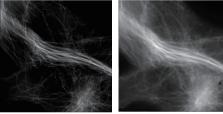
Biological Microscope General Catalog

Biological Microscopes

Contents

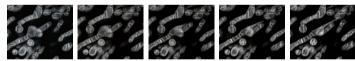
	Motorized Focusing	Macro	Brightfield	Darkfield	DIC	Phase Contrast	Polarizing	Epi- fluorescence	Additional Features	Page
Super Resolution Microscope	es		1	1						3
Inverted Microscopes										
Ti-E	1		100W/30W	1	1	1		130W/100W	NAMC*1	4
Ti-U			100W/30W	1	1	1		130W/100W	NAMC	4
Ti-S			100W/30W	1	1	1		130W/100W	NAMC	4
Ts2R-FL			LED		1	1		LED/130W	Emboss ^{*2} NAMC	5
Ts2R			LED		1	1			Emboss NAMC	5
Ts2-FL			LED			✓		LED	Emboss	5
Ts2			LED			1			Emboss	5
Cell Incubator Observation										
BioStation CT	1	1				LED		LED		7
BioStation IM-Q	1	1	LED			1		130W		7
Upright Microscopes					I					
Ni-E (focusing stage)	1		100W	1	1	1	Simple	130W/100W		8
Ni-E (focusing nosepiece)	1		100W		1			130W/100W		8
Ni-U			100W	1	1	1	Simple	130W/100W		8
Ci-E			LED	1		1	Simple	130W/100W		9
Ci-L			LED	1		1	Simple	130W/100W		9
Ci-S			30W	1		1	Simple	130W/100W		9
E200			LED/30W	1		1	Simple	LED		9
E100			LED/20W	1		1				10
Polarizing Microscopes										
LV100N POL			50W*3				1			10
Ci-POL			30W				1			10
E200POL			30W				1			10
Microscope for Asbestos Ider	ntification									
LV100ND POL/DS			50W*3			Dispersion Staining				11
Microscope for Patch Clamp	Experiments			<u> </u>						
FN1		1	100W		1			130W/100W		11
Stereo Microscopes										12
Multi-purpose Zoom Microso	copes									
AZ100, AZ-C2 ⁺		1	100W		1		Simple	130W/100W		14
AZ100M	1	1	100W		1		Simple	130W/100W		14
Laser Units										14
Confocal Microscope System	s									15
Cameras										16
Software										17
CFI60 Objectives										18
Combinations of DIC Prisms	and Objectiv	es								20
Epi-fluorescence Filter Cube										21
Dimensional Diagrams										22
							ante DIC aleganti			

*1 NAMC (Nikon Advanced Modulation Contrast) is Nikon's unique modulation contrast observation method, which provides stereoscopic images similar to DIC observation, even with samples on plastic dishes. *2 Emboss contrast is Nikon's unique contrast observation method. It provides pseudo-three-dimensional images using focal illumination, which gives high contrast to samples. *3 Brighter than 100W


Super Resolution Microscopes

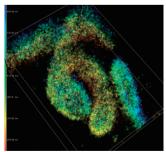
Super Resolution Microscope

N-SIM


Temporal resolution of 0.6 sec./frame enables super resolution time-lapse imaging of dynamic live cell events with double the resolution of conventional optical microscopes

- Offering nearly twice (up to approx. 115nm*) the resolution of conventional optical microscopes, N-SIM enables detailed visualization of minute intracellular structures and their interactive functions by utilizing "Structured Illumination Microscopy" technology (* excited with 488nm laser, in 3D-SIM mode)
- Ultra-high temporal resolution of up to 0.6 sec/frame* enables super-resolution time-lapse imaging of dynamic molecular interactions in living cells (* with TIRF-SIM/2D-SIM mode)
- · Various observation modes
- TIRF-SIM/2D-SIM mode allows high-speed super resolution 2D image capture with incredible contrast; TIRF-SIM doubles the resolution of conventional TIRF microscopes, facilitating a greater understanding of molecular interactions at the cell surface
- Two reconstruction methods are available with 3D-SIM mode: Slice 3D-SIM allows axial super-resolution imaging with optical sectioning at 300nm resolution in specimens; Stack 3D-SIM can image thicker specimens than Slice 3D-SIM
- The optional two-camera imaging adapter allows simultaneous two-wavelength super-resolution imaging with excitation of 488nm and 561nm
- 5-laser multi-spectral super resolution imaging facilitates the study of dynamic interactions of multiple proteins at the molecular level
- The personal super-resolution microscope N-SIM E, which provides a streamlined, affordable super-resolution system supporting only essential, commonly used excitation wavelengths and imaging modes, is also available

Left: with N-SIM, Right: with conventional microscope Microtubules in B16 melanoma cell


Dynamics of mitochondria (approx. 1 sec. image capturing intervals)

Super Resolution Microscope

N-STORM

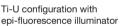
Resolution 10 times that of conventional optical microscopes enables a greater understanding at the molecular level

- Ultra-high spatial resolution (up to 20nm in xy) is achieved by utilizing accurate localization information of thousands of discrete fluorophor molecules within a specimen
- A tenfold enhancement has also been achieved in axial resolution (up to 50nm)
- Multicolor super-resolution imaging utilizing a combination of "activator" and "reporter" probes affords a critical insight into the co-localization and interaction of proteins at the molecular level
- N-STORM 4.0, a fully improved version of N-STORM, provides faster image acquisition, clearer images with high molecule counts, and a wider imaging area than before

Tom 20 of Mitochondria labeled with Alexa Fluor 647

Inverted Research Microscopes

ECLIPSE Ti Series


Ultimate solution for advanced imaging methods in live cell research

- Ti-E with motorized focusing and motorized three-port (four-port with Ti-E/B model) changeover, Ti-U with manual three-port (four-port with Ti-U/B model) changeover and Ti-S with manual two-port changeover
- High-speed multi-channel screening is possible by fast motorized control (Ti-E)
- The latest version of Perfect Focus System (PFS), which maintains focus in real-time during long-term observations, comes in two models: a UV-visible imaging model and a multiphoton imaging model. Both can maintain focus at greater depths than the previous model
- Imaging software NIS-Elements provides total system control for 6D time-lapse imaging (Ti-E)
- "Full intensity" external phase contrast unit allows use of specialized objectives without a phase ring and acquisition of high-quality images with high NA objectives
- Nikon original stratum structure allows simultaneous mounting of multiple fluorescence turrets and simultaneous acquisition of multiple wavelengths with two cameras including optional back port
- The Ti-LAPP modular illumination system allows for flexible combination of a wide range of illumination modules to create an imaging system tailored for individual research (Ti-E/U)
- By attaching a HUB controller, desired components such as a filter cube turret and filter wheel, in addition to the stage and nosepiece, can be motorized

Ti-E configuration with motorized accessories

Ti-S

Illumination modules

Ti-LAPP Modular Illumination System (for Ti-E/U)

A wide range of illumination modules can be flexibly combined or added to create an imaging system tailored for individual research. Utilizing the Ti's stratum structure, up to five modules can be simultaneously mounted and rapidly switched. Dual layer configuration of filter cube turrets enables optimal filter configuration for illumination modules on each layer.

- **1** DMD module: Allows for simultaneous multi-point photoactivation with customizable illumination ROIs
- 2 N-STORM module: Equipped with motorized switching of illumination field for N-STORM microscopy
- 3 H-TIRF module: Enables automatic laser focus adjustment and incident angle adjustment for TIRF observations

Inverted Microscopes

Inverted Research Microscopes

ECLIPSE Ts2R/Ts2R-FL

A compact inverted research microscope configurable with a wide variety of observation methods

- Space-saving compact body allows these models to be easily fit inside a laminar flow hood
- Low stage design helps reduce fatigue during repetitive sample exchange
- Mechanical stage with long travel stroke enables observation of entire 96-well plates
- High-intensity LED light source is used for both diascopic and epi-fluorescence illumination
- In addition to DIC and NAMC, the Emboss Contrast method is possible, enabling observation of thick samples with high contrast and relief images using standard condenser lenses and objectives, supporting both plastic and glass dishes
- The Ts2R-FL features built-in fluorescence light source and filter turret, accommodating up to four sets of LED units and filter cubes
- Illumination can be switched to epi-fluorescence with one button; the fluorescence illumination brightness adjuster is located on the same side of the microscope for intuitive operation (Ts2R-FL)
- Optional Contrast Shield blocks room light, making high S/N fluorescence observation possible even in brightly-lit rooms (Ts2R-FL)

ECLIPSE Ts2R (Diascopic illumination model)

ECLIPSE Ts2R-FL (Diascopic and epi-fluorescence illumination model)

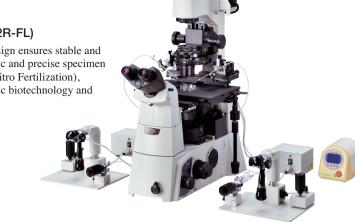
Inverted Routine Microscopes ECLIPSE Ts2/Ts2-FL

