of powering for mobile type robots. The third problem is the connection
mechanism enabling the modular parts to dock to each other. Binding is crucial
for reorganization and for a desired structure to hold. The most common ways of
binding are magnets and mechanical latches.

A Actuator
B Battery
C Connector

There is a strong interdependency between these issues. The requirements of the
connection mechanism as well as the actuator are partly determined by the weight
of each component. The heavier the components are, the more force needs to be

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 183

applied to the binding location. In addition, the actuators have to apply larger torques
to displace the components. The use of more powerful components in general leads
to even heavier components. Also, the power consumption increases as a result of
stronger connection mechanisms and actuators. Surprisingly, small size and weight
reduction of modular parts is not a good way to solve this problem, because not only
does the power/weight ratio of the most common actuators decrease with a reduc-
tion in size, but also so does the strength/weight ratio of common connectors. This
implies that the most common ways of actuating, powering and connecting modular
robots cannot be applied to small-sized entities. It follows that novel solutions to the
ABC bottleneck are necessary in order to make progress in small-scale self-assembly
robotics.

3 Case Study

In this section, we discuss how to evaluate dynamics of self-assembly based on
a case study employed in our group (see [25] for more details). In the experi-
ments, we employed Tribolon platform [23] consisting of centimeter-sized mod-
ules floating on the water surface. 12 modules were prepared and equipped with
permanent magnets (a single cubic permanent magnet each, whose flux density is
1.3T , and size is 5× 5× 5mm3). They are attached to the bottom of each mod-
ule orienting the same direction such that the modules repel each other (e.g. north
is always pointing up, Fig. 6). Half of the modules were, in addition to the per-
manent magnet, also equipped with vibration motors (termed active modules, in
comparison to passive modules which doesn’t feature magnets) such that they
can vibrate receiving power from a ceiling via pantograph. The vibrating mod-
ules are equipped with a flat coreless vibration motor (T.P.C DC MOTOR FM34F,
12000 ∼ 14000rpm(2.5− 3.5Volts)) on the top of the base plate to induce self-
propulsive motion. When an electrical potential was applied to the ceiling plate
(Fig. 6 b), current flowed through the pantograph to the vibration motor was applied
to the ceiling plate, current returning to ground via electrodes immersed in the con-
ductive water. Due to this setup, all modules receive the same constant power and
they are be lightweight (2.8g each), which would not be the case if batteries were
used.

We conducted 15 trials for the statistical analysis. In Fig. 7, we show a repre-
sentative result in time sequence of the obtained segregation behavior. The initial
starting condition was set as depicted in Fig. 7 (00:00), in which all the modules
were symmetrically aligned in a circular form alternately, such that the passive and
the vibrating modules have equal chances in the segregation process. The duration
time for the experiment was set to 90 seconds.

In order to perform the analysis, the trajectories (positions) of all the modules
were tracked using the open source tracking software Tracker Video Analysis and
Modeling Tool [9]. Our observation is that the red active modules tend to assem-
ble together and go apart from the blue passive modules, such that two different

184 S. Miyashita et al.

pantograph

magnets

electrode

vibration motor

base plate

base plate

1cm

self-propelled
module

self-propelled
module

passive
module

E

electrode

pantograph

magnet

water+electrolyte

aluminum ceiling

electrode

camera
transparent water container

50mm

225mm

44mm

passive module
vibration motor

passive module

(a) (b)

S S S

Fig. 6 (a) Self-propelled and passive modules. Each module weighs 2.8g and has a footprint
of 12.25cm2.(b) Illustration of the experimental environment with three modules.

active modules moving to the middle
of the water tank because of the
vibration

passive modules come together,
maximizing the free space for the
active modules

00:00 00:15 00:30 00:45 00:60 00:75

Fig. 7 The experimental results in time sequence. The frames are captured every 15 seconds

modules clusters can be spatially distinguished; the first cluster contains only the
active modules and the second cluster the passive modules (Fig. 7 (00:75)).

3.1 Magnetic Potential Energy and Centroid Distance

We defined the magnetic potential energy of the system as U ′
total ≡Utotal/(μ0

4πm2) by
normalizing the energy defined in Eq. 17, and show the obtained result in Fig. 8 (a)
as function of time. The error bars represent the standard deviation of uncertainty
within the fifteen experimental trials. Due to the characteristics of the system,
namely non-equilibrium system, the magnetic potential energy keeps decreasing.
Suppose we have all passive modules, the system is supposed to reach to the state
where modules are equally distributed and fixed.

The centroid (X ,Y) = (1
N ∑

N
i=1(xi), 1

N ∑
N
i=1(yi)) of a group (or cluster) of modules

is the center of mass of the modules, where N is the number of modules in the
modules group, xi and yi are the positions of the i-th component of the considered
group, respectively. We calculated the time evolution of the difference between the
two modules groups (the passive modules on one side and the active modules on the
second side and depicted in Fig. 8 (b). As depicted in Fig. 8 (b), there is an increase
in the distance between the centroids of the passive and the vibrating modules. This

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 185

0 10 20 30 40 50 60 70 80 90
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (s)

N
or

m
al

iz
ed

 to
ta

l p
ot

en
tia

l E
ne

rg
y

(c
m

-3
)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

Time (s)

D
is

ta
nc

es
 b

et
w

ee
n

th
e

ce
nt

ro
id

s
(c

m
)

(a) (b)

Fig. 8 (a) total energy of the system. (b) time evolution of the distance to between the center
of mass of the two clusters (N = 15).

corresponds to the formation of two clusters of modules with a final mean distance
between the two clusters of approximately 10 centimeters. Given that the diameter
of the arena (or tank as you wish) is 22.5cm, this corresponds to the 50% of the
whole area.

3.1.1 Entropy for Transient State (Hierarchic Social Entropy)

The definition of entropy differs in scientific fields, depending on to what one ap-
plies. Thermodynamics entropy (to heat), statistical mechanics entropy (to object),
and information entropy (to event) are probably the three best known entropies
in science. In self-assembly, systems that cannot presume some specific physical
amounts, such as quantity of heat, employ information entropy for the measurement
of their “randomness”.

Balch proposed a novel definition of entropy (position order) that can be applied
for the measurement of multi-components distributions (or quantitative metric of
diversity) [2]. He uses H from Shannon’s theory

H(h) = −
N

∑
i=1

pi(h) log2(pi(h)) (18)

where pi is the number of modules in the i− th cluster (i ∈ N) divided by the total
number of modules. A component belongs to a cluster if the distance is within the
length of h (||ri−rj||< h; ri is the position of the i-th component). He then integrates
H(h) over all possible h, and defines it as entropy, namely:

S =
∫ ∞

0
H(h)dh. (19)

The definition describes the randomness of modules well. Note that in this defi-
nition, the entropy may decreases over time. In physics, an entropic force acting in a
system is a macroscopic force whose properties are primarily determined not by the

186 S. Miyashita et al.

character of a particular underlying microscopic force (such as electromagnetism),
but by the whole system’s statistical tendency to increase its entropy. We examined
the entropy of the system as derived as in Eq. 19. Fig. 9 shows the time evolution of
the entropy of the system.

As we can observe, the entropy of the system is decreasing as time progresses,
which represents the convergence of the system to more ordered configurations.
This corresponds to the cluster formation described of the previous section.

−10 0 10 20 30 40 50 60 70 80 90
26

28

30

32

34

36

38

40

42

Time (s)

E
nt

ro
py

 o
f t

he
 s

ys
te

m
 (b

it)

Fig. 9 Transition of entropy.

3.1.2 Transfer Entropy

To see the simple informational structure, we used a measure that aims at extracting
directed flow (transfer of information) between time series of both active and pssive
modules, called trans f er entropy [29]. Given two arbitrary time series xt and yt ,
transfer entropy essentially quantifies the deviation from the generalized Markov
process: p(xt+τ |xt) ≈ p(xt+τ |xt ,yt), where p denotes the transition probability. If
the deviation from a generalized Markov process is small, then the state of Y can be
assumed to have little relevance on the transition probabilities of system X . If the
deviation is large, however, then the assumption of a Markov process is not valid.
The incorrectness of the assumption can be expressed as follows:

TE(Y → X) = ∑
xt+τ
∑
xt

∑
yt

p(xt+τ ,xt ,yt) log
p(xt+τ |xt ,yt)

p(xt+τ |xt)
(20)

where the sums are over all amplitude states, and the index TE(Y → X) indicates
the influence of Y on X . The transfer entropy is explicitly nonsymmetric under the
exchange of X and Y , and can thus be used to detect the directed exchange of infor-
mation between two systems.

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 187

Here, Y is a time series of di
t of a module i and X is a time series of d j

t of a module
j. The base of log is set to e and the parameter τ is set to 1. By using transfer entropy,
we aim to evaluate causal relations between all the pairs of modules.

By using the data, we simply calculated a distance of movement in each time step
for each modules (di

t) as follows.

di
t =

√
(xi

t+1 − xi
t)2 +(yi

t+1 − yi
t)2 (21)

We discretized the value of di
t ranging from 0.0 to 12.0 into 10, 20, 50, and 100

bins and all the 15 trials from 0 ≤ timesteps ≤ 44 were used and averaged on trials.
Since the number of samples is limited, we varied the bin size and saw the relevance.

We show the results in Fig.10 and 11, in which the module number 1 to 6 are pas-
sive modules, while 7 to 12 are active modules. As can be seen from the results of
Bin=10 (Fig.10(a)), 20 (Fig.10(b)), and 50 (Fig.11(a)), the values of TE(active →
active) are high. Also, the values of T E(active → passive), T E(passive → active)
are relatively high, and the values of TE(passive → passive) are low. These results
simply suggest that active elements influence the transitions of active elements and
passive elements. On the other hand, passive elements only influence the transitions
of active elements. And the values of T E(Y → X) are simply the degree of its influ-
ence. These results fit well to our natural observations of the system. On the result
of Bin=100 (Fig.11(b)), since the number of samples (observed time steps) are rela-
tively small for the size of the state space, it cannot structure the relevant probability
density.

TE(Y X) SD
(a) Bin=10

Element X

El
em

en
t

Y

(b) Bin=20

Y

TE(Y X) SD

Element X

El
em

en
t

Y

Fig. 10 T E(Y → X) and standard deviations (SD). (a) bin=10, (b) bin=20.

188 S. Miyashita et al.

TE(Y X) SD
(c) Bin=50

Element X

El
em

en
t

Y

(d) Bin=100

Y

TE(Y X) SD

Element X

El
em

en
t

Y

Fig. 11 T E(Y → X) and standard deviations (SD). (c) bin=50, (d) bin=100.

In this system, transfer entropy tends to show T E(active → active) >
T E(active → passive),T E(passive → active) > T E(passive → passive). This re-
sult naturally fits to our simple observation of the trajectories.

In our results, the values of standard deviations (SD) for transfer entropy were
large. This is caused by the small number of data samples (time steps). Consider-
ing the experimental setting, reasonable extensions of the experimental time steps
are recommended. Additionally, to detect the causal relation, we can use other mea-
sures, such as granger causality, mutual information, symbolic transfer entropy [32],
etc., according to what we would like to see. Especially, by using symbolic trans-
fer entropy [32], we can avoid the difficulty to set the bin size. But in this case,
extensions of timesteps are inevitable.

Although we calculated the information transfer between modules, it is also pos-
sible to measure causal relations between the global behavior and the elements [33].
By doing this, we can detect how each element affect the global behavior, and how
the global behavior regulates each element quantitatively.

4 Conclusions

In this paper, we systematically studied various problems on self-assembling sys-
tems. Starting from pointing to some fundamental concerns of self-assembly, we

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 189

categorized them into three basic issues, namely on assembly, dynamics, and in-
teractions. We examined quantification methods utilizing a case study in which
modules showed segregation behavior in a distributed way. We further investigated
the possible style of description of entropy as well as free energy that can govern
macroscopic self-assembly systems. We believe the clarification of basic problems
in self-assembly and proper assignment of an approaching method will offer new
opportunities to deepen the theoretical understanding of the phenomenon, and will
lead to the realization of efficient self-assembly systems.

Acknowledgment

This research was supported by the Swiss National Science Foundation project #200020-
118117.

References

1. Abbott, J.J., Nagy, Z., Beyeler, F., Nelson, B.J.: Robotics in the small. IEEE Robotics &
Automation Magazine 14, 92–103 (2007)

2. Balch, T.: Hierarchic social entropy: An information theoretic measure of robot group
diversity. Autonomous Robots 8, 209–237 (2000)

3. Boncheva, M., Andreev, S.A., Mahadevan, L., Winkleman, A., Reichman, D.R., Pren-
tiss, M.G., Whitesides, S., Whitesides, G.: Magnetic self-assembly of three-dimensional
surfaces from planar sheets. PNAS 102, 3924–3929 (2005)

4. Boncheva, M., Ferrigno, R., Bruzewicz, D.A., Whitesides, G.M.: Plasticity in self-
assembly: Templating generates functionally different circuits from a single precursor.
Angew. Chem. Int. Ed. 42, 3368–3371 (2003)

5. Boncheva, M., Gracias, D.H., Jacobs, H.O., Whitesides, G.M.: Biomimetic self-
assembly of a functional asymmetrical electronic device. PNAS 99, 4937–4940 (2002)

6. Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale ob-
jects into ordered two-dimensional arrays. Science 276, 233–235 (1997)

7. Bowden, N., Weck, M., Choi, I.S., Whitesides, G.M.: Molecule-mimetic chemistry and
mesoscale self-assembly. Acc. Chem. Res. 34, 231–238 (2001)

8. Breivik, J.: Self-oranization of template-replicating plolymers and the spontaneous rise
of genetic information. Entropy 3, 273–279 (2001)

9. Brown, D.: Tracker video analysis and modeling tool (2009),
http://www.cabrillo.edu/˜dbrown/tracker/

10. Cohn, M.B., Kim, C.-J.: Self-assembling electrical networks: An application of micro-
machining technology. In: International Conference on Solid-State Sensors and Actua-
tors, pp. 490–493 (1991)

11. Cugat, O., Delamare, J., Reyne, G.: Magnetic micro-actuators and systems (MAGMAS).
IEEE Trans. Magnetics 39(5), 3607–3612 (2003)

12. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approximate.
Technical report, Cornell University Library (2002), arXiv.org

http://www.cabrillo.edu/~dbrown/tracker/

190 S. Miyashita et al.

13. Gracias, D.H., Tien, J., Breen, T.L., Hsu, C., Whitesides, G.M.: Forming electrical net-
works in three dimensions by self-assembly. Science 289, 1170–1172 (2000)

14. Griffith, S., Goldwater, D., Jacobson, J.: Robotics: Self-replication from random parts.
Nature 437, 636 (2005)

15. Grzybowski, B.A., Radkowski, M., Campbell, C.J., Lee, J.N., Whitesides, G.M.: Self-
assembling fluidic machines. App. phys. lett. 84, 1798–1800 (2004)

16. Grzybowski, B.A., Stone, H.A., Whitesides, G.M.: Dynamic self-assembly of magne-
tized, millimetre-sized objects rotating at a liquid-air interface. Nature 405, 1033 (2000)

17. Grzybowski, B.A., Winkleman, A., Wiles, J.A., Brumer, Y., Whitesides, G.M.: Elec-
trostatic self-assembly of macroscopic crystals using contact electrification. Nature 2,
241–245 (2003)

18. Hosokawa, K., Shimoyama, I., Miura, H.: Dynamics of self-assembling systems: Anal-
ogy with chemical kinetics. Artificial Life 1(4), 413–427 (1994)

19. Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic loco-
motion. Rob. Aut. Sys. 54, 641–650 (2006)

20. Klavins, E.: Programmable self-assembly. IEEE Cont. Sys. Mag. 27, 43–56 (2007)
21. Wilson, M., Melhuish, C., Sendova-Franks, A.: Multi-object segregation: ant-like brood

sorting using minimalism robots. In: Proc. Seventh International Conf. on the Simulation
of Adaptive Behaviour, Edinburgh, UK, pp. 369–370 (2002)

22. Mao, C., Thalladi, V.R., Wolfe, D.B., Whitesides, S., Whitesides, G.M.: Dissections:
Self-assembled aggregates that spontaneously reconfigure their structures when their en-
vironment changes. J. Am. Chem. Soc 124(49), 14508–14509 (2002)

23. Miyashita, S., Kessler, M., Lungarella, M.: How morphology affects self-assembly in a
stochastic modular robot. In: IEEE International Conference on Robotics and Automa-
tion (2008)

24. Motokawa, T.: Time of an elephant, time of a mouse. In: CHUO-KORON-SHINSHA,
INC. (1992)

25. Ngouabeu, A.M.T., Miyashita, S., Füchslin, R.M., Nakajima, K., Göldi, M., Pfeifer, R.:
Self-organized segregation effect on water based self-assembling robots. In: Artificial
Life 12, Odense, Denmark (2010)

26. Pelesko, J.A.: SELF ASSEMBLY. Chapman & Hall/CRC, Boca Raton (2007)
27. Penrose, L.S.: Self-reproducing. Sci. Amer. 200(6), 105–114 (1959)
28. Purcell, E.M.: Life at low reynolds number. Amer. J. Phys. 45, 3–11 (1977)
29. Schreiber, T.: Measuring information transfer. Physical Review Letters 85, 461–464

(2000)
30. Wilson, M., Melhuish, C., Sendova-Franks, A.B., Scholes, S.R., Franks, N.R., Melhuish,

C.: Brood sorting by ants: Two phases and differential diffusion. Animal Behaviour 68,
1095–1106 (2004)

31. Stambaugh, J., Lathrop, D.P., Ott, E., Losert, W.: Pattern formation in a monolayer of
magnetic spheres. Pysical Leview E. 68, 026207-1–026207-5 (2003)

32. Staniek, M., Lehnertz, K.: Symbolic transfer entropy. Physical Review Letters 100,
158101–158101 (2008)

33. Sumioka, H., Nakajima, K., Lungarella, M., Pfeifer, R.: Complexity detection based on
bidirectional information flow (submitted)

34. Tsutsumi, D., Murata, S.: Multistate part for mesoscale self-assembly. In: SICE Annual
Conference (2007)

Basic Problems in Self-Assembling Robots and a Case Study of Segregation 191

35. White, P., Kopanski, K., Lipson, H.: Stochastic self-reconfigurable cellular robotics. In:
Proc. Int. Conf. on Robotics and Automation, vol. 3, pp. 2888–2893 (2004)

36. Whitesides, G.M.: The ‘right’ size in nanobiotechnology. Nature 21(10), 1161–1165
(2003)

37. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421
(2002)

38. Wolfe, D.B., Snead, A., Mao, C., Bowden, N.B., Whitesides, G.M.: Mesoscale self-
assembly: Capillary interactions when positive and negitive menisci have similar am-
plitudes. Langmuir 19, 2206–2214 (2003)

39. Yamaki, M., Higo, J., Nagayama, K.: Size-dependent separation of colloidal particles in
two-dimensional convective self-assembly. American Chemical Society 11, 2975–2978
(1995)

Part III: Autonomous Mental
Development in Robotic Systems

Brain Like Temporal Processing

Juyang Weng

Abstract. This chapter presents a general purpose model of the brain, called Devel-
opmental Networks (DN). Rooted in the biological genomic equivalence principle,
our model proposes a general-purpose cell-centered in-place learning scheme to
handle all levels of brain development and operation, from the cell level all the way
to the brain level. It clarifies five necessary “chunks” of the brain “puzzle”: devel-
opment, architecture, area, space and time. Then, this chapter analyzes how such a
model enables a developmental robot to deal with temporal contexts. It deals with
temporal context of any length without a dedicated temporal component.

1 Introduction

It is known that a fully programmed robot has only very limited capabilities for
dealing with the real world environments. For a task that is difficult to program well,
machine learning techniques can be used. However, traditional machine learning
techniques are task-specific, meaning that the human programmer requires that the
task that the robot executes be given to him before he finishes the programming. It
is the human programmer who understands the task and handcrafts a task specific
representation into the robot’s control program. However, such robots tend to be
brittle in real-world environments, since it is difficult for the human programmer to
sufficient predict all the task settings and all the environmental situations.

Demonstrated by human cognitive and behavioral development from infancy to
adulthood, autonomous development is nature’s approach to human intelligence (Pi-
aget 1954 [13], Elman et al. 1997 [4], Weng et al. 2001 [22]).

There have been several impressive attempts to model the brain as a symbolic
information processor (Albus 1991[1], Hecht-Nielsen 2007 [7], Albus 2010 [2]).
However, they are without sufficient, biologically plausible learning to account for

Juyang Weng
Michigan State University, East Lansing, MI, USA
e-mail: weng@cse.msu.edu

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 195–212.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

weng@cse.msu.edu

196 J. Weng

the overwhelming brain complexity. As symbol-only modeling is insufficient to deal
with uncertainty, the Bayesian probability framework was added to such symbolic
models, using either probability models for spatial aspects or Markov chains for
temporal aspects (Jelinek 1990 [8], Lee & Mumford 2003 [9], Emami & Jelinek
2005 [5], Tenenbaum et al. 2006 [16], George & Hawkins 2009 [6]). A major ad-
vantage of such Bayesian models is that they are intuitive for human to understand,
but they face a fundamental problem: They are not developmental —- the symbolic
boundaries (“walls”) between different internal units (nodes or Markov chains) were
handcrafted (defined) by human programmers.

In fact, they all correspond to an “skull-open approach” to the brain — it is the
human teacher who understands a given task and the concepts it needs. Then he
directly manipulates (defines) the “brain’s” internal representation through its open
“skull”. Among many limitations of such “skull-open” approaches are:

1. It is a static handcrafted information processor that cannot explain the mira-
cle of brain development. It cannot explain the following process: With his
“skull closed,” a child autonomously interacts with the environment and he au-
tonomously learns and discovers concepts that his parents do not even know
about. Autonomous discovery is a miracle of such a developmental brain.

2. It is labor-intensive to build and brittle for the real world environments. Given
a task, the process of handcrafting a brain-like information processor requires a
large amount of man-hours for manual instantiation of an internal representation
for each task. The resulting system is known to be brittle due to the inability of a
human to sufficiently predict the dynamic real world.

Many computer vision researchers thought that the human vision system can be
sufficiently modeled by a static object recognizer. It cannot. The brain learns new
objects and new object variations all the time.

Inspired by human mental development from conception, a developmental robot
is one that autonomously develops its mental skills and task performance capabili-
ties from interactions with the environments. Fig. 1 illustrates the paradigm of au-
tonomous mental development (Weng et al. 2001 [22]).

As far as we know, Cresceptron 1993 [19, 20] was the first developmental model
for visual learning from complex natural backgrounds. By developmental, we mean
that the internal representation is fully emergent from interactions with environment,
without allowing a human to manually instantiate a task-specific representation.

In this chapter, I our latest general purpose model of the brain, called Develop-
mental Network (DN), concentrating on a basic unit: area. Then, I will concentrate
on the temporal properties of the DN model.

