
Rick Strahl

jQuery Puts the Fun Back into
Browser Scripting
Ok, I admit it. For many, many years I hated
JavaScript. I hated writing JavaScript code,
and even more I hated the pain that goes
along with dealing with different browsers
using reams of script code. I got into
ASP.NET and stuck to server code. After all,
that’s what ASP.NET makes really easy. Even
when ASP.NET AJAX came along, it didn’t
really facilitate my work doing client-side
coding.

Today I still hate the same JavaScript
problems as they haven’t gone away, but thanks to a recently
gained better understanding of JavaScript and a small JavaScript
client library called jQuery, I no longer dread the days when I have
to write client-centric AJAX or UI script code.

Looking back, it was not until the AJAX wave started forming a few
years back that I even considered getting more seriously interested
in JavaScript. It took me some time after that to slowly get up to
speed on modern JavaScript principles I had never even thought
about up until then; effective use of closures, the Prototype model,
class definitions, using functions as code, all of which require some
getting used to when you are primarily dealing with static
languages like C# and ASP.NET as I do for most of my work.

But even knowing JavaScript reasonably well is still not
enough-these days it’d be silly to work with raw JavaScript for DOM
programming and not use some sort of library to help bridge the
browser-specific quirks and provide utility functionality to make it
easier to work in a browser-agnostic environment. When I started
my JavaScript quest, I actually built my own library from scratch
because there were few libraries out there and they were sparse in
features as it was. But today, many highly functional and solid
libraries exist so you won’t have to go that route and you have a
number of quality choices available.

The JavaScript library that really grabbed me is jQuery. jQuery is a
relatively small library that is based on a few very simple and
intuitive principles. To me, this library strikes the right balance
between size, feature set, and ease of use. And after using this
library for the last year or so it feels like “this is how JavaScript and
DOM programming should be!” and I can hardly imagine doing
client-side coding without it any more.

jQuery can bring tremendous productivity gains and it’s easy to
learn and work with. It’s one of those tools that has drastically
changed how I think about the client side of Web development in
combination with ASP.NET and frankly, it has helped me improve
my skill set and understanding of HTML, CSS, and DOM
programming significantly. It’s also made me tremendously more
productive and-more importantly-confident in being able to tackle
complex UI and front-end logic in JavaScript reliably.

Key Features of jQuery

jQuery is an open source and therefore free library. You can grab it
from: www.jQuery.com

The site contains downloads of jQuery in various compressed and
uncompressed formats as well as excellent documentation to get
you started with examples and syntax for each of the API functions
available.

There’s quite a bit of functionality provided in jQuery and the
following highlights some of the key features:

DOM Element Selectors: Selectors allow selection of DOM

elements using CSS selector syntax (or an extended version
thereof). Using selectors makes it very easy to select single
or multiple elements by things like Id, CSS class, relationship
to other elements, inheritance, etc., or combinations thereof.
You can also pass in a DOM object or an existing jQuery
instance to provide a selector. While it may look strange at
first to use CSS expressions via code and string expressions,
if you’re familiar with CSS 2.1 and later and CSS selector
syntax, you’ll be right at home with jQuery’s selectors which
use the same syntax plus a few useful extensions to even
further simplify selection of elements. The power of selectors
lies in easily getting at specific elements in the document,
whether it’s the selection of a single element or a group of
elements. A simple example: It’s trivial to select all 2nd
column TD elements in a table with a simple selector like this:
$("#gdEntries td:nth-child(2)").
The jQuery Object-the Wrapped Set: Selectors result in a
jQuery object or what is known as a wrapped set. The
wrapped set is an array-like structure that contains each of
the selected DOM elements. You can access the selected
elements directly like an array (i.e., $(selector)[0] gives you
the first DOM element), or use jQuery operational methods
against all the elements in the wrapped set. You can also use
the .each() function on the wrapped set to walk through each
item and fire a function in response to each item in the
iteration.
Wrapped Set Operations: Iteration is one way to deal with
the wrapped set, but the real power of jQuery kicks in via the
operations you can perform against the selected elements.
Intuitive methods on the wrapped set allow you to do things
like addClass()/removeClass() on elements, set or get css()
styles directly including smart logic that accounts for browser
differences of assignment types (number and string
translations mostly) and values (for example, opacity does
the right thing on all browsers). You can set and retrieve
attributes with attr(), or retrieve or set a value with val(),
text(), or html(). You can clone selected DOM elements or
create new elements on the fly just by providing an HTML
string and then take the selection and inject it into the
document with methods like appendTo(), prependTo() or
reversely use a parent element to append() or prepend() the
new selected element(s). There are basic but useful effects
methods that can be applied to show() and hide() elements in
a smart way that checks for opacity, display, and visibility and
adjusts all to show or hide elements. You can do all of this
and much more against all of the selected elements. There’s
also simple event binding and unbinding that makes it a snap
to attach event handlers and reliably unbind them with many
of the common event handlers represented by simple
functions like click(), mouseover(), keypress() and load().
And that’s only a small subset of functionality available.
jQuery has about 100 wrapped set methods available plus a
number of static utility functions that are globally
applicable.Most wrapped set operations are also
chainable-they return the jQuery wrapped set object as a
result. This means you can chain together many operational
methods in a single command. Effectively this means you can
select once and operate many times against the same
selected set and even filter or expand the wrapped set with
methods like find(), filter(), not() or add(). The beauty of
many of these functions is that they do things you actually
want to do, and are intuitively overloaded. Methods like val()
or text() act both as retrieval and setter methods. Methods
that deal with numeric values can take either text or numeric
values. CSS assignments to browser-dependent tags are
automatically fixed up. Although the number of functions
provided by jQuery is relatively small, many of the functions
provide overloaded functionality to perform intuitive
behaviors. The end result is that you have a relatively small
API to learn, but a much broader range of functionality that is
available through it.
Small Footprint: jQuery is a fairly compact base library yet
it’s feature-packed with functions that you’ll actually use. In

my relatively short time using jQuery, I’ve gone through well
over 85% of the jQuery functions with my code, which points
to how useful the library is. All this functionality provided
ends up in a compressed size of just under 20k (96k
uncompressed with comments). For that you get selectors, a
whole slew of operations that can be performed on the
wrapped set, AJAX functionality, a host of utility functions for
object/array manipulation, and a number of basic effects. For
most other things there are plug-ins that generally tend to be
small in size and very specialized to give you a modular
design. Size matters (to me at least) and jQuery gets high
points for “bang for your buck.”
Easily Extensible: I think of jQuery as a language and DOM
extension library that provides a core set of highly useful
features. It’s small and tightly focused on providing
functionality in a few key areas and no more) and the jQuery
team works diligently to keep the library small. To make it
easy to create more complex functionality, jQuery includes a
simple plug-in model that makes it extremely easy to hook
into the wrapped set and provide your own plug-ins. A key
aspect of this easy extensibility is the already large and
quickly growing jQuery plug-in community
(plugins.jquery.com). Plug-ins exist for just about any task
imaginable and while the quality of plug-ins varies, most are
highly functional and include good documentation and
examples all in the same jQuery style that the core library
puts forth. In fact, the jQuery team requires documentation
and examples as part of its plug-in listing process. All plug-ins
come with source code so you can look at how they work and
extend or modify them. There’s also a forthcoming official
jQuery.ui plug-in library that adds key UI features like
draggables, droppables, sortables and a few compound
components like datepicker, accordion, slider, tab, and dialog
controls for example. If you need some specialty
functionality, chances are that a plug-in already exists that
provides the functionality you’re looking for. And if it doesn’t,
it’s easy enough to start creating the functionality yourself
with the help of jQuery or other plug-ins as a baseline.

Why jQuery?