Fits in every laboratory — Simple to use and compact

- Space-saving compact bodies allow these models to be easily located next to incubators; camera port located on the side enables confirmation of what is on the stage from the observation position
- Mechanical stage with long travel stroke enables observation of entire 96-well plates
- High-intensity LED light source is used for both diascopic and epi-fluorescence illumination
- The Emboss Contrast method allows observation of thick samples with high contrast and relief images using standard condenser lenses and objectives, supporting both plastic and glass dishes
- The Ts2-FL features built-in fluorescence light source and filter turret, accommodating up to three sets of LED units and filter cubes
- Illumination can be switched to epi-fluorescence with one button; the fluorescence illumination brightness adjuster is located on the same side of the microscope for intuitive operation (Ts2-FL)
- Optional Contrast Shield blocks room light, making high S/N fluorescence observation possible even in brightly-lit rooms (Ts2-FL)

ECLIPSE Ts2 (Diascopic illumination model)

ECLIPSE Ts2-FL (Diascopic and epi-fluorescence illumination model)


Accessories for Inverted Microscopes

Oil Hydraulic Micromanipulation Systems

NT-88-V3 Series (for Ti-E/U/S, Ts2R/Ts2R-FL)

The NT-88-V3 series with compact and easy-to-assemble design ensures stable and smooth operation without needle drift. It provides microscopic and precise specimen micromanipulation for experiments in the fields of IVF (In Vitro Fertilization), especially ICSI (Intracytoplasmic Sperm Injection), transgenic biotechnology and electrophysiology.

(Manufactured by Narishige Co., Ltd.)

Water Hydraulic Micromanipulation System

MHW-3 (for Ti-E/U/S, Ts2R/Ts2R-FL)

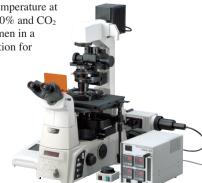
Needle drift caused by changes in room temperature has been decreased to the lowest possible level. Optimized for long hours of micromanipulation, such as in electrophysiologic patch-clamp experiments.

(Manufactured by Narishige Co., Ltd.)

Epi-FI LED Illuminator (for Ti-E/U/S, Ni-E/U, FN1)

Equipped with an LED light, this epi-fluorescence illuminator requires zero warm-up time and ensures stable and quantitative brightness of illumination, thus is particularly suited to long periods of time-lapse imaging. It allows simultaneous lighting with multiple wavelengths and the intensity of each wavelength can be controlled.

An LED has a minimum lifespan of 10,000 hours, eliminating the need for frequent lamp replacement.



Stage Incubation System

INU Series (for Ti-E/U/S, Ts2R/Ts2R-FL)

It sustains the internal temperature at 37° C with humidity of 90% and CO₂ of 5% to keep the specimen in a stable and precise condition for about three days.

(Manufactured by Tokai Hit Co., Ltd.)

HG Precentered Fiber Illuminator

Intensilight (for Ti-E/U/S, Ts2R-FL, Ni-E/U, Ci-E/L/S, FN1, AZ100/100M)

It comes equipped with a precentered, easy-to-replace mercury lamp that has a lifespan of up to 2,000 hours and is suitable for fluorescence observation. Motorized and manual models are both available.

Thermal Plate Warmer

ThermoPlate TPX Series (for Ti-E/U/S, Ts2/Ts2-FL, Ts2R/Ts2R-FL)

A temperature controllable stage ring with a glass heating plate keeps the specimen at a set temperature. Temperature is adjustable from room temperature +5°C to 50°C in 0.1°C increments.

(Manufactured by Tokai Hit Co., Ltd.)

Cell Incubator Observation

Cell Culture Observation System

BioStation CT

Automated stem cell screening in culture environment

- Operations from culture to observation of cells run automatically under optimal conditions in the same incubator
- Culture vessels are transferred from the rack to the microscope stage and cell image is captured according to a user-configured schedule
- Remote observation and setting from outside the laboratory via a network is possible
- Captures micro images from 2x to 40x with phase contrast observation using apodized phase contrast (APC) optics and fluorescence observation using threecolor LED illumination. A bird's eye macro view allows the entire vessel to be viewed from above
- High resolution whole vessel images can be acquired with Full Well Scan Observation. This mode allows automatic processing and stitching of images to reconstruct the entire image of the culture vessel, and quick and easy discovery of developing iPS colonies. Images are zoomed so that colonies can be seen without loss of resolution
- Optional image analysis software CL-Quant allows automatic cell detection from a phase contrast image, and enables identification and counting of iPS colonies

Time Lapse Imaging System

BioStation IM-Q

The perfect and simple solution for reliable time-lapse imaging

- · A totally integrated cell incubation and time-lapse imaging system
- High-sensitivity cooled monochrome CCD camera captures bright, high-contrast images
- Accurate, reliable data acquisition provided by precision XYZ control and by eliminating the focus drift caused by the stage movement and temperature change
- · Powerful and intuitive software. Effortless operations with ergo controller and mouse
- Stable, consistent control of temperature, humidity and CO2 gas concentration maintains cell activity for long periods
- · Exceptional phase contrast and fluorescence imaging quality
- · Instant set-up. Space-saving design. No need for darkroom
- · Convenient accessories include a vessel and chamber for multi-sample observation and built-in perfusion components

Upright Microscopes

Motorized Advanced Research Microscope

ECLIPSE NI-E (focusing stage model and focusing nosepiece model)

Automated imaging capability for most advanced observations

- · High-precision motorized focusing supports automated Z-series acquisition
- Observation method can be changed using buttons on the microscope body. Microscope settings are automatically set to optimal positions according to selected magnification
- · Various motorized accessories can be attached
- Stratum structure allows double layer mounting of a photoactivation unit and an epi-fluorescence attachment to enable simultaneous photoactivation and imaging
- High-speed motorized excitation/barrier filter wheel for multicolor imaging
- Exchangeable focusing mechanism from focusing stage to focusing nosepiece
- High optical performance: uniform and bright illumination using fly-eye optics
- Built-in, easy-to-reach image capture button. Angled operation buttons allow touch-type operations during observation

Ni-E (Focusing stage) configured with motorized epi-fluorescence illuminator, motorized condenser and motorized quadrocular tilting tube Ni-E (Focusing nosepiece) configured with motorized stage, motorized epi-fluorescence illuminator, photoactivation unit, motorized quadrocular tilting tube and camera

Advanced Research Microscope

ECLIPSE Ni-U

Manual microscope with flexible selection of motorized options

- Motorized nosepiece, motorized epi-fluorescence cube turret and motorized shutter can be utilized
- Stratum structure allows double layer mounting of a back port unit and an epi-fluorescence attachment to enable simultaneous multichannel imaging with two cameras.
- High optical performance: uniform and bright illumination using fly-eye optics
- · Built-in, easy-to-reach image capture button

Ni-U configured with ergonomic binocular tube

Upright Microscopes

Clinical and Laboratory Microscopes

ECLIPSE Ci-E/Ci-L/Ci-S

Exceptional comfort for clinical and laboratory observation

- High-luminescent eco-friendly LED (Eco-illumination) for Ci-E/Ci-L and halogen illumination for Ci-S
- Ci-E offers motorized magnification switching and automatic light intensity reproduction, enabling use of motorized condenser
- Angle and extension adjustable ergonomic binocular tube ensures observation with natural posture. Eye-point height can be lifted using an eyelevel riser
- Stage height can be lowered by adding a nosepiece spacer, and locked for easy refocusing. Height-adjustable stage handle. Durable, scratch-resistant ceramic-coated stage
- Built-in capture button allows easy imaging with the DS series camera

Ci-L configured with ergonomic binocular tube and DS series camera

Clinical & Educational Microscope

ECLIPSE E200

Outstanding cost performance—striking image sharpness, operability and durability

- Both high-luminescent LED (Eco-illumination) model and halogen lamp model are available
- Adopts CFI60 infinity optics for this class of microscope. Plan objectives that excel in image flatness come standard
- · One-touch refocusing stage for easier specimen handling
- Focusing knob and stage handle are low-positioned and equidistant from operator, permitting onehanded operation in natural posture
- Ergonomic binocular tube and eye-level risers are available for adjusting the eyepoint
- Anti-mold treated
- E200-F (model with field diaphragm) is also available
- · Various accessories are available, such as dedicated epi-fluorescence attachment
- Halogen lamp model is compliant with 100V-240V (multi-voltage)
- The E200-dedicated epi-fluorescence attachment is equipped with an LED light source with a minimum lifespan of 10,000 hours.

