
Get it done.

One event at a time.


How I learned to stop worrying and love EventMachine. 



Table of Contents 
Introduction
..................................................................3


Getting Started
.............................................................5


Timers
...............................................................................................6


Deferring and Delaying Work
..........................................................8


EM#next_tick
...............................................................................................10


EM#defer
......................................................................................................11


Lightweight Concurrency
..............................................................12


EM::Deferrable
............................................................................................13


EM::SpawnedProcess
................................................................................15


Network Fun
....................................................................................16


Servers
.........................................................................................................16


Clients
..........................................................................................................20


Conclusion
.................................................................21


Resources
..................................................................22


 © 2009 AideRSS.
page 2 



Introduction 
So, I guess it would be useful, as a place to start, to know what weʼre getting ourselves 
into. What is EventMachine, and what can it do for me. Well, the first part of that is 
easy. EventMachine is a high performance implementation of the Reactor Pattern.1 

Great, um, wait, whatʼs the Reactor Pattern? According to Wikipedia: 

The reactor design pattern is a concurrent programming pattern for handling 
service requests delivered concurrently to a service handler by one or more 
inputs. The service handler then demultiplexes the incoming requests and 
dispatches them synchronously to the associated request handlers. 

Basically, EventMachine (EM) handles all that low level stuff including listening on 
sockets, creating network connections, handling timers and some concurrency 
primitives. EM provides a lot of the core functionality we need to create high 
performance API servers and services. EventMachine takes into account the 
challenges and lessons of the C10K problem2 by Dan Kegel and others. 

Your 

Code 

Thread Pool 

Reactor 

File 
Descriptors 

KeyboardProcesses

1 http://en.wikipedia.org/wiki/Reactor_pattern 

2 http://www.kegel.com/c10k.html 

 © 2009 AideRSS.
page 3 

http://en.wikipedia.org/wiki/Reactor_pattern
http://en.wikipedia.org/wiki/Reactor_pattern
http://www.kegel.com/c10k.html
http://www.kegel.com/c10k.html


Along with the networking capabilities, EM provides a thread pool which can be used to 
defer long running tasks to background threads. This keeps the application snappy and 
responsive. We all like responsive, right? Of course there are trade-offs involved in 
using the thread pool, mostly related to the green threads implementation in Ruby 1.8. 

Letʼs take a look at a simple example to get started. Weʼll use the EM version of Hello 
World, the Echo server.  Note, text in green is a reply from the server. 

require 'eventmachine' 

class Echo < EM::Connection
  def receive_data(data)

 send_data(data)
 end 

end 

EM.run do
  EM.start_server("0.0.0.0", 10000, Echo) 
end 

Rei:~ dj2$ telnet localhost 10000 
Trying 127.0.0.1... 
Connected to localhost. 
Escape character is '^]'. 
helo 
helo 
goodbye cruel world 
goodbye cruel world

Weʼll get into the particulars later, but, at a high level weʼre starting a server on port
10000 that will use our Echo class when connections are established. When data is 
received on the port EM will execute the receive_data method and we just echo any
data received back to the client by calling send_data. 

In essence, youʼre associating an instance of the Echo class with a file descriptor. 
Whenever there is activity on the file descriptor the instance of your class will be called 
to handle the activity. This is the basis of most EventMachine programming, the reactor 
listens on a file description and executes some callbacks in an instance of your class. 

The interesting thing to note is that our Echo class has no concept of any underlying 
network principles. There is no concept of packets or headers we just implement 
Echo#receive_data and weʼre able to retrieve network data. 

 © 2009 AideRSS.
page 4 



Getting Started
With introductions out of the way, we can start on our merry path to EventMachine 
nirvana. There are a few basic tasks and commands that youʼll be using as you forge 
ahead so weʼll begin at the beginning, the basics. 

To start, letʼs create the simplest, and possibly stupidest, EM application. 

require 'eventmachine' 

EventMachine::run 

A fairly unexciting example, but serves as a good starting point. There are a couple of 
things to note. First, we require eventmachine in order to get access to EM. Second, for 
the astute reader, I switched from the first example using EM. to EventMachine::. I 
could also have done EM:: or EventMachine.. All forms are equivalent when working 
with EventMachine. Personally, I prefer EM. as itʼs shorter and cleaner. Lastly, if you 
ran the example, youʼll notice it never finished. When you call EM#run it will kick off the 
EventMachine reactor which will keep happy running until told to stop. Which we never 
actually did. 