As I mentioned earlier, I’ used a number of JavaScript libraries
before I decided on jQuery. jQuery grabbed me immediately
because I was able to do some really nice looking and practical
stuff within just minutes. The effects probably got me first because
they were so easy and integrated in this small library. After
experimenting just a few minutes more I had written ten lines of
jQuery code that would have taken me 50-60 in raw DOM code.
Later, as I got better with jQuery and read through the
documentation more closely, I halved those ten commands down to
five.

jQuery code tends to flow smoothly so even when you reduce your
code you don’t just end up making it terse and unreadable. jQuery
genuinely feels easy to use, to me, and it remains readable even
though chained jQuery statements can get lengthy (although you
can also break up long statements). The chainability of commands
allows a single selector to have many operations applied to it. Most
jQuery functions return the jQuery object, which makes it possible
to chain operations against the wrapped set together. It’s not
uncommon to chain long lists of operations to a single selector. For
example:

$("#gdEntries tbody tr:even")
.not(":first-child")
.not(":last-child")
.addClass("gridalternate")
.css("border","solid 1px lightgrey");

Some samples I’ve seen have as many as 20 functions applied plus
some inline callback handlers, which can get ugly. However, that’s
really a choice of preference-it’s entirely possible to create a jQuery
and store it in a variable and then use the variable to apply
operations so you can break up lengthy commands.

The jQuery API

jQuery is easy to use because jQuery’s syntax is easy to pick up.
Once you get the basic concept of selectors and you get a feel for a
handful of the wrapped set functions you commonly use, you are
well on your way to productivity.

You can best learn about jQuery’s API on the jQuery site and read
the documentation links: http://docs.jquery.com/Main_Page.

Take a look through the various sections and check out the
examples to get a good idea of what’s available. If you’d rather see
all functionality at a glance for reference or if you’re a hot shot and
don’t read documentation, let me point you to a couple of reference
cheat sheets that you can print out and keep handy:

You can find a full color jQuery reference sheet from ColorLab at
http://shrinkster.com/y65.

Here is another jQuery cheat sheet in black and white for easier
printing: http://shrinkster.com/y68.

The jQuery API is manageable in terms of size. Functionality is
grouped into a general set of usage areas such as DOM
manipulation, CSS, Attributes and Values, Traversal and Filtering,
Event Handling, AJAX, and a few more general utility functions.
Functions have short and obvious names so there’s no
ambiguity-it’s a very clean API implementation. Using jQuery in
your JavaScript code doesn’t feel like a heavy handed bolt-on, but
rather like something that should have been there all along in the
first place. It’s consistent and intuitive and there’s practically no
learning curve-you can jump right in.

Selectors and Wrapped Set Operations

Element selection is such a common thing in DOM programming
and having a clean CSS-based selector syntax to select groups of
elements greatly reduces the amount of code to find and update
elements on the page.

The jQuery API contains around 100 functions that can be applied
against the wrapped set, plus a few static functions that provide
what are called utility functions, which include object and array
manipulation and most AJAX functionality.

With selectors alone you get a lot of control over complex tasks. If
you add operations like the ability to hide() and show() elements
easily, consistently and optionally with effects, cloning and
removing of objects, and an easy browser-independent way to
manipulate the style, class and attribute properties of elements,
you all of the sudden find yourself with much more control over the
browser with just a few short lines of code. The amount of code
you write and even the amount of DOM knowledge that you have to
have is reduced significantly.

jQuery normalizes many DOM and browser-specific features for you
so that you can, for the most part, bid adieu to browser-specific
code paths in your script code. In addition, jQuery normalizes
many style tags that have different meanings or behaviors in
different browsers. For example, the opacity() function works with
a single fractional decimal value regardless of which browser is
used even though IE doesn’t support the opacity style and instead
uses a filter. The text() property appropriately gets and sets values
appropriate for each browser and element type. Furthermore,
width() and height() work with string or numeric values and are
normalized across elements so window and document return the
same type of values as DIV tags do. Many functions in jQuery are
overloaded so the functions can both retrieve and set values
depending on whether you pass a value in or not. You can call
text() to retrieve a value from the selected element(s) or use
text("Hello World") to set a value on all matched elements. Simple
design choices like this that reuse and overload rather than bloat
the API with excessive functions keep jQuery compact and very
approachable.