E200 (model without field diaphragm)

Upright Microscope

Educational Microscope

ECLIPSE E100

High optical quality, simple operation and rigid design

- High-luminescence LED (Eco-illumination) and halogen lamp models are both available
- · CFI optical system and dedicated objectives for flat images
- Siedentopf-type eyepiece tube and eye level adjustments; digital camera attachable to trinocular eyepiece tube
- Adjustable condenser position (Simplified Kohler's Illumination System)
- Phase contrast observation for high-contrast viewing of transparent and colorless specimens
- Anti-mold treatment for objectives, eyepieces, and eyepiece tube

E100 configured with binocular tube

Polarizing Microscopes

ECLIPSE LV100N POL/Ci-POL/E200POL

- CFI60 optics deliver world-class optical performance
- Excellent basic performance, operability, durability and, above all, outstanding image sharpness
- LV100N POL is a research polarizing microscope that boasts twice the rigidity of conventional models and a brightness exceeding 100W (12V-50W model with centering quintuple nosepiece). The built-in Fly-Eye optics ensures uniform illumination, making it ideal for digital imaging
- ECLIPSE Ci-POL is compact yet offers high functionality, such as a nosepiece with DIN standard compensator slot (6V-30W model with centering quintuple nosepiece). Built-in capture button allows easy imaging with DS series cameras
- E200POL is a cost-efficient and extremely compact model (6V-30W multi-voltage model with quadruple nosepiece)

LV100N POL (diascopic illumination type)

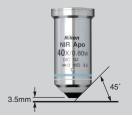
Ci-POL (diascopic illumination type)

E200 POL (diascopic illumination type)

Microscope for Asbestos Identification

Polarizing/Dispersion Microscope ECLIPSE LV100ND POL/DS

Dispersion staining microscopy that aids in the identification of asbestos


- Characteristic dispersion colors of each asbestos type corresponding to the refraction index of the immersion liquid can be observed using the phase contrast condenser and objectives (10x and 40x) for dispersion staining microscopy
- Qualitative asbestos analysis is possible by determination of birefringence and elongation (positive/negative); measurement of extinction angle, refractive index, and birefringence magnitude (retardation); observation of pleochroism

Microscope for Patch Clamp Experiments

ECLIPSE FN1

Dedicated patch-clamp microscope with I-shaped body designmore room for smooth electrode manipulation

- Corrects axial chromatic aberration up to IR light (to 850nm). New 40x and 60x objectives for crisp high resolution IR-DIC imaging
- 100x objective with NA 1.1 and working distance 2.5mm comes with a correction function for depth- and thermally-induced aberrations
- Vertical motion nosepieces enables magnification changes without moving Petri dish (15mm or less in height)
- · Easy switching between IR light and reflected illumination
- With an optional variable magnification double port (0.35x, 2x, 4x), both wide field and high magnification observations can be carried out with a 16x objective alone
- Deep imaging of living specimens is possible in configuration with multiphoton confocal system A1 MP⁺/A1R MP⁺

All objectives have wide approach angles and long working distances (45° and 3.5mm with 40x objective).

Configuration with Narishige micromanipulators and epi-fluorescence attachment

Stereo Microscopes

SMZ25/SMZ18

- Motorized zoom model SMZ25 is the first stereo microscope to offer a large 25:1 zoom ratio. Zoom ratio of manual zoom model SMZ18 is 18:1
- Optical path of both eyes boast high NA of up to 0.156 with the SHR Plan Apo 1x objective and SMZ25 zooming body
- Fly eye lens employed in the epi-fluorescence attachment ensures uniform brightness over the entire field of view even at the lowest magnifications
- Motorized focus and zoom operation (SMZ25)
- User-friendly remote control (SMZ25)
- Total magnification 3.15-315x (SMZ25), 3.75-270x (SMZ18), depending on objective used
- · Compatible with various accessories including trinocular tubes

SMZ25 configured with motorized epi-fluorescence attachment and LED diascopec illumination base

SMZ18 configured with plain stand

Accessories for SMZ25/SMZ18

LED Diascopic Illumination Base

The slim LED DIA Base is equipped with OCC illumination, which utilizes oblique lighting to enable high-contrast illumination of colorless and transparent specimens.

Fiber Diascopic Illumination Base

The Fiber DIA base features condenser lenses that can be switched between low and high magnifications. Furthermore, the OCC illumination system allows high-contrast illumination.

LED Ring Illumination Unit

LED Ring Illumination Unit is equipped with high-intensity, long-life (20,000 hours) LEDs. The illuminator's dial adjusts the intensity of the white LED.

LED Dark Field Unit

Darkfield observation is possible simply by attaching the darkfield unit to the base.

Simple Polarizing Attachment

The analyzer is attached to the objective and the polarizer to the base or stand to enable polarized observations.

Epi Fluorescence Attachment

A fly eye lens ensures bright high-contrast images over the entire field of view. A motorized model with control via a remote control unit or imaging software is also available.

SMZ1270/1270i, SMZ800N

- SMZ1270/1270i provides highest-in-class zoom ratio of 12.7:1. Zoom ratio of SMZ800N is 8:1
- Total magnification 3.15-480x (SMZ1270/1270i), 5-480x (SMZ800N), depending on eyepieces and objectives used
- High-level chromatic aberration correction provides sharp images
- Automatic detection of zoom magnification in combination with the digital camera control unit. Objective information is also detected with the intelligent nosepiece. (SMZ1270i)
- Compatible with various accessories, including trinocular tubes, epi-fluorescence attachment and teaching head. The slim-type LED diascopic stand is equipped with OCC illumination. The nosepiece offers both a widened magnification range and on-axis imaging

SMZ1270 configured with binocular tube and LED diascopic illumination stand

SMZ745/SMZ745T

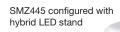
- Total magnification 3.35-300x
- Zoom ratio 7.5:1
- Compatible with a camera (SMZ745T)
- Eyepiece inclination 45°

SMZ800N configured with binocular tube and plain stand

SMZ745T configured with C-PS plain stand

SMZ745 configured with C-PS plain stand

SMZ460


- Total magnification 3.5-60x
- Zoom ratio 4.3:1
- Eyepiece inclination 60°

SMZ445 • Total magnification 4-70x

• Zoom ratio 4.4:1

Multi-purpose Zoom Microscope

Multizoom AZ100/AZ100M/AZ-C2+

Continuously switchable magnifications, extending from macro to micro observation of the same specimen

- Covers a magnification range of 5x to 400x, thanks to 8x zooming optics and a unique triple nosepiece
- True on-axis observation and image capture are possible in the macro region
- · Comes standard with an aperture stop
- Tilting trinocular eyepiece tubes can accommodate a digital camera
- The dedicated stands combine two focuses, one with an 85-mm stroke on the column side and one with a 10-mm stroke on the front stage, enabling observation of tall samples
- AZ100M with motorized focusing and motorized zooming makes it easy to capture Extended Depth of Focus (EDF) images
- AZ-C2⁺ offers high-definition macro confocal image capture in a single shot. Deep imaging of in-vivo whole specimens is also possible

AZ100M configured with Epi-Fl attachment

AZ100 configured with Epi-Fl attachment

AZ-C2

Laser Units

LU-NV laser units (for Ti-E/U, Ni-E/U, FN1, AZ100)

Up to 8 wavelengths and 7 fiber outputs are available to choose from. Switching fiber output allows a single laser unit to simultaneously support multiple laser applications, such as TIRF and photoactivation modules, Confocal Microscope A1⁺ and C2⁺, and Super Resolution Microscope N-SIM and N-STORM.

LU-N4/N4S 4-laser unit, LU-N3 3-laser unit (for Ti-E/U, Ni-E/U, FN1, AZ100)

A compact and easy-to-use laser unit that can support laser application systems such as TIRF and photoactivation modules, Confocal Microscope A1⁺ and C2⁺. LU-N4/LU-N4S* is equipped with four lasers (405nm, 488nm, 561nm, and 640nm), while LU-N3 has three lasers (405nm, 488nm, and 561nm).

*LU-N4S is compatible with spectral imaging but not with the Ti-LAPP system.

LU-N4/N4S/N3 laser unit

LU-NV laser unit with LU controller box B (top)

Confocal Microscope Systems

Multiphoton Confocal Microscope

A1 MP⁺/A1R MP⁺

High-speed and high-resolution imaging of deep area in a living specimens

- A1 MP⁺ is equipped with a galvano (non-resonant) scanner that enables high-resolution imaging of up to 4096 x 4096 pixels
- A1R MP⁺ is equipped with both a galvano scanner and a resonant scanner, allowing high-resolution imaging and ultrafast imaging of up to 420 fps (512 x 32 pixels).
- A1R MP⁺ includes a model that is compatible with simultaneous excitation imaging using a dual-wavelength IR laser
- Deep imaging with ultrasensitive GaAsP (gallium arsenide phosphide) NDD
- 1300nm wavelength-compatible episcopic GaAsP NDDs are available for Ni-E/FN1, enabling deep imaging up to 1.4mm
- Multiphoton laser beam can be automatically aligned with a single click
- Acquisition of 32 channels (512 x 32 pixels) at 24 fps in a single scan is possible when configured with a spectral detector, enabling accurate, real-time spectral imaging

Configured with Ni-E

Confocal Microscope

A1+/A1R+

A1⁺ for high-resolution imaging, A1R+ for ultrafast and high-resolution imaging

- A1⁺ is equipped with a galvano scanner that enables high-resolution imaging of up to 4096 x 4096 pixels, and high-speed imaging of 10 fps (512 x 512 pixels)
- A1R⁺ is equipped with both a galvano scanner and a resonant scanner, allowing ultrafast imaging of up to 420 fps (512 x 32 pixels) as well as simultaneous photoactivation and imaging
- The high-sensitivity GaAsP detector enables much brighter imaging with minimal noise than conventional detectors
- Dichroic mirror with 30% increased fluorescence efficiency provides high image quality
- Acquisition of 32 channels (512 x 32 pixels) at 24 fps in a single scan is possible when configured with a spectral detector, enabling accurate, real-time spectral imaging

Configured with Ti-E

Confocal Microscope

C2⁺/C2si⁺

Powerful personal confocal microscope, essential for laboratories

- Highly efficient scanning head and detector provide noiseless, high contrast images
- High-speed imaging of 8 fps (512 x 512 pixels) and 100 fps (512 x 32 pixels) is possible
- With a host of functions, such as image stitching (large images) and broad analytical capabilities
- 4-channel simultaneous acquisition, such as 3-channel confocal plus DIC
- Spectral detector for C2si⁺ acquires 32-channels of spectra with a single scan, enabling unmixing of overlapped spectra

C2⁺ configured with Ni-E

Cameras

Digital Cameras for Microscopes

Digital Sight Series

A wide range of digital cameras for microscopes is available, including high-definition cameras equipped with the Nikon FX-format CMOS sensor and compact camera heads with a choice of control units.