2 Five Chunks of a Brain Model

Rooted in the biological genomic equivalence principle, our model proposes a
general-purpose cell-centered in-place learning scheme to handle all levels of brain
development and operation, from the cell level all the way to the brain level. It clar-
ifies five necessary “chunks” of the brain “puzzle”: development, architecture, area,

Brain Like Temporal Processing 197

Fig. 1 The paradigm of autonomous mental development by machines, inspired by human
mental development. No task is given during the programming (i.e., conception) time. A
general-purpose task-nonspecific developmental program must be ready and be loaded onto
the agent’s “brain”. Prenatal development may preliminarily wire the “brain” before “birth”
using “spontaneous” (internally generated) signals, e.g., from sensors and motors. After the
“birth,” the agent starts to learn an open variety of skills and tasks through interactions with
the physical world. During the development, the “brain” is “skull-closed” meaning that there
is no need for the programmer to direct intervene in the brain’s internal representation after
the conception. The tasks that the agent learns during lifetime are determined after the birth
by other users and, therefore, the brain’s internal self-organization is totally autonomous (i.e.,
emergent representation).

space and time. Although there are many characteristics of the biological brain,
these five “chunks” are probably the most fundamental in the brain “puzzle”:

1. The “development” chunk means that any practical brain, natural or artificial,
needs to autonomously develop through interactions with the natural environ-
ments without any previously given set of tasks.

2. The “architecture” chunk handles (1) complex backgrounds where the signal-
to-noise ratio is at least smaller than 1 (< 0 db), or equivalently, more input
components are irrelevant to immediate actions than those that are relevant; (2)
abstraction, reasoning and generalization with any abstract and concrete con-
texts; (3) multiple sensory modalities and multiple motor modalities and their
integration.

3. The “space” chunk deals with any practical foreground objects with any prac-
tical complex backgrounds, and includes conflicting invariance and specificity
criteria for type, location, size, orientation, expression, etc. Learned context-
dependent spatial attention is a key capability for dealing with all these con-
flicting spatial criteria.

4. The “area” chunk addresses the issue of feature development and area repre-
sentation, without rigidly specifying what each neuron does.

5. The “time” chunk indicates that the brain uses its intrinsic spatial mechanisms
to deals with time, without dedicated temporal components. The model copes

198 J. Weng

with practical temporal contexts, including the conflicting criteria of time warp-
ing, time duration, temporal attention, long temporal length, etc.

In the following, I present the building block of the DN model: a basic unit as a
three-area network.

3 Biological Development

A human being starts to develop from the time of conception. At that time, a single
cell called a zygote is formed. In biology, the term genotype refers to all or part of the
genetic constitution of an organism. The term phenotype refers to all or part of the
visible properties of an organism that are produced through the interaction between
the genotype and the environment. In the zygote, all the genetic constitution is called
genome, which mostly resides in the nucleus of a cell. At the conception of a new
human life, a biological program called the developmental program starts to run.
The code of this program is the genome, but this program needs the entire cell as
well as the cell’s environment to run properly.

The biological developmental program handles two types of development, body
development and mental development. The former is the development of everything
in the body excluding the brain. The latter is the development of the brain (or the
central nervous system CNS). Through the body development, a normal child grows
in size and weight, along with many other physical changes. Through the mental de-
velopment, a normal child develops a series of mental capabilities through interac-
tions with the environment. Mental capabilities refer to all known brain capabilities,
which include, but not limited to, perceptual, cognitive, behavioral and motivational

 Top-match y
n+1

t
n+1

Care z
n+2

=

t
n+2

Area 1:
sensory

X

Area 2:
internal

Y

Area 3:
motor

Z

Care z
n

if link
if drop prefix

if drop postfix

 See x
n

Time:
t

n

{
φ(z

n
, x

n
)

φ(x
n
)

φ(z
n
)

Fig. 2 The spatial DN for both spatial processing and temporal processing without dedicated
temporal components. At each temporal unit shown above (two time frames), three basic
operations are possible: link, drop prefix, and drop postfix. After proper training, the DN is
able to attend any possible temporal context up to the temporal sampling resolution.

Brain Like Temporal Processing 199

capabilities. In this chapter, the term development refers to mental development un-
less stated otherwise. The biological mental development takes place in concurrence
with the body development and they are closely related. For example, if the eyes
are not normally developed, the development of the visual capabilities is greatly
affected. In the development of an artificial agent, the body can be designed and
fixed (not autonomously developed), which helps to reduce the complexity of the
autonomous mental development.

The genomic equivalence principle [14] is a very important biological concept
for us to understand how biological development is regulated. This principle states
that the set of genes in the nucleus of every cell (not only that in the zygote!) is func-
tionally complete — sufficient to regulate the development from a single cell into an
entire adult life. This principle is dramatically demonstrated by cloning. This means
that there are no genes that are devoted to more than one cell as a whole. There-
fore, development guided by the genome is cell-centered. Carrying a complete set
of genes and acting as an autonomous machine, every cell must handle its own
learning while interacting with its external environment (e.g., other cells). Inside
the brain, every neuron develops and learns in place. It does not need any dedicated
learner outside the neuron. For example, it does not need an extra-cellular learner to
compute the covariance matrix (or any other moment matrix or partial derivatives)
of its input lines and store extra-celullarly. If an artificial developmental program
develops every artificial neuron based on only information that is available to the
neuron itself (e.g., the cellular environment such as pre-synaptic activities, the de-
velopmental program inside the cell, and other information that can be biologically
stored intra-cellularly), we call this type of learning in-place learning.

This in-place concept is more restrictive than a common concept called “local
learning.” For example, a local learning algorithm may require the computation of
the covariance matrix of the pre-synaptic vector which must store extra-cellularly.
In electronics, the in-place learning principle can greatly reduce the required elec-
tronics and storage space, in addition to the biological plausibility. For example,
suppose that every biological neurons requires the partial derivative matrix of its
pre-synaptic vector. As the average number of synapses of a neuron in the brain is
on the order of n = 1000. Each neuron requires about n2 = 1,000,000 storage units
outside every neuron. This corresponds to about 1,000,000 of the total number of
synapses (1014) in the brain!

Conceptually, the fate and function of a neuron is not determined by a “hand-
designed” (i.e., genome specified) meaning of the external environment. This is an-
other consequence of the genomic equivalence principle. The genome in each cell
regulates the cells mitosis, differentiation, migration, branching, and connections,
but it does not regulate the meaning of what the cell does when it receives signals
from other connected cells. For example, we can find a V1 cell (neuron) that re-
sponds to an edge of a particular orientation. This is just a facet of many emergent
properties of the cell that are consequences of the cells own biological properties
and the activities of its environment. A developmental program does not need to,
and should not, specify which neuron detects a pre-specified feature type (such as
an edge or motion).

200 J. Weng

4 Why Autonomous Mental Development?

One can see that biological development is very “low level”, regulating only individ-
ual neurons. Then, why is it necessary to enable our complex electronic machines
to develop autonomously? Why do we not design high-level concepts into the ma-
chines and enable them to carry out our high-level directives? In fact, this is exactly
many symbolic methods have been doing for many years. Unfortunately, the result-
ing machines are brittle — they fail miserably in real world when the environment
fall out of the domains that have been modeled by the programmer.

To appreciate what are faced by a machine to carry out a complex task, Weng [17]
introduced a concept called task muddiness. The composite muddiness of a task is
a multiplicative product of many individual muddiness measures. There are many
possible individual muddiness measures. Those individual muddiness measures are
not necessarily mutually independent or at the same level of abstraction, since such
a requirement is not practical nor necessary for describing the muddiness of a task.
They fall into five categories: (1) external environment, (2) input, (3) internal envi-
ronment, (4) output and (5) goal, as shown in Table 1. The term “external” means
external with respect to the brain and “internal” means internal to the brain.

The composite muddiness of a task can be considered as a product of all indi-
vidual muddiness measures. In other words, a task is extremely muddy when all the
five categories have a high measure. A chess playing task with symbolic input and
output is a clean problem because it is low in categories (1) through (5). A symbolic
language translation problem is low in (1), (2) and (4), moderate in (3) but high in
(5). A vision-guided navigation task for natural human environment is high in (1),
(2), (3) and (5), but moderate in (4). A human adult handles extremely muddy tasks
that are high in all the five categories.

From the muddiness table Table 1 we have a more detailed appreciation what a
human adult deals with even in a daily task, e.g., navigating or driving in a city en-
vironment. The composite muddiness of many tasks that a human or a machine can
execute is proposed by Weng [17] as a metric for measuring required intelligence.

A human infant is not able to perform those muddy tasks that a human adult per-
forms everyday. The process of mental development is necessary to develop such
a wide array of mental skills. Much evidence in developmental psychology has
demonstrated that not only a process of development is necessary for human intelli-
gence, the environment of the development is also critical for normal development.

Likewise, it is not practical for a human programmer to program a machine to
successfully execute a muddy task. Computers have done very well for clean tasks,
such as playing chess games. But they have done poorly in performing muddy tasks,
such as visual and language understanding. Enabling a machine to autonomously
develop task skills in its real task environments is the only approach that has been
proved successful for muddy tasks — no existing higher intelligence for muddy
tasks is not developed autonomously.

Brain Like Temporal Processing 201

Table 1 A list of muddiness factors for a task

Category Factor Clean ←→ Muddy
Awareness Known Unknown

External Complexity Simple Complex
Env. Controlledness Controlled Uncontrolled

Variation Fixed Changing
Foreseeability Foreseeable Nonforeseeable
Rawness Symbolic Real sensor
Size Small Large
Background None Complex

Input Variation Simple Complex
Occlusion None Severe
Activeness Passive Active
Modality Simple Complex
Multi-modality Single Multiple
Size Small Large

Internal Representation Given Not given
Env. Observability Observable Unobservable

Imposability Imposable Nonimposable
Time coverage Simple Complex
Terminalness Low High

Output Size Small Large
Modality Simple Complex
Multimodality Single Multiple
Richness Low High

Goal Variability Fixed Variable
Availability Given Unknown
Telling-mode Text Multimodal
Conveying-mode Simple Complex

5 Building Blocks

The biological genomic equivalence principle implies that a cell is a general-purpose
machine during its development and operation as far as its genome is concerned.
All generated from the single cell zygote through many rounds of mitosis, many
cells in the brain become increasingly differentiated [14], meaning that they become
more specialized while migrating after being generated from the progenitor cells in
the ventricular zone. However, mitosis continuously goes on in a developing brain.
Where each cell goes (cell migration), how it grows (cell expansion), how it extends
(axon and dendrite pathfinding), whether it survives (neurotrophic factors), synapse
formation and synapse elimination (synaptogenic factors) are all activity dependent.
This cell-centered autonomy, while interacting with nearby environment, gives the
basis for our DN model to treat any set of cells (neurons) as a unit. This scheme fa-
cilitates understanding without being overwhelmed by the apparent high complexity
of a developed brain.

202 J. Weng

We consider such a generic area Y which has its sensory area X and its motor area
Z, as illustrated in Fig. 2. For every unit, its sensory area is also an output port for
its top-down attention (self-effecting), and its motor area is also an input port for its
top-down sensing (self-aware). A lower brain(e.g., mid-brain) is developed earlier,
so that the higher brain (e.g., forebrain) as basic units can innervate into lower ones
later.

Because of the need to address the complex background problem, the DN model
provides a deeper need: to provide receptive field and effective field that are smaller
than X and Z. If the receptive field of a neuron matches the foreground object well,
the response of the neuron is not very sensitive to the background.

The general-purpose, spatial object recognition from complex backgrounds using
this basic unit has been tested and the experimental results will appear elsewhere. In
this chapter, we will focus on temporal aspect of the DN.

DN learns while performing. Suppose that DN has l layers, 1 to l. At time t = 0,
every layer has the weights of all its neuronal initialized with Gaussian weights at
different positions. Then, DN computes as below.

Algorithm 1 (DN). Input areas: X and Z. Output areas: X and Z. The dimension
and representation of X and Y areas are hand designed based on the sensors and
effectors of the species (or from evolution in biology). Y is the skull-closed, internal
brain, not directly accessible by the world outside the skull.

1. At time t = 0, for each area A in {X ,Y,Z}, initialize its adaptive part L = (V,A,r),
where V contains all the synaptic weight vectors, A stores all the neuronal ages,
and r is the radius of the excitation sphere of each neuron. L is initialized ac-
cording to an initialization method.

2. At time t = 1,2, ..., for each area A in {X ,Y,Z}, do the following steps repeatedly
forever:

a. Take input from bottom-up input b and top-down input t, if it exists.
b. Every area A performs mitosis if it is needed, using its bottom-up and top-

down inputs b and t, respectively.
c. Every area A computes its area function f , described in the next subsection,

(r′,L′) = fLCA(b,r, t,L).

where r and r are the input and output responses, respectively.
d. For every area A replaces: L ← L′ and r ← r′.

In the algorithm, LCA denotes the Lobe Component Analysis [21], a dually optimal
model for updating a neuronal layer:

1. Spatially optimality: the target neuronal weights are best in minimizing the rep-
resentation error of the layer input space P = X ×Z (parallel input space of the
bottom-up input space X and the top-down input space Z), using a limited num-
ber of neurons.

2. Temporal optimality: the learning directions and step sizes at different steps of
all neurons are best to minimize the distance between the estimated weights and
their target weights.

Brain Like Temporal Processing 203

The spatial optimality implies that the network is smallest in each layer. The tem-
poral optimality means that the network learns fastest using a limited amount of
learning experience.

6 Lobe Component Analysis

A general neural area may contain several levels, represented by the cortical laminar
structure, as discussed in Luciw & Weng 2010 [10] in order to avoid top-down
hallucination. Here, for simplicity we consider a simpler case where each area has
only one layer.

Each area performs the Candid Covariance-free Incremental (CCI) LCA algo-
rithm fLCA. It incrementally updates the adaptive part of its neuronal level L =
(V,A,r), where V = (v1,v2, ...,vc) contains c synaptic vectors, A = (n1,n2, ...,nc)
consists of the corresponding firing ages, and r is the radius of the excitation sphere
of each neuron.

Each input sample is in the form (x,z) = X ×Z, where X is the bottom-up space
and Z is the top-down input space. The vectors x and z are normalized before feeding
into fLCA, to be discussed later. In a network, X or Z may have multiple parallel
input subspaces. Algorithmically, fLCA takes L as the current level and (x,z) as
the bottom-up and top-down input, respectively, to generate the response vector
y = (y1,y2, ...,yc) and update its representation L:

(y,L) ← fLCA(x,y,z,L).

The CCI LCA algorithm is as follows.

Algorithm 2 (LCA initialization). Initialize synaptic vectors vi, using c Gaussian
functions, each Gaussian having a different mean vector, response yi with a small
random number in [0,0.1], and firing age ni = 0, i = 1,2, ...,c.

The CCI LCA update is cell-autonomous, meaning that when each neuron updates,
it simply uses the currently available response values of other neurons and does not
wait using any global clock. This is critical for the temporal processing.

Algorithm 3 (CCI LCA update). Input: x,y,z,L. Output: y,L.

1. Compute pre-responses. Depending on the level’s location in the network, take
external or internal input1 p = ((1−α)x,αz), where z may have been just over-
ridden by a teacher if z is an external port and α , 0≤α ≤ 1 is the relative weight
of the top-down input. Compute the pre-competition response2:

1 A contrast normalization for bottom-up input x often improves the performance. For exam-
ple, x is normalized so that the minimum component is zero and the maximum component
is 1.

2 Sigmoidal function is approximated by the cell nonlinearity in the next step. The model
here can be extended to a spiking neuronal model which is useful for a higher temporal
resolution.

204 J. Weng

yi =
vi ·p
‖vi‖ , i = 1,2, ...,c. (1)

2. Neurons mutually inhibit for dynamic sparse coding. For simulating lat-
eral inhibition with a relatively lower update frequency, use this non-iterative
ranking-and-scaling mechanism.3 Rank only k+1 top winners so that after rank-
ing, y1 ≥ y2... ≥ yc, as ranked responses. Use a piecewise linear but globally
nonlinear function to scale the responses:

yi ← yi − yk+1

y1 − yk+1
, i = 1,2, ...,k. (2)

All other neurons do not fire yi = 0 for i = k + 1,k + 2, ...,c. This ranking-and-
scaling mechanism replaces repeated iterations that take place among two-way
connected neurons in the same level. This simulates L5 assisting L2/3 for lateral
inhibition and L6 assisting L4 for lateral inhibition[3].

3. Optimal Hebbian learning. Update only the top k winner neurons v j, j =
1,2, ...,k, using the pre-synaptic activity p, the post-synaptic activity y j, and its
firing-age dependent plasticity:

v j ← w1(n j)v j + w2(n j)y jp, (3)

where the learning rate w2 and the retention rate w1, respectively, are determined
by:

w2(n j) =
1 + μ(n j)

n j
,w1(n j) = 1−w2(n j) (4)

where μ(t) is a non-negative amnesic function.4 Note y1 = 1 for the top winner.
Update the real-valued neuron “firing age” n j only for the winners: n j ← n j +y j,
j = 1,2, ...,k.

4. Lateral excitation for cortical smoothness. Mutual excitatory connections [3]
among neurons in the same level are useful for the nearby neurons to detect
similar features. In the computer simulation of lateral excitation, there is a sphere
of excitation with radius r from each neuron. Not only the top-k winners update,
but also the neurons within the sphere of excitation. The scope radius r starts
from the half size of the neuronal layer during initialization. It slowly decreases
to r = 0 when the network matures. The input y is used for lateral excitation.

3 This mechanism of ranking-and-scaling is an approximation of biological in-place inhibi-
tion. It is not in-place, as it requires extra-cellular sorting. But it is very effective compu-
tationally by eliminating iterations within an LCA level.

4 The amnesic function μ(t) is for a general nonstationary process u = yp where the prob-
ability distribution for u slowly changes. μ(t) = 0 when t ≤ t1, so that w2(t) = 1/t;
μ(t) = 2(t − t1)/(t2 − t1) when t1 < t ≤ t2 so that w2(t) linearly changes from 0 to 2;
μ(t) = 2 + (t − t2)/r when t2 < t so that w2(t) approaches 1/r when t grows without
bound. We chose t1 = 20,t2 = 200 and r = 2000 in our experiments. These numbers were
selected based on the need for stability and fast adaptation.

Brain Like Temporal Processing 205

The lateral inhibition is modeled by top-k competition in terms of pre-response
values to avoid undesirable oscillations.

5. Long-term memory. All other neurons that do not update keep their firing age
and synapses unchanged. They are long term memory for this context of p. Other
updated neurons are working memory for this context.

The algorithm is called the Candid Covariance-free Incremental (CCI) LCA algo-
rithm. The term “Candid” means that the algorithm uses candid information in the
inputs for the dual optimality. LCA was compared with some well known methods
in [21].

7 Representation Emergence

Unlike FSM or its probabilistic versions HMM and POMDP, DN uses emergent
representation as shown in Fig. 2 (for the three layer DN, the lowest area is consid-
ered as image input layer which does not conduct computation). DN has multilevel

distributed state representation (y(2)
t ,y(3)

t), where y(l)
t represents the response vector

of layer l. Each layer l has its own state presentation as a distributed representation.
It takes distributed input from space P = X ×Z, and generate distributed response
y ∈ Y .

7.1 Soft-Logic AND in Layer 2

Given a limited number c of neurons in layer l, the bottom-up input space of the
layer is X and the top-down input space of the layer is Z. Thus, the input space of
the layer is P = X ×Z. The theory of LCA indicates that the weight vectors of the
c neurons p1,p2, ...,pc in the layer are optimally distributed in the observed signal
manifold of P though developmental learning so that a region in P with a high
probability density recruits more neurons than a region with a lower probability
density. Given any input pair p = (x,z) to the layer, LCA finds the top neuron(s)
who gives the highest response r(p,pi) (i.e., best matching):

j = arg max
1≤i≤c

r(p,pi). (5)

Thus, the best matched neuron j serves as the representative of unknown input p.
(When the number of neurons c is large so that the top matched neurons are near
enough to be “experts” of the current input case p, more than 1 neurons can be al-
low to fire, so that the firing pattern y from the layer allows sub-neuronal precision
estimation of the input p.) Thus, Layer 2 serves as a soft-logic AND: all the cor-
responding components in p and p j must match well in terms of normalized inner
product which gives the response r(p,pi).

206 J. Weng

7.2 Soft-Logic OR in Layer 3

During supervised learning for Layer 3, suppose that the neuron k in Layer 2 is set
to the highest value 1 at time t. Further suppose that the neuron j in Layer 2 fires
at time t −1. In other words, the j’s component of the bottom-up input xt−1 of the
neuron k is high. Consequently, with regard to the synapse that links neuron j with
neuron k, the pre-synaptic activity r j and post-synaptic action rk are both high. Then
the weight that links these two neurons is strengthened. Mathematically, according
to the theory of LCA, the weight that links neuron j in the lower layer to neuron k
in the higher layer is

wj,k ≈ E{r jrk | neuron k fires}. (6)

Therefore, the more often neuron j fires when neuron k fires, the higher the weight
from j to k. Therefore, all the neurons in Layer 2 that fire with neuron k in Layer
3 have non-zero weights. As only one (or few) neuron fires in Layer 2 at any time,
this is a soft-logic OR for Layer 3: all the cases in Layer 2 that correspond to k firing
neuron are connected to the target neuron in Layer 3.

7.3 No Local Extrema

Intuitively, as long as there are a sufficient number of neurons in Layer 2 and there
is a sufficient amount of training experience, the trained DN can approximate any
smooth high dimensional input-output mapping to a desired precision rate, as long
as the bottom-up and top-down pair pt = (xt ,zt−1) uniquely determines the desired
action output from the layer 3. This distribution scheme largely avoids the problem
of local extrema with the error back-propagation methods.

7.4 Discriminant Features

Furthermore, the dually optimal distribution of c neurons in the space P = X ×Z
enables development of discriminant feature neurons: Which neuron wins in Eq. (5)
is less sensitive to distractor components in x that do not affect output z but are more
sensitive to features in x that significantly affect output z. Consequently, the dually
optimal self-organization of c neuronal weights p1,p2, ...,pc lead to nearly smallest
error in the estimated output space of DN.

8 Properties

Based on the above discussion, we are ready to present major properties that are of
paramount importance to temporal processing in DN.

Brain Like Temporal Processing 207

8.1 Context Dependent Attention

Corollary 1 (Context-dependence). Given external bottom-up input xt and top-
down context zt−1, the three-layer DN network has three classes of internal behav-
iors, external (E), internal (I) and mix (M), which means that the motor output zt

is dependent on external input xt only, dependent on internal top-down context zt−1

only, and dependent on both, respectively, subject to learning.

Proof. As discussed above, the best matched feature p j in Layer 2 fits both xt and
zt−1. There are three cases for the Layer 3 to learn the next action zt , (1) zt de-
pends on xt only, (2) zt depends on zt−1 only, and (3) zt depends on both. They
corresponding to E, I, and M, respectively. The quality and amount of learning ex-
perience affect the ideal independence of the output zt on zt−1 (for the E case) or xt

(for the I case).

8.2 Active Time Warping

Suppose that the network is updated at discrete times, t = 1,2, This series of dis-
crete times can represent any network update frequency. For example, if the time
interval between every two consecutive time instances is 1ms, the network is up-
dated at 1000Hz. Denote the sensory input at time t to be xt , t = 1,2, The series
of discrete times can be considered the sampling times on the continuous physi-
cal world. The phenomenon that a dynamic event can proceed at different speed
at different stages is called time warping. It is desirable that physical events with
different time warpings are recognized at the motor layer as the same type of event
(e.g., in speech recognition and dynamic visual recognition). Of course, at Layer 2,
the representations with different time warpings are different, reflecting an advan-
tage of the multi-area representation, in contrast with the single state representation
of HMM and POMDP.

For example, the following two sequences should be recognized as the same se-
quence at the motor layer:

|w|w|w|w|w|w|_|u|u|u|_|u|u|_|_|z|z|z|z|_|
|w|w|_|u|u|u|u|_|u|u|u|u|_|z|z|_|

where w,u,z are words and | is a delimiter of time frames, each of which corre-
sponds to a different t.