http://docs.jquery.com/Main_Page
http://shrinkster.com/y65
http://shrinkster.com/y68

Event Handling

Nowhere is browser independence and consistency more useful
than with event handling. jQuery provides a host of event handler
functions that you can apply against the wrapped set to allow for
consistent event handling. Functions like click(), keydown(),
keyup(), mousedown(), mouseup(), load(), resize(), etc., map
most common DOM events and provide a singular handler
implementation that take a callback function as a parameter.
jQuery then passes the callback handler a normalized event object
that has a common set of event properties that are consistent
across browsers. You get source and target object references (if
applicable), common keyCode translations, and a common way to
abort events or cancel event bubbling. jQuery also provides the this
pointer consistently in event handlers as the DOM element that
originated the event. In addition to mapping most standard DOM
events, there are also manual binding methods like bind() and
unbind(), one() (which fires a specified event exactly once) and
trigger() (which triggers an event on elements) functions that
provide manual control over event handling using the same
principles. Event handling code is super easy-check out the
following snippet which implements hover row highlighting on a
table using the hover() function plus a click() handler on all of the
table:

$("#gdEntries tbody tr")
.hover(function(e) {

$(this).addClass("gridhighlight");
},
function(e) {

$(this).removeClass("gridhighlight");
})
.click(function(e) {

window.location =
"otherpage.aspx?id=" +

$(this).attr("id");
});

This code selects all rows in the table and applies the hover
highlight by handling the in and out events and adding or removing
a CSS class. jQuery’s hover() function wraps mouseenter and
mouseout, so it takes two event handlers. But hover() is also smart
enough only to fire when moving outside of the specified element
and not when moving into child containers like the native mouseout
event. This is just another example of how jQuery simplifies a
common scenario in an easy-to-understand event handler function.

A click() handler is also set up to navigate to a new location based
on an ID value set in the grid row.

While all of this may look a little weird if this is your first time with
jQuery, these few lines of code provide a lot of functionality that
would be much more complex to do with manual DOM code, while
still being rather descriptive. Although the code is compact, you
can still easily see what this code does.

jQuery as an API for the DOM

In a way, jQuery feels like a great equalizer-a leveling of the
browser DOM programming model into a higher level API that
provides more uniform access to the DOM in a more consistent way
across browsers. This is something akin to what the HTML DOM
was always striving to be, but because of browser vendor bickering
probably never will achieve natively. A library like jQuery can bring
some sanity back into DOM development by providing the
abstraction needed to deal with browser differences.

To be clear, jQuery isn’t the first library that has provided browser
abstraction, selectors with operations on it (tools like Prototype,
Dojo, Ext etc., do similar browser abstraction), but I think jQuery
has done so in a very clean and approachable way that is easy to
understand and work with, which is key for adoption.

And jQuery has become wildly popular because of it. It strikes the
right balance between functionality, size, and usability so it never

feels overwhelming and yet provides important and practical
functionality. jQuery neither reduces the feature set to a useless
subset, nor provides so much functionality that you get lost in the
myriad of choices. There’s just enough so you can print it all onto a
single sheet and understand all of the functionality just at a glance.

In so many ways jQuery feels “just right” and from watching the
code base grow (you can watch the SVN repository directly if you
like to keep track) I think the jQuery team is very much striving for
that very premise of “no more functionality than you need, but no
less.”

Plug-ins to Provide Everything Else

It’s important to understand though that jQuery is a core library-it
provides DOM manipulation and AJAX functionality, plus basic
effects out of the box, plus a host of useful utility functions. But it’s
not the do all, end all library for JavaScript that you will ever need.
jQuery is focused very tightly to a very specific feature set and
while very functional it’s very likely that you’ll end up resorting to
plug-ins for specific UI components or additional functionality.