F-mount CMOS cameras

Microscope Camera DS-Ri2

- Equipped with a 16.25-megapixel CMOS sensor for digital SLR cameras that has been optimized for microscopes
- · Fast acquisition of high-resolution images up to 4908 x 3264 pixels
- · Accurate color reproduction of microscopy images with Nikon's
- proprietary image processing engine • High frame rate of up to 45 fps (1636 x
- 1088 pixels) enables fast focusing High-sensitivity low-noise color
- fluorescent imaging is possible

Monochrome Microscope Camera DS-Qi2

- Equipped with a large format 16.25megapixel monochrome CMOS sensor
- High-sensitivity imaging of weak fluorescent signals
- · Cooling mechanism allows low noise imaging with high S/N ratio
- · Reliable quantitative analysis with excellent linearity
- High frame rate of up to 45 fps (1636 x 1088 pixels) enables fast focusing
- · Time-lapse imaging with high temporal resolution

C-mount CCD camera heads and control units

High-definition Color Camera Head DS-Fi2

- High-definition 5.0-megapixel CCD. High resolution of up to 2560 x 1920 pixels
- High frame rate of up to 21 fps
- · High dynamic range and accurate color reproduction

High-definition Cooled Color Camera Head

DS-Fi1c

- · Cooling mechanism enables it to capture fluorescence and darkfield images clearly
- High-definition 5.0-megapixel CCD. High resolution of up to 2560 x 1920 pixels

High-speed Color Camera Head

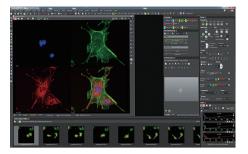
- High-frame-rate, 2.0-megapixel CCD.
- High-speed display at 15 fps (29 fps max.)
- Suitable for monitoring of microscopy images

Configured with ECLIPSE Ni-U

- · Versatile image capture, processing, measurement, analysis and data management when coupled with imaging software **NIS-Elements**
- High-speed image transfer for PC via IEEE 1394b connection
- · Compact, space-saving design
- · Allows integrated control of Nikon motorized microscopes and peripheral devices

Stand-alone Control Unit

- Built-in high-definition 8.4-in. large display monitor
- Camera can be controlled with mouse operation or touch panel operation, eliminating the necessity of a PC connection
- Various digital interfaces including USB 2.0 connection
- · Pre-programmed imaging modes for different observation methods
- · Allows control of motorized devices on ECLIPSE Ni-E/U and Ci-E


Software

Imaging Software

NIS-Elements

NIS-Elements is an integrated platform of imaging software developed by Nikon to achieve comprehensive control of microscope image capture and document data management.

NIS-Elements handles multidimensional imaging tasks flawlessly with support for capture, display, peripheral device control, and data management & analysis of images (up to six-dimensional images).

Nikon offers a number of microscope software packages to control and optimize the performance of its products.

NIS-Elements Advanced Research

NIS-Elements AR is optimized for advanced research applications. It features fully automated acquisition and device control through full 6D (X, Y, Z, Lambda (Wavelength), Time, Multipoint) image acquisition and analysis.

NIS-Elements Documentation

NIS-Elements D supports color documentation requirements in bioresearch, clinical and industrial applications, with basic measuring and reporting capabilities.

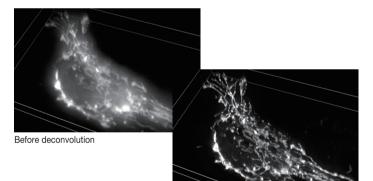
NIS-Elements Basic Research

NIS-Elements BR is suited for standard research applications. It features acquisition and device control through 4D (up to four dimensions can be selected from X, Y, Z, Lambda (Wavelength), Time, Multipoint) acquisition.

NIS-Elements HC (High Content Analysis)

NIS-Elements HC supports total operation of high-content analysis, from integrated control of Ti-E motorized inverted microscope and peripheral devices such as well plate loaders and CCD cameras, to image data management.

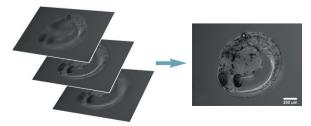
Various convenient plug-ins are available for advanced imaging and analysis capabilities.


3D/2D Deconvolution

Multidimensional Capturing

Up to 6D image acquisition combining dimensions such as X, Y, Z, time, wavelength and multipoint is easily set using the intuitive GUI.

Experiment:	ND Acquisition	n					
т: (
M: [
Save b	File						
Path:	C:¥Program F	Hes#NIS-Eler	nents¥Imaç	es¥			Browse
Filename:	NIS_Image.n	d2				Reco	ord Data
Order of Exp		liming			li Recipe		ad Ti Recipe
	2 888 vv 1		1 / A 1	I area Im	ma I /	10	
Time sched		✓ 🗗 z 🔽] <i>8</i> ° λ [⊽	🛛 🖓 Large Im			
Time sched	ule] <i>8</i> ° λ [⊽	+	ege [☑ 4 Ø Ø	+ +	1 ~ ~
Time sched	ule Inte	erval] 🧬 λ 🔽	+ Duration		+ +	1 ~ ~
Time sched Phase	ule	erval	} <i>8</i> ° λ [⊽ ▼	+ Duration	00	+ +	1 ~ ~
Time sched	ule Inte	erval		+ Duration	00	Loope	1 ~ ~
Time sched Phase I #1 Close A	Lule Inte 10 r	erval min when Idle	Ţ	÷ Duration 24 hour(s)	00	* + + Loopt 145	1 ~ ~
Time sched Phase I #1 Close A	Lule Inte 10 r	erval min when Idle	Ţ	÷ Duration 24 hour(s)	erform Time I	* Loopt • 145	\$


Haze and blur of the fluorescence image can be eliminated from the captured 3D image or from the 2D live preview image. (Separate plug-in for 3D and 2D)

After deconvolution

Extended Depth of Focus

With the Extended Depth of Focus (EDF) plug-in, images that have been captured in a different Z-axis using a motorized stage can be used to create an all-in-focus image. Also, it is possible to create stereovision images & 3D surface images to achieve virtual 3D imaging.

All-in-focus image created from a sequence of Z-stack images

Database

NIS-Elements has a powerful image database module that supports image and meta data. Various databases & tables can easily be created and

images can be saved to the database via one simple mouse-click. Filtering, sorting and multiple grouping are also available according to the database field given for each image.