Fort this property, we have the following theorem:

Theorem 1 (Active Time Warping). The motor layer of DN can be taught to carry
out active time warping, subject to learning.

Proof. Use the Corollary 1. For duplicate word, learn the “drop postfix” case il-
lustrated in Fig. 2. Dropping duplicate spaces _ is similar. For detecting two w’s
separated by a space _, zt should correspond to a context that requires a trailing
space _ before receiving the second w.

208 J. Weng

8.2.1 Active Context

The major goal is to interactively train DN so that it make sequential decisions that
require spatiotemporal, attended context in a dynamic range of the past.

Theorem 2 (Context of any temporal length). The temporal length of top-down
context Z of the DN is arbitrary, depending on learned attention.

Proof. According to the Corollary 1, any length of history can be generated at Layer
3 by recursively apply the “link” shown in Fig. 2. That is, the context zt indicates a
label that requires appending the last bottom-up input xt .

Theorem 3 (Context of any temporal subset). The temporal context of top-down
context zt of DN can represent any subset of the bottom-up stimuli, depending on
learned attention.

Proof. Simply drop the parts that do not belong to the subset, using the “drop post-
fix” or “drop prefix” function shown in Fig. 2.

Theorem 4 (Flush). The temporal context of top-down context zt of DN can be reset
to represent only the last bottom-up input, depending on learned attention.

Proof. According to Corollary 1, apply the internal (I) behavior.

Combining above two properties gives the following theorem.

Theorem 5 (Any context). The temporal context of top-down context zt of DN can
represent any subset of the bottom-up stimuli of any length of the history, depending
on learned attention.

Proof. Combining the above three theorems, use Theorem 4 to start at a desired
frame of the history, use Theorem 3 to keep the desired subset, and use Theorem 2
to keep it of any desired length.

Theorem 5 implies that the DN agent can learn to attend to any part of spatiotempo-
ral context, a necessity of complex language understanding.

8.2.2 Time Duration

The time duration task is an opposite problem of time warping. The goal of the task
is to count the length of time between two events a and b.

Different from the above models, DN can learn to count, using its intrinsic prop-
erty of response time (e.g., sampling time) as the basic time unit.

Theorem 6 (Time duration). The action zt of DN can represent any finite length of
time between two specified events.

Proof. Suppose zt = i means time i, i = 1,2, ...,k from a. The DN starts to count
using is action zt as soon as it senses a, and terminates counting when it senses b.
Suppose ∗ is a distractor, other than a and b. DN needs to continue to count when
it sees a distractor. The following shows how DN responds.

x:|*|*|a|*|*|*|*|*|*|*|b|*|*|...
z:|_|_|_|1|2|3|4|5|6|7|8|9|_|...

Brain Like Temporal Processing 209

8.2.3 New Sentences

The above results can be used to understand how to use abstract motor states to
generalize to new sentences that the system has never learned.

Problem 1 (New Sentences). Suppose that there are four word meanings,
W1,W2,W3,W4. Each word meaning Wi has ten synonyms {wi j | j = 1,2, ...,10},
i = 1,2,3,4. Then, there are 10000 equivalent 4-word sentences in the form of
(w1h,w2i,w3 j,w4k), h, i, j,k = 1,2, ...,10. Interactively learn the synonyms in the
corresponding sentence contexts, so that the developmental agent recognizes all new
sentences of length 1 to 4 of the form of W1,W2, ...Wj, with j = 1,2,3,4.

This problem is addressed in the following way. In Lesson 1, learn individual words.
The x-row below denotes sensory input at each time frame, while The z-row below
denotes motor output (label) at the corresponding time frame.

x:|a1|a1|_|_|a2|a2|a2|_|a3|a3|_|a4|a4|...
z:|_ |A |A|_|_ |A |A |A|_ |A |A|_ |A |...

The delay in the corresponding motor output is due to the fact that it takes two
updates for the signal of sensory input to pass the two levels to reach the motor. Do
the same for B, C and D. In Lesson 2, learn two-word sentences:

x:|a1|b1|_ |a1|b2|_ |a1|b3|_ |a1|b4|...
z:|_ |A |AB|_ |A |AB|_ |A |AB|_ |A |AB|...

In Lesson 3, learn 3-word sentences in a similar way. In Lesson 4, learn 4-word
sentences:

x:|a1|b1|c1|d1 |_ |a1|b1|c1|d2 |_ |...
z:|_ |A |AB|ABC|ABCD|_ |A |AB|ABC|ABCD|...

The number of sentences learned in these lessons are 40, 10, 10, 10, respectively.
The number of new sentences to be recognized are 0, 100−10, 1000−10, 10000−
10, respectively. Totally, the DN learns 70 sentences, but recognizes 90 + 990 +
9990 = 11070 new sentences. Of course, no two English words are exactly syn-
onyms. The subtle difference is represented in Layer 2 response in DN, but the
motor outputs are the same.

In our experiment to appear elsewhere, Dr. Qi Zhang at Fudan University used
64×64 neurons in Layer 2. He tested the updated DN after every epoch through the
training set. The DN perfectly (100%) recognized all the 70 trained senses and all
the 11070 new sentences from epoch 23.

8.2.4 Complexity

Theorem 7 (Exponential Capacity). The number of distinguishable patterns by a
cortical level with n neurons is exponential O(2n).

Proof. Each neuron has least two status, firing and nor firing. The number of firing
patterns of n neurons is at least O(2n).

210 J. Weng

This is a great advantage of distributed representation compared to a symbolic repre-
sentation. While a symbolic representation potentially requires an exponential num-
ber of symbols, no symbol is assigned to these 2n patterns using the emergent, dis-
tributed representations.

Theorem 8 (Linear complexity). The amount of computations required by a corti-
cal layer with n neurons is linear O(cn), assuming a constant number c of average
synapses per neuron.

Proof. The proof is obvious, as only n neurons need to be computed and learned.

With learning time t, the time complexity is O(cnt).
The above two properties lead to the conclusion that the DN uses a linear space

complexity and linear time complexity to solve a general-purpose exponential size
problem.

9 Experimental Results

The DN model has been tested for recognizing temporal visual events (Luciw et
al. 2008 [11]), spatiotemporal disparity from stereo without explicit stereo images
matching Solgi & Weng 2009 [15], text processing as temporal sequences for gener-
alization to new sentences based on synonyms, the part-of-speech tagging problem
and the chunking problem using natural languages from the Wall Street Journal in
Weng et al. 2009 [23], and modeling early language acquisition and generalization
in Miyan & Weng 2010 [12].

10 Conclusions

The motor area of DN is not only the hub of actions, but also for active abstraction
— converting different temporal contexts into the equivalent state represented by the
firing pattern of the motor area. Temporal context of any length and of any subset
can be attended and abstracted by the spatial DN without a need for any dedicated
temporal component. Recently, Weng 2010 [18] stated that a DN can simulate any
Finite Automaton.

According to task context, DN can deal with time warping or determine time
duration. Unlike the symbolic HMM, POMDP, and Bayesian nets which require
a handcrafted network structure, DN self-generates its network structure. DN per-
forms while learning, regardless supervisory signals are available at the motor end
or not. The exponential complexity, in terms of the scan window length in online
sensory processing, is converted by DN into a linear time complexity and linear
space complexity. The experimental results cited here but presented elsewhere have
shown that this general purpose model can deal with a variety of temporal con-
text problems, including vision and natural language processing. The future work
includes testing such temporal capabilities on real developmental robots.

Brain Like Temporal Processing 211

References

1. Albus, J.S.: Outline for a theory of intelligence. IEEE Trans. Systems, Man and Cyber-
netics 21(3), 473–509 (1991)

2. Albus, J.S.: A model of computation and representation in the brain. Information Sci-
ence 180(9), 1519–1554 (2010)

3. Callaway, E.M.: Feedforward, feedback and inhibitory connections in primate visual cor-
tex. Neural Networks 17, 625–632 (2004)

4. Elman, J.L., Bates, E.A., Johnson, M.H., Karmiloff-Smith, A., Parisi, D., Plunkett, K.:
Rethinking Innateness: A connectionist perspective on development. MIT Press, Cam-
bridge (1997)

5. Emami, A., Jelinek, F.: A neural syntactic language model. Machine Learning 60, 195–
227 (2005)

6. George, D., Hawkins, J.: Towards a mathematical theory of cortical micro-circuits. PLoS
Computational Biology 5(10), 1–26 (2009)

7. Hecht-Nielsen, R.: Confabulation Theory. Springer, Berlin (2007)
8. Jelinek, F.: Self-organized language modeling for speech recognition. In: Waibel, A.,

Lee, K. (eds.) Readings in Speech Recognition, pp. 450–506. Morgan Kaufmann, San
Mateo (1990)

9. Lee, T.S., Mumford, D.: Hierarchical bayesian inference in the visual cortex. J. Opt. Soc.
Am. A 20(7), 1434–1448 (2003)

10. Luciw, M., Weng, J.: Where What Network 3: Developmental top-down attention with
multiple meaningful foregrounds. In: Proc. IEEE International Joint Conference on Neu-
ral Networks, Barcelona, Spain, July 18-23, pp. 4233–4240 (2010)

11. Luciw, M., Weng, J., Zeng, S.: Motor initiated expectation through top-down connections
as abstract context in a physical world. In: IEEE International Conference on Develop-
ment and Learning, August 9-12, Monterey, CA, pp. +1–6. (2008)

12. Miyan, K., Weng, J.: WWN-Text: Cortex-like language acquisition with What and
Where. In: Proc. IEEE 9th International Conference on Development and Learning, Ann
Arbor, August 18-21, pp. 280–285 (2010)

13. Piaget, J.: The Construction of Reality in the Child. Basic Books, New York (1954)
14. Purves, W.K., Sadava, D., Orians, G.H., Heller, H.C.: Life: The Science of Biology, 7th

edn. Sinauer, Sunderland, MA (2004)
15. Solgi, M., Weng, J.: Developmental stereo: Emergence of disparity preference in models

of visual cortex. IEEE Trans. Autonomous Mental Development 1(4), 238–252 (2009)
16. Tenenbaum, J.B., Griffithsb, T.L., Kemp, C.: Theory-based bayesian models of inductive

learning and reasoning. Trends in Cognitive Sciences 10(7), 309–318 (2006)
17. Weng, J.: Task muddiness, intelligence metrics, and the necessity of autonomous mental

development. Minds and Machines 19(1), 93–115 (2009)
18. Weng, J.: A 5-chunk developmental brain-mind network model for multiple events in

complex backgrounds. In: Proc. Int’l Joint Conf. Neural Networks, Barcelona, Spain,
July 18-23, pp. 1–8 (2010)

19. Weng, J., Ahuja, N., Huang, T.S.: Learning recognition and segmentation of 3-D objects
from 2-D images. In: Proc. IEEE 4th Int’l Conf. Computer Vision, pp. 121–128 (May
1993)

212 J. Weng

20. Weng, J., Ahuja, N., Huang, T.S.: Learning recognition and segmentation using the Cres-
ceptron. International Journal of Computer Vision 25(2), 109–143 (1997)

21. Weng, J., Luciw, M.: Dually optimal neuronal layers: Lobe component analysis. IEEE
Trans. Autonomous Mental Development 1(1), 68–85 (2009)

22. Weng, J., McClelland, J., Pentland, A., Sporns, O., Stockman, I., Sur, M., Thelen, E.:
Autonomous mental development by robots and animals. Science 291(5504), 599–600
(2001)

23. Weng, J., Zhang, Q., Chi, M., Xue, X.: Complex text processing by the temporal context
machines. In: Proc. IEEE 8th International Conference on Development and Learning,
Shanghai, China, June 4-7, pp. +1–8 (2009)

Part IV: Special Applications

Towards Physarum Robots

Jeff Jones, Soichiro Tsuda, and Andrew Adamatzky

Abstract. The true slime mould Physarum polycephalum is a suitable candidate or-
ganism for small scale robotics because it spontaneously generates transport, move-
ment and navigation, exhibiting complex behaviour from very simple component
interactions. Physarum may be considered as a smart computing material as its mo-
tor and control systems are distributed within a simple tissue type and can survive
trauma such as excision, fission and fusion of plasmodia. We demonstrate experi-
mentally how the plasmodium of Physarum may be configured to generate complex
and controllable oscillatory transport behaviour which may prove useful in small
robotic devices. We measure the lifting force of the plasmodium and demonstrate
how protoplasmic transport can be influenced by externally applied illumination
stimuli. We provide an exemplar vehicle mechanism by coupling the oscillations
of the plasmodium to drive the wheels of a Braitenberg vehicle and use light stim-
uli to effect a steering mechanism. To explore the generation of complex behaviour
from such simple component parts we present a particle based model of Physarum
which spontaneously generates complex oscillatory patterns from simple local in-
teractions, is distributed in terms of the origin and control of motor behaviour, is
morphologically adaptive, is amenable to external influence, and is robust to envi-
ronmental insult and thus can itself be considered as a virtual smart material. We
demonstrate different forms of controllable motion, including linear, reciprocal, ro-
tational, helical, and amoeboid movement. We enable external control of the robotic
movement by simulated chemo-attraction (‘pulling’) and simulated light hazards
(‘pushing’). The amorphous and distributed properties of the collective are demon-
strated by cleaving it into two independent entities and fusing two separate entities
to form a single device, thus enabling it to traverse difficult or separate paths. We
conclude by examining ways in which future robotic devices may be developed us-
ing physical instances of smart materials.

Jeff Jones · Soichiro Tsuda · Andrew Adamatzky
Unconventional Computing Group, University of the West of England,
Bristol, BS16 1QY, UK
e-mail: {jeff.jones,so.tsuda,andrew.adamatzky}@uwe.ac.uk

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 215–251.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

{jeff.jones,so.tsuda,andrew.adamatzky}@uwe.ac.uk

216 J. Jones, S. Tsuda, and A. Adamatzky

1 Introduction

Very small scale mechanisms made possible by recent advances in micro-fabrication
still require a means of energy conversion to convert a fuel supply into useful mo-
tive force. Although it is possible to reduce conventional engines and transmission
designs in scale, doing so introduces challenges with regard to friction [1], heat [2]
and more general miniaturisation problems [3] that may differ from or exacerbate
those observed at the larger scale. Meanwhile, small scale engines are still subject to
the necessities of complex engine design, control and assembly, including mainte-
nance schedules and repair (however, one goal of micro-fabrication is in the forecast
minimal production costs which may render repair economically unnecessary).

Recent approaches have sought inspiration from biological sources of to provide
the transformation of energy conversion to motive force, examples from flagellated
movement of bacteria [4] and eukaryotes [5], ciliated transport for microscopic mix-
ing [6] and transport [7], peristaltic propulsion [8], [9], amoeboid movement [10]
and collective mass transport [11] have all been suggested. Biologically inspired
mechanisms are attractive since they are composed (at their lowest level) of simple
and plentiful materials and show impressive feats of redundancy, fault tolerance and
self repair. However, even though the above mechanisms are technologically elegant
and the product of impressive biological self-assembly, the internal arrangement of
components underlying some mechanisms - for example the bacterial flagellar mo-
tor system - appears to be almost as complex as those in non-biological machines.
Progress in the development of biologically inspired machines has also been made
by considering the use of even more simple biological structures which straddle the
boundary of non-living physical materials and living organisms. Such structures in-
clude biological fibres and membranes [12], lipid self assembly in terms of networks
[13], pseudopodium-like membrane extension [14] and even basic chemotaxis re-
sponse [15]. Some engineering and biological insights have already been useful
by studying the structure and function of what might be termed ‘semi-biological’
materials and the complex behaviour seen in such minimal examples raises ques-
tions about the lower bounds necessary for the emergence of apparently intelligent
behaviour.

Of particular interest are materials which embody oscillatory states, since the
periodic transitions between two or more states can provide differential behaviour
and impetus, if suitably coupled to a propulsion mechanism. The resulting transport
may be relatively simple, such as flagellar or ciliary motion [16], or as complex
as the patterns produced by neural assemblies of central pattern generators [17].
When oscillatory states are combined with local communication waves of excita-
tion may propagate which can also result in motion if the excitation is coupled to
propulsion mechanism. Reaction-diffusion phenomena have proven to be useful in
this approach because the emergence of oscillatory states can be a self organised
and robust process and also feature travelling wave phenomena. Reaction-diffusion
approaches to robotics include the use of propagating waves for robotic control and

Towards Physarum Robots 217

navigation [18], for the manipulation and transport of objects [19], and oscillatory
wave transport within a gel-like material for forward movement [20].

Biological (complete living systems) and semi-biological (materials produced by
living systems) approaches can each provide valuable insights and techniques in the
pursuit of small scale machines. The ideal hypothetical candidate for a biological
machine would be an organism which is capable of the complex sensory integration,
movement and adaptation of a living organism, yet which is also composed of a
relatively simple material that is amenable to simple understanding and control of
its properties.

We suggest that the myxomycete organism, the true slime mould Physarum poly-
cephalum, is a suitable candidate organism which meets both criteria; i.e. it is a
complex organism, but which is composed of relatively simple materials. A giant
single-celled organism, Physarum is an attractive biological candidate medium for
emergent motive force because the basic physical mechanism during the plasmod-
ium stage of its life cycle is a self-organised system of oscillatory contractile ac-
tivity which is used in the pumping and distribution of nutrients within its internal
transport network. The organism is remarkable in that the control of the oscillatory
behaviour is distributed throughout the almost homogeneous medium and is highly
redundant, having no critical or unique components.

The plasmodium of Physarum is amorphous, typically jellied and flat in appear-
ance and ranges from the microscopic scale to up to many square metres in size.
The plasmodium is a single cell syncytium formed by repeated nuclear division and
is comprised of a sponge-like actin-myosin meshwork co-occurring in two physi-
cal phases. The gel phase is a dense matrix subject to spontaneous contraction and
relaxation under the influence of changing concentrations of intracellular chemi-
cals. The sol phase is a liquid protoplasm transported through the plasmodium by
the force generated by the oscillatory contractions within the gel matrix. There is a
complex interplay between the gel and sol phases and both phases can change be-
tween each form when subject to changes in pressure, temperature, humidity and lo-
cal transport. The internal structure of Physarum can thus be regarded as a complex
functional material capable of both sensory and motor behaviour. Indeed Physarum
has been described as a membrane bound reaction-diffusion system in reference to
both the complex interactions within the plasmodium and the rich computational
properties afforded by its ‘material’ properties [21].

In its natural habitat (shaded and damp forest environments) Physarum utilises
the properties of this computational material to extend a growth front towards lo-
cal nutrient sources. It feeds on bacteria found on other living matter, extending its
amorphous body to engulf and digest its food before adapting its body plan behind
the active growth front to form protoplasmic vein structures which transport nutri-
ents to other parts of the plasmodium. A plasmodium may be cut into two sepa-
rate independent and functioning plasmodia or, alternately, two separate plasmodia
may fuse and become a single entity. This ability alone suggests a complex, dis-
tributed and redundant mechanism of sensory and motor control and led to intense
recent research into its computational ability, initiated by Nakagaki et al., who found
that independent plasmodial fragments, when fused, could solve maze problems by

218 J. Jones, S. Tsuda, and A. Adamatzky

finding the shortest connecting path between two sources of food [22]. Other ex-
amples of the computational ability of the plasmodium include its use as a spa-
tially represented unconventional computer suitable for approximation of proximity
graphs [23], shortest path and collision free path problems [24], division of the plane
[25], vehicle routing [26], approximation of urban path planning [27], [28] and as a
spatially represented general purpose computing machine [29].

From a robotics perspective it has previously been shown that Physarum plas-
modium, by its adaptation to changing conditions within its environment, may be
considered as a prototype micro-mechanical manipulation system, capable of simple
and programmable robotic actions including the manipulation (pushing and pulling)
of small scale objects [30] and as a guidance mechanism in a biological/mechanical
hybrid approach where the response of the plasmodium to light irradiation was used
to provide feedback control to a robotic system [31]. A Physarum inspired approach
to robotics using amoeboid movement generated by a series of fluid coupled oscil-
lators has been also been demonstrated [10].

In classical engineering the role of the source of motive force and its distribu-
tion and control are usually separated, for example the generation of power by an
engine and its useful distribution by the drive system are controlled by separate (al-
though linked) control systems. Furthermore these systems are carefully designed
to ensure that forces are applied at the correct times and within specific ranges. In
the Physarum plasmodium the forces (i.e. the emergence of oscillatory behaviour)
emerge spontaneously and there is no distinction between the generation of force
and the control of its distribution. It has been shown that the patterns of force gener-
ation (emergence of oscillatory behaviour) are influenced by the shape of the plas-
modium and the shape is, in turn, affected by the oscillatory behaviour [32]. Thus it
may be possible to govern - to some degree - the pattern of oscillations by restricting
the plasmodium to a chambered environment in order to utilise particular aspects of
its oscillatory behaviour.

In this report we discuss the use of Physarum as a candidate organism and mate-
rial for the spontaneous generation and distribution of physical forces for engine-like
and transport mechanisms. The layout of the paper is as follows: In Section 2 we
show experimental results demonstrating that Physarum plasmodium is capable of
generating motive lifting force which is both measurable and externally ontrollable.
Using a dumbbell patterned design we demonstrate complex phase relationships
from the oscillatory dynamics and we design a prototype example mechanism where
the motive output of Physarum plasmodium oscillations is used to drive the wheels
of a simulated Braitenberg vehicle, using external light stimuli to steer the vehicle.
Building upon the experimental results we investigate in section 3 the emergence of
oscillatory transport in the computational modelling of a virtual material composed
of a particle collective where - as with the plasmodium - oscillatory phenomena
emerge from simple and local interactions. Taking this emergent behaviour as our
base point we explore the effect of patterning the plasmodium in constrained and
unconstrained environments on movement patterns composed of oscillatory waves.
In section 4 we demonstrate a range of transport types (linear, rotary, reciprocal
and helical) and coupling methods. We also consider smaller isolated ‘blobs’ of

Towards Physarum Robots 219

the material which exhibit spontaneous amoeboid movement, investigating mecha-
nisms whereby the virtual ‘blobs’ may be guided externally by repulsion (simulated
light irradiation) and attraction (by the deposition of attractants). We summarise
the experimental and theoretical findings in section 5 and suggest future research
by which small scale transport devices may be constructed from materials which
exhibit emergent properties from simple component interactions.

2 Experimental

This section focus on experimental investigation into the possibility of Physarum
engine implementation. The Physarum plasmodium is famously known for fast
protoplasmic streaming within the cell body and the motive force of the cell
has been studied extensively in the field of cell biology for more than 50 years
(cf. [33, 34, 35]). The mechanism of streaming generation is based on the actin poly-
merization/depolymerization cycle, which switches every 30 s regulated by calcium
ions [36]. This periodic cycle controls the direction of the protoplasmic streaming,
and as a result, the whole cell shows rhythmic cell thickness changes [34]. The
flow speed of protoplasmic streaming of the Physarum plasmodium becomes up to
1 mm/s, whereas that of other organisms, such as plant and amoeba cells, are about
tens of μm/s [37]. This is one of the fastest protoplasmic streamings known so far,
and together with the periodicity of the protoplasmic streaming, the plasmodium of
Physarum polycephalum could be ideal parts of small-scale biological devices, such
as actuator and transporter.

In order to explore the possibility of using the Physarum cell as source of power,
it is important to know (1) how much force a Physarum plasmodium can generate
and (2) how the force can be steered externally. Before going to these two points, we
first discuss characteristics of the cell shape and the contraction oscillation rhythm
in the Physarum plasmodium.