How do we stop this beastie you say? Easy enough. 

require 'eventmachine' 

EM.run do
  EM.add_timer(1) { EM.stop } 
end

Here weʼre providing a block to EM#run. The block will be executed after the reactor is 
initialized but before the run loop is kicked off. You can put any initialization you need 
into this block. In this case, weʼre creating a timer and having it execute EM#stop. We 
could also have called EM#stop_event_loop. These two calls are equivalent and will 
both shutdown the reactor. Any code after your EM#run block will be executed after the 
reactor is terminated. 

 © 2009 AideRSS.
page 5 



Timers 
Our next stop on the tour is with EventMachine timers. There are two types of timers 
available. One shot timers and periodic timers. There are two different, but equivalent, 
ways of adding timers to EventMachine. The more common route is to use 
EM#add_timer and EM#add_periodic_timer as seen in the example below. 

require 'eventmachine' 

EM.run do
 EM.add_timer(5) do

 puts "BOOM"
    EM.stop_event_loop
 end
 EM.add_periodic_timer(1) do

    puts "Tick ... "
 end 

end 

titania:examples dj2$ ruby timer.rb 
Tick... 
Tick... 
Tick... 
Tick... 
BOOM

EM#add_timer 

This example adds two timers to the system. One periodic that will fire, at most, once a 
second, and a one-shot timer will fire in, at least, five seconds. The wording here is 
important. EM doesnʼt guarantee when the timer will fire, just the time frame in which it 
may fire. 

 © 2009 AideRSS.
page 6 



The equivalent example, just using classes instead of methods, is below. 

require 'eventmachine' 

EM.run do 
EM::Timer.new(5) do
 puts "BOOM"
 EM.stop

 end 
EM::PeriodicTimer.new(1) do
 puts "Tick ..."

 end 
end

In terms of functionality, these two examples are identical. Iʼve seen the first way, using 
EM#add_timer and EM#add_periodic_timer used a lot more often then the class 
method. 

There is one case that I know of where you have to use the class method. Thatʼs 
canceling periodic timers. You can cancel a one-shot timer using EM#cancel_timer and 
provide the signature returned from EM#add_timer. The problem with periodic timers is 
that they receive a new signature each time the timer is re-scheduled. Without knowing 
the signature you canʼt cancel the timer. 

If you need to be able to cancel a periodic timer youʼll need to use EM::PeriodicTimer. 
This will provide us with EM::PeriodicTimer#cancel which, you guessed it, allows us to 
cancel the periodic timer. 

 © 2009 AideRSS.
page 7 



require 'eventmachine' 

EM.run do 
p = EM::PeriodicTimer.new(1) do

    puts "Tick ..."
end

  EM::Timer.new(5) do
puts "BOOM"
p.cancel

end

  EM::Timer.new(8) do
puts "The googles, they do nothing"
EM.stop

end 
end 

titania:examples dj2$ ruby timer_cancel.rb 
Tick... 
Tick... 
Tick... 
Tick... 
BOOM 
The googles, they do nothing

EM#add_periodic_timer 

Deferring and Delaying Work
If youʼll remember back to our definition of the Reactor Pattern, youʼll note that the 
reactor is single threaded.  EventMachine holds true to this single threaded approach to 
the reactor. The reactor itself is single threaded and the EM methods which work with 
the reactor are not thread-safe. 
This has two outcomes. Firstly, weʼll probably have code that takes a long time to run. 
Database queries, remote HTTP requests, etc. We need to be able to farm this code 
out to a background thread to be efficient. Secondly, once we move our code to a 
background thread, we need to be able to tell the reactor to do work for us. 

This is where EM#defer and EM#next_tick come into play. 

Using EM#defer we can schedule the execution of a block to one of the threads in 
EventMachines thread pool. This pool provides us with a fixed twenty threads. Great, 
weʼve got our code running in the background, how do we tell the client the results? If 

 © 2009 AideRSS.
page 8 



needed, EM#defer takes a second parameter, the callback. This callback will be 
executed on the main reactor thread and will be provided with the return value of our 
deferred operation. We can use this callback to handle the client communications. 