									107 - F. J
TOR [] A succ	Ti sense p	V. J. GHERIOR D.C.				COMPACE DIS	VI UISARI C		
Arrente 1	X	10 C	ALC: NO.	Con allowed	-	Concession in case of the local division in	14. 14	(here	ineren i
	1 X S A S S	All and	States and	1 6 A. NOT		Non- the Woodwald	Liberation - Second	and the second second	mere a
Man Call of Longe	A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	255125135 (B)			-	Charles and		
÷	SN. 84.80	21-1-2 2002	PERMIT CONTROLS	No. Alfait & Yours St.	1446				
0.0	100.000 000000000	14 Sec. 2 (1)	THE PROPERTY OF		interes.	Monther Property Color	Charlenge Star		
	1007007070707080	ATTREPORTATION PO	ADV AND ADV	0 91 100					
	W. Brits	125-227 (Same and	P andiana		No. 4 Tex Type descript	Charden, 1988	MANAGE MALL IN	-
15	10.00	10 Sec. 10 Sec. 10 Sec.	1993 B. C. S.	- second in					
	Sec. 162.18	1973 March 20	Statistics and	and such		New A New Alley Manager and	CONTROL : EVEN	MPUMPER - P	ibert. P
- 3	Cold Parts		Second Second		Dirte.	-	Charlen and		
	Manufactory of the lost	And its framework	NAME AND A DECK OF ADDRESS OF						
12	and the second second	10000	· 他的时候了 (1988)				Charlenge state	METERS N	-
		and the second second	121002						
1	States and the states of the	A Line of	12122120			10-1/10/00-000 H.	Classifier, 1988	MALEN N	645 B
- 122	12310722	81 33 81	1000000000						
	and the second	3 3 X X 8-	Section of the		1997	No. 1 Con Melana, Mal	Confort and	MATCHINE, 5	1947 A
	and a part of the	Transford and the of	Mary and provide the gal		Sec.	-	CRAMER COM		
	12.00 20022	200 A 100 A 100 A 100	80000 State		10.00				
	2180 T C 6780	10 A. 10 A. 10 A.	ALC: NOT ALC: NOT		del es	start / an /handsome /h	(Aural 200, 1992	Margane Mar 1	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	12 10 10 10 10	12.00 C 12.00 A 1		1323				
	100 million (100 million	and the second second	1000100002		1523	10-12-12-12-12-12	CARAFORNI INTO	MANH WITH	0.0
	E-947 LITERA Your	Charles and the second states	APRIL AND PORT OF				Canada Lana	MARKEN L	
	State Back	STOPROPIO	STATISTICS.			del ter sorta	COMPANY, DAY	Accession of the	
	ASS CONTRACTOR	MAN PARTY	E CASSING ST				CARONAL SIDE		
	TON STATES A	105253280	2-10-12-1-13						
		CONCEPT OF	The country			10000_000_00071/pt	Classica, 003	Segments of	
	A CONTRACTOR OF	S (11) 11 11	S.S. Section			man have been been been been been been been be		THE OWNER AND A	
	NAME OF STREET, ST. OF STREET, ST.	Area and human	NAME AND ADDRESS OF		163	agent by college	CAMPBER, X83	MANNER'S	6-10 H
		Sec. Spe			2360	Termination in the local division of the loc	Canton - Inter	morest, i	
	a Am. 750.	And I wanted	and the second second		No.	100000000000000000000000000000000000000			
	10 mm	Contraction of the second	SSC 25 COM		1000	TRAVEL PROPERTY AND	CARONIC - LINE	and 100 miles in	
	22.0	a second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1000				

Type	Use	Model	Immersion	NA	W.D. (mm)	Cover glass thickness	Correction ring	Spring loaded	Brightfield	Darkfield	DIC*1	Phase contrast	Polarizing	Fluoreso Visible light	ence UV	Ti-E PFS
		4x		0.10	30.00	-			0				Δ	0		
		10x	_	0.25	7.00				0					0		
		10x DS	-	0.25	7.00				0					0		-
	Brightfield	LWD 20x		0.40	3.90	0.17		1	0					0		-
	(CFI)	40x LWD 40xC		0.65	0.65	0.17	1	V						0		-
		60x		0.33	0.30	0.17	•	1						0		+
		100x Oil	Oil	1.25	0.23	0.17		· ·	0	•				0		-
		100xSH (with iris)	Oil	0.5-1.25	0.23	0.17		1	0	0				0		-
		P 4x		0.10	30.00	_			0				0	0		
		P 10x		0.25	7.00	_			0	Δ			0	0		
	Polarizing (CFI)	LWD P 20x		0.40	3.90	0.17			0	00			O	0		
at	(UFI)	P 40x		0.65	0.65	0.17		1	0	00			0	0		
Achromat		P 100x Oil	Oil	1.25	0.23	0.17		1	0				0	0		
chr		DL 10x		0.25	7.00	-			0			O PH1	\triangle	\triangle		
۲		LWD DL 20x		0.40	3.90	0.17			0	00		O PH1		\triangle		
	Phase	LWD DL 20xF		0.40	3.10	1.2			0			O PH1				
	contrast	DL 40x		0.65	0.65	0.17		1	0	00		O PH2				
	(CFI)	LWD DL 40x		0.55	2.7-1.7	0-2.0	1		0	0•		© PH2				
		DL 100x Oil	Oil	1.25	0.23	0.17		1	0			© PH3		Δ		<u> </u>
		BM 10x		0.25	7.00	0.7			0			© PH1	Δ	Δ		<u> </u>
	Apodized	ADL 10x		0.25	6.20	1.2			0			O PH1		Δ		_
	phase	LWD ADL 20xF		0.40	3.10	1.2			0			O PH1				<u> </u>
	contrast (CFI)	LWD ADL 40xF		0.55	2.10	1.2			0			O PH1				
	Advanced	LWD ADL 40xC NAMC 10x		0.55	2.7-1.7	0-2.0	1		0	00		O PH2				-
	modulation			0.25	6.20	1.2			0							-
	contrast	LWD NAMC 20xF LWD NAMC 40xC		0.40	3.10 2.7-1.7	1.2 0-2.0	1									<u> </u>
	(CFI)	UW 1x		0.04	3.20	0-2.0	v									-
		UW 2x		0.04	7.50	_			0							
		4x		0.00	30.00				0					0		+
		10x		0.25	10.50	_			0					0		
	Brightfield	20x		0.40	1.20	0.17			0	0				0		
	(CFI Plan)	40x		0.65	0.56	0.17		1	0	0				0		-
		50x Oil	Oil	0.90	NCG0.35	_		1	0	•				0		
Plan Achromat		100x Oil	Oil	1.25	0.20	0.17		1	0					0		
hroi		LWD IMSI 100xC		0.85	1.3-0.95	0.6-1.3	1		0		0			0		
Acl	-	DL 10x		0.25	10.50	-			0			O PH1		\triangle		
lan	Phase contrast	DL 20x		0.40	1.20	0.17			0	0		O PH1	\triangle	\triangle		
Δ.	(CFI Plan)	DL 40x		0.65	0.56	0.17		1	0	00		O PH2				
		DL 100x Oil	Oil	1.25	0.20	0.17		1	0			O PH3				
	No cover glass	NCG 40x		0.65	0.48	0		1	0	00				0		
	(CFI Plan)	NCG 100x		0.90	0.26	0		1	0				\triangle	0		
	Super long	SLWD 20x		0.35	24.00	0			0	00				0		
	WD (CFI L	SLWD 50x		0.45	17.00	0			0	00				0		
	Plan EPI)	SLWD 100x		0.70	6.50	0			0	0•				0		
	Brightfield	ELWD 20xC		0.45	8.2-6.9	0-2.0	1		0	0	0		0	0	0	•
	(CFI S Plan	ELWD 40xC		0.60	3.6-2.8	0-2.0	1		0	0	0		0	0	0	
S Plan Fluor	Fluor)	ELWD 60xC		0.70	2.6-1.8	0.1-1.3	1		0	0	0		0	0	0	<u> </u>
Ц	Apodized phase	ELWD ADM 20xC		0.45	8.2-6.9	0-2.0	1		0	0		O PH1		0	0	•
Pla	contrast (CFI	ELWD ADM 40xC		0.60	3.6-2.8	0-2.0	1		0	0		O PH2		0	0	
S	S Plan Fluor) Advanced	ELWD ADL 60xC		0.70	2.6-1.8	0.1-1.3	1		0	0		O PH2		0	0	
	modulation contrast	ELWD NAMC 20xC		0.45	7.40	0-2.0	1		0					0		<u> </u>
_	(CFI S Plan Fluor)	ELWD NAMC 40xC		0.60	3.10	0-2.0	1		0					0	○ 147 ·	-
		4x		0.20	15.50	- 0.17		/	0					0	© Wide	
ŗ	Brightfield	10x 20x		0.50 0.75	1.20	0.17		✓ ✓	0	00	0			0	O Wide	
S Fluor	(CFI S	20x 40x		0.75	0.30	0.17	1	✓ ✓	0		0			0	WideWide	
S	Fluor)	40x Oil	Oil	1.30	0.30	0.11-0.23	v	✓ ✓w/stopper	0		0			0	© Wide	-
		100xSH (with iris)	Oil	0.5-1.3	0.22	0.17		✓ w/stopper		0				0	© Wide	-
or		P 5x		0.15	23.50	0.17		•	0				0	0	O	+
<u>i</u>	No cover glass	P 10x		0.30	17.50	0			0				0	0	0	-
Ë	ulass			0.30	4.50	0			0	0			0	0	0	-
I Plan F		P 20x											. ~			
Universal Plan Fluor	polarizing (CFI LU Plan	P 20x P 50x		0.80	1.00	0		1	0	•			0	0	0	<u> </u>

*1 See page 20 for compatible prisms *2 Dedicated for FN1 (CFI75 objective)

Note 1. Model numbers The below letters, when attached to the end of model numbers, indicate the respective features.

CFI60 Objectives

F: for use with 1.2mm-thick cover glass C: with correction ring NCG: for use without cover glass

SH: with iris WI: water immersion type W: water dipping type

Mi: multi immersion (oil, water, glycerin) type IMSI: compatible with IMSI only DS: compatible with dispersion staining microscopy

Note 2. Cover glass thickness — : can be used without cover glass 0: use without cover glass

Note 4. Phase rings are classified by objective NA PHL and PH1 - 3 are condenser cassette modules. EXT PH3 and EXT PH4 indicate external phase contrast modules for Ti.