2.1 Cell Shape and Oscillation Pattern

The authors have previously investigated the generation of periodic rhythm of the
cell confined in a small circular well on the agar gel [38]. When observed under
a microscope, a piece of Physarum cell just placed in the well consists of smaller
pieces of granular protoplasm, each of which can potentially become an individual
slime mold cell. These granules start contracting about 10 minutes after transplanted
and neighboring granules gradually merge together to synchronize the contraction
rhythm. They eventually fuse into one single Physarum plasmodium and show sev-
eral types of synchronized oscillation rhythms, such as bilateral shuttle streaming
of protoplasm (Fig. 1a) and clockwise/anti-clockwise rotation streaming (Fig. 1b).
What is remarkable about the oscillation regeneration in the Physarum plasmodium
is “size-invariant” behavior: Even if the cell size becomes larger (the size of well

220 J. Jones, S. Tsuda, and A. Adamatzky

becomes bigger), a whole cell fully synchronizes within a certain amount of time.
We have tested with 1.5, 3.0, 4.5, 6.0, and 7.5mm diameter wells, and in all cases
the Physarum cell fully synchronized approximately in 70 minutes [38]. In other
words, granular “swarms” can self-organize a synchronized oscillation rhythm in
a fixed time, no matter how large the cell becomes. This result suggests that the
organism is good at coordinating the internal structure to maintain itself as a single
cell. Even when the body size changes, it is able to recover the synchronization
using a distributed-computing type control.

(a) (b)

Fig. 1 Oscillation patterns of the Physarum plasmodium in a single well. (a) bilateral shuttle
oscillation (b) clockwise rotation wave. Black and white regions indicate areas where thick-
ness is increasing and decreasing, respectively.

Although a cell in the well does show oscillations that potentially can be exploited
as source of power, the single well design would not be appropriate for Physarum
engine. As we will show in the next section, given that a whole plasmodium in a
well is used to apply force to another object, a total displacement (i.e. thickness
change) of the cell will be crucial. However, in the case of single well, the total
displacement will be balanced out: For example, if a cell is showing bilateral oscil-
lation (Fig. 1a), the thickness of a half of the cell is increasing while that of the other
half is decreasing. As a result, the total displacement becomes almost zero. This fact
led us to the design of a dumb-bell shape, in which two circular wells are connected
by a narrow channel (cf. Fig. 4a). This design is originally made by Takamatsu et
al [39]. When the width of the connecting channel is 0.4 mm, anti-phase thickness
oscillation between two wells can be observed [40]. This means protoplasm of the
cell flows to and from two wells, and thus the thickness displacement in one well
will not be canceled out.

In the following section, we adopt the dumb-bell shape design and keep the cell
to take the shape by hydrophobic structures. Because it prefers wet regions to dry
ones, the plasmodium stays inside the structures and keeps the shape for a long time
(provided that the humidity for the cell is in an appropriate range). Physarum cells
used for experiments below were cultured on 1.5 % agar gel in the thermostatic
chamber (Lucky Reptile Herp Nursery II Incubator, Net Pet Shop, UK) at 26◦C and

Towards Physarum Robots 221

fed with oat flakes once or twice a day. They were starved at least for 12 hours prior
to experiments.

2.2 Force Generated by the Physarum Plasmodium

This section investigates how much force can be produced by Physarum’s contrac-
tile cell oscillation. We estimate the force by loading some weight on a plasmodium.
In particular, we placed water on one of two wells of a dumb-bell shaped plasmod-
ium (Fig. 2a). By changing the height of water, the load on the cell cen be controlled.

A dumb-bell shaped plasmodium was prepared as follows: First, small pieces of
Physarum are taken from a larger culture and set in dumb-bell shaped wells of a
thin printed circuit board (all copper coating was removed). They are then placed
on a 1.5 % agar gel and kept in a dark place at least for two hours so that the
Physarum cells fuse into one single cell. After fusion, the cell and the PCB are
clamped together with plexiglasses and a PDMS block, as illustrated in Fig. 2a. A
glass tube, which inner diameter is same as the diameter of a plasmodium well,
is glued to the top plexi glass and filled with distilled water to a certain height.
The whole setup is covered with a wet glass beaker to avoid evaporation of water
in the glass tube and placed on the three-dimensional micro-stage (Fig. 2b). The
displacement of water surface is recoded for 20 minutes by a microscope from the
size.

(a) (b)

Fig. 2 (a) A schematic illustration of plasmodial force measurement setup. MS: Microscope,
GT: Glass tube, DIW: Distilled water, GL: Glue, PP: Physarum plasmodium, PG: Plexiglass,
PCB: Printed circuit board, PDMS: Polydimethylsiloxane silicon rubber. (b) A photo of the
setup.

Figure 3a shows a result of surface displacement experiment in the case of
100 mm water height. We have tested with 40, 60, 80, and 100 mm water height
(71, 106, 141, and 177 mg in weight, respectively). In all the cases the height of
water surface periodically oscillates approximately every 100 s due to the thickness
oscillation of the plasmodium at the bottom. In many cases, water height slightly
decreased (approximately 10–40 μm) during a 20 minute experiment. This is possi-
bly because the Physarum cell slightly escaped to the side of the well not connected

222 J. Jones, S. Tsuda, and A. Adamatzky

to the water tube. The maximum displacement of water surface was estimated by
detecting peaks and bottoms of the oscillation (marked as “∗” in Figure 3a) and cal-
culated differences from a bottom to the next peak. Figure 3b summarizes the max-
imum displacement of various water heights. As the water height become higher,
the displacement decreased monotonically. By extrapolating this result, the maxi-
mum height the dumb-bell shaped Physarum plasmodium could bear with would be
140 mm, and it could lift up to approximately 250mg load.

The work by the plasmodium in the case of 100 mm water height can be calcu-
lated as W = (0.75)2×π×100×ρ×g×0.007≈ 12.1 (mJ), where ρ is the density
of water (1mg/mm3) and g is the gravity acceleration (9.8 m/s2). Assuming that the
speed of thickness change is constant, the power of the cell can be estimated as
P = W/T = 12.1/50≈ 0.24 (mW).

At the micron scale, however, one has to bear in mind that some factors, which
do not need to be considered at a macro scale, become crucial. For example, friction
becomes relatively large compared to the force generated by the cell. Thus, for the
effective use of the force, a careful attention to things like a choice of lubricant and
the design of stop valve have to be paid. Nevertheless, it is noteworthy that a tiny
cell, which weigh approximately 5 mg, can lift up a load over 36 times heavier than
its own weight.

(a) (b)

Water height Max. displacement
40 mm 20 μm
60 mm 14 μm
80 mm 10 μm

100 mm 7 μm

Fig. 3 (a) A time course of the surface displacement in the case of 100 mm water height.
First 10 min is shown. (b) A table of the maximum water displacement with different water
height. It decreases monotonically as the water height increases.

2.3 Steering Control of Physarum Engine

There are several ways to externally stimulate the Physarum’s oscillation, such as
light [41], temperature [42], and electric stimuli [43]. Among others, light stimu-
lus is the most commonly used one because it can be easily introduced or removed

Towards Physarum Robots 223

simply by switching light on and off. It is known that, when a local part of a plas-
modium is exposed to white light, the frequency of thickness oscillation at the local
part decreases [44] . Hence we adopt white light as external controller for steering
of Physarum engine.

To confirm if white light affects the oscillation rhythm of the dumb-bell shaped
cell, we conducted a following experiment: The dumb-bell shaped Physarum plas-
modium is constructed on on a 1.5 % agar gel using a transparency sheet mask
(Fig. 4a). The dumb-bell shaped hole in the mask was cut out with a 1/16” hand
punch, which makes approximately 1.5 mm diameter hole, and the connecting chan-
nel in between was cut with a scalpel under a stereo-microscope. By controlling
the humidity, the plasmodium stays inside the mask (where agar gel is exposed)
as it prefers wet regions to dry ones. The cell is placed under a microscope (Leica
Zoom 2000, Germany) and illuminated from the bottom with bandpass-filtered light
near the 600 nm wavelength (Fig. 4b). This wavelength of light does not affect the
Physarum’s oscillation activity [45]. The thickness of the cell is measured by the
light transmission through the cell, which is inversely proportional to the thickness.
The controller, an ultra bright white LED coated with a heath shrink tubing, illu-
minates only one of two wells of the plasmodium (a dotted circle in Fig. 4a). A
snapshot image of the cell is saved every 3 s in a PC for subsequent image analysis.

(a) (b)

Fig. 4 (a) A dumb-bell shaped plasmodium on a 1.5% agar gel. The black mask surrounding
the cell is made of transparency sheet. A dotted circle indicates the area exposed to white
light. The areas indicated by two solid squares are used to calculate thickness oscillations
of the cell. (b) A schematic illustration of light illumination experiment. The cell is exposed
to bandpass-filtered light from the bottom for monitoring and one of two wells is exposed
to white LED light from the top for stimulation. The cell is kept in a Petri dish to maintain
constant humidity condition.

The thickness of the cell is calculated as follows: (1) Each recorded snapshot is
converted from RGB to gray scale image. (2) Calculate a difference of images taken
at t and t −Δ t1, which gives thickness change of the Physarum plasmodium in Δ t.
We used Δ t1 = 7 in this analysis. (3) Apply a moving average filter spatially over
91×91 pixels (indicated by a solid square in Fig. 4a) and temporally over 15 images
on each well. This works as an image smoothing filter to reduce camera noise.

224 J. Jones, S. Tsuda, and A. Adamatzky

Figure 5 shows a typical reaction of the cell to white light. Before the point the
light becomes on (the first half of Fig. 5), oscillations of two wells are sychronized
in terms of amplitude and phase most of the time. However, as soon as one of the
wells is exposed to the light (blue curve), they becomes out of phase and the oscil-
lation. Light works as a negative stimulus to the cell and slows down the contractile
oscillation at a local part of a plasmodium. In fact, periods of oscillation cycle be-
comes longer in the latter half of the plot, whereas those of unexposed well (red
curve) remain same as before. Another reaction of the cell to the light is significant
change in oscillation amplitudes. That in the stimulated well decreased largely soon
after the light is turned on (indicated by horizontal dotted lines), but on the other
hand, that in the non-stimulated well increased. This is because the cell is trying to
escape from the exposed area by actively pumping the protoplasm from the stim-
ulated to non-stimulated wells. When white light is removed, the oscillation at the
stimulated well came back to the original period and oscillation amplitudes in both
wells became almost equal (data not shown). Thus, white light does slow down the
dumb-bell shaped Physarum plasmodium, and with this light stimulus, the cell can
be steered from the outside. We are going to show a stimulated vehicle driven by the
Physarum cell can be actually steered by light in the next section.

Fig. 5 A typical reaction of the Physarum plasmodium to light stimulus. Only one of two
wells is exposed to white light (blue curve). A LED light is turned on at the point indi-
cated by a downward arrow and kept on till the end of the plot. The oscillation period of
the stimulated well (blue curve) become slightly longer when the light is on, whereas that
of the unstimulated well (red curve) remained same. The oscillation amplitude significantly
decreases in the stimulated well and increases in the other well (horizontal lines).

Towards Physarum Robots 225

2.4 Vehicle Simulation Driven by Experimental Data

We assume that the power generated by a Physarum plasmodium is converted to
drive wheels of a hypothetical microscale vehicle without any energy loss. Increases
and decreases in thickness oscillations from two wells (cf. Fig. 4a) drive wheels of
a Braitenberg-like vehicles [46] illustrated in Fig. 6a. The vehicle has two wheels
driven by oscillations of a dumbbell-shaped Physarum plasmodium. It also has two
lights which illuminate two wells of the cell integrated in the vehicle in order to
steer the vehicle (described below). There are several outputs of the thickness os-
cillation that can be used to drive the wheels. For example, thickness amplitude,
oscillation frequency, and phase difference between oscillations of two wells. Here
we employ thickness amplitude to demonstrate vehicle control, i.e. the thickness
oscillation pushes a hypothetical piston and rotates a crankshaft to change the speed
of one of wheels. The wheels rotate at a constant speed and the thickness oscilla-
tions of the cell increase the speed depending on the amplitude. The motion of a
Physarum-driven vehicle can be described as (Fig. 6b):{

x(t + 1) = x(t)+ |r1|sin(θ +α)+ |r2|sin(θ −α)
y(t + 1) = y(t)+ |r1|cos(θ +α)+ |r2|cos(θ −α) (1)

where x(t) and y(t) are a position of the vehicle at time t, and r1, r2 are thickness
displacement of the cell in left and right wells in a certain period (in this case, 21 s).
α is a parameter that determines the contribution of the thickness displacement to
the change of wheel running speed. The largerα is, the more wheels are accelerated.
Hence, with larger α , vehicle’s direction of movement becomes more sensitive to
the difference of oscillation amplitudes from two wells (i.e. if ||r1|− |r2|| is large,
the vehicle turns either to the left or right).

(a) (b)

Fig. 6 (a) A schematic diagram of a vehicle driven by Physarum engine. The oscillation
amplitudes of the cell determines the wheel rotation speed of the vehicle. Light illumination
onto each well of a Phyasrum plasmodium is use to steer the vehicle. (b) The motion of
Physarum-driven simulated vehicle. Vehicle’s direction of movement can be represented as
addition of vectors (Eq. 1).

226 J. Jones, S. Tsuda, and A. Adamatzky

Figure 7 shows a trajectory of the simulated vehicle driven by experimental data.
The vehicle started from the origin (0,0) goes straight (black line) when no light
inputs are on. It turns to the left (red line) as soon as the left well of the dumbbell-
shaped cell is stimulated by light. When light is turned off, it drives straight ahead
again. This is can be explained as follows in terms of Physarum’s behavior: When
there is no stimulus to the cell, both wells oscillates with same amplitude (cf. Fig. 5).
This drives the wheels with the same speed, and thus the vehicle goes straight. On
the other hand, as described in the previous section, the oscillation amplitude in
the stimulated well significantly decreases while the light is on, whereas that in the
other well increases. This is because the cell moves out of the illuminated area and
migrates towards the non-illuminated well. This slows down the left wheel driven
by the stimulated well and accelerates the right wheel. As a result, the vehicle takes
a left turn as long as the light is on. It drives in a straight line again after the light
is turned off because oscillation amplitudes in two wells come back to nearly equal
level when light stimulation is removed.

Fig. 7 Trajectory of the simulated vehicle driven by experimental data. α = π/720 is used in
this simulation. The vehicle started from (0,0). Black line indicates the period when there is
no light illumination to wells, and red line is when a right well is illuminated by light. Periods
Triangles and circles are drawn every 150 s.

3 The Emergence of Oscillatory Transport Phenomena in a
Particle-Based Model

Due to the relatively slow time development of the Physarum plasmodium and nat-
ural variability of its ‘performance’ in terms of the chosen robotics tasks (the plas-
modium is only concerned with survival and not, after all, with satisfying externally

Towards Physarum Robots 227

applied experimental tasks), it is helpful to develop computational modelling ap-
proaches which may facilitate the study of distributed robotic control. Such a mod-
elling approach allows us to explore the emergence of complex oscillatory behaviour
from simple components and assess its application to robotics tasks.

To investigate the use of emergent oscillatory phenomena for engine-like trans-
port we employ an extension to the particle model in [47] which was shown to
generate dynamical emergent transport networks. In this approach a plasmodium is
composed of a population of mobile particles with very simple behaviours, residing
within a 2D diffusive environment. A discrete 2D lattice (where the features of the
environment arena are mapped to greyscale values in a 2D image) stores particle
positions and also the concentration of a local factor which we refer to generically
as chemoattractant. The ‘chemoattractant’ factor actually represents the hypothet-
ical flux of sol within the plasmodium. Free particle movement represents the sol
phase of the plasmodium. Particle positions represent the fixed gel structure (i.e.
global pattern) of the plasmodium. Particles act independently and iteration of the
particle population is performed randomly to avoid introducing any artifacts from
sequential ordering. Particle behaviour is divided into two distinct stages, the sen-
sory stage and the motor stage. In the sensory stage, the particles sample their local
environment using three forward biased sensors whose angle from the forwards po-
sition (the sensor angle parameter, SA), and distance (sensor offset, SO) may be
parametrically adjusted (Fig. 8a). The offset sensors represent the overlapping and
inter-twining filaments within the transport networks and plasmodium, generating
local coupling of sensory inputs and movement (Fig. 8c and d).

The SO distance is measured in pixels and a minimum distance of 3 pixels is
required for strong local coupling to occur. During the sensory stage each particle
changes its orientation to rotate (via the parameter rotation angle, RA) towards the
strongest local source of chemoattractant (Fig. 8b). After the sensory stage, each
particle executes the motor stage and attempts to move forwards in its current orien-
tation (an angle from 0-360◦) by a single pixel forwards. Each lattice site may only
store a single particle and-critically-particles deposit chemoattractant into the lattice
only in the event of a successful forwards movement (Fig. 9a). If the next chosen
site is already occupied by another particle the default (non- oscillatory) behaviour
is to abandon the move, remain in the current position, and select a new random di-
rection (Fig. 9b). Diffusion of the collective chemoattractant signal is achieved via
a simple 3x3 mean filter kernel with a damping parameter (set to 0.07) to limit the
diffusion distance of the chemoattractant.

The low level particle interactions result in complex pattern formation. The popu-
lation spontaneously forms dynamic transport networks showing complex evolution
and quasi-physical emergent properties, including closure of network lacunae, ap-
parent surface tension effects and network minimisation. An exploration of the pos-
sible patterning parameterisation was presented in [48]. Although the particle model
is able to reproduce many of the network based behaviours seen in the Physarum
plasmodium such as spontaneous network formation, shuttle streaming and network

228 J. Jones, S. Tsuda, and A. Adamatzky

(a) (b)

(c)

FL

F

FR

C Sensor Offset
Distance

(SO)

Sensor Width
(SW)

Agent
Position

(C)

Sensor
Angle
(SA)

(d)

[Sensory stage]

- Sample chemoattractant map values
- if (F > FL) && (F > FR)
 - Continue facing same direction
- Else if (F < FL) && (F < FR)
 Rotate by RA towards larger of FL and FR
- Else if (FL < FR)
 Rotate right by RA
- Else if (FR < FL)
 Rotate left by RA
- Else
 Continue facing same direction

Fig. 8 Agent particle morphology, algorithm, and aggregation types.

New cell
Unoccupied

(Oscillatory And
 Non-Oscillatory)

Occupy New Cell
Deposit Chemoattractant
Maintain Direction

New Cell
Occupied

(Non-Oscillatory)

Stay In Current Cell
Do Not Deposit Chemoattractant
Choose New Random Direction

New Cell
Occupied

(Oscillatory)

Do Not Deposit Chemoattractant
Maintain Direction:
Increase Internal Coordinates
Move When Next Cell Is Free

(a)

(b)

(c)

Fig. 9 Particle motor behaviour in non-oscillatory and oscillatory conditions

Towards Physarum Robots 229

minimisation, the default behaviour does not exhibit oscillatory phenomena and in-
ertial surging movement, as seen in the organism. This is because the default action
when a particle is blocked (i.e. when the chosen site is already occupied) is to ran-
domly select a new orientation-resulting in very fluid network evolution, resembling
the relaxation evolution of soap films, and the lipid nanotube networks seen in [13].

The oscillatory phenomena seen in the plasmodium are thought to be linked
to the spontaneous assembly / disassembly of actin- myosin and cytoskeletal fil-
ament structures within the plasmodium which generate contractile forces on the
protoplasm within the plasmodium. The resulting shifts between gel and sol phases
prevent (gel phase) and promote (sol phase) cytoplasmic streaming within the plas-
modium. To mimic this behaviour in the particle model requires only a simple
change to the motor stage. Instead of randomly selecting a new direction if a move
forward is blocked, the particle increments separate internal co- ordinates until the
nearest cell directly in front of the particle is free. When a cell becomes free, the par-
ticle occupies this new cell and deposits chemoattractant into the lattice (Fig. 9c).
The effect of this behaviour is to remove the fluidity of the default movement of
the population. The result is a surging, inertial pattern of movement, dependent on
population density (the population density specifies the initial amount of free move-
ment within the population). The strength of the inertial effect can be damped by a
parameter (pID) which sets the probability of a particle resetting its internal position
coordinates, lower values providing stronger inertial movement.

When this simple change in motor behaviour is initiated surging movements are
seen and oscillatory domains of chemoattractant flux spontaneously appear within
the virtual plasmodium showing characteristic behaviours: temporary blockages of
particles (gel phase) collapse into sudden localised movement (solation) and vice
versa. The oscillatory domains them- selves undergo complex evolution including
competition, phase changes and entrainment. We utilise these dynamics below to
investigate the possibility of generating useful patterns of regular oscillations which
may be coupled to provide motive force.

3.1 Model Setup

The emergence of oscillatory behaviour in the model corresponds to differences
in distribution of protoplasm within the plasmodium and subsequent changes in
thickness of the plasmodium. In a real Physarum plasmodium the changes in thick-
ness of the plasmodium membrane are used to provide impetus (pumping of ma-
terial through the vein network, or bulk movement of the plasmodium). There
is known to be a relationship between the spontaneous contraction of the plas-
modium and the subsequent transport of protoplasm away from that region. Thus
the region undergoing contraction becomes thinner (allowing more light to pass
through when illuminated) and regions away from the contraction become thicker
as more protoplasm in present (allowing less light to pass through). In the com-
putational model the transport of particles represents the free flux of protoplasm

230 J. Jones, S. Tsuda, and A. Adamatzky

within the material and the increase in flux (mass particle movement) is indi-
cated in the supplementary video recordings by an increase in greyscale brightness
(http://uncomp.uwe.ac.uk/jeff/robots.htm). A decrease in the bulk movement of par-
ticles represents congestion and a lack of transport and is indicated by a decrease
in greyscale brightness (since deposition of chemoattractant factor only occurs in
the event of successful forward movement). For clarity in the static images, the
greyscale images are inverted (dark areas indicate greater flux).

The particle population’s environment is a 2D lattice, represented by a digitised
image configured to represent the habitat of the experimental plasmodium. We de-
signed simple shapes in which the particle collective, which composes the virtual
material, is confined. The particle population is free to move within unconfined
areas. The shapes are composed of ‘wall’ regions where movement cannot occur,
‘vacant’ regions where movement was possible and (where relevant) ‘stimulus’ re-
gions which provide attraction stimuli, or repulsion stimuli, to the particle popula-
tion. At the start of each experiment the particle population is randomly distributed
through the vacant space in the experimental arena and all particles have random
initial orientations. A fixed population size was used (we do not discuss an adaptive
population size in this report). The total amount of free possible particle movement
is dependent on the population size as a fraction of vacant space. In these results we
use a 90% occupancy rate unless otherwise specified, i.e. 90% of all vacant areas
are occupied by particles. In all of the experiments there is an initial period where
oscillatory behaviour is not initially activated and this results in self-organised reg-
ular domains. When oscillatory motor behaviour is induced these regular domains
collapse and the emergence of small domains of regular oscillatory patterns be-
gins. Over time these domains coalesce and compete, causing entrainment of the
population into regular oscillation patterns, influenced by both the particle sensory
parameters and also by the shape of the experimental arenas.

We use the arena shape to constrain the oscillatory behaviour to ascertain the pos-
sibility of utilising the oscillatory behaviours to provide useful ‘engine-like’ output.
By this we mean that the oscillation patterns should be periodic, regular and reli-
able, in the same way that mechanical engines provide regularly and reliably timed
patterns of impetus.