There is a downside to EM#defer which has to do with the Ruby 1.8 implementation of 
threads. Ruby doesnʼt have real operating system threads. It has what are called green 
threads. There is one operating system thread that everything runs on and Ruby 
creates its threads on top of this OS level thread. This means Ruby is handling all the 
thread scheduling and if anything takes the OS level thread your process will block. So, 
you need to be careful of what youʼre doing inside any threads you defer to make sure 
youʼre not blocking Ruby as this will block the world. 

Using EM#next_tick we can schedule the execution of a block to happen on the next 
reactor run loop iteration. The execution will happen in the main reactor thread.  For all 
intents and purposes you can consider this delay instantaneous, youʼre, essentially, 
scheduling the code to run on a different thread. Since EM is not thread safe, if we try 
to do EM#defer from a thread we can run into serious issues, and potentially crashes. 

For example, if youʼre doing some work in a deferred thread and you need to establish 
a new outbound connection with EM::HttpClient you need to do this work on the main 
thread. We can place the connection creation inside the block provided to 
EM#next_tick.

 © 2009 AideRSS.
page 9 



EM#next_tick 
Using EM#next_tick is very similar to working with EM#add_timer. We specify a block 
to EM#next_tick that will get executed on the next iteration of the reactor loop. 

require 'eventmachine' 

EM.run do
  EM.add_periodic_timer(1) do

 puts "Hai"
 end

  EM.add_timer(5) do
 EM.next_tick do

      EM.stop_event_loop
 end

 end 
end 

titania:examples dj2$ ruby next_tick.rb 
Hai 
Hai 
Hai 
Hai

EM#next_tick 

Everything scheduled using EM#next_tick will happen synchronously in the main 
thread. Any long running tasks inside an EM#next_tick block will cause the entire 
program to block until complete. Typically a bad thing. 

 © 2009 AideRSS.
page 10 



EM#defer 
While similar, using EM#defer has the added capability of providing a callback function 
that will be executed on the main thread after the operation has completed on the 
background thread. You do not have to provide the callback function. 

require 'eventmachine' 
require 'thread' 

EM.run do
  EM.add_timer(2) do
    puts "Main #{Thread.current}"
    EM.stop_event_loop
 end
 EM.defer do

    puts "Defer #{Thread.current}"
 end 

end 

titania:examples dj2$ ruby defer.rb 
Defer #<Thread:0x5637f4> 
Main #<Thread:0x35700>

EM#defer 

operation 

Providing a block to EM#defer will start executing the block on a background thread and 
continue on its merry way. Note, you should make sure that the code you execute on 
the thread wonʼt occupy the thread forever as EventMachine wonʼt detect this condition 
and the thread will be tied up indefinitely. The thread pool size is fixed, so if you start 
losing threads you wonʼt get them back. 

 © 2009 AideRSS.
page 11 



We can also utilize the ability for EM#defer to execute a callback function after running 
your operation. The callback function will be called with the return value of the operation 
if you specify the callback block to receive a parameter. 

require 'eventmachine' 

EM.run do
  op = proc do

 2 + 2
 end

  callback = proc do |count|
 puts "2 + 2 == #{count}"
 EM.stop

 end
 EM.defer(op, callback) 

end 

Rei:EventMachine dj2$ ruby defer_callback.rb 
2 + 2 == 4

callback 

EM#defer 

operation 

Here weʼre creating a proc that will sum two numbers. The result of this sum will be 
returned from the operation and passed to our callback. The callback will then be 
executed on the main reactor thread. The callback is outputting our result. 

Lightweight Concurrency
EventMachine has two built-in mechanisms to handle light-weight concurrency3. They
are, spawned processes and deferrables. Note, even though theyʼre called spawned 
processes these are not operating system processes. The name comes from Erlang 
and can be a little confusing. 

The main idea behind these two mechanisms is to be lighter, in CPU and memory, then 
regular Ruby threads. A lot of the work behind lightweight concurrency will need to be 
handled by your application. The code behind the deferrables and spawned processes 
will not be executed until your application specifically requests it to be executed. 

Letʼs take a look at how these mechanisms work. 