Note 5. Fluorescence microscopy (UV) △ : possible with visible light that has a longer wavelength than the excitation light used for DAPI O: suitable

 : recommended for best results
 Wide: high transmittance with an ultraviolet wavelength range of up to 340nm

 Note 3. Darkfield microscopy

 Possible with the following

 △: universal condenser (dry) and darkfield ring

 ○: above and darkfield condenser (dry)

 ●: darkfield condenser (oil)

Type	Use	Model	Immersion	NA	W.D. (mm)	Cover glass thickness	Correct ring	ion Spring loaded	Brightfield	Darkfield	DIC*1	Phase contrast	Polarizing	Fluores Visible light	UV	NIR	Ti-E PFS
		4x		0.13	17.20	- 0.17			0		0			0	0		
		10x 20x		0.30	16.00 2.10	0.17			0		0			0	0		•
		20xA MI	Oil, water glycerin,	0.75	0.51-0.35 0.51-0.34 0.49-0.33	0-0.17	1	~	0	0.	0		0	0	0		
	Brightfield	40x		0.75	0.66	0.17		1	0	0	0		0	0	0		
	(CFI Plan Fluor)	40x DS2		0.75	0.66	0.17		1	0					0	0		
	1 (001)	40x Oil	Oil	1.30	0.20	0.17		√w/stoppe	r 🔘		0	EXT PH3-40x	0	0	O		
-		60x		0.85	0.40-0.31	0.11-0.23	1	1	0		0		0	0	O		
Fluo		60xSH (with iris)	Oil	0.50-1.25	0.22	0.17		1	0	0	0		0	0	0		
Plan Fluor		100x Oil 100xSH (with iris)	Oil Oil	1.30 0.50-1.30	0.16	0.17	_	✓w/stoppe	r 0 0	0	0		0	0	0		
٩		DL 4x	UI	0.50-1.30	16.40	1.2		V	0		0	O PHL		0		\vdash	<u> </u>
		DLL 10x		0.30	16.00	0.17			0			© PH1		0	0		•
	Phase	DL 10x		0.30	15.20	1.2			0			O PH1		0	0		
	contrast (CFI Plan	DLL 20x		0.50	2.10	0.17			0	00		O PH1		0	0		
	Fluor)	DLL 40x DM 40xDS		0.75 0.75	0.66	0.17			0			 PH2 PH2 		0	0	\vdash	•
		DLL 100x Oil	Oil	1.30	0.16	0.17		√w/stoppe	-			© PH3		0	Tõ		
		BM 40x AS		0.75	0.66	0.17		✓	0			O PH2		0	0		
	Apodized phase contrast (CFI Plan Fluor)	ADH 100x Oil	Oil	1.30	0.16	0.17		√w/stoppe				© PH3		0	0		•
		λ 2x λ 4x		0.10	8.50 20.00	_			0				0	0		0	•
		λ 10x		0.45	4.00	0.17			0		0		0	0		0	•
		λ 20x		0.75	1.00	0.17		1	0	0	0		0	0		\bigcirc	
		VC 20x		0.75	1.00	0.17		1	0	00	0		0	0			
		λ 40x		0.95	0.21 (0.25-0.16)	0.11-0.23	1	1	0	•	0		0	0	\triangle	\odot	•
	Drightfield	λ 60x		0.95	0.15 (0.21-0.11)	0.11-0.23	1	1	0	•	0	EXT	0	0		0	<u> </u>
	Brightfield (CFI Plan	λ 60x Oil	Oil	1.40	0.13	0.17		1	0		0	PH3-60x	0	0		0	
mat	Apo)	VC 60xA WI	Water	1.20	0.31-0.28	0.15-0.18	1	1	0	•	0	EXT PH3-60x EXT	0	0	0		•
chro		IR 60xWI	Water	1.27	(0.18-0.16)	0.15-0.19	1	1	0		0	PH3-60x	0	0		0	
Plan Apochromat		λ 100x Oil	Oil	1.45	0.13	0.17		/	0		0	EXT PH3-100x EXT	0	0		0	•
Pla		VC 100x Oil	Oil	1.40	0.13	0.17			0		0	PH3-100x	0	0			
		HP VC 100x Oil	Oil	1.40	0.13	0.17		1	0		0	EXT PH3-100x	0	0			
		NCG 100x Oil	Oil	1.40	0.16	0		1	0		0		0	0			
	SR (CFI SR Plan Apo)	IR 60×WI	Water	1.27	0.17 (0.18-0.16)	0.15-0.19	1	1	0		0	EXT PH3-60x	0	0		\odot	
		λ DM 20x		0.75	1.00	0.17		1	0	0		OPH2		0		0	•
	Phase	λ DM 40x		0.95	0.21 (0.25-0.16)	0.11-0.23	1	1	0	•		OPH2		0		0	
	contrast (CFI Plan	λ DM 60x		0.95	0.15	0.11-0.23	1	1	0	•		©PH2		0		0	
	Apo)	λ DM 60x Oil	Oil	1.40	(0.21-0.11)	0.17	•		0	-		©PH3		0		0	•
		λ DM 100x Oil	Oil	1.40	0.13	0.17						OPH3		0		0	•
		LWD 20xWI λS	Water	0.95	0.95	0.11-0.23	1		0		0		0	0		0	
		40xWI λS	Water	1.25	0.18	0.15-0.19	1	1	0		0	EXT PH3-40x	0	0	0		
	Confocal (CFI Apo)	LWD 40xWI λS	Water	1.15	0.60	0.15-0.19	1	1	0	•	0	EXT PH3-40x	0	0	0		•
omat		60x Oil λS	Oil	1.40	0.14	0.17		1	0		0	EXT PH3-60x	0	0	O		•
Apochromat		TIRF 60x Oil	Oil	1.49	0.12	0.13-0.19 (23 0.15-0.21(37	°C) ✓ ℃)		0		0	EXT PH4-60x	0	0			•
	Evanescent (CFI Apo)	TIRF 100x Oil	Oil	1.49	0.12	0.13-0.19 (23 0.14-0.20(37)	°C) 🗸		0		0	EXT PH4-100x	0	0			•
	SR (CFI	HP TIRF 100x Oil	Oil	1.49	0.12	0.13-0.19 (23 0.14-0.20(37 0.13-0.19 (23			0		0	EXT PH4-100x EXT	0	0			•
	SR Apo)	TIRF 100x Oil	Oil	1.49	0.12	0.13-0.19 (23			0		0	PH4-100x	0	O	\triangle		•
Type	Use	Model	Immersior	n NA	W.D. (mm)	Cover glass thickness	Correction ring	Spring loaded Bright	field Dark	field DIC*		ase trast Pola	rizina 📖	Fluorescence ple light	e UV	infra	ar- ared IC
	Confocal	25xW MP	Water	1.10	2.00	0	1	0)		0)
	(CFI Apo) Brightfield	25xW MP1300	Water	1.10	2.00	0	1	0		0)		0)
	(CFI Plan Fluor)	10xW	Water	0.30	3.50	0		0		7 0)		0)
	Brightfield	20xW	Water	0.50	2.00	0		0		• •					0		2
ing	(CFI Fluor)	40xW 60xW	Water Water	0.80	2.00	0					+				Wide ©		<u>)</u>)
Water Dipping	Brightfield	40xW NIR	Water	0.80	3.50	0					+))		Δ)
Wate	(CFI Apo)	60xW NIR	Water	1.00	2.80	0		0				()	0		0	C
	Brightfield (CFI Plan) Phase contrast	100xW	Water	1.10	2.50	0	1	0			_) (0) -
	(CFI Fluor)	DLL 40xW	Water	0.80	2.00	0		C			0	PH2		0	0)
N1= 1	Brightfield (CFI75)	LWD 16xW*2	Water	0.80	3.00	0		0		• •			C	0	0)
Note Brigh	6. tfield/DIC/Fluor	escence 🛆 : possib	ole but not re	commended		Note 7. Polarizing		d 0 : retardation	measuremen	t is		e 8. Ti-E PFS compatible wi	th PFS				