3.2 Data Analysis

We sampled regular frames from the emergent chemoattractant flux patterns and
analysed the differences in particle flux by comparing the greyscale levels in differ-
ent regions of the arena. We were particularly concerned with the reliable initiation
of oscillatory behaviour and the characteristics of the behaviour (e.g. the period, the
intensity and any coupling effects).

Towards Physarum Robots 231

4 Results

We have previously shown that the particle population successfully reproduces the
behaviour of the plasmodium when confined within a circular well, resulting in the
spontaneous emergence of oscillation patterns (summarised in (Fig. 10). The type
of pattern produced depends on the sensory parameters of each particle (SA and
RA parameters) and the SO parameter which, when increased, causes a transition to
a different pattern (see [49] for more information). In the circular well the patterns
most frequently observed were rotational patterns. When the SO interaction distance
was further increased lateral oscillations were observed, followed by an annular
pattern. There appears to be a relationship between the circular confining shape of
the arena and the type of pattern produced.

Time

Space

Pattern

(a)

(b)

(c)

Fig. 10 Oscillation patterns observed in a particle model of Physarum polycephalum con-
strained within a circular well. Left: Snapshot of pattern with trajectory of space time plot
overlaid, Right: Space time plot of oscillation pattern. a) Rotational pattern, b) Bilateral pat-
tern, c) Annular pattern

We speculate that the reason for the change in pattern type (which, over time,
is also observed in the real plasmodium) is that the scale of interactions between
the oscillatory regions becomes too large for the circular well, the interactions are
constrained and a new pattern is formed which can ‘fit’ within the confines of the
well. This suggests that the intrinsic oscillations which spontaneously emerge can be

232 J. Jones, S. Tsuda, and A. Adamatzky

shaped in some way by architectural changes to the environment. To further explore
this relationship between oscillation pattern type and the environment shape we ex-
plored different methods of patterning the virtual arena in order to assess differences
in oscillation pattern type and pattern evolution.

4.1 Transport Motion in Open Ended Patterns

We patterned the environment with a simple tube shape whose ends were looped
around at the edge of the environment by invoking periodic boundary conditions for
the particles. The wall boundaries confined the population to the tube. Snapshots
and a space-time plot are shown in Fig. 11. The space time plot is recorded by sam-
pling every pixel along the width of the image at exactly halfway down the tube
section and assembling an image based upon these sampled values (pixel bright-
ness is related to chemoattractant trail concentration). After a short period where the
non-oscillatory motor condition was used (see top of space-time plot) the oscillatory
motor behaviour was initiated. Small domains representing different concentrations
of chemoattractant flux appeared (Fig. 11a) which were travelling in different direc-
tions. Over time these domains competed and became fewer in number (Fig. 11b)
until the tube was evenly divided into regular domains of high flux (regions of free
movement) and low flux (regions of obstructed movement). These domains travelled
in a single direction in a regular manner (Fig. 11c and lower section of space-time
plot).

Fig. 11 Emergence of travelling wave transport in a tube shaped environment Left: Snapshots
taken at a) 257, b) 868 and c) 3990 scheduler steps Right: Space time plot showing emergence
of regular transport

The travelling waves arising from the collective particle behaviour actually travel
in the opposite direction to the bulk particle motion. In the example shown in Fig. 12
the direction of the travelling wave (Fig. 12b, solid arrow) is right-to-left, whereas
the actual movement of the particles (Fig. 12a, dashed arrow) tends to move from

Towards Physarum Robots 233

left-to-right. Since particles can only move when a space in the lattice becomes
available the vacant spaces appear to move in the opposite direction of the particles
and the particles themselves show a greater probability of moving when a region of
relatively vacant space is near (Fig. 12c, also note that particle movement tends to
occur in the lighter regions, which are regions with more vacant space and greater
chemoattractant flux). The spaces themselves appear to move backwards because
a particle moving from its current position to occupy a vacant space subsequently
leaves a new vacant space at its previous position. Because chemoattractant is only
deposited by the particles after a successful movement, the chemoattractant flux will
be patterned by the distribution of vacant spaces and the wavefront thus moves in the
opposite direction to the particles. The bulk movement of the particles is also much
slower than the travelling waves, as indicated by Fig. 12, which shows that a single
particle takes approximately 8000 scheduler steps to traverse the width of the arena,
whereas the travelling wave crosses the arena in approximately 400 steps, a 20:1
difference (although the particle’s progress is hindered somewhat by the resistance
caused by the low numbers of vacant spaces and changes in direction on contact with
the border regions). The opposite direction of the self-organised travelling wave
with respect to particle movement is reminiscent of the characteristic backwards
propagation seen, for example, in traffic jams [50].

Fig. 12 Collective particle drift is opposite to the direction of wave propagation. a) Particle
positions and tracer particle (circled), b) Chemoattractant wave propagation, c) Space-time
plot overlaid with tracer particle position, d) Enlarged portion showing tracer particle move-
ment (horizontal movement) tends to occur in vacant (high chemoattractant flux) areas.

Further analysis of the directional alignment of the particles revealed some un-
expected properties of the particle population in relation to the travelling wave. At

234 J. Jones, S. Tsuda, and A. Adamatzky

the start of an experiment the distribution and alignment of the particle population
is randomly chosen (Fig. 13a) and the ratio of particles facing left and those facing
right is typically equal at 50:50 (we consider particle alignment as being ‘left facing’
or ‘right facing’, depending on whether their actual orientation angle falls into either
category). When the travelling wave has emerged and stabilised the distribution of
the particles is such that they are grouped in regions (Fig. 13b) which are similar
- but slightly offset - to the regions of high and low chemoattractant concentration
seen in the travelling wave (Fig. 13c). The particles in each region share the same
general alignment and the different regions alternate with respect to the alignment
of the particles within them (i.e. regions are LEFT, RIGHT, LEFT, RIGHT and
so on). The final alignment ratio at the end of an experiment was typically 53:47
(rounded average of ratios over ten runs), with the majority of particles facing in
the direction of the travelling wave. The particles change their directional alignment
at the same speed as the oncoming travelling wave. The actual movement of the
particles, however, is much slower and in the opposite direction to the wave.

Fig. 13 Collective particle alignment and the travelling wave. a) Initial random distribution
of particles and their alignments, b) When the stable travelling wave occurs particles are
distributed into groups sharing similar directional alignment: lighter regions are oriented to
face right and darker regions are oriented leftwards, c) Chemoattractant flux in travelling
wave moving to the right.

By patterning the environment to remove all wall boundaries and ensure periodic
boundary conditions the emergent oscillatory patterns self-organised into travelling
waves (Fig. 14). However there was a much greater length of time needed for the
competition between the wave patterns to complete and form synchronous travelling
waves. The increase in time before synchronous waves emerge can be explained by

Towards Physarum Robots 235

the greater initial freedom of movement afforded by the lack of movement con-
straints from the environment.

Fig. 14 Helical transport in non-patterned environment with periodic boundary conditions.
Left: Snapshots of competition and entrainment of wavefronts with final helical-type move-
ment arrowed, Right: Space-time plot showing long period before regular transport occurs.

By removing the movement at the boundaries and instead patterning the vacant
space into looped structures rotary motion of the travelling waves was achieved
(Fig. 15). The competition period before synchronisation was relatively brief
(Fig. 15a, space-time plot), again because the environmental barriers reduce initial
freedom of movement. The looped structures also enabled travelling wave motion
even when the environment added non-circular elements, and more tortuous paths
(Fig. 15 b and c). The successful initiation of rotary motion suggests the possibility
of generating reliable conveyor type transport.

By combining two circular patterns and introducing a region which overlapped
and exposed to two separate wavefronts it was possible to achieve entrainment, after
5000 scheduler steps, of the pulses from one rotary ‘motor’ to another, mimicking
the transmission and synchronisation of movement to another ring by a fluidic cou-
pling effect (Fig. 16). Like a conventional gear transmission, the rotation of two
facing rings was in opposite directions, however, unlike conventional gear trains,
the ‘teeth’ (wavefront peaks) did not overlap.

4.2 Transport in Closed Path Patterns

The transport motion in open ended looped patterns stabilises because the bulk par-
ticle drift eventually synchronises with the travelling waves. The distribution of the
particle population becomes relatively evenly distributed within the path, punctu-
ated by regularly spaced changes of particle occupation density. When closed path
patterns were used, however, the uniform distribution cannot occur because sep-
arate ends of the path cannot communicate the transport of particles. Thus, over
time, the drift of particles results in a tendency for the particle population density to
become greater at one end of the chamber. Once there is an imbalance at one end the
number of vacant spaces at that end falls and the particles are then attracted to the

236 J. Jones, S. Tsuda, and A. Adamatzky

Fig. 15 Emergence of rotary motion oscillations. a) Emergence of rotary motion and visu-
alisation of space-time plot showing regular motor pulses. Space time plot was created by
recording 360 points inside the vacant track of the circle, b) Tracked rotary movement from a
combination of circular and straight regions, c) Conveyor type motion from a more tortuous
looped structure.

Fig. 16 Emergence of gear-like coupling in an overlapping two rotor pattern. Snapshots taken
at 20, 121, 981 and 6997 scheduler steps.

opposite side of the chamber where more vacant areas exist. Short term oscillatory
transport and competition within the chamber still occurs (Fig. 17a and b), as with
looped patterns, but this is mediated by a second order of oscillations, which occurs
over a much longer timescale since it is caused by the slower bulk drift of particles
(Fig. 17c). The effect is regular changes in direction of transport direction and this
suggests a possible mechanism of how changes in direction in open-ended looped
systems could be achieved - by temporarily introducing a blockage in a looped path
until a change in direction occurred.

Another method to confine the collective to a region is by using strong sources
of attractant to effectively ‘pin down’ the collective in place instead of confining
it physically within a region by its boundaries. Attractant sources are represented
by projecting values at every scheduler step into the chemoattractant diffusion field.
These sources diffuse and attract the individual particles of the collective. By spacing
the placement of attractants the collective is retained in place in a sheet-like fashion
by the attraction of the particles to the sources and the mutual attraction of particles
to their own deposition of chemoattractant into the diffusion field (Fig. 18a).

Towards Physarum Robots 237

Fig. 17 Complex second-order oscillations caused by bulk drift in closed path environments.
a) Pulsatile oscillations at different sides of a closed chamber, b) Initial phase of space-time
plot showing initiation of oscillatory behaviour and competition between oscillatory domains,
c) long term (20,000 steps) space-time plot showing second order oscillations as bulk particle
positions oscillate from one side of the chamber to the other. Dark regions at either side of
plot indicate periods of second-order oscillations.

Fig. 18 Confining the collective by attractant projection and emergence of travelling wave. a)
Regularly spaced projection of chemoattractant sources (top) confines position of collective
(bottom), b) When oscillatory motor behaviour is activated a travelling wave emerges across
the confined collective, c) Space-time plot of the emergence of travelling waves in a pinned
collective.

238 J. Jones, S. Tsuda, and A. Adamatzky

When oscillatory motor behaviour is activated travelling waves of chemoattrac-
tant movement emerge in different directions (Fig. 18b). These waves compete for
a short time before one direction predominates (Fig. 18c).

4.3 Amoeboid Movement in an Unconstrained Collective

The previous examples of collective transport consider the particle collective as a
sheet of virtual material upon which oscillatory phenomena are spontaneously gen-
erated. The material is then patterned to control the movement of the travelling os-
cillation waves for transport purposes (pumps, motors, gears, conveyors etc.). This
corresponds to the behaviour of the Physarum plasmodium as a large sheet-like
structure which, via adhesion to its anchoring substrate, transports material within
the plasmodium using hydrostatic pressure generated by the spontaneous oscillation
rhythms of its actin-myosin network. In addition to these general transportation phe-
nomena, however, Physarum also has the ability to migrate towards a nutrient source
[51], away from a hazardous source [44], and adapt its gross body plan to a complex
environment [52]. Small Physarum cultures can even migrate the entire plasmodium
away from unfavourable conditions in certain circumstances such as bacterial con-
tamination. Furthermore, the plasmodium is also famous for its ability to survive
physical damage - pieces of plasmodium excised can survive independently and in-
dividual pieces may fuse to form a single organism. To extend the vehicle analogy,
Physarum not only represents the internal mechanicals (motive force mechanism,
transmission coupling), but also the moving vehicle itself - and a vehicle which can
survive the removal of parts, the introduction of new foreign parts and the repair of
damaged parts.

We set out to explore the behaviour of an unconstrained small particle collec-
tive to assess its behaviour when compared to an equally small and independent
plasmodium fragment. Rather than be considered as a rigid sheet-like material,
the smaller collective may be considered as a generic amorphous ‘blob’ of virtual
material. It is known that a smaller collective, without using the oscillatory motor
behaviour condition, will condense into a uniform circular shape as the initial trans-
port network condenses (Fig. 19a). The non-oscillatory blob shows regular vacancy
domains (dark areas) and the fluid particle motion afforded by the non-oscillatory
motor condition ensures that the blob is cohesive and takes a minimal shape. The
non-oscillatory blob is also resilient to external perturbation. When excited by an
externally applied source of chemoattractant (Fig. 19a, mouse position in fourth im-
age), the deformation of the collective induced by the stimulus as it is attracted to
the stimuli is repaired when the stimulus is removed, the collective returning to its
minimal shape.

When oscillatory motor behaviour is initialised the regular domains collapse as
the particle motion becomes less fluid (Fig. 19b) and oscillations travel through the
collective. Because the small collective is not constrained by any externally applied

Towards Physarum Robots 239

pattern the oscillations distort the shape of the collective. When the pID parameter is
further reduced to 0.01 there is even greater restriction on the fluidity of individual
particle movement and the oscillations become stronger and distort the collective’s
boundary significantly (Fig. 19c). The large shift of a mass of particles causes the
collective to move across its environment. The cohesion of the collective is main-
tained but other SA/RA parameter settings, combined with lower sensor interaction
(SO) distance, can result in the fragmentation of the collective (see supplementary
material for examples of oscillation patterns using different SA/RA combinations).
There is significant interplay between the pattern of oscillatory activity within the
collective and the global shape of the collective, as is the case with the real plasmod-
ium [32]. The oscillation patterns are determined - in part - by the size and shape
of the collective. These oscillations typically travel in waves traversing the collec-
tive. The travelling waves (which are essentially differences of chemoattractant flux)
cause changes in particle flow within the collective which, in turn, causes a change
in shape of the collective. The changed shape of the collective thus has a repeated
effect on subsequent oscillation patterns and the collective shape.

Fig. 19 Initiation of oscillatory behaviour and amoeboid movement in unconstrained collec-
tive. a) Condensation of blob material in non-oscillatory behaviour shows vacancy domains
and resilience to deformation, b) Initial non-oscillatory collective with regular vacancy do-
mains (left) and onset of oscillatory behaviour at 1950, 2039, 2057, 2086 and 2122 scheduler
steps. 9380 particles, SA90, RA45, SO15, pID 0.05. All other parameters as in (a), c) Reduc-
tion of pID to 0.01 gives stronger oscillations and amoeboid movement at 4648, 4684. 4720,
4768 and 4836 scheduler steps. All other parameters as in (a).

240 J. Jones, S. Tsuda, and A. Adamatzky

4.4 Persistent Movement in a Small Blob Fragment

The amoeboid movement seen in Fig. 19 occurs because the oscillation waves distort
the boundary of the collective whilst it is still able to maintain a cohesive whole.
Because the population maintains its cohesion, any distortion of the boundary on
one side must result in a shift in population distribution from the opposite side (since
the collective is non-compressible and occupies a fixed area). The diameter of the
collective (a function of the number of pixel sized particles comprising it) must be
large enough to for oscillations to emerge and to confine an oscillation pattern within
it.

Fig. 20 Persistent forward movement of blob fragments in small collectives. a) Non-
oscillatory condition, initiation of oscillatory behaviour and (final 3 images) self perpetuating
transport of blob fragment. Chemoattractant flux concentration is greatest at the front of the
dome shape, b) Particle composition of the moving blob fragment showing the persistent
shape despite repeated turnover of component parts. Population size 900 particles, SA90,
RA45, SO9, pID 0.001.

When the collective is comprised of only a relatively small number of particles,
the distortion of the boundary forms an approximately semi-circular domed shape
and the small number of particles ensures that the collective cannot maintain a fully
circular shape. However the persistence of forward movement generated by the os-
cillatory motor behaviour at low pID values causes the dome shape itself to be main-
tained over time, and the small blob fragment is able to move forwards (Fig. 20a).
Movement of the fragment is relatively smooth and different from the pulsatile mo-
tion observed in larger collectives. Particles move towards the front of the domed
profile and then, over time, move to the side (Fig. 20b). Particles at the sides of
the fragment ultimately fall behind only to re-enter the dome at the centre. Higher
pID values result in more frequent changes of direction of the fragment as the dome
shaped front profile cannot be maintained. If the population size is increased, the

Towards Physarum Robots 241

single sided dome shape cannot be maintained and the resultant motion becomes
pulsatile and chaotic.

(a) (b)

Fig. 21 Examples of plasmodiual blobs: (a) self-propelled and (b) stimulated by food. See
details in [53].

The model matches biological reality pretty well. Examples of blob fragments
recorded in experiments with living plasmodium are provided in Fig. 21. A self-
propelled, i.e. without attractive or repelling control stimuli, motion of blob is shown
in Fig. 21a. A blob occupying source of food (egg white in this particular example)
is shown in Fig. 21b.

4.5 External Influence of Collective Movement - Attraction and
Repulsion

Movement of the Physarum plasmodium is strongly affected by local environmen-
tal conditions. Attractant sources (such as increasing temperature gradients and
chemoattractant nutrients) cause the plasmodium to move and grow towards the
attractants whereas repulsive sources (salts, dry regions) cause the plasmodium to
try and avoid such regions. The plasmodium is able to integrate many separate lo-
calised inputs to compute its response to the environment. One method in which
this is achieved is by the modulation of local oscillation patterns in response to at-
tractants or hazards - attractants tend to increase localised oscillation strength and
hazards decrease oscillation strength. We set out to see if a localised response to
external influences could be used to govern the collective movement of the particle
population.

242 J. Jones, S. Tsuda, and A. Adamatzky

Fig. 22 Guiding plasmodium by a series of food sources, oat flakes. The plasmodium is
inoculated in north-most oat flake and guided southward. Experimental photo. See details
in [53].

Attractant sources were previously as a method to confine the collective to a re-
gion by pinning it down. By externally presenting an attractant source (effectively a
nutrient source) to a cohesive blob of virtual material (Fig. 23a) we found that the
presentation of the source resulted in diffusion from the source (Fig. 23b). This is
supported by experimental evidences, see e.g. Fig. 22: one can guide a plasmod-
ium along almost any non-intersecting trajectory by arranging point-wise sources of
attractants.

When the diffusion reached the sensors of the closest particles at the front of the
collective it provoked movement towards the source. A pseudopod-like extension of
the border region emerged and extended towards the source (Fig. 23c), ultimately
engulfing it. Travelling waves spontaneously emerged within the collective which
were directed at the source, caused the collective to shift its position towards the

Towards Physarum Robots 243

source (Fig. 23d). Consumption of the source was simulated by simply decrement-
ing the value projected to the diffusion field when the source was covered by a par-
ticle. When the source was ‘consumed’ by the population, the collective regained its
previous approximately circular shape.

Fig. 23 External control of amoeboid movement by attraction. a) A persistent source of
chemoattractant is placed into the diffusion field which provokes the extension of the col-
lective. The collective engulfs the source by moving via travelling waves towards the source.
When the source is exhausted the collective re-adopts it original approximately circular shape,
b) Schematic illustration of attraction of the collective by the nutrient source, c) Migration of
leading particles towards the source, d) Emergence of travelling waves pulling the collective
to engulf the source.

To approximate the repulsion of the collective to hazardous sources such as the
simulated response to irradiation by visible light we added a condition to the sen-
sory stage of the algorithm to the effect that if any particles of the collective were in
a region exposed to ‘light’ (a defined area within the arena), those particles would
have their sensitivity to chemoattractant diminished whilst they remained in this
region (this achieved by multiplying the sampled sensor values with a weighting
factor less than 1, lower values generating a stronger response to irradiation). The
effect of exposing regions of the collective to simulated light damage was that the
collective immediately started to move away from the irradiated region (Fig. 24a).
Specifically, oscillation waves moved from the irradiated region towards the unex-
posed regions. The shift of particles from the irradiated region eventually moved the
collective away from the stimulus. The cause of movement away from the light can
be found at the interface between irradiated and unexposed areas. Before irradiation
(Fig. 24a) all regions of the collective are equally attractive to the particles (subject

244 J. Jones, S. Tsuda, and A. Adamatzky

Fig. 24 Avoidance of simulated light irradiation by particle collective. a) Area within dashed
box is stimulated with simulated light irradiation. Particle collective oscillates sending trav-
elling waves towards the region which is unexposed, moving the collective away from the
irradiated region, b) Schematic illustration of condition before irradiation - all particles sense
equal concentration of chemoattractant, c) Irradiated areas (top) are perceived as weaker con-
centration, d) Particles at the irradiation interface are more attracted to unexposed areas.
Migration across interface causes chemoattractant deposition, causing further attraction to
region and vacant space.

to fluctuations caused by discrepancies in particle movement and intrinsic oscilla-
tions within the collective). There is a strong coupling between the particles in the
collective caused by the offset sensor distance. Some of the particles at the interface
of the irradiated region will receive input from the unexposed region and will be
attracted to that area because the chemoattractant concentration in unexposed ar-
eas is perceived as greater due to the damping in irradiated regions (Fig. 24a). The
movement of particles near the interface towards unexposed regions causes both
new vacant spaces (Fig. 24a) and also an increase in chemoattractant concentration
(because only mobile particles deposit chemoattractant). This results in a further in-
creased attraction to the interface region, until eventually the entire collective has
migrated from the irradiated region.

A range of repulsive fields, applicable to control of Physarum polycephalum, is
discussed in [53]. Light and salt are the simplest physical meanings of implementing
repulsive control. And example of splitting plasmodial blob with a grain of potas-
sium chloride is shown in Fig. 25. Initially the plasmodium-blob travels north-east.
When approaching salt crystal the blob experience repelling forces and self-divides
into two blobs – one travels north-west-west, another south-east [53].

4.6 Morphological Adaptation of the Collective

The previous results demonstrated that the collective changes its shape during self-
oscillatory behaviour and also in response to simulated attractants and hazards. The
relatively amorphous – typically variations of circular shaped patterns – collective
retains its shape due to the cohesion of the individual particles making up the popu-
lation. When the morphology of the collective is disturbed by its movement towards,

Towards Physarum Robots 245

Fig. 25 Splitting plasmodial blob with a grain of potassium chloride. Location of salt crystal
is shown by white disc. See details in [53].

or away from, externally applied stimuli it can reform the original shape when the
stimulus is removed. An adaptive morphology is a very desirable property in robotic
devices since it imbues the robot with great flexibility of size and movement, en-
abling it to traverse environments which traditionally are difficult to navigate (for
example narrow spaces, gratings etc.). This feature is only possible because the
properties of the movement and guidance of the collective are distributed through-
out the collective and not located in fixed sized and inflexible units as is the case
with conventional robotic systems. This is also the case with the Physarum plas-
modium which adapts its shape and growth patterns in response to its environment.
One of the most remarkable properties of the Physarum plasmodium is the ability
to survive external damage beyond simple attraction and repulsion. A piece of plas-
modium excised from the growing tip can survive, and indeed continue to move and
grow as an independent entity. Furthermore two independent plasmodia can fuse to
form a single plasmodium when placed in close proximity. These phenomena are
not only desirable from a robotics perspective in terms of resilience and damage re-
pair, but offer new and as yet little explored opportunities in robotic movement and
control.