3 http://rubyeventmachine.com/browser/trunk/docs/LIGHTWEIGHT_CONCURRENCY 

 © 2009 AideRSS.
page 12 

http://rubyeventmachine.com/browser/trunk/docs/LIGHTWEIGHT_CONCURRENCY
http://rubyeventmachine.com/browser/trunk/docs/LIGHTWEIGHT_CONCURRENCY


EM::Deferrable 
Weʼll start by taking a look at EM::Deferrable4. When you mix EM::Deferrable into your 
class you are provided with the ability to associate callbacks and errbacks with 
instances of that class. You can define any number of callbacks and errbacks that may 
be executed. Callbacks and errbacks are executed in the order they were attached to 
the instance. 

In order to cause the callbacks and errbacks to fire you call #set_deferred_status on the 
object. Youʼll provide either :succeeded or :failed as the parameter which will trigger the 
callbacks, if :succeeded was specified, or the errbacks, if :failed was specified. These 
blocks will be executed immediately on the main thread. There is also some syntactic 
sugar allowing you to call #succeed and #fail on the deferrable object to set the status. 

Once the status has been specified on the object, any future callbacks or errbacks will 
be executed immediately upon creation, as specified by the status. 

Letʼs take a look at how this works in practice. 

require 'eventmachine' 

class MyDeferrable 
include EM::Deferrable

  def go(str)
    puts "Go #{str} go"
 end 

end 

EM.run do
 df = MyDeferrable.new
 df.callback do |x|

    df.go(x)
 EM.stop

 end
  EM.add_timer(1) do

 df.set_deferred_status :succeeded, "SpeedRacer"
 end 

end 

titania:EventMachine dj2$ ruby deferrable.rb 
Go SpeedRacer go

callback 

Deferrable.new 

:succeeded 

callback 

4 http://rubyeventmachine.com/browser/trunk/docs/DEFERRABLES 

 © 2009 AideRSS.
page 13 

http://rubyeventmachine.com/browser/trunk/docs/DEFERRABLES
http://rubyeventmachine.com/browser/trunk/docs/DEFERRABLES


Taking a closer look at whatʼs going on here, we start by inserting include 
EM::Deferrable into our class. This will mixin the needed methods to make us a 
deferrable. 

We create our MyDeferrable class as normal and proceed to call #callback and 
#errback on our instance. You can specify any number of parameters to the callback 
and errback blocks. When we have determined if our work has succeeded or failed we 
execute #set_deferred_status on the object. In this case weʼve :succeeded and, as we 
defined our callback block with one parameter, pass “SpeedRacer” to the callback. 

By default, all callbacks will be executed with the same parameter. Itʼs possible, inside 
the callback, to call #set_deferred_status again with a different set of parameters for 
subsequent callbacks to receive. This is further explained in the deferrable 
documentation. 

There are times when you donʼt need to implement an entire class just to get the 
deferrable object properties. In these cases EventMachine provides you with 
EM::DefaultDeferrable. Everything works the same as mixing in EM::Deferrable except
you just do EM::DefaultDeferrable.new instead of a custom class..

 © 2009 AideRSS.
page 14 



EM::SpawnedProcess
EventMachine spawned processes are inspired by Erlang processes. The naming can 
be a bit confusing as there are no operating system processes involved. The idea 
behind spawned processes is that you can create a process and attach some code. At 
some point in the future you can #notify the spawned object and it will execute the block 
attached. 

Unlike deferrables, the code block will not be executed immediately but at some point 
after the #notify call has been made. 

require 'eventmachine' 

EM.run do
 s = EM.spawn do |val|

    puts "Received #{val}"
 end

  EM.add_timer(1) do
 s.notify "hello"

 end
  EM.add_periodic_timer(1) do
    puts "Periodic"
 end

  EM.add_timer(3) do
 EM.stop

 end 
end 

Rei:EventMachine dj2$ ruby spawn.rb 
Periodic 
Received hello 
Periodic

Spawn 

#notify 

 © 2009 AideRSS.
page 15 



Network Fun 
Now we get into the good stuff. Network programming is what EM has been designed to 
handle. The ability to handle any protocol, and a series of base protocol 
implementations, makes things easy as an API or server developer. 

Servers 
Weʼre going to get started on the server side of things. The code to do clients will be 
very similar but weʼll get to that in the next section. 