Brightfield/DIC/Fluorescence (visible light) microscopy

 Note / Polarizing
 ○ : retardation measurement is

 ○ : suitable
 ○ : retardation measurement is

 possible with a polarizing microscope

19

Combinations of DIC Prisms and Objectives

For Ti series inverted microscopes

		Sy	stem Condense	r LWD Dry, Moi	torized System	Condenser LWI) Dry	HNA Condenser Lens Dry				HNA Condenser Lens Oil			
		Sta	ndard	High (Contrast	High Re	esolution	Sta	ndard	High R	esolution	Sta	ndard	High R	esolution
		Condenser Module	DIC Slider	Condenser Module	DIC Slider	Condenser Module	DIC Slider	Condenser Module	DIC Slider	Condenser Module	DIC Slide	Condenser Module	DIC Slider	Condenser Module	DIC Slider
10x	Plan Fluor 10x S Fluor 10x Plan Apo λ 10x	LWD N1 Dry	10x	-	_			-	_		•	-	_		
20x	Plan Fluor 20x S Fluor 20x Plan Fluor 20xA MI Plan Apo λ 20x Plan Apo VC 20x	LWD N2 Dry	20x	LWD N1 Dry	20x-C			HNA N2 Dry	20x			HNA N2 Oil	20x		
	S Plan Fluor ELWD 20xC	LWD N1 Dry	20x II			1			_	1		_		1	
	Apo LWD 20xWI λS	LWD N2 Dry	20x III			-	_					-			_
	Plan Fluor 40x S Fluor 40x Plan Apo λ 40x Apo LWD 40xWI λS	LWD N2	40x I	LWD N1 Dry	40x I-C			HNA N2 Dry	40x I			HNA N2 Oil	40x I		
40x	Plan Fluor 40x Oil S Fluor 40x Oil Apo 40xWl λS		40x II					Diy	40x II			UII	40x II		
	S Plan Fluor ELWD 40xC	LWD N1 Dry	40x IV					-	_			-	-		
	Plan Apo λ 60x Apo TIRF 60x Oil		60x I				60x I-R		60x I		60x I-R			-	 60x I-R
60x	Plan Fluor 60x Oil Plan Fluor 60x Plan Apo λ 60x Oil Apo 60xH λS	LWD N2 Dry	60x II			LWD NR Dry	60x II-R	HNA N2 Dry	60x II	HNA NR Dry	60x II-R	HNA N2 Oil	60x II	HNA NR Oil	60x II-R
	Plan Apo VC 60xA WI Plan Apo IR 60xWI SR Plan Apo IR 60xWI		60x IV	-	_		60x IV-R		60x IV		60x IV-R		60x IV		60x IV-R
	S Plan Fluor ELWD 60xC	LWD N1 Dry	60x III			-	_	-	_	-	_	-	_	-	_
100x	Plan Apo λ 100x 0il Plan Apo VC 100x 0il HP Plan Apo VC 100x 0il Apo TIRF 100x 0il HP Apo TIRF 100x 0il SR Apo TIRF 100x 0il	LWD N2 Dry	100x I			LWD NR Dry	100x I-R	HNA N2 Dry	100x I	HNA NR Dry	100x I-R	HNA N2 Oil	100x I	HNA NR Oil	100x I-R
	Plan Fluor 100x Oil Plan Fluor 100x Oil Iris		100x II				100x II-R		100x II		100x II-R		100x II		100x II-R
	Plan LWD IMSI 100xC		100x III			-	_	-	_	-	_	-	_	-	_

For Ni-E (focusing stage)/Ni-U upright microscopes

			Universal Condenser Dry/Motorized Universal Condenser Dry						DIC Condenser Oil				
		Stan	idard	High C	ontrast	High Re	solution	Star	ndard	High Re	solution		
		Condenser Module	DIC Slider	Condenser Module	DIC Slider	Condenser Module	DIC Slider	Condenser Module	DIC Slider	Condenser Module	DIC Slider		
10x	Plan Fluor 10x S Fluor 10x Plan Apo λ 10x	N1 Dry	10x		_								
20x	Plan Fluor 20x Plan Fluor 20xA MI S Fluor 20x Plan Apo λ 20x Plan Apo VC 20x	N2 Dry	20x	N1 Dry	20x-C			N2 Oil	20x				
	S Plan Fluor ELWD 20xC	N1 Dry	20x II			1 -	_		_	.	_		
40x	Plan Fluor 40x S Fluor 40x Plan Apo λ 40x Apo LWD 40xWI λS	N2 Dry	40x I	N1 Dry	40x I-C			N2 Oil	40x I				
40X	Plan Fluor 40x Oil S Fluor 40x Oil Apo 40xWl λS		40x II						40x II				
	S Plan Fluor ELWD 40xC	N1 Dry	40x IV						<u> </u>				
	Plan Apo λ 60x Apo TIRF 60x Oil		60x I				60x I-R		60x I		60x I-R		
60x	Plan Fluor 60x Oil Plan Fluor 60x Plan Apo λ 60x Oil Apo 60xH λ S	N2 Dry	60x II			NR Dry	60x II-R	N2 Oil	60x II	NR Oil	60x II-R		
	S Plan Fluor ELWD 60xC	N1 Dry	60x III]		-	_			-			
100x	Plan Apo λ 100x Oil Plan Apo VC 100x Oil Plan Apo 100x NCG Oil Apo TIRF 100x Oil	N2 Dry	100x I			NR Dry	100x I-R	N2 Oil	100x I	NR Oil	100x I-R		
	Plan Fluor 100x Oil Plan Fluor 100x Oil Iris		100x II				100x II-R		100x II		100x II-R		

For Ni-E (focusing nosepiece)/FN1 fixed stage microscopes

		FN-C LWD Condenser	
		Condenser Module	DIC Slider
10x	Plan Fluor 10xW	N1 Dry	10x
16x	LWD 16xW (CFI75)		16x I
20x	Fluor 20xW		20x
25x	Apo 25xW MP Apo 25xW MP1300		25x I
40x	Apo 40xW NIR Fluor 40xW	N2 Dry	40x III
60x	Apo 60xW NIR Fluor 60xW		60x I
100x	Plan 100xW		100x-III

Epi-fluorescence Filter Cubes

Filter Cube Characteristics

	Filter Cubes	Wavelengths	Characteristics	i series, Ti series	E series, TS100
	UV-1A	EX 365/10 DM 400 BA 400	 Narrow band pass—only 365nm (i line) of Mercury spectrum used Narrow band pass minimizes auto-fluorescence and photo-bleaching 	1	1
U	UV-2A	EX 330-380 DM 400 BA 420	Standard filter block for UV	1	1
V	UV-2B	EX 330-380 DM 400 BA 435	•Darker background than UV-2A	1	1
	UV-2E/C (DAPI)	EX 361-389 DM 415 BA 430-490	 For DAPI, cutting off FITC (green) and TRITC (red) Soft-coated type for high signal/noise Band-Pass Barrier Filter used to cut off green and red 	1	1
V	V-2A	EX 380-420 DM 430 BA 450	•Standard filter block for V	1	1
В	BV-1A	EX 435/10 EM 455 BA 470	 Narrow band pass—only 435nm (g line) of Mercury spectrum used Narrow band pass minimizes auto-fluorescence and photo-bleaching 	1	
V	BV-2A	EX 400-440 DM 455 BA 470	•Standard filter block for BV	1	1
	B-1A	EX 470-490 DM 505 BA 520	Narrower excitation range than B-2A FITC+Counter-stain (TRITC, PI)	1	
	B-1E	EX 470-490 DM 505 BA 520-560	 For FITC (green), cutting off Rhodamine red Band-Pass Barrier Filter used to cut off red 	1	
В	B-2A	EX 450-490 DM 505 BA 520	•Standard filter block for B •For FITC + Counter-stain (TRITC, PI)	1	1
D	B-2E	EX 450-490 DM 505 BA 520-560			1
	B-2E/C (FITC)	EX 465-495 DM 505 BA 512-558	 Soft coated type for high signal/noise For FITC (green), cutting off Rhodamine red Band-pass Barrier Filter used to cut off red 	1	1
	B-3A	EX 420-490 DM 505 BA 520	•Wide band pass—recommended for halogen illumination only	1	1
	G-1B	EX 546/10 DM 575 BA 590	 Narrow band pass—only 546nm (e line) of Mercury spectrum used Narrow band pass minimizes auto-fluorescence and photo-bleaching 	1	1
0	G-2A	EX 510-560 DM 575 BA 590	Standard filter block for G	1	1
G	G-2B	EX 510-560 DM 575 BA 610	•610nm barrier provides darker background and deep red emission	1	
	G-2E/C (TRITC)	EX 540/25 DM 565 BA 605/55	 For TRITC (Rhodamine) Soft coated type for high signal/noise Band-Pass Barrier Filter used to cut off reds above 643nm 	1	1
Y	Y-2E/C (Texas Red)	EX 540-580 DM 595 BA 600-660	 For Texas Red[®] Soft coated type for high signal/noise Band-Pass Barrier Filter used to cut off reds above 660nm 	1	<i>√</i>

Filter Cubes for Fluorescent Protein

Filter Cubes	Wavelengths	i series, Ti series	E series, TS100
BFP	EX380/30, DM420, BA460/50	1	
CFP	EX436/20, DM455, BA480/40	1	
CFP HQ*	EX420-445, DM450, BA460-510	1	
GFP-B	EX470/40, DM505, BA535/50	1	1
GFP HQ*	EX455-485, DM495, BA500-545	1	
YFP	EX500/20, DM515, BA535/30	1	
YFP HQ*	EX490-500, DM510, BA520-560	1	

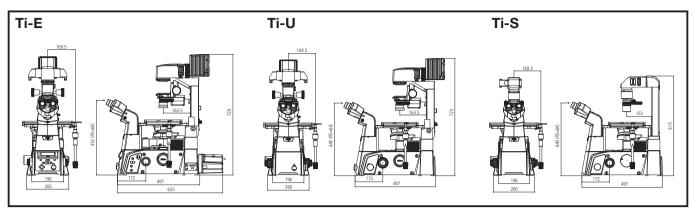
*Each filter/mirror has a very sharp rising edge at the corresponding wavelength, minimizing signal crossover.