We set out to find if the particle collective could also replicate these highly de-
sirable features as seen in the real plasmodium. We took a large single oscillating
collective (5000 particles) and applied a narrow band of hazardous simulated light
irradiation through its centre (Fig. 26a, dashed box represents irradiated area). Par-
ticles immediately began to surge away from the irradiated region on both sides and
the collective narrowed in diameter and became further ‘pinched’ until the collective

246 J. Jones, S. Tsuda, and A. Adamatzky

was cleaved into two independently controllable ‘blobs’. The cleavage mechanism
can be applied in different ways. For example both resulting blobs can be of equal
size and have similar oscillatory properties. Alternately it is possible to cleave the
collective in such a way to have one large blob and one smaller - recall that a blob
which is small enough will be able to move spontaneously in a persistent direction.
It is possible to guide each blob independently using either a ‘pulling’ mechanism
(externally applied attractants) or a ‘pushing’ mechanism (simulated irradiation). In
Fig. 26b we guide the lower right blob (arrowed) towards the larger blob by pushing
it from its opposite side with simulated irradiated light. As the blobs become closer
(specifically, to a separation distance which is sufficient for the border particles in
each blob to sense the chemoattractant flux in the other blob) the closest border re-
gions of each blob surge towards each other and a single larger collective is formed
by the fusion.

Fig. 26 Controlling blob morphology by splitting and fusion. a) A blob of aggregate particles
may be split by applying simulated light irradiation (dashed box region), causing a disruption
of flux in the dashed region. The single blob separates into two smaller blobs, each capable of
individual oscillation and external control, b) Fusion of two independent particle aggregates.
The blob on the lower right is guided diagonally upwards in the direction of the arrow towards
the larger blob. The two independent blobs fuse forming a single aggregate.

As an example of the robotic flexibility endowed by the adaptive morphology
of the collective, and the guidance mechanisms enabled by its external control, we
show in Fig. 27 how a blob can be guided externally (in this case a repulsive ‘push-
ing’ by simulated irradiation) in order to traverse a path through a series of obstacles
which are much narrower than the diameter of the collective itself. The blob auto-
matically separates its structure in response to the different obstacles and reforms
its shape by mutual attraction and cohesion of the particles. No fine control of the
individual components, nor complex predeterminism of path choice, is necessary -
the collective is guided by simple avoidance of the simulated irradiation (the irradi-
ation location is not shown, but follows the previous examples of simply exposing
the rearward part of the collective to push it forwards). When clear of the obstacles,
the original circular shape is reformed. If the blob is returned backwards through the
obstacle path again the path chosen can be somewhat different to the original path
with the same result.

Towards Physarum Robots 247

Fig. 27 Utilising the adaptive morphology of the collective. A blob is ’pushed’ by application
of external light irradiation (not shown) through the path of obstacles whose width is narrower
than the blob itself (left to right).

5 Conclusion and Discussion

We have examined the problem of generating and controlling motive forces at very
small scales using the true slime mould Physarum polycephalum as a prototype
mechanism. Physarum is attractive because it satisfies many physical and computa-
tional properties which are desirable in robotics applications (self-oscillatory, simple
components, distributed sensory and motor control, integration of multiple sensory
stimuli, amorphous and adaptive shape, amenable to external influence, resilience to
damage, self repair). Using the organism itself we have demonstrated and measured
its ability to lift and pump material using its intrinsic oscillations and protoplasmic
streaming. We also investigated mechanisms by which the pumping and transport
behaviour may be externally influenced and inhibited, using irradiation stimuli, so
that it may be used as a prototype steering mechanism. We used actual experimental
data of the bilateral output from a dumbbell shaped plasmodium to drive a model
mechanism, a Braitenberg-type vehicle and used the irradiation stimulus to act as a
steering force.

Physarum can in many ways be regarded as a living example of a so-called ‘smart
material’ because of the way in which it combines robotic movement and control
functions. Perhaps the most interesting question about the organism is how can such
complex behaviour is achieved by the interactions between such simple component
parts? An answer to this question may provide insights into the development of
non-living smart materials which have all of the advantages demonstrated by the
Physarum plasmodium, but without some of its limitations. The limitations of the
plasmodium itself include its relatively slow speed, its fragility as a living organism
and its unpredictability, since the plasmodium is concerned only with survival and
not the artificially applied goals of the experimenter.

We sought to investigate this question of the emergent complexity of Physarum
by attempting to approximate the complex oscillatory behaviour in a particle-based
computational model. Because of the simplicity of the plasmodium’s components
and structure it is clear that any search for a ’secret source’ of its complexity would
be fruitless. Instead we set about answering the question posed in reverse: rather
than try to find out how the organism produces such complex behaviour from simple

248 J. Jones, S. Tsuda, and A. Adamatzky

parts, is it possible to artificially generate similarly complex behaviour from simple
parts and interactions? We utilised a previous particle model of emergent transport
networks where a collective of simple particles with identical behaviour was used to
construct and minimise synthetic and emergent transport networks, and modified its
motor algorithm in a very simple way, so that instead of smooth network flow, we
obtained a more resistant and interrupted flow of particles. The addition of resistance
to particle flux was sufficient to generate complex oscillatory dynamics similar to
those observed in the Physarum plasmodium.

By patterning a densely packed particle population into different shapes we were
able to generate reliable and regular oscillatory movement as emergent travelling
waves which were fashioned into rotary, reciprocal, helical, and coupled transport
mechanisms. The waves, consisting of peaks and troughs of simulated chemoat-
tractant flux, were found to travel at opposite directions, and with much greater
velocity, than the underlying particle motion which generated the waves. Smaller
unconstrained and isolated collectives resulted in cohesive ‘blob-like’ patches of
virtual material which exhibited spontaneous oscillations, allowing an amoeboid
movement of the collective as the particle population reorganised itself in response
to the internal oscillations. External control of the blob-like patches was effected
by stimulating the collective with attractants (‘pulling’ the collective) and repul-
sion (‘pushing’ by simulated light irradiation). Very small populations resulted in
spontaneous and persistent non-amoeboid forward motion. We were also able to re-
produce the resilience of the Physarum plasmodium to damage by cleaving the col-
lective into two separate and independent blobs and fusing two independent blobs
to form a single functional blob. Finally the adaptive morphology of the collective
was demonstrated by guiding the collective through an obstacle field narrower than
the diameter of the collective itself.

The results presented in this chapter demonstrate how very simple and local low-
level interactions in simple materials (real and virtual) can generate complex and
emergent behaviour which appear to transcend the capabilities of the simple matter
of which they are composed. It has also been shown that the emergent behaviours
are amenable to external influence by the presentation of attraction or repulsion
stimuli (we hesitate to use the word control in living systems, but this may be appli-
cable in synthetic systems). Of course there is nothing magical or special about the
properties of these materials; the complexity emerges merely from their interactions.
This complex behaviour is harnessed effortlessly by organisms such as Physarum as
part of a parsimonious survival strategy, enabling their persistence in unpredictable,
changeable and hazardous environmental conditions. By understanding the genera-
tive mechanisms underlying the complex behaviour it will be possible, we believe,
to incorporate these features within physical materials for small scale robotic de-
vices. By utilising the robotic material itself for distributed computation, transport
and movement it will be possible to reduce the total number of component parts and
also reduce the number of different types of components, thus further simplifying
the production of the devices.

Towards Physarum Robots 249

Acknowledgements. The work was partially supported by the Leverhulme Trust research
grant F/00577/1 “Mould intelligence: biological amorphous robots”. Experiments in Sec-
tion 2.2 was conducted in Prof Hywel Morgan’s lab at University of Southampton as a part of
the project supported by the Life Sciences Interfaces Forum (Project manager: Dr Klaus-Peter
Zauner).

References

[1] Fearing, R.S.: Survey of sticking effects for micro parts handling. In: Proceedings
IEEE/RSJ International Conference on Intelligent Robots and Systems 1995 Human
Robot Interaction and Cooperative Robots, vol. 2, pp. 212–217. IEEE, Los Alamitos
(2002)

[2] Ai, B.Q., Xie, H.Z., Wen, D.H., Liu, X.M., Liu, L.G.: Heat flow and efficiency in a
microscopic engine. The European Physical Journal B 48(1), 101–106 (2005)

[3] Sher, I., Levinzon-Sher, D., Sher, E.: Miniaturization limitations of HCCI internal com-
bustion engines. Applied Thermal Engineering 29(2-3), 400–411 (2009)

[4] Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., Bell, D., Nelson, B.J.: Artificial bac-
terial flagella: Fabrication and magnetic control. Applied Physics Letters 94(6), 064107
(2009)

[5] Dreyfus, R., Baudry, J., Roper, M.L., Fermigier, M., Stone, H.A., Bibette, J.: Micro-
scopic artificial swimmers. Nature 437(7060), 862–865 (2005)

[6] den Toonder, J., Bos, F., Broer, D., Filippini, L., Gillies, M., de Goede, J., Mol, T.,
Reijme, M., Talen, W., Wilderbeek, H., et al.: Artificial cilia for active micro-fluidic
mixing. Lab Chip 8(4), 533–541 (2008)

[7] Suh, J.W., Darling, R.B., Bohringer, K.F., Donald, B.R., Baltes, H., Kovacs, G.T.: Fully
programmable MEMS ciliary actuator arrays for micromanipulation tasks. In: Proceed-
ings IEEE International Conference on Robotics and Automation, ICRA 2000, vol. 2,
pp. 1101–1108. IEEE, Los Alamitos (2002)

[8] Trimmer, B.A., Takesian, A.E., Sweet, B.M., Rogers, C.B., Hake, D.C., Rogers, D.J.:
Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots.
In: 7th International Symposium on Technology and the Mine Problem. Citeseer (2006)

[9] Saga, N., Nakamura, T.: Development of a peristaltic crawling robot using magnetic
fluid on the basis of the locomotion mechanism of the earthworm. Smart Materials and
Structures 13, 566 (2004)

[10] Umedachi, T., Kitamura, T., Takeda, K., Nakagaki, T., Kobayashi, R., Ishiguro, A.: A
Modular Robot Driven by Protoplasmic Streaming. Distributed Autonomous Robotic
Systems 8, 193–202 (2009)

[11] Kubea, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and
autonomous systems 30, 85–101 (2000)

[12] Zhang, S.: Fabrication of novel biomaterials through molecular self-assembly. Nature
biotechnology 21(10), 1171–1178 (2003)

[13] Lobovkina, T., Dommersnes, P.G., Tiourine, S., Joanny, J.F., Orwar, O.: Shape opti-
mization in lipid nanotube networks. The European Physical Journal E: Soft Matter and
Biological Physics 26(3), 295–300 (2008)

[14] Lobovkina, T., Gozen, I., Erkan, Y., Olofsson, J., Weber, S.G., Orwar, O.: Protrusive
growth and periodic contractile motion in surface-adhered vesicles induced by ca2+-
gradients. Soft Matter 6(2), 268–272 (2010)

250 J. Jones, S. Tsuda, and A. Adamatzky

[15] Lagzi, I., Soh, S., Wesson, P.J., Browne, K.P., Grzybowski, B.A.: Maze solv-
ing by chemotactic droplets. Journal of the American Chemical Society (2010),
doi:10.1021/ja9076793

[16] Dillon, R.H., Fauci, L.J., Omoto, C., Yang, X.: Fluid dynamic models of flagellar and
ciliary beating. Annals of the New York Academy of Sciences (Reproductive Biome-
chanics) 1101, 494–505 (2007)

[17] Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots:
a review. Neural Networks 21(4), 642–653 (2008)

[18] Adamatzky, A., Arena, P., Basile, A., Carmona-Galan, R., de Lacy Costello, B., Fortuna,
L., Frasca, M., Rodriguez-Vazquez, A.: Reaction-diffusion navigation robot control:
from chemical to vlsi analogic processors. IEEE Transactions on Circuits and Systems
I: Regular Papers [see also IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications] 51(5), 926–938 (2004)

[19] Adamatzky, A., de Lacy Costello, B., Skachek, S., Melhuish, C.: Manipulating objects
with chemical waves: Open loop case of experimental belousov-zhabotinsky medium
coupled with simulated actuator array. Physics Letters A 350(3-4), 201–209 (2006)

[20] Maeda, S., Hara, Y., Sakai, T., Yoshida, R., Hashimoto, S.: Self-Walking Gel. Advanced
Materials 19(21), 3480–3484 (2007)

[21] Adamatzky, A., De Lacy Costello, B., Shirakawa, T.: Universal computation with lim-
ited resources: Belousov-zhabotinsky and physarum computers. International Journal
of Bifurcation and Chaos (2008) (in press)

[22] Nakagaki, T. (ed.): Int. Journal of Unconventional Comput. Special Issue: The Birth of
Physarum Computing. Old City Publishing (2010)

[23] Adamatzky, A.: Developing proximity graphs by physarum polycephalum: Does the
plasmodium follow toussaint hierarchy? Parallel Process. Lett. 19, 105–127 (2008)

[24] Shirakawa, T., Gunji, Y.P.: Computation of Voronoi diagram and collision-free path
using the Plasmodium of Physarum polycephalum. Int. J. Unconventional Comput-
ing 6(2), 79–88 (2010)

[25] Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of
voronoi diagram and delaunay triangulation by physarum polycephalum. International
Journal of Bifurcation and Chaos 19(9), 3109–3117 (2009)

[26] Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: A biologically inspired
method of road-network navigation. Physica A: Statistical Mechanics and its Appli-
cations 363(1), 115–119 (2006)

[27] Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K.,
Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design.
Science 327(5964), 439–442 (2010)

[28] Adamatzky, A., Jones, J.: Road planning with slime mould: If physarum built motor-
ways it would route m6/m74 through newcastle. International Journal of Bifurcation
and Chaos (2010) (in press)

[29] Adamatzky, A.: Physarum machine: Implementation of a kolmogorov-uspensky ma-
chine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)

[30] Adamatzky, A., Jones, J.: Towards Physarum robots: computing and manipulating on
water surface. Journal of Bionic Engineering 5(4), 348–357 (2008)

[31] Tsuda, S., Zauner, K.-P., Gunji, Y.-P.: Robot control with biological cells. In: Proceed-
ings of the Sixth Int. Workshop on Information Processing in Cells and Tissues, St.
William’s College, York, August 30–September 1, pp. 202–216 (2005)

[32] Nakagaki, T., Yamada, H., Ueda, T.: Interaction between cell shape and contraction
pattern in the Physarum plasmodium. Biophysical Chemistry 84(3), 195–204 (2000)

Towards Physarum Robots 251

[33] Allen, P.J., Price, W.H.: The relation between respiration and protoplasmic flow in
the slime mold, Physarum polycephalum. American Journal of Botany 37(5), 393–402
(1950)

[34] Kamiya, N.: The protoplasmic flow in the myxomycete plasmodium as revealed by a
volumetric analysis. Protoplasma 39(3), 344–357 (1950)

[35] Gotoh, K., Kuroda, K.: Motive force of cytoplasmic streaming during plasmodial mi-
tosis of physarum polycephalum. Cell Motility and the Cytoskeleton 2(2), 173–181
(1982)

[36] Smith, D.A., Saldana, R.: Model of the Ca2+ oscillator for shuttle streaming in
Physarum polycephalum. Biophysical journal 61(2), 368–380 (1992)

[37] Kamiya, N., Kuroda, K.: Studies on the velocity distribution of the protoplasmic stream-
ing in the myxomycete plasmodium. Protoplasma 49(1), 1–4 (1958)

[38] Tsuda, S., Jones, J.: The emergence of synchronization in physarum polycephalum and
its particle approximation. Biosystems (2010) (in press)

[39] Takamatsu, A., Fujii, T.: Construction of a living coupled oscillator system of plas-
modial slime mold by a microfabricated structure. Sensors Update 10(1), 33–46 (2002)

[40] Takamatsu, A., Fujii, T., Endo, I.: Control of interaction strength in a network of the
true slime mold by a microfabricated structure. BioSystems 55, 33–38 (2000)

[41] Häder, D.-P., Schreckenbach, T.: Phototactic Orientation in Plasmodia of the Acellular
Slime Mold, Physarum polycephalum. Cell 25(1), 55–61 (1984)

[42] Wolf, R., Niemuth, J., Sauer, H.: Thermotaxis and protoplasmic oscillations in
Physarum plasmodia analysed in a novel device generating stable linear temperature
gradients. Protoplasma 197(1-2), 121–131 (1997)

[43] Anderson, J.D.: Galvanotaxis of slime mold. J. Gen. Physiol. 35(5), 1–1 (1951)
[44] Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance

by oscillatory irradiation in the Physarum plasmodium. Biophysical Chemistry 82, 23–
28 (1999)

[45] Nakagaki, T., Uemura, S., Kakiuchi, Y., Ueda, T.: Action spectrum for sporulation and
photoavoidance in the plasmodium of Physarum polycephalum, as modified differen-
tially by temperature and starvation. Photochem. Photobiol. 64(5), 859–862 (1996)

[46] Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge
(1984)

[47] Jones, J.: The emergence and dynamical evolution of complex transport networks from
simple low-level behaviours. International Journal of Unconventional Computing 6(2),
125–144 (2010)

[48] Jones, J.: Characteristics of pattern formation and evolution in approximations of
physarum transport networks. Artificial Life 16(2), 127–153 (2010)

[49] Tsuda, S., Jones, J.: The emergence of complex oscillatory behaviour in physarum poly-
cephalum and its particle approximation. In: Artificial Life XII, pp. 698–705 (2010)

[50] Flynn, M.R., Kasimov, A.R., Nave, J.C., Rosales, R.R., Seibold, B.: Self-sustained non-
linear waves in traffic flow. Physical Review E 79(5), 56113 (2009)

[51] Durham, A.C.H., Ridgway, E.B.: Control of chemotaxis in Physarum polycephalum.
The Journal of Cell Biology 69, 218–223 (1976)

[52] Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food
sources: behavioural intelligence in the Physarum plasmodium. R. Soc. Proc.: Biol.
Sci. 271(1554), 2305–2310 (2004)

[53] Adamatzky, A.: Physarum Machines. World Scientific, Singapore (2010)

Developing Self-Organizing Robotic Cells Using
Organic Computing Principles

Alwin Hoffmann, Florian Nafz, Andreas Schierl,
Hella Seebach, and Wolfgang Reif

Abstract. Nowadays industrial robotics applications, which are often designed and
planned with a huge amount of effort, have a fixed behavior during runtime and can-
not react to changes in their environment. Failures can hardly be compensated and
often can only be repaired by human involvement. The idea of Organic Computing
is to enable systems to possess life-like properties, such as self-organizing or self-
healing. In this chapter we present a layered architecture to bring these two worlds
together. Further it is discussed what are the requirements of the respective layers
to allow to engineer self-x properties into such systems. The presented approach
allows for developing self-organizing robotic applications that are able to take ad-
vantage of Organic Computing principles and therefore are more robust and flexible
during runtime.

1 Introduction

With respect to their structure, traditional automation systems are very static. The
material flow is fixed and every component is optimized according to the planned
system structure to reach maximum throughput. This approach is very suitable for
mass production as in the automotive industries, where one product is manufac-
tured for a considerable time. Even the use of industrial robots does not change
this situation. In fact, industrial robots are very flexible and, given an appropriate
tool, are able to perform a large variety of tasks [10]. However, the complex and
tedious programming of today’s industrial robots, the fixed wiring and difficult in-
tegration of additional devices, as well as the very static layout of shop floors do not
exploit the possible flexibility of robotic solutions. As a consequence, high effort
is needed to customize and adjust automation systems, making them hardly appli-
cable for small-series production with varying products where regular adaptation is

Alwin Hoffmann · Florian Nafz · Andreas Schierl · Hella Seebach · Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg,
86135 Augsburg, Germany

Y. Meng and Y. Jin (Eds.): Bio-Inspired Self-Organizing Robotic Systems, SCI 355, pp. 253–273.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011

254 A. Hoffmann et al.

required. Moreover, failure tolerance and flexible optimization is hard to achieve
with traditional automation systems.

On the other hand, the idea of Organic Computing [3, 20, 39] and Autonomic
Computing [6, 15] is to develop systems which possess self-x properties, like self-
healing (i.e. the compensation of failures), self-optimization (i.e. the autonomous
optimization according to a given fitness function), or self-adaptation (i.e. the adap-
tation to new or changing tasks or a different system structure). In the context of
production automation, the goal is to provide architectures and techniques to build
organic automation systems, where organic means life-like behavior or more con-
cise that the systems are capable of autonomously adapting to changes in their en-
vironment. This behavior is often realized by the use of bio-inspired paradigms and
algorithms, e.g. genetic algorithms or pheromone-based approaches.

Hence, the well-designed combination of Organic Computing principles and
robot technology can lead to hyper flexible and robust automation systems. While
robots – mobile platforms as well as industrial manipulators – provide mechani-
cal flexibility and the ability to perform a large variety of different tasks, Organic
Computing introduces self-organization to the systems which enables them for self-
healing, self-optimization or self-adaptation. For example, an Organic automation
system can compensate failures due to its self-healing capabilities and continues to
operate in graceful degradation – a requirement for robotic systems which is get-
ting more and more important [11]. Especially in small and medium enterprises,
where there are phantom shifts at night, systems of this kind are welcome. Using
self-optimization allows for continuously and autonomously optimizing an automa-
tion system during its runtime and without external interaction. Finally, due to self-
organization, organic systems are reconfigurable by design and are easily able to
adapt to new tasks or products – a requirement in today’s globalized economy with
its turbulent markets and fast changing demands [17]. However, evolutionary ap-
proaches and bio-inspired principle which solely rely on the idea of emergence can-
not directly be applied to production systems. Emergence rather has to be controlled
and directed to accomplish a defined goal, i.e. manufacturing a product.

In this chapter, we want to outline how self-x properties and Organic Computing
principles can be applied to industrial robotic manufacturing cells [2]. In previous
work, we have introduced an approach for modeling and designing self-organizing
resource-flow systems based on Organic Computing principles [31] and showed
how to specify a behavioral corridor for this system class [8]. Moreover, we have
developed a guideline for systematically engineering self-organizing resource-flow
systems [30] and verified their functional correctness using formal methods [23].

Because robotic manufacturing cells usually constitute a resource-flow system,
where a product (i.e. the resource) is manufactured step-by-step, our approach can
be applied to the domain of industrial robotics. However, we identified three robotic-
specific challenges one is facing in order to build self-organizing robotic cells. These
challenges are ranging from uncontrolled emergence over the problems in the layout
of robotic cells to limitations in current software architectures and will be described

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 255

in detail in Section 2. Based on these challenges, we present a multi-layer architec-
ture (Section 3) which allows for developing self-organizing robotic manufacturing
cells using Organic Computing. Every layer addresses the system at a different level
of abstraction and has distinct responsibilities in order to comply with the architec-
tural requirements. In Section 4, we illustrate our approach with a simple but evident
case study. Finally, in Section 5, a conclusion is drawn and future research steps are
highlighted.

2 Challenges

From our point of view, the development of self-organizing robotic cells using Or-
ganic Computing principles poses three major challenges:

1. To render organic systems acceptable for industry, emergence must be controlled
to accomplish a defined goal.

2. To apply self-x properties, the layout of robotic cells must provide additional
degrees of freedom.

3. To utilize these additional degrees of freedom, robotic software architectures
must provide flexibility with regard to programming techniques, coping with ge-
ometric uncertainty and device integration.

These challenges and their influence on the development of organic automation sys-
tems are described in detail in the following sections.