Heading back to our introduction example of the Echo server: 

require 'eventmachine' 

class Echo < EM::Connection
 def receive_data(data) 

send_data(data)
 end 

end 

EM.run do
 EM.start_server("0.0.0.0", 10000, Echo) 

end 

Rei:~ dj2$ telnet localhost 10000 
Trying 127.0.0.1... 
Connected to localhost. 
Escape character is '^]'. 
helo 
helo 
goodbye cruel world 
goodbye cruel world

Echo 

Reactor 

Client 

receive_data send_data 

As you can see, weʼre creating an Echo class and inheriting from EM::Connection. We 
use the EM#start_server method to create a server listening on all interfaces, port 
10,000 and using the Echo class weʼve defined. 

Interestingly, there are actually two more ways we could have written this same code. 
Which one you use is a matter of taste. 

 © 2009 AideRSS.
page 16 



We could use a module: 

Or a block: 

require 'eventmachine' 

module Echo
  def receive_data(data)

 send_data(data)
 end 

end 

EM.run do
  EM.start_server("0.0.0.0", 10000, Echo) 
end 

require 'eventmachine' 

EM.run do
  EM.start_server("0.0.0.0", 10000) do |srv|

 def srv.receive_data(data)
 send_data(data)

 end
 end 

end

In all three cases when a new connection is established a new, anonymous, class is 
created which will include your code. This is important, each connection has a new 
instance of your class. You canʼt store anything in that instance between connections 
as it wonʼt exist on the next connection. Weʼll get to ways around this in a moment. 

We need to implement one method, #receive_data(data) in order to function as a 
server. If you donʼt implement #receive_data youʼll end up seeing something similar to 
“............>>>6” spit out to the console. If youʼre like me, youʼll then spend thirty minutes 
trying to figure out where thatʼs coming from. 

Along with #receive_data, there are a few other methods that will be invoked during the 
lifetime of the client connection. 

 © 2009 AideRSS.
page 17 



post_init Called during instance initialization but before the 
connection has been fully established. 

connection_completed Called after the connection has been fully 
established. 

receive_data(data) 
Called when data is received from the client. 
Data will be received in chunks. Chunk assembly 
us youʼre responsibility. 

unbind Called when the client is fully disconnected. 

In our example we use #send_data(data) to send the reply back to the client. If we 
were sending back a large data file we could also use #send_file_data(filename) which 
is a higher performance method to stream large chunks of data. 

Finally, although not shown here, two useful methods are #close_connection and 
#close_connection_after_writing. These two methods are very similar in their operation. 
In both cases they will signal for the client connection to be closed. The difference lies 
in that #close_connection_after_writing will make sure that any data sent with 
#send_data is sent to the client before the connection is closed.

 © 2009 AideRSS.
page 18 



As I mentioned previously, we canʼt store any information in our class object between 
connections. Luckily, or, I guess, by design, EventMachine provides a mechanism to 
handle this. 

require 'eventmachine' 

class Pass < EM::Connection 
attr_accessor :a, :b
def receive_data(data)

send_data "#{@a} #{data.chomp} #{b}"
end 

end 

EM.run do
 EM.start_server("127.0.0.1", 10000, Pass) do |conn| 

conn.a = "Goodbye"
conn.b = "world"

 end 
end 

titania:~ dj2$ telnet localhost 10000

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

mostly cruel world

Goodbye mostly cruel world


By providing a block to EM#start_server, EventMachine will pass in the Pass instance 
after it has been initialized but before any client data has been received. We can use 
this object to set any state into our instance that we require. 

 © 2009 AideRSS.
page 19 



Clients 
Once weʼve got our server up it would be beneficial to connect to it with a client. 
Thankfully, you know the majority of whatʼs needed to make the magic happen after 
doing our server work. 

require 'eventmachine' 

class Connector < EM::Connection
 def post_init

puts "Getting /"
    send_data "GET / HTTP/1.1\r\nHost: MagicBob\r\n\r\n"

end

 def receive_data(data)
puts "Received #{data.length} bytes"

end 
end 

EM.run do
 EM.connect("www.postrank.com", 80, Connector)

end 

titania:EventMachine dj2$ ruby connect.rb
Getting /
Received 1448 bytes
Received 1448 bytes
Received 1448 bytes
Received 1448 bytes
Received 2896 bytes
Received 1448 bytes
Received 1448 bytes
Received 935 bytes

Other then the call to EM#connect to create the connection, the code in this example 
follows the ideas set forth when creating our server above. The callback methods have 
the same names and you send data to the server the same as you would to a client, 
with #send_data. 