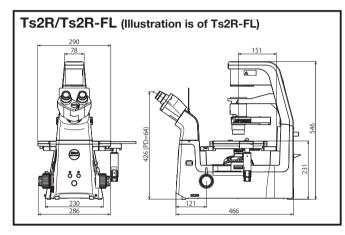
Other Filter Cubes

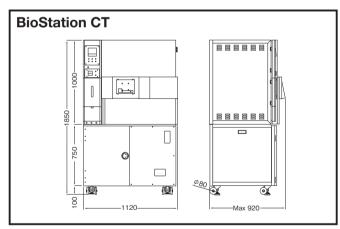
Filter Cubes	Wavelengths	i series, Ti series	E series, TS100
СуЗ	EX535/50, DM565, BA610/75	1	
Cy5	EX620/60, DM660, BA700/75	1	
Cy7	EX710/75, DM750, BA810/90	1	

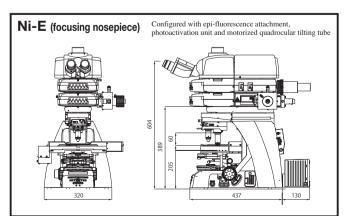
Multi-Band Filter Cubes

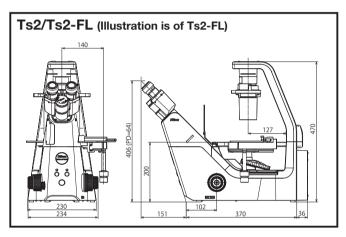
Filter Cubes	Abbreviations	Applications	i series, Ti series	E series, TS100
	F-R	FITC, Rhodamine	1	
Dual	F-T	FITC, Texas Red	1	1
	D-F	DAPI, FITC	1	1
Triple	D-F-R	DAPI, FITC, Rhodamine	1	
Thpie	D-F-T	DAPI, FITC, Texas Red	1	

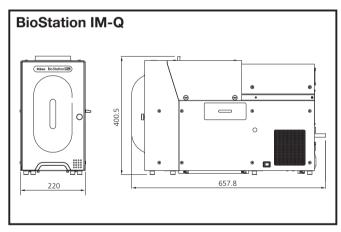

Filter Cubes for SMZ25/18

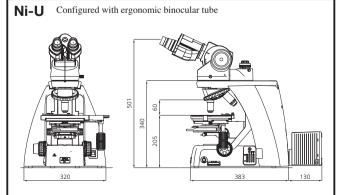

Filters	Wavelengths
DAPI	EX395/25, DM425, BA460/50
CFP	EX436/20, DM455, BA480/40
GFP-B	EX460-500, DM505, BA510-560
GFP-L	EX460-500, DM505, BA510
YFP	EX500/20, DM515, BA535/30
RFP	EX530-560, DM570, BA590
mCherry	EX560/40, DM585, BA630/75

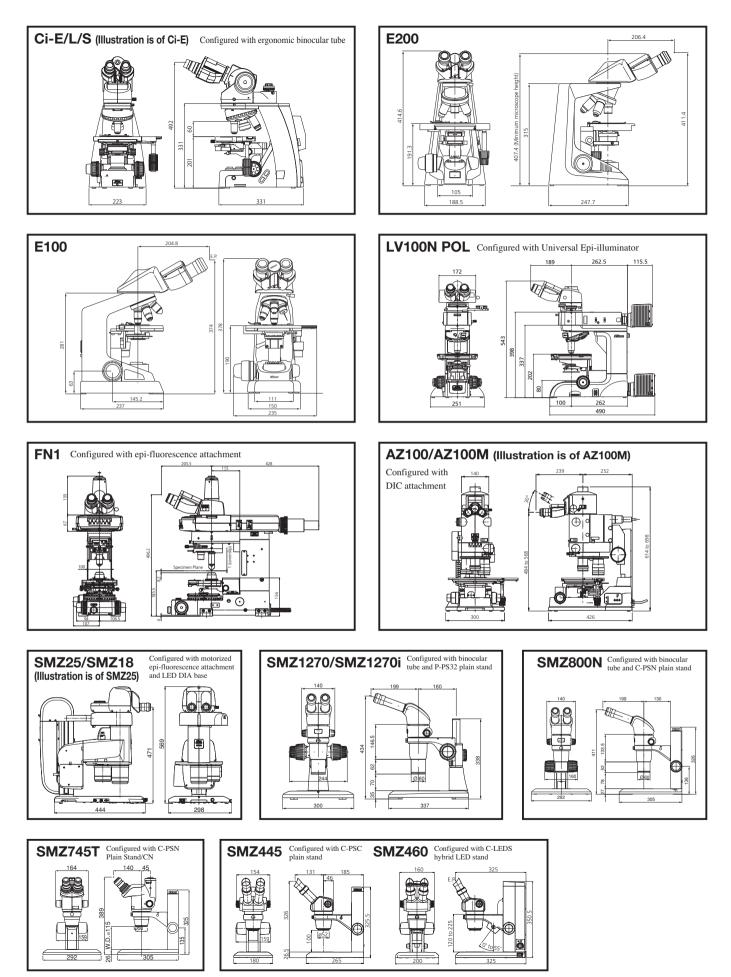

Note:


The lineup is constantly updated. For the latest information, please contact your local Nikon representative. The excitation filters or barrier filters in each filter cube are interchangeable. For custom setup, blank cubes without filters are also available. Please consult with your local Nikon distributor for a complete list of filters locally available or inquire about special custom filter combinations.


Dimensional Diagrams







Eyepoint height: when pupillary distance is 64mm Unit: mm

Eyepoint height: when pupillary distance is 64mm

23

Enter the "Microscopy University" on the web and discover a whole new world.

MicroscopyU http://www.microscopyu.com

Nikon's International Small World Photomicrography Competition

http://www.nikonsmallworld.com

Photographed with the cooperation of: Dr. Yasushi Okada, Laboratory for Cell Polarity Regulation, Quantitative Biology Center, RIKEN (Microtubules in B16 melanoma cell, page 3)

N.B. Export of the products* in this brochure is controlled under the Japanese Foreign Exchange and Foreign Trade Law. Appropriate export procedure shall be required in case of export from Japan. *Products: Hardware and its technical information (including software)

Monitor images are simulated.

Company names and product names appearing in this brochure are their registered trademarks or trademarks.

Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer. January 2016 ©2005-16 NIKON CORPORATION

WARNING TO ENSURE CORRECT USAGE, READ THE CORRESPONDING MANUALS CAREFULLY BEFORE USING YOUR EQUIPMENT.

NIKON CORPORATION

Shinagawa Intercity Tower C, 2-15-3, Konan, Minato-ku, Tokyo 108-6290, Japan phone: +81-3-6433-3705 fax: +81-3-6433-3785 http://www.nikon.com/products/microscope-solutions/

NIKON INSTRUMENTS INC.

1300 Walt Whitman Road, Melville, N.Y. 11747-3064, U.S.A. phone: +1-631-547-8500; +1-800-52-NIKON (within the U.S.A. only) fax: +1-631-547-0306 http://www.nikoninstruments.com/

NIKON INSTRUMENTS EUROPE B.V. Tripolis 100, Burgerweeshuispad 101, 1076 ER Amsterdam, The Netherlands

phone: +31-20-7099-000 fax: +31-20-7099-298 http://www.nikoninstruments.eu/

NIKON INSTRUMENTS (SHANGHAI) CO., LTD. CHINA phone: +86-21-6841-2050 fax: +86-21-6841-2060

(Beijing branch) phone: +86-10-5831-2028 fax: +86-10-5831-2026 (Guangzhou branch) phone: +86-20-3882-0550 fax: +86-20-3882-0580

Nikon promotes the use of eco-glass that is free of toxic materials such as lead and arsenic.

Printed in Japan (1602-03)T

NIKON SINGAPORE PTE LTD SINGAPORE phone: +65-6559-3661 fax: +65-6559-3668 NIKON INSTRUMENTS KOREA CO., LTD. KOREA phone: +82-2-2186-8400 fax: +82-2-555-4415 NIKON CANADA INC. CANADA phone: +1-905-602-9676 fax: +1-905-602-9953 NIKON FRANCE S.A.S. FRANCE phone: +33-1-4516-45-16 fax: +33-1-4516-45-55 NIKON GMBH GERMANY phone: +49-211-941-42-20 fax: +49-211-941-43-22 NIKON INSTRUMENTS S.p.A. ITALY phone: +39-55-300-96-01 fax: +39-55-30-09-93 NIKON AG

NIKON AG SWITZERLAND phone: +41-43-277-28-67 fax: +41-43-277-28-61

ISO 9001 Certified for NIKON CORPORATION Microscope Solutions Business Unit Industrial Metrology Business Unit

IS0 14001 Certified for NIKON CORPORATION

NIKON UK LTD. UNITED KINGDOM phone: +44-208-247-1717 fax: +44-208-541-4584 NIKON GMBH AUSTRIA AUSTRIA phone: +43-1-972-6111-00 fax: +43-1-972-6111-40 NIKON BELUX BELGIUM phone: +32-2-705-56-65 fax: +32-2-726-66-45

En