2.1 Controlling Emergence

A main concept of self-organizing systems is emergence. Emergence describes the
appearance of complex system behavior caused by relatively simple and local inter-
actions of individuals without the control of a central instance. Hence, the system
behavior is not explicitly programmed, but a result of these local interactions. An
example of emergent behavior is an ant colony where no central control is present.
Instead, each ant is an autonomous unit that reacts depending on local information,
i.e. pheromones, and genetically encoded rules.

Thus, the behavior of the complete system cannot be exactly predicted. Müller-
Schloer [18] calls this kind of behavior bottom-up constraint propagation which
stands in contrast to the classical top-down design of technical systems. In the lat-
ter approach, the developer tries to model and implement all possible system states.
This usually starts with a high-level specification, until after a number of transfor-
mations and refinements, executable code is generated.

However, having an exhaustive model of a complex system is often not feasible
and even contradictory to the idea of emergence. In order to solve this contradiction,

256 A. Hoffmann et al.

Failure

Failure

Expected behaviour

Fig. 1 Organic production systems require a corridor of expected behavior. Inside this corri-
dor, emergent behavior is approved and even desired.

we suggest defining a corridor of good expected behavior [8] for every organic
production system. Inside this corridor, emergent behavior is approved and even
desired, whereas the system is in an exceptional state when this corridor is left
(cf. Fig. 1).

This corridor is defined through constraints by the system developer and allows
controlled emergence. Usually, these constraints can be observed locally by each au-
tonomous component of the system. If one or more constraints are violated, the com-
ponent tries to restore the constraints locally. If this is not possible, it starts to involve
surrounding components until a valid solution is found that satisfies the constraints.
In Organic Computing this kind of architecture is called an Observer/Controller ar-
chitecture [18, 31]. By doing so, organic automation systems are self-organizing and
can be directed to accomplish a defined goal, e.g. to manufacture products. Besides,
behavioral guarantees in terms of functional correctness can be given [21].

2.2 Adding Degrees of Freedom

Usually, automation systems are designed and tuned to accomplish pre-defined tasks
for a long period. In single-station automated cells, a production machine is typically
equipped with a material handling system (e.g. a robot for loading and unloading
the machine) and a storage system. Due to this setting, the cell is able to operate
unattended but the system fails if any of the components breaks. An automated pro-
duction line consists of multiple workstations that are automated and linked by a
transport system which transfers parts from one station to the next. Again, if one
components breaks, the whole system fails. According to [40], flexible manufactur-
ing systems still have limited capabilities regarding customized products and failure
compensation. They even state that the need for flexible manufacturing and adaptive
systems cannot be supplied with traditional approaches.

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 257

In order to become self-organizing, automation systems require additional
degrees of freedom and redundancy in the available hardware. Without these pre-
requisites, the system is not able to adapt to new environmental conditions or to
compensate failures:

• For self-healing, an organic automation system needs redundant hardware com-
ponents. Otherwise, it cannot compensate for the failure of one component and
continue operation in graceful degradation.

• Regarding self-adaptation, an organic production system needs degrees of free-
dom, i.e. flexible tools or transport systems, in order to adapt to changing or new
tasks as well as to a modified system structure.

• Finally, self-optimization is only possible if there are several degrees of freedom
which can be optimized with respect to a given fitness function.

Due to these reasons, we believe that robotic cells are well-suited for self-
organization by using Organic Computing. In robotic-based systems, additional
degrees of freedom can be achieved by adding robots, redundant tools, or tool-
changing systems. Concerning transportation, robots can be connected using ca-
rousels, two-way conveyors, or even mobile platforms. Further details are given
in Sect. 3, but here it is worth mentioning that the concrete choice of how redun-
dancy is added can impact the system’s robustness and its mean time to failure, as
the example in Sect. 4 shows. Giving one component all redundancy is in general
a bad choice, as a component failure will lead to a complete loss of the available
redundancy. To find good distribution strategies for redundancy, the ADCCA1 tech-
nique [9] can be used, which calculates minimal combinations of failures which lead
to a standstill of the whole production system. Also similar safety analysis tech-
niques like Fault Tree Analysis [37] can be used to identify single-point or n-point
failures and optimize the redundancy distribution accordingly.

2.3 Requiring Software Flexibility

By adding degrees of freedom and redundancy to the available devices and to the
shop floor layout, self-organization becomes feasible. However, to completely uti-
lize self-x properties, additional requirements to the architectures of robotic systems
with regard to software flexibility are necessary.

Flexible and reconfigurable automation systems require the introduction of smart
products carrying information about how to be processed by the system. This can
be e.g. realized by using RFID [40]. As a consequence, a product-centric approach
of configuring and commanding industrial robots and their tools is required. Pre-
defined motion sequences have to be replaced by more dynamic motion planning
considering the environment and avoiding obstacles. Due to the dynamic system be-
havior, the use of previously taught motions cannot be sufficient anymore. Instead,
the use of sensor feedback (e.g. vision) or compliant devices should be considered.

1 Adaptive Deductive Cause-Consequence Analysis.

258 A. Hoffmann et al.

With sensor-based or compliant motions [16], an error-tolerant execution of com-
plex robot tasks in uncertain and unknown environments is possible [34].

In contrast to these demanding requirements, industrial robots are still pro-
grammed with special robot programming languages which are derived from early
imperative languages and have not evolved much since then. Due to these low-level
programming techniques, developing software for an industrial robot is a complex
and tedious task requiring considerable technical expertise [26]. Hence, industrial
robots are usually equipped and programmed to perform only a set of pre-defined
tasks. This contradiction between low-level programming and high-demanding re-
quirements must be solved in the future to realize self-organizing robotic systems.

Furthermore, the integration of external devices must be facilitated. Today, tools
are usually connected by a fixed wiring to a robot controller and communicates
over digital and analog I/O ports. But when using tool changing systems, no human
interaction should be required. The software of the robot controller must be able
to independently cope with different tools mounted to the robot. Moreover, it must
be possible to integrate arbitrary sensors for intelligent perception and sophisticated
tools that allow e.g. complex grasping strategies and dexterous manipulation [24].
The introduction of plug-and-play mechanisms as proposed in [11] would cover this
requirement for flexible device integration.

3 Architecture

Our approach uses a layered software architecture which addresses the system at
different levels of abstraction. The proposed architecture is depicted in Fig. 2.

On top of the hardware layer, two software layers are located for controlling the
robot. The lower one, the Robot Control Layer, is responsible for the real-time crit-
ical, low-level hardware control, whereas the upper layer, the Robot Programming
Layer, is used for defining the control flow and specifying required motions and
tools actions. For traditional production systems, these three layers are sufficient, as
they allow the robot to execute arbitrary, pre-programmed tasks in a reliable, repeat-
able fashion. However, to extend the system towards self-organization, additional
communication and control software is required.

Therefore, our approach adds two more layers on top, which control the robotic
system according to Organic Computing principles. The first layer, the Organic
Control Layer, wraps the components of the robotic cell and turns them into soft-
ware agents coordinating with other agents through communication. Furthermore, it
is responsible for the execution of capabilities which are to be applied to the work-
piece. When this layer detects a locally unrecoverable error, the Organic Planning
Layer takes control and searches for a new configuration to achieve the task. Once a
solution has been found, control is returned to the Organic Control Layer for further
execution. The layers of the architecture are explained below from bottom up.

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 259

Organic
Planning

Organic Planning Layer

Organic Control
Layer

Robot Programming
Layer

Robot Control Layer

Hardware

Organic
Control

Robot
Programming

Robot
Control

Hardware

Observer

g g y
Distributed Planning
and Reconfiguration

Controller

High-level
Commands

b C l

Closed-loop
Robot Control

R
Status and Error

Reporting

communication

Fig. 2 The proposed architecture for self-organizing robotic cells showing two individual
components.

3.1 Hardware

The foundation of each robotic cell is a set of robots with tools that are interlinked
with a transportation system. In order to become a self-organizing production sys-
tem, additional degrees of freedom are required as stated in Sect. 2.2. This means
that a robot cannot only be equipped with one static tool corresponding to its pre-
assigned task. For simple cases, it might e. g. be enough to equip the robot with a set
of equal drills so that it can replace them when they fail during production, but for
exploiting all advantages of self-organizing systems, different tools are needed that
can perform a variety of diverse tasks, and a way to interchange them without human
interaction. This can be achieved by the use of external tools, by an automatic tool
exchange system, or by using advanced tools like anthropomorphic hands which
allow dexterous manipulation.

If different tasks have to be executed, or the different task steps should be as-
signed to different robots, the transportation system also has to become flexible.
Instead of a single conveyor connecting the robots in a given order, this set-up re-
quires a way to change the order a workpiece passes the different robots. Similar to
existing systems, robots can be connected using a carousel or two conveyors, one
moving forward and one moving backwards. Thus, each robot can forward the work-
piece to any other robot by placing it onto the right conveyor. Corresponding to the
idea of hyper flexible manufacturing systems [11], another solution is to replace the
conveyor by a set of mobile platforms navigating between the robots, transporting
partly processed workpieces.

This allows a system to show a dynamic behavior. However, as the hardware
devices are expected to perform different tasks over time, all of them have to be

260 A. Hoffmann et al.

controlled by a computer-based system. Its software must provide real-time guaran-
tees to reliably control the hardware devices.

3.2 Robot Control Layer

Low-level hardware control is performed in the Robot Control Layer. It is responsi-
ble for applying open or closed loop control laws on actuators and sensors in order
to make the hardware execute the requested actions. Therefore it has to be imple-
mented in a real-time capable environment, e. g. running on a micro controller for
simple actions or under a real-time operating system (such as VxWorks, QNX or
real-time extensions for Linux). For commercial KUKA robot systems, this layer
– the so-called kernel system – is implemented in VxWorks. It can execute motion
commands and send data to attached tools using fieldbus communication. However,
it is quite limited with respect to sensor integration or compliant motion – fields
where research robot controllers like OROCOS [32] are more advanced. Further-
more the control layer has to monitor the attached hardware for errors, and report
them to the above layer to allow reasonable failure strategies.

As a typical robot action consists of more than the application of one single con-
trol law with given parameters (e. g. one motion to a point), the robot control layer
has to provide an interface allowing to specify multiple control laws or commands
that are to be applied sequentially or in parallel. This interface can be used by the
programming layer. Examples for action task descriptions specified over such an
interface are manipulation primitives [5], constraint-based task specifications [4] or
realtime primitive nets [38].

Realtime primitive nets describe actions executed by one or multiple cooperat-
ing robots. These actions are composed of calculation primitives (blocks) and data
flows between them, which are evaluated in a real-time loop and form the corre-
sponding control loop for the hardware devices. All actions that have to be executed
with exactly given timing constrains or depend on each other’s progress can thus
be combined into one realtime primitive net that will be executed atomically. This
allows to specify complex or composed tasks with realtime requirements as a single
transaction and execute them in the control layer, removing the need for real-time
capability in the higher layers.

A limited example for a realtime primitive net is given in Figure 3. It shows a
motion of a robot along a given trajectory, followed by a control action enabling the
gas flow of a welding torch. The dotted boxes represent the high-level constructs
used in the programming layer to define the task, whereas the solid boxes show
realtime primitives and their dataflow links. In this example, position values from
the trajectory generator are sent to the robot block as set points (a typical example of
open loop control), and the digital output representing the welding torch is enabled
immediately once the trajectory has finished. Of course, a real world welding task
consists of more actions to be included in the realtime primitive net, e. g. ignition of
the welding torch, going along the welding seam and disabling the torch once the

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 261

trajectory generator

robot

Action: ignitionMovement Device: robot

binary value

digital output

Action: gasOn Device: weldingTorchEvent: motionEnded

progress

active position

active io control

activeon

active

triggercheck

trigger

Fig. 3 An example realtime primitive net describing the motion of a robot followed by the
execution of a tool action.

destination has been reached. Further details about the realtime primitives interface
can be found in [38].

Commercial robot controllers usually omit a clear separation between control and
programming layer and execute complete robot programs on the control layer. How-
ever, by separating these layers and thereby encapsulating the realtime requirements
on the control layer, a standard programming language can be used for the program-
ming layer. This allows making the programming layer extensible and simplifies the
integration of robot programs into the surrounding software system.

3.3 Robot Programming Layer

The Robot Programming Layer offers an interface which accepts high-level com-
mands to be executed by the robot. It is responsible for transforming them into
control laws or task descriptions that can be executed with real-time guarantees in
the robot control layer. Furthermore, it transfers them to the robot control layer and
monitors execution progress, errors and sensor events. For KUKA robots, this layer
can be seen in the robot programming language KRL which allows writing robot
programs including extended control flow (e.g. conditional statements and loops),
motions and tool commands. Similar features are available in the languages RAPID
for ABB and Karel for FANUC robots.

However, the self-organizing robot cell – opposed to traditional production cells
– does not have a fixed processing or material flow order, thus it is not possible to
write one program for each robot that can be executed repeatedly to perform the
unchanging robot task. Each robot needs a set of robot programs (one for each robot
capability) that can be started and controlled from a higher architecture layer.

As the dynamic nature of a flexible production system makes it hard to guarantee
exact positioning of the workpieces during transportation, these systems also have
to cope with greater uncertainty about object locations. Thus the integration of sen-
sor feedback for object localization becomes more important here, as well as the
possibility to program tolerant or compliant manipulators or tools. Also dynamic

262 A. Hoffmann et al.

motion planning with obstacle avoidance for both robots and mobile platforms must
be possible using this layer.

When trying to control a flexible production cell through a set of individual robot
programs (one for each robot capability), these programs as well have to be flexible
and highly configurable as described in Sect. 2.3. However, passing detailed envi-
ronment information to traditional robot programs is often quite complex, involving
fieldbus communication, thus limiting the range of possibilities [13]. These prob-
lems can be solved by using a robot control architecture that allows programming
robots in standard, high-level programming languages, such as the one described
in [1].

ignitionMovement :
Motion

gasOn : GasOn

startGasTrigger :
Trigger

ignitionMovementCmd
 : Command

weldingTorch :
WeldingTorch

motionEnded : Event

robot : Robot

startGasCmd :
Command

 : targets: action

: action : targets

 : triggeredBy

: starts

Fig. 4 The robot task from Fig. 3 represented as an object structure with actions, devices and
events.

It provides a high level, object-oriented API for programming robots which can
be directly used from the higher layers or encapsulated into a service that can be e.g.
accessed via standard service-oriented methods.

Figure 4 shows an example of a robot task created using the object-oriented API.
It contains two robot commands, one targeted at a robot and containing a motion,
and the second enabling the gas flow of a welding torch. These commands are con-
nected using a trigger that starts the second command once the motion of the first
command has ended. This (and many more, when dealing with a real welding sce-
nario) has to be executed with real-time guarantees to ensure that the welding seam
is created with repeatable quality, so it is converted into a realtime primitive net (like
the one shown in Fig. 3) and executed using the robot contorl layer.

As an overview, the two robot software layers are shown in figure 5. The up-
per part (programming environment and Robotics API) of the robot software archi-
tecture represents the programming layer, and the lower part (realtime primitives
interface and robot control core) is an example for a robot control layer. Using this
architecture, all layers above can communicate with the robot system using the stan-
dard means of object-oriented software development. This simplifies the develop-
ment of the two organic layers located on top of the robotic layers in the proposed
software architecture.

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 263

Robotics API

Realtime Primitive Interface

Robot Control Core

Pr
og

ra
m

m
in

g
En

vi
ro

nm
en

t
(e

.g
. W

in
do

w
s w

ith
 Ja

va
 1

.6
)

Re
al

-t
im

e
Ro

bo
t C

on
tr

ol
(e

.g
. L

in
ux

/R
TA

I w
ith

 O
ro

co
s)

Dynamic Construction of Realtime Primitive Nets

Robotics Base Class Libraries Robotics Extension Class Libraries

Basic
Primitives

Extension
Primitives

RT Primitive Specification

RT Primitive Implementationve Imple RT Primitive Implementation

RT Primitive Specification

ve Imple

Fig. 5 Overview of the robot software layers.

3.4 Organic Control Layer

The presented architecture for the top two layers is similar to observer/controller
architectures often used in the field of Organic Computing to realize the self-x fea-
tures of a system [19, 28]. The main task of these layers is to maintain the be-
havioral corridor of the system (see Sect. 2.1). The corridor is specified by OCL
Constraints [25, 31], which are annotated to the particular models during the design
process and describing “good” system configurations leading to functionally correct
behavior. By not explicitly forcing the system into a fixed set of configurations an
additional degree of freedom is gained, in which the system can pick the config-
uration it assesses as good. Further the constraints ensure that only configurations
are chosen that lead to a functional correct system. These constraints define a kind
of invariant over the system state and distinguish good from erroneous states. They
specify how correct configurations of the robots must look like. The system then
tries to preserve these constraints as long as possible. In case of a violation infor-
mation is forwarded to the planning layer which tries to restore them, by calculating
a new reconfiguration for the system. This approach is called the restore invariant
approach and described in detail in [8].

The Organic Control Layer therefore consists of two main components. An ob-
server component which constantly evaluates the constraints, based on the status
information of the system it receives from the lower layers. Here interfaces which
allow to receive feedback from the Robot Programming Layer (e.g. example error-
messages or sensor data) are needed. Whenever the observer detects a violation, it
activates the planning layer and forwards all gathered information. The main chal-
lenge here is to formulate the constraints in such a way and granularity that the

264 A. Hoffmann et al.

robot is able to locally decide whether a constraint is violated or not. As constraints
usually are only violated if a system failure occurs, the observer must be able to
reason about the impact of a system failure on the constraints. Here a failure anal-
ysis [37, 9] can detect the possible failures of the system, which can impact the
validity of a constraint. For example, considering the constraint that a robot must
have the tool needed to perform the roles assigned to it. A tool failure will than lead
to a constraint violation in case the robot has a role assigned where it needs this tool.

The second component in this layer is the Controller. It performs the capabilities
assigned by the planning layer and commands robot actions required to apply the
capabilities and exchange resources. It makes use of the interface provided by the
Robot Programming Layer and controls the robot to ensure that the right capability
is applied. It further reacts to new configurations sent by the Organic Planning Layer,
for instance to change the performed actions of the robot.

3.5 Organic Planning Layer

On top of the control layer is the Organic Planning Layer. It is triggered by the ob-
server of the control layer and responsible for calculating new configurations if an
error occurs. It analyzes the current situation and, as most of the failures cannot be
compensated by one robot alone, it has to communicate with the planning layers
of other robots to gather information about available robots and their capabilities.
Then, the planning component tries to find a common solution to reach the objec-
tives. After a consensus is found, the planning layer forwards the new configuration
for its responsible robot to the Organic Control Layer, which then commands the
robot accordingly.

The advantage of moving all the self-organization into this high-level layer is
to be able use the full bandwidth of planning approaches, like bio-inspired or ge-
netic algorithms as well as simple planners. Therefore this layer provides a plug-in
interface to allow the use of several methods and algorithms for coordination and
planning, implemented as centralized or decentralized variants. System architects
can choose what is best suited for their kind of system and problem to solve. An-
other reason is that on this layer real time must not be considered, as all real time
critical commands are dealt with on a lower layer.

The planning task is basically a constraint satisfaction problem on the systems
configurations [36, 22]. Depending on the application and the parameters, this can
be rather complex, especially as the robots do not have global knowledge. Here the
challenge is to find proper communication protocols and algorithms which can deal
with specific requirements of the application. One may think of a simple gathering
of the global knowledge at one robot and then calculating a new configuration on
this robot. The solution is then spread to the other robots. While this may applicable
for smaller manufacturing cells it is not for larger systems. Further one does not
want to always stop the complete cell, instead a local reconfiguration is preferred,
where only a few robots are participating in the reconfiguration process.

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 265

Usually not just any solution for the problem is wanted, but an optimal solution
for the actual situation. Here the planner’s task is extended to find a best or nearly
optimal configuration for the system according to the given optimization criteria,
load balancing criteria or minimum number of reconfigured robots, for example.

4 An Adaptive Production Cell Example

In this section we want to illustrate the presented approach on a vision of a fu-
ture adaptive production cell. It shows the benefits of applying organic principles
to traditional robot systems. Traditional engineering would handle and design such
a production cell in a rather static way, consisting of individual machines that pro-
cess workpieces with their tools and linked to each other in a strict sequential order
using conveyors or similar mechanisms. The layout of the cell is therefore prede-
fined, very inflexible, and rigid. Additionally, and maybe more important, such a
system is extremely prone to system errors as the failure of one component will stop
the whole system. However, the adaptive production cell is self-organizing which
means that it is adaptive according to user-defined tasks (work plans) and compen-
sates for component failures. Furthermore, it tries to optimize the throughput by
finding a configuration which is best suited for the actual work plan.

4.1 System Description

The adaptive production cell consists of KUKA Light-weight Robots (LWR), which
are capable of using different tools. The traditional conveyor belt has been replaced
by flexible and autonomous transportation units, which can carry workpieces. Some
interesting concepts and ideas for flexible transportation units or conveyor belts are
described by Bussmann in [29]. The goal of the example cell is to process work-
pieces in a user-defined sequence of tool applications (task).

Sect. 2 expounds that redundancy and software flexibility are needed to enhance
traditional systems with self-organization. To achieve the maximum benefit from
redundancy, it is important how the redundancy is distributed within the system.
For example, it would be possible that a robot has the same tool three times and
is the only one with this tool. Then, the robot is capable of reacting two times on
tool breaks, but the breakdown of the whole robot stays a single-point of failure.
Therefore a more failure tolerant distribution is to give one tool of each type to each
robot, here a system breakdown needs at least a three-point of failure.

According to these results, the case study is arranged as follows (Fig. 6). We
have three LWRs for processing, four carts for transportation and two storages,
which provide unprocessed workpieces and store finished ones. Each LWR is able
to perform all three capabilities: drill a hole into a workpiece, insert a screw into
the drilled hole and tighten the inserted screw. The user-defined standard work plan
is to process all workpieces with all three tools. The given order is first to drill the

266 A. Hoffmann et al.

hole, then insert the screw and at last to tighten it. In principle, an easy but not very
high-performance solution is to let each robot perform all capabilities and change
tools after each step. As switching tools is very time consuming compared to the
time for applying the capability, the standard configuration is to let every robot per-
form a different task. The distribution of processing steps among different robots
requires flexible routing of carts so that the correct order is maintained. One such
configuration is sketched in Fig. 6.

Fig. 6 Adaptive production cell

4.2 Design of Self-organizing Resource-Flow Systems

So far only the hardware of the adaptive production cell is described. But at least
as interesting is the software for this example. For the two organic layers a software
engineering guideline exists, which guides the engineer through several steps for
developing self-organizing resource-flow systems [30]. The presented robotic cell
is one simple instance of the class of resource-flow-systems. Other instances are
all kinds of production automation, where you have a product running through a
manufacturing process. One core concept of the guideline is the Organic Design
Pattern (ODP, see Fig. 7), which determines the architecture and behavior of the
system. It identifies the different components and artifacts of this domain and their
relations.

The central components in the system are the agents, representing the robots and
carts. They are processing the resources according to a given task. In case of the pro-
duction cell every agent has several capabilities, divided into producing, processing,

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 267

Fig. 7 Components of a Resource-Flow System

and consuming capabilities (produce, process, and consume). Consequently, the task
is a sequence of capabilities beginning with a producing capability and ending with
a consuming capability. Furthermore, the agent knows a couple of agents he can in-
teract with and hand over resources (in case of the production cell, the workpieces).
This is encapsulated in the inputs and outputs relation. The role concept is intro-
duced to define correct resource-flows through the system. This means an agent
has roles allocated telling him from which agent he receives the resource (precon-
dition/port), which capabilities to apply, and then to which agent to hand over the
resource (postcondition/port). Thus, the roles establish the connections between the
agents and the combination of all roles forms the resource-flow. A system configu-
ration is then a specific set of roles allocated to the agents (in this case robots and
carts). For more details on the SE process and modeling of self-organizing resource-
flow systems see [30]. In this case study, self-organization is done by role allocation.
In case of a failure the system calculates a new valid set of roles, which is sufficient
to fulfill the task again.