To address the “not enough functionality” aspect, jQuery includes a
very simple plug-in API model that is easy to implement. It
provides a jQuery.fn object that you can extend with methods,
each of which gets passed an instance of the active jQuery
wrapped set through the this pointer. What this means is that you
can write a jQuery plug-in with just a few lines of code and
participate in the wrapped set processing and chainability just as
native functions do.

As a result, countless plug-ins have sprung up for just about any
kind of extensibility features you might need for your applications.
Although the quality of plug-ins varies, most come with good
online, runnable examples that let you view source and
documentation, following the guidelines that the jQuery site has set
for its own documentation and plug-in requirements.

In addition the jQuery team has now put out a jQuery UI
(ui.jquery.com) library that provides a host of additional useful and
very rich display features including draggables, droppables,
sortables, resizables, selectables and a host of controls like
Datepicker, Accordion, Slider, and Dialog. These features are
ridiculously easy to use for the complexity of functionality provided
and it’s great to see this sort of UI extensibility is now easily
available in a combined UI plug-in library. As I write this, the
library is in Beta 2 but it’s already very solid and I’ve used a
number of components (mostly the drag and drop components and
the Sortables plug-in) in my applications for great functionality
enhancements.

jQuery, AJAX, and ASP.NET

jQuery is a client library and as such has no direct support for
ASP.NET or any other server framework. But you can definitely call
back to the server by simply using one of a number of AJAX
methods available both high level and low level. The high-level
functions allow you to make REST-style callbacks using POST or
Querystring parameters, which is very straightforward.

There are a number of options available on how to do this. You can
choose an HTML-centric approach and return HTML content by
calling back to the same page and rendering either HTML manually
through code, rending individual controls on a page, or going out to
separate full ASPX “template” pages that render specific content for
callbacks.

You’ll need to do a little extra work in managing callback routing,
but it’s really quite trivial to do by looking at query string or POST
parameters and checking for a specific parameter. I have several
examples on how to do this from sessions I recently presented at
DevConnections that you can download from here:
http://shrinkster.com/y5x

Alternatively you can take advantage of ASP.NET ASMX, Ajax

http://shrinkster.com/y5x

PageMethods or WCF 3.5 Web services, which I also cover in the
slides and samples. Web services use JSON (JavaScript Object
Notation) messaging and in order to use Web services, you must
use an additional JSON parsing library to turn client-side values
and objects into JSON to pass to ASP.NET. I use JSON2.js from
Douglas Crockford, although it needs to be modified to support
Microsoft AJAX-style date formatting, which is specific to the
Microsoft implementation. Due to lack of a date literal in the WC3
JavaScript specification, Microsoft uses a string-based date format
that requires encoding and decoding logic in the JSON encoding
and parsing JavaScript code. I’ve also provided the patched
json2.js library in the above samples. With this JSON library in
place and a small wrapper function, it becomes very easy to call
standard ASP.NET Web services both in ASMX and WCF flavors
directly from jQuery without requiring the ASP.NET AJAX client
libraries.

You can find out more about using jQuery for WCF callbacks on my
blog at this link:
http://www.west-wind.com/weblog/posts/324917.aspx.

If you prefer not to use ASP.NET Web services on the server there
are also several other server-side frameworks like my own West
Wind Ajax Toolkit and JayRock that also provide server-side JSON
services that are self-contained and can be called from jQuery.

jQuery and ASP.NET Controls

Since jQuery is a client-side library, most extensibility and usage
scenarios involve client-side hookups through JavaScript. This
means that you write JavaScript code to take advantage of jQuery
functionality. In most cases, this is fully appropriate, but as an
ASP.NET developer you may feel the urge to get a more
ASP.NET-like feel for some jQuery functionality. There’s nothing
stopping you from integrating with jQuery from your server-side
ASP.NET code.