 © 2009 AideRSS.
page 20 

http://www.postrank.com
http://www.postrank.com


Conclusion 
This ends our whistle-stop tour of EventMachine. Weʼve taken a look at getting things 
up and running using EM#run. Creating one-shot and periodic timers. Deferring and 
next_ticking blocks of code. Creating deferrables and spawned processes along with 
client and server code. 

Hopefully, after all that, you have a better understanding of how EventMachine function 
and how it can be used in your applications. 

If youʼve got any questions or comments feel free to contact me at: dan@aiderss.com.

 © 2009 AideRSS.
page 21 

mailto:dan@aiderss.com
mailto:dan@aiderss.com


Resources

• http://rubyeventmachine.com/ 
• http://github.com/eventmachine/eventmachine/tree/master 
• http://groups.google.com/group/eventmachine/topics 
• http://eventmachine.rubyforge.org/ 
• http://www.igvita.com/2008/05/27/ruby-eventmachine-the-speed-demon/ 
• http://20bits.com/articles/an-eventmachine-tutorial/ 
• http://nutrun.com/weblog/distributed-programming-with-jabber-and-eventmachine/ 
• http://www.infoq.com/news/2008/06/eventmachine 
• http://everburning.com/news/playing-with-eventmachine/ 
• http://blog.nominet.org.uk/tech/2007/10/12/dnsruby-and-eventmachine/ 
• http://devver.net/blog/2008/10/sending-files-with-eventmachine/ 
• http://en.oreilly.com/rails2008/public/schedule/detail/1820 
• http://nhw.pl/wp/2007/12/07/eventmachine-how-to-get-clients-ip-address 
• http://simonwex.com/articles/2008/10/22/eventmachine-http-client 
• http://adrianhosey.blogspot.com/2009/01/eventmachine-tcp-server-module-for

ruby.html

 © 2009 AideRSS.
page 22 

http://rubyeventmachine.com/
http://rubyeventmachine.com/
http://github.com/eventmachine/eventmachine/tree/master
http://github.com/eventmachine/eventmachine/tree/master
http://groups.google.com/group/eventmachine/topics
http://groups.google.com/group/eventmachine/topics
http://eventmachine.rubyforge.org/
http://eventmachine.rubyforge.org/
http://www.igvita.com/2008/05/27/ruby-eventmachine-the-speed-demon/
http://www.igvita.com/2008/05/27/ruby-eventmachine-the-speed-demon/
http://20bits.com/articles/an-eventmachine-tutorial/
http://20bits.com/articles/an-eventmachine-tutorial/
http://nutrun.com/weblog/distributed-programming-with-jabber-and-eventmachine/
http://nutrun.com/weblog/distributed-programming-with-jabber-and-eventmachine/
http://www.infoq.com/news/2008/06/eventmachine
http://www.infoq.com/news/2008/06/eventmachine
http://everburning.com/news/playing-with-eventmachine/
http://everburning.com/news/playing-with-eventmachine/
http://blog.nominet.org.uk/tech/2007/10/12/dnsruby-and-eventmachine/
http://blog.nominet.org.uk/tech/2007/10/12/dnsruby-and-eventmachine/
http://devver.net/blog/2008/10/sending-files-with-eventmachine/
http://devver.net/blog/2008/10/sending-files-with-eventmachine/
http://en.oreilly.com/rails2008/public/schedule/detail/1820
http://en.oreilly.com/rails2008/public/schedule/detail/1820
http://nhw.pl/wp/2007/12/07/eventmachine-how-to-get-clients-ip-address
http://nhw.pl/wp/2007/12/07/eventmachine-how-to-get-clients-ip-address
http://simonwex.com/articles/2008/10/22/eventmachine-http-client
http://simonwex.com/articles/2008/10/22/eventmachine-http-client
http://adrianhosey.blogspot.com/2009/01/eventmachine-tcp-server-module-for-ruby.html
http://adrianhosey.blogspot.com/2009/01/eventmachine-tcp-server-module-for-ruby.html
http://adrianhosey.blogspot.com/2009/01/eventmachine-tcp-server-module-for-ruby.html
http://adrianhosey.blogspot.com/2009/01/eventmachine-tcp-server-module-for-ruby.html