4.3 Specifying Self-x through Behavioral Corridors

To receive correct behavior the allocation of roles to the agents is curbed as already
mentioned in 3.4 by the specification of behavioral corridors. This is realized with
OCL constraints, which are annotated to the ODP (Fig. 7). This means the config-
uration of the system which is planned by the Organic Planning Layer is restricted
to configurations within the specified corridor. This is sufficient for a correct behav-
ior, as the execution semantics of roles is predefined. In other words it is specified
how roles are executed. Therefore the challenge is to restrict the roles which are
assigned to the robots or carts in such a way that the resulting behavior leads to the
desired system goal – in our example the correct production of the workpiece and
the completion of the defined task.

268 A. Hoffmann et al.

One example for a consistency constraint for the robots or carts is the Capability-
Consistency. In OCL this constraint is evaluated in the context of an agent as it is
annotated to the agent concept, therefore self refers to a robot respectively cart.

(self.availableCapabilities -> includesAll(
self.allocatedRoles.capabilitiesToApply))

The Capability-Consistency ensures that the robots and carts only accept and
perform roles they are able to. In this case, only roles that need capabilities which
are available.

Another interesting consistency constraint is the I/O-Consistency for a robot or
cart (referred as self):

(self.inputs -> includesAll(
self.allocatedRoles.precondition.port))

and (self.outputs -> includesAll(
self.allocatedRoles.postcondition.port))

The agents know a couple of neighboring agents. They are documented in their
“input” and “output” relation. These indicate with whom robots and carts can ex-
change workpieces. The pre- and postconditions of the particular roles determine
from which robot/cart the workpiece comes from and to which the workpiece should
be given. The I/O-Consistency indicates that the robots/carts recognize the break-
down of their required partners in the actual resource-flow. The required partners
are the ports in the pre- and postconditions of the roles and must be part of the input
respectively output relation of the agents. During runtime the robots/carts ping these
neighbors to ensure that they are still available for receiving workpieces.

The carts are constrained in the way that they only take transport assignments
between robots that are reachable for them. All these constraints can be monitored
during runtime by the agents themselves as they can be evaluated locally. In gen-
eral, also quantitative constraints for a configuration can be of interest, such as the
assigned capabilities will not exceed a defined load or that the throughput has a cer-
tain threshold. These constraints usually are not monitored as they are violated if a
failure occurs, which implies a previous violation of another monitored constraint.

More details about specification of behavioral corridors by constraints can be
found in [8].

4.4 System Behavior at Runtime

The system starts with an initially calculated role allocation as depicted in Fig. 6.
The needed tool applications are spread to the robots and the carts are assigned
different routes to move the workpieces around. If a failure occurs, e.g. the drill
tool of the drilling robot breaks, the robot monitors this violation of its Capability-
Consistency constraint and starts a reconfiguration. It collects information about the
neighboring robots and carts, calculates a new distribution of tool assignments and

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 269

re-routes the carts in a way that production can continue. A traditional system would
stop and a human interaction would be needed here. The reconfigured situation is
depicted in Fig. 8.

Fig. 8 Adaptive production cell after reconfiguration

In this case study, the robots and carts have only local rules and interaction pos-
sibilities. The resulting system is a self-organizing production cell which is capable
of reacting to changes in the environment and new work plans. The configurations
which are calculated by the robots or carts in case of a local constraint violation
(e.g. capability or input, output loss) fulfills the constraints specified for the sys-
tem. This means that the occurring emergence is restricted to positive emergence as
claimed in Sect. 2.1.

4.5 Realizing Self-reconfiguration

There are several possibilities to implement self-reconfiguration. Currently, recon-
figuration is done using a constraint solver, here Kodkod [35], to receive valid con-
figuration for each robot and cart. Therefore the actual system state and the OCL
constraints are converted into a formal model representing a constraint satisfaction
problem (CSP). The model can directly be derived from the design pattern and the
annotated constraints (see Sect. 4.2). This solver then tries to find a solution fulfilling
all constraints, which is then spread to the agents. More details about the transfor-
mation and the use of constraint solvers for this class of systems can be found in
[21, 22].

The advantage of integrating common techniques in contrast to stochastic
algorithms is, that it is easier to give behavioral guarantees and ensure correct
reconfiguration.

270 A. Hoffmann et al.

But also heuristic and stochastic algorithms, like genetic algorithms [7], can be
used to realize the self-reconfiguration. For large problems they are often faster and
allow to integrate self-optimization by defining adequate fitness functions, which
also takes the quality (e.g. load balancing or throughput) of a solution into account.

For the production cell example a distributed coordination mechanism was de-
veloped, which realizes reconfiguration by applying a wave-like self-organization
strategy [33]. The agent which recognizes a failure starts a self-reconfiguration by
asking its neighbors if they can help solving the problem. If not, the search is prop-
agated forward to the next but one neighbors and so forth. If a solution is found the
agents switch to their new configuration and continue processing. In the best case
two agents just switch their roles and only the adjacent carts are re-routed. Here
reconfiguration is only needed for local subset of the system, which is advantageous
in larger scale systems.

4.6 Proof of Concept

The organic layers are implemented with a multi-agent framework called Jadex [27],
which also provides the communication infrastructure. On each robot and cart one
Organic Control Layer agent is running and coordinating them via the interfaces
provided by the Robot Programming Layer. Whenever a failure occurs or a recon-
figuration request of another agent is received it spawns an Organic Planning Layer
agent which then is handling the reconfiguration for this agent. There are different
implementations (see 4.5) which are integrated into these planning layer agent and
can be used for reconfiguration. The reconfiguration is based only on local knowl-
edge and after successful reconfiguration the Organic Planning Layer terminates
itself. Thus, there is no global knowledge base generated during runtime.

For the production cell scenario we implemented a prototypical implementation
using Microsoft Robotic Studio. It provides a physical simulation environment for
robotic applications and allows for prototypical testing of the developed concepts.
A first version is described in [14].

5 Conclusion

In the field of Organic Computing, we were looking at the domain of production
automation, in particular the field of adaptive production cells. Further in robotics
research, we looked at facilitating the software development for industrial robots
and improving software quality. In this chapter we presented how both worlds can
fit together and how Organic Computing principles can be used to realize a flexible
automation system. To be more concise, how the architecture of a self-organizing
robotic cell can look like and how it can be implemented.

The lower layers were prototypically substituted by a simulation and coupled to
the implementation of the organic layers within a multi-agent system, as described
in Sect. 4.6. Nevertheless, these systems can benefit from the application of Or-
ganic Computing principles, especially in terms of failure tolerance and flexibility.

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 271

One major advantage of the proposed architecture and its implementation is that it
is formally grounded and, therefore, allows to give behavioral guarantees with re-
spect to the assigned configurations, which always leads to correct processing of the
resources. The definition of a behavioral corridor and the assurance of remaining
inside this corridor allows flexibility and gives firm guarantees about the system,
which is very important for the acceptance in industrial applications. However, the
drawback of moving self-organization into high-level layers is that no real-time crit-
ical behavior can be considered. Hence, only non real-time critical reconfigurations
are possible.

Different production scenarios and factory settings need diverse reconfiguration
mechanisms, e.g. completely decentralized coalition formation or wave propaga-
tions. We are currently working on different plug-ins for the Organic Planning
Layer to enhance it by several reconfiguration algorithm implementations. In order
to meet the flexibility requirements as proposed in Sect. 2, robotic software archi-
tecture (see [12]) which corresponds to both the Robotic Programming Layer and
the Robotic Control Layer is currently extended.

Acknowledgements. This work has been partly sponsored by the priority program Organic
Computing (SPP OC 1183) of the German research foundation (DFG).

References

1. Angerer, A., Hoffmann, A., Schierl, A., Vistein, M., Reif, W.: The Robotics API: An
object-oriented framework for modeling industrial robotics applications. In: Proceed-
ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS
2010), Taipeh, Taiwan. IEEE Computer Society Press, Los Alamitos (2010)

2. Black, J.T., Musunur, L.P.: Robotic manufacturing cells. In: Nof, S. (ed.) Handbook of
Industrial Robotics, ch.35, pp. 697–716. John Wiley & Sons, Hoboken (1999)

3. Branke, J., Mnif, M., Müller-Schloer, C., Prothmann, H., Richter, U., Rochner,
F., Schmeck, H.: Organic Computing – Addressing complexity by controlled self-
organization. In: Proceedings of the 2nd International Symposium on Leveraging Appli-
cations of Formal Methods, Verification and Validation (ISoLA 2006), Paphos, Cyprus,
pp. 185–191. IEEE Computer Society Press, Los Alamitos (2006)

4. De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., Claes,
K., Bruyninckx, H.: Constraint-based task specification and estimation for sensor-based
robot systems in the presence of geometric uncertainty. Int. J. Rob. Res. 26(5), 433–455
(2007), doi:http://dx.doi.org/10.1177/027836490707809107

5. Finkemeyer, B., Kröger, T., Wahl, F.M.: Executing assembly tasks specified by manipu-
lation primitive nets. Advanced Robotics 19(5), 591–611 (2005)

6. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Systems
Journal 42(1), 5–18 (2003)

7. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning, 1st
edn. Addison-Wesley Professional, Reading (1989)

8. Güdemann, M., Nafz, F., Ortmeier, F., Seebach, H., Reif, W.: A specification and con-
struction paradigm for organic computing systems. In: Proceedings of the Second IEEE
International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008),
Venice, Italy, pp. 233–242. IEEE Computer Society Press, Los Alamitos (2008)

272 A. Hoffmann et al.

9. Güdemann, M., Ortmeier, F., Reif, W.: Safety and dependability analysis of self-adaptive
systems. In: Proceedings of ISoLA 2006. IEEE CS Press, Los Alamitos (2006)

10. Hägele, M., Nilsson, K., Pires, J.N.: Industrial robotics. In: Siciliano, B., Khatib, O.
(eds.) Springer Handbook of Robotics, ch.42, pp. 963–986. Springer, Heidelberg (2008)

11. Hägele, M., Skordas, T., Sagert, S., Bischoff, R., Brogårdh, T., Dresselhaus, M.: Indus-
trial robot automation. White paper, European Robotics Network (2005)

12. Hoffmann, A., Angerer, A., Ortmeier, F., Vistein, M., Reif, W.: Hiding real-time: A new
approach for the software development of industrial robots. In: Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2009), pp.
2108–2113. IEEE Computer Society Press, St. Louis (2009)

13. Hoffmann, A., Angerer, A., Schierl, A., Vistein, M., Reif, W.: Towards object-oriented
software development for industrial robots. In: Proceedings of the 7th International Con-
ference on Informatics in Control, Automation and Robotics (ICINCO 2010). INSTICC
Press, Funchal (2010)

14. Hoffmann, A., Nafz, F., Ortmeier, F., Schierl, A., Reif, W.: Prototyping plant control soft-
ware with microsoft robotics studio. In: Proceedings of the Third International Workshop
on “Software Development and Integration in Robotics” (SDIR-III). IEEE Computer So-
ciety Press, Los Alamitos (2008)

15. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

16. Mason, M.: Compliance and force control for computer-controlled manipulators. IEEE
Transactions on Systems, Man, and Cybernetics 11(6), 418–432 (1981)

17. Mehrabi, M., Ulsoy, A., Koren, Y., Heytler, P.: Trends and perspectives in flexible and
reconfigurable manufacturing systems. Journal of Intelligent Manufacturing 13(2), 135–
146 (2002)

18. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence.
In: Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis, Stockholm, Sweden, pp. 2–5. ACM,
New York (2004)

19. Müller-Schloer, C., Sick, B.: Controlled emergence and self-organization. In: Würtz (ed.)
[39], pp. 81–104.

20. Müller-Schloer, C., von der Malsburg, C., Würtz, R.P.: Organic computing. Informatik
Spektrum 27(4), 332–336 (2004)

21. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.P., Reif, W.: A generic software frame-
work for role-based organic computing systems. In: Proc. Intl. Workshop on Software
Engineering for Adaptive and Self-Managing Systems, pp. 96–105 (2009)

22. Nafz, F., Ortmeier, F., Seebach, H., Steghöfer, J.-P., Reif, W.: A universal self-
organization mechanism for role-based organic computing systems. In: González Ni-
eto, J., Reif, W., Wang, G., Indulska, J. (eds.) ATC 2009. LNCS, vol. 5586, pp. 17–31.
Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-02704-8-3

23. Nafz, F., Seebach, H., Steghöfer, J.P., Bäumler, S., Reif, W.: A Formal Framework for
Compositional Verification of Organic Computing Systems. In: Proceedings of the sev-
enth International Conference on Autonomic and Trusted Computing, ATC-2010 (2010)

24. Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation. In:
Proceedings of the 2000 IEEE International Conference on Robotics and Automation
(ICRA 2000), pp. 255–262. IEEE Computer Society Press, San Francisco (2000)

25. OMG. Object Constraint Language, OMG Available Specification (2006)
26. Pires, J.N.: New challenges for industrial robotic cell programming. Industrial

Robot 36(1) (2009)

http://dx.doi.org/10.1007/978-3-642-02704-8-3

Developing Self-Organizing Robotic Cells Using Organic Computing Principles 273

27. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A bdi reasoning engine. In: Bordini,
R., Dastani, M., Dix, G., Seghrouchni, A.E.F. (eds.) Multi-Agent Programming, pp. 149–
174. Springer, Heidelberg (2005); Book chapter

28. Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a generic
observer/controller architecture for organic computing. In: GI Jahrestagung, vol. (1), pp.
112–119 (2006)

29. Schild, K., Bussmann, S.: Self-organization in manufacturing operations. Commun.
ACM 50(12), 74–79 (2007),
http://doi.acm.org/10.1145/1323688.1323698

30. Seebach, H., Nafz, F., Steghöfer, J.P., Reif, W.: A software engineering guideline for
self-organizing resource-flow systems. In: Proceedings of the Fourth IEEE International
Conference on Self-Adaptive and Self-Organizing Systems (SASO 2010), Budapest,
Hungary. IEEE Computer Society Press, Los Alamitos (2010)

31. Seebach, H., Ortmeier, F., Reif, W.: Design and construction of organic computing sys-
tems. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2007),
Singapore, pp. 4215–4221. IEEE Computer Society Press, Los Alamitos (2007)

32. Smits, R., De Laet, T., Claes, K., Bruyninckx, H., De Schutter, J.: iTASC: A tool for
multi-sensor integration in robot manipulation. In: Proceedings of the IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2008),
Seoul, Korea, pp. 426–433. IEEE Computer Society Press, Los Alamitos (2008)

33. Sudeikat, J., Steghöfer, J.P., Seebach, H., Renz, W., Preisler, T., Salchow, P., Reif, W.:
Design and simulation of a wave-like self-organization strategy for resource-flow sys-
tems. In: 4th International Workshop on Multi-Agent Systems and Simulation (MAS&S)
(2010) (accepted)

34. Thomas, U., Finkemeyer, B., Kröger, T., Wahl, F.M.: Error-tolerant execution of complex
robot tasks based on skill primitives. In: Proceedings of the 2003 IEEE International
Conference on Robotics and Automation (ICRA 2003), Taipei, Taiwan, pp. 3069–3075.
IEEE Computer Society Press, Los Alamitos (2003)

35. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M.
(eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-71209-1_49

36. Tsang, E.: Foundations of constraint satisfaction (1993)
37. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U.S.

Nuclear Regulatory Commission, Washington, DC (1981)
38. Vistein, M., Angerer, A., Hoffmann, A., Schierl, A., Reif, W.: Interfacing industrial

robots using realtime primitives. In: Proceedings of the 2010 International Conference
on Automation and Logistics (ICAL 2010), Hong Kong, China. IEEE Computer Society
Press, Los Alamitos (2010)

39. Würtz, R.P. (ed.): Organic Computing (Understanding Complex Systems). Springer, Hei-
delberg (2008)

40. Zaeh, M., Ostgathe, M.: A multi-agent-supported, product-based production control.
In: Proceedings of the 7th IEEE International Conference on Control and Automation,
Christchurch, New Zealand, pp. 2376–2383. IEEE Computer Society Press, Los Alami-
tos (2009)

http://doi.acm.org/10.1145/1323688.1323698
http://dx.doi.org/10.1007/978-3-540-71209-1_49

Author Index

Adamatzky, Andrew 215
Audretsch, Christof 173

Brandoff, Joshua 81

Füchslin, Rudolf M. 173

Garnier, Simon 105
Girault, Benjamin 123

Hoffmann, Alwin 253

Jin, Yaochu 3, 143
Jones, Jeff 215

Kernbach, Olga 123
Kernbach, Serge 123

La, Hung Manh 53

Meng, Yan 3, 143
Miyashita, Shuhei 173

Nafz, Florian 253
Nakajima, Kohei 173
Ngouabeu, Aubery Marchel Tientcheu

173

Pfeifer, Rolf 173

Reif, Wolfgang 253

Sayama, Hiroki 81
Schierl, Andreas 253
Schmickl, Thomas 25
Seebach, Hella 253
Sheng, Weihua 53

Tsuda, Soichiro 215

Weng, Juyang 195

	Title
	Preface
	Contents
	Part I: Self-Organizing Swarm Robotic Systems
	Morphogenetic Robotics - An Evolutionary Developmental Approach to Morphological and Neural Self-Organization of Robotic Systems
	Introduction to Morphogenetic Robotics
	Computational Modeling of Multi-cellular Morphogenesis
	Biological Morphogenesis and Metamorphosis
	Modeling of Developmental Gene Regulatory Networks

	Morphogenetic Self-Organization of Swarm Robots
	Swarm Robotic Systems
	A Metaphor between Swarm Robotic Systems and Multi-cellular Systems
	From Analytic to Freeform Shape Representation
	From Predefined Target Shape to Adaptive Shape Generation
	Intermediate Summary

	Morphogenetic Modular Robots for Self-Organized Reconfiguration
	Morphogenetic Brain-Body Co-development
	A GRN Model for Neural and Morphological Development
	Activity-Dependent Neural Development

	Towards Evolutionary Developmental Robotics (Evo-Devo-Robo)
	Conclusions
	References

	How to Engineer Robotic Organisms and Swarms?
	Introduction
	Bio-Inspiration and Bio-Mimicry in Swarm Robotics
	Bio-Inspiration
	Evolutionary Adaptation of Swarm Algorithms
	Bio-Mimicry

	Evolving Self-Organized Control Structures for Robotic Organisms
	AHHS for Robot Control
	Comparison of AHHS to Other Controller Types

	Evolutionary Shaping of Network Topology of Controllers to Body Shapes
	Discussion
	References

	Flocking Control Algorithms for Multiple Agents in Cluttered and Noisy Environments
	Introduction
	Flocking Backgrounds and Problem Formulation
	Adaptive Flocking Control for Tracking a Moving Target
	Flocking Control for Multiple Agents in Noisy Environments
	Multi-CoM-Shrink Algorithm
	Multi-CoM-Cohesion Algorithm

	Stability Analysis
	Stability Analysis of Adaptive Flocking
	Stability Analysis of Flocking in Noisy Environments

	Experimental Results
	Connectivity Evaluation
	Adaptive Flocking Results in Cluttered Environments

	Conclusion and Future Work
	References

	Genetic Stigmergy
	Background: Stigmergy in Natural and Social Systems
	Related Work on Artificial Stigmergy
	Proposed Framework
	Experiments
	Experimental Scenario
	Simulation Platform
	Experimental Setup
	Results

	Discussion
	Conclusion
	References

	From Ants to Robots and Back: How Robotics Can Contribute to the Study of Collective Animal Behavior
	Introduction
	Why Can Robots Be Useful for the Study of Social Behaviors?
	Robots Require a Complete Specification
	Robots Are Physical Entities
	Robots Implements New Technologies
	Robots Can Be Sources of Biological Questions
	Robots Are “Cool” Gadgets

	Conclusions
	References

	Part II: Self-Reconfigurable Modular Robots
	On Self-Optimized Self-Assembling of Heterogeneous Multi-robot Organisms
	Introduction
	General Self-Assembling Scenario
	Optimization Controller: Transition from ΦS into Φ and the Role of Constraints
	Constraint-Based Optimization
	Grouping and Scaling Approaches
	Grouping Approach
	Scaling Approach

	Implementation and Results
	Conclusion
	References

	Morphogenetic Self-Reconfiguration of Modular Robots
	Introduction
	Multi-cellular Morphogenesis
	A Generic Hierarchical Morphogenetic Model
	Self-Reconfiguration of Cross-Cube RM Robots
	Hardware Design of Cross-Cube
	A Hybrid Hierarchical Model
	The Hierarchical Morphogenetic Model

	Self-Reconfiguration of Cross-Ball RM Robots
	Hardware Design of Cross-Ball Module
	The Hierarchical Morphogenetic Model for Self-Reconfiguration
	Layer 3 Controller: Motion Controller
	Experimental Results

	Conclusions
	References

	Basic Problems in Self-Assembling Robots and a Case Study of Segregation on Tribolon Platform
	Self-assembly
	Self-assembly in Nature
	From Self-assembling Blocks to Self-assembling Robots

	Major Concerns in Self-assembly
	The Forward Problem and the Backward Problem
	(A) Assembly
	(B) Dynamics
	(C) Interaction
	The Engineering Issues - Actuator Battery Connector Bottleneck

	Case Study
	Magnetic Potential Energy and Centroid Distance

	Conclusions
	References

	Part III: Autonomous Mental Development in Robotic Systems
	Brain Like Temporal Processing
	Introduction
	Five Chunks of a Brain Model
	Biological Development
	Why Autonomous Mental Development?
	Building Blocks
	Lobe Component Analysis
	Representation Emergence
	Soft-Logic AND in Layer 2
	Soft-Logic OR in Layer 3
	No Local Extrema
	Discriminant Features

	Properties
	Context Dependent Attention
	Active Time Warping

	Experimental Results
	Conclusions
	References

	Part IV: Special Applications
	Towards Physarum Robots
	Introduction
	Experimental
	Cell Shape and Oscillation Pattern
	Force Generated by the Physarum Plasmodium
	Steering Control of Physarum Engine
	Vehicle Simulation Driven by Experimental Data

	The Emergence of Oscillatory Transport Phenomena in a Particle-Based Model
	Model Setup
	Data Analysis

	Results
	Transport Motion in Open Ended Patterns
	Transport in Closed Path Patterns
	Amoeboid Movement in an Unconstrained Collective
	Persistent Movement in a Small Blob Fragment
	External Influence of Collective Movement - Attraction and Repulsion
	Morphological Adaptation of the Collective

	Conclusion and Discussion
	References

	Developing Self-Organizing Robotic Cells Using Organic Computing Principles
	Introduction
	Challenges
	Controlling Emergence
	Adding Degrees of Freedom
	Requiring Software Flexibility

	Architecture
	Hardware
	Robot Control Layer
	Robot Programming Layer
	Organic Control Layer
	Organic Planning Layer

	An Adaptive Production Cell Example
	System Description
	Design of Self-organizing Resource-Flow Systems
	Specifying Self-x through Behavioral Corridors
	System Behavior at Runtime
	Realizing Self-reconfiguration
	Proof of Concept

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