One of the simplest things you can do is to use the ClientScript
object to inject JavaScript into the page and so automate some
operations against jQuery. For example, it might be quite useful to
have any ClientScript.RegisterStartupCode() you generate use the
highly useful $(document).ready() function to ensure that the DOM
has completed loading by the time your startup code fires. Or, you
may want to automate setting certain options on various plug-ins
from the server side when the page loads. I have a simple example
of this in the downloadable samples, which simply calls a jQuery
implemented function from a server method via client script.

But sometimes you may also want to map a more complex control
to an ASP.NET server control. For example, some time ago I
wrapped Marc Garbanskis ui.Datepicker control into an ASP.NET
control. Since I use this control a lot, I get much better reusability
and a self-contained control that knows what it needs to render
itself and its dependencies including support CSS, images, and
even the jQuery library if it hasn’t been loaded yet. In addition, the
control handles postbacks in all of its varying display modes.

This approach is probably overkill for most plug-ins, but for some
more control-oriented plug-ins like the datepicker that require
potentially lots of settings, it actually makes good sense to wrap
the behavior into a server control, especially if you end up using
that control a lot in your code. I use the date picker for just about
all of my date entry now so using the server control is quicker and
easier than manually making the appropriate plug-in initialization
calls via JavaScript manually especially if you have several controls
on the page. Most of the interoperability is handled via the
ClientScript object (or rather a ClientScriptProxy object that also
detects ScriptManager and uses the right one) which injects the
JavaScript into the generated HTML page output.

jQuery and IntelliSense in Visual Studio

When you use jQuery with Visual Studio you may be disappointed
to find that IntelliSense doesn’t work very well for it out of the box
with Visual Studio 2008 RTM. However, recently Microsoft released

http:ASP.NET
http://www.west-wind.com/weblog/posts/324917.aspx

a Hotfix rollup for Visual Studio 2008 that provides better parsing
support for various JavaScript libraries including jQuery. With it you
get basic support for jQuery’s wrapped set operations, but only on
direct access of the jQuery function. Any chaining currently loses
the jQuery object and so only the first level shows IntelliSense.
With a few quick modifications of adding ASP.NET AJAX-style
comments into the jQuery script file you can get additional
IntelliSense for key functions-it’s a little work but if you pick a few
of the functions you use a lot you get IntelliSense on most wrapped
set operations, which helps a lot to get up to speed with jQuery.
You can find out more about how to get better jQuery IntelliSense
with the Hotfix at http://snurl.com/2efko.

Microsoft promises even better support for jQuery in the
forthcoming release of Visual Studio 2008 SP1, which is supposed
to provide full script and parsing support (a beta of SP1 is available
today) so manual fix up of the jQuery script file shouldn’t be
necessary any more.

jQuery.UI

At this point I’ve talked purely about the core jQuery library, but
you may find that if you want to create slick UIs with rich visual
effects, the jQuery core library doesn’t quite get you there.
However, the jQuery team recently released a new set of plug-ins
for jQuery.ui. Although version 1.0 was a horrible release of this
library, version 1.5, which is currently still in late beta, looks like it
squarely hits the mark to provide common and practical rich user
interface features. jQuery.ui combines a number of previous
plug-ins into a single library, which has been reworked to provide a
consistent API. The library is also managed by the jQuery
development team and provides many of the same practical and
extremely easy-to-use features for building interesting and very
slick UIs with little code.

Most of the jQuery UI features are extenders that are applied
against the matched set, so things like draggables, droppables,
sortables, resizables and selectables are applied against any
elements matched. These core UI components are then further
abstracted by a few controls. I’ve used drag and drop extensively
with jQuery and it’s easy to implement this rich UI functionality into
your own apps. I also use the Sortables plug-in extensively.
Sortables lets you sort lists and div tags easily using rich user
interface effects that use transparency, and smooth drag and drop
effect. It’s amazing how much of a usability improvement you can
get from what seems to be very small changes in script code.

What’s Not to Like?

If all of this sounds like a glowing commercial of a tool, you can be
assured that I’m just a happy user who’s stumbled onto this library
some time ago and fell in love with it the first time I used it. I tend
to be very critical of the tools I use, but I have yet to have any
serious complaints about jQuery. This library just works for me and
it works the way I like to work.

But the library is not “the perfect tool” and doesn’t solve every
JavaScript and DOM problem for you, but in my time of nearly a
year with jQuery I haven’t run into a showstopper problem. You
may still need a set of a few helper functions to help with non-DOM
related functionality. For example, I still use my old JavaScript
library for a number of UI and JavaScript utility functionality like
date and number formatting, providing windowing support, and a
host of other features. Bottom line: You’ll probably still have a
utility library with helper functions to provide a few custom routines
especially when it comes to formatting and manipulating the
standard JavaScript types which jQuery doesn’t cover.

The biggest concern that you might run into is versioning or
possible interference with other libraries. Although jQuery supports
a simple mechanism for isolating its own jQuery namespace (either
via closure wrapping or using the $.noConflict() function), you may
still run into issues with other libraries that also expose the $()
function. There’s also the issue of versioning of the jQuery library

http://snurl.com/2efko
http:jQuery.ui

itself which is revised frequently. If you use the library names as
downloaded (which include the version numbers) you’ll end up
renaming files and references frequently as the library is updated.
If you use a fixed name you may run into version issues.

But all of this is minor and even expected. To be honest I’m
grasping to find fault with jQuery for balance here because my
editor mentioned I should mention downsides. A quick search
around the Web seems to confirm my feelings though-it’s really
difficult to dig up dirt on jQuery. But you can judge for yourself by
trying it out and my bet is you’ll dig it because it’s quick to pick up
and highly practical.

Is jQuery for You?

jQuery has been a watershed tool for me. I’ve been struggling with
JavaScript for years and have always dreaded it, but when I started
using jQuery things changed for me drastically. Many little tedious
things that are painful using plain DOM code magically drop away
when using this little library. The variety of plug-ins and tools and
even the basic effects or the more sophisticated ones available in
plug-in libraries make this tool compelling. It’s by no means perfect
and you still have to fight the DOM at times with different
renderings between browsers, but for the most part jQuery
alleviates many of the problems faced in raw DOM development.
Heck, jQuery provides what the DOM should provide NATIVELY.

As an ASP.NET developer you may be hesitant to embrace a
non-Microsoft tool, especially when Microsoft has ASP.NET AJAX.
But consider that Microsoft ASP.NET AJAX offers almost nothing
useful to the application-level client developer. You can add jQuery
to ASP.NET AJAX and not risk feature overlap. ASP.NET AJAX
simply doesn’t address the same functional domain that jQuery
does and the two libraries can seamlessly interact without stepping
on each other.

If you’re like me and you don’t use ASP.NET AJAX, you get some of
the key features like AJAX functionality and the ability to call ASMX
or WCF Web services with only a little bit of extra work and file
payload as described earlier without losing anything in the process.
In return, using jQuery you gain a smaller library size and no
dependency on System.Web.Extensions or the large Microsoft
AJAX Library.

Ultimately whether you decide to go with jQuery or ASP.NET AJAX
for callbacks is up to you to decide. If you’re already using ASP.NET
AJAX in your application it’s a no-brainer to use the native Web
service and page callback support since it’s definitely easiest, but
even then jQuery can still help you extensively to do something
useful with the data returned from the server. If you’re not using
ASP.NET AJAX and you are already using jQuery, it makes sense to
try and do your AJAX callbacks through this library as well and cut
out the requirement for the Microsoft AJAX Library.

jQuery is a win-win solution and it’s easy to get started, so if you
haven’t tried it out before, by all means do yourself a favor and
check it out and see how much fun client-script coding can actually
be…

